WorldWideScience

Sample records for pulse jet mixer

  1. Physical Attributes of Pulse Jet Mixer Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, William L.; Rector, David R.; Bamberger, Judith A.; Minette, Michael J.

    2013-07-07

    Vessels mixed using pulse jet mixers that produce a periodic, rather than steady, flow present challenges with respect to modeling slurry mixing. A PJM is a cylindrical tank within the mixed tank that has a conical bottom with an orifice through which process fluid cyclically enters and is expelled forcefully by pressurizing the air space above the liquid in the PJM. Between pulses, some of the solids settle from the slurry, which nominally is a failure in mixing, but during the pulses (if operated to attain bottom clearing conditions), all of the solids are resuspended and made available for processing or transfer. Overall, mixing is successful if the solids are processed and removed from the vessel as needed when averaged over repeated PJM cycles. This paper describes the physics of pulse jet mixing process based on physical observation during experiments and analysis of experimental concentration profile data obtained during the mixing cycle.

  2. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-12-07

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids

  3. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    Energy Technology Data Exchange (ETDEWEB)

    HASSAN, NEGUIB

    2004-06-29

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

  4. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2009-07-20

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  5. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2008-03-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  6. EVALUATION OF FOAMING/ANTIFOAMING IN WTP TANKS EQUIPPED WITH PULSE JET MIXERS AND AIR SPARGERS

    Energy Technology Data Exchange (ETDEWEB)

    JONES, TIMOTHYM.

    2004-09-01

    has no significant effect on pH or chemical composition of the slurry. The rheology is also not impacted by air sparging. The primary effect of air sparging is the removal of water by the dry air passing through the column and exiting in a saturated condition. This effect can be mitigated by adding water back to the column or vessel during sparging. Therefore, an initial charge of 350 mg/L antifoam (Dow Q2-3183A) followed by small batch additions of 70 mg/LQ2-3183A every 24 hours is recommended for use in WTP tanks equipped with air spargers and pulse jets based upon the testing done in this study. However, this recommendation is based upon a limited set of antifoam degradation data developed for the WTP evaporator R and T program. Therefore, additional investigation into refining the kinetic behavior of Q2 antifoam under radiation dose is recommended.

  7. PULSED MIXER-SETTLER SOLVENT EXTRACTION CONTACTORS

    Science.gov (United States)

    Figg, W.S.

    1958-08-12

    A mixer-settler extractor is described for contacting immiscible liquids having different specific gravities in order to withdraw one or more components from one liquid with the aid of the other liquid. The extractor consists of a hollow column, a rotary drive shafi extending : through the column with a number of impellers spaced thereon, an equal nunnber of separator plate sets each consisting of one fluorothene and one stainless steel plate with peripheral recesses and flow slots mounted on the column, and a pulse generator. This apparatus is particularly useful in solvent extraction processes for recovering plutonium from aqueous acidic solutions of irradiated uranium.

  8. A simple confined impingement jets mixer for flash nanoprecipitation.

    Science.gov (United States)

    Han, Jing; Zhu, Zhengxi; Qian, Haitao; Wohl, Adam R; Beaman, Charles J; Hoye, Thomas R; Macosko, Christopher W

    2012-10-01

    Johnson and Prud'homme (2003. AICHE J 49:2264-2282) introduced the confined impingement jets (CIJ) mixer to prepare nanoparticles loaded with hydrophobic compounds (e.g., drugs, inks, fragrances, or pheromones) via flash nanoprecipitation (FNP). We have modified the original CIJ design to allow hand operation, eliminating the need for a syringe pump, and we added a second antisolvent dilution stage. Impingement mixing requires equal flow momentum from two opposing jets, one containing the drug in organic solvent and the other containing an antisolvent, typically water. The subsequent dilution step in the new design allows rapid quenching with high antisolvent concentration that enhances nanoparticle stability. This new CIJ with dilution (CIJ-D) mixer is a simple, cheap, and efficient device to produce nanoparticles. We have made 55 nm diameter β-carotene nanoparticles using the CIJ-D mixer. They are stable and reproducible in terms of particle size and distribution. We have also compared the performance of our CIJ-D mixer with the vortex mixer, which can operate at unequal flow rates (Liu et al., 2008. Chem Eng Sci 63:2829-2842), to make β-carotene-containing particles over a series of turbulent conditions. On the basis of dynamic light scattering measurements, the new CIJ-D mixer produces stable particles of a size similar to the vortex mixer. Our CIJ-D design requires less volume and provides an easily operated and inexpensive tool to produce nanoparticles via FNP and to evaluate new nanoparticle formulation. Copyright © 2012 Wiley Periodicals, Inc.

  9. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  10. Assessment of Differences in Phase 1 and Phase 2 Test Observations for Waste Treatment Plant Pulse Jet Mixer Tests with Non-Cohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Baer, Ellen BK; Bamberger, Judith A.; Fort, James A.; Minette, Michael J.

    2010-10-27

    The purpose of this work was to assess the apparent discrepancy in critical suspension velocity (UCS) between M3 Phase 1 (Meyer et al. 2009) and Phase 2 testing conducted by Energy Solutions (ES) at Mid-Columbia Engineering (MCE) and to address the applicability of Phase 1 scale-up laws to Phase 2 test results. Three Phase 2 test sequences were analyzed in detail. Several sources of discrepancy were identified including differences in nominal versus actual velocity, definition of model input parameters, and definition of UCS. A remaining discrepancy was shown to not be solely an artifact of Phase 1 data correlations, but was fundamental to the tests. The non-prototypic aspects of Phase 1 testing were reviewed and assessed. The effects of non-prototypic refill associated with the closed loop operation of the jets, previously known to affect cloud height, can be described in terms of a modified settling velocity. When the modified settling velocity is incorporated into the Phase 1 “new” physical model the adjusted new physical model does a better job of predicting the Phase 2 test results. The adjusted new physical model was bench marked with data taken during three prototypic drive tests. Scale-up behavior of the Phase 1 tests was reviewed. The applicability of the Phase 1 scale-up behavior to Phase 2 prototypic testing was analyzed. The effects of non-prototypic refill caused measured values of UCS to be somewhat reduced at larger scales. Hence the scale-up exponents are believed to be smaller than they would have been had there been prototypic refill. Estimated scale-up exponents for the Phase 2 testing are 0.40 for 8-tube tests and 0.36 for 12-tube tests.

  11. Noise Reduction with Lobed Mixers: Nozzle-Length and Free-Jet Speed Effects

    Science.gov (United States)

    Mengle, Vinod G.; Dalton, William N.; Bridges, James C.; Boyd, Kathy C.

    1997-01-01

    Acoustic test results are presented for 1/4th-scaled nozzles with internal lobed mixers used for reduction of subsonic jet noise of turbofan engines with bypass ratio above 5 and jet speeds up to 830 ft/s. One coaxial and three forced lobe mixers were tested with variations in lobe penetration, cut-outs in lobe-sidewall, lobe number and nozzle-length. Measured exit flow profiles and thrusts are used to assist the inferences from acoustic data. It is observed that lobed mixers reduce the low-frequency noise due to more uniformly mixed exit flow; but they may also increase the high-frequency noise at peak perceived noise (PNL) angle and angles upstream of it due to enhanced mixing inside the nozzle. Cut-outs and low lobe penetration reduce the annoying portion of the spectrum but lead to less uniform exit flow. Due to the dominance of internal duct noise in unscalloped, high-penetration mixers their noise is not reduced as much with increase in free-jet speed as that of coaxial or cut-out lobed mixers. The latter two mixers also show no change in PNL over the wide range of nozzle-lengths tested because most of their noise sources are outside the nozzle; whereas, the former show an increase in noise with decrease in nozzle-length.

  12. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.

  13. Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.

    2004-01-01

    With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.

  14. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production.

    Science.gov (United States)

    Chow, Shing Fung; Sun, Changquan Calvin; Chow, Albert Hee Lum

    2014-10-01

    The relative performance of two specially designed mixers for nanoparticle production, namely, two-stream confined impinging jets with dilution mixer (CIJ-D-M) and four-stream multi-inlet vortex mixer (MIVM), was evaluated using the model compound, curcumin (CUR), under defined conditions of varying mixing rate and organic solvent. In the absence of turbulent fluctuations, higher mixing rate tended to generate finer particles. Among the three water-miscible organic solvents tested, acetone afforded the smallest particle size and the narrowest particle size distribution. Both mixers were capable of reproducibly fabricating CUR nanoparticles with particle size below 100 nm and high encapsulation efficiency (>99.9%). Specifically, CIJ-D-M yielded nanoparticles with smaller size and polydispersity index while the particles obtained by the MIVM displayed better short-term stability. In addition, CIJ-D-M tended to produce a mixture of irregular nanoaggregates and primary nanoparticles while roughly spherical nanoparticles were generated with the MIVM. The observed particle size and morphological differences could be attributed to the differences in the configuration of the mixing chamber and the related mixing order.

  15. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer.

    Science.gov (United States)

    Lim, Jong-Min; Swami, Archana; Gilson, Laura M; Chopra, Sunandini; Choi, Sungyoung; Wu, Jun; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C

    2014-06-24

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.

  16. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    JR Bontha; GR Golcar; N Hannigan

    2000-08-29

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systems are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.

  17. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell

  18. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    Science.gov (United States)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  19. Scoping Study of Airlift Circulation Technologies for Supplemental Mixing in Pulse Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-07

    At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology and configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.

  20. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  1. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  2. Studies on Pulse Jet Engine by Wind Tunnel Testing

    OpenAIRE

    Toshihiro Nakano; Michael Zeutzius; Hideo Miyanishi; Toshiaki Setoguchi; Kenji Kaneko

    2001-01-01

    Simple design and efficiency make pulse jet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. The results on wind tunnel experiments have been reported together with the impact of combustion mode (pulse or steady) on system performance.

  3. Effects of multi-jet coupling on propulsive performance in underwater pulsed jets

    CERN Document Server

    Athanassiadis, Athanasios G

    2016-01-01

    Despite the importance of pulsed jets for underwater propulsion, the effect of multiple-jet interactions remains poorly understood. We experimentally investigate how interactions between neighboring jets in a pulsed-jet thruster affect the thruster's propulsive performance. Using high-speed fluorescence imaging, we investigate the mutual influence of two pulsed jets under conditions relevant to low-speed maneuvering in a vehicle ($Re\\approx350,$ $L/D\\leq2$). Thrust production and propulsive efficiency are evaluated for different nozzle spacings using a new force estimation technique based on the fluorescence data. This analysis reveals that, compared to non-interacting jets, the efficiency and thrust generated by the pair of interacting jets can fall by as much as 10\\% when the jets are brought into close proximity. Empirically, the thrust $T$ falls off with the non-dimensional jet spacing $\\widetilde{\\Delta}$ as $T=T_\\infty(1-Co \\widetilde{\\Delta}^{-6})$ for a thrust coupling coefficient $Co=2.04 \\pm 0.11.$ ...

  4. Measurements of a single pulse impinging jet. A CFD reference

    Directory of Open Access Journals (Sweden)

    Bovo Mirko

    2014-03-01

    Full Text Available This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0º, 30º, 45º and 60º. The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions. At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.

  5. Supersonic Jet Noise Reduction Using Flapping Injection and Pulsed Injection

    Science.gov (United States)

    Hafsteinsson, Haukur; Eriksson, Lars-Erik; Cuppoletti, Daniel; Gutmark, Ephraim; Department of Applied Mechanics, Chalmers University of Technology Team; Department of Aerospace Engineering, University of Cincinatti Team; Swedish Defence Material Administration, Sweden Team

    2013-11-01

    Aircraft are in general noisy and there is a high demand for reducing their noise levels. The jet exhaust is in most cases the main noise source of the aircraft, especially for low bypass ratio jet engines. Fluidic injection affecting the shear layer close to the nozzle exit is a promising noise reduction technique as it can be turned of while not needed and thus the negative effect on the engine performance will be minimized. In the presented work, LES is used to compare steady-state mass flow injection with steady-state mass flow flapping jet injection. The work is a direct continuation of a previous LES study on pulsed injection which showed that the pulsed injection induced pressure pulses in the jet which caused increased tonal noise in the downstream directions. The injection system considered in the presented work consists of eight evenly distributed injectors at the nozzle exit plane with a 90° injection angle relative to the flow direction. Flapping jet injection is believed to minimize the creation of these pressure pulses since it provides steady-state mass flow. This work is funded by Swedish Defense Material Administration (FMV).

  6. Studies on Pulse Jet Engine by Wind Tunnel Testing

    Directory of Open Access Journals (Sweden)

    Toshihiro Nakano

    2001-01-01

    Full Text Available Simple design and efficiency make pulse jet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. The results on wind tunnel experiments have been reported together with the impact of combustion mode (pulse or steady on system performance.

  7. Development of A Pulse Radio-Frequency Plasma Jet

    Science.gov (United States)

    Wang, Shou-Guo; Zhao, Ling-Li; Yang, Jing-Hua

    2013-09-01

    A small pulse plasma jet was driven by new developed radio-frequency (RF) power supply of 6.78 MHz. In contrast to the conventional RF 13.56 MHz atmospheric pressure plasma jet (APPJ), the power supply was highly simplified by eliminating the matching unit of the RF power supply and using a new circuit, moreover, a pulse controller was added to the circuit to produce the pulse discharge. The plasma jet was operated in a capacitively coupled manner and exhibited low power requirement of 5 W at atmospheric pressure using argon as a carrier gas. The pulse plasma plume temperature remained at less than 45 °C for an extended period of operation without using water to cool the electrodes. Optical emission spectrum measured at a wide range of 200-1000 nm indicated various excited species which were helpful in applying the plasma jet for surface sterilization to human skin or other sensitive materials. Institude of Plasma Physics, Chinese Academy of Science, Hefei, China.

  8. Experimental investigation of jet pulse control on flexible vibrating structures

    Science.gov (United States)

    Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios

    2016-08-01

    The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.

  9. Multiple Pulses from Plasma Jets onto Liquid Covered Tissue

    Science.gov (United States)

    Norberg, Seth; Tian, Wei; Johnsen, Eric; Kushner, Mark J.

    2014-10-01

    Atmospheric pressure plasma jets are being studied in the treatment of biological surfaces that are often covered by a thin layer of liquid. The plume of the plasma jet contains neutral radicals and charged species that solvate into the liquid and eventually form terminal species that reach the tissue below. The contribution of neutral and charged species to reactivity in the liquid is sensitive to whether the active plasma plume touches the liquid. In this paper, we discuss results from modeling the production of the aqueous species formed from the interaction of the plume of plasma jets over multiple pulses with the water layer, and the fluences of the species to the underlying tissue. The model used in this study, nonPDPSIM, solves transport equations for charged and neutral species and electron energy, Poisson's equation for the electric potential, and Navier-Stokes equations for the neutral gas flow. Radiation transport includes photoionization of O2 and H2O in the gas and liquid phases and photodissocation of H2Oaq in the liquid. Multiple pulses when the plasma plume touches and does not touch the liquid will be examined. Two regimes of hydrodynamics will be discussed - low repetition rates where the neutral radicals are blown away before the next discharge pulse, and high repetition rate when the plasma plume interacts with neutral radicals from previous pulses. The density of aqueous ions produced in the liquid layer is strongly dependent on whether the plasma effluent touches or does not touch the water surface. Work supported by DOE Office of Fusion Energy Science and NSF.

  10. Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue.

    Science.gov (United States)

    Seto, Takeshi; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Nakagawa, Atsuhiro; Tominaga, Teiji

    2011-05-01

    This paper reports characteristics of an actuator-driven pulsed water jet generator applied, in particular, to dissect soft tissues. Results of experiments, by making use of high speed recording of optical visualization and varying nozzle diameter, actuator time interval, and their effects on dissection performance are presented. Jet penetration characteristics are compared with continuous water jet and hence potential assessment of pulsed water jets to clinical applications is performed.

  11. 气-气快速喷射混合器的模拟研究%Numerical Simulation on the Mixing in a Multi-Jet Gas-Gas Mixer

    Institute of Scientific and Technical Information of China (English)

    裴凯凯; 李瑞江; 吴勇强; 倪燕慧; 朱子彬

    2015-01-01

    For developing new jet-mixers, numerical simulations were performed by software Fluent according to the k-εturbulence model, to study the effects of various geometric and process parameters on the mixing characteristics of ethylbenzene gas and steam in multi-jet mixers equipped on the ethyl benzene dehydrogenation unit, the mixing performance of fluids was characterized with the mixing index. It is found that the jet velocity, jet length, jet number and operational load affected on the mixing efficiency significantly. The mixing efficiency of gas-gas mixer was perfect and the total pressure drop was low as jet velocity was equal to 142 m/s, jet length was 40 mm and jet number was six. The results presented here are very useful for the preliminary design of multi-jet mixer for low viscosity fluids.%为开发气-气快速喷射混合器,在Fluent软件平台上,采用k-ε湍流模型模拟研究了乙苯脱氢装置中快速喷射混合器混合效果随混合器结构尺寸和操作条件变化的规律,并用混合指数来表征流体的混合效果。模拟发现,喷嘴喷射速度、喷嘴直管段长度、喷嘴个数和工业负荷变化对气-气快速喷射混合器的混合效果有重要影响。当喷嘴喷射速度为142 m/s、喷嘴直管段长度为40 mm、喷嘴个数为6个时,气-气快速喷射混合器的混合效果最佳、混合压降较小。其模拟研究方法对气-气快速喷射混合器的工程开发有重要的指导意义。

  12. HYDRODYNAMIC ANALYSIS OF SUCK-IN PULSED JET IN WELL DRILLING

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-he; DU Yu-kun; NI Hong-jian; MA Lin

    2011-01-01

    The development of new drilling methods is important for the exploration and production of oil fields. The pulsed jet is a drilling technology of high potentiality. This article proposes a new concept of suck-in pulsed jet with self-excited oscillation, by which a full use of the hydraulic power can be made in the annular space. A hydrodynamic analysis of suck-in pulsed jet with self-excited oscillation is carried out by numerical simulations and rock-breaking experiments. It is shown that with the jet, a negative pressure zone will be formed in the oscillation cavity to ensure automatic sucking of enough annular fluids and the formation of an efficient pulsed jet. The rock-breaking and pressure testing results have verified the reliability of the numerical simulation. The research provides a basis for the development of the pulsed jet drilling technology.

  13. Vacuum Ultraviolet Xenon Excimer Light Source Excited by a Pulsed Jet Discharge

    National Research Council Canada - National Science Library

    Eiji FUTAGAMI; Toshiaki TAKADA; Junji KAWANAKA; Shoichi KUBODERA; Wataru SASAKI; Kou KUROSAWA; Kenichi MITSUHASHI; Tatsushi IGARASHI

    1995-01-01

      We have developed a new xenon excimer light source in vacuum ultraviolet (VUV). The use of a pulsed gas jet discharge realized efficient cluster excitation and spatially localized emission in VUV with an extremely long pulse duration...

  14. 76 FR 37798 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Science.gov (United States)

    2011-06-28

    ... Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet Mixing at the..., concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant, to the Department of Energy. In... Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing (PJM) at the Waste Treatment...

  15. 76 FR 13397 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Science.gov (United States)

    2011-03-11

    ... Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet Mixing at the... Defense Nuclear Facilities Safety Board Recommendation 2010-2, concerning Pulse Jet Mixing at the Waste... Board (Board) Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization...

  16. BIB mixers

    Science.gov (United States)

    1995-01-01

    We have determined that the multi-pin 'microprocessor style' packages in which current Blocked Impurity Band (BIB) devices are mounted will not meet our IF bandwidth spec of greater than 2 GHz for a practical mixer. Hence we have started to repackage the Ga:Ge BIB devices in new microwave compatible packages. The smaller size of the microwave package mount necessitates cutting the BIB array down to include only the 3 smallest detectors: 0.2, 0.4, and 0.6 mm sq. A FIR beam incident at f/1.5 can be focussed on the smallest element for wavelengths shorter than 100 microns. A more typical (easier) beam convergence of f/3 will require 0.4 mm elements at 100 microns and 0.6 mm elements at 170 microns wavelength. Since the device capacitance (parasitic loss) scales with detector size, there is a tradeoff of speed of response and optical convenience. Our existing optics produce only the slower convergence beam, so we need to redesign the optical layout and are looking at long focal length all-reflective microscope objectives. BIB detectors and the edge-coupled microbolometers have restricted IF bandwidths, an order of magnitude less than what is possible with the Schottky-diode mixers we currently use for astronomical observations. Consequently the frequencies of the FIR laser lines must be close to the astronomical line of interest to be an effective Local Oscillator (LO). We have therefore begun a coordinated effort to discover and measure new FIR laser transition lines in close frequency coincidence with important astrophysical lines. Most of this effort involves pumping isotopic variants of known good laser molecules with laser lines from isotopic variants of CO2. We have been most successful in detecting new FIR lines in deuterated ammonia. One line in particular is very close to the frequency of HD rotational line at 2675 GHz.

  17. Characteristics of High Speed Electro-thermal Jet Activated by Pulsed DC Discharge

    Institute of Scientific and Technical Information of China (English)

    Jichul Shin

    2010-01-01

    Experimental study of synthetic jet produced by pulsed direct current (DC) discharge is presented.High velocity jet is activated electro-thermally by high frequency pulsed DC discharge in small cavity.A cavity of 2.38 mm diameter cylinder bounded by circular electrode is made in a ceramic plate and a small orifice of 1.78 mm diameter is drilled in the middle of cavity.High frequency pulsed DC discharge instantaneously heats air in the cavity and produces high velocity jet at the exit of the orifice.Schlieren imaging at high framing rate of 100 kHz reveals the presence of supersonic precursor shock followed by the jet emerging from the orifice.The jet velocity reaches as high as about 300 m/s.Jet with smaller cavity volume produces lesser effect and jet velocity reaches maximum at certain cavity volume with given discharge current and orifice size.As duty time of pulse increases from 5 to 20 μs at fixed frequency of 5 kHz,the jet velocity also increases and becomes nearly constant with further increase in duty time.At fixed duty time of 20 μs,higher frequency pulsing of 10 kHz produces degradation of the jet as the discharge pulse continues.The jet developed in this study is demonstrated to be strong enough to penetrate deep into supersonic boundary layer and to produce a bow shock when the jet is issued into Math 3 supersonic flow.

  18. [The pulsed water jet for selective removal of bone cement during revision arthroplasty].

    Science.gov (United States)

    Honl, Matthias; Schwieger, Karsten; Carrero, Volker; Rentzsch, Reemt; Dierk, Oliver; Dries, Sebastian; Pude, Frank; Bluhm, Andrea; Hille, Ekkehard; Louis, Hartmut; Morlock, Michael

    2003-10-01

    Conventional tools used in prosthetic revision surgery have a limited range of action within the narrow cement mantle. Water jet cutting technology permits tiny and precisely controlled cuts, and may therefore be an alternative method of bone cement removal. Our study compares the cutting performance on bone cement (PMMA) and bone of a pulsed water jet and a continuous water jet. The aim of the study was to establish whether selective removal of PMMA is possible. 55 bone specimens (bovine femora) and 32 specimens of PMMA were cut with a continuous and a pulsed water jet at different pressures (40 MPa, 60 MPa) and pulse frequencies (0Hz, 50Hz, 250Hz). To ensure comparability of the results, the depths of cut were related to the hydraulic power of that part of the jet actually impinging on the material. While for PMMA the power-related depth of cut increased significantly with the pulse frequency, this did not apply to bone. The cuts produced in bone were sharp-edged. Since PMMA is more brittle than bone, the water jet caused cracks that enlarged further until particles of bone broke away. Although selective removal of PMMA without doing damage to the bone was not possible at the investigated settings of the jet parameters, the results do show that a pulsed water jet can cut bone cement much more effectively than bone. This is an important advantage over conventional non-selective tools for the removal of bone cement.

  19. Phase-locked oscillator at 3 mm waveband using high Tc superconductor mixer mounted on pulse tube crycooler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A frequency mixing and phase locking system is designed, in which electromagnetic shielding, microwave coupling, and intermediate frequency (IF) measurement arrangements are included. In lieu of liquid nitrogen, a pulse tube cryocooler is used to cool the whole system. With Josephson grain boundary junction as the mixing element, the 96th harmonic frequency mixing at 3 mm waveband is obtained, and phase-locked voltage- controlled oscillator (VCO) is realized.

  20. THEORY AND EXPERIMENTAL STUDY OF THE SELF-EXCITED OSCILLATION PULSED JET NOZZLE

    Institute of Scientific and Technical Information of China (English)

    Liao Zhenfang; Li Jun; Chen Deshu; Deng Xiaogang; Tang Chuanlin; Zhang Fenghua

    2003-01-01

    Comparing with usual continuous jet nozzle, the self-excited oscillation pulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouring volume. And it can make jet increase the effective standoff distance, too. The basic theories of the SEOPJN are introduced.Some experimental results are shown. According to the results, using tricorn bits assembled the SEOPJN to drill oil well, the ROP increases by 8%~77%, and the rates of the footage for tricorn bit increases by 6.7%~44.0%.

  1. From salps to robots: estimating thrust in propulsive pulsed jets using wake kinematics

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2016-11-01

    Both animals and robots can achieve high maneuverability underwater by using pulsed jets for propulsion. However, in cases where multiple jets are required, it remains unclear how jet placement and timing will affect propulsive performance. In recent experiments, we demonstrate how vortex interactions reduce thrust production for simultaneously pulsed jets. Our results rely on force estimates using high-speed laser fluorescence imaging of the jet wakes. By combining measurements of wake kinematics with analytical models, we are able to estimate force production from just the fluorescence videos. In this talk, I will discuss the force estimation technique, and how this approach helped to reveal design strategies that would benefit from the wake interactions. This work was supported by the Office of Naval Research.

  2. Study of the expansion characteristics of a pulsed plasma jet in air

    Science.gov (United States)

    Zhao, Xuewei; Yu, Yonggang; Mang, Shanshan; Xue, Xiaochun

    2017-04-01

    In the background of electrothermal-chemical (ETC) emission, an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air. The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system. The variation relation in the extended volume, axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained. Based on experiments, a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5-3.5 MPa under three nozzle diameters (3 mm, 4 mm and 5 mm, respectively). The images of the plasma jet reveal a changing shape process, from a quasi-ellipsoid to a conical head and an elongated cylindrical tail. The axial displacement of the jet is always larger than that along the radial direction. The extended volume reveals a single peak distribution with time. Compared to the experiment, the numerical simulation agrees well with the experimental data. The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle, and become more and more gradual and close to environmental parameters. Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet, the size of the Mach disk and the pressure. In addition, the turbulent mixing in the expansion process is also enhanced.

  3. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; ZHOU Dong-ping; LU Yi-yu; KANG Yong; ZHAO Yu; WANG Xiao-chuan

    2009-01-01

    Mine gas extraction in China is difficult due to the characteristics such as mi-cro-porosity, low-permeability and high adsorption of coal seams. The pulsed mechanism of a high-pressure pulsed water jet was studied through theoretical analysis, experiment and field measurement. The results show that high-pressure pulsed water jet has three dynamic properties. What's more, the three dynamic effects can be found in low-perme-ability coal seams. A new pulsed water jet with 200-1 000 Hz oscillation frequency and peak pressure 2.5 times than average pressure was introduced. During bubble collapsing, sound vibration and instantaneous high pressures over 100 MPa enhanced the cutting ability of the high-pressure jet. Through high-pressure pulsed water jet drilling and slotting, the exposure area of coal bodies was greatly enlarged and pressure of the coal seams rapidly decreased. Therefore, the permeability of coal seams was improved and gas ab-sorption rate also decreased. Application results show that gas adsorption rate decreased by 30%-40% and the penetrability coefficient increased 100 times. This proves that high-pressure pulsed water is more efficient than other conventional methods.

  4. Characterization of Density Profile of Cylindrical Pulsed Gas Jets

    Institute of Scientific and Technical Information of China (English)

    YU Quan-Zhi; LI Yu-Tong; ZhANG Jie; ZHENG Jun; LI Han-Ming; PENG Xiao-Yu; LI Kun

    2004-01-01

    @@ We investigated the characteristics of argon and helium gas jets produced by a cylindrical nozzle under pressures from I to 6 Mpa using a femtosecond laser interferometry. A radial parabolic distribution and an axial exponential distribution of the gas jet density profiles are identified. The results show that the density increases linearly with the backing pressure.

  5. [Usefulness of pulsed water jet in dissecting sphenoid ridge meningioma while preserving arteries].

    Science.gov (United States)

    Endo, Toshiki; Nakagawa, Atsuhiro; Fujimura, Miki; Sonoda, Yukihiko; Shimizu, Hiroaki; Tominaga, Teiji

    2014-11-01

    We report the utility of a pulsed water jet device in meningioma surgery. The presented case is that of a 61-year-old woman with left visual disturbance. MRI demonstrated heterogeneously enhanced mass with intratumoral hemorrhage, indicating sphenoid ridge meningioma on her left side. The tumor invaded the cavernous sinus and left optic canal, engulfing the internal carotid artery in the carotid cistern and encased middle cerebral arteries. During the operation, the pulsed water jet device was useful for dissecting the tumor away from the arteries since it was safe in light of preserving parent arteries. The jet did not cause any vascular injury and did not induce vasospasm as shown by postoperative symptomatology and MRIs. With the aid of pulsed water jet, we could achieve total resection of the tumor except for the piece within the cavernous sinus. The patient had no new neurological deficits after the operation. We consider the pulsed water jet as a useful device, especially when the need to dissect meningioma from parent arteries exists. The jet can help neurosurgeons simultaneously achieve tumor resection and preservation of blood vessels.

  6. Observations of a pulse driven cool polar jet by SDO/AIA

    CERN Document Server

    Srivastava, Abhishek K

    2011-01-01

    Context. We observe a solar jet at north polar coronal hole (NPCH) using SDO AIA 304 {\\deg}A image data on 3 August 2010. The jet rises obliquely above the solar limb and then retraces its propagation path to fall back. Aims. We numerically model this observed solar jet by implementing a realistic (VAL-C) model of solar temperature. Methods. We solve two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed solar jet. We consider a localized velocity pulse that is essentially parallel to the background magnetic field lines and initially launched at the top of the solar photosphere. The pulse steepens into a shock at higher altitudes, which triggers plasma perturbations that exhibit the observed features of the jet. The typical direction of the pulse also clearly exhibits the leading front of the moving jet. Results. Our numerical simulations reveal that a large amplitude initial velocity pulse launched at the top of the solar photosphere produces in general the observed properti...

  7. A laser-induced pulsed water jet for layer-selective submucosal dissection of the esophagus.

    Science.gov (United States)

    Nakano, T; Sato, C; Yamada, M; Nakagawa, A; Yamamoto, H; Fujishima, F; Tominaga, T; Satomi, S; Ohuchi, N

    2016-10-01

    Background and aims: Conventional water jet devices have been used for injecting fluid to lift up lesions during endoscopic submucosal dissection or endoscopic mucosal resection procedures. However, these devices cannot dissect the submucosal layer effectively. Here we aim to elucidate the dissection capability of a laser-induced pulsed water jet and to clarify the mechanism of dissection with layer selectivity. Materials (Subjects) and methods: Pulsed water jets were ejected from a stainless nozzle by accelerating saline using the energy of a pulsed holmium: yttrium-aluminum-garnet laser. The impact force (strength) of the jet was evaluated using a force meter. Injection of the pulsed jet into the submucosal layer was documented by high-speed imaging. The physical properties of the swine esophagus were evaluated by measuring the breaking strength. Submucosal dissection of the swine esophagus was performed and the resection bed was evaluated histologically. Results: Submucosal dissection of the esophagus was accomplished at an impact force of 1.11-1.47 N/pulse (laser energy: 1.1-1.5 J/pulse; standoff distance: 60 mm). Histological specimens showed clear dissection at the submucosal layer without thermal injury. The mean static breaking strength of the submucosa (0.11 ± 0.04 MPa) was significantly lower than that of the mucosa (1.32 ± 0.18 MPa), and propria muscle (1.45 ± 0.16 MPa). Conclusions: The pulsed water jet device showed potential for achieving selective submucosal dissection. It could achieve mucosal, submucosal, and muscle layer selectivity owing to the varied breaking strengths.

  8. Study of the Behaviour of a Pulsed Liquid Jet Target

    CERN Document Server

    Johnson, C D

    2000-01-01

    This Web document describes laboratory tests of a water jet using a Nordson piston pump (Model 25B 16:1, Nordson Corp. Ohio, USA) and 5 mm diameter Nordson needle valve (A7A-LBS) - a high-tech water pistol! These tests are a preliminary stage in the development of a mercury-jet pion-production target for a neutrino factory based on a muon storage ring [Refs.1,2]. Click on pictures for enlarged images.

  9. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Robert, E.; Darny, T.; Dozias, S.; Iseni, S.; Pouvesle, J. M. [GREMI, UMR 7344, CNRS/Université d' Orléans, BP 6744, 45067 Orléans Cedex 2 (France)

    2015-12-15

    Atmospheric pressure plasma propagation inside long dielectric tubes is analyzed for the first time through nonintrusive and nonperturbative time resolved bi-directional electric field (EF) measurements. This study unveils that plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position usually revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have an amplitude of several kV/cm for helium or neon plasmas and are preserved almost constant along a few tens of cm inside a capillary. All these experimental measurements are in excellent agreement with previous model calculations. The key roles of the voltage pulse polarity and of the target nature on the helium flow patterns when plasma jet is emerging in ambient air are documented from Schlieren visualization. The second part of this work is then dedicated to the development of multi jet systems, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are reported and analyzed from ICCD imaging and time resolved EF measurements. This allows for the design and the feasibility validation of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation, and electrostatic influence between the produced secondary jets.

  10. Numerical and experimental study of pulse-jet cleaning in fabric filters

    DEFF Research Database (Denmark)

    O. Andersen, B.; Nielsen, N. F.; Walther, J. H.

    2016-01-01

    for many years by experimental investigation and to a limited extent by Computational Fluid Dynamics (CFD). The majority of the studies have focused on high-pressure cleaning systems, and the CFD models presented are so far two-dimensional (2D). In the work presented here, pulse-jet cleaning of low......Pulse-jet cleaning and understanding of the complex physics are essential when designing fabric filters used for air pollution control. Today, low-pressure cleaning is of particular interest due to demand for reduced compressed air consumption. Pulse-jet cleaned fabric filters have been studied......-pressure fabric filters (2 bar) is studied using a full three-dimensional (3D) CFD model. Experimental results obtained in a pilot-scale test filter with 28 bags, in length of 10 m and in general full-scale dimensions of the cleaning system are used to verify the reliability of the present CFD model...

  11. Analysis and reconstruction of a pulsed jet in crossflow by multi-plane snapshot POD

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, Romain; Thomas, Lionel; David, Laurent [Universite de Poitiers, ENSMA, CNRS, Laboratoire d' Etudes Aerodynamiques (LEA), SP2MI, Teleport 2, Boulevard Marie et Pierre Curie, Futuroscope Chasseneui (France)

    2009-10-15

    In this work, snapshot proper orthogonal decomposition (POD) is used to study a pulsed jet in crossflow where the velocity fields are extracted from stereoscopic particle image velocimetry (SPIV) results. The studied pulsed jet is characterized by a frequency f=1 Hz, a Reynolds number Re{sub j}= 500 (based on the mean jet velocity U{sub j}=1.67 cm/s and a mean velocity ratio of R=1). Pulsed jet and continuous jet are compared via mean velocity field trajectory and Q criterion. POD results of instantaneous, phase-averaged and fluctuating velocity fields are presented and compared in this paper. Snapshot POD applied on one plane allows us to distinguish an organization of the first spatial eigenmodes. A distinction between natural modes and pulsed modes is achieved with the results obtained by the pulsed and unforced jet. Secondly, the correlation tensor is established with four parallel planes (multi-plane snapshot POD) for the evaluation of volume spatial modes. These resulting modes are interpolated and the volume velocity field is reconstructed with a minimal number of modes for all the times of the pulsation period. These reconstructions are compared to orthogonal measurements to the transverse jet in order to validate the obtained three-dimensional velocity fields. Finally, this POD approach for the 3D flow field reconstruction from experimental data issued from planes parallel to the flow seems capable to extract relevant information from a complex three-dimensional flow and can be an alternative to tomo-PIV for large volume of measurement. (orig.)

  12. Analysis and reconstruction of a pulsed jet in crossflow by multi-plane snapshot POD

    Science.gov (United States)

    Vernet, Romain; Thomas, Lionel; David, Laurent

    2009-10-01

    In this work, snapshot proper orthogonal decomposition (POD) is used to study a pulsed jet in crossflow where the velocity fields are extracted from stereoscopic particle image velocimetry (SPIV) results. The studied pulsed jet is characterized by a frequency f = 1 Hz, a Reynolds number Re j = 500 (based on the mean jet velocity {overline{U}j} = 1.67 cm/s and a mean velocity ratio of R = 1). Pulsed jet and continuous jet are compared via mean velocity field trajectory and Q criterion. POD results of instantaneous, phase-averaged and fluctuating velocity fields are presented and compared in this paper. Snapshot POD applied on one plane allows us to distinguish an organization of the first spatial eigenmodes. A distinction between “natural modes” and “pulsed modes” is achieved with the results obtained by the pulsed and unforced jet. Secondly, the correlation tensor is established with four parallel planes (multi-plane snapshot POD) for the evaluation of volume spatial modes. These resulting modes are interpolated and the volume velocity field is reconstructed with a minimal number of modes for all the times of the pulsation period. These reconstructions are compared to orthogonal measurements to the transverse jet in order to validate the obtained three-dimensional velocity fields. Finally, this POD approach for the 3D flow field reconstruction from experimental data issued from planes parallel to the flow seems capable to extract relevant information from a complex three-dimensional flow and can be an alternative to tomo-PIV for large volume of measurement.

  13. Numerical Simulations of the pulsed Jet of MWC 560

    CERN Document Server

    Stute, M; Schmid, H M; Stute, Matthias; Camenzind, Max; Schmid, Hans Martin

    2002-01-01

    MWC 560 (= V694 Mon) is the only known Symbiotic Star system in which the jet axis is practically parallel to the line of sight. Therefore this system is predestinated to study the dynamical evolution and the propagation of stellar jets. Spectroscopic monitoring done by Schmid et al. (2001) showed that the outflow is seen as absorption features in the continuum of the accretion disk and the accreting white dwarf, the emission line spectrum of the accretion disk and the spectrum of the red giant. We present the first numerical simulations of the jet of this particular object using the NIRVANA code (Ziegler & Yorke 1997) in order to reproduce the velocity structures seen in the observational data. This code solves the equations of hydrodynamics and was modified to calculate radiative losses due to non-equilibrium cooling by line-emission (Thiele 2000).

  14. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    Science.gov (United States)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2016-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  15. The interaction of intense ultrashort laser pulses with cryogenic He jets

    CERN Document Server

    Shihab, M; Redmer, R

    2016-01-01

    We study the interaction of intense ultrashort laser pulses with cryogenic He jets using 2d/3v relativistic Particle-in-Cell simulations (XOOPIC). Of particular interest are laser intensities $(10^{15}-10^{20})$ W/cm$^2$, pulse lengths $\\le 100$ fs, and the frequency regime $\\sim 800$ nm for which the jets are initially transparent and subsequently not homogeneously ionized. Pulses $\\ge 10^{16}$ W/cm$^2$ are found to drive ionization along the jet and outside the laser spot, the ionization-front propagates along the jet at a fraction of the speed of light. Within the ionized region, there is a highly transient field, which may be interpreted as two-surface wave decay and as a result of the charge-neutralizing disturbance at the jet-vacuum interface. The ionized region has solid-like densities and temperatures of few to hundreds of eV, i.e., warm and hot dense matter regimes. Such extreme conditions are relevant for high-energy densities as found, e.g., in shock-wave experiments and inertial confinement fusion...

  16. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    Science.gov (United States)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  17. Experimental Study of Twin Pulse Jet Engines for Power Plant Application

    Institute of Scientific and Technical Information of China (English)

    Toshihiro Nakano; Shigeru Matsuo; Toshiaki Setoguchi; Shen Yu

    2003-01-01

    The total efficiency of power plants depends on the energy conversion in a combustor and a turbine. Considerably higher energy transfer rates can be obtained from a pulsed combustion, but unsteady flow of a single jet combustor reduces the turbine efficiency.Therefore, two pulse combustors were set in parallel and connected to a settling chamber that supplies a flow with constant pressure to the turbine.The aim of investigations presented here is a demonstration of technical feasibility for industrial applications and to show the benefits obtained from the pulse combustors.

  18. On the Forming Mechanism of the Cleaning Airflow of Pulse-jet Fabric Filters.

    Science.gov (United States)

    Jiying, Cai; Wenge, Hao; Cong, Zhang; Jiaqi, Yu; Ting, Wang

    2017-04-05

    To reveal the formation mechanism of a pulse-jet airflow's cleaning effect in a filter bag, a theoretical model is built by using the theory of gas jet and unitary adiabatic flow according to given specifications and dimensions of the bags and resistance characteristics of the cloth and dust layer. It is about the relationship between cleaning system structure and operating parameters. The model follows the principle that the flow and kinetic energy of jet flow injected into a filter bag should be consistent with the flow of cleaning airflow in the bag and the pressure drop flowing through the filter cloth and dust layer. The purpose of the model is to achieve the peak pressure of cleaning airflow, which dominates the effect of the pulse-jet cleaning process. The cleaning system structure includes air pressure in the nozzle, structure and size of nozzle, exit velocity of nozzle, jet distance and diameter of jet cross-section. Based on the condition of cleaning system structure and operating parameters established by using the theoretical model, Fluent software is applied to carry out a numerical simulation of the jet airflow field at the nozzle's outlet, jet airflow field between nozzle and bag top, and cleaning airflow field in the filter bag. Experimental results are used to verify the reliability of the theoretical model. They are obtained in a pilot-scale test filter with a single bag, in length of 2m and in general full-scale dimensions of the cleaning system. The results show that when any rectification measure is not installed at the bag opening, the cross-sectional area covered by jet gas is hardly sufficient to cover the entire area of the bag opening. A large portion of the gases injected into the filter bag will overflow reversely upward from the edge due to pressure differences between the upper area and lower area inside the bag opening. This led to a serious shortage of the cleaning airflow and a limited increase in static pressure. When a venturi

  19. Experimental application of pulsed laser-induced water jet for endoscopic submucosal dissection: mechanical investigation and preliminary experiment in swine.

    Science.gov (United States)

    Sato, Chiaki; Nakano, Toru; Nakagawa, Atsuhiro; Yamada, Masato; Yamamoto, Hiroaki; Kamei, Takashi; Miyata, Go; Sato, Akira; Fujishima, Fumiyoshi; Nakai, Masaaki; Niinomi, Mitsuo; Takayama, Kazuyoshi; Tominaga, Teiji; Satomi, Susumu

    2013-05-01

    A current drawback of endoscopic submucosal dissection (ESD) for early-stage gastrointestinal tumors is the lack of instruments that can safely assist with this procedure. We have developed a pulsed jet device that can be incorporated into a gastrointestinal endoscope. Here, we investigated the mechanical profile of the pulsed jet device and demonstrated the usefulness of this instrument in esophageal ESD in swine. The device comprises a 5-Fr catheter, a 14-mm long stainless steel tube for generating the pulsed water jet, a nozzle and an optical quartz fiber. The pulsed water jet was generated at pulse rates of 3 Hz by irradiating the physiological saline (4°C) within the stainless steel tube with an holmium-doped yttrium-aluminum-garnet (Ho:YAG) laser at 1.1 J/pulse. Mechanical characteristics were evaluated using a force meter. The device was used only for the part of submucosal dissection in the swine ESD model. Tissues removed using the pulsed jet device and a conventional electrocautery device, and the esophagus, were histologically examined to assess thermal damage. The peak impact force was observed at a stand-off distance of 40 mm (1.1 J/pulse). ESD using the pulsed jet device was successful, as the tissue specimens showed precise dissection of the submucosal layer. The extent of thermal injury was significantly lower in the dissected bed using the pulsed jet device. The results showed that the present endoscopic pulsed jet system is a useful alternative for a safe ESD with minimum tissue injury. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.

  20. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    Science.gov (United States)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  1. Bluff body drag manipulation using pulsed jets and Coanda effect

    CERN Document Server

    Barros, Diogo; Noack, Bernd R; Spohn, Andreas; Ruiz, Tony

    2015-01-01

    We analyze the effects of unsteady forcing on the wake and drag of a square back blunt body. In combination with a Coanda effect, shear-layer forcing by periodic blowing of wall bounded jets allows to recover over 30 % of the base pressure. The actuation frequency is an order of magnitude higher than the natural shear-layer instabilities. High frequency Coanda blowing leads to a thinner time-averaged wake. The effect of this form shaping is analyzed by pressure taps on the rear side of the model in combination with PIV measurements. Velocity components of the mean field indicate a pressure recovery and favorable mean curvature effects across the separated shear layers in the region close to the rear end of the blunt body when actuation is applied. The wake dynamics further downstream, however, remains very similar to the unforced oscillatory wake mode.

  2. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    Science.gov (United States)

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  3. Robust lateral pulse jet control of an atmospheric rocket

    Science.gov (United States)

    Burchett, Bradley Thomas

    Uncontrolled direct fire rockets exhibit high impact point dispersion, even at relatively short range, and as such have been employed as area weapons on the battlefield. In order to reduce the dispersion of a direct fire rocket, feedback control is employed to fire short-duration solid rocket pulses mounted near the nose of the projectile and acting perpendicular to the projectile axis of symmetry. The feedback law is developed by first determining a piece wise linear model of the projectile swerving motion, subsequently using this linear model to predict the projectile impact point both with and without control, and using the results to command pulses at appropriate times to drive the impact point closer to the specified target. Candidate optimal control laws are formed using rules based on decision grids, and a global control strategy search algorithm. The global search control law proves to be prohibitively computationally expensive for on-line implementation. The performance of the baseline control law is found to be comparable to the rule based and global search optimal control laws. The control gains of the baseline control law are optimized in the presence of parametric plant uncertainty using a Monte Carlo simulation. Performance of the system in the presence of parametric plant uncertainty using the optimized gains is deemed comparable to performance of the baseline controller with no plant uncertainty. The level of uncertainty of several plant parameters is varied in order to compare robustness of the controller when optimized with uncertainty viz. without uncertainty.

  4. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, D. [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Stiebing, K.E., E-mail: stiebing@em.uni-frankfurt.de [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Winters, D.F.A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Quint, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, D-69120, Heidelberg (Germany); Varentsov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt (Germany); Warczak, A.; Malarz, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisch-Astronomische Fakultät der Friedrich-Schiller-Universität Jena, Helmholtz-Institut Jena, Fröbelstieg 3, D-07743, Jena (Germany)

    2014-11-11

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×10{sup 12} atoms/cm{sup 3} for helium and 8.1×10{sup 12} atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  5. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    陈兆权; 殷志祥; 夏广庆; 洪伶俐; 胡业林; 刘明海; 胡希伟

    2015-01-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielec-tric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.

  6. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  7. Optical time-domain mixer

    Science.gov (United States)

    Valley, George C.; Sefler, George A.

    2010-08-01

    We simulate an optical time-domain mixer that can be used to make a photonic analog-to-digital converter (ADC) or a digital demodulator for high-speed optical communications signals. In the basic mixer, a high frequency RF signal modulates a repetitively chirped optical carrier; this RF/optical waveform then is dispersed in one transverse dimension, and imaged onto a 2-dimensional transparency or spatial light modulator whose pixels are modulated with randomly chosen transmission or reflection coefficients (the optical mixing matrix). Following transmission through or reflection from the mixing matrix, the optical waveform from each row of the matrix is recombined and directed to a photodiode and electronics that integrate over the repetition period of the chirped source. Finally, each of these signals is digitized by an independent ADC sampling at a rate equal to the pulse repetition rate of the chirp source. A digital replica of the input RF signal can be recovered by digital signal processing from the digital output of the ADCs and the values of the transmission or reflection coefficients of the mixing matrix. The effective sampling rate is given by the number of pixels per row of the mixing matrix times the repetition rate of the chirp source while the effective resolution is controlled by the resolution of the electronic ADCs and the distortions introduced by the optical mixing process.

  8. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed

  9. Model calibration for pressure drop in a pulse-jet cleaned fabric filter

    Science.gov (United States)

    Koehler, John L.; David, Leith

    A model based on Darcy's law allows prediction of pressure drop in a pulse-jet cleaned fabric filter. The model considers the effects of filtration velocity, dust areal density added during one filtration cycle, and pulse pressure. Data used to calibrate the model were collected in experiments with three fabric surface treatments and three dusts conducted at three filtration velocities, for a total of 27 different experimental conditions. The fabric used was polyester felt with untreated, singed, or PTFE-laminated surface. The dusts used were granite, limestone and fly ash. Filtration velocities were 50,75 and 100 mm s -1. Dust areal density added during one filtration cycle was constant, as was pulse pressure. Under these conditions, fabric surface treatment alone largely determined the values for two of the three constants in the model; the third constant depends on pressure drop characteristics of the venturi at the top of each filter bag.

  10. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production

    Science.gov (United States)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.

    2017-10-01

    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  11. Use of Actuator-Driven Pulsed Water Jet in Brain and Spinal Cord Cavernous Malformations Resection.

    Science.gov (United States)

    Endo, Toshiki; Takahashi, Yoko; Nakagawa, Atsuhiro; Niizuma, Kuniyasu; Fujimura, Miki; Tominaga, Teiji

    2015-09-01

    A piezo actuator-driven pulsed water jet (ADPJ) system is a novel surgical instrument that enables dissection of tissue without thermal damage. It can potentially resect intra-axial lesions while preserving neurological function. To report our first experience of applying an ADPJ system to brain and spinal cord cavernous malformations. Four patients (2 women and 2 men, mean age 44.5 years) with brain (n = 3) and spinal cord (n = 1) cavernous malformations were enrolled in the study. All surgeries were performed with the aid of the ADPJ system. Postoperative neurological function and radiological findings were evaluated. The ADPJ system was useful in dissecting boundaries between the lesion and surrounding brain/spinal cord tissues. The pulsed water jet provided a clear surgical view and helped surgeons follow the margins. Water jet dissection peeled off the brain and spinal cord tissues from the lesion wall. Surrounding gliotic tissue was preserved. As a consequence, the cavernous malformations were successfully removed. Postoperative magnetic resonance imaging confirmed total removal of lesions in all cases. Preoperative neurological symptoms completely resolved in 2 patients. The others experienced partial recovery. No patients developed new postoperative neurological deficits; facial palsy temporarily worsened in 1 patient who underwent a suprafacial colliculus approach for the brainstem lesion. The ADPJ provided a clear surgical field and enabled surgeons to dissect boundaries between lesions and surrounding brain and spinal cord gliotic tissue. The ADPJ system is a feasible option for cavernous malformation surgery, enabling successful tumor removal and preservation of neurological function.

  12. Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Pierric [CNAM, Institut AeroTechnique (IAT), Saint Cyr l' Ecole (France); Amandolese, Xavier [CNAM, Aerodynamics Department, Saint Cyr l' Ecole (France); Aider, Jean-Luc [UMR 7636, CNRS, ESPCI ParisTech, PMMH Laboratory, Paris (France)

    2012-05-15

    This paper highlights steady and unsteady measurements and flow control results obtained on an Ahmed model with slant angle of 25 in wind tunnel. On this high-drag configuration characterized by a large separation bubble along with energetic streamwise vortices, time-averaged and time-dependent results without control are first presented. The influence of rear-end periodic forcing on the drag coefficient is then investigated using electrically operated magnetic valves in an open-loop control scheme. Four distinct configurations of flow control have been tested: rectangular pulsed jets aligned with the spanwise direction or in winglets configuration on the roof end and rectangular jets or a large open slot at the top of the rear slant. For each configuration, the influence of the forcing parameters (non-dimensional frequency, injected momentum) on the drag coefficient has been studied, along with their impact on the static pressure on both the rear slant and vertical base of the model. Depending on the type and location of pulsed jets actuation, the maximum drag reduction is obtained for increasing injected momentum or well-defined optimal pulsation frequencies. (orig.)

  13. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  14. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Science.gov (United States)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  15. 脂溶性农药旋动射流混药器结构分析与混合均匀性试验%Structural analysis and mixing uniformity experiments of swirling jet mixer for applying fat-soluble pesticides

    Institute of Scientific and Technical Information of China (English)

    宋海潮; 徐幼林; 郑加强; 汪希伟; 张敏

    2016-01-01

    以研究乳油、悬乳剂等脂溶性农药在线混药均匀性为目的,基于产品结构分析旋动射流混药器的混合机理,并提出提高混药器混合效率的措施:继旋器起旋、螺旋收缩管、分流器切向径流和在扩散管中增加导叶等方式提高混合液旋动效率。研究了这些措施对在线射流混药器混合效果的影响。为了提高旋转效率,减少阻力损失,继旋器内设有3个导叶,导叶高度6.5 mm,导叶包角15°;扩散管内导叶高度由0逐渐增加到6.5 mm,导叶包角15°;分流器进药采用切向进入,切向角β根据农药黏度、浓度等不同而改变;收缩管收缩度为0.095,收缩管螺距128 mm,收缩角16°。经过数值仿真,水和农药能够实现螺旋状流动,喷头处药液容积分数分布均匀性指数为0.9995,药液分布一致。试验结果发现:旋动射流混药器出口与喷头直接连接时,农药需要药泵注药才能实现在线混合;混药器出口最大混合比为99.4425%,旋动射流混药器能够实现脂溶性农药和水均匀混合。%The on-line pesticide mixing is a process with higher productivity and safer operating conditions, which can reduce pesticide wastes and pollution. To characterize jet mixing characteristics for on-line injection of pesticides, a new mixing device based on the swirling jet mechanism was conceived and developed to improve the mixing uniformity of water and fat-soluble pesticides. The swirl jet mixer consisted of a spiral curved shrink tube, a diffuser and a spiral flow generator, and could accelerate the two-phase flow’s spiral movement and blend the 2 kinds of liquids. In order to increase the swirling efficiency of swirling jet mixer, the spiral flow generator had 3 guide vanes (height was 6.5 mm, wrap angle was 15°); the diffuser had also 3 guide vanes, but its height was from 0 to 6.5 mm; the pitch of the spiral curved shrink tube was 128 mm, and its

  16. Multicapillary mixer of solutions.

    Science.gov (United States)

    Moskowitz, G W; Bowman, R L

    1966-07-22

    A mixer made from a bundle of glass tubules can mix two solutions within 30 microseconds, with a total-solution flow rate of 1.33 milliliters per second. One solution passes through the interstices of the bundle; the other moves through the lumens of the tubes.

  17. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2016-11-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  18. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  19. Ultrafast microfluidic mixer and freeze-quenching device.

    Science.gov (United States)

    Lin, Yu; Gerfen, Gary J; Rousseau, Denis L; Yeh, Syun-Ru

    2003-10-15

    The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 micros. In the microfluidic silicon mixer, seven 10-microm-diameter vertical pillars are arranged perpendicular to the flow direction and in a staggered fashion in the 450-pL mixing chamber to enhance turbulent mixing. The mixed-solution jet, with a cross section of 10 microm x 100 microm, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/s. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultrafine powder. The ultrafine frozen powder exhibits excellent spectral quality and high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead time of the mixer (20 micros), and the first observable point for this coupled device was determined to be 50 micros, which is approximately 2 orders of magnitude faster than commercially available instruments.

  20. Waveguide submillimeter mixers

    Science.gov (United States)

    Goldsmith, Paul F.; Erickson, Neal R.

    1986-01-01

    A waveguide Schottky barrier diode mixer, which in preliminary tests has yielded a single sideband receiver noise temperature of 4300 K at 692 GHz, when cooled to 77 K is presented. Further refinements and operation at 20 K should produce a significant improvement in performance. From a system point of view, the very high efficiency of the radiation pattern produced by the conical feedhorn with cylindrical corrector mirror enhances the effective sensitivity by a factor of 1.5 to 2 compared to open-structure corner-reflector systems. A second-harmonic mixer for 557 GHz, also in the fundamental mode rectangular waveguide was developed. When combined with a frequency-tripled Gunn oscillator, this makes an extremely compact and lightweight submillimeter radiometer.

  1. New Application of Actuator-Driven Pulsed Water Jet for Spinal Cord Dissection: An Experimental Study in Pigs.

    Science.gov (United States)

    Endo, Toshiki; Wenting, Jia; Nakagawa, Atsuhiro; Endo, Hidenori; Sagae, Yuto; Iwasaki, Masaki; Tominaga, Teiji

    2017-03-01

    Background Surgery for intramedullary tumors is technically demanding because it requires surgical resection along with functional preservation of the spinal cord. The water jet dissector is an emerging tool in neurologic surgeries and a novel tool in spinal cord surgeries. This article evaluates the usefulness and safety of water jet dissection in an experimental study. Methods A pulsed water jet was applied to dissect the posterior median sulcus of the spinal cords of seven anesthetized pigs. In four pigs, the water jet was delivered on the dorsal spinal cord at different input voltages (5, 10, and 15 V) and for durations of either 15 or 30 seconds. The depth and dissected areas were measured histologically and compared. In three separate pigs, somatosensory evoked potentials (SEPs) were recorded before and after dissection (10 V for 30 seconds) to evaluate the function of the dorsal column sensory pathway. Results Increased pressure and duration of exposure to the pulsed water jet led to deeper and wider dissection of the dorsal spinal cord. Application of the water jet at 5 or 10 V allowed precise dissection along the dorsal columns along with the preservation of microvasculature. During SEP monitoring, responses were maintained after application of the water jet to the posterior column at 10 V for 30 seconds. Conclusions The pulsed water jet is a feasible option for spinal cord dissection. Characteristics of this water jet may help surgeons achieve complete resection of intramedullary tumors along with preserving satisfactory postoperative neurologic functions. Georg Thieme Verlag KG Stuttgart · New York.

  2. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Science.gov (United States)

    Xia, Qingfeng; Zhong, Shan

    2013-04-01

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  3. Microfluidic mixers for studying protein folding.

    Science.gov (United States)

    Waldauer, Steven A; Wu, Ling; Yao, Shuhuai; Bakajin, Olgica; Lapidus, Lisa J

    2012-04-10

    The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment. Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM. The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms. The

  4. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  5. Modeling studies of a turbulent pulsed jet flame using LES/PDF

    Science.gov (United States)

    Zhang, Pei; Wang, Haifeng

    2015-11-01

    The combustion field in a pulsed turbulent piloted jet flame is studied using an advanced large eddy simulation (LES) / probability density function (PDF) method. Measurement data with a joint OH-PLIF/OH* chemiluminescence/LDV system are available including the temporal series of the axial velocity and planar OH images. A time-dependent inflow condition is specified based on the measurement data. A direct comparison of the mean and rms velocities from the calculations and from the measurement shows a satisfactory prediction of the flow fields by using the employed modeling methods. The predicted OH mass fractions are compared qualitatively with the measured OH images at selected temporal and spatial locations. The comparison shows a good agreement. Conditional quantities and flame index are extracted from the simulations to examine the bimodal and multi-regime combustion dynamics in the flame. This paper is based upon work supported by the National Science Foundation under Grant No. CBET-1336075.

  6. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Science.gov (United States)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  7. Micro mixer with fast diffusion

    NARCIS (Netherlands)

    Miyake, Ryo; Miyake, R.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1993-01-01

    A new concept for micro-mixing of liquid is introduced and feasibility is demonstrated. The mixer allows fast mixing of small amounts of two liquids and it is application to micro-liquid handling systems [1]. The mixer has a channel for the liquid, an inlet port for the reagent, and a 2.2 mm × 2 mm

  8. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  9. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  10. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  11. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  12. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  13. Characterization of cluster/monomer ratio in pulsed supersonic gas jets

    Science.gov (United States)

    Gao, Xiaohui; Shim, Bonggu; Wang, Xiaoming; Downer, Mike

    2008-11-01

    While Rayleigh scatter and interferometry are standard methods for determining average cluster size and total atomic density, respectively, in cluster gas jets, determination of cluster mass fraction has required additional input from gasdynamic simulations. Here we determine cluster mass fraction experimentally with fs-time-resolved measurement of refractive index using frequency domain interferometery (FDI) after ionization and heating by a pump pulse. The essence of this method is that the negative index contribution of monomer plasma appears immediately after ionization by the pump, whereas the positive contribution of clustered plasma becomes significant only after clusters expand to a Mie resonance condition, enabling separation of monomer and cluster densities in the time domain. This method allows us to investigate various influences (nozzle geometry, temperature, etc.) on cluster fraction, which varies widely in nominally identical gas jets, and is a critical parameter in realizing phase-matched harmonic generation at high laser intensity, which would lead to an efficient table-top soft X-ray source.

  14. Cardiovascular changes after PMMA vertebroplasty in sheep: the effect of bone marrow removal using pulsed jet-lavage.

    Science.gov (United States)

    Benneker, Lorin M; Krebs, Jörg; Boner, Vanessa; Boger, Andreas; Hoerstrup, Simon; Heini, Paul F; Gisep, Armando

    2010-11-01

    Clinically, the displacement of intravertebral fat into the circulation during vertebroplasty is reported to lead to problems in elderly patients and can represent a serious complication, especially when multiple levels have to be treated. An in vitro study has shown the feasibility of removing intravertebral fat by pulsed jet-lavage prior to vertebroplasty, potentially reducing the embolization of bone marrow fat from the vertebral bodies and alleviating the cardiovascular changes elicited by pulmonary fat embolism. In this in vivo study, percutaneous vertebroplasty using polymethylmethacrylate (PMMA) was performed in three lumbar vertebrae of 11 sheep. In six sheep (lavage group), pulsed jet-lavage was performed prior to injection of PMMA compared to the control group of five sheep receiving only PMMA vertebroplasty. Invasive recording of blood pressures was performed continuously until 60 min after the last injection. Cardiac output and arterial blood gas parameters were measured at selected time points. Post mortem, the injected cement volume was measured using CT and lung biopsies were processed for assessment of intravascular fat. Pulsed jet-lavage was feasible in the in vivo setting. In the control group, the injection of PMMA resulted in pulmonary fat embolism and a sudden and significant increase in mean pulmonary arterial pressure. Pulsed jet-lavage prevented any cardiovascular changes and significantly reduced the severity of bone marrow fat embolization. Even though significantly more cement had been injected into the lavaged vertebral bodies, significantly fewer intravascular fat emboli were identified in the lung tissue. Pulsed jet-lavage prevented the cardiovascular complications after PMMA vertebroplasty in sheep and alleviated the severity of pulmonary fat embolism.

  15. A Sub-microsecond Pulsed Plasma Jet for Endodontic Biofilm Disinfection

    Science.gov (United States)

    Jiang, Chunqi; Schaudinn, Christoph; Jaramillo, David E.; Gundersen, Martin A.; Costerton, J. William

    A pulsed, tapered cylindrical plasma jet, several centimeter long and Enterococcus faecalis biofilms on bovine dentins. Resultant colony-forming unit counts were associated with changes in bacterial cell morphology observed using scanning electron microscopy (SEM) following the treatment and control. Treatment of dentin discs cultivated with E. faecalis monolayer biofilms with the plasma (average power ≈ 1 W) for 5 min resulted in 92.4% kill (P < 0.0001). Severe disruption of the cell membranes was observed for the plasma treatment group, while the morphology of the cells remained intact for the negative control group. In addition, a pilot ex vivo test was conducted to examine the bactericidal effect of the plasma against saliva-derived biofilms cultivated in human root canals. Conspicuous biofilm disruption and cleared dentinal surfaces were observed in the canal after the plasma treatment for 5 min. We ­conclude that this non-thermal pulsed plasma-based technology is a potential ­alternative or supplement to existing protocols for root canal disinfection.

  16. A three-dimensional turbulent compressible flow model for ejector and fluted mixers

    Science.gov (United States)

    Rushmore, W. L.; Zelazny, S. W.

    1978-01-01

    A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.

  17. The interaction of intense ultrashort laser pulses with cryogenic He planar jets

    Science.gov (United States)

    Shihab, M.; Bornath, Th; Redmer, R.

    2017-04-01

    We study the interaction of intense ultrashort laser pulses with cryogenic He planar jets, i.e., slabs, using 2D3V relativistic particle-in-cell simulations. Of particular interest are laser intensities ({10}15{--}{10}20) W cm‑2, pulse lengths ≤100 fs, and the wave length regime ∼800 nm for which the slabs are initially transparent and subsequently inhomogeneously ionized. Pulses ≥slant {10}16 W cm‑2 are found to drive ionization along the slab and outside the laser spot, the ionization front propagates along the slab at a considerable fraction of the speed of light. Within the ionized region, there is a highly transient field which is a result of the charge-neutralizing disturbance at the slab-vacuum interface and which may be interpreted in terms of a two-surface-wave decay. The ionized region is predicted to reach solid-like densities and temperatures of few to hundreds of eV, i.e., it belongs to warm and hot dense matter regimes. Such extreme conditions are relevant for high-energy densities as found, e.g., in shock-wave experiments and inertial confinement fusion studies. The temporal evolution of the ionization is studied considering theoretically a pump–probe x-ray Thomson scattering scheme. We observe plasmon and non-collective modes that are generated in the slab, and their amplitude is proportional to the ionized volume. Our theoretical findings could be tested at free-electron laser facilities such as FLASH and the European XFEL (Hamburg) and the LCLS (Stanford).

  18. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    In recent years many museums have experimented with different approaches to involving users through digital media. We explore how remixing and content sharing can be used as a means for user participation. Remix culture is seen as a culture that allows and encourages the production of derivative...... the museum users can produce, deconstruct, reconstruct and finally publish and share digital media content. The media content is created by the user in the museums physical environment, but it can be mixed with material from local or global archives. In that way the gap between the analogue and the digital...... works; works that are based on already existing works. This cultural practice thrives throughout the Internet, most notably on web2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here...

  19. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    In recent years many museums have experimented with different approaches to involving users through digital media. We explore how remixing and content sharing can be used as a means for user participation. Remix culture is seen as a culture that allows and encourages the production of derivative...... the museum users can produce, deconstruct, reconstruct and finally publish and share digital media content. The media content is created by the user in the museums physical environment, but it can be mixed with material from local or global archives. In that way the gap between the analogue and the digital...... works; works that are based on already existing works. This cultural practice thrives throughout the Internet, most notably on web2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here...

  20. The Media Mixer

    DEFF Research Database (Denmark)

    Vestergaard, Vitus; Mortensen, Christian Hviid

    2011-01-01

    throughout the Internet, most notably on web 2.0 sites like YouTube. The Media Museum has embraced the remix paradigm with the development of an interactive media experience centre called the Media Mixer. Here the museum users can produce, deconstruct, reconstruct and finally publish and share digital media......We explore how remixing and content sharing can be used as a means for user participation in a digital museum age. Remix culture is seen as a culture that allows and encourages the production of derivative works; works that are based on already existing works. This cultural practice thrives...... content. The media content is created by the user in the museum's physical environment, but it can be mixed with material from web archives. It is the intention that the users learn about media through participatory and creative processes with media where the borders between producing, playing...

  1. Analytical performances of laser-induced micro-plasma of Al samples with single and double ultrashort pulses in air and with Ar-jet: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Semerok, A., E-mail: alexandre.semerok@cea.fr [CEA Saclay, DEN/DPC/SEARS/LISL, 91191 Gif-sur-Yvette (France); Dutouquet, C. [CEA Saclay, DEN/DPC/SEARS/LISL, 91191 Gif-sur-Yvette (France); INERIS/DRC/CARA/NOVA, F-60550 Verneuil En Halatte (France)

    2014-09-01

    Ultrashort pulse laser microablation coupled with optical emission spectroscopy was under study to obtain several micro-LIBS analytical features (shot-to-shot reproducibility, spectral line intensity and lifetime, calibration curves, detection limits). Laser microablation of Al matrix samples with known Cu- and Mg-concentrations was performed by single and double pulses of 50 fs and 1 ps pulse duration in air and with Ar-jet. The micro-LIBS analytical features obtained under different experimental conditions were characterized and compared. The highest shot-to-shot reproducibility and gain in plasma spectral line intensity were obtained with double pulses with Ar-jet for both 50 fs and 1 ps pulse durations. The best calibration curves were obtained with 1 ps pulse duration with Ar-jet. Micro-LIBS with ultrashort double pulses may find its effective application for surface elemental microcartography. - Highlights: • Analytical performances of micro-LIBS with ultrashort double pulses were studied. • The maximal line intensity gain of 20 was obtained with double pulses and Ar-jet. • LIBS gain was obtained without additional ablation of a sample by the second pulse. • LIBS properties were almost the same for both 50 fs and 1 ps pulses. • The micro-LIBS detection limit was around 35 ppm.

  2. Effects of the pulse width on the reactive species production and DNA damage in cancer cells exposed to atmospheric pressure microsecond-pulsed helium plasma jets

    Science.gov (United States)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.

    2017-08-01

    Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.

  3. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.

    Science.gov (United States)

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman

    2012-07-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use.

  4. Delayed Feedback Control of 2D Roll-Cell by Pulsed Jets

    Science.gov (United States)

    Ogawara, Kakuji

    1998-11-01

    Experimental study and numerical experiments were conducted to examine applicability of Pyragas' delayed feedback(DFB) control theory for active control of fluid flow. Although many attempts of turbulence active control have been made, most of those experimental studies experience "out of control" state in the case of using larger feedback gain. In the present study, we assume this "out of control" state as Chaos, and apply chaos control theory to prevent the flow field from falling into "out of control" state. Experiments were carried out for low Reynolds number oil flow in a rectangle thin container, whose aspect ratio is 6:1:0.5. Two pulsed jets were used as actuator in order to keep the circulation of the flow in container constant. Fluid flow was observed using Particle Image Velocimetry (PIV) technology and the flow state was estimated by moving least square (MLS) method. As a result, we found that Pyragas control was effective to prevent chaos for active control fo fluid flow. Numerical simulations were also carried out by using the coupled map lattice(CML). CML is known as a simple model with the essential feature of spatio-temporal chaos. DFB control was applied for CML to examine possibility of active control of turbulence. Simulating results show that the present method can stabilize the whole system of CML.

  5. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  6. How Archer Fish Achieve a Powerful Impact: Hydrodynamic Instability of a Pulsed Jet in Toxotes jaculatrix

    OpenAIRE

    Alberto Vailati; Luca Zinnato; Roberto Cerbino

    2012-01-01

    Archer fish knock down insects anchored to vegetation by hitting them with a precisely aimed jet of water. The striking force of the jet at the impact is such to overcome the strong anchoring forces of insects. The origin of the effectiveness of such hunting mechanism has been long searched for inside of the fish, in the unsuccessful attempt to identify internal structures dedicated to the amplification of muscular power. Here we perform a kinematic analysis of the jet emitted by two specimen...

  7. Mixer Assembly for a Gas Turbine Engine

    Science.gov (United States)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Smith, Lance L. (Inventor); Hautman, Donald J. (Inventor)

    2015-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  8. Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator

    Science.gov (United States)

    Bocchi, M.; Chittenden, J. P.; Ciardi, A.; Suzuki-Vidal, F.; Hall, G. N.; de Grouchy, P.; Lebedev, S. V.; Bott, S. C.

    2011-11-01

    The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of ˜100 μm is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.

  9. Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator

    CERN Document Server

    Bocchi, M; Ciardi, A; Suzuki-Vidal, F; Hall, G N; de Grouchy, P; Lebedev, S V; Bott, S C

    2011-01-01

    The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of approximately 100 is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.

  10. Mechatronic thermostatic water mixer for building automation

    Directory of Open Access Journals (Sweden)

    Stefano Mauro

    2015-05-01

    Full Text Available The use of sanitary water is a main aspect of comfort and healthiness within a house or a public environment as gyms or beauty farms. At the same time, water waste should be limited to a minimum in order to preserve both water and the energy required to warm it. To obtain these results, it is necessary to rule quickly and in a precise way the temperature. It is also necessary to check the presence of possible contemporary flow requested by different users in order to optimize distribution in the house network. This work describes a mechatronic water mixer that was developed to ensure fast and precise control of flow and temperature of delivered water. The flow control is based on modulating digital valves driven in pulse code modulation and on a microcontroller board. The electronic unit is designed to interface with a domotic network for remote control and total consumption monitoring and optimization.

  11. A CMOS Switched Transconductor Mixer

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Louwsma, S.M.; Wienk, Gerhardus J.M.; Nauta, Bram

    A new CMOS active mixer topology can operate at low supply voltages by the use of switches exclusively connected to the supply voltages. Such switches require less voltage headroom and avoid gate-oxide reliability problems. Mixing is achieved by exploiting two transconductors with cross-coupled

  12. Bremsstrahlung {gamma}-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi [Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196, Japan and Photon Pioneers Center in Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan)

    2012-07-11

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free {gamma}-ray imaging systems. The calculated yield of {gamma}-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on {gamma}-ray imaging is also discussed.

  13. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Science.gov (United States)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-07-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  14. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Institute of Scientific and Technical Information of China (English)

    Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing

    2015-01-01

    The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  15. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Jin Di

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  16. How archer fish achieve a powerful impact: hydrodynamic instability of a pulsed jet in Toxotes jaculatrix.

    Science.gov (United States)

    Vailati, Alberto; Zinnato, Luca; Cerbino, Roberto

    2012-01-01

    Archer fish knock down insects anchored to vegetation by hitting them with a precisely aimed jet of water. The striking force of the jet at the impact is such to overcome the strong anchoring forces of insects. The origin of the effectiveness of such hunting mechanism has been long searched for inside of the fish, in the unsuccessful attempt to identify internal structures dedicated to the amplification of muscular power. Here we perform a kinematic analysis of the jet emitted by two specimens of Toxotes jaculatrix. We estimate that at the impact the jet conveys a typical specific power of about 3000 W/kg, which is well above the maximum specific power of the order of 500 W/kg deliverable by a vertebrate muscle. Unexpectedly, we find that the amplification of muscular power occurs outside of the fish, and is due to a hydrodynamic instability of the jet akin to those occurring in Drop-on-Demand inkjet printing. The investigated fish are found to modulate the velocity of the jet at the orifice to favor the formation of a single, large, water drop that hits the prey abruptly with a large momentum. The observed mechanism represents a remarkable example of use of an external hydrodynamic lever that does possibly not entail the high evolutionary cost needed for the development of highly specialized internal structures dedicated to the storing of mechanical energy.

  17. How archer fish achieve a powerful impact: hydrodynamic instability of a pulsed jet in Toxotes jaculatrix.

    Directory of Open Access Journals (Sweden)

    Alberto Vailati

    Full Text Available Archer fish knock down insects anchored to vegetation by hitting them with a precisely aimed jet of water. The striking force of the jet at the impact is such to overcome the strong anchoring forces of insects. The origin of the effectiveness of such hunting mechanism has been long searched for inside of the fish, in the unsuccessful attempt to identify internal structures dedicated to the amplification of muscular power. Here we perform a kinematic analysis of the jet emitted by two specimens of Toxotes jaculatrix. We estimate that at the impact the jet conveys a typical specific power of about 3000 W/kg, which is well above the maximum specific power of the order of 500 W/kg deliverable by a vertebrate muscle. Unexpectedly, we find that the amplification of muscular power occurs outside of the fish, and is due to a hydrodynamic instability of the jet akin to those occurring in Drop-on-Demand inkjet printing. The investigated fish are found to modulate the velocity of the jet at the orifice to favor the formation of a single, large, water drop that hits the prey abruptly with a large momentum. The observed mechanism represents a remarkable example of use of an external hydrodynamic lever that does possibly not entail the high evolutionary cost needed for the development of highly specialized internal structures dedicated to the storing of mechanical energy.

  18. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  19. Demonstration of ITER relevant LHCD operation: large distance coupling in JET and long pulse operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Basiuk, V.; Beaumont, B.; Bibet, Ph.; Delpech, L.; Goniche, M.; Imbeaux, F.; Joffrin, E.; Kazarian, F.; Litaudon, X.; Maget, P.; Martin, G.; Mazon, D.; Peysson, Y.; Prou, M.; Rimini, F.G.; VanHoutte, D. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Baranov, Y.; Erents, S.K.; Lomas, P.J.; Mailloux, J.; McDonald, D.C.; Stamp, M. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Granucci, G. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Silva, C. [Association Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal)

    2004-07-01

    Lower hybrid current drive (LHCD) is one of the most efficient methods for off-axis non-inductive current drive in tokamaks and is therefore used for shaping the plasma current profile in advanced tokamak scenarios. Its usefulness has been demonstrated in the advanced scenario experiments in JET, but the question has remained about the possibility of coupling lower hybrid (LH) waves in ITER. This paper reports on recent results obtained in JET and Tore-Supra, that both demonstrate operation of LHCD systems in ITER relevant regimes: -) LH coupling on ELMs (edge localized mode) plasmas up to 11 cm distance between the launcher and the separatrix in JET, and -) steady state, full non-inductive LHCD operation during 6 minutes in Tore Supra. The foreseen upgrade of the Tore Supra LHCD system will allow the extension of operating domain to higher power and higher performance, and will demonstrate the long pulse and coupling capability of a passive multijunction (PAM) launcher, as foreseen for ITER.

  20. Microcutting of living brain slices by a pulsed ultrafine water jet which allows simultaneous electrophysiological recordings (micromingotome).

    Science.gov (United States)

    Speckmann, E J; Köhling, R; Lücke, A; Straub, H; Wittkowski, W; Elger, C E; Wiemann, M; Bingmann, D

    1998-07-01

    Up to now microsurgical dissections in living nervous tissue (e.g. in slices or cell cultures) are performed either by micro-scalpels or by laser beams. As an alternative technique, a device for cutting with an ultrafine pulsed water jet was developed to allow precise, visually controled dissections in neuronal circuits even during electrophysiological recordings. Water is ejected by pressure (20-30 bar) from patch pipettes with tip diameters of 10-12 microm. By means of a piezo-element the pipette and the water jet are forced to oscillate vertically with a frequency of 200-400 Hz with an adjustable amplitude. These oscillations facilitate the transsection of neuronal connections even in thick slice preparations. Best results were obtained when the tip of the pipette was about 500 microm above the surface of the submerged slice tissue. This micromingotome offers the following advantages: (i) histological studies show that the water jet cleans the cutting surface, thus avoiding debris and its uncontrolable effects on cells underneath; (ii) the arrangement enables ongoing electrophysiological recordings from hippocampal slices during the cutting procedure and thus facilitates studies of the functions of neuronal connections; (iii) the device allows even disconnection in cultured nervous tissue overgrowing polyamid grids with 50 microm wide meshes.

  1. Characteristics of Spherical Shock Wave and Circular Pulse Jet Generated by Discharge of Propagating Shock Wave at Open End of Tube

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.

  2. Ventricle wall dissection and vascular preservation with the pulsed water jet device: novel tissue dissector for flexible neuroendoscopic surgery.

    Science.gov (United States)

    Kawaguchi, Tomohiro; Nakagawa, Atsuhiro; Endo, Toshiki; Fujimura, Miki; Sonoda, Yukihiko; Tominaga, Teiji

    2016-03-01

    Neuroendoscopic surgery allows minimally invasive surgery, but lacks effective methods to control bleeding. Water jet dissection with continuous flow has been used in liver and kidney surgery since the 1980s, and is effective for tissue manipulation with vascular preservation, but involves some potential risks, such as elevation of intracranial pressure during application in the ventricles. The authors previously reported the efficacy of the actuator-driven pulsed water jet device (ADPJ) to dissect soft tissue with vascular preservation in microscopic neurosurgery. This feasibility study investigated the use of the ADPJ to reduce the amount of water usage, leading to more safety with sustained efficacy. A small-diameter pulsed water jet device was developed for use with the flexible neuroendoscope. To identify the optimal conditions for the water jet, the flow rate, water pressure, and distance between the nozzle and target were analyzed in an in vitro study by using a gelatin brain phantom. A ventricle model was used to monitor the internal pressure and temperature. For ex vivo experiments the porcine brain was harvested and ventricle walls were exposed, and subsequently immersed into physiological saline. For in vivo experiments the cortex was microsurgically resected to make the small cortico-ventricle window, and then the endoscope was introduced to dissect ventricle walls. In the in vitro experiments, water pressure was approximately 6.5 bar at 0.5 mm from the ADPJ nozzle and was maintained at 1 mm, but dropped rapidly toward 50% at 2 mm, and became 10% at 3.5 mm. The ADPJ required less water to achieve the same dissection depth compared with the continuous-flow water jet. With the ventricle model, the internal pressure and temperature were well controlled at the baseline, with open water drainage. These results indicated that the ADPJ can be safely applied within the ventricles. The ADPJ was introduced into a flexible endoscope and the ventricle walls were

  3. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Zhang, Cheng; Yan, Ping; Shao, Tao, E-mail: st@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Yuan [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Weidong [Department of Applied Science and Technology, Saint Peter' s University, Jersey City, New Jersey 07306 (United States); Babaeva, Natalia Yu.; Naidis, George V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tail and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.

  4. Disinfection of Staphylococcus Aureus by pulsed non-thermal atmospheric plasma jet

    Science.gov (United States)

    Mirpour, Shahriar; Ghoranneviss, Mahmood; Shahgoli, Farhad

    2011-10-01

    The aim of this paper was to study the effect of low-temperature atmospheric plasma jet on non-pathogenic bacteria's colonies. In this regard, Germicidal effect of time and distance of ICP He and He/N2 plasma jet on Staphylococcus Aureus were reported. The gas discharges were generated by a 40 KHz high voltage power supply which led to the inductively coupled plasma. The results showed that He/N2 enhance the sterilization time in comparison of He plasma. To the best of our knowledge this is the first study which has compared the effect of sterilization of ICP Helium and Helium-Nitrogen plasma in listed conditions. Also, the distance dependence showed that the germicidal effect was not linear the distance of electrode and sample. The protein leakage test and SEM of bacteria morphology confirmed the sterilization effect of non-thermal atmospheric pressure plasma jet.

  5. Numerical and experimental study on a pulsed-dc plasma jet

    Science.gov (United States)

    Liu, X. Y.; Pei, X. K.; Lu, X. P.; Liu, D. W.

    2014-06-01

    A numerical and experimental study of plasma jet propagation in a low-temperature, atmospheric-pressure, helium jet in ambient air is presented. A self-consistent, multi-species, two-dimensional axially symmetric plasma model with detailed finite-rate chemistry of helium-air mixture composition is used to provide insights into the propagation of the plasma jet. The obtained simulation results suggest that the sheath forms near the dielectric tube inner surface and shields the plasma channel from the tube surface. The strong electric field at the edge of the dielectric field enhances the ionization in the air mixing layer; therefore, the streamer head becomes ring-shaped when the streamer runs out of the tube. The avalanche-to-streamer transition is the main mechanism of streamer advancement. Penning ionization dominates the ionization reactions and increases the electrical conductivity of the plasma channel. The simulation results are supported by experimental observations under similar discharge conditions.

  6. Frequency mixer having ferromagnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  7. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  8. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-03-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  9. Planar doped barrier devices for subharmonic mixers

    Science.gov (United States)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1991-01-01

    An overview is given of planar doped barrier (PDB) devices for subharmonic mixer applications. A simplified description is given of PDB characteristics along with a more complete numerical analysis of the current versus voltage characteristics of typical structures. The analysis points out the tradeoffs between the device structure and the resulting characteristics that are important for mixer performance. Preliminary low-frequency characterization results are given for the device structures, and a computer analysis of subharmonic mixer parameters and performance is presented.

  10. Design of Subharmonic Mixers above 100 GHz

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Ge Liu; Zhe Chen; ; Xiao-Fan Yang; Ning-Bo Chen; San-Tong Wu; Yong Fan

    2013-01-01

    This paper presents the design and simulation of several fixed-tuned sub-harmonic mixers cover frequencies from 110 GH to 130 GHz, 215 GH to 235 GHz, 310 GH to 350 GHz, and 400 GH to 440 GHz. Among them, 120 GHz, 225 GHz, 330 GHz subharmonic mixers are designed with flip-chipped planar schottky diode mounted onto a suspended quartz-based substrate, the 225 GHz and 425 GHz subharmonic mixers are GaAs membrane integrated, and the 115 GHz subharmonic mixer has been fabricated and tested already.

  11. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  12. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  13. Study on improving performance of airlift device by self-excited oscillation pulsed jet used in mining under water

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; CAI Shu-peng; TANG Chuan-lin

    2008-01-01

    The feasibility of the nozzle of self-excited oscillation pulsed jet (SEOPJ) as the breaker and loosing device for the air-lift pump was researched.The dynamic characteristics of the SEOPJ to crush the hard clay and loose the layer of ore deposit were explored experimentally under the submerged condition.The results show that the SEOPJ not only effectively breaks the hard clay or loose the particles of sand on the placer bed,but also produces fluctuating uplift force acting on particles of sand.The oscillating cross flow caused by the SEOPJ makes particles of sand move to the end of the suction pipe easily.Energy efficency of the airlift and concentration of the solids for the solid-liquid mixture sucked by the air-lift pump are increased obviously with the breaker of SEOPJ.

  14. Study on improving performance of airlift device by self-excited oscillation pulsed jet used in mining under water

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; CAI Shu-peng; TANG Chuan-lin

    2008-01-01

    The feasibility of the nozzle of self-excited oscillation pulsed jet (SEOPJ) as the breaker and loosing device for the air-lift pump was researched. The dynamic characteris-tics of the SEOPJ to crush the hard clay and loose the layer of ore deposit were explored experimentally under the submerged condition. The results show that the SEOPJ not only effectively breaks the hard clay or loose the particles of sand on the placer bed, but also produces fluctuating uplift force acting on particles of sand. The oscillating cross flow caused by the SEOPJ makes particles of sand move to the end of the suction pipe easily. Energy efficency of the airlift and concentration of the solids for the solid-liquid mixture sucked by the air-lift pump are increased obviously with the breaker of SEOPJ.

  15. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, R. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Bartnik, A. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland)]. E-mail: hfiedorowicz@wat.edu.pl; Jarocki, R. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Kostecki, J. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); MikoIajczyk, J. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Szczurek, A. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Szczurek, M. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Foeldes, I.B. [KFKI-Research Institute for Particle and Nuclear Physics, Association EURATOM, P.O. Box 49, H-1525 Budapest (Hungary); Toth, Zs. [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged, Pf.: 406 (Hungary)

    2005-10-01

    Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined.

  16. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    Science.gov (United States)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  17. Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996

    Science.gov (United States)

    Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)

    2005-01-01

    Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.

  18. A Passive Mixer with Changeable Mixing Mechanism

    Institute of Scientific and Technical Information of China (English)

    杨俊; 齐莉; 陈义; 马会民

    2012-01-01

    In this work, a 3D mixer has been conceived based on the splitting and recombining mechanism with simple topology structure. This mixer can present excellent performance at extremely low Reynolds number, which is very important for the practical use. Further research exhibits that the mixing also can be realized via the chaotic advection that occurred at decreased aspect ratio of channel. Thus, the changeable mechanism of mixer shows potential of being used widely. Meanwhile, mixing process has been confirmed in a fabricated structure. The simulated flow patterns reappear in a scaled-up mixer and full mixing can be achieved in 8 mm channel length at varied flow rate. Due to the high efficiency and easy fabrication, this 3D mixer possesses great prospect for a large number of micro- fluidic systems.

  19. A Reduced-Complexity Mixer Linearization Scheme

    Directory of Open Access Journals (Sweden)

    Paul A. Warr

    2009-01-01

    Full Text Available Measurement results of the signals emanating from both IF and LO ports of a double balanced mixer are presented, and, thus, it is shown that the linearization of the output in a down-converting mixer by the summation of the IF signal and the signal emanating from the LO or RF port is feasible. Feedforward-based architectures for the linearization of down-conversion mixers are introduced that exploit this phenomenon, and linearity performance results of the frequency translation of both two-tone and TETRA-modulated signals are presented. This technique employs only a single mixer and hence overcomes the complexity of other mixer linearization schemes. The overall processing gain of the system is limited by the level of wanted signal present in the error signal.

  20. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    CERN Document Server

    Giskes, Ella; Segerink, Frans B; Venner, Cornelis H

    2016-01-01

    In the research of supersonic flows, flow visualization continues to be an important tool, and even today it is difficult to create high quality images. In this study we present a low-cost and easy-to use Schlieren setup. The setup makes use of LEDs, pulsed with high currents to increase the optical output to sufficient levels, exploiting the advantages of LED light over conventional light sources. As a test-case we study the interaction of a Mach 1.7 cross flow and a transverse underexpanded jet, which is commonly studied considering the mixing and combustion in scramjet engines. Using 130 nanosecond LED light pulses, we captured the flow structures sharply and in great detail. We observed a large-gradient wave, which was seen in numerical studies but hitherto not reported in experiments. Furthermore, we demonstrate that time-correlated images can be obtained with this Schlieren setup, so that also flow unsteadiness can be studied, such as the movement of shock waves and vortices.

  1. Planar doped barrier subharmonic mixers

    Science.gov (United States)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  2. Mini-Jet Controlled Turbulent Round Air Jet

    Institute of Scientific and Technical Information of China (English)

    杜诚; 米建春; 周裕; 詹杰

    2011-01-01

    We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets.The Reynolds number based on the jet exit velocity and diameter is 8000.It is found that once the continuous minijets are replaced with pulsed ones,the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet.For example,the K value is amplified by more than 50% with two(or four)pulsed mini-jets blowing,compared with the continuous mini-jets at the same ratio of the mass flow rate of the mini-jets to that of the main jet.%We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets. The Reynolds number based on the jet exit velocity and diameter is 8000. It is found that once the continuous mini-jets are replaced with pulsed ones, the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet. For example, the K value is amplified by more than 50% with two (or four) pulsed mini-jets blowing, compared with the continuous mini-jets at the same ratio of the mass Sow rate of the mini-jets to that of the main jet.

  3. Safety basis for the 241-AN-107 mixer pump installation and caustic addition

    Energy Technology Data Exchange (ETDEWEB)

    Van Vleet, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-10-05

    This safety Basis was prepared to determine whether or not the proposed activities of installing a 76 HP jet mixer pump and the addition of approximately 50,000 gallons of 19 M (50:50 wt %) aqueous caustic are within the safety envelope as described by Tank Farms (chapter six of WHC-SD-WM-ISB-001, Rev. 0). The safety basis covers the components, structures and systems for the caustic addition and mixer pump installation. These include: installation of the mixer pump and monitoring equipment; operation of the mixer pump, process monitoring equipment and caustic addition; the pump stand, caustic addition skid, the electrical skid, the video camera system and the two densitometers. Also covered is the removal and decontamination of the mixer pump and process monitoring system. Authority for this safety basis is WHC-IP-0842 (Waste Tank Administration). Section 15.9, Rev. 2 (Unreviewed Safety Questions) of WHC-IP-0842 requires that an evaluation be performed for all physical modifications.

  4. Influence of selected fixed parameters on pulse-jet fabric filter operation

    Science.gov (United States)

    Hindy, K. T.

    The effect of (a) fixing the time interval between cleaning pulses or (b) fixing the maximum pressure drop at which cleaning is started, on the performance of the fabric filter was investigated. A maximum pressure drop value of 2500 Pa: (a) minimized the effect of the filter medium resistance; (b) reduced the energy consumption by the filter; (c) minimized the dust emission from the fabric filter to the surrounding atmosphere.

  5. The dissection profile and mechanism of tissue-selective dissection of the piezo actuator-driven pulsed water jet as a surgical instrument: laboratory investigation using Swine liver.

    Science.gov (United States)

    Yamada, Masato; Nakano, Toru; Sato, Chiaki; Nakagawa, Atsuhiro; Fujishima, Fumiyoshi; Kawagishi, Naoki; Nakanishi, Chikashi; Sakurai, Tadashi; Miyata, Go; Tominaga, Teiji; Ohuchi, Noriaki

    2014-01-01

    The water jet technique dissects tissue while sparing cord-like structures such as blood vessels. The mechanism of such tissue-selective dissection has been unknown. The novel piezo actuator-driven pulsed water jet (ADPJ) system can achieve dissection with remarkably reduced water consumption compared to the conventional water jet; however, the system's characteristics and dissection capabilities on any organ have not been clarified. The purposes of this study were to characterize the physical properties of the novel ADPJ system, evaluate the dissection ability in swine organs, and reveal the mechanism of tissue-selective dissection. The pulsed water jet system comprised a pump chamber driven by a piezo actuator, a stainless steel tube, and a nozzle. The peak pressure of the pulsed water jet was measured through a sensing hole using a pressure sensor. The pulsed water jet technique was applied on swine liver in order to dissect tissue on a moving table using one-way linear ejection at a constant speed. The dissection depth was measured with light microscopy and evaluated histologically. The physical properties of swine liver were evaluated by breaking strength tests using tabletop universal testing instruments. The liver parenchyma was also cut with three currently available surgical devices to compare the histological findings. The peak pressure of the pulsed water jet positively correlated with the input voltage (R(2) = 0.9982, p dissection depth. The dissection depth negatively correlated with the breaking strength of the liver parenchyma (R(2) = 0.6694, p dissected, preserving the hepatic veins and Glisson's sheaths in contrast to what is commonly observed with electrocautery or ultrasonic instruments. The dissection depth of liver tissue is well controlled by input voltage and is influenced by the moving velocity and the physical properties of the organ. We showed that the device can be used to assure liver resection with tissue selectivity due to tissue

  6. Molecular Structure and Chirality Determination from Pulsed-Jet Fourier Transform Microwave Spectroscopy

    Science.gov (United States)

    Lobsiger, Simon; Perez, Cristobal; Evangelisti, Luca; Seifert, Nathan A.; Pate, Brooks; Lehmann, Kevin

    2014-06-01

    Fourier transform microwave (FTMW) spectroscopy has been used for many years as one of the most accurate methods to determine gas-phase structures of molecules and small molecular clusters. In the last years two pioneering works ushered in a new era applications. First, by exploiting the reduced measurement time and the high sensitivity, the development of chirped-pulse CP-FTMW spectrometers enabled the full structural determination of molecules of increasing size as well as molecular clusters. Second, and more recently, Patterson et al. showed that rotational spectroscopy can also be used for enantiomer-specific detection. Here we present an experimental approach that combines both in a single spectrometer. This set-up is capable to rapidly obtain the full heavy-atom substitution structure using the CP-FTMW features. The inclusion of an extra set of broadband horns allows for a chirality-sensitive measurement of the sample. The measurement we implement is a three-wave mixing experiment that uses time-separated pulses to optimally create the chiral coherence - an approach that was proposed recently. Using samples of R-, S- and racemic Solketal, the physical properties of the three-wave mixing experiment were studied. This involved the measurement of the corresponding nutation curves (molecular signal intensity vs excitation pulse duration) to demonstrate the optimal pulse sequence. The phase stability of the chiral signal, required to assign the absolute stereochemistry, has been studied as a function of the measurement signal-to-noise ratio using a "phasogram" method. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497, 475-477. D. Patterson, J. M. Doyle, Phys. Rev. Lett. 2013, 111, 023008. V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, M. Schnell, Angew. Chem. Int. Ed. 2014, 53, 1152-1155. J.-U. Grabow, Angew. Chem. 2013, 125, 11914

  7. Chaotic mixer improves microarray hybridization.

    Science.gov (United States)

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  8. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  9. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  10. Doping He droplets by laser ablation with a pulsed supersonic jet source

    Energy Technology Data Exchange (ETDEWEB)

    Katzy, R.; Singer, M.; Izadnia, S.; LaForge, A. C., E-mail: aaron.laforge@physik.uni-freiburg.de; Stienkemeier, F. [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-01-15

    Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions). In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.

  11. Multiphoton ionization of jet-cooled nickelocene with tunable nanosecond laser pulses

    Science.gov (United States)

    Ketkov, Sergey Yu.; Selzle, Heinrich L.; Schlag, Edward W.; Titova, Sofia N.

    2003-08-01

    Efficient multiphoton ionization of nickelocene molecules in a supersonically cooled molecular beam has been performed for the first time with a nanosecond tunable dye laser operating in the 35,000-cm -1 region which corresponds to the lowest Rydberg transition observed in the one-photon absorption spectrum. The time-of-flight mass spectra obtained show strong signals of intact molecular ions Cp 2Ni + (Cp=η 5-C 5H 5) and weaker peaks of fragment ions CpNi +. The conditions have been found for generation of Cp 2Ni + as the only ionic product of multiphoton excitation. The ion signal dependence on the laser intensity and the resonance-enhanced multiphoton ionization spectrum measured at the mass of Cp 2Ni + testify for saturation of absorption and/or ionization steps at the laser pulse intensities used (2-6 MW cm -2). Possible mechanisms of multiphoton processes resulting in formation of the ions observed are discussed.

  12. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Inogamov, N. A., E-mail: nailinogamov@googlemail.com [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation); Zhakhovskii, V. V. [Dukhov All-Russia Research Institute of Automatics (Russian Federation); Khokhlov, V. A. [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2015-01-15

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d{sub f}. An important gauge is metal heating depth d{sub T} at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d{sub f} < d{sub T} (thin film) and d{sub f} ≫ d{sub T} (bulk target). Radius R{sub L} of the spot of heating by an optical laser is the next (after d{sub f}) important geometrical parameter. The morphology of film bulging in cases where d{sub f} < d{sub T} on the substrate (blistering) changes upon a change in radius R{sub L} in the range from diffraction limit R{sub L} ∼ λ to high values of R{sub L} ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d{sub f} < d{sub T}, R{sub L} ∼ λ, and F{sub abs} > F{sub m}, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F{sub abs} and F{sub m} are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  13. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  14. An experimental study on discharge characteristics in a pulsed-dc atmospheric pressure CH3OH/Ar plasma jet

    Science.gov (United States)

    Qian, Muyang; Liu, Sanqiu; Yang, Congying; Pei, Xuekai; Lu, Xinpei; Zhang, Jialiang; Wang, Dezhen

    2016-10-01

    Recently, C/H/Ar plasma discharges found enormous potential and possibility in carbonaceous compounds conversion and production. In this work, a pulsed-dc CH3OH/Ar plasma jet generated at atmospheric pressure is investigated by means of optical and electrical diagnosis concerning the variation of its basic parameters, absolute concentration of OH radicals, and plasma temperature with different CH3OH/Ar volume ratios, in the core region of discharge with needle-to-ring electrode configuration. The voltage-current characteristics are also measured at different CH3OH/Ar ratios. Laser-induced fluorescence (LIF) results here show that only small amounts of added methanol vapor to argon plasma (about 0.05% CH3OH/Ar volume ratio) is favorable for the production of OH radicals. The optical emission lines of CH, CN, and C2 radicals have been detected in the CH3OH/Ar plasma. And, the plasma temperatures increase with successive amount of added methanol vapor to the growth plasma. Moreover, qualitative discussions are presented regarding the mechanisms for methanol dissociation and effect of the CH3OH component on the Ar plasma discharge at atmospheric pressure.

  15. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J, E-mail: james.friend@monash.edu.au [MicroNanophysics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800 (Australia); Melbourne Centre for Nanofabrication, Melbourne, VIC 3800 (Australia)

    2011-02-15

    Forming capillary bridges of low-viscosity ({approx}<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  16. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    Science.gov (United States)

    Bhattacharjee, P. K.; McDonnell, A. G.; Prabhakar, R.; Yeo, L. Y.; Friend, J.

    2011-02-01

    Forming capillary bridges of low-viscosity (lsim10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities—water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  17. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    Science.gov (United States)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  18. Quasi-optical slot antenna SIS mixers

    OpenAIRE

    Zmuidzinas, Jonas; LeDuc, H. G.

    1992-01-01

    A quasi-optical SIS mixer designed for efficient radiation coupling is described. The mixer uses a twin-slot antenna which has the advantages of a good beam pattern and a low impedance. The radiation and impedance characteristics of the antenna were obtained from a moment-matched calculation. Tapered superconducting microstrip transmission lines are used to carry the radiation from the slot antennas to the tunnel junction. The effective impedance seen by the tunnel junction is quite low, abou...

  19. Multiphoton ionization of jet-cooled nickelocene with tunable nanosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ketkov, Sergey Yu.; Selzle, Heinrich L.; Schlag, Edward W.; Titova, Sofia

    2003-08-15

    Efficient multiphoton ionization of nickelocene molecules in a supersonically cooled molecular beam has been performed for the first time with a nanosecond tunable dye laser operating in the 35,000-cm{sup -1} region which corresponds to the lowest Rydberg transition observed in the one-photon absorption spectrum. The time-of-flight mass spectra obtained show strong signals of intact molecular ions Cp{sub 2}Ni{sup +} (Cp={eta}{sup 5}-C{sub 5}H{sub 5}) and weaker peaks of fragment ions CpNi{sup +}. The conditions have been found for generation of Cp{sub 2}Ni{sup +} as the only ionic product of multiphoton excitation. The ion signal dependence on the laser intensity and the resonance-enhanced multiphoton ionization spectrum measured at the mass of Cp{sub 2}Ni{sup +} testify for saturation of absorption and/or ionization steps at the laser pulse intensities used (2-6 MW cm{sup -2}). Possible mechanisms of multiphoton processes resulting in formation of the ions observed are discussed.

  20. Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge

    Science.gov (United States)

    Pashchina, A. S.; Efimov, A. V.; Chinnov, V. F.; Ageev, A. G.

    2017-07-01

    Results are presented from spectroscopic studies of the initial segment of a supersonic plasma jet generated by a pulsed capillary discharge with an ablative carbon-containing polymer wall. Specific features of the spatial distributions of the electron density and intensities of spectral components caused, in particular, by the high electron temperature in the central zone, much exceeding the normal temperature, as well as by the high nonisobaricity of the initial segment of the supersonic jet, are revealed. Measurements of the radiative properties of the hot jet core (the intensity and profile of the Hα and Hβ Balmer lines and the relative intensities of C II lines) with high temporal (1-50 μs) and spatial (30-50 μm) resolutions made it possible to determine general features of the pressure and temperature distributions near the central shock. The presence of molecular components exhibiting their emission properties at the periphery of the plasma jet allowed the authors to estimate the parameters of the plasma in the jet region where "detached" shock waves form.

  1. Evaluation of Flygt Mixers for Application in Savannah River Site Tank Summary of Test Results from Phase A, B, and C Testing

    Energy Technology Data Exchange (ETDEWEB)

    BK Hatchell; H Gladki; JR Farmer; MA Johnson; MR Poirier; MR Powell; PO Rodwell

    1999-10-21

    Staff from the Savannah River Site (SRS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), and ITT Flygt Corporation in Trumbull, Connecticut, are conducting a joint mixer testing program to evaluate the applicability of Flygt mixers to SRS Tank 19 waste retrieval and waste retrieval in other U.S. Department of Energy (DOE) tanks. This report provides the results of the Phase C Flygt mixer testing and summarizes the key findings from the Phase A and B tests. Phase C Flygt mixer testing used full-scale, Model 4680 Flygt mixers (37 kW, 51-cm propeller) installed in a fall-scale tank (25.9-m diameter) at SRS. Phase A testing used a 0.45-m tank and Flygt mixers with 7.8-cm diameter propellers. Phase B testing used Model 4640 Flygt mixers (3 kW, 37-cm propeller) installed in 1.8-m and 5.7-m tanks. Powell et al. (1999z4 1999b) provide detailed descriptions of the Phase A and B tests. In Phase C, stationary submerged jet mixers manufactured by ITT Flygt Corporation were tested in the 25.9-m diameter tank at the SRS TNX facility. The Model 4680 mixers used in Phase C have 37-kW (50-hp) electric motors that drive 51-cm (20-in.) diameter propellers at 860 rpm. Fluid velocity was measured at selected locations with as many as four Model 4680 mixers operating simultaneously in the 25.9-m tank, which was filled with water to selected levels. Phase C involved no solids suspension or sludge mobilization tests.

  2. The Piezo Actuator-Driven Pulsed Water Jet System for Minimizing Renal Damage after Off-Clamp Laparoscopic Partial Nephrectomy.

    Science.gov (United States)

    Kamiyama, Yoshihiro; Yamashita, Shinichi; Nakagawa, Atsuhiro; Fujii, Shinji; Mitsuzuka, Koji; Kaiho, Yasuhiro; Ito, Akihiro; Abe, Takaaki; Tominaga, Teiji; Arai, Yoichi

    2017-01-01

    In the setting of partial nephrectomy (PN) for renal cell carcinoma, postoperative renal dysfunction might be caused by surgical procedure. The aim of this study was to clarify the technical safety and renal damage after off-clamp laparoscopic PN (LPN) with a piezo actuator-driven pulsed water jet (ADPJ) system. Eight swine underwent off-clamp LPN with this surgical device, while off-clamp open PN was also performed with radio knife or soft coagulation. The length of the removed kidney was 40 mm, and the renal parenchyma was dissected until the renal calyx became clearly visible. The degree of renal degeneration from the resection surface was compared by Hematoxylin-Eosin staining and immunostaining for 1-methyladenosine, a sensitive marker for the ischemic tissue damage. The mRNA levels of neutrophil gelatinase-associated lipocalin (Ngal), a biomarker for acute kidney injury, were measured by quantitative real-time PCR. Off-clamp LPN with ADPJ system was successfully performed while preserving fine blood vessels and the renal calix with little bleeding. In contrast to other devices, the resection surface obtained with the ADPJ system showed only marginal degree of ischemic changes. Indeed, the expression level of Ngal mRNA was lower in the resection surface obtained with the ADPJ system than that with soft coagulation (p = 0.02). Furthermore, using the excised specimens of renal cell carcinoma, we measured the breaking strength at each site of the human kidney, suggesting the applicability of this ADPJ to clinical trials. In conclusion, off-clamp LPN with the ADPJ system could be safely performed with attenuated renal damage.

  3. Numerical Study on Performance Parameter of Pulsed Liquid Jet Pump%脉冲液体射流泵性能参数的数值研究

    Institute of Scientific and Technical Information of China (English)

    王玲花; 张川; 宁盼华; 干超

    2011-01-01

    定量分析脉冲液体射流泵时均值基本性能方程中的最优工作参数、动量修正系数、时均惯性力与时均惯性水头的变化规律及其对性能的影响,结果表明脉冲射流可以使流体在喉管出口处得到更充分的混合,并且改善射流泵的最优工作参数和范围.%The optimal operating parameters, momentum correction factor, time-average inertia force and time-average inertia head of pulsed liquid jet pump are quantitatively studied based on the time-average basic performance equation, and the impacts on performance are also analyzed. The calculation shows that the pulsed jet can make the fluid to be more fully mixed in the outlet of throat tube and improve the optimal operating parameters and range of liquid jet pump.

  4. Jet-cleaning experiment and simulation of a pulse-jet cartridge filter%脉冲喷吹滤筒除尘器喷吹清灰实验与数值模拟

    Institute of Scientific and Technical Information of China (English)

    袁彩云; 陈海焱; 李波

    2012-01-01

    通过喷吹实验台对φ147×1 000 mm滤筒的脉冲喷吹清灰过程进行了实验测试,运用数据采集系统得到了滤筒表面压力峰值的动态变化曲线图;并利用CFD模拟滤筒的清灰过程,计算过程采用非稳态计算方法,得到了不同喷吹时刻滤筒表面的压力峰值.在喷吹压力一定的条件下,沿滤筒长度方向上,正压力峰值到达时间是逐渐增加的;滤筒内压力峰值并非随着喷吹时间的增加而不断增大,当喷吹时间大于60 ms时,随着喷吹时间的增加压力峰值有下降趋势.模拟得到的压力峰值曲线与实验曲线变化趋势一致.%By testing the jet-cleaning process of a filter cartridge of 0147 x 1 000 mm in size on a jet experiment platform, obtains a dynamic change curve of peak pressure by means of a data collection system. Adopting CFD to simulate the jet-cleaning process of the filter using an unsteady calculation method, gains the peak pressures at different pulse-jet times. The occurring time of positive peak pressure is gradually increasing along the length direction of the cartridge under a given jet pressure. The increase of the peak pressure in cartridge does not increase with the jet time and the peak pressure has a decrease trend when the jet time is longer than 60 ms. The variation trend of the peak pressure curve from simulation is accordant with the one from the experiment.

  5. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  6. 21 CFR 868.5330 - Breathing gas mixer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory...

  7. Evaluation of Yields of γ-Rays Produced by Electrons from Gas Jets Irradiated by Low-Energy Laser Pulses: Towards “Virtual Radioisotopes”

    Science.gov (United States)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2011-04-01

    Electron generation from a gas jet irradiated by low-energy femtosecond laser pulses is studied as a promising source of ˜1 MeV radiation for radioisotope-free γ-ray imaging systems: “virtual radioisotopes”. The yield of γ-rays in the 0.5-2 MeV range produced by low-average-power lasers and gas targets exceeds the yields from solid tape targets up to 2 orders of magnitude; it can be competitive with the yield from conventional radioisotopes used in industrial applications.

  8. A Formal Model of Identity Mixer

    DEFF Research Database (Denmark)

    Camenisch, Jan; Mödersheim, Sebastian Alexander; Sommer, Dieter

    2010-01-01

    Identity Mixer is an anonymous credential system developed at IBM that allows users for instance to prove that they are over 18 years old without revealing their name or birthdate. This privacy-friendly tech- nology is realized using zero-knowledge proofs. We describe a formal model of Identity...

  9. Characteristics of nanosecond-pulse atmospheric pressure plasma jet%纳秒脉冲放电等离子体射流特性

    Institute of Scientific and Technical Information of China (English)

    牛铮; 邵涛; 章程; 方志; 李春霞; 张东东; 严萍

    2012-01-01

    In the experiments, with the use of a single needle electrode, atmospheric pressure plasma jets are excited by a repetitive unipolar nanosecond-pulse generator, with working gases such as helium, argon, nitrogen and air. The results show that the jet length increases with the rise of applied voltages as the flow rate of working gas increases, the length of jet becomes gradually longer and then reduces gradually to saturation after a certain flow rate due to turbulence. In addition, the plasma jets of different working gases have very different appearances. Helium and argon gas jets are needle-like, and the longest jet length is o-ver 7 cm: whereas in nitrogen and in air, the jet is no more than 2 cm long, of brush-like mode.%采用单针式电极,使用单极性重复频率脉冲电源,在常压氦气、氩气、氮气和空气中得到等离子体射流,并改变电压、流量和气体种类,分别观察不同的实验条件对等离子体射流的影响.实验结果表明:射流长度随施加电压的增加而增长;随着流量的连续变化,射流长度先逐渐变长,达到峰值后由于湍流影响,长度又逐渐缩短,达到一定流量后趋于饱和.此外,不同工作气体中的等离子体射流呈现截然不同的外观,氦气和氩气中射流呈针状模式,长度可达7 cm以上;而在氮气和空气中,射流呈现为长度不超过2 cm的刷状模式.

  10. Origination of gamma-ray burst pulses associated with the Doppler effect of spherical fireballs or uniform jet

    Institute of Scientific and Technical Information of China (English)

    Lu Rui-Jing; Qin Yi-Ping; Zhang Fu-Wen

    2007-01-01

    Ryde and Petrosian have pointed out that the rise phases of gamma-ray burst (GRB) pulses originate from the widths of the intrinsic pulses and their decay phases are determined by the curvature effect of the expanding fireball surface based on their simplified formula. In this paper we investigate in detail the issue based on the formula in Ref.[20], which is derived based on a model of highly symmetric expanding fireballs, where the Doppler effect is the key factor to be concerned about, and no terms are omitted in their derivation. Our analyses show that the decay phases of the observed pulses originate from the contributions from both the curvature effect of the expanding fireball and the two timescales of the local pulses, and the rise phases of the observed pulses only come from the two timescales of the local pulses. Associated with a local pulse with both rise and decay portions, the light curve of GRBs in the rise portion is expected to undergo a concave phase and then a convex one, whereas that in the decay portion is expected to evolve by an opposite process. And the ratio of the concave timescale to the convex one in the rise phase of the observed pulse linearly increases with the ratio of the rising timescale to the decay one of the local pulse (γrd), whereas the ratio of the convex timescale to the concave timescale in its decay phase linearly decreases with γrd. The two correlations are independent of the local pulse forms and the rest-frame radiation forms. But the different forms of local pulses and the different values of γrd gives rise to the diversity of the light curve pulse shapes. We test a sample of 86 GRB pulses detected by the BATSE instrument on board the Compton Gamma Ray Observatory and find that the characteristics do exist in the light curve of GRBs.

  11. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    Science.gov (United States)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  12. New Mixer Used in Direct Frequency Synthesizer

    Directory of Open Access Journals (Sweden)

    Milan Stork

    2008-01-01

    Full Text Available Frequency synthesizers are an essential part of any modern transceiver system. They generate clock and oscillator signals needed for up and down conversion. Today’s communication standards demand both high frequency accuracy and fast frequency settling. The fine frequency resolution, low spurious signals, accuracy and stability are most important for these devices. In this paper, the new frequency synthesizer architecture based on direct synthesis and coincidence mixer is presented. The simulation results are also shown.

  13. Matlab GUI for a Fluid Mixer

    Science.gov (United States)

    Barbieri, Enrique

    2005-01-01

    The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two

  14. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    Science.gov (United States)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  15. The Robust Control Mixer Module Method for Control Reconfiguration

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, M.

    1999-01-01

    of the reconfigurated system simultaneously, and to deal with a more general controller reconfiguration than the static feedback mechanism by using the control mixer approach, the robust control mixer module method is proposed in this paper. The form of the control mixer module extends from a static gain matrix......The control mixer concept is efficient in improving an ordinary control system into a fault tolerant one, especially for these control systems of which the real-time and on-line redesign of the control laws is very difficult. In order to consider the stability, performance and robustness...... into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed...

  16. Antimonide-based pN Terahertz Mixer Diodes

    Science.gov (United States)

    2011-06-01

    materials to develop a terahertz subharmonic mixer.2,3 The nonlinear properties of a subharmonic mixer are used to gen- erate a signal with frequency if...LO− by mixing power from a local oscillator at LO, with the signal of interest at . The goal of this effort is to develop a subharmonic mixer that...mobility narrow bandgap semicon- ductors using this material system. The terahertz subharmonic devices are of interest for ap- plications in imaging

  17. Pulsed laser ablation of wire-shaped target in a thin water jet: effects of plasma features and bubble dynamics on the PLAL process

    Science.gov (United States)

    Dell'Aglio, Marcella; De Giacomo, Alessandro; Kohsakowski, Sebastian; Barcikowski, Stephan; Wagener, Philipp; Santagata, Antonio

    2017-05-01

    In this paper, emission spectroscopy and fast imaging surveys during pulsed laser ablation in liquid (PLAL) for nanoparticles (NPs) production have been used, in order to provide further details about the process involved and the potentialities offered by a wire-shaped sample ablated in a flowing water jet. This kind of set-up has been explored because the laser ablation efficiency in water increases when a thin water layer and a wire-shaped target are used. In order to understand the physical processes causing the increasing ablation efficiency, both the laser-induced plasma and bubble dynamics generated in a flowing liquid jet have been analysed. The plasma parameters and the bubble behaviour in such a system have been compared with those observed in conventional PLAL experiments, where either a bulk or a wire-shaped target is immersed in bulk water. From the data presented here it is evidenced that the plasma and shockwave induced during the breakdown process can play a direct role in the ablation efficiency variation observed. With regard to the cavitation bubbles evolving near a free surface (the interface between water and air) it should be noted that these have to be treated with caution as a consequence of the strong influence played in these circumstances by the boundary of the water jet during its expansion dynamics. The effects due to the size of the liquid layer, the presence of the water/air interface, the liquid characteristics, the target shape, the plasma evolution and the bubble dynamics together with their outcomes on the NPs’ production, are presented and discussed.

  18. Spatiotemporal Evolution of Ar(3P2) Metastable Density Generated in a Pulsed DC Atmospheric Pressure micro-Plasma Jet Impinging on a Glass Plate

    Science.gov (United States)

    Gazeli, K.; Bauville, G.; Es-Sebbar, Et-T.; Fleury, M.; Neveau, O.; Pasquiers, St.; Santos Sousa, J.; Laboratoire de Physique des gaz et des plasmas Team

    2016-09-01

    Atmospheric Pressure micro-Plasma Jets (APPJs) are promising tools in various domains such as biomedical and material treatments. In this work, APPJs are produced in pure argon at variable flow rates (i.e., 200, 400 and 600 sccm), by applying high voltage positive pulses (250 ns in FWHM and 6 kV in amplitude) at a repetition frequency of 20 kHz. The generated plasma impacts an ungrounded glass plate placed at a distance of 5 mm from the tube's orifice and perpendicular to the streamers propagation. At these conditions, a diffuse discharge is established resulting in a non-filamentary and reproducible plasma, in contrast with the free-jet case (no target). This allows the quantification of the absolute density of the Ar(1s5) metastable state by using laser absorption spectroscopy to probe the transition 1s5 -> 2p9 at 811.531 nm. The experiments show the dependence on the gas flow rate and on the axial and radial positions of the maximum density (6-9x1013 cm-3) . At 200 sccm, it is obtained close to the tube's orifice, while with increasing flow rate it is displaced towards the plate. Regarding the radial variation, density maxima are obtained in a small area around the streamers propagation axis.

  19. Spectrum Blueshifting of Ultrashort UV Laser Pulse Induced by Ionization of Supersonic He and Ar Gas Jets

    Institute of Scientific and Technical Information of China (English)

    YAN Lixin; ZHANG Yongsheng; LIU Jingru; HUANG Wenhui; TANG Chuanxiang; CHENG Jianping

    2008-01-01

    The predominant spectral blueshifting of a sub-picosecond UV laser pulse induced by ultrafast ionization of noble gases was investigated. Spectral measurements were made at various gas densities. Typical quasi-periodic structures in the blueshifted spectrum were obtained. The observations were in connection with the so-called self-phase modulation of laser pulses in the ultrafast ionization process which was simply simulated with an ADK (Ammosov-Delone-Krainov) ionization model. Some quantitative information can be deduced from the measurements and calculations.

  20. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    Science.gov (United States)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows

  1. CERN Entrepreneur Mixer | 21 June | Pas perdus

    CERN Multimedia

    2016-01-01

      CERN Knowledge Transfer group is hosting an Entrepreneur Mixer, an event dedicated to building bridges between CERN innovative entrepreneurs. This will be a unique opportunity to discover business projects initiated by former CERN people, and to see how CERN technology is being exploited by start-up companies. The deadline for registration is Friday, 17 June. For more information, please visit the Indico page of the event: https://indico.cern.ch/event/537167/

  2. A fast and switchable microfluidic mixer based on ultrasound-induced vaporization of perfluorocarbon.

    Science.gov (United States)

    Bezagu, Marine; Arseniyadis, Stellios; Cossy, Janine; Couture, Olivier; Tanter, Mickael; Monti, Fabrice; Tabeling, Patrick

    2015-05-07

    Mixing two fluids together within a microfluidic device still remains a challenging operation today. In order to achieve this goal, a number of effective micromixers have been developed over the years based on the use of either passive or active systems. Typically, passive mixers require no external energy, are more robust, and are easy to manufacture albeit they are poorly flexible. Active mixers, on the other hand, rely on external disturbance and are thus more difficult to use but are proven to have greater efficacy. Here, we report a particularly effective, remotely induced and switchable microfluidic mixer, which relies on the concomitant use of ultrasound and a perfluorocarbon (PFC) phase, with the latter benefiting from its immiscibility with most fluids and its low boiling point. More specifically, our approach is based on localized vaporization of a PFC phase at the focal zone of a transducer leading to efficient mixing of two adjacent fluids. The results show that mixing occurs ~100 ms following the delivery of the acoustic pulse, while a laminar flow is re-established on roughly the same time scale. Overall, this method is simple and effective, does not require tailored channel geometries, is compatible with both hydrophilic and hydrophobic microfluidic systems, and is applicable to a wide range of Reynolds numbers (10(-4) < Re < 2.10(0)), and the PFC phase can be easily separated from the mixed phase at the end of the run.

  3. A scalable micro-mixer for biomedical applications

    Science.gov (United States)

    Cortelezzi, Luca; Ferrari, Simone; Dubini, Angelo

    2016-11-01

    Our study presents a geometrically scalable active micro-mixer suitable for biomedical/bioengineering applications and potentially assimilable in a Lab-on-Chip. We designed our micro-mixer with the goal of satisfying the following constraints: small dimensions, because the device must be able to process volumes of fluid in the range of 10-6 ÷10-9 liters; high mixing speed, because mixing should be obtained in the shortest possible time; constructive simplicity, to facilitate realizability, assimilability and reusability of the micro-mixer; and geometrical scalability, because the micro-mixer should be assimilable to microfluidic systems of different dimensions. We studied numerically the mixing performance of our micro-mixer both in two- and three-dimensions. We characterize the mixing performance in terms of Reynolds, Strouhal and Péclet numbers in order to establish a practical range of operating conditions for our micro-mixer. Finally, we show that our micro-mixer is geometrically scalable, ie., micro-mixers of different geometrical dimensions having the same nondimensional specifications produce nearly the same mixing performance.

  4. Development of the HIFI band 3 and 4 mixer units

    NARCIS (Netherlands)

    De Lange, G.; Jackson, B.D.; Eggens, M.; Golstein, H.; Jochemsen, M.; Laauwen, W.M.; De Jong, L.; Kikken, S.; Kroug, M.; Zijlstra, T.

    2004-01-01

    We describe the current status of the HIFI mixer units for Band 3 and Band 4. The mixer units cover the 800-960 GHz and 960-1120 GHz frequency range and have a 4-8 GHz IF frequency band. The major requirements and the design strategy are described. Functional tests of the magnet, the de-flux heater,

  5. CONTINUOUS PRODUCTION OF HYDROXYPROPYL STARCH IN A STATIC MIXER REACTOR

    NARCIS (Netherlands)

    LAMMERS, G; STAMHUIS, EJ; BEENACKERS, AACM

    1993-01-01

    A novel type of reactor for the chemical derivatization of starch pastes is presented. The design is based on the application of static mixers. The reactor shows excellent plug flow behaviour with a Peclet number of about 100. The viscosity behaviour of concentrated starch pastes in the static mixer

  6. Dayem bridge Josephson junctions. [for millimeter wave mixer

    Science.gov (United States)

    Barr, D. W.; Mattauch, R. J.

    1977-01-01

    The Josephson junction shows great promise as a millimeter wave mixer element. This paper discusses the physical mixing process from a first-order mathematical approach. Design and fabrication of such structures tailored for use in a 80-120 GHz mixer application is presented. Testing of the structures and a discussion of their interpretation is presented.

  7. A novel circuit architecture for fourth subharmonie mixers

    Institute of Scientific and Technical Information of China (English)

    Yao Changfei; Xu Conghai; Zhou Ming; Luo Yunsheng

    2012-01-01

    A circuit topology for high-order subharmonic (SH) mixers is described.By phase cancellation of idle frequency components,the SH mixer circuit can eliminate the complicated design procedure of idle frequency circuits.Similarly,the SH mixer circuit can achieve a high port isolation by phase cancellation of the leakage LO,RF and idle frequency signals.Based on the high-order SH mixer architecture,a new Ka-band fourth SH mixer is analyzed and designed,it shows the lowest measured conversion loss of 8.3 dB at 38.4 GHz and the loss is lower than 10.3 dB in 34-39 GHz.Measured LO-IF,RF-LO,RF-IF port isolation are better than 30.7 dB,22.9dB and 46.5 dB,respectively.

  8. Comparison of SX of uranium using mixer settler and columns

    Energy Technology Data Exchange (ETDEWEB)

    Grinbaum, B., E-mail: baruchgr@bateman.co.il [Bateman Advanced Technologies, Yokneam (Israel); Kotze, M. [Mintek, Randburg (South Africa); Buchalter, E. [Bateman Advanced Technologies, Yokneam (Israel)

    2010-07-01

    Two types of equipment are used in the industry for solvent extraction (SX) of U: mixer-settlers (MS) and columns. Currently the only published type of columns applied in U SX is the Bateman Pulsed Columns (BPC). These columns have been applied for extraction of U for more than 13 years in Olympic Dam plant in Australia and in recent years were also introduced to additional plants in Australia and South Africa. Other plants are using MS of various types. The columns are currently used in the extraction battery only. For stripping and scrubbing only MS are currently used. Although pilot tests prove that the pH gradient required in the stripping may be successfully obtained in the BPC, they have not yet been applied in the industry. The paper compares the extraction and stripping in both types of equipment, regarding the capital cost, operating costs and operating conditions. The capital cost of the BPC is lower by 33-40%, depending on the size of the plant and the quality of the ore. The operating costs with the BPC are slightly lower, due to smaller losses of solvent. From operating point of view the BPC has the ability to recover from phase inversion and precipitation of yellow cake without the need to shut down the plant, if the problem is addressed within a few minutes. (author)

  9. Evaluation of a newly developed piezo actuator-driven pulsed water jet system for liver resection in a surviving swine animal model.

    Science.gov (United States)

    Nakanishi, Chikashi; Nakano, Toru; Nakagawa, Atsuhiro; Sato, Chiaki; Yamada, Masato; Kawagishi, Naoki; Tominaga, Teiji; Ohuchi, Noriaki

    2016-01-25

    Preservation of the hepatic vessels while dividing the parenchyma is key to achieving safe liver resection in a timely manner. In this study, we assessed the feasibility of a newly developed, piezo actuator-driven pulsed water jet (ADPJ) for liver resection in a surviving swine model. Ten domestic pigs underwent liver resection. Parenchymal transection and vessel skeletonization were performed using the ADPJ (group A, n = 5) or an ultrasonic aspirator (group U, n = 5). The water jet was applied at a frequency of 400 Hz and a driving voltage of 80 V. Physiological saline was supplied at a flow rate of 7 ml/min. After 7 days, the animals were killed and their short-term complications were examined and compared between the two groups. No significant complications, such as massive bleeding, occurred in either group during the surgical procedures. The transection time per transection area was significantly shorter in group A than in group U (1.5 ± 0.3 vs. 2.3 ± 0.5 min/cm(2), respectively, P = 0.03). Blood loss per transection area was not significantly different between groups A and U (9.3 ± 4.2 vs. 11.7 ± 2.3 ml/cm(2), P = 0.6). All pigs in group A survived for 7 days. No postoperative bleeding or bile leakage was observed in any animal at necropsy. The present results suggested that the ADPJ reduces transection time without increasing blood loss. ADPJ is a safe and feasible device for liver parenchymal transection.

  10. Real-time diagnostics of a jet engine exhaust using an intra-pulse quantum cascade laser spectrometer

    Science.gov (United States)

    Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.

    2011-09-01

    It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.

  11. Computational Studies of Lobed Forced Mixer Flows

    Institute of Scientific and Technical Information of China (English)

    H.Hu; S.C.M.Yu; 等

    1998-01-01

    Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer,The governing equations are derived from the time-dependent compressible Navier-Stokes equations and discretized in the finite-difference form.A simple two-layer eddy viscosity model has also been used to account for the turbulence.Computed results are compared with some of the velocity measurements using a laser-Doppler anemomter(Yu and Yip (1997),In General,good agreement can be obtained in the streamwise mean velocity distribution but the decay of the streamwise circulation is underpredicted.Some suggestions to the discrepancy are proposed.

  12. Design and fabrication of superconducting HEB mixer

    Institute of Scientific and Technical Information of China (English)

    WANG JinPing; LI YangBin; KANG Lin; WANG Yu; ZHONG YangYin; LIANG Min; CHEN Jian; CAO ChunHai; XU WeiWei; WU PeiHeng

    2009-01-01

    This paper describes the design and fabrication of superconducting hot electron bolometer (HEB)mixer based on ultra-thin superconducting NbN films. The high quality films were epitaxially grown on high resistance Si substrates. The device was fabricated by magnetron sputtering, electron beam lithography (EBL), reactive ion etching (RIE), lithography, and so on. The device's resistance-temperature (R-T) curves and current-voltage (I-V) curves were studied. The results of THz response of the device are presented. Y-factor technique was used to measure the device's noise temperature. When the device was irradiated with a laser radiation of 2.5 THz, the obtained lowest noise temperature of the device was 2213 K.

  13. Millimeter Wave Metal-Insulator-Metal Detector/Mixer Diode.

    Science.gov (United States)

    1983-12-01

    AO-A138 391 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER 1/1 DIODE(VI NORTH CAROLIN A AGRICULTURAL A NO TECHNI CA L STATE UNIV GREENSRO. C TV...163-A I V AFWAL-TR-83-1179 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER DIODE CHUNG YU NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NORTH...TITLE (ad subsorle.I S. TYPE CrjflT&PEO OER MILLIMETER WAVE May, 1981--July, 1983 METAL-INSULATOR- METAL DETECTOR /MIXER G. PERFORMING ORG. REPORT

  14. Life-cycle cost analysis of advanced design mixer pump

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.N., Westinghouse Hanford

    1996-07-23

    This analysis provides cost justification for the Advanced Design Mixer Pump program based on the cost benefit to the Hanford Site of 4 mixer pump systems defined in terms of the life-cycle cost.A computer model is used to estimate the total number of service hours necessary for each mixer pump to operate over the 20-year retrieval sequence period for single-shell tank waste. This study also considered the double-shell tank waste retrieved prior to the single-shell tank waste which is considered the initial retrieval.

  15. Effect of static mixer geometry on flow mixing and pressure drop in marine scr applications

    Directory of Open Access Journals (Sweden)

    Park Taewha

    2014-03-01

    Full Text Available Flow mixing and pressure drop characteristics for marine selective catalytic reduction applications were investigated numerically to develop an efficient static mixer. Two different mixers, line- and swirl-type, were considered. The effect of vane angles on the relative intensity, uniformity index, and pressure drop was investigated in a swirl-type mixer; these parameters are dramatically affected by the mixer geometry. The presence of a mixer, regardless of the mixer type, led to an improvement of approximately 20% in the mixing performance behind the mixer in comparison to not having a mixer. In particular, there was a tradeoff relationship between the uniformity and the pressure drop. Con­sidering the mixing performance and the pressure drop, the swirl-type mixer was more suitable than the line-type mixer in this study.

  16. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    OpenAIRE

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefor...

  17. A high performance receiver using a subsampling mixer and Delta-Sigma ADC

    OpenAIRE

    小林,和也; Kobayashi, Kazuya

    2012-01-01

    In this paper, we propose a high performance receiver architecture for wireless communication systems, such as Bluetooth. This architecture uses a subsampling mixer and a delta-sigma modulator. The proposed sub-sampling mixer has complex band-pass characteristics. The band-pass filter suppresses the aliasing noise generated by the subsampling mixer. The proposed discrete time delta-sigma modulator has an up-conversion mixer and a down-conversion mixer. An intermediate frequency signal convert...

  18. Piezoelectric rotational mixer based on a first bending vibration mode.

    Science.gov (United States)

    Mashimo, Tomoaki

    2013-10-01

    We propose a miniature piezoelectric mixer that can rotate a liquid inside a hole of several millimeters diameter. The mixer has dimensions 14 × 14 × 10 mm with a through-hole (7 mm), and piezoelectric elements bonded to its four identical sides. When the first bending vibration mode of the mixer is excited by ac voltages, rotational flow of liquid is generated by the rotation of an acoustic field (acoustic streaming) in the through-hole. This technology is useful in automating mixing processes such as the mixing by hand of a few drops of blood in medical testing. In this paper, we verify the driving principle experimentally and examine the characteristics of a prototype mixer, including the induced flow velocity, under changes of the amplitude and frequency of the applied voltages. A plastic test tube, used to prevent contamination, is inserted to the through-hole, and the liquid inside the tube is mixed by rotation of the acoustic field.

  19. High speed velocimetry and concentration measurements in a microfluidic mixer using fluorescence confocal microscopy

    Science.gov (United States)

    Inguva, Venkatesh; Perot, Blair; Kathuria, Sagar; Rothstein, Jonathan; Bilsel, Osman

    2016-11-01

    This work experimentally examines the performance of a quasi-turbulent micro-mixer that was designed to produce rapid mixing for protein-folding experiments. The original design of the mixer was performed using Direct Numerical Simulation (DNS) of the flow field and LES of the high Sc number scalar field representing the protein. The experimental work is designed to validate the DNS results. Both the velocity field and the protein concentration require validation. Different experiments were carried out to measure these two quantities. Concentration measurements are performed using a 488nm continuous wave laser coupled with a confocal microscope to measure fluorescence intensity during mixing. This is calibrated using the case where no mixing occurs. The velocity measurements use a novel high speed velocimetry technique capable of measuring speeds on the order of 10 m/s in a micro channel. The technique involves creating a pulsed confocal volume from a Ti-Sapphire laser with a pulse width of 260ns and observing the decay of fluorescence due to the fluid motion. Results from both experiments will be presented along with a comparison to the DNS results. The work is supported by NSF IDBR Award No. 1353942.

  20. Biasable Subharmonic Membrane Mixer for 520 to 600 GHz

    Science.gov (United States)

    Schlecht, Erich; Siegel, Peter; Mehdi, Imran; Gill, John; Velebir, James; Peralta, Alejandro; Tsang, Raymond; Oswald, John; Dengler, Robert

    2009-01-01

    The figure shows a biasable subharmonic mixer designed to operate in the frequency range from 520 to 600 GHz. This mixer is a prototype of low-power mixers needed for development of wideband, high-resolution spectrometers for measuring spectra of molecules in the atmospheres of Earth, other planets, and comets in the frequency range of 400 to 700 GHz. Three considerations dictated the main features of the design: It is highly desirable to operate the spectrometers at or slightly below room temperature. This consideration is addressed by choosing Schottky diodes as the frequency-mixing circuit elements because of all mixer diodes, Schottky diodes are the best candidates for affording sufficient sensitivity at or slightly below room-temperature range. The short wavelengths in the intended operating-frequency range translate to stringent requirements for precision of fabrication and assembly of the circuits; these requirements are even more stringent for wide-bandwidth circuits. This consideration is addressed in two ways: (1) As much as possible of the mixer circuitry is fabricated in the form of a monolithic integrated circuit on a GaAs membrane, employing a modified version of a process used previously to fabricate a non-subharmonic mixer for a frequency of 2.5 THz and frequency multipliers for frequencies up to 2 THz. (2) The remainder of the circuitry is precision machined into a waveguide block that holds the GaAs integrated circuit.

  1. 环空流体吸入式自激振荡脉冲射流大涡模拟研究%Large eddy simulation of self-oscillation pulsed water jet drawing in annulus fluid

    Institute of Scientific and Technical Information of China (English)

    杜玉昆; 王瑞和; 倪红坚

    2009-01-01

    发展新型破岩钻井技术对于促进油气田高效开发具有重要意义,高压水射流是提高破岩钻井效率的一个重要手段,脉冲射流是一种高效射流形式.为了充分利用井底水力能量,提出了一种环空流体吸入式脉冲射流的技术构想.基于自激振荡原理设计了相应射流调制工具,并对工具的流场和动力学特性进行了大涡模拟研究.研究结果分析揭示了环空流体吸入式自激振荡脉冲射流调制的机理,并发现合理的水力结构可以在振荡腔内实现局部负压,使得环空流体被吸入,参与调制生成高效脉冲射流.与非吸入式脉冲射流相比,吸入式脉冲射流振荡更加剧烈,破岩能力更强.研究结果得到了实验验证,为实际钻井工具的研制和相关工艺技术的开发提供了依据.%It is of great significance that developing new rock breaking drilling technology to promote efficient exploit of oil field. High pressure water jet drilling technology is an important method to promote the rock breaking drilling efficiency, and pulsed water jet is such a kind of high efficiency water jet. In order to take full advantage of hydraulic energy in bottom hole, a concept of new type of pulsed water jet drawing in annulus flow, is put forward. The pulsed water jet modulation tool is designed based on the self-exciting principle, and the large eddy simulation is adopted to simulate the flow field and the dynamic characteristics in this tool. This simulation shows the modulation mechanism of self-exciting pulsed water jet drawing in annulus flow. Partial negative pressure could be achieved in the oscillating cavity if the reasonable hydraulic structure is applied. The negative pressure formed in the drawing entrance of the oscillating cavity provides assurance to automatically draw enough fluid into annulus flow, which takes part in modulating the efficient pulsed water jet. The amplitude is larger and the rock breaking capacity of

  2. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    Science.gov (United States)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  3. A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer

    Science.gov (United States)

    Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.

  4. Predicting Tissue Breaking Strengths in the Epileptic Brain with T2 Relaxometry: Application of Pulsed Water Jet Dissection System for Epilepsy Surgery.

    Science.gov (United States)

    Takahashi, Yoko; Iwasaki, Masaki; Nakagawa, Atsuhiro; Sato, Shiho; Nakasato, Nobukazu; Tominaga, Teiji

    2016-11-30

    Background The piezo actuator-driven pulsed water jet (ADPJ) system is a novel surgical instrument that enables dissection of tissue without thermal damage. Using the ADPJ system in epilepsy surgery requires prediction of the tissue breaking strength of the epileptic brain. The aim of this study was to elucidate whether magnetic resonance imaging T2 relaxometry could predict the breaking strength. Methods A total of 12 patients with drug-resistant temporal lobe epilepsy who received surgical treatment were included in the study. All the patients qualified for surgery after a comprehensive preoperative evaluation for the treatment of epilepsy. T2 relaxation time, breaking strength of the hippocampus, and an anterior temporal lobe specimen obtained from surgery with dissection depth determined by the ADPJ system were examined. Results Preoperative T2 relaxation times of the anterior temporal lobe and hippocampus showed mild positive correlation with breaking strength (R(2 )= 0.60). The hippocampus showed higher T2 relaxation time than the temporal lobe. Hippocampal sclerosis seemed to have higher breaking strength than other pathologies, suggesting the correlation depends on the anatomical location and histopathology. The dissection depth of the extirpated lesion was negatively correlated with the breaking strength at input voltages of 10 V (R(2 )= - 0.34) and 20 V (R(2 )= - 0.20). Conclusions T2 relaxometry may be useful to predict tissue breaking strength in the epileptic brain that allows safe application of the ADPJ system in epilepsy surgery. Georg Thieme Verlag KG Stuttgart · New York.

  5. Application of actuator-driven pulsed water jet in aneurysmal subarachnoid hemorrhage surgery: its effectiveness for dissection around ruptured aneurysmal walls and subarachnoid clot removal.

    Science.gov (United States)

    Endo, Hidenori; Endo, Toshiki; Nakagawa, Atsuhiro; Fujimura, Miki; Tominaga, Teiji

    2017-07-01

    In clipping surgery for aneurysmal subarachnoid hemorrhage (aSAH), critical steps include clot removal and dissection of aneurysms without premature rupture or brain injuries. To pursue this goal, a piezo actuator-driven pulsed water jet (ADPJ) system was introduced in this study. This study included 42 patients, who suffered aSAH and underwent clipping surgery. Eleven patients underwent surgery with the assistance of the ADPJ system (ADPJ group). In the other 31 patients, surgery was performed without the ADPJ system (Control group). The ADPJ system was used for clot removal and aneurysmal dissection. The clinical impact of the ADPJ system was judged by comparing the rate of premature rupture, degree of clot removal, and clinical outcomes. Intraoperatively, a premature rupture was encountered in 18.2 and 25.8% of cases in the ADPJ and control groups, respectively. Although the differences were not statistically significant, intraoperative observation suggested that the ADPJ system was effective in clot removal and dissection of aneurysms in a safe manner. Computed tomography scans indicated the achievement of higher degrees of clot removal, especially when the ADPJ system was used for cases with preoperative clot volumes of more than 25 ml (p = 0.047, Mann-Whitney U test). Clinical outcomes, including incidence of postoperative brain injury or symptomatic vasospasm, were similar in both groups. We described our preliminary surgical results using the ADPJ system for aSAH. Although further study is needed, the ADPJ system was considered a safe and effective tool for clot removal and dissection of aneurysms.

  6. Startup and initial operation of a DFGD and pulse jet fabric filter system on Cokenergy's Indiana Harbor coke oven off gas system

    Energy Technology Data Exchange (ETDEWEB)

    Morris, W.J.; Gansley, R.R.; Schaddell, J.G.

    1999-07-01

    This paper describes the design, initial operation and performance testing of a Dry Flue Gas Desulfurization (DFGD) and Modular Pulse Jet Fabric Filter (MPJFF) system installed at Cokenergy's site in East Chicago, Indiana. The combined flue gas from the sixteen (16) waste heat recovery boilers is processed by the system to control emissions of sulfur dioxide and particulates. These boilers recover energy from coke oven off gas from Indiana Harbor Coke Company's coke batteries. The DFGD system consists of two 100% capacity absorbers. Each absorber vessel uses a single direct drive rotary atomizer to disperse the lime slurry for SO{sub 2} control. The MPJFF consists of thirty two (32) modules arranged in twin sixteen-compartment (16) units. The initial start up of the DFGD/MPJFF posed special operational issues due to the low initial gas flows through the system as the four coke oven batteries were cured and put in service for the first time. This occurred at approximately monthly intervals beginning in March 1998. A plan was implemented to perform a staged startup of the DFGD and MPJFF to coincide with the staged start up of the coke batteries and waste heat boilers. Operational issues that are currently being addressed include reliability of byproduct removal. Performance testing was conducted in August and September 1998 at the inlet of the system and the outlet stack. During these tests, particulate, SO{sub 2}, SO{sub 3}, and HCI emissions were measured simultaneously at the common DFGD inlet duct and the outlet stack. Measurements were also taken for average lime, water, and power consumption during the tests as well as system pressure losses. These results showed that all guarantee parameters were achieved during the test periods. The initial operation and performance testing are described in this paper.

  7. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  8. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  9. 喷吹压力与喷吹距离对长滤袋清灰效果的研究%Effect of the pulse pressure and the jet distance on the cleaning performance of the long pulse-jet filter bag

    Institute of Scientific and Technical Information of China (English)

    吕娟; 颜翠平; 袁彩云; 付瑜; 李雪; 陈海焱

    2016-01-01

    The present paper is aimed at introducing its investigation results on the effects of the pulse pressure and the jet distance on the cleaning performance of the long pulse-jet filter bag in order to promote the optimistic design for a semi-industrial pulse-jet filter bag.For the aforementioned purpose,we have adopted the peak pressure and the speed to arrive at the peak pressure as the idealistic indexes for the evaluation of the pulse cleaning effects.In doing so,we have adopted 8 high precision piezoelectric pressure transducers (according to Model QSY8135)to examine and measure the peak pressure and the time for reaching the peak pressure to be shown on the internal surface of the filter bag (160 mm ×6 000 mm),which is made of the polyester needle-felt.The evaluation results have shown that it would be possible to realize the optimum design in a semi-industrial pulsejet filter bag when the pulse pressure is set on 0.1-0.3 MPa in a distance of 200 mm.Our investigation has also proven that the peak pressure tends to increase from the top opening and then reach the maximum value at the location of 1 m in the length of the filter bag.And then,the peak pressure would like to drop gradually,and later to rise again at the bottom of the filter bag on its surface.Thus,the peak pressure distribution tends to be uneven along its surface and it would take 0 to 4 000 mm to reach its peak pressure in its length and decrease from 4 000 mm to 6 000mm,with the average peak pressure values along its length being 2.076 8 kPa,3.292 1 kPa and 4.325 2 kPa,on the condition that the pulse pressure keeps at 0.1-0.3 MPa and the distance stays at 200 mm,respectively.What is more,with the average peak pressures obtained under the optimum parameter design condition,the pulse cleaning results prove to be suitable for practical applications.Thus,it can be concluded that the investigation and experiments we have done can not only be expected to lay a theoretical basis for the study of the

  10. A Peristaltic Meso-Scale Mixer

    Science.gov (United States)

    Bau, Haim; Yi, Mingqiang; Hu, Howard H.

    2000-11-01

    In recent years, there has been a growing interest in developing minute laboratories on a "chip". Often, in order to facilitate chemical and biological reactions, one needs to mix various reagents and chemicals. Although the characteristic lengths associated with micro-devices are small, typically on the order of 100mm, in the case of large molecules, diffusion alone does not provide a sufficiently rapid means for mixing. Recent experimental[1] and theoretical[2] studies suggested the use of surface waves to induce peristaltic motion and enhance fluid stirring. We considered incompressible, viscous fluid confined in a rectangular cavity. One or two of the cavity walls were made of a thin membrane. Electric conductors were printed on the membrane. By passing appropriately phased alternating electric currents through these conductors in the presence of a magnetic field, relatively large amplitude travelling waves could be transmitted in cavity's walls and induce peristaltic motion. We describe the results of a theoretical study. We extended Selverov and Stone[2] theory to account for the presence of lateral boundaries. The induced velocity profiles were determined analytically for small amplitude waves (e) and numerically for waves of arbitrary amplitude. The effect of the peristaltic motion on the stretching and deformation of material lines were quantified. The work was supported, in part, by DARPA through grant N66001-97-1-8911 to the University of Pennsylvania. [1] Moroney, R. M., White, R., M., Howe, R., T., 1991, Ultrasonically Induced Microtransport, Proceedings IEEE Workshop Micro Electro Mechanical Systems, MEMS 95 Amsterdam, 277-282. [2] Selverov, K., and Stone, H., A., 2000, Peristaltically Driven Flows for Micro Mixers, to appear in Physics of Fluids.

  11. Terahertz hot electron bolometer waveguide mixers for GREAT

    CERN Document Server

    Pütz, P; Jacobs, K; Justen, M; Schultz, M; Stutzki, J

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. W...

  12. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  13. Electrochemical corrosion behavior of nanocrystalline nickel prepared by pulsed friction aided jet electrodeposition%脉冲摩擦喷射电沉积纳米晶镍的电化学腐蚀行为

    Institute of Scientific and Technical Information of China (English)

    易笃钢; 沈理达; 朱军; 田宗军; 刘志东

    2015-01-01

    In order to further research the influence of pulse power on the pulse friction aided jet electrodeposition, nickel deposition layer was prepared by pulsed friction aided jet electrodeposition and traditional jet electrodeposition. The effects of the pulse duty ratio and frequency on microstructure of the two nickel deposition layer and the corrosion behavior in 3.5%NaCl solution were comparatively studied by TEM, XRD and electrochemical polarization method, which may provide theory basis for extending the application of nanocrystalline materials. The results show that, the application of pulsed friction aided jet electrodeposition can make the crystallization process more uniform and the grains greatly refined. The minimum average grain size can be down to 9. 12 nm. In the NaCl solution, pulsed friction aided jet electrodeposition has smaller corrosion current density and wider passivation zone. The prepared nickel deposition layers are all better than that prepared by traditional jet electrodeposition. The effect on the corrosion performance of depositions by duty ratio and frequency is basically in conformity with their impact on grain size, too small or too large duty ratio and frequency will lead to the reduction of corrosion resistance.%为进一步研究脉冲电源对脉冲摩擦喷射电沉积的影响,本文分别采用脉冲摩擦喷射电沉积工艺和传统喷射电沉积工艺制备镍沉积层,利用TEM和XRD对比分析了占空比和频率对纳米晶镍微观组织结构的影响,采用电化学极化法研究了各沉积层在3.5%氯化钠溶液中的耐腐蚀性能,以期为拓展纳米晶材料的应用提供理论依据.研究表明:脉冲摩擦电沉积的应用,使电沉积结晶过程更加均匀,晶粒得到极大细化,最小平均晶粒尺寸可达9.12 nm;在氯化钠溶液中,脉冲摩擦喷射电沉积具有更小的腐蚀电流密度和更宽的钝化区,制备的镍沉积层电化学腐蚀性能均优

  14. A Novel Frequency Output Accelerometer Using Ring Oscillator and Mixer

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhaohua; YUERuifeng; LIULitian

    2004-01-01

    A novel digital accelerometer using ring oscillator and mixer is presented. The sensitive unit of this accelerometer is MOS ring oscillators located on silicon beams. The output is frequency signal. Mixer is used as interior signal processor in order to improve characteristics of the output signal. The accelerometer has many perfect characteristics such as high sensitivity, low temperature coefficient and simple fabrication process. The frequency character of MOS ring oscillator and its relationship with acceleration are described. The MOS ring oscillator, mixer circuits and physical structures of this accelerometer are designed. The device was fabricated by standard IC process mixed with MEMS process. The sensitivity of fabricated devices is 6.91 kHz/g.

  15. HTS step-edge Josephson junction terahertz harmonic mixer

    Science.gov (United States)

    Du, Jia; Weily, Andrew R.; Gao, Xiang; Zhang, Ting; Foley, Cathy P.; Guo, Yingjie Jay

    2017-02-01

    A high-temperature superconducting (HTS) terahertz (THz) frequency down-converter or mixer based on a thin-film ring-slot antenna coupled YBa2Cu3O7-x (YBCO)/MgO step-edge Josephson junction is reported. The frequency down-conversion was achieved using higher order harmonics of an applied lower frequency (19-40 GHz) local oscillator signal in the Josephson junction mixing with a THz signal of over 600 GHz, producing a 1-3 GHz intermediate frequency signal. Up to 31st order of harmonic mixing was obtained and the mixer operated stably at temperatures up to 77 K. The design details of the antenna, HTS Josephson junction mixer, the matching and isolation circuits, and the DC and RF performance evaluation are described in this paper.

  16. Modelling the Ohmic L-mode ramp-down phase of JET hybrid pulses using JETTO with Bohm-gyro-Bohm transport

    Science.gov (United States)

    Bizarro, João P. S.; Köchl, Florian; Voitsekhovitch, Irina; EFDA Contributors, JET

    2016-11-01

    The empirical Bohm-gyro-Bohm (BgB) transport model implemented in the JETTO code is used to predictively simulate the purely Ohmic (OH), L-mode current-ramp-down phase of three JET hybrid pulses, which combine two different ramp rates with two different electron densities (at the beginning of the ramp). The modelling is discussed, namely the strategy to reduce as much as possible the number of free parameters used to benchmark the model predictions against the experimental results. Hence, keeping the gas puffing rate as measured whilst controlling the line-averaged electron density via the recycling coefficient (which in the modelling is taken at the separatrix instead of the wall), one of the many possible ways to fix the total particle source, it is shown that the BgB model reproduces well the experimental data, as far as both average quantities (plasma internal inductance and volume-averaged electron temperature) and profiles (electron density and temperature) are concerned, with relative errors remaining mostly below 20 % . The sensitivenesses with respect to the recycling coefficient, the ion effective charge, the energy of neutrals entering the plasma through the separatrix and the need to introduce a particle pinch are assessed; the necessity for a proper sawtooth model if experimental results are to be reproduced is also shown. The strong non-linear coupling in a OH plasma between density, temperature and current (essentially via interplay between the power-balance equation, Joule’s heating with a temperature-dependent resistivity and the dependence of BgB transport coefficients on profile gradients) is put in evidence and analyzed in light of modelling results. It is still inferred from the modelling that the real value of the recycling coefficient at the separatrix (basically, the so-called fuelling efficiency times the actual recycling coefficient at the wall) must become close to one in the final stages of the discharges, when the gas puffing is

  17. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement.

    Science.gov (United States)

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M Suleman; Krammer, Gernot

    2011-12-25

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93-106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100-200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and

  18. Experimental Research on Performance of Self-excited Inspiratory Pulsed Jet Device under Different Ambient Pressures%不同围压下自激吸气式脉冲射流装置性能试验研究

    Institute of Scientific and Technical Information of China (English)

    高传昌; 黄晓亮; 赵礼; 杜俐

    2011-01-01

    To address the technical problems of mud processing of deep water reservoirs and meet the urgent needs, experiments were conducted to assess the performance of a self-excited inspiratory pulsed jet device under different ambient pressures with testing device developed by ourselves, I n which the influence of the driving pressure, ambient pressure and standoff distance on the impact force of pulsed jet were analyzed. Preliminary research on the change of inspiratory quantity and start-up inspiratory pressure was also carried out. As the experimental results demonstrate, the pulsed jet impact force increases with the increase of driving pressure, but decreases with the increase of ambient pressure and standoff distance; the inspiratory capacity increases as driving pressure increases,at a speed varying according to the stimulus of ambient pressure ,and becomes stable gradually; start-up inspiratory pressure increases as ambient pressure increases,exhibiting certain regularity. The experiment provides basis for the in-depth study on self-excited inspiratory pulsed jet and its application in projects like reservoir desilting.%针对深水水库泥沙处理技术问题和需求的迫切性,运用自行研制的试验装置对不同围压(模拟不同水深)下的自激吸气式脉冲射流装置性能进行了试验,研究分析了工作压力、围压、靶距对脉冲射流冲击力的影响,并对装置吸气量的变化及启动吸气压力进行了初步分析.结果表明,脉冲射流冲击力随工作压力的增加而增大,随围压和靶距的增加而减小;装置吸气量随工作压力的增加而增大,增大的速度随围压的不同而不同,并逐渐趋于稳定;启动吸气压力随围压增加而增大,且表现出一定规律性.研究结果为进一步深入研究自激吸气式脉冲射流及其在水库清淤等工程应用方面提供依据.

  19. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS, W.K.

    2000-01-10

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.

  20. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...... are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process....

  1. A 122 GHz SiGe active subharmonic mixer

    OpenAIRE

    2005-01-01

    A 122 GHz subharmonic mixer for a radar-based sensor has been realized.It is fabricated in SiGe: C-HBT technology with a transit frequency of about 200 GHz. The conversion gain of the mixer is 23 dB at aLO-frequency of 60GHz with +3 dBm of power and a RF-input of 122.5GHz.The measured SSB noise figure at 122.5GHz is 12 dB.

  2. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring...

  3. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3 canc

  4. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3

  5. Characteristic of the Spark Discharge Plasma Jet Driven by Nanosecond Pulses%纳秒脉冲等离子体合成射流的气动激励特性

    Institute of Scientific and Technical Information of China (English)

    贾敏; 梁华; 宋慧敏; 刘朋冲; 吴云

    2011-01-01

    The spark discharge plasma jet driven by nanosecond high voltage pulses is studied.The rotational temperature of N2(C3Пu) molecule is calculated according to its rotational emission band near 380.5 nm.The vibration temperatures of N2(C3Пu) molecule are measured based on the optical emission spectra from N2 second positive system,and calculated using emission intensity ratios of 371.1 nm to 380.5 nm.A theoretical estimation of the jet velocity can be obtained by the model of isovolumetric process.Meanwhile,a two-dimensional computational model of plasma jet in air is presented to provide a better understanding of the characteristics of spark discharge plasma jet.Moreover,the evolution of the jet velocity is investigated.The maximum jet velocity occurs at 20 μs and reaches 206 m/s.The now-depleted chamber cools,drawing fresh air from outside the device into the chamber at 70 μs.The cycle is complete,and the device is ready for operation again.Spark discharge plasma jet can induce rapid and high strength aerodynamic actuation.%等离子体合成射流是一种快速、宽频的气动激励方式,由于激励强度高、射流速度大,在超音速流动控制方面具有广阔的应用前景。等离子体合成射流气动激励特性的研究将为揭示等离子体合成射流的产生和演化机制提供必要的基础。为此,研究ns脉冲等离子体合成射流气动激励特性,在常规大气环境进行了发射光谱测试,通过对380.5nm附近的谱线进行拟合得到N2(C3Πu)的转动温度,利用氮分子二正系列的371.1nm和380.5nm两条谱线强度之比计算了振动温度。将腔体内的激励简化为定容加热的过程,理论计算了射流的喷射压力和喷射速度

  6. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  7. Vortex structures downstream a lobed nozzle/mixer

    Institute of Scientific and Technical Information of China (English)

    Hui Hu; Toshio Kobayashi

    2008-01-01

    An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle. A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time. The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures. While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process, the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted. In addition to quantitatively confirming conjectures of previous studies, further insight about the formation, evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.

  8. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using th

  9. GUI for Computational Simulation of a Propellant Mixer

    Science.gov (United States)

    Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie

    2005-01-01

    Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.

  10. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  11. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    Science.gov (United States)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  12. Sideband separating mixer for 600-720 GHz

    NARCIS (Netherlands)

    Khudchenko, A.; Zijlstra, T.; Klapwijk, T. et al

    2010-01-01

    The ALMA Band 9 receiver cartridge (600-720 GHz) based on Dual Sideband (DSB) superconductor-insulatorsuperconductor (SIS) mixer is currently in full production. In the case of spectral line observations, the integration time to reach a certain signal-to-noise level can be reduced by about a factor

  13. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    Science.gov (United States)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  14. Experimental Research on Effects of Operation Parameters on the Performance of Self-oscillating Pulse Jet Device%运行参数对自激脉冲射流装置性能影响的试验研究

    Institute of Scientific and Technical Information of China (English)

    高传昌; 刘彩萍; 刘新阳; 苏泊源

    2012-01-01

    The effects of the operation parameters on the performance of the self-oscillating pulse jet device were investigated in this paper. The relationship between the operation parameters, such as working pressure, flow velocity, standoff distance, and the performance of the device was analyzed,and the optimal ranges of the operation parameters were obtained for the and self-oscillating pulse jet device, which provided references for the engineering applications.%运用自行研制的自激脉冲射流装置就其运行参数对装置性能的影响进行了试验研究.在自激脉冲射流装置结构参数一定的情况下,分析了工作压力、工作流速、靶距等运行参数与脉冲射流装置性能之间的关系,初步得出自激脉冲射流装置的最佳运行参数范围,为工程应用提供了依据.

  15. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    Energy Technology Data Exchange (ETDEWEB)

    Leshikar, G.A.

    1997-05-16

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump.

  16. PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKAN MIXER SETTLER

    Directory of Open Access Journals (Sweden)

    Dwi Biyantoro

    2017-01-01

    Full Text Available ABSTRAK PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKANMIXER SETTLER. Telah dilakukan pemisahanZr – Hf secara sinambung menggunakan pengaduk pengenap (mixer settler 16 stage. Larutan umpan adalah zirkon nitrat dengan kadar Zr = 30786 ppm dan Hf = 499 ppm. Ekstraktan dipakai adalah solven 60 % TBP dalam kerosen dan larutan scrubbingyang dipakai adalah asam nitrat 1 M. Umpan masuk pada stageke 5 dikontakkan secara berlawanan arah dengan solven masuk pada stage ke 16 dan larutan scrubbing masuk pada stage ke 1. Tujuan penelitian ini adalah memisahkan unsur Zr dan Hf dari hasil olah pasir zirkon menggunakan solven TBP dengan alat mixer settler16 stage. Analisis umpan dan hasil proses pemisahan untuk zirkonium (Zr dilakukan dengan menggunakan alat pendar sinar-X, sedangkananalisis unsur hafnium (Hf menggunakan Analisis Pengaktifan Neutron (APN. Parameter penelitian dilakukan dengan variasi keasaman asam nitrat dalam umpan dan variasi waktu pada berbagai laju pengadukan. Hasil penelitian pemisahan unsur Zr dengan Hf diperolehkondisi optimum pada keasaman umpan 4 N HNO3, keseimbangan dicapai setelah 3jam dan laju pengadukan 3300 rpm. Hasil ekstrak  unsur zirkon (Zr diperoleh kadar sebesar 28577 ppm dengan efisiensi 92,76 % serta kadar pengotor hafnium (Hf sebesar 95 ppm. Kata Kunci: pemisahan Zr, Hf, ekstraksi, mixer settler, alat pendar sinar-X, APN. ABSTRACT SEPARATION of Zr - Hf CONTINUOUSLY USE THE MIXER SETTLER. Separation of Zr - Hf continuously using mixer settler 16 stage has been done. The feed solution is zircon nitrate concentration of Zr = 30786 ppm  and Hf = 499 ppm. As the solvent used extractant 60 % TBP in 40 % kerosene. Nitric acid solution used srubbing 1 M. The feed entered into stage to 5 is contacted with solvents direction on the stage to 16 and the scrubbing solution enter the stage to 1. The purpose of this study is to separate Zr and Hf of the results from the process of zircon sand using solvent TBP using 16 stage

  17. Experimental study on ultra-fine powder purification of pulse-jet cartridge dust collector%脉冲滤筒除尘器对超细粉体净化的实验研究

    Institute of Scientific and Technical Information of China (English)

    林莉君; 周露

    2012-01-01

    随着工业的快速发展,空气中颗粒污染物的含量和种类越来越多,不仅对人体健康造成危害,颗粒污染还对能见度、气候、动植物均有影响,寻找合适的除尘设备,提高对微细粉尘的除尘效率,对安全和环境保护有着重要而深远的意义.该文利用脉冲滤筒除尘器对粒径分布为0.5-5μm的超细粉体进行净化实验.测试了除尘器净化效率、除尘器阻力及过滤风速等主要性能参数.实验结果说明:脉冲滤筒除尘器对于粒径为0.5-5μm超细粉体,在过滤风速为0.8-1.25m/min时,除尘器阻力小于300Pa,净化效率达99.9999%.得到结论:滤筒除尘器具有高除尘效率,低阻力损失,节约除尘系统的动力消耗的优点,有利于在超细粉体净化工艺中的应用.%With fast development of the Industry, more and more content and species of paniculate pollutants are in the air. The partieulate pollutants not only cause harm to the human health, but also have negative effect on the visibility , the climate , animals and plants. So it is important to safety and environmental protection that finding suitable dust collecting equipments and raising dust removal efficiency of fine dust particles.This paper was on the use of the pulse-jet cartridge dust collector to do the purifying experiment of the ultra-fine powder. The experimental tested the main characters of the pulse-jet cartridge dust collector, such as the purifying efficiency, the dust resistance and the filtering speed. The experimental results were that this study was used by the pulse-jet cartridge dust collector to purify 0.5μm - μm ultra-fine powders, tested the filtering speed were 0. 8 m/min-1.25m/min, dust resistance was less than 300Pa and the purifying efficiency was 99.9999% . At last, it comes to a conclusion; the pulse-jet cartridge filters are with the advantages of high efficiency, low pressure drop and save power to the dust removal system. The pulse-jet cartridge f dust

  18. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  19. Hypersonic Buckshot: Astrophysical Jets as Heterogeneous Collimated Plasmoids

    CERN Document Server

    Yirak, Kristopher; Cunningham, Andrew J; Mitran, Sorin

    2008-01-01

    Herbig-Haro (HH) jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or ``pulsed'' variations of conditions at the jet source. Simulations based on this scenario result in knots extending across the jet diameter. Observations and recent high energy density laboratory experiments shed new light on structures below this scale and indicate they may be important for understanding the fundamentals of jet dynamics. In this paper we offer an alternative to ``pulsed'' models of protostellar jets. Using direct numerical simulations we explore the possibility that jets are chains of sub-radial clumps propagating through a moving inter-clump medium. Our models explore an idealization of this scenario by injecting small ($r\\rho_{jet}$) spheres embedded in an otherwise smooth inter-clump jet flow. The spheres are initialized with velocities differing from the jet velocity by $\\sim15$%. We find the consequences of shiftin...

  20. Influence of melt mixer on injection molding of thermoset elastomers

    Science.gov (United States)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  1. Recycle use of phosphorous mixer extractant to extract indium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The stripping and regeneration of the loaded organic phase of phosphorous mixer extractant (PPD) were studied.The mixed solutions (3 mol/L HCl +2 mol/L ZnCl2) were used as the stripping agent and more than 99% of indium can bestripped after three-stage stripping when the volume ratio of organic phase to stripping agent is 1:1. The organic phase canbe recycled to use after regeneration with HCl. The parallel contrast experiments with D2EHPA (di-2-ethyl hexyl phospho-ric acid) were carried out under the same conditions. The results show that the mixer extractant has good reusability and thestripping and regeneration of PPD are superior to those of D2EHPA.

  2. A Novel Miniaturized Mixer Based on a Wankel Geometry

    Science.gov (United States)

    Kumar, Pankaj; Wan, Stephen

    2016-11-01

    Mixing in microfluidic systems is a challenge since the flow regime encountered in these systems is typically very low Reynolds number laminar flow, in which viscous forces dominate inertial forces, which precludes efficient turbulence-based mixing. Mixing based purely on diffusion is also not a practical alternative due to the long times required to achieve a sufficient level of mixing. The present study presents a pump based on Wankel geometry as a mixer for efficient mixing in a microfluidic system. Then, a novel modification to the internal geometry of the Wankel-pump-mixer is analyzed and is shown to enable robust mixing without the introduction of an additional system component and hence without the expense of undesirable dead volume. The Lagrangian Coherent Structures (LCS) calculated from the Finite-Time Lyapunov Exponent (FTLE) field with a mixing measure is used to quantify the mixing.

  3. Mixing Study in a Multi-dimensional Motion Mixer

    Science.gov (United States)

    Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.

    2009-06-01

    Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.

  4. Third-Order Intermodulation in a Micromechanical Thermal Mixer

    Science.gov (United States)

    2005-12-01

    rier frequency. A variant of the Duffing oscillator model and finite element modeling are used to analyze the origin of nonlinearities in the...micromechanical system. [1503] Index Terms—Bandpass filter, Duffing oscillator , intermediate frequency, microelectromechanical systems (MEMS), mixer, non...input intercept point of +30 dBm for interferers spaced at a 50-kHz offset from the carrier frequency. A variant of the Duffing oscillator model and

  5. 大气压氖气介质阻挡放电脉冲等离子射流特性%Characterization of dielectric barrier discharge pulse plasma jet in neon at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    雷枭; 方志; 邵涛; 章程

    2012-01-01

    采用自行研制的低造价、小体积、可产生幅值0-35kV、重复频率1kHz的高压μs脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究.结果表明:μs脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;μs脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流.%A dielectric barrier discharge (DBD) plasma jet source is presented, which is low-cost and small in size, fed with neon and driven by the a self-developed microsecond pulse power supply with a peak voltage of 0-35 kV and a frequency of 1 kHz. Influences of applied voltage amplitude and gas flow rate on the discharge characteristics of the plasma jet are studied by measuring the waveforms of voltage and current, taking the light emission images and measuring the optical emission spectra. Results show that, the DBD in neon at atmospheric pressure driven by a microsecond pulse voltage can generate a cone-shaped flaming plasma jet, and the intensity of plasma is moderate. The fast rise of the applied pulse voltage can apply a higher overvoltage instantly to the gas gap, and thus can promotes the increases of discharge power, electron density and excitation temperature efficiently; while the increase of gas flow rate results in the decrease of these parameters but little variation of the jet length. Under certain operating conditions, the plasma jet with long length can be generated.

  6. Mixers with Microstructured Foils for Chemical Production Purposes

    Institute of Scientific and Technical Information of China (English)

    Bemd Werner

    2005-01-01

    @@ For about the past ten years the Institut fur Mikrotechnik Mainz GmbH (IMM) has been engaged in the application of micro structures for chemical micro process engineering. Their advantages - more efficient heat exchange and mass transport- lead to, among other things, an increase in yield and selectivity even while saving resources. The development of microstructured mixers thereby played a key role for carrying out advanced syntheses of fine chemicals, as well as for the generation of dispersions, creams, foams and emulsions. So far, microstructured mixers have been mainly limited to laboratory-scale or at best pilot plant-scale - typical maximum flow rates were from 2-100 L/h for low viscosity systems. With the introduction of the StarLaminators StarLamJOO and StarLam3000, this barrier could be lifted far beyond 300 L/h up to the m3/h domain. Both apparatus yield at high flow rates a mixing efficiency which reaches the high performance of today's low-capacity (L/h) micromixers. Therefore, continuity exists from the "real" micromixers and the high-throughput tools described below to conventionally manufactured static mixers with even higher flow rates. A classification of the mixing efficiency versus the power input confirms this continuity as well.

  7. Low-noise THz MgB2 Josephson mixer

    Science.gov (United States)

    Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.

    2016-09-01

    The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.

  8. Research on Mixer Parametric Modeling System Based on Redevelopment of ANSYS

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available In this paper, the mixer parametric modeling system software was developed by using VB which was taken as the foreground development program, and the paper combined with ANSYS software to create the finite element model of mixer blade and cylinder for the following numerical simulation of the flow field and parameter optimization of mixer. The software user interface was developed by VB and the pre-process model was created by invoking APDL of ANSYS in background. Therefore, the operation of modeling, meshing, component-building of mixer blade and cylinder were completed by using APDL and the graphic and text were outputted and displayed on the mixer parametric modeling system user interface which was developed by VB. Practice proved that it is convenient to modify the mixer solid model created by the parametric design language of ANSYS due to the similar structure.

  9. Numerical Simulation of Fluid Field in Injection Pipe of Pulse-jet Bag Filter%脉冲袋式除尘器喷吹管内流场的模拟研究

    Institute of Scientific and Technical Information of China (English)

    蒋明辉

    2011-01-01

    脉冲袋式除尘器清灰时,传统等孔径喷吹管各喷口喷气量的不均匀,将导致沿喷吹管方向滤袋清灰效果不同,清灰效果差。本文针对等孔径喷吹管喷吹过程,利用CFD软件进行非稳态模拟,得到了喷吹充分发展时刻的管内气流速度、静压分布,以及喷吹管各喷口的气体质量流量。最后用修正方法对喷吹管喷口尺寸进行优化设计,提高了喷吹气流均匀性,为脉冲袋式除尘器喷吹系统的改进提供了理论依据。%Because of the mass flux non-uniform distribution of nozzles in injection pipe,the effect of pulse-jet cleaning system for each filter-bag is different.It causes the drop of the cleaning efficiency.In this paper,the computational fluid dynamics software is used to simulate the unsteady fluid field of the same nozzle radius distributed injection pipe.The distributions of static pressure,flow velocity and mass flow rate are gained when fluid field is fully developed,and the design of the nozzles of injection pipe is optimized.All of these offered a reference to the design and improvement of pulse-jet bag filter.

  10. Jet Observables Without Jet Algorithms

    CERN Document Server

    Bertolini, Daniele; Thaler, Jesse

    2013-01-01

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applicatio...

  11. Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression

    Science.gov (United States)

    Debonis, James R.

    1992-01-01

    A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow.

  12. Conversion Matrix Analysis of SiGe HBT Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2004-01-01

    The frequency response of SiGe HBT active mixers based on the Gilbert cell topology is analyzed theoretically. The time-varying operation of the Gilbert cell mixer is taken into account by applying conversion matrix analysis. The main bandwidth limiting mechanisms experienced in SiGe HBT Gilbert...... cell mixers performing frequency conversion of ultra-wideband signals is discussed. The analysis is verified by computer simulations using a realistic high-frequency large-signal SiGe HBT model. Design optimization steps towards ultra-wideband operation for Gilbert cell mixers is discussed....

  13. Confocal microscopic evaluation of mixing performance for three-dimensional microfluidic mixer.

    Science.gov (United States)

    Yasui, Takao; Omoto, Yusuke; Osato, Keiko; Kaji, Noritada; Suzuki, Norikazu; Naito, Toyohiro; Okamoto, Yukihiro; Tokeshi, Manabu; Shamoto, Eiji; Baba, Yoshinobu

    2012-01-01

    We developed a confocal microscopic method for a quantitative evaluation of the mixing performance of a three-dimensional microfluidic mixer. We fabricated a microfluidic baker's transformation (MBT) mixer as a three-dimensional passive-type mixer for the efficient mixing of solutions. Although the MBT mixer is one type of ideal mixers, it is hard to evaluate its mixing performance, since the MBT mixer is based on several cycles of complicated three-dimensional microchannel structures. We applied the method developed here to evaluate the mixing of water and a fluorescein isothiocyanate (FITC; diffusion coefficient, 4.9 × 10(-10) m(2) s(-1)) solution by the MBT mixer. This method enables us to capture vertical section images for the fluid distributions of FITC and water at different three-dimensional microchannel structures of the MBT device. These images are in good agreement with those of mixing images based on numerical simulations. The mixing ratio could be calculated by the fluorescence intensity at each pixel of the vertical section image; complete mixing is recognized by a mixing ratio of more than 90%. The mixing ratios are measured at different cycles of the MBT mixer by changing the flow rate; the mixing performance is evaluated by comparisons with the mixing ratio of the straight microchannel without the MBT mixer.

  14. 负压区的存在对刚性陶瓷过滤器脉冲反吹性能的影响%EFFECT OF NEGATIVE PRESSURE REGION ON PULSE-JET CLEANING PERFORMANCE OF RIGID CERAMIC FILTERS

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 郭建光

    2000-01-01

    利用压电式压力传感器测定了陶瓷过滤器在脉冲反吹过程中滤管内动态压力的变化规律,表明在脉冲反吹快要结束和正常过滤尚未开始的过渡过程中,滤管内存在严重的负压区。利用单个颗粒轨道模型分析了部分已被吹离滤管表面的小颗粒在负压区的作用下会重新返回到滤管壁,从而证实了负压区是影响刚性陶瓷过滤器稳定运行的重要原因。%In a ceramic filter experimental set-up with three filter candles,the dynamic pressures atthe inner wall of one filter candle during pulse-jet cleaning aremeasured by using resize-electric pressure transducer. The experimentalresults show that the dynamic pressure in wholepulse-jet cleaning process consists of two parts. One is the positivepressure in the filter candlegreater than the pressure outside the filter candle whichcorresponds to the outward radial fluidflow to break up and dislodge the dust cake on the surfaceof the filter tube. The other is anegative pressure region which is responsible for inward radialflow while the pulse-jet is closed.The influences of reservoir pressure on thedynamic pressure are discussed.The calculation results of particle motion indicate that negativepressure region cause a fractionof particles removed re-deposit on the candle surface. Especiallyfiner particles is more easierlyre-deposited on the surface to form thin and dense layer on thefilter candle and to increasegradually the residual pressure drop across the candle. It isconcluded that negative pressureregion may have important effects on the long-term stable operation of thefilter unit.

  15. Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range

    Science.gov (United States)

    Lewen, F.; Gendriesch, R.; Pak, I.; Paveliev, D. G.; Hepp, M.; Schieder, R.; Winnewisser, G.

    1998-01-01

    We have developed a new submillimeter wave pulsed molecular beam spectrometer with phase stabilized backward wave oscillators (BWOs). In the frequency ranges of 260-380 and 440-630 GHz, the BWOs output power varies between 3 and 60 mW. Part of the radiation was coupled to a novel designed harmonic mixer for submillimeter wavelength operation, which consists of an advanced whiskerless Schottky diode driven by a harmonic of the reference synthesizer and the BWO radiation. The resulting intermediate frequency of 350 MHz passed a low noise high electron mobility transistor amplifier, feeding the phase lock loop (PLL) circuit. The loop parameters of the PLL have been carefully adjusted for low phase noise. The half power bandwidth of the BWO radiation at 330 GHz was determined to be as small as 80 MHz, impressively demonstrating the low phase noise operation of a phase locked BWO. A double modulation technique was employed by combining an 80 Hz pulsed jet modulation and a 10-20 kHz source modulation of the BWO and reaching a minimum detectable fractional absorption of 2×10-7. For the first time, a number of pure rotational (Ka=3←2, Ka=4←3) and rovibrational transitions in the van der Waals bending and stretching bands of the Ar-CO complex were recorded.

  16. Analysis of power demand signal in laboratory rotary mixer

    Directory of Open Access Journals (Sweden)

    K. Smyksy

    2010-04-01

    Full Text Available The paper summarises the power measurement data for the main assemblies in a prototype turbine mixers for laboratory applications. Of particular interest are power demand signals in the paddle stirrer and the rotor. Tests were performed for the variable moisture content of the moulding sand containing bentonite. The process is described as dynamic and considered from the standpoint of automatics. Potential applications of the power demand signal are investigated in the context of the study of dynamics of the mixing processes, in terms of control of the water feeding to the moulding sand and for the purpose of evaluating the energy consumption.

  17. Design and Fabrication of an Industrial Poultry Feed Tumble Mixer

    Directory of Open Access Journals (Sweden)

    Osokam Shadrach ONYEGU

    2012-08-01

    Full Text Available This paper presents the design and fabrication of a poultry feed industrial tumble mixer. The design computations to handle a 50Kg mass of feed was done in the MS Excel environment for proper machine design approach. The machine was designed using AUTOCAD 2D/3D design software and proper material selection was done before the assembling and fabrication of parts. The efficiency of the machine, its associated cost of production and the product obtained after few minutes of mixing were outstanding, thereby, making the design acceptable and cost effective.

  18. Experimental and Measurement Uncertainty Associated with Characterizing Slurry Mixing Performance of Pulsating Jets at Multiple Scales

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2015-09-10

    Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests were conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.

  19. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form. By...

  20. MOSFET-Only Mixer/IIR Filter with Gain using Parametric Amplification

    DEFF Research Database (Denmark)

    Custódio, José R.; Oliveira, J.; Oliveira, L. B.

    2010-01-01

    This paper describes the design of a discrete-time passive Mixer/IIR filter. The use of an improved MOS Parametric Amplification leads to a moderate gain in the signal path and improved noise performance, instead of the conversion loss inherent to passive mixers. Simulation results demonstrate th...

  1. Low noise Nb-SIS mixers at far above the gap frequency

    NARCIS (Netherlands)

    Gao, [No Value; vandeStadt, H; Jegers, JBM; Kovtonyuk, S; Hulshoff, W; Whyborn, ND; Klapwijk, TM; deGraauw, T; Liao, FJ; Liu, JY

    1996-01-01

    There are great interests in developing Nb SIS mixers because of the extremely low noise temperatures and because of the need of low local oscillator (LO) power. Several groups have demonstrated experimentally that Nb SIS mixers with integrated tuning elements can perform near the quantum noise limi

  2. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control sy...

  3. Heat transfer and the continuous production of hydroxypropyl starch in a static mixer reactor

    NARCIS (Netherlands)

    Lammers, Gerard; Beenackers, Antonie A. C. M.

    1994-01-01

    A novel continuous reactor for the chemical derivation of aqueous starch solutions based on static mixers is proposed. Both the experimentally observed axial and radial temperature gradients in the static mixer could be accurately described by a pseudohomogeneous two-dimensional heat transfer (PTHT)

  4. HEAT-TRANSFER AND PRODUCTION OF HYDROXYPROPYL STARCH IN A STATIC MIXER REACTOR

    NARCIS (Netherlands)

    LAMMERS, G; BEENACKERS, AACM

    1994-01-01

    A new reactor is proposed for the chemical derivation of aqueous starch solutions based on the application of static mixers. In a novel approach, heat transfer in the static mixer was modelled using the Pseudohomogeneous Two-dimensional Heat Transfer (PTHT) model. Experimental results show the suita

  5. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form. By...... of one space robot arm system subjected to failures....

  6. Granular flow in static mixers by coupled DEM/CFD approach

    Directory of Open Access Journals (Sweden)

    Pezo Lato

    2016-01-01

    Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055

  7. Niobium titanium nitride-based superconductor-insulator-superconductor mixers for low-noise terahertz receivers

    NARCIS (Netherlands)

    Jackson, B.D.; De Lange, G.; Zijlstra, T.; Kroug, M.; Klapwijk, T.M.; Stern, J.A.

    2005-01-01

    Integrating NbTiN-based microstrip tuning circuits with traditional Nb superconductor-insulator-superconductor (SIS) junctions enables the low-noise operation regime of SIS mixers to be extended from below 0.7 to 1.15 THz. In particular, mixers incorporating a NbTiN/SiO2/NbTiN microstrip tuning circ

  8. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  9. Conversion Matrix Analysis of GaAs HEMT Active Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Krozer, Viktor

    2006-01-01

    In this paper, the nonlinear model of the GaAs HEMT active Gilbert cell mixer is investigated. Based on the model, the conversion gain expression of active Gilbert cell mixers is derived theoretically by using conversion matrix analysis method. The expression is verified by harmonic balance simul...... simulation with Angelov HEMT model in Agilent Advanced Design System (ADS) and by chip measurement results....

  10. Contractor annual self-assessment report mixer pump replacementtank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.J.

    1997-01-14

    The purpose of this report is to provide the results of the first annual self- assessment to confirm readiness to replace the mixer pump (pump {number_sign}1) in Tank 241-SY-101, should the mixer pump fail or need to be replaced for some other reason.

  11. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2016-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can be...

  12. A Passive X-Band Double Balanced Mixer Utilizing Diode Connected SiGe HBTs

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2013-01-01

    In this paper, a passive double balanced mixer in SiGe HBT technology is presented. Due to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode connected HBTs. The mixer is optimized for use in doppler radars and is highly linear with 1 dB compressio...

  13. Nonstationary photonic jet from dielectric microsphere

    CERN Document Server

    Geints, Yu; Zemlyanov, A

    2014-01-01

    A photonic jet commonly denotes the specific spatially localized region in the near-field forward scattering of a light wave at a dielectric micron-sized particle. We present the detailed calculations of the transient response of an airborne silica microsphere illuminated by a femtosecond laser pulse. The spatial area constituting the photonic jet is theoretically investigated and the temporal dynamics of jet dimensions as well as of jet peak intensity is analyzed. The role of morphology-dependent resonances in jet formation is highlighted. The evolution scenario of a nonstationary photonic jet generally consists of the non-resonant and resonant temporal phases. In every phase, the photonic jet can change its spatial form and intensity.

  14. FPGA based pulsed NQR spectrometer

    Science.gov (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  15. 26 CFR 48.4061-1 - Temporary regulations with respect to floor stock refunds or credits on cement mixers.

    Science.gov (United States)

    2010-04-01

    ... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January...

  16. A SiGe BiCMOS double-balanced mixer with active balun for X-band Doppler radar

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus S.; Johansen, Tom K.; Tamborg, Kjeld M.

    2015-01-01

    In this paper, we present an X-band doublebalanced mixer in SiGe BiCMOS technology. The mixer core consists of a LO Matched quad diode ring using diode-connected Heterojunction Bipolar Transistors (HBTs). The mixer is integrated with a low-noise, high-linearity active balun on the RF port and a m...

  17. Characterization of mixing in a laminar motionless mixer

    Science.gov (United States)

    Ventresca, Amy L.; Cao, Qing; Prasad, Ajay K.

    2000-11-01

    An investigation of the dependence of mixing efficiency of a motionless mixer upon viscosity ratio, volume flux ratio and Reynolds number was performed. The liquids were aqueous solutions of carboxymethylcellulose (CMC). Viscosity ratios ranged from 1 to about 100, volume flux ratios ranged from 1 to 10; 0.001<= Re <= 10 ,where Reynolds number was based on mixing element gap thickness. The two transparent liquid streams were symmetrically injected side-by-side, into a pipe housing five elements of a Koch SMX laminar flow motionless mixer. One of the two streams was marked with a fluorescing dye. A downstream cross-section of pipe was evaluated using laser induced fluorescence (LIF). Highly resolved spatial variations of fluorescence intensity were recorded using a CCD camera. Mathematical evaluations using goodness of mix criteria, including Danckwerts statistics, the average and variance of cross-sectional striation thickness, interfacial area growth, and cross-section averaged structure radius, will be presented. This work was supported by Dupont.

  18. Analysis of CMOS Transconductance Amplifiers for Sampling Mixers

    Science.gov (United States)

    Li, Ning; Chaivipas, Win; Okada, Kenichi; Matsuzawa, Akira

    In this paper the transfer function of a system with windowed current integration is discussed. This kind of integration is usually used in a sampling mixer and the current is generated by a transconductance amplifier (TA). The parasitic capacitance (Cp) and the output resistance of the TA (Ro,TA) before the sampling mixer heavily affect the performance. Calculations based on a model including the parasitic capacitance and the output resistance of the TA is carried out. Calculation results show that due to the parasitic capacitance, a notch at the sampling frequency appears, which is very harmful because it causes the gain near the sampling frequency to decrease greatly. The output resistance of the TA makes the depth of the notches shallow and decreases the gain near the sampling frequency. To suppress the effect of Cp and Ro,TA, an operational amplifier is introduced in parallel with the sampling capacitance (Cs). Simulation results show that there is a 17dB gain increase while Cs is 1pF, gm is 9mS, N is 8 with a clock rate of 800MHz.

  19. Mixing of two different electrolyte solutions in electromagnetic rectangular mixers

    Institute of Scientific and Technical Information of China (English)

    Meimei WEN; Chang Nyung KIM; Yue YAN

    2016-01-01

    This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists of a conduit with electrodes equipped on its top and bottom walls. The difference in the electric potentials applied to the sets of electrodes induces the current. The combi- nation of the induced current and magnetic field yields Lorentz force, resulting in the fluid motion for pumping and mixing of the two different fluids. The numerical simulation is carried out with the use of commercial software CFX. The present numerical model is validated by an existing numerical work. The effect of different variables on mixing efficiency is investigated in many different cases with two different heights of the duct and various input voltages of the electrodes. The current simulation results indicate that the mixing performance can be enhanced by using multiple sets of electrodes and applying higher input voltages (absolute values) to the electrodes.

  20. Design of Ka-band antipodal finline mixer and detector

    Institute of Scientific and Technical Information of China (English)

    Yao Changfei; Xu Jinping; Chen Mo

    2009-01-01

    This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carried out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis.The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz,and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.

  1. A Planar Microfluidic Mixer Based on Logarithmic Spirals.

    Science.gov (United States)

    Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy; Monroe, W Todd

    2012-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3-D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes, and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing.

  2. Problems of bentonite rebonding of synthetic system sands in turbine mixers

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-12-01

    Full Text Available Turbine (rotor mixers are widely used in foundries for bentonite rebonding of synthetic system sands. They form basic equipment in modern sand processing plants. Their major advantage is the short time of the rebond mixing cycle.Until now, no complete theoretical description of the process of mixing in turbine mixers has been offered. Neither does it seem reasonable to try to adapt the theoretical backgrounds of the mixing process carried out in mixers of other types, for example, rooler mixers [1], to the description of operation of the turbine mixers. Truly one can risk the statement that the individual fundamental operations of mixing in rooler mixers, like kneading, grinding, mixing and thinning, are also performed in turbine mixers. Yet, even if so, in turbine mixers these processes are proceeding at a rate and intensity different than in the roller mixers. The fact should also be recalled that the theoretical backgrounds usually relate to the preparation of sand mixtures from new components, and this considerably restricts the field of application of these descriptions when referred to rebond mixing of the system sand. The fundamentals of the process of the synthetic sand rebonding with bentonite require determination and description of operations, like disaggregation, even distribution of binder and water within the entire volume of the rebonded sand batch, sand grains coating, binder activation and aeration.This study presents the scope of research on the sand rebonding process carried out in turbine mixers. The aim has been to determine the range and specific values of the designing and operating parameters to get optimum properties of the rebonded sand as well as energy input in the process.

  3. SAFETY ANALYSIS FOR TANK 241-AZ-101 MIXER PUMP PROCESS TEST

    Energy Technology Data Exchange (ETDEWEB)

    HAMMOND DM; HARRIS JP; MOUETTE P

    1997-06-09

    This document contains the completed safety analysis which establishes the safety envelope for performing the mixer pump process test in Tank 241-AZ-101. This process test is described in TF-210-OTP-001. All equipment necessary for the mixer pump test has been installed by Project W-151. The purpose of this document is to describe and analyze the mixer pump test for Aging Waste Facility (AWF) Tank 241-AZ-101 and to address the 'yes/maybe' responses marked for evaluation questions identified in Unreviewed Safety Question Evaluation (USQE) TF-94-0266. The scope of this document is limited to the performance of the mixer pump test for Tank 241-AZ-101. Unreviewed Safety Question Determination (USQD) TF-96-0018 verified that the installation of two mixer pumps into Tank 241-AZ-101 was within the current Tank Waste Remediation System (TWRS) Authorization Basis. USQDs TF-96-0461, TF-96-0448, and TF-96-0805 verified that the installation of the in-tank video camera, thermocouples, and Ultrasonic Interface Level Analyzer (URSILLA), respectively, were within the current TWRS Authorization Basis. USQD TF-96-1041 verified that the checkout testing of the installed equipment was within the current TWRS Authorization Basis. Installation of the pumps and equipment has been completed. An evaluation of safety considerations associated with operation of the mixer pumps for the mixer pump test is provided in this document. This document augments the existing AWF authorization basis as defined in the Interim Safety Basis (Stahl 1997), and as such, will use the existing Interim Operational Safety Requirements (IOSRs) of Heubach 1996 to adequately control the mixer pump test. The hazard and accident analysis is limited to the scope and impact of the mixer pump test, and therefore does not address hazards already addressed by the current AWF authorization basis. This document does not evaluate removal of the mixer pumps. Safety considerations for removal of the pumps will be

  4. Evaluation Of Saltstone Mixer Paddle Configuration For Improved Wear Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Fowley, M. D.; Pickenheim, B. R.

    2012-09-27

    A soft metal with low wear resistance (6000 series aluminum), was used to minimize run time while maximizing wear rate. Two paddle configurations were tested, with the first four paddles after the augers replaced by the wear paddles. The first configuration was all flat paddles, with the first paddle not aligned with the augers and is consistent with present SPF mixer. The second configuration had helical paddles for the first three stages after the augers and a flat paddle at the fourth stage. The first helical paddle was aligned with the auger flight for the second configuration. The all flat paddle configuration wear rate was approximately double the wear rate of the helical paddles for the first two sets of paddles after the augers. For both configurations, there was little or no wear on the third and fourth paddle sets based on mass change, indicating that the fully wetted premix materials are much less abrasive than the un-wetted or partially wetted premix. Additionally, inspection of the wear surface of the paddles at higher magnification showed the flat paddles were worn much more than the helical and is consistent with the wear rates. Aligning the auger discharge flight with the first set of helical paddles was effective in reducing the wear rate as compared to the flat paddle configuration. Changing the paddle configuration from flat to helical resulted in a slight increase in rheological properties. Although, both tests produced grout-like material that is within the processing rage of the SPF, it should be noted that cement is not included in the premix and water was used rather than salt solution, which does affect the rheology of the fresh grout. The higher rheological properties from the helical wear test are most likely due to the reduced number of shearing paddles in the mixer. In addition, there is variation in the rheological data for each wear test. This is most likely due to the way that the dry feeds enter the mixer from the dry feeder. The

  5. A STATISTICAL INTELLIGENCE (STI) APPROACH TO DISCOVERING SPURIOUS CORRELATION IN A PHYSICAL MODEL AND RESOLVING THE PROBLEM WITH AN EXAMPLE OF DESIGNING A PULSE JET MIXING SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G.; Piepel, Gregory F.; Heredia-Langner, Alejandro; Meyer, Perry A.; Wells, Beric E.; Fort, James A.; Bamberger, Judith A.; Kuhn, William L.

    2010-07-23

    Pulse jet mixing tests were conducted to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant. A physical approach (based on hydro-dynamic behavior) and two semi-empirical (SE) approaches were applied to the data to develop models for predicting two response variables (critical-suspension velocity and cloud height). Tests were conducted at three geometric scales using multiple noncohesive simulants and levels of possibly influential factors. The physical modeling approach based on hydro- dynamic behavior was first attempted, but this approach can yield models with spurious correlation. To overcome this dilemma, two semi-empirical (SE) models were developed by generalizing the form of the physical model using dimensional and/or nondimensional (ND) variables. The results of applying statistical intelligence (STI) tools to resolve the spurious correlation problem via fitting the physical and SE models are presented and compared. Considering goodness-of-fit, prediction performance, spurious correlation, and the need to extrapolate, the SE models based on ND variables are recommended.

  6. Application of hydraulic pulse cavitating jet technology in unconventional well drilling%水力脉冲空化射流技术在非常规钻井中的应用

    Institute of Scientific and Technical Information of China (English)

    辛建华

    2012-01-01

    For some unconventional wells, due to old stratum and poor drillability, it takes longer drilling period and encounters more complex situation, including obvious decline of mechanical drilling rate and soaring drilling cost. Based on the drilling prac-tice of unconventional wells, it is found that conventional drilling technique cannot slove the problems of low mechanical drilling rate and long drilling period. Through research, oil experts found that, under the conditions of fixed hydraulic parameters, the use of pulse jet and cavitating jet could have a greater impact load, improve the efficiency of rock clearing and rock breaking, and success-fully resolve the problem of low mechanical drilling rate and long drilling period. By tracking and comparative analysis of the appli-cation of hydraulic pulse cavitating jet technology in the drilling of unconventional wells, this paper researched on the feasibility of enhancing mechanical drilling rate by the technology and explored the means to improve the tools structure of the technology, hy-draulic parameters, drilling tools combination and the adaptability of the technology to stratum. All the researches above were of practical meanings in making technical preparation for the improvement of mechanical drilling rate of unconventional wells.%部分非常规井由于地层古老,岩性致密,可钻性差,钻井周期长,钻井过程中遇到的复杂情况增多,机械钻速下降幅度明显增大,同时钻井成本也急剧增加。从非常规钻井施工实际不难发现,采用传统钻井工艺和方式不能解决钻井机械钻速低,钻井周期长等难题。目前,石油专家通过探索研究发现,在水力参数不变的条件下,利用脉冲射流和空化射流能够产生较大的冲击载荷,提高清岩和破岩效率,从而顺利解决了钻井机械钻速低,钻井周期长等难题。通过跟踪、对比分析水力空化射流钻井技术在非常规钻井中的应

  7. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  8. Three-dimensional measurement of the laminar flow field inside a static mixer

    Science.gov (United States)

    Speetjens, Michel; Jilisen, Rene; Bloemen, Paul

    2011-11-01

    Static mixers are widely used in industry for laminar mixing of viscous fluids as e.g. polymers and food stuffs. Moreover, given the similarities in flow regime, static mixers often serve as model for compact mixers for process intensification and even for micro-mixers. This practical relevance has motivated a host of studies on the mixing characteristics of static mixers and their small-scale counterparts. However, these studies are primarily theoretical and numerical. Experimental studies, in contrast, are relatively rare and typically restricted to local 2D flow characteristics or integral quantities (pressure drop, residence-time distributions). The current study concerns 3D measurements on the laminar flow field inside a static mixer using 3D Particle-Tracking Velocimetry (3D-PTV) Key challenges to the 3D-PTV image-processing procedure are the optical distortion and degradation of the particle imagery due to light refraction and reflection caused by the cylindrical boundary and the internal elements. Ways to tackle these challenges are discussed and first successful 3D measurements in an actual industrial static mixer are presented.

  9. Jet quenching via jet collimation

    CERN Document Server

    Casalderrey-Solana, J; Wiedemann, U

    2011-01-01

    The strong modifications of dijet properties in heavy ion collisions measured by ATLAS and CMS provide important constraints on the dynamical mechanisms underlying jet quenching. In this work, we show that the transport of soft gluons away from the jet cone - jet collimation - can account for the observed dijet asymmetry with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude. Further, we show that the energy loss attained through this mechanism results in a very mild distortion of the azimuthal angle dijet distribution.

  10. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  11. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  12. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  13. Design Mixers to Minimize Effects of Erosion and Corrosion Erosion

    Directory of Open Access Journals (Sweden)

    Julian Fasano

    2012-01-01

    Full Text Available A thorough review of the major parameters that affect solid-liquid slurry wear on impellers and techniques for minimizing wear is presented. These major parameters include (i chemical environment, (ii hardness of solids, (iii density of solids, (iv percent solids, (v shape of solids, (vi fluid regime (turbulent, transitional, or laminar, (vii hardness of the mixer's wetted parts, (viii hydraulic efficiency of the impeller (kinetic energy dissipation rates near the impeller blades, (ix impact velocity, and (x impact frequency. Techniques for minimizing the wear on impellers cover the choice of impeller, size and speed of the impeller, alloy selection, and surface coating or coverings. An example is provided as well as an assessment of the approximate life improvement.

  14. Mixer for internal combustion engines. Gemischbildner fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G.; Schiele, W.; Schuerfeld, A.; Bianchi, V.; Abidin, A.

    1981-06-11

    The invention concerns a mixer for internal combustion engines with a pipe wall limiting the main flow path and heated for part of its length and with a throttle upstream and a fuel allocation device in the upstream part of a mixing chamber inside the pipe wall. The invention is characterised by the fact that the pipe wall surrounding the mixing chamber is made as a heating wall from the fuel allocation device to the throttle and the fuel allocation device guides the fuel to the heating wall. The heating wall is made as a double wall of a heat exchanger to guide the liquid or gaseous heating medium, such as engine cooling water or engine exhaust gas. The heating wall consists of an electrical resistance heating material on the inside. Other measures of the invention are described by system drawings and 33 patent claims.

  15. Transfer Characteristics in Mechanically Stirred Airlift Loop Reactors with or without Static Mixers

    Institute of Scientific and Technical Information of China (English)

    吕效平; 王延儒; 时钧

    2000-01-01

    The mechanically stirred internal loop airlift reactors equipped with or without static mixers are devised for intensification of gas-liquid mass transfer rate. The influences of superficial gas velocity, agitation or static mixers on gas hold-up, mixing time, liquid circulating velocity and volumetric mass transfer coefficient have been investigated with tap water and carboxymethyl cellulose (CMC) aqueous solution. The experimental results indicate that mechanical agitation is more efficacious than static mixer in highly viscous media for improving mass transfer in airlift reactors. The empirical correlation of volumetric mass transfer coefficient with apparent viscosity, and energy consumption for mechanical agitation and aeration is developed.

  16. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  17. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  18. ASTROPHYSICAL JETS AS HYPERSONIC BUCKSHOT: LABORATORY EXPERIMENTS AND SIMULATIONS

    Directory of Open Access Journals (Sweden)

    A. Frank

    2009-01-01

    Full Text Available Herbig-Haro (HH jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or "pulsed" variations of conditions at the jet source. In this contribution we offer an alternative to "pulsed" models of protostellar jets. Using direct numerical simulations and laboratory experiments we explore the possibility that jets are chains of sub-radial clumps propagating through a moving inter-clump medium. Our simulations explore an idealization of this scenario by injecting small (r ¿jet spheres embedded in an otherwise smooth inter-clump jet flow. The spheres are initialized with velocities differing from the jet velocity by ¿ 15%. We find the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the inter-clump medium in a variety of ways. We also present new experiments that, for the first time, directly address issues of magnetized astrophysical jets. Our experiments explore the propagation and stability of super-magnetosonic, radiatively cooled, and magnetically dominated bubbles with internal, narrow jets. The results are scalable to astrophysical environments via the similarity of dimensionl ss numbers controlling the dynamics in both settings. These experiments show the jets are subject to kink mode instabilities which quickly fragment the jet into narrow chains of hypersonic knots, providing support for the "clumpy jet" paradigm.

  19. 深水自激吸气式脉冲射流装置冲击特性的试验研究%Experimental Study on Impact Properties of Self-excited Inspiration Pulse Jet Device in Deepwater

    Institute of Scientific and Technical Information of China (English)

    高传昌; 马文良; 刘新阳; 解克宇; 王猛飞; 胡亚州

    2016-01-01

    运用自行研制的水下射流试验系统对自激吸气式脉冲射流装置在不同围压和靶距下的冲击特性进行了试验研究,获取了装置吸气量以及靶盘上冲击力,分析了装置射流冲击力随围压和靶距的变化规律。研究表明:下喷嘴直径对吸气量影响较大,存在一个最佳范围;随着围压的增加,同一靶距下靶盘上各圈射流冲击力均减小,不同围压下靶盘靶心和不同圈之间冲击力变化规律是不同的;对于不同的下喷嘴直径,围压越高和靶距越大,冲击力分布曲线越平缓。%This paper carried out a lot of experiments on the Self-excited Inspiration Pulse Jet Device in the deepwater condition by using self-developed test equipments ,obtained the inspired air capacity and the jet impact power and analyzed the effect laws with the variations of confining pressure and target distance .Studies have shown that :the inspired air capacity changed greatly as the change of the bottom nozzle diameter and there are optimal ranges ;With the increase of confining pressure ,each circle impact forces on tar‐get plate reduced under the same target distance .The law among the variation of impact force of bullseye and other circles under the imparity confining pressure are different ;With the addition of confining pressure and target distance ,impact force becomes slow down in the different bottom nozzle diameter .

  20. design and fabrication of a fou fabrication of a foundry sand mixer ...

    African Journals Online (AJOL)

    eobe

    RODUCTION ENGINEERING, UNIVERSITY OF BENIN, BENIN C ... ters 23mm and 33mm attached to a 2hp, 3 phase electric motor and mix the sand in the ... The application of this .... SAND MIXERS WORKING PRINCIPLES AND DESIGN.

  1. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  2. A CMOS image-rejection mixer with 58-dB IRR for DTV receivers

    Institute of Scientific and Technical Information of China (English)

    Yuan Shuai; Li Zhiqun; Huang Jing; Wang Zhigong

    2009-01-01

    The design, implementation, and characterization of an image-rejection double quadrature conversion mixer based on RC asymmetric polyphase filters (PPF) are presented. The mixer consists of three sets of PPFs and a mixer core for quadrature down conversion. Two sets of PPFs are used for the quadrature generation and the other one is used for the IF signal selection to reject the unwanted image band. Realized in 0.18-μm CMOS technology as a part of the DVB-T receiver chip, the mixer exhibits a high image rejection ratio (IRR) of 58 dB, a power consumption of 11 mW, and a 1-dB gain compression point of -15 dBm.

  3. Power demand and mixing performance of coaxial mixers in a stirred tank with CMC solution

    Institute of Scientific and Technical Information of China (English)

    Yuyun Bao; Yu Lu; Qianqin Liang; Li Li; Zhengming Gao; Xiongbin Huang; Song Qin

    2015-01-01

    Experimental investigation was carried out in an el iptical based stirred tank with a diameter of 0.48 m to explore the power demand and mixing performance of coaxial mixers. Syrup and CMC solution (sodium carboxy methyl cellulose) were used as the Newtonian and non-Newtonian fluids, respectively. Four different coaxial mixers were combined with either CBY or Pfaudler impeller as the inner one, and anchor or helical ribbon (HR) as the outer one. Results show that Pfaudler-HR is the optimized combination among four coaxial mixers in this work, which provides the shortest mixing time given the same power consumption. Compared with the syrup solution, the increase of power input can make the mixing time decreasing more obviously in the CMC solution. The quantitative correlations for both syrup and CMC solutions were established to calculate the power draw and the mixing time of four coaxial mixers.

  4. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    2000-04-10

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

  5. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    2000-03-06

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

  6. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    2000-01-31

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

  7. Calculation of some power indices of mixers with blades of complex geometrical form

    Directory of Open Access Journals (Sweden)

    K.K. Miroshnychenko

    2012-04-01

    Full Text Available The calculation of some power indices of mixers with the use of blades of complex geometrical form, providing the effective mode of interfusion of fibrous concrete compositions, is offered.

  8. Unfolded Frequency Response and Model of a Multi-Tap Direct Sampling Mixer

    Institute of Scientific and Technical Information of China (English)

    PAN Yun; GE Ning; DONG Zaiwang

    2008-01-01

    A transform method was used to model a discrete time multi-tap direct sampling mixer. The method transforms the mixed filtering and down.sampling stages to separate cascade filtering and sampling stages to determine the unfolded frequency response which shows the anti-aliasing ability of the mixer. The transformation can also be applied to other mixed signal and multi-rate receiver systems to analyze their unfolded frequency responses. The transformed system architecture was used to calculate the unfolded frequency response of the multi-tap direct sampling mixer and compared with the mixer model without noise in the ad-vanced design system 2005A environment to further evaluate the frequency response. The simulations show that the -3 dB bandwidth is 3.0 MHz and the voltage gain is attenuated by 1.5 dB within a 1-MHz baseband bandwidth.

  9. Development of An Improved Sub-harmonic Mixer Based on Planar Schottky Diodes at 94 Ghz

    Directory of Open Access Journals (Sweden)

    Fuqun Zhong

    2012-07-01

    Full Text Available Accompany with the rapid development of millimeter-wave science and technology, subharmonically pumped mixers has received more and more attention. In this study, a balanced sub-harmonic fixtuned mixer is designed based on combination of linear/nonlinear circuit simulation. It is realized based on rogers substrate process to minimize the cost and simplify the assembly. The mixer works in the 91-98 GHz band with SSB conversion loss 8~11 dB when pumped with 6 mW of local oscillator power and minimum SSB conversion loss of 8 dB is measured at 93 GHz. The measured performance of this mixer is sufficient and robust for the foreseen applications.

  10. Low-noise integrated balanced SIS mixer for 787-950 GHz

    Science.gov (United States)

    Fujii, Yasunori; Kojima, Takafumi; Gonzalez, Alvaro; Asayama, Shin'ichiro; Kroug, Matthias; Kaneko, Keiko; Ogawa, Hideo; Uzawa, Yoshinori

    2017-02-01

    We developed a low-noise, compact, balanced superconductor-insulator-superconductor (SIS) mixer, operating in the 787-950 GHz radio frequency range. A waveguide mixer block was designed to integrate all the key components, such as a radio frequency (RF) 90° hybrid coupler, two identical SIS mixer chips, bias-tees, and an intermediate frequency power-combiner. The RF waveguide 90° hybrid coupler consists of branch lines with wide slots optimized by numerical simulation, for ease of fabrication. The balanced mixer was installed into a cartridge type receiver, originally developed for the Atacama Large Millimeter/submillimeter Array Band 10 (787-950 GHz). The receiver demonstrated double sideband noise temperatures of approximately 200 K for most of the band, without any correction for loss in front of the receiver. The local oscillator noise rejection ratio was estimated to be more than 15 dB within the measured frequency range.

  11. Introduction of a chaotic dough mixer, part A: mathematical modeling and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinalipour, Seyed Mostafa; Tohidi, Amir; Shokrpour, Mahnaz; Nouri, Norouz Mohammad [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-15

    The motivation of this work is to propose a special dough mixer with chaotic advection to take advantage of high performance mixing in chaotic mixers and to develop typical dough mixers. In order to prevent common difficulties encountered due to the dynamic mesh, a mathematical model was employed based on neglecting the transient term of the momentum equation using conceptual features from creeping flow. Then, the numerical simulation was performed using the bird Carreau dough model of Dhanasekharan. The mathematical model was further developed to complete the numerical procedure in order to find the required material point trajectories for assessing the presence of chaotic advection in the proposed mixer. In this approach, Lyapunov exponents were also calculated which quantify the exponential divergence of the initially close state-space trajectories and identify chaotic behavior of the system as well. The results indicated that the flow field was a combination of both chaotic and non-chaotic zones.

  12. 自振脉冲磨料水射流切割性能影响因素及矿用安全性分析%Analysis on Influence factors of Cutting performance of Self- vibration Pulse Abrasive Water- jet and Its Application Safety in Mine

    Institute of Scientific and Technical Information of China (English)

    王晖; 何学秋; 聂百胜; 李海龙

    2012-01-01

    The influences of some factors on the cutting perform- ance of self - vibration pulse abrasive water - jet were experi- mentally investigated. The influences of stand - off distance, cutting times, the lateral moving velocity of jet and system pres- sure on cutting performance of the jet were determined. Analyti- cal demonstration of the safety of self - vibration pulse abrasive water- jet used for the cutting in coal mine was performed. The conclusion was drawn for this method, that the temperature caused by cutting is low and the lasting time of sparks is ex- tremely short, so it is safe enough not to cause the gas explo- sion. It is believed that the water- jet cutting technique is safe and feasible if used in the coal mine.%通过实验对自振脉冲磨料水射流切割过程中部分因素对切割性能的影响关系进行了研究,得出了靶距、切割次数、横移速度、系统压力同切割性能的影响关系,并对自振脉冲磨料水射流用于矿井切割的安全性进行了分析论证,得出该方法切割温度低、火花持续时间极短,不会引起瓦斯爆炸的结论,表明该切割方式用于井下安全切割是可行的。

  13. A proposal for an ergonomic redesign for a mixer Mondial B-02.

    Science.gov (United States)

    Silva Junior, Adilson J; Barros, Bruno

    2012-01-01

    This research aimed to redesign an appliance based on the biomechanical aspects in applied ergonomics. The product chosen for analysis was the household mixer, it is readily found in most homes of several families. The study enabled the identification of several potential risks and proposed biomechanical ergonomic solutions for each. Finally, it was possible to redesign the handle of the mixer, making it suitable form and human use.

  14. Electrolytic Partitioning of Uranium and Plutonium Based on a New Type of Electrolytic Mixer-Settler

    Institute of Scientific and Technical Information of China (English)

    YUAN; Zhong-wei; YAN; Tai-hong; ZHENG; Wei-fang; ZUO; Chen; LI; Hui-rong

    2012-01-01

    <正>A new type of electroreduction mixer-settler for the partitioning of uranium and plutonium during the Purex process, which is featured with E-shaped cathodes and U-shaped anodes in settling chamber, is designed and the operational results achieved using this equipment are presented. The results show that this new type of mixer-settler has excellent separation performance. The flow rate of organic feed solution

  15. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.

    Science.gov (United States)

    Kawasaki, Shin-ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2010-01-01

    Novel micro swirl mixers were developed to synthesize nanoparticles, and the effect of their mixing performance on the characteristics of the synthesized nanoparticles was determined. The results were compared with those obtained using simple T-shaped mixers under the same reaction conditions. The synthesis of NiO, whose characteristics depend on the mixing performance of the mixer, was chosen as a model reaction. Initial investigations highlighted that the average particle size decreased from 32 to 23 to 20 nm as the inner diameter of the swirl mixers was decreased from 3.2 mm (Swirl mixer, SM-3.2) to 0.8 mm (Micro swirl mixer, MSM-0.8) to 0.5 mm (Micro swirl mixer, MSM-0.5), respectively. On the other hand, a similar decrease in the average particle size from 34 to 20 nm was observed with a decrease in the inner diameter of the T-shaped mixers from 1.3 mm (Tee union, T-1.3) to 0.3 mm (Micro tee union, T-0.3), respectively. Further, narrow particle size distributions were observed with a decrease in the inner diameter of each mixer. Furthermore, a computational fluid dynamics (CFD) simulation indicated an excellent mixing mechanism, which contributed to the improvement in the heating rate and the formation of nanoparticles of smaller size with a narrow particle size distribution. The result presented here indicates that the micro swirl mixers produce high-quality metal oxide nanoparticles. The size of the obtained particles with improved size distributions was comparable to that of the particles obtained using the T-shaped mixers, although the inner diameter of the swirl mixers was larger. Therefore, preliminary evidence suggests that the swirl flow mixers have the ability to produce rapid and homogeneous fluid mixing, thus controlling the particle size.

  16. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  17. Comparison of 6 Diode and 6 Transistor Mixers Based on Analysis and Measurement

    Directory of Open Access Journals (Sweden)

    J. Ladvánszky

    2016-01-01

    Full Text Available Our goal is to overview semiconductor mixers designed for good large signal performance. Twelve different mixers were compared utilizing pn diodes, bipolar transistors, and/or junction field effect transistors. The main aspect of comparison is the third-order intercept point (IP3, and both circuit analysis and measurement results have been considered. IP3 has been analyzed by the program AWR (NI AWR Design Environment and measured by two-tone test (Keysight Technologies. We provide three ways of improvement of large signal performance: application of a diplexer at the RF port, reduction of DC currents, and exploiting a region of RF input power with infinite IP3. In addition to that, our contributions are several modifications of existing mixers and a new mixer circuit (as illustrated in the figures. It is widely believed that the slope of the third-order intermodulation product versus input power is always greater than that of the first-order product. However, measurement and analysis revealed (as illustrated in the figures that the two lines may be parallel over a broad range of input power, thus resulting in infinite IP3. Mixer knowledge may be useful for a wide range of readers because almost every radio contains at least one mixer.

  18. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; Rodriguez, Bryan

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  19. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    Science.gov (United States)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  20. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.

    Science.gov (United States)

    Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin

    2016-01-01

    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.

  1. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  2. On the scaling of small-scale jet noise to large scale

    Science.gov (United States)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  3. Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

    Science.gov (United States)

    Breisacher, Kevin; Moder, Jeffrey

    2010-01-01

    For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The

  4. In-process inventory estimation for pulsed columns and mixer-settlers

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, D.D.; Burkhart, L.E.; Beyerlein, A.L.

    1980-01-01

    Nuclear materials accounting and control in fuels reprocessing plants can be improved by near-real-time estimation of the nuclear materials inventory in solvent-extraction contactors. Techniques are being developed for the estimation of the in-process inventory in contactors. These techniques are derived from recent developments in chemical modeling of contactor systems, on-line measurements for materials accounting and control of the Purex process, and computer-based data acquisition and analysis methods.

  5. Characterization of cassava starch processed in an internal mixer

    Directory of Open Access Journals (Sweden)

    Marcia Cristina da Silva

    2013-01-01

    Full Text Available An internal mixer connected to a torque rheometer was used to investigate the effect of moisture content (13.2 to 46.8 g.100g- 1, rotation speed (13.2 to 46.8 rpm and processing temperature (53.2 to 86.8 °C, applying a factorial central composite design, on the specific mechanical energy (SME, pasting viscosity and crystallinity of cassava starch. Torque values were highly significant for the three variables, showing decrease with increasing moisture, temperature and rpm. The highest cold viscosity (CV was obtained at 13.18 g.100g- 1 moisture, 86.87 °C and 30 rpm due to increased rupture of starch granules caused by processing at lower moisture condition. Peak viscosity (PV values were higher than CV values which indicated that the processing was not able to destroy completely the molecular integrity of the starch granules. Smaller setback (SB at high temperature and rpm and low moisture showed possible starch depolymerization causing loss of recrystallization capacity. Processing under low moisture content resulted in reduction of crystallinity. The results showed that the effect of moisture was more pronounced than rotation speed and processing temperature of cassava starch.

  6. Laser-induced break-up of water jet waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Couty, P.; Hoffmann, P. [EPFL/STI/IOA/Advanced Photonics Laboratory, Lausanne BM, 1015, Lausanne (Switzerland); Spiegel, A.; Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Ugurtas, B.I. [EPFL/STI/IMHEF/Laboratory Fluid Mechanics, Lausanne, 1015, Lausanne (Switzerland)

    2004-06-01

    In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser ({lambda}=532 nm). The jet diameter was 48 {mu}m and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets. (orig.)

  7. Laser Created Relativistic Positron Jets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  8. Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3

    Science.gov (United States)

    Tseng, Wei-Kuo, Jr.; Lin, Lung; Sung, Wang-Chou; Chen, Shu-Hui; Lee, Gwo-Bin

    2006-03-01

    This study presents an active method for micro-mixers using surface acoustic waves (SAW) to rapidly mix co-fluent fluids. Mixing is challenging work in microfluidic systems due to their low-Reynolds-number flow conditions. SAW devices were fabricated on 128° Y-cut lithium niobate (LiNbO3). The micro-mixers are these piezoelectric actuators integrated with polydimethylsiloxane microchannels. The effects of the applied voltages on interdigitated transducers (IDTs) and two layouts, parallel- and transversal-type, of micro-mixers on the mixing performance were experimentally explored. The experimental results revealed that the parallel-type mixer achieved a higher mixing effect. Meanwhile, a higher applied voltage on the IDTs led to a significant improvement in the mixing performance of the active micro-mixer. Typical temperature effects associated with the applied voltages on the IDTs were also investigated. Finally, a digestion reaction between a protein (hemoglobin) and an enzyme (trypsin) was performed to verify the capability of the micro-mixers. The protein-enzyme mixture was qualitatively analyzed using mass spectrometry. Using these SAW-based mixers, the amount of digested peptides increased. Additionally, the protein-enzyme mixture was also quantitatively analyzed using high-performance liquid chromatography. Experimental data showed that the amount of digested peptides increased 21.1% using the active mixer. Therefore, the developed micro-mixers can be applied in microfluidic systems for improving mixing efficiency and thus enhancing the bio-reaction.

  9. Design of a broadband passive X-band double-balanced mixer in SiGe HBT technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    In this paper, a passive double-balanced mixer in SiGe HBT technology is presented. Owing to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode-connected HBTs. The mixer uses lumped element Marchand baluns on both the local oscillator (LO) and the ......In this paper, a passive double-balanced mixer in SiGe HBT technology is presented. Owing to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode-connected HBTs. The mixer uses lumped element Marchand baluns on both the local oscillator (LO...

  10. Development of 1.5 THz waveguide NbTiN superconducting hot electron bolometer mixers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Ling [College of Information Science and Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu (China); Shiba, Shoichi; Shiino, Tatsuya; Shimbo, Ken; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Irimajiri, Yoshihisa [National Institute of Information and Communications Technology (Japan); Ananthasubramanian, P G [Raman Research Institute, Bangalore (India); Maezawa, Hiroyuki, E-mail: lingjiang616@hotmail.co [Solar-Terrestrial Environment Laboratory, Nagoya University (Japan)

    2010-04-15

    We present a characterization of a 1.5 THz waveguide niobium titanium nitride (NbTiN) superconducting hot electron bolometer (HEB) mixer which can be pumped by a commercial solid state tunable local oscillator (LO) source. The NbTiN HEB mixer is made from a 12 nm thick NbTiN thin film deposited on a quartz substrate at room temperature. A gold electrode is formed in situ on the NbTiN thin film without breaking vacuum to ensure good contact. The uncorrected DSB receiver noise temperature is measured to be 1700 K at 1.5 THz, whereas the mixer noise temperature is derived to be 1000 K after corrections for losses of the input optics and the intermediate frequency (IF) amplifier chain. The required LO power absorbed in the HEB mixer is evaluated to be 340 nW by using an isothermal technique. The IF gain bandwidth is supposed to be about 1.3 GHz or higher. The present results show that good performance can be obtained at 1.5 THz even with a relatively thick NbTiN film (12 nm), as in the case of 0.8 THz. In order to investigate the cooling mechanism of our HEB mixers, we have conducted performance measurements for a few HEB mixers with different microbridge sizes both at 1.5 and 0.8 THz. The noise performance of the NbTiN HEB mixers is found to depend on the length of the NbTiN microbridge. The shorter the microbridge is, the lower the receiver noise temperature is. This may imply a contribution of the diffusion cooling in addition to the phonon cooling.

  11. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  12. A 490 GHz planar circuit balanced Nb-Al$_\\mathbf{2}$O$_{\\mathbf{3}}$-Nb quasiparticle mixer for radio astronomy: Application to quantitative local oscillator noise determination

    CERN Document Server

    Westig, M P; Jacobs, K; Stutzki, J; Schultz, M; Schomacker, F; Honingh, C E

    2012-01-01

    This article presents a heterodyne experiment which uses a 380-520 GHz planar circuit balanced Nb-$\\mathrm{Al_2O_3}$-Nb superconductor-insulator-superconductor (SIS) quasiparticle mixer with 4-8 GHz instantaneous intermediate frequency (IF) bandwidth to quantitatively determine local oscillator (LO) noise. A balanced mixer is a unique tool to separate noise at the mixer's LO port from other noise sources. This is not possible in single-ended mixers. The antisymmetric IV characteristic of a SIS mixer further helps to simplify the measurements. The double-sideband receiver sensitivity of the balanced mixer is 2-4 times the quantum noise limit $h\

  13. 脉冲鼓泡床内鼓泡和颗粒混合特性的CFD-DEM 数值模拟%CFD-DEM simulation of bubbling and particle mixing properties in pulsed jet fluidized bed

    Institute of Scientific and Technical Information of China (English)

    任立波; 尚立宝; 闫日雄; 何海澜; 赵红霞; 韩吉田

    2015-01-01

    基于 FLUENT 软件信息传递模式的 MPI(message passing interface)并行计算平台,通过用户自定义函数(us-er-defined functions,UDFs)文件发展一种拟三维颗粒的计算流体力学(computational fluid dynamics,CFD)-离散单元法(discrete element method,DEM)耦合并行算法。采用该算法数值模拟了脉冲鼓泡床内气固两相流动,揭示了气相鼓泡特性和颗粒混合机制。数值模拟结果表明:该算法具有随计算节点数增加的良好扩展性能和加速性能;在鼓泡过程中,主流两侧的小尺度气流涡逐渐发展为双主涡;单气泡通过床层后,颗粒混合仅局限于射流触及区域;数值模拟结果与相关试验和数值模拟结果吻合较好,表明该并行算法能够较好的模拟稠密颗粒气固两相流中鼓泡和颗粒混合特性,为其在大规模并行集群上的应用奠定基础。%Based on the MPI (Message Passing Interface)platform of FLUENT software,the parallel simulation tech-nique for pseudo three-dimension computational fluid dynamics-discrete element method (CFD-DEM)coupling model was developed through the user-defined functions (UDFs).Numerical simulation of the gas-solid flow in pulsed jet flu-idized bed was conducted by the developed parallel CFD-DEM coupling model,and the bubbling properties for the gas phase and particle mixing properties were revealed.Simulation results showed that the developed parallel CFD-DEM coupling model could have good scalability and speeded-up performance with increase in the number of computing nodes.Small-scale vortices on both sides of the mainstream gradually evolved into two main vortices in the bubbling processes.The particle mixing only occurred in the jet-influenced region after a single bubble had passed through the bed.The simulation results accorded well with the related experimental and simulation results,which showed that this model could well simulate the bubbling and

  14. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  15. The Effect of Inertia on the Flow and Mixing Characteristics of a Chaotic Serpentine Mixer

    Directory of Open Access Journals (Sweden)

    Tae Gon Kang

    2014-11-01

    Full Text Available As an extension of our previous study, the flow and mixing characteristics of a serpentine mixer in non-creeping flow conditions are investigated numerically. A periodic velocity field is obtained for each spatially periodic channel with the Reynolds number (Re ranging from 0.1 to 70 and the channel aspect ratio from 0.25 to one. The flow kinematics is visualized by plotting the manifold of the deforming interface between two fluids. The progress of mixing affected by the Reynolds number and the channel geometry is characterized by a measure of mixing, the intensity of segregation, calculated using the concentration distribution. A mixer with a lower aspect ratio, which is a poor mixer in the creeping flow regime, turns out to be an efficient one above a threshold value of the Reynolds number, Re = 50. This is due to the combined effect of the enhanced rotational motion of fluid particles and back flows near the bends of the channel driven by inertia. As for a mixer with a higher aspect ratio, the intensity of segregation has its maximum around Re = 30, implying that inertia does not always have a positive influence on mixing in this mixer.

  16. Folded down-conversion mixer for a 60 GHz receiver architecture in 65-nm CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Najam Muhammad AMIN; Zhi-gong WANG‡; Zhi-qun LI

    2014-01-01

    We present the design of a folded down-conversion mixer which is incorporated at the final down-conversion stage of a 60 GHz receiver. The mixer employs an ac-coupled current reuse transconductance stage. It performs well under low supply voltages, and is less sensitive to temperature variations and process spread. The mixer operates at an input radio frequency (RF) band ranging from 10.25 to 13.75 GHz, with a fixed local oscillator (LO) frequency of 12 GHz, which down-converts the RF band to an intermediate frequency (IF) band ranging from dc to 1.75 GHz. The mixer is designed in a 65 nm low power (LP) CMOS process with an active chip area of only 0.0179 mm2. At a nominal supply voltage of 1.2 V and an IF of 10 MHz, a maximum voltage conversion gain (VCG) of 9.8 dB, a double sideband noise figure (DSB-NF) of 11.6 dB, and a linearity in terms of input 1 dB compression point (Pin,1dB) of−13 dBm are measured. The mixer draws a current of 5 mA from a 1.2 V supply dissipating a power of only 6 mW.

  17. Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2002-01-29

    Russian pulsating mixer pump (PMP) technology was identified in FY 1996 during technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a technology that could be implemented in tank waste retrieval operations in the United States. The PMP is basically a jet mixer powered by a pressure/vacuum supply system. A prototype PMP was provided by the Russian Mining and Chemical Combine and evaluated as a potential retrieval tool in FY 1997 at Pacific Northwest National Laboratory (PNNL). Based on this evaluation, Oak Ridge National Laboratory (ORNL) and DOE staff determined that a modified PMP would meet project needs for bulk mobilization of sludge from one or more of the Gunite and Associated Tanks (GAAT) at ORNL. In FY 1998, PMP technology was selected for deployment in one of the GAAT to mobilize settled solids. Deployment of the PMP was expected to reduce operation and maintenance costs required to utilize more expensive retrieval systems. The following series of cold tests and inspections were conducted on one of the three PMP units provided to verify the acceptability and readiness of the mixing system for operation in the GAATs at ORNL: (1) Inspections and measurements designed to evaluate the integrity of the equipment: Fabrication shop inspections, Equipment inspections, Vibration/oscillation measurements, Hydrostatic pressure tests. (2) Functionality of the system components: Tank riser interface functionality, Decontamination spray ring (DSR) functionality, Valves, actuator, sensors, and control system functionality, Support fixture tests; and Contamination control assessment. (3) Mixing and operational performance of the PMP system: DSR performance, PMP debris tolerance, PMP performance with water only, PMP cleaning radius determination, and PMP performance with sludge surrogates. The results from these tests indicate

  18. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  19. Drug residues recovered in feed after various feedlot mixer truck cleanout procedures.

    Science.gov (United States)

    Van Donkersgoed, Joyce; Sit, Dan; Gibbons, Nicole; Ramogida, Caterina; Hendrick, Steve

    2010-01-01

    A study was conducted to determine the effectiveness of two methods of equipment cleanout, sequencing or flushing, for reducing drug carryover in feedlot mixer trucks. Feed samples were collected from total mixed rations before and after various feed mixer equipment cleanout procedures. Medicated rations contained either 11 ppm of tylosin or 166 or 331 ppm of chlortetracycline. There were no differences between sequencing and flushing or between flushing with dry barley and flushing with barley silage in the median proportion of drug recovered in the next ration. A larger drug reduction was achieved using flush material at a volume of 10 versus 5% of the mixer capacity and mixing the flush material for 3 versus 4 min. Regardless of the drug or prescription concentrations in the total mixed rations or the equipment cleanout procedure used, concentrations of chlortetracycline and tylosin recovered were very low.

  20. A WIDE BAND UP-CONVERSION MIXER FOR CABLE TELEVISION TUNER

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Shi Yin; Dai Fa Foster

    2006-01-01

    An up-conversion mixer implemented in a 0.35μm SiGe BiCMOS technology for a double conversion cable TV tuner is described. The mixer converts the 100MHz to 1000MHz band to the Intermediate Frequency of 1GHz above. The mixer meets the linearity and noise figure requirements for a TV tuner. The noise figure (IF) of 19.2~17.5dB, 1dB compression of 12.1dBm, and gain of-1~0.7dB in the 900MHz band are achieved at a supply voltage of 5V. The power consumption is 47mW.

  1. Development of the ALMA-North America Sideband-Separating SIS Mixers

    CERN Document Server

    Kerr, Anthony R; Claude, Stéphane M X; Dindo, Philip; Lichtenberger, Arthur W; Lauria, Eugene F

    2013-01-01

    As the Atacama Large Millimeter/submillimeter Array (ALMA) nears completion, 73 dual-polarization receivers have been delivered for each of Bands 3 (84-116 GHz) and 6 (211-275 GHz). The receivers use sideband-separating superconducting Nb/Al-AlOx/Nb tunnel-junction (SIS) mixers, developed for ALMA to suppress atmospheric noise in the image band. The mixers were designed taking into account dynamic range, input return loss, and signal-to-image conversion (which can be significant in SIS mixers). Typical SSB receiver noise temperatures in Bands 3 and 6 are 30 K and 60 K, resp., and the image rejection is typically 15 dB.

  2. NbN/MgO/NbN SIS tunnel junctions for submm wave mixers

    Science.gov (United States)

    Stern, J. A.; Hunt, B. D.; Leduc, H. G.; Judas, A.; Mcgrath, W. R.; Cypher, S. R.; Khanna, S. K.

    1989-01-01

    The authors report on the fabrication and testing of all-refractory NbN/MgO/NbN SIS (superconductor-insulator-superconductor) tunnel junctions for use as high-frequency mixers. Progress in the development of techniques for the fabrication of submicron-area tunnel junctions is described. Junction structures which have been investigated include mesa, crossline, and edge geometries. Using reactive sputtering techniques, NbN tunnel junctions with critical currents in excess of 104 A/sq cm have been fabricated with Vm values as high as 65 mV and areas down to 0.1 sq micron. Specific capacitance measurements on NbN/MgO/NbN mesa-type tunnel junctions give values in the range 60-90 fF/sq micron. These SIS tunnel junctions have been integrated with antennas and coupling structures for mixer tests in a waveguide receiver at 207 GHz. Preliminary mixer results are reported.

  3. Fabrication of high-Tc superconducting hot electron bolometers for terahertz mixer applications

    Science.gov (United States)

    Villegier, Jean-Claude; Degardin, Annick F.; Guillet, Bruno; Houze, Frederic; Kreisler, Alain J.; Chaubet, Michel

    2005-03-01

    Superconducting Hot Electron Bolometer (HEB) mixers are a competitive alternative to Schottky diode mixers or other conventional superconducting receiver technologies in the terahertz frequency range because of their ultrawide bandwidth (from millimeter waves to the visible), high conversion gain, and low intrinsic noise level, even at 77 K. A new technological process has been developed to realize HEB mixers based on high temperature superconducting materials, using 15 to 40 nm thick layers of YBa2Cu3O7-δ (YBCO), sputtered on MgO (100) substrates by hollow cathode magnetron sputtering. Critical temperature values of YBCO films were found in the 85 to 91 K range. Sub-micron HEB bridges (0.8 μm x 0.8 μm) were obtained by combining electronic and UV lithography followed by selective etching techniques. Realization of YBCO HEB coupling to planar integrated gold antennas was also considered.

  4. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  5. Linear-in-dB Variable-Gain Downconversion Mixer for Zero Intermediate Frequency Receivers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In-phase/quadrature (I/Q) mismatch is a key problem in zero intermediate frequency (ZIF) receiver architectures. Although integration and careful layout can alleviate I/Q mismatch, circuit and system level calibrations are also needed due to process variations and variable operating conditions. The amplitude imbalance between I/Q channels was calibrated using a modified R-2R ladder to achieve fine linear-in-dB variable gain. A downconversion mixer working in the 2.4-GHz band was developed for a wireless local area network (WLAN) ZIF receiver using 0.25-μm complementary metal-oxide semiconductor (CMOS). The two-stage mixer configuration relaxes the tradeoff between noise and linearity. Experimental results verify the fine linear-in-dB variable conversion gain of the mixer, which can also be used as part of an automatic gain control (AGC) loop.

  6. Sensitivity analysis and study of the mixing uniformity of a microfluidic mixer

    CERN Document Server

    Ivorra, Benjamin; Ramos, Ángel M; Santiago, Juan G

    2015-01-01

    We consider a microfluidic mixer based on hydrodynamic focusing, which is used to initiate the folding process of individual proteins. The folding process is initiated by quickly diluting a local denaturant concentration, and we define mixing time as the time advecting proteins experience a specified to achieve a local drop in denaturant concentration. In previous work, we presented a minimization of mixing time which considered optimal geometry and flow conditions, and achieved a design with a predicted mixing time of 0.10 $\\mu$s. The aim of the current paper is twofold. First, we explore the sensitivity of mixing time to key geometric and flow parameters. In particular, we study the angle between inlets, the shape of the channel intersections, channel widths, mixer depth, mixer symmetry, inlet velocities, working fluid physical properties, and denaturant concentration thresholds. Second, we analyze the uniformity of mixing times as a function of inlet flow streamlines. We find the shape of the intersection,...

  7. CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer

    Directory of Open Access Journals (Sweden)

    T.Y. Kim

    2016-08-01

    Full Text Available In the present study, a computational fluid dynamics (CFD simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed.

  8. Design and simulation of a mixer and phase difference measuring circuitry for laser range finding systems

    Science.gov (United States)

    Liu, Guili; Wang, Yanlin; Liu, Gang

    2006-11-01

    This article focuses on the circuit implementation of a mixer and phase difference measurement for laser range finding systems. It will introduce simply the principle of the laser range finding system, which is the basis of the electronic circuitry design. The modulated laser lights of two different frequencies are mixed and the phase difference is detected in order to measure the range. The method of measuring the range is to use the mixer and the phase difference detector. The new and high precision IC that has a high quality makes the circuit simple and reliable. The circuit of the mixer and the phase difference detector for laser range finding systems is designed using AD608 and AD8302 chips.

  9. A 0.18μm CMOS Gilbert low noise mixer with noise cancellation

    Institute of Scientific and Technical Information of China (English)

    孙景业; 黄鲁; 袁海泉; 林福江

    2012-01-01

    This paper presents a broadband Gilbert low noise mixer implemented with noise cancellation technique operating between 10 MHz and 0.9 GHz.The Gilbert mixer is known for its perfect port isolation and bad noise performance.The noise cancellation technique of LNA can be applied here to have a better NF.The chip is implemented in SMIC 0.18μm CMOS technology.Measurement shows that the proposed low noise mixer has a 13.7-19.5 dB voltage gain from 10 MHz to 0.9 GHz,an average noise figure of 5 dB and a minimum value of 4.3 dB.The core area is 0.6 × 0.45 mm2.

  10. The Quality of Mixing in Mixers with Bars and Radial and Longitudinal Scrapers

    Directory of Open Access Journals (Sweden)

    Andrievschi Serghei

    2013-07-01

    Full Text Available The process of division - combining of streams in mixers with bars and radial and longitudinal scrapers was studied. The number of unique streams that are formed after passing each row of longitudinal bars and the total amount of them were determined. This is demonstrated by migration of the particles along the mixer from left to right and vice versa, from the center of the drum towards the periphery and vice versa. In the process of mixing the particles in the center gain normal distribution and the ones on the side - sectioned normal distribution. The sum of normal distribution with the sectioned normal distribution leads to an equable distribution along the drum and transverse planes and to a homogeneous mixing of the components. The quality of mixing had been investigated and an optimal mixing regime for the mixer with radial and longitudinal bars and scrapers was proposed.

  11. Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Huynh, Chris K; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2013-07-29

    Noise performance of dual-pump, multi-sideband parametric mixer operated in phase-insensitive mode is investigated theoretically and experimentally. It is shown that, in case when a large number of multicasting idlers are generated, the noise performance is strictly dictated by the dispersion characteristics of the mixer. We find that the sideband noise performance is significantly degraded in anomalous dispersion region permitting nonlinear noise amplification. In contrast, in normal dispersion region, the noise performance converges to the level of four-sideband parametric process, rather than deteriorates with increased sideband creation. Low noise generation mandates precise dispersion-induced phase mismatch among pump and sideband waves in order to control the noise coupling. We measure the noise performance improvement for a many-sideband, multi-stage mixer by incorporating new design technique.

  12. Investigation of LO-leakage cancellation and DC-offset influence on flicker-noise in X-band mixers

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus; Johansen, Tom; Tamborg, Kjeld

    2012-01-01

    This paper describes an investigation on the influences in 1/f noise of LO-leakage and DC-offset cancellation for X-band mixers. Conditions for LO-leakage cancellation and zero DC-offset is derived. Measurements on a double balanced diode mixer shows an improvement in noise figure from 14.3dB to 12...

  13. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor;

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor...

  14. Effect of mixing time and speed on experimental baking and dough testing with a 200g pin-mixer

    Science.gov (United States)

    Under mixing or over mixing the dough results in varied experimental loaf volumes. Bread preparation requires a trained baker to evaluate dough development and determine stop points of mixer. Instrumentation and electronic control of the dough mixer would allow for automatic mixing. This study us...

  15. PREPARATION OF CEMENT MORTAR REINFORCED BY MODIFIED MICROFIBER IN A TURBULENT MIXER

    Directory of Open Access Journals (Sweden)

    Belova Tat’yana Konstantinovna

    2016-03-01

    Full Text Available The improvement of the structure of cement mortars on micro- and nanolevels by means of disperse reinforcement by modified microfibers promotes the considerable improvement of operational characteristics of the designs made on their basis. However, the absence of the developed technology of preparing the cement mortars reinforced by the modified microfiber providing the uniform distribution of the microfibres in volume of a composite constrains the widespread introduction of such solutions in the construction practice. The results of the researches of the technological parameters of preparing the microfiber reinforced cement mortars in the turbulent mixer are presented in article. The results of the production experiment on determining the bending durability are reflected as well as the variation coefficient of the durability of the reinforced samples prepared by means of the turbulent mixer. The results of the influence of the water-cement relation of the mortar mix and influence of the time of mixing the components in the turbulent mixer on change of mobility of the mix and strength characteristics of the hardened solution are presented. The results of the tests indicated the efficiency of preparing cement mortar reinforced by modified microfiber in the turbulent mixer. The reinforced samples are characterized by the increased bending durability and high uniformity of the strength characteristics. In case of turbulent mixing of the components of mortar mix its mobility increases from 5 to 25% in comparison with the mix prepared manually. The time of mixing the components in the turbulent mixer has an impact on the strength characteristics of the fiber reinforced solution. The optimum time of mixing the components contributes to a certain water-cement relation of the mortar mix. Therefore, the preparation of the cement mortar reinforced by the modified microfiber in the turbulent mixer is characterized by high efficiency and productivity, the

  16. AQUA-SHEAR Mixer test project: DOE Invention No. 522. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The AQUA-SHEAR Mixer is an instantaneous in-line continuous static mixer, with application for addition and mixing of solid powders, slurries, liquids, or gases to a flowing liquid. The liquid feed is divided into two equal streams directed through nozzles in end caps of the mixing chamber; the opposing liquid streams collide in the center of the mixing chamber, creating an intensely turbulent zone. Additives are introduced through a port above this zone, resulting in dispersion and mixing with the liquid feed. Mixing tests were conducted and results reported; proposed future tests and possible commercial applications are discussed. Figs, table.

  17. Capture of DNA in microfluidic channel using magnetic beads: increasing capture efficiency with integrated microfluidic mixer

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Dufva, Hans Martin; Hansen, Mikkel Fougt

    2007-01-01

    We have studied the hybridization of target DNA in solution with probe DNA on magnetic beads immobilized on the channel sidewalls in a magnetic bead separator. The hybridization is carried out under a liquid flow and is diffusion limited. Two systems are compared: one with a straight microfluidic...... channel and one with an integrated staggered herringbone mixer. Fluorescence microscopy studies show that the hybridization is much more efficient in the system with the integrated mixer. The results, which are discussed in terms of a simple model, are relevant for any diffusion-limited reaction taking...... place on the surface in a microfluidic system....

  18. Analysis and Design of Wide-Band SiGe HBT Active Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens

    2005-01-01

    performing frequency conversion of wide-band signals is discussed. The analysis is verified by computer simulations using a realistic high-frequency large-signal SiGe HBT model. An active mixer design based on the Gilbert cell topology modified for wide-band operation using emitter degenerated...... transconductance stage and shunt feedback load stage is discussed. Experimental results are given for an active mixer implemented in a 0.8-μm 35-GHz fT SiGe HBT BiCMOS process....

  19. A Low Power down Conversion CMOS Gilbert Mixer for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Pandram,

    2014-07-01

    Full Text Available In this paper a design of low power 2.4GHz (RF down conversion Gilbert Cell mixer, implemented in 0.18μm CMOS technology with 1.8V supply voltage is presented. The obtained result shows a conversion gain equal to 6.7dB and third order Input intercept point -1db, power consumption of 3.86mW at 1.8V supply voltage. The 50Ω matched impedance condition is applicable. Result shows a good potential of this CMOS mixer and justify its use for low-power wireless communications.

  20. Noise Behaviour of a THz Superconducting Hot-Electron Bolometer Mixer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; S. I. Svechnikov; Yu. B. Vachtomin; S. V. Antipov; B. M. Voronov; G. N. Gol'tsman; LI Ning; JIANG Ling; MIAO Wei; LIN Zheng-Hui; YAO Qi-Jun; SHI Sheng-Cai; CHEN Jian; WU Pei-Heng

    2007-01-01

    A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5-2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasioptical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.

  1. Transfer Characteristics in Mechanically Stirred AirliftLoop Reactors with or without Static Mixers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanically stirred internal loop airlift reactors equipped with or without static mixersare devised for intensification of gas-liquid mass transfer rate. The influences of superficial gas velocity,agitation or static mixers on gas hold-up, mixing time, liquid circulating velocity and volumetric masstransfer coefficient have been investigated with tap water andcarboxymethyl cellulose(CMC) aqueous solution. The experimentalresults indicate that mechanical agitation is more efficacious than static mixer in highly viscous mediafor improving mass transfer in airlift reactors. The empirical correlation of volumetric mass transfercoefficient with apparent viscosity, and energy consumption for mechanical agitation and aeration isdeveloped.

  2. Ultra-broadband Photonic Harmonic Mixer Based on Optical Comb Generation

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;

    2012-01-01

    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...

  3. Erratum to “Ultra-Broadband Photonic Harmonic Mixer Based on Optical Comb Generation”

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;

    2012-01-01

    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...

  4. Packaging design criteria, transfer and disposal of 102-AP mixer pump

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, R.F.

    1994-11-23

    A mixer pump installed in storage tank 241-AP-102 (102-AP) has failed. This pump is referred to as the 102-AP mixer pump (APMP). The APMP will be removed from 102-AP 1 and a new pump will be installed. The main purpose of the Packaging Design Criteria (PDC) is to establish criteria necessary to design and fabricate a shipping container for the transfer and storage of the APMP from 102-AP. The PDC will be used as a guide to develop a Safety Evaluation for Packaging (SEP).

  5. A User's Guide for the Differential Reduced Ejector/Mixer Analysis "DREA" Program. 1.0

    Science.gov (United States)

    DeChant, Lawrence J.; Nadell, Shari-Beth

    1999-01-01

    A system of analytical and numerical two-dimensional mixer/ejector nozzle models that require minimal empirical input has been developed and programmed for use in conceptual and preliminary design. This report contains a user's guide describing the operation of the computer code, DREA (Differential Reduced Ejector/mixer Analysis), that contains these mathematical models. This program is currently being adopted by the Propulsion Systems Analysis Office at the NASA Glenn Research Center. A brief summary of the DREA method is provided, followed by detailed descriptions of the program input and output files. Sample cases demonstrating the application of the program are presented.

  6. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  7. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  8. Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated...

  9. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse energy...

  10. Detonation Jet Engine. Part 2--Construction Features

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  11. Inclusive Jets in PHP

    Science.gov (United States)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  12. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    National Research Council Canada - National Science Library

    F Sohbatzadeh; M Bagheri; S Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed...

  13. Interaction of microwave radiation with an erosion plasma jet

    Science.gov (United States)

    Brovkin, V. G.; Pashchina, A. S.; Ryazanskiy, N. M.

    2016-09-01

    The interaction of high-power pulsed microwave radiation with a plasma jet formed by a discharge in an ablative capillary is studied. A significant influence of microwave radiation on the plasma jet flow is found. Depending on the intensity of the initial perturbation of the jet, different scenarios of its evolution downstream are possible: attenuation or amplification accompanied with the development of turbulence up to the disruption of the flow if a certain threshold of the energy action is exceeded. A significant influence of the plasma jet and its state on the spatial position of the microwave energy release zone is found.

  14. Piezoelectric actuator for pulsating jets

    Science.gov (United States)

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel

    2000-08-01

    Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.

  15. Enhancing mixing of particles by baffles in a rotating drum mixer

    Institute of Scientific and Technical Information of China (English)

    Maoqiang Jiang; Yongzhi Zhao; Gesi Liu; Jinyang Zheng

    2011-01-01

    Baffles with shape of “-” (single baffle), “+” (cross-baffles with four arms) and (baffles with 6 arms)are used to enhance the mixing of particles in a rotating drum mixer. A micro-dynamics study of mixing and segregation of a bi-disperse system of two particle sizes in the rotating drum with these three kinds of baffles is carried out using the discrete element method (DEM). The effect of the baffles on mixing, and the mechanisms of mixing enhancement by the baffles are discussed and analyzed. Simulation results show that in an unbaffled drum mixer, particle convection, particle diffusion, and size segregation of bidisperse particles, all play important roles in the mixing process; whereas size segregation will be largely restrained when the drum mixer has a baffle, regardless of its shape, and the degree of mixing is higher than that in an unbaffled drum mixer. The different mixing characteristics for “-” shaped baffle, “+” baffle,and baffle are revealed by the simulation results. For “+” or “*” style baffles, there is an optimal size of baffles for the mixing of particles, and the optimal mixing efficiency is higher than that for “-” baffle.

  16. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    Science.gov (United States)

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T.; Salama, Khaled Nabil

    2016-01-01

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices. PMID:27453767

  17. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.

    Science.gov (United States)

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T; Salama, Khaled Nabil

    2016-05-01

    This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  18. A reconfigurable passive mixer for multimode multistandard receivers in 0.18 μm CMOS

    Science.gov (United States)

    Xiangning, Fan; Jian, Tao; Kuan, Bao; Zhigong, Wang

    2016-08-01

    This paper presents a reconfigurable quadrature passive mixer for multimode multistandard receivers. By using controllable transconductor and transimpedance-amplifier stages, the voltage conversion gain of the mixer is reconfigured according to the requirement of the selected communication standard Other characteristics such as noises figure, linearity and power consumption are also reconfigured consequently. The design concept is verified by implementing a quadrature passive mixer in 0.18 μm CMOS technology. On wafer measurement results show that, with the input radio frequency ranges from 700 MHz to 2.3 GHz, the mixer achieves a controllable voltage conversion gain from 4 to 22 dB with a step size of 6 dB. The measured maximum IIP3 is 8.5 dBm and the minimum noise figure is 8.0 dB. The consumed current for a single branch (I or Q) ranges from 3.1 to 5.6 mA from a 1.8 V supply voltage. The chip occupies an area of 0.71 mm2 including pads. Project supported by the State Key Development Program for Basic Research of China (No. 2010CB327404).

  19. Using students' misconceptions of primary coloured lights to design a hands-on coloured light mixer

    Science.gov (United States)

    Nopparatjamjomras, Suchai; Chitaree, Ratchapak

    2009-06-01

    A surface mount typed multi-coloured Light-Emitting Diode (LED) is used as a light source for the hands-on coloured light mixer. The LED consists of red, green and blue tiny sources but the mixer is designed to have four switches corresponding to red, green, blue and yellow light. These colours correspond to students' misconceptions of primary coloured lights; they realize that the primary colours and the rules for lights mixing are the same as those of paints. To generate a yellow light, a microcontroller placed between four input switches and the LED operates both a red and green tiny sources. In addition, the microcontroller is employed to eliminate some combinations of coloured light mixing to simplify the experiment (basic mode) for non advanced students. If the mixer is used with more advanced students, a number of combinations will increase and students need more analytical skills to find out the primary coloured lights (the coloured lights that can not be produced by the mixing of any other coloured lights). Therefore, the mixer is able to use with more advanced and non advanced students depending on the program in the microcontroller and some modifications of the circuit. Furthermore, to introduce students an idea that other hues or shades can be generated by mixing of these three primary coloured lights of different intensities, a tuning circuit is integrated to vary an intensity of the green light source.

  20. Passive magnetic separator integrated with microfluidic mixer: Demonstration of enhanced capture efficiency

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Bruus, Henrik; Hansen, Mikkel Fougt

    2006-01-01

    is the steep decrease of the magnetic force on the beads as a function of their distance to the magnetic structures. Our idea is to integrate the magnetic separator with a microfluidic mixer to ensure that all beads are brought close to the magnetic structures. We have fabricated a magnetic separator...

  1. Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project

    Energy Technology Data Exchange (ETDEWEB)

    Leshikar, G.A.

    1995-06-16

    This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

  2. Geometric heat trapping in niobium superconductor-insulator-superconductor mixers due to niobium titanium nitride leads

    NARCIS (Netherlands)

    Leone, B; Jackson, BD; Gao, [No Value; Klapwijk, TM

    2000-01-01

    We analyze the current-voltage characteristics of a Nb superconductor-insulator-superconductor mixer with NbTiN leads to identify the heating processes in this device. We argue that the electron-electron interaction is much faster than the electron-phonon interaction, and show that the heat flow to

  3. CMOS upconversion mixer with filterless carrier feedthrough cancelation and output power tuning

    NARCIS (Netherlands)

    Sanchez Gaspariano, Luis Abraham; Annema, Anne-Johan; Muniz Montero, Carlos; Diaz Sanchez, Alejandro

    2014-01-01

    The synthesis, design and implementation of a CMOS upconversion mixer that both can adjust, by means of a DC voltage control, its output power and that cancels the carrier feedthrough is presented. Aiming at very low cost medical implant applications, a prototype of the architecture was implemented

  4. An InP HBT sub-harmonic mixer for E-band wireless communication

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2010-01-01

    This paper reports on a novel balanced HBT subharmonic mixer (SHM) for E-band wireless communication. An LO spiral type Marchand balun is integrated with the SHM. The SHM has been fabricated in a InP double heterojunction bipolar transistor (DHBT) circuit-oriented technology with fT /fmax = 180GHz...

  5. The Analysis and Design of a Dual-Band Self-Oscillating Mixer

    Directory of Open Access Journals (Sweden)

    Alishir Moradi Kordalivand

    2011-06-01

    Full Text Available Here, a self-oscillating mixer is experimentally demonstrated employing both the fundamental and harmonic signals generated by the oscillator sub-circuit in the mixing process. The resulting circuit is a dual-band down-converting mixer that can operate in the C-band, or in the X-band. The oscillator uses the active super harmonic coupling to enforce the quadrature relationship of the fundamental outputs. Either the fundamental outputs of the oscillator or the second harmonic oscillator output signals present at the common mode nodes are connected to the mixer via a set of complementary switches. The mixer achieves a conversion gain between 9–11.5 dB in both frequency bands. The third-order output intercept-point for the C-band and the X–band operations are 10.42 and 8.33 dBm, respectively. The circuit was designed and simulated in 0.18- CMOS technology by ADS2008.

  6. On the vorticity characteristics of lobe-forced mixer at different configurations

    NARCIS (Netherlands)

    mao, R.; Yu, S.C.M.; Zhou, T.; Chua, L.P.

    2009-01-01

    Lobe-forced mixer is one typical example of the passive flow controllers owing to its corrugated trailing edge. Besides the spanwise Kelvin–Helmholtz vortex shedding, streamwise vortices are also generated within its mixing layer. The geometrical configuration of the lobe significantly affects these

  7. Nanosizing of poorly water soluble compounds using rotation/revolution mixer.

    Science.gov (United States)

    Takatsuka, Takayuki; Endo, Tomoko; Jianguo, Yao; Yuminoki, Kayo; Hashimoto, Naofumi

    2009-10-01

    In this study, nanoparticles of various poorly water soluble compounds were prepared by wet milling that was carried out using a rotation/revolution mixer and zirconia balls. To be compared with Beads mill, rotation/revolution mixer has superior in very quick process (5 min) and needs very few amounts of zirconia balls (2.4 g) for pulverizing drugs to nanometer range. Phenytoin, indomethacin, nifedipine, danazol, and naproxen were selected as the standard poorly water soluble compounds. Various parameters of the rotation/revolution mixer were studied to decide the optimal pulverization conditions for the production of nanoparticles of the abovementioned compounds. The rotation/revolution speed, shape of the mixing vessel, amount of zirconia balls, and volume of the vehicle (methylcellulose solution) mainly affected the pulverization of the compounds. Using the mixer, phenytoin could be pulverized to nanoparticles within a few minutes. The particle size was confirmed by using a scanning electron microscope and a particle size analyzer. The crystallinity of the pulverized phenytoin particles was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). It was observed that the pulverized phenytoin particles retained their crystallinity, and amorphous phenytoin was not detected. Particles of other poorly water soluble compounds were also reduced to the nanometer range by using this method.

  8. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-06-27

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  9. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing...... on an Arlon 25N substrate to shield the sensitive noise measurement. Conversion loss measurements of both mixers is performed both for on-wafer and packaged versions. The experimental results shows that the Schottky diode mixer exhibits a 1/f noise corner frequency of 250 kHz, while the diode connected HBT...

  10. The Giant Jet

    Science.gov (United States)

    Neubert, T.; Chanrion, O.; Arnone, E.; Zanotti, F.; Cummer, S.; Li, J.; Füllekrug, M.; van der Velde, O.

    2012-04-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the longest electric discharges on our planet. The electric properties of jets, such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measurements. Here we present an analysis of the first gigantic jet that with certainty has a positive polarity. The jet region in the mesosphere was illuminated by an unusual sprite discharge generated by a positive cloud-to-ground lightning flash shortly after the onset of the jet. The sprite appeared with elements in a ring at ~40 km distance around the jet, the elements pointing curving away from the jet. This suggests that the field close the jet partially cancels the field driving the sprite. From a simple model of the event we conclude that a substantial portion of the positive cloud potential must be carried to ~50 km altitude, which is also consistent with the observed channel expansion and the electromagnetic radiation associated with the jet. It is further shown that blue jets are likely to substantially modify the free electron content in the lower ionosphere because of increased electron attachment driven by the jet electric field. The model further makes clear the relationship between jets, gigantic jets, and sprites. This is the first time that sprites are used for sounding the properties of the mesosphere. The observations presented here will allow evaluation of theories for jet and gigantic jet generation and of their influence on the atmosphere-ionosphere system.

  11. Overview of the JET results

    DEFF Research Database (Denmark)

    Romanelli, F.; Abhangi, M.; Abreu, P.

    2015-01-01

    Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice...... for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions...

  12. Application of Implicit Space Mapping in Aid of Design of Sub-harmonic Mixer with CMRC Filter

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2013-02-01

    Full Text Available In recent years, the CMRC filter has been an attractive candidate for use in mixer and frequency multiplier circuits to improve the performance due to its low-insertion loss, sharp rejection, shorter size and wider stop-band. However, complex structures, too much variables and inefficient design method hindered its widespread use. In this study, we report on the application of the implicit space mapping algorithm in design of CMRC filter to greatly improve the design efficiency. Finally, a mixer with CMRC filter is designed and fabricated based on Rogers substrate process. The measured performance of this mixer is sufficient for engineering applications.

  13. A SiGe BiCMOS double-balanced mixer with active balun for X-band Doppler radar

    OpenAIRE

    2015-01-01

    In this paper, we present an X-band doublebalanced mixer in SiGe BiCMOS technology. The mixer core consists of a LO Matched quad diode ring using diode-connected Heterojunction Bipolar Transistors (HBTs). The mixer is integrated with a low-noise, high-linearity active balun on the RF port and a miniaturized Marchand balun on the LO port. Experimental results shows a conversion gain of +4 dB at 10.5 GHz with an LO drive level of 15 dBm. The LO-IF and RF-IF isolation is better than 36 dB and 26...

  14. Experimental Characterization of the Plasma Synthetic Jet Actuator

    Science.gov (United States)

    Jin, Di; Li, Yinghong; Jia, Min; Song, Huimin; Cui, Wei; Sun, Quan; Li, Fanyu

    2013-10-01

    The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control.

  15. AZ-101 Mixer Pump Demonstration Data Acquisition System and Gamma Cart Data Acquisition Control System Software Configuration Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    WHITE, D.A.

    1999-12-29

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS).

  16. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    Science.gov (United States)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  17. A 2-GHz Low-Power Down-Conversion Mixer in 0.18-μm CMOS Technology

    Science.gov (United States)

    Chen, Jun-Da; Lin, Zhi-Ming; Row, Jeen-Sheen

    A low-voltage and low-power RF mixer for WCDMA applications is presented. The paper presents a novel topology mixer that leads to a better performance in terms of isolation and power consumption for low supply voltage. The measuring results of the proposed mixer achieve: 7dB power conversion gain, 10.4dB double side band (DSB) noise figure, -2dBm input third-order intercept point (IIP3), and the total dc power consumption of this mixer including output buffers is 2.2mW from a 1V supply voltage. The current output buffer is about 1.96mW, the excellent LO-RF, LO-IF and RF-IF isolation achieved up to 49dB, 39.5dB and 57.3dB, respectively.

  18. A wideband terahertz high-T c superconducting Josephson-junction mixer: electromagnetic design, analysis and characterization

    Science.gov (United States)

    Gao, Xiang; Zhang, Ting; Du, Jia; Weily, Andrew R.; Guo, Yingjie Jay; Foley, Cathy P.

    2017-09-01

    This paper presents a wideband terahertz (THz) mixer based on a thin-film antenna-coupled high-temperature superconducting (HTS) YBa2Cu3O7-x (YBCO) step-edge Josephson junction. The HTS mixer enables the flexible harmonic mixing operation at multiple THz bands with the same microwave local oscillator (LO) source, and features very wide intermediate-frequency or instantaneous bandwidth. In order to optimize the frequency down-conversion performance of the mixer, systematic electromagnetic design and analysis have been carried out to improve the power coupling of THz radiation as well as wideband transmission of microwave signals. Experimental characterization of a fabricated device prototype has demonstrated that the mixer exhibits good performance at both the 200 GHz and 600 GHz bands. Detailed measurement results including the DC characteristics, LO pumping requirement, frequency response, mixing linearity and conversion gain are presented in this paper.

  19. Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics.

    Science.gov (United States)

    Huang, Jianke; Feng, Fei; Wan, Minxi; Ying, Jiangguo; Li, Yuanguang; Qu, Xiaoxing; Pan, Ronghua; Shen, Guomin; Li, Wei

    2015-04-01

    A novel mixer was developed to improve the performance of flat-plate photobioreactors (PBRs). The effects of mixer were theoretically evaluated using computational fluid dynamics (CFD) according to radial velocity of fluid and light/dark cycles within reactors. The structure parameters, including the riser width, top clearance, clearance between the baffles and walls, and number of the chambers were further optimized. The microalgae culture test aiming at validating the simulated results was conducted indoor. The results showed the maximum biomass concentrations in the optimized and archetype reactors were 32.8% (0.89 g L(-1)) and 19.4% (0.80 g L(-1)) higher than that in the control reactor (0.67 g L(-1)). Therefore, the novel mixer can significantly increase the fluid velocity along the light attenuation and light/dark cycles, thus further increased the maximum biomass concentration. The PBRs with novel mixers are greatly applicable for high-efficiency cultivation of microalgae.

  20. Study of Water Jet Impulse in Water-Jet Looms

    Institute of Scientific and Technical Information of China (English)

    LI Ke-rang; MA Wei-wei; CHEN Ming

    2005-01-01

    The water jet impulse is brought forward to study the traction force of the water jet to the flying weft in water-jet looms. The distribution of the water jet impulse in the shed is tested by a sensor, and the influence of water jet parameters on the water jet impulse is analyzed.

  1. Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers

    Directory of Open Access Journals (Sweden)

    Kalenik Marek

    2015-03-01

    Full Text Available Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift pump. Using the obtained results, the efficiency of the three types of air-water mixers applied in this air lift pump was determined. The analysis was carried out and there was checked whether the improved analytical Stenning-Martin model can be used to design air lift pumps with the air-water mixers of these types. The highest capacity in the water transport was reached by the air lift pump with the 1st type air-water mixer, the lowest one – with the 3rd type air-water mixer. The water flow in the air lift pump increases along with the rise in the air flow. The lower are the hydraulic losses generated during flow of the air flux by the air-water mixer, the higher is the air lift pump capacity. Along with the rise in the water delivery head, the capacity of the air lift pump decreases. The highest efficiency is reached by the air lift pump with the 1st type air-water mixer, the lowest – with the 3st type air-water mixer. The efficiency of the air lift pump for the three investigated types of air-water mixers decreases along with the rise in air flow rate and water delivery head. The values of submergence ratio (h/L of the delivery pipe, calculated with the use of the improved analytical Stenning-Martin model, coincide quite well with the values of h/L determined from the measurements.

  2. A 38 to 44GHz sub-harmonic balanced HBT mixer with integrated miniature spiral type marchand balun

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    This work presents an active balanced sub-harmonic mixer (SHM) using InP double heterojunction bipolar transistor technology (DHBT) for Q-band applications. A miniature spiral type Marchand balun with five added capacitances for improved control of amplitude and phase balance is integrated...... the excellent balance of the integrated spiral type Marchand balun. The DC power consumption of the SHM is only 22.5 mW under normal mixer operation....

  3. Comparing Poynting flux dominated magnetic tower jets with kinetic-energy dominated jets

    CERN Document Server

    Huarte-Espinosa, Martín; Blackman, Eric G; Ciardi, Andrea; Hartigan, Patrick M; Lebedev, Sergey; Chittenden, Jeremy P

    2012-01-01

    Magnetic Towers represent one of two fundamental forms of MHD outflows. Driven by magnetic pressure gradients, these flows have been less well studied than magneto-centrifugally launched jets even though magnetic towers may well be as common. Here we present new results exploring the behavior and evolution of magnetic tower outflows and demonstrate their connection with pulsed power experimental studies and purely hydrodynamic jets which might represent the asymptotic propagation regimes of magneto-centrifugally launched jets. High-resolution AMR MHD simulations (using the AstroBEAR code) provide insights into the underlying physics of magnetic towers and help us constrain models of their propagation. Our simulations have been designed to explore the effects of thermal energy losses and rotation on both tower flows and their hydro counterparts. We find these parameters have significant effects on the stability of magnetic towers, but mild effects on the stability of hydro jets. Current-driven perturbations in...

  4. Submicron area NbN/MgO/NbN tunnel junctions for SIS mixer applications

    Science.gov (United States)

    Leduc, H. G.; Judas, A.; Cypher, S. R.; Bumble, B.; Hunt, B. D.

    1991-01-01

    The development of submicron area mixer elements for operation in the submillimeter wave range is discussed. High-current-density NbN/MgO/NbN tunnel junctions with areas down to 0.1 sq microns have been fabricated in both planar and edge geometries. The planar junctions were fabricated from in situ deposited trilayers using electron-beam lithography to pattern submicron area mesas. Modifications of fabrication techniques used in larger-area NbN tunnel junctions are required and are discussed. The NbN/MgO/NbN edge junction process using sapphire substrates has been transferred to technologically important quartz substrates using MgO buffer layers to minimize substrate interactions. The two junction geometries are compared and contrasted in the context of submillimeter wave mixer applications.

  5. Experimental Study on Chaotic Mixing Created by a New Type of Mixer with Rotational Blades

    Directory of Open Access Journals (Sweden)

    Payam Rahim Mashaei

    2012-01-01

    Full Text Available The aim of this paper is an experimental investigation of laminar mixing in a new type of chaotic mixer, which has been proposed by Hwu (2008, by means of material line deformation. The mixer is a circular cavity with two rotational blades which move along a semicircular path and drive the fluid motion. The flow visualization is carried out by marking of the free surface of the flow with a tracer in working fluid. In the present study the effects of length and rotational speed of blades on mixing efficiency are evaluated by measuring of the area covered by the tracer. As a result, it is demonstrated that the goodness of mixing increases as rotational speed of blades increases. Also, it is detected that the mixing efficiency strongly depends on the lengths of rotating blades.

  6. Separation of Indium and Iron from Dilute Sulphate Solutions with a Phosphorous Mixer Extractant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The phosphorous mixer introduced could replace D2EHPA as an extractant applied in the extraction of indium. The extraction properties of the phosphorous mixer were studied. The influences of extractant concentration, organic/aqueous (O/A) phase ratio, equilibrium time, and pH value of the feed solutions on the extraction of indium and separation of indium-iron were investigated experimentally. Under the best operating conditions, more than 98% of indium was extracted through two-stage counter-current extraction. The optimizing condition of indium extraction is determined as follows: O/A = 1∶(9€?2) in volume ratio; 30% PPD in sulphonated kerosene; pH of the feed, about 0.6; equilibrium time, 3€? min. The extractant has good reusing and anti-aging properties.

  7. Tracking antenna architectures based on an integrated mixer microstrip patch array

    CERN Document Server

    Gupta, S

    1997-01-01

    The object of this work is to design, develop and characterize both theoretically and experimentally a compact integrated mixer microstrip patch antenna which exhibits a low level of cross-polarization. Modelling of this antenna using various CAD techniques and supporting measurements has led to a clearer understanding of its operation and the optimization of its design. The attractiveness of such a frequency scaleable design lies in the inherent simplicity and ease with which it can be used to produce an intermediate frequency (IF) signal with minimum circuit complexity and low cross-polar levels. The operation of the integrated mixer antenna circuit is exploited under the phenomenon of injection locking for its potential for direct phase modulation and detection. It leads to new vistas of study such as IF phase-shifterless beam steering. Here the desired phased shift is derived through injection locking and achieved solely by the DC bias control, thus eliminating the need for phase shifters and feed network...

  8. Electrolytic partitioning of uranium and plutonium based on a new type of electrolytic mixer-settler

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Yan, T.; Zheng, W. [China Institute of Atomic Energy, Beijing (China)] [and others

    2013-11-01

    The design of a new type of electroreduction mixer-settler for the partitioning of uranium and plutonium during the Purex process, which is featured with E-shaped cathodes and U-shaped anodes in settling chamber, is described and the operational results achieved using this equipment are presented. The results show that this new type of mixer-settler has excellent separation performances. The flow rate of organic feed solution is 3 mL/min and the flow ratio of feed solution (1BF) to aqueous back extraction stream (1BX) and to organic wash stream (1BS) is 4/1/1. For an organic feed of 84 g/L uranium and 1.40 {proportional_to} 2.64 g/L plutonium, both the separation factor of plutonium from uranium and that of uranium from plutonium are apparently higher than 10{sup 4}. (orig.)

  9. Mixer-Duplexer-Antenna Leaky-Wave System Based on Periodic Space-Time Modulation

    CERN Document Server

    Taravati, Sajjad

    2016-01-01

    We present a mixer-duplexer-antenna leaky-wave system based on periodic space-time modulation. This system operates as a full transceiver, where the upconversion and downconversion mixing operations are accomplished via space-time transitions, the duplexing operation is induced by the nonreciprocal nature of the structure, and the radiation operation is provided by the leaky-wave nature of the wave. A rigorous electromagnetic solution is derived for the dispersion relation and field distributions. The system is implemented in the form of a spatio-temporally modulated microstrip leaky-wave structure incorporating an array of sub-wavelengthly spaced varactors modulated by a harmonic wave. In addition to the overall mixer-duplexer-antenna operation, frequency beam scanning at fixed input frequency is demonstrated as one of the interesting features of the system. A prototype is realized and demonstrated by full-wave and experimental results.

  10. Development of 460 GHz and Dual Polarization SIS Mixers for the Submillimeter Array

    Science.gov (United States)

    Li, Chao-Te; Liu, Kuan-Yu; Lu, Wei-Chun; Chiu, Chuang-Ping; Chen, Tse-Jun; Chen, Chong-Wen; Chang, Yung-Chin; Wang, Ming-Jye; Shi, Sheng-Cai

    2011-06-01

    A heterodyne receiver incorporating superconductor-insulator- superconductor (SIS) mixers has been designed to cover the frequency range from 400 to 520 GHz of the Submillimeter Array (SMA). Various tuning circuits have been employed to resonate out the geometric capacitance of the junction and provide impedance matching to the waveguide probe. Our measurements indicated that a receiver noise temperature of around 90 K, with the contributions from the input noise and intermediate frequency (IF) noise estimated to be around 60 K and 10 K, respectively. SIS mixers integrated with planar orthomode transducers (OMT) have also been designed at 345 GHz for dual polarization detections, and results from the 3-dimensional (3-D) electromagnetic (EM) simulations are presented.

  11. A 110 GHz ozone radiometer with a cryogenic planar Schottky mixer

    Energy Technology Data Exchange (ETDEWEB)

    Koistinen, O.P.; Valmu, H.T.; Raeisaenen, A. (Helsinki Univ. of Technology, Espoo (Finland)); Vdovin, V.F.; Dryagin, Y.A.; Lapkin, I.V. (Russian Academy of Science, Nizhny-Novgorod (Russian Federation))

    1993-12-01

    A total power radiometer is presented for monitoring of the stratospheric ozone spectral line at 110 GHz. Special features such as a cooled planar Schottky mixer as the front end and efficient reduction of standing waves in the quasi-optics, are discussed in detail. The noise temperature of the receiver is 530 K (SSB), and the total bandwidth of the receiver is 1 GHz. A dual acousto-optical spectrometer is used for the signal detection.

  12. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, R.F.

    1994-10-05

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14.

  13. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  14. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Combs, Stephen Kirk [ORNL; Ha, Tam T [ORNL; Morrow, Michael [ORNL; Biewer, Theodore M [ORNL; Rasmussen, David A [ORNL; Hechler, Michael P [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  15. Monitoring of power demand of foundry machinery, using the example of paddle mixers

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2008-04-01

    Full Text Available The study outlines the basic features of a newly-designed computer-supported system for monitoring and recording the instantaneous power consumption, used to control the operating parameters of foundry machinery. Explored are potential applications of the module for fast recording of instantaneous currents and voltages in a triple phase power supply system in a paddle mixer. Further research areas are indicated, to extend the system and the range of its potential applications.

  16. Modeling the dynamics and stresses of elongated particles in vertical axis mixers

    OpenAIRE

    Hua, Xia

    2014-01-01

    Vertical axis mixers, such as high shear granulators and agitated filter dryers (AFDs), are commonly used in the processing of particulate materials. For example, AFDs are regularly used in the pharmaceutical industry to dry the wet active pharmaceutical ingredient (API) particles. During the drying process, an impeller blade agitates the bed to increase the drying rate and enhance drying uniformity. Unfortunately, the needle-shaped API particles tend to flow poorly, are frequently damaged, a...

  17. The influence of operational parameters and feed preparation in a convective batch ribbon powder mixer

    OpenAIRE

    Yeow ST; Shahar A; Abdul Aziz N; Anuar MS; Yusof YA; Taip FS

    2011-01-01

    Sin Tung Yeow, Asnawi Shahar, Norashikin Abdul Aziz, Mohd Shamsul Anuar, Yus Aniza Yusof, Farah Saleena TaipDepartment of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor, MalaysiaPurpose: To investigate the effect of feed preparation characteristics and operational parameters on mixing homogeneity in a convective batch ribbon mixer.Methods: Lactose 100M, lactose 200M, ascorbic acid, and zinc oxide powders were used for the mixing study. Operational pa...

  18. 220 GHz Sub-Harmonic Mixer%220GHz分谐波混频器研究

    Institute of Scientific and Technical Information of China (English)

    张波; 陈哲; 樊勇

    2012-01-01

    频率在0.1~10THz范围内的太赫兹电磁波,因其所具有的特殊性质近年来受到了广泛的关注.该文介绍了一种太赫兹频段内220 GHz基于肖特基势垒二极管的分谐波混频器设计.利用CAD技术对反向并联二极管对的阻抗频率特性进行分祈,并在该基础上通过HFSS和ADS软件的联合仿真,对混频器性能进行优化.最后,对该混频器进行加工和测试,结果表明,在210~230 GHz频带范围内,变频损耗小于10dB.%Terahertz electromagnetic radiation (from 0.1 THz to 10 THz) that lies in the boundary region between light and radio waves has attracted much attention in recent years due to its some extraordinary properties. This paper presents the design of a 220 GHz sub-harmonic mixer in terahertz band based on GaAs Schottky barrier diodes. The impedance-frequency characteristics of the anti-parallel diodes pair were analyzed using computer aided design (CAD) technology. The mixer was then optimized and designed by the co-simulation of the commercial software Agilent's advanced design system (ADS) and Ansoft's high frequency structure simulator (HFSS). The mixer was also fabricated and measured. The measured results show that the conversion loss of the mixer is below 10 dB in the band from 210 GHz to 230 GHz.

  19. USING THE GEOMETRIC SIMULATION AT PLANNING OF MIXERS OF TELESCOPIC CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    K. K. Miroshnychenko

    2015-07-01

    Full Text Available Purpose. The use of traditional processing methods to obtain a homogeneous fiber reinforced concrete does not ensure the creation of high quality, homogeneous construction materials. This study aimes to develop (with the use of geometric simulation of different variants of the working parts of faucets, ensures effective mixing of building structures from concrete. Methodology. The complex of theoretical research allowed formulating the design principles of resource-saving technologies of production of particulate-reinforced compounds with high performance properties. Using the geometric simulation developed different versions of the blades of the working bodies of mixers with the complex geometric shapes, providing excellent mixing of the the fiber-reinforced fine-grained material. Findings. As a result of theoretical and experimental studies aimed at developing the fundamentally new approaches to the preparation (mixing of fiber-reinforced concrete with different types of fibers and the manufacture of products from them, the author obtained some results. Namely the technology of preparation of fiber-reinforced concrete using telescopic design mixers with effective blades of complex shape was developed. Application of the developed blades allows obtaining a homogeneous fiber-reinforced concrete composition. Due to the high quality of mixing the time of preparation of the mixture reduces. This factor reduces the repair costs of equipment and electricity. Originality. The author developed the design of the mixer with the working body of the telescopic type with blades of complex shape. Practical value. The use of the proposed technology of mixing a particle-reinforced material with the use of the mixer with a working body of a telescopic design with blades with complex geometric shapes provides the high uniformity of fiber-reinforced concrete composition. The author proposed technological methods of production, allow expanding the scope of

  20. Separated Mix Speed Control System of Mixer-setter Mix Motors

    Institute of Scientific and Technical Information of China (English)

    GAO; Wei; CHANG; Shang-wen; OUYANG; Ying-gen

    2013-01-01

    Stirring speed of the mixer-settler’s mixing cell should be controlled within a proper range.In one aspect,the stirring rate should be fast enough to ensure the extraction efficiency of the stage;on the other hand,the stirring speed cannot be too fast so that liquid residence time cannot be long enough,which also affect the efficiency of the extraction stage.Therefore,it is an efficiency method that the studying of

  1. Usefulness of a rotation-revolution mixer for mixing powder-liquid reline material.

    Science.gov (United States)

    Yamaga, Yoshio; Kanatani, Mitsugu; Nomura, Shuichi

    2015-01-01

    The purpose of this study was to evaluate the distribution of bubbles, degree of mixing, flowability and mechanical strength of powder-liquid reline material by manually and with a rotation-revolution (planetary) mixer, and to determine the usefulness of a rotation-revolution mixer for this application. Powder-liquid reline material (Mild Rebaron, GC, Tokyo, Japan) was mixed with a powder to liquid ratio of 1:0.62 according to the manufacturer's instruction. Two methods were used to mix it: mixed by manually ("manual-mixing") and automatically with a rotation-revolution mixer (Super Rakuneru Fine, GC, Tokyo, Japan; "automatic-mixing"). Disc-shaped specimens, 30 mm in diameter and 1.0mm in thickness, were used to observe the distribution of bubbles in at 10× magnifications. Flowability tests were carried out according to the JIS T6521 for denture base hard reline materials. A three point bending test was carried out by a universal testing machine. Elastic modulus and flexural stress at the proportional limit were calculated. A median of 4 bubbles and inhomogeneous were observed in manual-mixed specimens. However, no bubbles and homogeneous were observed in automatic-mixed specimens. Flowability was within the JIS range in all mixing conditions and did not differ significantly across conditions. The elastic modulus was the same for manual-mixed and automatic-mixed specimens. On the other hand, the flexural stress at the proportional limit differed significantly between manual-mixed and automatic-mixed specimens. The results confirm that rotation-revolution mixer is useful for mixing powder-liquid reline material. Automatic-mixing may be recommended for clinical practice. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. A planar hybrid transceiving mixer at 76.5GHz for automotive radar applications

    Directory of Open Access Journals (Sweden)

    M. O. Olbrich

    2003-01-01

    Full Text Available A growing number of applications for radar systems in automobiles demands for low-cost radar front-ends. A planar monostatic radar front-end is particularly suited for low cost applications as it uses only one antenna for transmission and reception and, thus, minimizes the needed chip area. Generally, in a standard homodyne radar a radio-frequency (RF signal generated by an oscillator is used for both, the transmitted signal and the local oscillator (LO. Well controlled distribution of the input power between antenna and mixer is crucial. A transceiving mixer at 76.5GHz is presented, where this distribution is done by use of a rat-race coupler. In a conventional transceiver the oscillator signal is split into the transmitted and in the LO signal by a directional coupler. A second directional coupler is needed in order to merge the received and the LO signal at the mixer. In our design the purpose of splitting and merging the signals is realized with only one coupler. Elimination of the second coupler reduces losses significantly. The received signal is down-converted to the intermediate frequency (IF by use of a balanced mixer. For small relative speed in a CW-Doppler-radar or short distance in a FMCWradar the IF is very small. Therefore 1/f noise is a significant value. In order to achieve good 1/f noise characteristics, Schottky diodes were used. The diodes were flip-chip bonded onto a microstrip circuit on a Al2O3 substrate. The assembled transceiver was measured on-waver. An input power of 7 dBm was applied. The measured output power was 3 dBm and the conversion loss 9 dB. A noise figure of 15.3 dB was measured at 100 kHz.

  3. A planar hybrid transceiving mixer at 76.5 GHz for automotive radar applications

    Science.gov (United States)

    Olbrich, M. O.; Grübl, A.; Raßhofer, R. H.; Biebl, E. M.

    2003-05-01

    A growing number of applications for radar systems in automobiles demands for low-cost radar front-ends. A planar monostatic radar front-end is particularly suited for low cost applications as it uses only one antenna for transmission and reception and, thus, minimizes the needed chip area. Generally, in a standard homodyne radar a radio-frequency (RF) signal generated by an oscillator is used for both, the transmitted signal and the local oscillator (LO). Well controlled distribution of the input power between antenna and mixer is crucial. A transceiving mixer at 76.5GHz is presented, where this distribution is done by use of a rat-race coupler. In a conventional transceiver the oscillator signal is split into the transmitted and in the LO signal by a directional coupler. A second directional coupler is needed in order to merge the received and the LO signal at the mixer. In our design the purpose of splitting and merging the signals is realized with only one coupler. Elimination of the second coupler reduces losses significantly. The received signal is down-converted to the intermediate frequency (IF) by use of a balanced mixer. For small relative speed in a CW-Doppler-radar or short distance in a FMCWradar the IF is very small. Therefore 1/f noise is a significant value. In order to achieve good 1/f noise characteristics, Schottky diodes were used. The diodes were flip-chip bonded onto a microstrip circuit on a Al2O3 substrate. \\ The assembled transceiver was measured on-waver. An input power of 7 dBm was applied. The measured output power was 3 dBm and the conversion loss 9 dB. A noise figure of 15.3 dB was measured at 100 kHz.

  4. Planar Schottky barrier mixer diodes for space applications at submillimeter wavelengths

    Science.gov (United States)

    Bishop, W. L.; Crowe, T. W.; Mattauch, R. J.; Ostdiek, P. H.

    1991-01-01

    Available planar diodes for space-based applications at submillimeter wavelengths have not achieved either the required low junction capacitance or the low series resistance-junction capacitance product. Here, the development of a novel planar diode structure that overcomes both of these difficulties is outlined. The characteristics of these Schottky barrier mixer diodes are presented and electron micrographs are shown. The diode structure will allow planar technology to be extended throughout the submillimeter wavelength range.

  5. Structure and Mixing Characterization of Variable Density Transverse Jet Flows

    Science.gov (United States)

    Gevorkyan, Levon

    (CVP) and the generation of strong upstream shear layer instability. In contrast, weak, convectively unstable upstream shear layers corresponded with asymmetries in the jet cross-sectional shape and/or lack of a CVP structure. While momentum flux ratio J and density ratio S most significantly determined the strength of the instabilities and CVP structures, an additional dependence on jet Reynolds number for CVP formation was found, with significant increases in jet Reynolds number resulting in enhanced symmetry and CVP generation. The mixing characteristics of Rej = 1900 jets of various J, S, and injector type were explored in detail in the present studies using jet centerplane and cross-sectional PLIF measurements. Various mixing metrics such as the jet fluid centerline concentration decay, Unmixedness, and Probability Density Function (PDF) were applied systematically using a novel method for comparing jets with different mass flux characteristics. It was found that when comparing mixing metrics along the jet trajectory, strengthening the upstream shear layer instability by reducing J, and achieving absolutely unstable conditions, enhanced overall mixing. Reducing density ratio S for larger J values, which under equidensity (S = 1.00) conditions would create a convectively unstable shear layer, was also observed to enhance mixing. On the other hand, reducing S for low J conditions, which are known to produce absolutely unstable upstream shear layers even for equidensity cases, was actually observed to reduce mixing, a result attributed to a reduction in crossfiow fluid entrainment into shear layer vortex cores as jet density was reduced. Comparing injectors, the flush-mounted pipe was generally the best mixer, whereas the worst mixer was the nozzle that was elevated above the crossfiow boundary layer due to upstream shear layer co-flow generated by the elevated nozzle contour; this co-flow was observed here and in prior studies to stabilize the shear layer. The

  6. 国产密炼机替换进口密炼机的方法%Domestic Mixer for Replacing Imported Mixer

    Institute of Scientific and Technical Information of China (English)

    吕明著; 王洪民; 曲常文; 郭红燃; 周仁忠; 赵成龙

    2015-01-01

    This paper introduces the principles of replacement of imported mixer by domestic product with examples. The new design includes mixing volume, rotor design, motor, size and additional parts. The mixing volume, rotor design and motor type determine the capacity of the new mixer. It’s important that the additional parts match the main equipment and the height of feeding entrance matches the height of original feed conveyor. The installation precision of rotor, gear box and motor has to be improved to ensure the stable operation.%用实例介绍国产密炼机替换进口密炼机的方法,从密炼机容积、转子、电机、尺寸、附属装置等方面考虑替换方案。新密炼机容积、转子、电机与产能匹配,附属装置与主机匹配,加料门高度与原加料输送带高度匹配,提高转子与减速机、减速机与电机之间的安装精度,保证各部件运行稳定,满足用户需求。

  7. Chaotic mixer using electro-osmosis at finite Péclet number

    Science.gov (United States)

    Sugioka, Hideyuki

    2010-03-01

    Two pressure-driven streams of two miscible liquids can only mix by diffusion in microfluidic channels because of the low Reynolds number. We present an idea to generate mixing by “chaotic advection” in microscale geometries. That is, we consider using induced-charge electro-osmosis to generate a second flow and then modulate between the pressure-driven and induced-charge flows. By using the combined method consisting of the boundary element method, the Lagrangian particle tracking method, and the random-walk method, we analyze mixing efficiency, mixing time, and mixing length, with the effects of modulation frequency and molecular diffusivity, and compare our proposed mixer with other mixers. By this analysis, we find that chaotic mixing can be produced efficiently in a microfluidic channel by switching between pressure-driven and induced-charge flows in a wide range of Péclet number under the specific condition of Strouhal number. By using our proposed mixer, we can expect to realize efficient chaotic mixing with minimum voltage in an ordinary flow channel with a simple structure without an oblique electric field even at large Péclet number.

  8. The Increasing of Air and Biogas Mixer Instrument for Generating Friendly Environmental Electricity Power

    Science.gov (United States)

    Ketut Lasmi, Ni; Singarimbun, Alamta; Srigutomo, Wahyu

    2016-08-01

    The abolition of BBM Subsidize by the government causes increasing of its price, so a solution is necessary to find an alternative energy that is relatively cheap, environmentally friendly and affordable by all layers of society. Biogas is one of the renewable energy resources that are potential to be developed, especially in a farming area, because up until now, animal's excrement is not yet optimally used and it causes problem to environment. In response to this, one innovation to do is to make an instrument which is able to mix biogas and air by venture pipe using the basic theory of fluid mechanic, in order to raise the use of biogas as electricity source. Biogas conversion is done by changing fuel in benzene 5 kilowatt genset to biogas so it becomes a biogas genset. The biogas pressure is controlled when it enters the mixer instrument so that the velocity of biogas when it enters and it comes out the mixer is the same, and it will gain different pressure between biogas and air. By the pressure difference between biogas in the mixer instrument, biogas goes to the burning room so that the conversion of mechanical energy biogas to electricity will happen, and it will be applied as light and society's needs.

  9. High-k Scattering Receiver Mixer Performance for NSTX-U

    Science.gov (United States)

    Barchfeld, Robert; Riemenschneider, Paul; Domier, Calvin; Luhmann, Neville; Ren, Yang; Kaita, Robert

    2016-10-01

    The High-k Scattering system detects primarily electron-scale turbulence k θ spectra for studying electron thermal transport in NSTX-U. A 100 mW, 693 GHz probe beam passes through plasma, and scattered power is detected by a 4-pixel quasi optical, mixer array. Remotely controlled receiving optics allows the scattering volume to be located from core to edge with a k θ span of 7 to 40 cm-1. The receiver array features 4 RF diagonal input horns, where the electric field polarization is aligned along the diagonal of a square cross section horn, at 30 mm channel spacing. The local oscillator is provided by a 14.4 GHz source followed by a x48 multiplier chain, giving an intermediate frequency of 1 GHz. The receiver optics receive 4 discreet scattering angles simultaneously, and then focus the signals as 4 parallel signals to their respective horns. A combination of a steerable probe beam, and translating receiver, allows for upward or downward scattering which together can provide information about 2D turbulence wavenumber spectrum. IF signals are digitized and stored for later computer analysis. The performance of the receiver mixers is discussed, along with optical design features to enhance the tuning and performance of the mixers. Work supported in part by U.S. DOE Grant DE-FG02-99ER54518 and DE-AC02-09CH1146.

  10. Design of Novel Mixer and Applicator for Two-Component Surgical Adhesives

    Science.gov (United States)

    Go, Kevin; Kim, Yeong; Lee, Andy H.; Staricha, Kelly; Messersmith, Phillip; Glucksberg, Matthew

    2015-01-01

    Current mixer and applicator devices on the market are not able to properly and efficiently mix two-component surgical adhesives in small volumes necessary to achieve economic viability. Furthermore, in these devices a significant amount of adhesive is wasted during the application process, as material within the dead space of the mixing chamber must be discarded. We have designed and demonstrated a new active mixer and applicator system capable of rapidly and efficiently mixing two components of an adhesive and applying it to the surgical site. Recently, Messersmith et al. have developed a tissue adhesive inspired by the mussel byssus and have shown that it is effective as a surgical sealant, and is especially suited for wet environments such as in fetal surgery. Like some other tissue sealants, this one requires that two components of differing viscosities be thoroughly mixed within a specified and short time period. Through a combination of compression and shear testing, we demonstrated that our device could effectively mix the adhesive developed by Messersmith et al. and improve its shear strength to significantly higher values than what has been reported for vortex mixing. Overall, our mixer and applicator system not only has potential applications in mixing and applying various adhesives in multiple surgical fields but also makes this particular adhesive viable for clinical use. PMID:26421090

  11. Mixing behaviour of cohesive and non-cohesive particle mixtures in a ribbon mixer

    Science.gov (United States)

    Musha, H.; Dong, K.; Chandratilleke, G. R.; Bridgwater, J.; Yu, A. B.

    2013-06-01

    Ribbon mixers are used in a wide range of applications involving pharmaceuticals, ceramics and cosmetics, to name a few. Here, the discrete element method is used to investigate the effect of impeller speed on the mixing behaviours of cohesive as well as non-cohesive particle mixtures in a ribbon mixer, which has a horizontal cylindrical vessel. The mixing behaviours are characterized by particle-scale and macroscopic mixing indexes. Simulations show that the mixing rate increases with the impeller speed for both the cohesive and non-cohesive mixtures up to a certain speed, beyond which it showed a reduction. There is a possibility that the mixture quality becomes poorer at higher impeller speeds for the non-cohesive particles, but it was not the case with the cohesive particles. Inspection of velocity fields shows that many local recirculation regions exist in the case of non-cohesive particle mixing, preventing the overall mixing. By contrast, in the case of the cohesive mixture, there exists a circumferential motion about the shaft and a convective motion in the horizontal axial direction, improving the particle mixing. Force analyses are also carried out, which show that the particle contact forces increase with the impeller speed for non-cohesive particles, but in the case of cohesive particles, they increase initially with the impeller speed, and then show a reduction after a certain speed. The results will be useful in selecting operation conditions of a ribbon mixer.

  12. Experimental Study on Aqueous Phase Entrainment in a Mixer-settler with Double Stirring Mode

    Institute of Scientific and Technical Information of China (English)

    Wang Shuchan; Zhang Tingan; Zhao Qiuyue; Liu Yan; Wu Qiuyang

    2013-01-01

    The mixer-settler is a core device of solvent extraction for separating rare earth elements. There are some adverse effects like high rare earth accumulation and poor production efifciency during industrial production. Current researches usually focus on changing the structure of the mixer-settler without making a breakthrough towards gravity clariifcation. In this paper, in order to improve the efifciency of clariifcation, a mixer-settler with double stirring mode was designed and manufactured by adding a stirring device in the settler after reducing the volume of the settler. The innovation of this research involves adopting the ultraviolet-visible spectrophotometer to investigate the quantity of aqueous phase entrainment at the settler outlet in order to measure the clariifcation degree. Experimental results show that the clariifcation effect with stirring is better than that without stirring. The clariifcation effect is ameliorated as the stirring speed increases. Generally, the clariifcation effect shows a best condition when the offset distance is 12.5 cm, making the phase entrainment reduced to less than 0.1%. When the clearance over the tank bottom is 7 cm and 10 cm, respectively, the quantity of aqueous phase entrainment is better than the case with a clearance of 4 cm. The results show that the stirring paddle close to the mixed phase zone can better promote the two-phase separation.

  13. Extended Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2002-12-23

    The effectiveness of a mixer is dependent on the size of the tank to be mixed, the characteristics of the waste, and the operating conditions. Waste tanks throughout the U.S. Department of Energy Complex require mixing and mobilization systems capable of (1) breaking up and suspending materials that are difficult to mix and pump, without introducing additional liquids into the tank; (2) complementing and augmenting the performance of other remotely operated and/or robotic waste retrieval systems; and (3) operating in tanks with various quantities of waste. The Oak Ridge Russian pulsating mixer pump (PMP) system was designed with the flexibility to permit deployment in a variety of cylindrical tanks. The PMP was installed at the Tanks Technology Cold Test Facility at the Oak Ridge National Laboratory (ORNL) to assess the performance of the system over an extended range of operating conditions, including supply pressures up to 175 psig. Previously conducted cold tests proved the applicability of the PMP for deployment in ORNL gunite tank TH-4. The previous testing and hot demonstrations had been limited to operating at air supply pressures of <100 psig. The extended cold testing of the Russian PMP system showed that the system was capable of mobilizing waste simulants in tanks in excess of 20-ft diam. The waste simulant used in these tests was medium-grain quartz sand. The system was successfully installed, checked out, and operated for 406 pulse discharge cycles. Only minor problems (i.e., a sticking air distributor valve and a few system lockups) were noted. Some improvements to the design of the air distributor valve may be needed to improve reliability. The air supply requirements of the PMP during the discharge cycle necessitated the operation of the system in single pulse discharge cycles to allow time for the air supply reservoir to recharge to the required pressure. During the test program, the system was operated with sand depths of 2, 4, and 4.5 in.; at

  14. Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer

    Institute of Scientific and Technical Information of China (English)

    Phavanee Narataruksa; Sabaithip Tungkamani; Karn Pana-Suppamassadu; Phongsak Keeratiwintakorn; Siriluck Nivitchanyong; Piyapong Hunpinyo; Hussanai Sukkathanyawat; Prayut Jiamrittiwong; Visarut Nopparat

    2012-01-01

    Recently,Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomassto-Liquids (BTL) processes.In Fischer-Tropsch (FT) section,biomass-derived syngas,mainly composed of a mixture of carbon monoxide (CO)and hydrogen (H2),is converted into various forms of hydrocarbon products over a catalyst at specified temperature and pressure.Fixed-bed reactors are typically used for these processes as conventional FT reactors.The fixed-bed or packed-bed type reactor has its drawbacks,which are heat transfer limitation,i.e.a hot spot problem involved highly exothermic characteristics of FT reaction,and mass transfer limitation due to the condensation of liquid hydrocarbon products occurred on catalyst surface.This work is initiated to develop a new chemical reactor design in which a better distribution of gaseous reactants and hydrocarbon products could be achieved,and led to higher throughput and conversion.The main goal of the research is the enhancement of a fixed-bed reactor,focusing on the application of KenicsTM static mixer insertion in the tubular packed-bed reactor.Two FTS experiments were carried out using two reactors i.e.,with and without static mixer insertion within catalytic beds.The modeled syngas used was a mixed gas composed of H2/CO in 2 ∶ 1 molar ratio that was fed at the rate of 30 mL(STP)·min-1 (GHSV ≈ 136 mL·g-1cat·h-1) into the fixed Ru supported aluminum catalyst bed of weight 13.3 g.The reaction was carried out at 180 ℃ and atmospheric pressure continuously for 36 h for both experiments.Both transient and steady-state conversions (in terms of time on stream) were reported.The results revealed that the steady-state CO conversion for the case using the static mixer was approximately 3.5 times higher than that of the case without static mixer.In both cases,the values of chain growth probability of hydrocarbon products (α) for Fischer-Tropsch synthesis were 0.92 and 0.89 for

  15. AZ-101 Mixer Pump Demonstration and Tests Data Management Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS, D.G.

    2000-02-22

    This document provides a plan for the analysis of the data collected during the AZ-101 Mixer Pump Demonstration and Tests. This document was prepared after a review of the AZ-101 Mixer Pump Test Plan (Revision 4) [1] and other materials. The plan emphasizes a structured and well-ordered approach towards handling and examining the data. This plan presumes that the data will be collected and organized into a unified body of data, well annotated and bearing the date and time of each record. The analysis of this data will follow a methodical series of steps that are focused on well-defined objectives. Section 2 of this plan describes how the data analysis will proceed from the real-time monitoring of some of the key sensor data to the final analysis of the three-dimensional distribution of suspended solids. This section also identifies the various sensors or sensor systems and associates them with the various functions they serve during the test program. Section 3 provides an overview of the objectives of the AZ-101 test program and describes the data that will be analyzed to support that test. The objectives are: (1) to demonstrate that the mixer pumps can be operated within the operating requirements; (2) to demonstrate that the mixer pumps can mobilize the sludge in sufficient quantities to provide feed to the private contractor facility, and (3) to determine if the in-tank instrumentation is sufficient to monitor sludge mobilization and mixer pump operation. Section 3 also describes the interim analysis that organizes the data during the test, so the analysis can be more readily accomplished. Section 4 describes the spatial orientation of the various sensors in the tank. This section is useful in visualizing the relationship of the Sensors in terms of their location in the tank and how the data from these sensors may be related to the data from other sensors. Section 5 provides a summary of the various analyses that will be performed on the data during the test

  16. Development of Niobium Hot Electron Bolometric Mixer for Terahertz Frequencies: the Phonon-Cooled Version

    Science.gov (United States)

    Gerecht, Eyal

    NbN HEB mixers represent a promising approach for achieving receiver noise temperatures of a few times the quantum noise limit at frequencies above 1 THz. NbN HEB devices have been shown to have sufficient bandwidth for applications in astronomy, remote sensing, and plasma diagnostics in the FIR range. The NbN HEB is a phonon cooled bolometer in which the energy is transfered from the hot electrons to the substrate via inelastic collisions with phonons. The development of an NbN HEB mixer contained two steps: (1) implementing mixing in a comparatively large 'direct-coupled' prototype device which required LO power of a few milliwatts, and (2) optimization of the first step by the development of an 'antenna-coupled' (quasi-optically coupled) device with an LO power level of less than one μ W. The LO power was coupled to the antenna via an extended hemispherical lens (1.3 mm in diameter). The design, fabrication, and measurement stages were performed by a collaborative effort between a Russian team from the Department of Physics at Moscow State Pedagogical University in Moscow, the Submillimeter Technology Laboratory at UMass/Lowell and the Department of Electrical and Computer Engineering at UMass/Amherst. Mixing at 2.5 THz was demonstrated for the first time using the direct-coupled device achieving an intrinsic conversion loss of 23 dB. Sufficient level of LO power coupling at four different frequencies was demonstrated with the antenna-coupled device. The antenna/lens configuration has performed as well as expected insuring coupling to LO power of less than one μW. A 3 dB conversion gain was demonstrated with the antenna-coupled device using a laser LO at 1.56 THz with an IF frequency of 500 KHz. A second laser was utilized as the rf source. Noise temperature for the NbN HEB mixer receiver of 5800 K has been demonstrated over the 1.25-1.75 GHz IF band. The mixer temperature was 2500 K and the total conversion loss was 27 dB. Further optimization of the receiver

  17. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  18. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  19. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  20. The JET Intershot Analysis: Current infrastructure and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Layne, R., E-mail: richard.layne@ccfe.ac.u [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Tessella plc, 26 The Quadrant, Abingdon Science Park, Abingdon, Oxon OX14 3YS (United Kingdom); Cook, N. [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Tessella plc, 26 The Quadrant, Abingdon Science Park, Abingdon, Oxon OX14 3YS (United Kingdom); Harting, D. [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Institute for Energy Research IEF-4, Forschungszentrum Juelich, Association Euratom-FZJ, Trilateral Euregio Cluster (Germany); McDonald, D.C. [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Tidy, C. [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); University of Bath, Computer Science, BA2 7AY Bath (United Kingdom)

    2010-07-15

    The JET Intershot Analysis (Chain1) generates processed data following a pulse. Maintaining the pulse repetition rate is one of JET's key success factors, so performance of Chain1 is crucial. This paper will describe JET's experience of managing Chain1, including a description of the control system used to ensure the analysis chain runs as quickly as possible, and a discussion of JET's experience of integrating externally developed codes into a standard analysis framework. The current Chain1 infrastructure was developed in 1999 and although reliable and efficient is starting to prove costly in terms of flexibility and extensibility to meet JET's current and future needs. For this reason JET is planning to re-implement the Chain1 system. The paper will outline the work done towards this aim, and present a model of the proposed new system. Finally, possible future steps towards an integrated data production chain for JET will be discussed, and the potential applicability to next generation fusion devices will be outlined.

  1. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  2. Numerical Simulations of Solar Spicule Jets at a Magnetic Null-Point

    Science.gov (United States)

    Smirnova, V.; Konkol, P. M.; Solov'ev, A. A.; Murawski, K.

    2016-11-01

    Two-dimensional numerical simulations of jet-like structures in the solar atmosphere are performed. These structures result from a pressure pulse that is launched at the null point of a potential magnetic arcade. The plasma jet exhibits a double structure with two components: (a) dense, cool, and short vertical stream and (b) a less dense, hot and tall part of the jet. The upper part of the hot and tall jet may represent a direct response of the system to the pressure pulse launched at the null point, and the second, slower cool and dense part of the jet is formed later through the stretching up of the stream as a result of plasma evacuation from the top of the magnetic arcade. Numerical results show that jet-like structures mimic some properties of both type I and type II spicules, according to the classification provided by De Pontieu et al. ( Publ. Astron. Soc. Japan 59, S655, 2007).

  3. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.

    Science.gov (United States)

    Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has

  4. InGaAs-based mm-wave integrated subharmonic mixer exhibiting low input power requirement and low noise characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, P.; Hong, K.; Pavlidis, D. [Univ. of Michigan, Ann Arbor, MI (United States)

    1996-12-31

    The authors have designed and fabricated an integrated InGaAs-based subharmonic mixer which showed a single-sideband conversion loss of 10.5dB and double-sideband noise temperature of 1,164 K at a very low LO power level of 1.1mW. Also demonstrated was the feasibility of integrating mixer diodes with antenna and other interconnect metal structures on InP. Simulations indicate the potential for performance improvements with L{sub c} decreasing to 9.6dB and T{sub mix} decreasing to approximately 700 K for anode sizes of 1{micro}m. A significant advantage of the InGaAs subharmonic mixers is that their P{sub LO} requirements are approximately a factor of 0.2 to 0.37 of that required by GaAs technology. Another advantage of InGaAs mixer technology is that high-performance three-terminal device technology, available on InP, could potentially be used to integrate LNA front ends and IF amplifiers with the mixers, to form high-performance monolithic millimeter-wave receivers.

  5. Computational Fluid Dynamics and Experimental Studies of a New Mixing Element in a Static Mixer as a Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Konopacki Maciej

    2015-03-01

    Full Text Available The main aim of this work is to study the thermal efficiency of a new type of a static mixer and to analyse the flow and temperature patterns and heat transfer efficiency. The measurements were carried out for the static mixer equipped with a new mixing insert. The heat transfer enhancement was determined by measuring the temperature profiles on each side of the heating pipe as well as the temperature field inside the static mixer. All experiments were carried out with varying operating parameters for four liquids: water, glycerol, transformer oil and an aqueous solution of molasses. Numerical CFD simulations were carried out using the two-equation turbulence k-ω model, provided by ANSYS Workbench 14.5 software. The proposed CFD model was validated by comparing the predicted numerical results against experimental thermal database obtained from the investigations. Local and global convective heat transfer coefficients and Nusselt numbers were detrmined. The relationship between heat transfer process and hydrodynamics in the static mixer was also presented. Moreover, a comparison of the thermal performance between the tested static mixer and a conventional empty tube was carried out. The relative enhancement of heat transfer was characterised by the rate of relative heat transfer intensification.

  6. 换向脉冲喷射电沉积制备Co-Cr3C2复合镀层的工艺探讨%Discussion on the Process for Preparing Co-Cr3C2 Composite Coatings by Reverse Pulse Jet-electrodeposition

    Institute of Scientific and Technical Information of China (English)

    王猛; 谭俊; 吴迪; 兰龙

    2016-01-01

    ABSTRACT:Objective To efficiently solve the problem that the coating surface prepared by DC jet-electrodeposition is quite rough, and the surface deterioration degree is particularly serious when the hard particle size reaches micron grade.Methods Reverse pulse current was applied in jet-electrodeposition instead of DC to prepare the Co-Cr3C2 composite coatings which the size of Cr3C2 reaching micron grade. Through analyzing the composite tissue morphology and testing hardness, wear resistance and other perfor-mance parameters, the effect of commutation pulse electrical parameters on the composite coating particle composite coating, the roughness of the coating and the coating performance were discussed, and the influencing mechanism was analyzed.Results Using pulse current to prepare Co-Cr3C2composite coating could improve the surface roughness while maintaining higher concentration of the particles. By controlling the pulse electric parameters, micron grade Co-Cr3C2 composite coating with particle content of up to 11% was prepared.ConclusionThe higher the Cr3C2 particle content in the composite coating, the better the coating performance, but the more rough the coating surface. The reversing of the reverse pulse current could lead to the inverse process of co-deposition. The usage of RPC could not only make the composite coating flat, but also improve the uniformity of particles dispersed in the composite coating, improving both the surface morphology and properties of the composite coating.%目的:有效解决利用喷射电沉积在直流电流下制备的复合镀层存在的镀层表面粗糙,尤其当硬质颗粒尺寸达到微米级时,表面恶化程度尤为严重的问题。方法将换向脉冲电流取代直流电流应用于喷射电沉积,制备颗粒尺寸达到微米级的Co-Cr3C2复合镀层,通过分析复合镀层组织形貌、硬度和耐磨性等,探讨换向脉冲电参数对复合镀层颗粒复合量、镀层表面粗糙

  7. TASI Lectures on Jet Substructure

    CERN Document Server

    Shelton, Jessie

    2013-01-01

    Jet physics is a rich and rapidly evolving field, with many applications to physics in and beyond the Standard Model. These notes, based on lectures delivered at the June 2012 Theoretical Advanced Study Institute, provide an introduction to jets at the Large Hadron Collider. Topics covered include sequential jet algorithms, jet shapes, jet grooming, and boosted Higgs and top tagging.

  8. Jet propagation and deceleration

    CERN Document Server

    Perucho, Manel

    2013-01-01

    Extragalactic jets in active galactic nuclei (AGN) are divided into two morphological types, namely Fanaroff-Riley I (FRI) and Fanaroff-Riley II (FRII). The former show decollimated structure at the kiloparsec scales and are thought to be decelerated by entrainment within the first kiloparsecs of evolution inside the host galaxy. The entrainment and deceleration can be, at least partly, due to the interaction of jets with stellar winds and gas clouds that enter in the jet as they orbit around the galactic centre. In this contribution, I review recent simulations to study the dynamic effect of entrainment from stellar winds in jets and the direct interaction of jets with gas clouds and stellar winds. I also briefly describe the importance of these interactions as a possible scenario of high-energy emission from extragalactic jets.

  9. What ignites optical jets?

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Jester

    2002-12-23

    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  10. Hotspots, Jets and Environments

    Science.gov (United States)

    Hardcastle, M. J.

    2008-06-01

    I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.

  11. A user oriented computer program for the analysis of microwave mixers, and a study of the effects of the series inductance and diode capacitance on the performance of some simple mixers

    Science.gov (United States)

    Siegel, P. H.; Kerr, A. R.

    1979-01-01

    A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.

  12. Properties of gluon jets

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, K.

    1986-09-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed.

  13. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  14. Mixing Urea and Zeolite for Slow Release Fertilizer using Orbiting Screw Mixer

    Directory of Open Access Journals (Sweden)

    Semuel Pati Senda

    2009-11-01

    Full Text Available Slow release fertilizer (SRF of urea is prepared by using zeolite as the matrix. Mixing of urea and zeolite is carried out in orbiting screw mixer. The effects of rotation speed and orbital speed of the mixer and particle size on power consumption, homogeneity, mixing time and specific energy consumption are evaluated. The experimental results show that higher orbital speed gives higher power consumption. Power consumption is dominated by mixer rotation motion. Smaller particle size needs higher power for mixing process. Nitrogen mass fraction ranges from 0.45 to 0.49 when mixture reaches homogeneity. The mixing time required is about 5 – 12 minutes for particle size of >60 and >80 mesh and 7 – 14 minutes for particle size of >50 mesh. At constant orbit speed, the higher the screw rotation speed, the shorter time needed to reach mixture homogeneity. Specific energy consumption of mixing process increases with decreasing particle size. For the three particle size groups of >80 mesh, >60 mesh and >50 mesh, the lowest specific energy consumption is given by combination of orbital speed of 5 rpm and rotation speed of 50 rpm; while for particle size of >60 mesh and >80 mesh, it can obtained by combination of orbital speed of 5 rpm and rotation speed of 67,5 rpm and orbital speed 5 rpm and rotation speed 30 rpm, respectively. The lowest specific energy consumptions is gained by combination of orbital and rotation speeds of 5 and 50 rpm with particle size of >50 mesh.

  15. High-T{sub c} superconducting Josephson mixers for terahertz heterodyne detection

    Energy Technology Data Exchange (ETDEWEB)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N. [Laboratoire de Physique et d' Etude des Matériaux—UMR8213-CNRS-ESPCI ParisTech-UPMC-PSL university, 10 Rue Vauquelin—75005 Paris (France); Ulysse, C.; Faini, G. [Laboratoire de Photonique et de Nanostructures LPN-CNRS, Route de Nozay, 91460 Marcoussis (France); Febvre, P. [IMEP-LAHC—UMR 5130 CNRS, Université de Savoie, 73376 Le Bourget du Lac cedex (France); Sirena, M. [Centro Atómico Bariloche, Instituto Balseiro—CNEA and Univ. Nac. de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina)

    2014-08-21

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa{sub 2}Cu{sub 3}O{sub 7} Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f{sub c} of the junctions.

  16. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  17. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  18. 3D printed microfluidic mixer for point-of-care diagnosis of anemia.

    Science.gov (United States)

    Plevniak, Kimberly; Campbell, Matthew; Mei He

    2016-08-01

    3D printing has been an emerging fabrication tool in prototyping and manufacturing. We demonstrated a 3D microfluidic simulation guided computer design and 3D printer prototyping for quick turnaround development of microfluidic 3D mixers, which allows fast self-mixing of reagents with blood through capillary force. Combined with smartphone, the point-of-care diagnosis of anemia from finger-prick blood has been successfully implemented and showed consistent results with clinical measurements. Capable of 3D fabrication flexibility and smartphone compatibility, this work presents a novel diagnostic strategy for advancing personalized medicine and mobile healthcare.

  19. A multi-purpose ultrasonic streaming mixer for integrated magnetic bead ELISAs

    Science.gov (United States)

    Brandhoff, Lukas; Zirath, Helene; Salas, Mariugenia; Haller, Anna; Peham, Johannes; Wiesinger-Mayr, Herbert; Spittler, Andreas; Schnetz, Guntram; Lang, Walter; Vellekoop, Michael J.

    2015-10-01

    We present an ultrasonic streaming mixer for disposable and on-chip magnetic bead ELISAs. The ultrasonic transducer is placed at system-level to keep cost per chip as low as possible, and is coupled to the chip by means of a solid ultrasonic horn. The system provides mixing of liquids, as well as dispersion of the superparamagnetic beads in the ELISA. Additionally it can be used clean the chamber surface from nonspecifically bound proteins during the washing steps in the ELISA protocol. Using our system the time for the ELISA protocol has been greatly reduced down to 30 min.

  20. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer

    Science.gov (United States)

    Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay

    2017-01-01

    We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.

  1. Mixer-settler counter-current chromatography with a barricaded spiral disk assembly with glass beads.

    Science.gov (United States)

    Ito, Yoichiro; Qi, Lin; Powell, Jimmie; Sharpnack, Frank; Metger, Howard; Yost, James; Cao, Xue-Li; Dong, Yin-Mao; Huo, Liang-Sheng; Zhu, Xiao-Ping; Li, Ting

    2007-06-01

    A novel spiral disk is designed by placing barricades at 6 mm intervals in the middle of the spiral channel to divide the channel into multiple sections. Glass beads are placed in every other section so that the planetary motion produces repetitive mixing and settling of polymer phase systems. Performance of this mixer-settler spiral disk assembly was examined for separation of lysozyme and myoglobin with a polymer phase system. The best results were obtained with a spiral disk equipped with barricades with openings ranging from 1.2 to 0.4 mm on each side at a high revolution speed up to 1200 rpm.

  2. Effects of Crust Ingestion on Mixer Pump Performance in Tank 241-SY-101: Workshop Results

    Energy Technology Data Exchange (ETDEWEB)

    Brennen, C.E.; Stewart, C.W.; Meyer, P.A.

    1999-10-20

    In August 1999, a workshop was held at Pacific Northwest National Laboratory to discuss the effects of crust ingestion on mixer pump performance in Hanford Waste Tank 241-SY-101. The main purpose of the workshop was to evaluate the potential for crust ingestion to degrade mixing and/or damage the mixer pump. The need for a previously determined 12-inch separation between the top of the mixer pump inlet and the crust base was evaluated. Participants included a representative from the pump manufacturer, an internationally known expert in centrifugal pump theory, Hanford scientists and engineers, and operational specialists representing relevant fields of expertise. The workshop focused on developing an understanding of the pump design, addressing the physics of entrainment of solids and gases into the pump, and assessing the effects of solids and gases on pump performance. The major conclusions are summarized as follows: (1) Entrainment of a moderate amount of solids or gas from the crust should not damage the pump or reduce its lifetime, though mixing effectiveness will be somewhat reduced. (2) Air binding should not damage the pump. Vibrations due to ingestion of gas, solids, and objects potentially could cause radial loads that might reduce the lifetime of bearings and seals. However, significant damage would require extreme conditions not associated with the small bubbles, fine solids, and chunks of relatively weak material typical of the crust. (3) The inlet duct extension opening, 235 inches from the tank bottom, should be considered the pump inlet, not the small gap at 262 inches. (4) A suction vortex exists at the inlet of all pumps. The characteristics of the inlet suction vortex in the mixer pump are very hard to predict, but its effects likely extend upward several feet. Because of this, the current 12-inch limit should be replaced with criteria based on actual monitored pump performance. The most obvious criterion (in addition to current operational

  3. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  4. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  5. Magnetized laboratory plasma jets: Experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  6. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  7. Dynamics of Water Jet in Water Jet Looms

    Institute of Scientific and Technical Information of China (English)

    李克让; 陈明

    2001-01-01

    On the base of the study on dynamics of water jet in water jet looms, the parameters of water jet mechanism which affect the speed of water jet are analyzed and optimized. So the stability of the water jet can be improved to raise the speed of water jet as well as weft insertion rate and to enlarge the width of woven fabrics a lot. At the same time it also points out that to increase water jet speed and to prolong its affective jet time depend mainly on the accretion of spring rate (constant)of stiffness and the diminution of plunger's cross sectional area respectively.

  8. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  9. Overview of the JET results

    Science.gov (United States)

    Romanelli, F.; JET Contributors,

    2015-10-01

    Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in confinement and pedestal behaviour before and after the ITER-like wall installation have been better characterized towards the development of high fusion yield scenarios in DT. Post-mortem analyses of the plasma-facing components have confirmed the previously reported low fuel retention obtained by gas balance and shown that the pattern of deposition within the divertor has changed significantly with respect to the JET carbon wall campaigns due to the absence of thermally activated chemical erosion of beryllium in contrast to carbon. Transport to remote areas is almost absent and two orders of magnitude less material is found in the divertor.

  10. Design of broad-band mixer on V-band%V波段宽带混频器的设计

    Institute of Scientific and Technical Information of China (English)

    宋翔; 年夫顺; 代秀

    2012-01-01

    Because of broad-band mixer's broad working band and low conversion loss,it is often used in communication, radar and microwave measurement systems. In this paper, the design and the performance of a V-band single balance mixer based on fin-line circuit are described. From the theory of the single balance mixer,the design of the single balance mixer-circuit and the structure of waveguide to fin line are expounded. Finally,the conversion loss of this mixer is less than 10 dBm and has a good flatness when the mixer's RF is sweeping from 50~75 GHz.%宽带混频器由于其工作带宽大,变频损耗低,在通信、雷达以及微波毫米波测试仪器等系统得到广泛的应用.介绍了一种V波段鳍线单平衡混频器的设计过程并给出了测试结果.从单平衡混频器的基本原理出发,阐述了鳍线单平衡混频电路和矩形波导到鳍线的过渡结构的设计.最后制作出的宽带混频器在射频频率为50~75 GHz的整个V波段内,变频损耗小于10 dBm,并有良好的变频损耗平坦度.

  11. Driving Flows in Laboratory Astrophysical Plasma Jets: The Mochi.LabJet Experiment

    Science.gov (United States)

    Carroll, Evan G.

    Mochi.Labjet is a new experiment at the University of Washington developed to investigate the interaction of shear flows in plasma jets with boundary conditions similar to an accretion disc system. This thesis details the engineering design and first plasmas of the Mochi.Labjet experiment. The experiment required construction of a new three electrode plasma gun with azimuthal symmetric gas injection, two optically-isolated pulsed power supplies for generating and sustaining plasma, and one optically-isolated pulsed power supply for generating a background magnetic field. Optical isolation is achieved with four custom circuits: the TTL-optical transmitter, optical-TTL receiver, optical-relay, and optical-tachometer circuits. First plasmas, during the commissioning phase of the apparatus, show evidence of flared jet structures with significant azimuthal symmetry.

  12. Study and application of a high-pressure water jet multi-functional flow test system

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  13. Faraday, Jets, and Sand

    NARCIS (Netherlands)

    Sandtke, M.; van der Meer, Roger M.; Versluis, Andreas Michel; Lohse, Detlef

    2003-01-01

    When a 6-mm layer of fine sand with an average grain size of 40 µm is poured into a cylindrical container and shaken vertically, thin jets are seen to emerge from an airy cloud of grains, almost like protuberances from the corona of the sun. A quasi two-dimensional setup reveals the jet-formation

  14. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    Science.gov (United States)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  15. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    Science.gov (United States)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  16. Gas Flow and Electric Field Characterization in Plasma Jets for Biomedical Applications: From Single Jet to Multi Jet Arrays

    Science.gov (United States)

    Robert, Eric

    2015-09-01

    This work reports first on time-resolved measurement of longitudinal and radial electric fields (EF) associated with plasma propagation in dielectric capillaries. Plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have a few kV/cm in amplitude for helium or neon plasmas. Their amplitude is kept almost constant along a few tens of cm long capillary. The key role of the voltage pulse polarity and the drastic impact of the presence of a target in front of the plasma jet are discussed from Schlieren images. All these experimental measurements are in excellent agreement with model calculations which are used to infer EF data on capillary axis. EF diagnostics in the plasma plume in the free jet mode but also in contact with various targets is proposed. The combination of intense transient EF, both of ns and µs duration, together with significant transient reactive species generation during plasma jet treatments may be reconsidered. Typical EF amplitudes likely to induce electrostimulation, electroporation are indeed probably achieved in many in vivo protocols. Stimulation of tissue oxygenation, blood flow rate modulation and more recently immune system triggering may be examples where EF could play a significant role. The second part of this work is dedicated to the development of multi jets, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are analyzed from ICCD imaging and time resolved EF measurements. This allows for the design of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation and

  17. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  18. The effect of particle shape on mixing in a high shear mixer

    Science.gov (United States)

    Sinnott, Matthew D.; Cleary, Paul W.

    2016-11-01

    Discrete element method modelling is used to study the effect of particle shape on the flow dynamics and mixing in a high shear mixer. The blade generates strong flow over its top surface while compacting and pushing forward particles that are directly in front of the blade. A complex three dimensional flow is established with vertical and radial flow components that are shape dependent and which control the nature of the mixing. Mixing was found to be fast in the azimuthal direction, of intermediate speed in the vertical direction and comparatively slow in the radial mixing. Diffusive mixing is characterised using the granular temperature which shows that the regions of higher granular temperature are larger for round particles than non-round ones leading to stronger diffusive mixing. The spatial distribution of the convective component of mixing is identified using novel calculation of shear strain rate. This size and shape of the high shear region is found to be only slightly sensitive to the particle shape indicating that the convective mixing is relatively independent of shape, except in the middle of the mixer. The blockiness of the particles has the strongest impact on flow and mixing while the mixing has only a weak dependence on the particle aspect ratio.

  19. A microfluidic mixer with self-excited 'turbulent' fluid motion for wide viscosity ratio applications.

    Science.gov (United States)

    Xia, H M; Wang, Z P; Koh, Y X; May, K T

    2010-07-07

    In micromixer studies, compared with the design, modeling and characterization, the influence of the fluid properties on mixing has been less discussed. This topic is of practical significance as the properties of diverse biological and chemical liquids to be mixed have large variations. Here, we report a microfluidic mixer for mixing fluids with widely different viscosities. It contains an interconnected multi-channel network through which the bulk fluid volumes are divided into smaller ones and chaotically reorganized. Then, the multiple fluid streams are driven into an expansion chamber which triggers viscous flow instabilities. Experiments with the co-flow of glycerol and aqueous solutions show an automatic transition of the flow from a steady state to a 'turbulent' state, significantly enhancing the mixing. This observation is rather interesting considering that it occurs in a passive flow and the average Reynolds number involved is small. Further testing indicates that this mixer works well at viscosity ratio (chi) up to the order of 10(4).

  20. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.

    2016-09-15

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  1. Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller

    Institute of Scientific and Technical Information of China (English)

    Baoqing Liu; Yikun Zhang; Mingqiang Chen; Peng Li; Zhijiang Jin

    2015-01-01

    A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wal-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Rushton turbine. The power consumption and flow field characteristics of the coaxial mixer in laminar and transitional flow are simulated numerically, and then the distribution of velocity field, shear rate and mass flow rate are analyzed. The simulation results indicate that the outer frame has little effect on the power consumption of the double inner impeller whether in laminar or transitional flow, whereas the inner combined impeller has a great effect on the power consumption of the outer frame. Compared with the single rotation mode, the power consumption of the outer frame will decrease in co-rotation mode and increase in counter-rotation mode. The velocity, shear rate and mass flow rate are relatively high near the inner impeller in all operating modes, and only under double-shaft agitation wil the mixing performance near the free surface be improved. In addition, these distributions in the co-rotation and counter-rotation modes show little difference, but the co-rotation mode is recommended for the advantage of low power consumption.

  2. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    Science.gov (United States)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  3. A high linearity dual-band mixer for IMT-A and UWB systems

    Institute of Scientific and Technical Information of China (English)

    Tang Xusheng; Wang Xiaoyu; Yang Jiang; Tang Xin; Huang Fengyi

    2014-01-01

    The design and analysis ofa reconfigurable dual-band down-conversion mixer for IMT-advanced (3.4-3.6 GHz) and UWB (4.2-4.8 GHz) applications are presented.Based on a folded double-balanced Gilbert cell,which is well known for its low voltage,simplicity and well balanced performance,the mixer adopts a capacitive cross-coupling technique for input matching and performance improvement.Switched capacitors and resistors are added to shift the working bands.Fabricated in a TSMC 0.13 μm process,the test results show flat conversion gains from 9.6 to 10.3 dB on the IMT-A band and from 9.7 to 10.4 dB on the UWB band,with a noise figure of about 15 dB on both bands.The input third-order intercept points (IIP3) are about 7.3 dBm on both of the frequency bands.The whole chip consumes 11 mW under 1.2 V supply and the total area of the layout is 0.76 × 0.65 mm2.

  4. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    N. Othman

    2014-01-01

    Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  5. The influence of operational parameters and feed preparation in a convective batch ribbon powder mixer.

    Science.gov (United States)

    Yeow, Sin Tung; Shahar, Asnawi; Abdul Aziz, Norashikin; Anuar, Mohd Shamsul; Yusof, Yus Aniza; Taip, Farah Saleena

    2011-01-01

    To investigate the effect of feed preparation characteristics and operational parameters on mixing homogeneity in a convective batch ribbon mixer. Lactose 100M, lactose 200M, ascorbic acid, and zinc oxide powders were used for the mixing study. Operational parameters studied were rotational speed and mixing time. The feed preparations studied were the use of preblending and the particle size of the feed materials. The blends of ascorbic acid, zinc oxide, and lactose were prepared with preblending and without preblending, prior to mixing at different blender rotation speeds and mixing times. Chemical tests were performed to measure the homogeneity of the ascorbic acid in the model mixture. With preblending, a mixture with lactose 200M achieved the required homogeneity in a shorter period of time at a lower rotational speed. The results indicated that the homogeneity of the mixtures was influenced by the blender rotation speed and mixing time. Better mixing can be obtained with higher rotation speeds and longer mixing time. It was also observed that preblending and smaller feed particle size achieved the required homogeneity in a shorter period of time at a lower rotational speed. These results illustrate that using binders with a smaller particle size and a preblending technique improves the mixing process in a convective batch ribbon powder mixer. However, prolonged periods of high-speed mixing will lead to mixture segregation.

  6. Design of Passive Components in Quadruple Sub-harmonic Image Rejection Mixer

    Directory of Open Access Journals (Sweden)

    Bin Kong

    2013-09-01

    Full Text Available The design of passive components in quadruple Sub-harmonic image rejection mixer is presented in this study. The passive components include double-balun and Lange coupler. With the help of ADS, a Balun with magnitude imbalance degree less than 0.2 dB and phase imbalance degree less than 1° is achieved in the range of 7.9 9.5 GHz. The insertion loss is about 7.3 dB at the center frequency of 8.7 GHz. A Lange coupler with magnitude imbalance degree in the range less than 0.3 dB and phase imbalance degree less than 1° is realized over the 30~40 GHz measurement band. The insertion loss is about 3.25 dB at the center frequency of 35 GHz. Satisfactory results have been reached in the simulation of double-balun and Lange coupler, which makes a significant foundation to the realization of the monolithic quadruple Sub-harmonic image rejection mixer.

  7. Computational fluid dynamics (CFD) simulation of effect of baffles on separation in mixer settler

    Institute of Scientific and Technical Information of China (English)

    Mohsen Ostad Shabani; Ali Mazahery; Mehdi Alizadeh; Ali Asghar Tofigh; Mohammad Reza Rahimipour; Mansour Razavi; Alireza Kolahi

    2012-01-01

    The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics (CFD) provides a tool for determining detailed information on fluid flow (hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed.

  8. PARC Analysis of the NASA/GE 2D NRA Mixer/Ejector Nozzle

    Science.gov (United States)

    DeBonis, J. R.

    1999-01-01

    Interest in developing a new generation supersonic transport has increased in the past several years. Current projections indicate this aircraft would cruise at approximately Mach 2.4, have a range of 5000 nautical miles and carry at least 250 passengers. A large market for such an aircraft will exist in the next century due to a predicted doubling of the demand for long range air transportation by the end of the century and the growing influence of the Pacific Rim nations. Such a proposed aircraft could more than halve the flying time from Los Angeles to Tokyo. However, before a new economically feasible supersonic transport can be built, many key technologies must be developed. Among these technologies is noise suppression. Propulsion systems for a supersonic transport using current technology would exceed acceptable noise levels. All new aircraft must satisfy FAR 36 Stage III noise regulations. The largest area of concern is the noise generated during takeoff. A concerted effort under NASA's High Speed Research (HSR) program has begun to address the problem of noise suppression. One of the most promising concepts being studied in the area of noise suppression is the mixer/ejector nozzle. This study analyzes a typical noise suppressing mixer ejector nozzle at take off conditions, using a Full Navier-Stokes (FNS) computational fluid dynamics (CFD) code.

  9. 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition

    Science.gov (United States)

    Gaier, Todd; Wells, Mary; Dawson, Douglas

    2009-01-01

    A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.

  10. Propagation of Relativistic, Hydrodynamic, Intermittent Jets in a Rotating, Collapsing GRB Progenitor Star

    Science.gov (United States)

    Geng, Jin-Jun; Zhang, Bing; Kuiper, Rolf

    2016-12-01

    The prompt emission of gamma-ray bursts (GRBs) is characterized by rapid variabilities, which may be a direct reflection of the unsteady central engine. We perform a series of axisymmetric 2.5-dimensional simulations to study the propagation of relativistic, hydrodynamic, intermittent jets through the envelope of a GRB progenitor star. A realistic rapidly rotating star is incorporated as the background of jet propagation, and the star is allowed to collapse due to the gravity of the central black hole. By modeling the intermittent jets with constant-luminosity pulses with equal on and off durations, we investigate how the half period, T, affects the jet dynamics. For relatively small T values (e.g., 0.2 s), the jet breakout time t bo depends on the opening angle of the jet, with narrower jets more penetrating and reaching the surface at shorter times. For T ≤ 1 s, the reverse shock (RS) crosses each pulse before the jet penetrates through the stellar envelope. As a result, after the breakout of the first group of pulses at t bo, several subsequent pulses vanish before penetrating the star, causing a quiescent gap. For larger half periods (T = 2.0 and 4.0 s), all the pulses can successfully penetrate through the envelope, since each pulse can propagate through the star before the RS crosses the shell. Our results may interpret the existence of a weak precursor in some long GRBs, given that the GRB central engine injects intermittent pulses with a half period T ≤ 1 s. The observational data seem to be consistent with such a possibility.

  11. JET experiments with tritium and deuterium–tritium mixtures

    NARCIS (Netherlands)

    Horton, L.; Batistoni, P.; Boyer, H.; Challis, C.; Ciric, D.; Donne, A. J. H.; Eriksson, L. G.; Garcia, J.; Garzotti, L.; Gee, S.; Hobirk, J.; Joffrin, E.; Jones, T.; King, D. B.; Knipe, S.; Litaudon, X.; Matthews, G. F.; Monakhov, I.; Murari, A.; Nunes, I.; Riccardo, V.; Sips, A. C. C.; Warren, R.; Weisen, H.; Zastrow, K. D.

    2016-01-01

    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for

  12. PROTOTIPE ALAT PENGEKSTRAK PATI SAGU TIPE MIXER ROTARY BLADE BERTENAGA MOTOR BAKAR Prototype of Mixer Rotary Blade of Sago Starch Extractor Powered by Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Darma Darma

    2012-05-01

    Full Text Available Papua and West Papua Province have a large potential of sago. Approximately 994,000 hectares, mostly natural sago forest was existed in this area. Sago starch has long been an important source of nutrition troughout Papua. Product of sago palm is not only starch as source of carbohydrate for food stuff, but also for basic material of industries such as paper, plywood, hardboard, and food indutries. Traditional methods are used for starch extraction in almost all part of Papu, which is not efficient and production capacity is very low. The effort to increase sago starch production could be carry out by introducing mechanical equipment (traditional to mechanized processing. The objective of this research was to design mixer rotary blade of sago starch extraction powered by internal combustion engine. The result was prototype of mechanical sago starch extractor. The prototype has high performance with extraction capacity 160 kg of disintegrated pith per hour or equal to 33 kg of wet starch per hour, extractable starch more than 99 % while starch losses in hampas less lhan 1 %. Hopefully, application of this machine to the sago farmer will transform agricultural system from subsistence to commercial. It means that increasing of economic income. In conclusion, technically and economically this prototype was feasible. ABSTRAK Provinsi Papua dan Papua Barat memiliki potensi sagu yang sangat besar. Sekitar 994.000 hektar yang sebagian besar merupakan hutan sagu alam terdapat di kedua provinsi ini. Pati sagu telah lama digunakan sebagai sumber nutrisi bagi penduduk asli papua. Pati sagu tidak hanya digunakan sebagai sumber karbohidrat, namun juga digunakan seba- gai bahan dasar industri kertas, plywood, hardbord, dan pangan. Pengolahan sagu secara tradisional yang dilakukan oleh masyarakat tidak efisien dan kapasitas produksinya sangat rendah. Peningkatan produksi dapat dilakukan dengan mengintroduksi peralatan pengolahan mekanis untuk merubah metode

  13. Optical diagnostics of mercury jet for an intense proton target.

    Science.gov (United States)

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.

  14. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  15. Simulations of Solar Jets

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  16. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  17. Magnetized plasma jets in experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  18. Liquid Jet Formation in Laser-Induced Forward Transfer

    Science.gov (United States)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  19. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  20. Solar coronal jets

    Science.gov (United States)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.