WorldWideScience

Sample records for pulse height distribution

  1. Output pulse height distribution of the GM counters

    International Nuclear Information System (INIS)

    Zhang Songshou; Xiong Jianping

    1995-01-01

    The GM counters are the radiation detectors most in use. It has special advantages compared with other detectors. This paper introduces the output pulse height distribution of the GM counters, gives the measuring instruments and methods. The measuring results, some discussions, and useful conclusion are given as well

  2. Pulse height model for deuterated scintillation detectors

    International Nuclear Information System (INIS)

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  3. Investigation of the Pulse Height Distribution of Boron Trifluoride Proportional Counters

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Malmskog, S

    1962-08-15

    The report describes a theoretical and experimental investigation of the factors that determine the pulse height distribution of BF{sub 3}, proportional counters irradiated by thermal neutrons. The branching ratio of the {sup 10}B (n,{alpha}) {sup 7}Li reaction for thermal neutrons has been measured.

  4. Emission spectrochemical determination of boron in steels with pulse height distribution analyzer

    International Nuclear Information System (INIS)

    Ito, Minao; Sato, Shoki; Fushida, Hiroshi; Narita, Masanao

    1983-01-01

    The method for rapid determination of total, acid soluble and insoluble boron was established by using emission spectrochemical apparatus equipped with pulse height distribution analyzer. By using the analyzer, emission intensity can be expressed as different level intensity of pulse height distribution. It was made clear that soluble and insoluble boron had different contribution degree to each intensity and that this contribution degree varied at different pre-spark. Therefore, it is necessary for accurate determination of boron that this contribution degree should be corrected by using two intensities, of which contribution degrees are different. It was found on this two intensities method that total and soluble boron corresponded well to 50 % intensities at zero pre-spark and at 2000 pre-spark and that insoluble boron corresponded well to 70 % intensity at zero pre-spark and 50 % intensity at 2000 pre-spark. (author)

  5. FERDO/FERD, Unfolding of Pulse-Height Spectrometer Spectra

    International Nuclear Information System (INIS)

    Rust, B.W.; Ingersoll, D.T.; Burrus, W.R.

    1985-01-01

    1 - Description of problem or function: FERDO and FERD are unfolding codes which can be used to correct observed pulse-height distributions for the non-ideal response of a pulse-height spectrometer or to solve poorly conditioned linear equations. 2 - Method of solution: It is assumed that the response of the spectrometer is given by Ax = b, where A is the spectrometer response function matrix, x is the unknown spectrum, and b is the pulse-height distribution. FERDO does not resolve directly for x but instead solves for p = Wx, where W is a 'window function matrix'. Typically, W is the resolution function of an ideal spectrometer which has a single Gaussian response. The effective resolution of the unfolding solution may be varied by the choice of W. Confidence intervals are found for each element of the solution p

  6. Visual CRO display of pulse height distribution including discriminator setting for a single channel X-ray analyser

    International Nuclear Information System (INIS)

    Shaw, S.E.

    1979-01-01

    An outline for a simple pulse spectroscope which attaches to a standard laboratory CRO is presented. The peak amplitude voltage of each pulse from the linear amplifier of a single channel X-ray analyser is stored for the duration of one oscilloscope trace. For each amplifier pulse, input from the discriminator is tested and if these is coincidence of pulses the oscilloscope beam is blanked for approximately the first 2 cm of its traverse across the screen. Repetition of pulses forms a pulse height distribution with a rectangular dark area marking the position of the discriminator window. (author)

  7. Catalogue of response spectra for unfolding in situ gamma-ray pulse-height distributions

    International Nuclear Information System (INIS)

    Dymke, N.

    1982-01-01

    To unfold in situ gamma-ray pulse-height distributions by means of a response matrix technique, the matrix must be in keeping with the measurement geometry, detector size, and energy range to be covered by the measurements. A methodology has been described for determination of standard gamma-ray spectra needed in deriving response matrices and a spectrum catalogue compiled containing graphs and data for the 0-3 MeV (4 x 4 in. NaI(Tl)) and 0-8 MeV (1.5 x 1.5 in. NaI(Tl)) ranges. (author)

  8. Pulse height non-linearity in LaBr3:Ce crystal for gamma ray spectrometry and imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Bennati, P.; Ridolfi, S.; Scafe, R.; Orsolini Cencelli, V.; De Notaristefani, F.; Fabbri, A.; Navarria, F.L.; Lanconelli, N.; Moschini, G.; Boccaccio, P.

    2011-01-01

    In this paper the response in term of pulse height linearity of two Hamamatsu photomultipliers is investigated, when coupled to a LaBr 3 :Ce scintillation crystal. The two photodetectors have high quantum efficiency and in particular 30% for R6231-01 and 42% for R7600-200 tube. The substantial difference is in the dynode structure, linear focused and metal channel for R6231 and R7600 respectively. In this work in order to verify the non-linearity effects on the pulse height distribution, due principally to the high and fast light production of LaBr 3 :Ce scintillator, we propose a 'peak by peak' procedure to calibrate the pulse height distribution. Utilizing a specific fragmentation of the calibration curve in subsets, the calculated energy values are very similar for both PMTs. This result confirmed the potentiality of the procedure to highlight the non-linearity effects on pulse height distribution.

  9. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-01

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.

  10. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    International Nuclear Information System (INIS)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the work of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry

  11. Data processing for the multichannel pulse height analysis system ND-50/50, (1)

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1977-03-01

    The multichannel pulse height analysis system ND-50/50 manufactured by Nuclear Data Inc. consists of a 4096 channel pulse height analyzer and a small computer PDP-8/L (Digital Equipment Corporation). A conversational interpretive language, MACAL (Multichannel Analyzer CALculator) has been developed to analyze gamma-ray spectra in ND-50/50. It is a modification of the FOCAL (FOrmula CALculator) language of Digital Equipment Corporation. MACAL consists of imperative English commands and mathematical expressions, and has standard mathematical functions and functions for controlling the multichannel pulse height analyzer and I/O devices (high-speed reader, high-speed punch, and digital plotter). With MACAL, the following five programs were prepared : 1) program for controlling the multichannel pulse height analyzer and data handling, 2) program for automatically analyzing gamma-ray spectra obtained by germanium detectors, 3) program for automatically measuring characteristics of germanium detectors, 4) program for calculating the center energy of gamma-ray peaks, and 5) program for plotting the pulse height distribution and diagraming the results obtained with the programs. By combining the programs according to experimental purposes, the system can be highly effective. (auth.)

  12. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  13. Derivation of pulse height to exposure rate conversion functions for aerial radiological surveys

    International Nuclear Information System (INIS)

    Artuso, J.F.

    1985-01-01

    A method is described for deriving conversion functions that can be used to convert pulse height spectra taken at altitude to the exposure rate at the 1-m level. An integral equation is set up which involves the integration of a calculated pulse height spectrum multiplied by an unknown conversion function and then set equal to the exposure rate at ground level. This equation is then solved for the conversion function by assuming as a solution a three-term polynomial. Conversion functions have been derived for various source distributions, including surface, uniform, and exponentially distributed sources. These conversion functions are independent of source energy, which means that a conversion can be made without any knowledge of the isotopic content of the source. In the case of a uniform distribution, these conversion functions provide conversions that agree to within 10% with ground truth measurements

  14. Development of a computer program to determine the pulse-height distribution in a gamma-ray detector from an arbitrary geometry source -feasibility study

    International Nuclear Information System (INIS)

    Currie, G.D.; Marshall, M.

    1989-03-01

    The feasibility of developing a computer program suitable for evaluating the pulse-height spectrum in a gamma-ray detector from a complex geometry source has been examined. A selection of relevant programs, Monte Carlo radiation transport codes, have been identified and their applicability to this study discussed. It is proposed that the computation be performed in two parts: the evaluation of the photon fluence at the detector using a photon transport code, and calculation of the pulse-height distribution from this spectrum using response functions determined with an electron-photon transport code. The two transport codes selected to perform this procedure are MCNP (Monte Carlo Neutron Photon code), and EGS4 (Electron Gamma Shower code). (Author)

  15. Improved pulse-height store for A/D conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P [Montedel S.p.a., Laben Division, Via Bassini 15, Milano, Italy; Maranesi, P [Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi

    1979-11-15

    A new pulse-height store is described. Suitable contrivances improve integral linearity and reduce the differential errors that generally occur at signal amplitudes near the lower threshold. No degradations appear at high rates of input events. The electrical specifications of the pulse-height store are determined through a series of measurements described in the final part of the paper. In order to test the circuit in the most significant way, it has been connected to a fast successive-approximation conversion module which uses the sliding-scale technique for channel width equalisation, thus implementing a complete analog-to-digital converter (ADC) for nuclear spectrometry. The performances of the pulse-height store have been deduced from the behavior of the whole system.

  16. A Fast Time-to-Pulse Height Converter

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, O

    1962-12-15

    A fast time-to-pulse height converter representing a development of Green and Bell's gated beam converter is described. The converter is compatible with 2 input pulses in the stop channel and exhibits excellent linearity and time resolution properties. High stability and large output pulses are obtained by using a large time constant in the converting network.

  17. Single-electron pulse-height spectra in thin-gap parallel-plate chambers

    CERN Document Server

    Fonte, Paulo J R; Peskov, Vladimir; Policarpo, Armando

    1999-01-01

    Single-electron pulse-height spectra were measured in 0.6 and 1.2 mm parallel-plate chambers developed for the TOF system of the ALICE /LHC-HI experiment. Mixtures of Ar with ethane, isobutane, and SF/sub 6/ were studied. The observed spectrum shows a clear peak for all gases, suggesting efficient single-electron detection in thin parallel-plate structures. The pulse-height spectrum can be described by the weighted sum of an exponential and a Polya distribution, the Polya contribution becoming more important at higher gains. Additionally, it was found that the maximum gain, above 10/sup 6/, is limited by the appearance of streamers and depends weakly on the gas composition. The suitability of each mixture for single-electron detection is also quantitatively assessed. (8 refs).

  18. Comparison of experimental pulse-height distributions in germanium detectors with integrated-tiger-series-code predictions

    International Nuclear Information System (INIS)

    Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1989-01-01

    This paper reports pulse-height distributions in two different types of Ge detectors measured for a variety of medium-energy x-ray bremsstrahlung spectra. These measurements have been compared to predictions using the integrated tiger series (ITS) Monte Carlo electron/photon transport code. In general, the authors find excellent agreement between experiments and predictions using no free parameters. These results demonstrate that the ITS codes can predict the combined bremsstrahlung production and energy deposition with good precision (within measurement uncertainties). The one region of disagreement observed occurs for low-energy (<50 keV) photons using low-energy bremsstrahlung spectra. In this case the ITS codes appear to underestimate the produced and/or absorbed radiation by almost an order of magnitude

  19. Development of a pulse height analizer

    International Nuclear Information System (INIS)

    Moreira, E.S.

    1984-01-01

    The development of a Pulse Height Analizer is described. This equipment is essential to analize data coming from detectors producing information codified in pulse amplitudes. The system developed consist of a Signal Input Module connected to a Controller Module based on a 8085A microprocessor capable to memorize pulses up to 1 uS in 256 channels with a resolution better than 20 mV. A Communication Module with a serial interface is used for data transfer to a host computer using RS232c protocol. The Monitoring and Operation Module consist of a hexadecimal Keybord, a 6 digit 7-segment display and a XY analog output enabling real time visualization of data on a XY monitor. The hardware and the software designed for this low cost system were optimized to obtain a typical dead time of approximately 100 uS. As application, this device was used to adquire curves at the Small Angle X-ray Scattering Laboratory in this Department. The apparatus performance was tested by comparing its data with a Northern Pulse Height Analizer model NS633 output, with favorable results. (Author) [pt

  20. The unfolding effects of transfer functions and processing of the pulse height distributions

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2010-01-01

    Full Text Available This paper deals with the improvements of the linear artificial neural network unfolding approach aimed at accurately determining the incident neutron spectrum. The effects of the transfer functions and pre-processing of the simulated pulse height distributions from liquid scintillation detectors on the artificial neural networks performance have been studied. A better energy resolution and higher reliability of the linear artificial neural network technique have been achieved after implementation of the results of this study. The optimized structure of the network was used to unfold both monoenergetic and continuous neutron energy spectra, such as the spectra of 252Cf and 241Am-Be sources, traditionally used in the nuclear safeguards experiments. We have demonstrated that the artificial neural network energy resolution of 0.1 MeV is comparable with the one obtained by the reference maximum likelihood expectation-maximization method which was implemented by using the one step late algorithm. Although the maximum likelihood algorithm provides the unfolded results of higher accuracy, especially for continuous neutron sources, the artificial neural network approach with the improved performances is more suitable for fast and robust determination of the neutron spectra with sufficient accuracy.

  1. Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

    Science.gov (United States)

    Aspinall, Michael D.; Jones, Ashley R.

    2018-01-01

    Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

  2. The use of logarithmic pulse height and energy scales in organic scintillator spectroscopy

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    The use of logarithmic pulse height and energy scales is advantageous for organic for organic scintillator neutron spectroscopy, providing an expanded dynamic range and economy of computer usage. An experimental logarithmic pulse height analysis system is shown to be feasible. A pulse height spectrum from a neutron measurement has been analysed using linear and logarithmic scales; the latter reduced the computer storage requirements by a factor of 13 and analysis time by 8.7, and there was no degradation of the analysed spectrum. Most of the arguments favouring use of logarithmic scales apply equally well to other types of scintillation spectroscopy. (orig.)

  3. Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise

    International Nuclear Information System (INIS)

    Nygaard, K.

    1966-07-01

    For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used

  4. Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1966-07-15

    For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.

  5. Digital baseline estimation method for multi-channel pulse height analyzing

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun

    2005-01-01

    The basic features of digital baseline estimation for multi-channel pulse height analysis are introduced. The weight-function of minimum-noise baseline filter is deduced with functional variational calculus. The frequency response of this filter is also deduced with Fourier transformation, and the influence of parameters on amplitude frequency response characteristics is discussed. With MATLAB software, the noise voltage signal from the charge sensitive preamplifier is simulated, and the processing effect of minimum-noise digital baseline estimation is verified. According to the results of this research, digital baseline estimation method can estimate baseline optimally, and it is very suitable to be used in digital multi-channel pulse height analysis. (authors)

  6. Research on digital multi-channel pulse height analysis techniques

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun; Ao Qi

    2005-01-01

    Multi-channel pulse height analysis techniques are developing in the direction of digitalization. Based on digital signal processing techniques, digital multi-channel analyzers are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper analyzes key techniques of digital nuclear pulse processing. With MATLAB software, main algorithms are simulated, such as trapezoidal shaping, digital baseline estimation, digital pole-zero/zero-pole compensation, poles and zeros identification. The preliminary general scheme of digital MCA is discussed, as well as some other important techniques about its engineering design. All these lay the foundation of developing homemade digital nuclear spectrometers. (authors)

  7. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  8. Measurement of H'(0.07) with pulse height weighting integration method

    International Nuclear Information System (INIS)

    Liye, LIU; Gang, JIN; Jizeng, MA

    2002-01-01

    H'(0.07) is an important quantity for radiation field measurement in health physics. One of the plastic scintillator measurement methods is employing the weak current produced by PMT. However, there are some weaknesses in the current method. For instance: sensitive to environment humidity and temperature, non-linearity energy response. In order to increase the precision of H'(0.07) measurement, a Pulse Height Weighting Integration Method is introduced for its advantages: low noise, high sensitivity, data processable, wide measurement range. Pulse Height Weighting Integration Method seems to be acceptable to measure directional dose equivalent. The representative theoretical energy response of the pre-described method accords with the preliminary experiment result

  9. Conversion of ADC pulse heights into MIP units (NUMASS test data, September 1991)

    International Nuclear Information System (INIS)

    Zhang, Q.P.

    1993-04-01

    ADC calibration is an important part of the data analysis in particle physics. Data analysis of ADC pulse heights is based on a physical unit which is called MIP (most probable energy loss of Minimum Ionization Particles). This paper describes the ADC calibration work for the September 1991 NUMASS test data, which were produced at CERN at the SPS facility. The Vavilov function is used to fit the energy loss distributions of minimum ionizing particles traversing the time of flight scintillators embedded in the uranium scintillator calorimeter. It is assumed that the energy loss distribution is the same for identical scintillators and the value at the peak of these distributions is used, i.e., the most probable energy loss, as a physical unit to derive the gains of the individual readout channels

  10. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures

    CERN Document Server

    Andronic, A

    2003-01-01

    We present pulse height measurements in drift chambers operated with Xe,CO2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and Fe55 pulse height measurements using monitor detectors.

  11. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures

    International Nuclear Information System (INIS)

    Andronic, A.; Appelshaeuser, H.; Blume, C.; Braun-Munzinger, P.; Bucher, D.; Busch, O.; Ramirez, A.C.A. Castillo; Catanescu, V.; Ciobanu, M.; Daues, H.; Devismes, A.; Emschermann, D.; Fateev, O.; Garabatos, C.; Herrmann, N.; Ivanov, M.; Mahmoud, T.; Peitzmann, T.; Petracek, V.; Petrovici, M.; Reygers, K.; Sann, H.; Santo, R.; Schicker, R.; Sedykh, S.; Shimansky, S.; Simon, R.S.; Smykov, L.; Soltveit, H.K.; Stachel, J.; Stelzer, H.; Tsiledakis, G.; Vulpescu, B.; Wessels, J.P.; Windelband, B.; Winkelmann, O.; Xu, C.; Zaudtke, O.; Zanevsky, Yu.; Yurevich, V.

    2003-01-01

    We present pulse height measurements in drift chambers operated with Xe,CO 2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF 6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and 55 Fe pulse height measurements using monitor detectors

  12. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  13. Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM

    Science.gov (United States)

    Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.

    2017-08-01

    Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.

  14. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  15. Organization of pulse-height analysis programs for high event rates

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, C E [Argonne National Lab., Ill. (USA)

    1976-09-01

    The ability of a pulse-height analysis program to handle high event rates can be enhanced by organizing it so as to minimize the time spent in interrupt housekeeping. Specifically, the routine that services the data-ready interrupt from the ADC should test whether another event is ready before performing the interrupt return.

  16. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. E-mail: a.andronic@gsi.de; Appelshaeuser, H.; Blume, C.; Braun-Munzinger, P.; Bucher, D.; Busch, O.; Ramirez, A.C.A. Castillo; Catanescu, V.; Ciobanu, M.; Daues, H.; Devismes, A.; Emschermann, D.; Fateev, O.; Garabatos, C.; Herrmann, N.; Ivanov, M.; Mahmoud, T.; Peitzmann, T.; Petracek, V.; Petrovici, M.; Reygers, K.; Sann, H.; Santo, R.; Schicker, R.; Sedykh, S.; Shimansky, S.; Simon, R.S.; Smykov, L.; Soltveit, H.K.; Stachel, J.; Stelzer, H.; Tsiledakis, G.; Vulpescu, B.; Wessels, J.P.; Windelband, B.; Winkelmann, O.; Xu, C.; Zaudtke, O.; Zanevsky, Yu.; Yurevich, V

    2003-02-11

    We present pulse height measurements in drift chambers operated with Xe,CO{sub 2} gas mixtures. We investigate the attachment of primary electrons on oxygen and SF{sub 6} contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and {sup 55}Fe pulse height measurements using monitor detectors.

  17. Program for the analysis of pulse height spectra and the background from a proportional detector

    International Nuclear Information System (INIS)

    Flores-Llamas, H.; Yee-Madeira, H.; Contreras-Puente, G.; Zamorano-Ulloa, R.

    1991-01-01

    A PC-Fortran program is presented for fitting of lineshapes and the analysis of pulse height spectra obtainable with proportional detectors. The common fitting and analysis of pulse height spectra by means of mixed Gaussian lineshapes is readily improved by using Voigt lineshapes. In addition, the background can be evaluated during the fitting process without the need of extra measurements. As an application of the program, a pulse height transmission spectrum accumulated with a static 57 Co source and detected with an argon-metane proportional detector, was least squares fitted to an elaborated complex trial lineshape function containing two Voigt lines plus a straight line. The fitting straight line parameters a and b characterize quantitatively the background. The very good PC-fitting obtained shows that the fitting of experimental spectra with the more realistic Voigt lineshapes is no longer a formidable task and that it is possible to evaluate and subtract the background inherent to the experiment during the fitting process. (orig.)

  18. Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak heights.

    Science.gov (United States)

    Davis, Joe M

    2011-10-28

    General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A novel time-to-pulse height converter for fast-neutron time-of-flight techniques

    International Nuclear Information System (INIS)

    Christiansen, J.

    1962-01-01

    An electronic time-to-pulse height converter is described which uses a multiplicative method instead of the usual one of adding overlapping pulses. This is achieved by a coincidence of a linear sawtooth and a sharply clipped needle-pulse. The sawtooth is fed to the grid of a beam-deflecting tube (E80T) and the needle-pulse is applied to the deflecting plates and opens the tube only during a time-interval of about 5.10 -9 s. The plate gets a charge proportional to the time-difference between the start of the sawtooth and the needle pulse. The plate-pulse is stretched and amplified and its height represents a measurement of the time-difference. With this method we got a time resolution of 2τ = 7 x 10 -12 s with artificial pulses, 2τ = 3 x 10 -10 s with Co 60 γ-coincidences by using NE 102 plastic crystals and 2τ = 1.4 x 10 -9 s with 511-keV γ-coincidences using NaI(Te) crystals. The method was also used with pulsed beam techniques. In this case we got from the pulsing RF an 8-Mc, sharply-peaked pulse-sequence, which was fed to the E80T plates. We had a time-resolution of 2τ = 1.1 x 10 -9 s with 4-MeV neutrons using plastic crystals 0.7 in long. Normally the region of linear response was 30 ns but it was possible to go up to 120 ns. (author) [fr

  20. An Apple II -based bidimensional pulse height analyser

    International Nuclear Information System (INIS)

    Bateman, J.E.; Flesher, A.C.; Honeyman, R.N.; Pritchard, T.E.; Price, W.P.R.

    1984-06-01

    The implementation of a pulse height analyser function in an Apple II microcomputer using minimal purpose built hardware is described. Except for a small interface module the system consists of two suites of software, one giving a conventional one dimensional analysis on a span of 1024 channels, and the other a two dimensional analysis on a 128 x 128 image format. Using the recently introduced ACCELERATOR coprocessor card the system performs with a dead time per event of less than 50 μS. Full software facilities are provided for display, storage and processing of the data using standard Applesoft BASIC. (author)

  1. Baseline distortion effect on gamma-ray pulse-height spectra in neutron capture experiments

    International Nuclear Information System (INIS)

    Laptev, A.; Harada, H.; Nakamura, S.; Hori, J.; Igashira, M.; Ohsaki, T.; Ohgama, K.

    2005-01-01

    A baseline distortion effect due to gamma-flash at neutron time-of-flight measurement using a pulse neutron source has been investigated. Pulses from C 6 D 6 detectors accumulated by flash-ADC were processed with both standard analog-to-digital converter (ADC) and flash-ADC operational modes. A correction factor of gamma-ray yields, due to baseline shift, was quantitatively obtained by comparing the pulse height spectra of the two data-taking modes. The magnitude of the correction factor depends on the time after gamma-flash and has complex time dependence with a changing sign

  2. Some studies on the pulse-height loss due to capacitive decay in the detector-circuit of parallel plate ionization chambers

    International Nuclear Information System (INIS)

    Sharma, S.L.; Anil Kumar, G.; Choudhury, R.K.

    2006-01-01

    Pulse-type ionization chambers are invariably operated in the electron-sensitive mode where the capacitive decay in the detector-circuit during the electron collection produces loss in the pulse-height. In order to understand and appreciate the effect of this capacitive decay on the detector response, we have carried out Monte Carlo simulations of the response of two-electrode parallel plate ionization chambers with and without the capacitive decay keeping shaping time so large that the ballistic deficit is negligibly small. These simulations have been carried out incorporating the physical processes, namely, emission of charged particles from a point radioactive source, the generation of charge carriers in the active volume, separation and acceleration of the charge carriers, transport of the charge carriers, induction of charges on the electrodes, pulse processing by preamplifier-amplifier network, etc. These simulations have shown that the concerned capacitive decay produces appreciable loss in the pulse-height, if the detector-circuit time constant is of the order of maximum electron collection time. We have also carried out measurements on the pulse-height loss due to the capacitive decay in the detector-circuit during the electron collection for a two-electrode parallel plate ionization chamber. The experimental data on the pulse-height loss match reasonably well with the theoretical predictions

  3. High-speed nuclear quality pulse height analyzer for synchrotron-based applications

    International Nuclear Information System (INIS)

    Beche, Jean-Francois; Bucher, Jerome J.; Fabris, Lorenzo; Riot, Vincent J.

    2001-01-01

    A high throughput Pulse Height Analyzer system for synchrotron-based applications requiring high resolution, high processing speed and low dead time has been developed. The system is comprised of a 120ns 12-bit nuclear quality Analog to Digital converter with a self-adaptive fast peak detector-stretcher and a custom-made fast histogramming memory module that records and processes the digitized data. The histogramming module is packaged in a VME or VXI compatible interface. Data is transferred through a fast optical link from the memory interface to a computer. A dedicated data acquisition program matches the hardware characteristics of the histogramming memory module. The data acquisition system allows for two data collection modes: ''standard'' data acquisition mode where the data is accumulated and read in synchronization with an external trigger and ''live'' data acquisition mode where the system operates as a standard Pulse Height Analyzer. The acquisition, standard or live, can be performed on several channels simultaneously. A two-channel prototype has been demonstrated at the Stanford Synchrotron Radiation Laboratory accelerator in conjunction with an X-ray Fluorescence Absorption Spectroscopy experiment. A detailed description of the entire system is given and experimental data is shown

  4. Developments of quad channel pulse height analyzer for radon/thoron measurement

    International Nuclear Information System (INIS)

    Ashokkumar, P.; Raman, Anand; Babu, D.A.R.; Sharma, D.N.; Topkar, Anita; Mayya, Y.S.

    2011-01-01

    Radon and thoron are naturally occurring noble radioactive gases, the exposure to which has a linear relationship to lung cancer risk. This paper describes development of an automated Radon/Thoron measurement system using an indigenously developed silicon PIN diode. This system employs the 8051 core architecture based Si-lab microcontroller (C-8051F340) integrated with LCD display, hex key pad, non volatile flash memory besides I/O ports interfaced with humidity-temperature sensors and air sampling pump. Air is sampled through a dehumidifier by using a software controlled dc pump. The positively charged progeny atoms are electro statically collected over the detector surface and the deposited radioactivity is assessed by alpha pulse height discrimination technique. The ionization charges produced due to the interaction of alpha particles in the charge depletion region of the diode which is reverse biased at 40V are collected and measured. The measurement circuit uses a charge sensitive preamplifier developed around a low noise opamp IC. The pulses are further processed through a spectroscopy amplifier to obtain distinct pulse height levels for four of the alpha emitting progenies of Rn and Tn namely 210 Po, 214 Po, 216 Po and 212 Po. These signals are input to the quad channel analyzer which provides four individual TTL pulses corresponding to four nuclides mentioned above. The analyzer outputs are processed by the microcontroller module to obtain the Rn/Tn concentration in Bq/M 3 . This portable system stores one week hourly individual channel data along with the corresponding Rn/Tn concentrations, temperature, humidity and can be transferred to pc. Preliminary studies have indicated that sensitivity as low as 0.50 cph/Bq.m -3 can be achieved by this system. (author)

  5. Applying a CPLD for Refurbishment of a Multi-channel Pulse Height Analyzer

    International Nuclear Information System (INIS)

    Leetragunpichitchai, Supalerk; Thong-Aram, Decho; Ploykrachang, Kamontip

    2007-08-01

    Full text: This research applied a CPLD for construction of a 100 MHz, 2048 channel, Wilkinson type analog to digital converter (ADC) circuits for refurbishment of an original multi-channel pulse height analyzer (PHA) ADC. Introduction of the CPLD could reduce the complexity of the circuits, equipment size and also the power consumption while the operation speed was increased. The linearity test of the ADC was found to be excellent with an R2 = 0.9995 and a maximum pulse rate of 48.828 k cps could be converted in this system. Therefore the developed system was appropriate for replacing the original ADC

  6. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  7. Ground level cosmic ray pulse height spectrum of a 7. 5 cm diameter spherical NaI(Tl) scintillation detector for energy region below 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1988-09-01

    Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector was evaluated through stripping operation based on a pulse height spectrum measured on the sea and high precision response functions of the detector for U-series, Th-series and /sup 40/K. The exposure rate calculated from the determined cosmic ray pulse height spectrum was 0.21 R/h eq., which agreed well with that obtained from another method. The shape of the pulse height spectrum showed similarity to that measured at the altitude of 16,000 ft, especially in the energy region of 0 to 3 MeV. The principle of the adopted method is rather plain, however, the reliability of the spectrum is satisfactory. As the pulse height spectrum is a common information to any analytical method for environmental gamma ray using NaI(Tl) scintillation detector, it is expected to be used for simple and precise separation of cosmic ray component involved in the enviromental pulse height spectrum.

  8. Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector for energy region below 5 MeV

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1988-01-01

    Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector was evaluated through stripping operation based on a pulse height spectrum measured on the sea and high precision response functions of the detector for U-series, Th-series and 40 K. The exposure rate calculated from the determined cosmic ray pulse height spectrum was 0.21 μR/h eq., which agreed well with that obtained from another method. The shape of the pulse height spectrum showed similarity to that measured at the altitude of 16,000 ft, especially in the energy region of 0 to 3 MeV. The principle of the adopted method is rather plain, however, the reliability of the spectrum is satisfactory. As the pulse height spectrum is a common information to any analytical method for environmental gamma ray using NaI(Tl) scintillation detector, it is expected to be used for simple and precise separation of cosmic ray component involved in the enviromental pulse height spectrum. (author)

  9. Drift chamber and pulse height readout systems using analog multiplexing

    International Nuclear Information System (INIS)

    Cisneros, E.L; Kang, H.K.; Hall, J.N.; Larsen, R.S.

    1976-11-01

    Drift chamber and pulse-height readout systems are being developed for use in a new large scale detector at the SPEAR colliding beam facility. The systems are based upon 32 channels of sample-and-hold together with an analog multiplexer in a single-width CAMAC module. The modules within each crate are scanned by an autonomous controller containing a single ADC and memory plus arithmetic capability for offset, gain and linearity corrections. The drift chamber module has a facility for extracting hit wire information for use in trigger decision circuitry

  10. Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks

    International Nuclear Information System (INIS)

    Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.

    1988-01-01

    Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron temperature, the Be filter thickness, and the electronic parameters of the acquisition system are known. PG 1810,1812 ID 131801CON N X-ray diagnostics TT Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks AU S. Sesnic, M. Diesso, K. Hill, and A. Holland LO Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 AU F. Pohl LO Max-Planck Institut fuer Plasmaphysik, 8046-Garching, Federal Republic of Germany SD (Presented on 16 March 1988) AB Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron tempe

  11. Single-electron multiplication statistics as a combination of Poissonian pulse height distributions using constraint regression methods

    International Nuclear Information System (INIS)

    Ballini, J.-P.; Cazes, P.; Turpin, P.-Y.

    1976-01-01

    Analysing the histogram of anode pulse amplitudes allows a discussion of the hypothesis that has been proposed to account for the statistical processes of secondary multiplication in a photomultiplier. In an earlier work, good agreement was obtained between experimental and reconstructed spectra, assuming a first dynode distribution including two Poisson distributions of distinct mean values. This first approximation led to a search for a method which could give the weights of several Poisson distributions of distinct mean values. Three methods have been briefly exposed: classical linear regression, constraint regression (d'Esopo's method), and regression on variables subject to error. The use of these methods gives an approach of the frequency function which represents the dispersion of the punctual mean gain around the whole first dynode mean gain value. Comparison between this function and the one employed in Polya distribution allows the statement that the latter is inadequate to describe the statistical process of secondary multiplication. Numerous spectra obtained with two kinds of photomultiplier working under different physical conditions have been analysed. Then two points are discussed: - Does the frequency function represent the dynode structure and the interdynode collection process. - Is the model (the multiplication process of all dynodes but the first one, is Poissonian) valid whatever the photomultiplier and the utilization conditions. (Auth.)

  12. Population distribution of atomic uranium in the afterglow of a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Demers, Yves; Gagne, J.-M.; Pianarosa, Piero

    1987-01-01

    From laser absorption measurements we have deduced the time evolution of the population distribution of atomic uranium in the afterglow of a pulsed hollow-cathode type discharge. The vapour generator operates with xenon as the discharge sustaining gas at a pressure of 280 Pa (2.1 Torr). The current pulse characteristics are width 250 μs and height 1.5 A. The pulse repetition frequency is 100 Hz. It is shown that the populations in the three metastable levels at 6249, 3868 and 3800 cm -1 decrease almost exponentially in a time interval between 150 and 300 μs. From 400 μs onwards in the afterglow, the atom population is essentially shared between the ground and the first metastable (620 cm -1 ) levels. Furthermore, starting from 9 ms in the afterglow more than 80% of the U atoms are found in the ground level. (author)

  13. The role of the waveform in pulse pile-up

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up is the distortion of pulse-height distributions due to the overlap of detector responses to the arrival of two or more particles or photons within the detector resolving time. This paper presents a computational technique for simulating pile-up effects, which includes explicitly the dependence on the pulse-shape of the detector system. The basis of the technique is the manipulation of probability densities. The method is applicable to all types of linear pulse counting systems for nucleons, electrons, and photons, as long as the result is a pulse-height distribution. The algorithms are highly efficient in the amount of computing required for simulations, and internal checks for the numerical accuracy of the results are included. Studies of pile-up by monoenergetic pulses are used to determine the interrelationship between pulse shapes and spectral features; this information can be used to minimize pile-up. For broad spectra, the square wave approximation is compared with the present model including the correct waveform; introducing the pulse shape information smooths spectral features but does not qualitatively change the spectrum. (Auth.)

  14. Pulse height defect in ion implanted silicon detector for heavy ions with Z=6-28 in the energy range ∼ 0.25-2.5 MeV/u

    International Nuclear Information System (INIS)

    Diwan, P.K.; Sharma, V.; Shyam Kumar; Avasthi, D.K.

    2005-01-01

    The response of ion implanted silicon detector has been studied for heavy ions with Z= 6-28 in the energy range ∼ 0.25-2.5 MeV/u utilizing the 15UD Pelletron Accelerator facility at Nuclear Science Centre, New Delhi, India. The variation of pulse height in ion implanted silicon detector with projectile's atomic number and its energy have been investigated. It has been observed that pulse height-energy calibration for a given projectile is described well by a linear relationship indicating no pulse height defect with the variation in energy for specific Z projectile. Pulse height defect has been found to increase with increasing projectile atomic number. The mean slope of the collected charge signal versus projectile energy depends significantly on the atomic number of the projectile. (author)

  15. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    Science.gov (United States)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  16. Device for flattening statistically distributed pulses

    International Nuclear Information System (INIS)

    Il'kanaev, G.I.; Iskenderov, V.G.; Rudnev, O.V.; Teller, V.S.

    1976-01-01

    The description is given of a device that converts the series of statistically distributed pulses into a pseudo-uniform one. The inlet pulses switch over the first counter, and the second one is switched over by the clock pulses each time the uniformity of the counters' states is violated. This violation is recorded by the logic circuit which passes to the output the clock pulses in the amount equal to that of the pulses that reached the device inlet. Losses at the correlation between the light velocity and the sampling rate up to 0.3 do not exceed 0.7 per cent for the memory of pulse counters 3, and 0.035 per cent for memory 7

  17. Development of a PDA Based Portable Pulse Height Analyzer System

    International Nuclear Information System (INIS)

    Mankheed, Panuphong; Ngernvijit, Narippawaj; Thong-Aram, Decho

    2007-08-01

    Full text: In this research a portable pulse height analyzer system was developed by application of a Personal Digital Assistant (PDAs) palm Tungsten T model together with Single Chip SCA developed by Department of Nuclear Technology, Chulalongkorn University to be used for education and research works. Capability of the developed system could measure both the energy and the average count rate of gamma rays. The results of this research showed that the gamma energy spectrum analysis of the developed system with a 2? x 2? NaI(Tl) detector could display photo peaks of Cs-137 and Co-60 at channel 57, channel 103, and channel 117 respectively. The energy resolution was found to be 7.14% at energy 661.66 keV of Cs-137

  18. Height distribution tails in the Kardar-Parisi-Zhang equation with Brownian initial conditions

    Science.gov (United States)

    Meerson, Baruch; Schmidt, Johannes

    2017-10-01

    For stationary interface growth, governed by the Kardar-Parisi-Zhang (KPZ) equation in 1 + 1 dimensions, typical fluctuations of the interface height at long times are described by the Baik-Rains distribution. Recently Chhita et al (2016 arXiv:1611.06690) used the totally asymmetric simple exclusion process (TASEP) to study the height fluctuations in systems of the KPZ universality class for Brownian interfaces with arbitrary diffusion constant. They showed that there is a one-parameter family of long-time distributions, parameterized by the diffusion constant of the initial random height profile. They also computed these distributions numerically by using Monte Carlo (MC) simulations. Here we address this problem analytically and focus on the distribution tails at short times. We determine the (stretched exponential) tails of the height distribution by applying the optimal fluctuation method (OFM) to the KPZ equation. We argue that, by analogy with other initial conditions, the ‘slow’ tail holds at arbitrary times and therefore provides a proper asymptotic to the family of long-time distributions studied in Chhita et al (2016 arXiv:1611.06690). We verify this hypothesis by performing large-scale MC simulations of a TASEP with a parallel-update rule. The ‘fast’ tail, predicted by the OFM, is also expected to hold at arbitrary times, at sufficiently large heights.

  19. Fast Computation of Pulse Height Spectra Using SGRD Code

    Directory of Open Access Journals (Sweden)

    Humbert Philippe

    2017-01-01

    Full Text Available SGRD (Spectroscopy, Gamma rays, Rapid, Deterministic code is used for fast calculation of the gamma ray spectrum produced by a spherical shielded source and measured by a detector. The photon source lines originate from the radioactive decay of the unstable isotopes. The emission rate and spectrum of these primary sources are calculated using the DARWIN code. The leakage spectrum is separated in two parts, the uncollided component is transported by ray-tracing and the scattered component is calculated using a multigroup discrete ordinates method. The pulsed height spectrum is then simulated by folding the leakage spectrum with the detector response functions which are pre-calculated using MCNP5 code for each considered detector type. An application to the simulation of the gamma spectrum produced by a natural uranium ball coated with plexiglass and measured using a NaI detector is presented.

  20. Computer model for calculating gamma-ray pulse-height spectra for logging applications

    International Nuclear Information System (INIS)

    Evans, M.L.

    1981-01-01

    A generalized computer model has been devised to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma and spectral gamma-ray logs. The technique can help provide corrections to airborne and surface radiometric survey logs for the effects of varying altitude, formation composition, and overburden. Applied to borehole logging, the model can yield estimates of the effects of varying borehole fluid and casing attenuations, as well as varying formation porosity and saturation

  1. Time-correlated pulse-height measurements of low-multiplying nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.C., E-mail: ericcm@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Dolan, J.L.; Clarke, S.D.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Tomanin, A.; Peerani, P. [European Commission EC-JRC-IPSC, Ispra (Italy); Marleau, P. [Sandia National Laboratories, Livermore, CA (United States); Mattingly, J.K. [North Carolina State University, Raleigh, NC (United States)

    2013-11-21

    Methods for the determination of the subcritical neutron multiplication of nuclear materials are of interest in the field of nuclear nonproliferation and safeguards. A series of measurements were performed at the Joint Research Center facility in Ispra, Italy to investigate the possibility of using a time-correlated pulse-height (TCPH) analysis to estimate the sub-critical multiplication of nuclear material. The objective of the measurements was to evaluate the effectiveness of this technique, and to benchmark the simulation capabilities of MCNPX-PoliMi/MPPost. In this campaign, two low-multiplication samples were measured: a 1-kg mixed oxide (MOX) powder sample and several low-mass plutonium–gallium (PuGa) disks. The measured results demonstrated that the sensitivity of the TCPH technique could not clearly distinguish samples with very-low levels of multiplication. However, the simulated TCPH distributions agree well with the measured data, within 12% for all cases, validating the simulation capabilities of MCNPX-PoliMi/MPPost. To investigate the potential of the TCPH method for identifying high-multiplication samples, the validated MCNPX-PoliMi/MPPost codes were used to simulate sources of higher multiplications. Lastly, a characterization metric, the cumulative region integral (CRI), was introduced to estimate the level of multiplication in a source. However, this response was shown to be insensitive over the range of multiplications of interest. -- Highlights: •Present results of measurements of MOX fuel and PuGa disks. •Compared measurement results to simulations performed using MCNPX-Polimi and MPPost. •Investigated using correlated γ–n pairs to determine the multiplication of a system.

  2. FPGA-based technology for Pulse Height Analysis in nuclear spectrometry system

    International Nuclear Information System (INIS)

    Andrianiaina, H.; Raoelina Andriambololona; Rajaobelison, J.; Rambolamanana, G.; Roengen, H.

    2009-01-01

    Facing the rapid technology development applied in nuclear instruments, Madagascar-INSTN has taken measures to estabilish and enhance the national capabilities in their maintenance, calibration, design/modification and repair, which is a key factor in the development of sustainable nuclear technology.The maintenance will be more convenient if all technical resources are made available: this is only possible when the acces to designer side of the instruments is permitted. Research and instrumentation development projects have been developed to support and to fit the local needs: Pulse Height Analysis algorithm is designed within FPGA and VHDL programming technics to build a Multi-Input Multi-Channel Analyzer. Description and measurement results with the MIMCA will be described in the present paper

  3. Distribution of rain height over subtropical region: Durban, South Africa for satellite communication systems

    Science.gov (United States)

    Olurotimi, E. O.; Sokoya, O.; Ojo, J. S.; Owolawi, P. A.

    2018-03-01

    Rain height is one of the significant parameters for prediction of rain attenuation for Earth-space telecommunication links, especially those operating at frequencies above 10 GHz. This study examines Three-parameter Dagum distribution of the rain height over Durban, South Africa. 5-year data were used to study the monthly, seasonal, and annual variations using the parameters estimated by the maximum likelihood of the distribution. The performance estimation of the distribution was determined using the statistical goodness of fit. Three-parameter Dagum distribution shows an appropriate distribution for the modeling of rain height over Durban with the Root Mean Square Error of 0.26. Also, the shape and scale parameters for the distribution show a wide variation. The probability exceedance of time for 0.01% indicates the high probability of rain attenuation at higher frequencies.

  4. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  5. Apparent Transition in the Human Height Distribution Caused by Age-Dependent Variation during Puberty Period

    Science.gov (United States)

    Iwata, Takaki; Yamazaki, Yoshihiro; Kuninaka, Hiroto

    2013-08-01

    In this study, we examine the validity of the transition of the human height distribution from the log-normal distribution to the normal distribution during puberty, as suggested in an earlier study [Kuninaka et al.: J. Phys. Soc. Jpn. 78 (2009) 125001]. Our data analysis reveals that, in late puberty, the variation in height decreases as children grow. Thus, the classification of a height dataset by age at this stage leads us to analyze a mixture of distributions with larger means and smaller variations. This mixture distribution has a negative skewness and is consequently closer to the normal distribution than to the log-normal distribution. The opposite case occurs in early puberty and the mixture distribution is positively skewed, which resembles the log-normal distribution rather than the normal distribution. Thus, this scenario mimics the transition during puberty. Additionally, our scenario is realized through a numerical simulation based on a statistical model. The present study does not support the transition suggested by the earlier study.

  6. Global Distribution of Planetary Boundary Layer Height Derived from CALIPSO

    Science.gov (United States)

    Huang, J.

    2015-12-01

    The global distribution of planetary boundary layer (PBL) height, which was estimated from the attenuated back-scatter observations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), is presented. In general, the PBL is capped by a temperature inversion that tends to trap moisture and aerosols. The gradient of back-scatter observed by lidar is almost always associated with this temperature inversion and the simultaneous decrease of moisture content. Thus, the PBL top is defined as the location of the maximum aerosol scattering gradient, which is analogous to the more conventional thermodynamic definition. The maximum standard deviation method, developed by Jordan et al. (2010), is modified and used to derive the global PBL heights. The derived PBL heights are not only consistent with the results of McGrath-Spangler and Denning (2012) but also agree well with the ground-based lidar measurements. It is found that the correlation between CALIPSO and the ground-based lidar was 0.73. The seasonal mean patterns from 4-year mid-day PBL heights over global are demonstrated. Also it is found that the largest PBL heights occur over the Tibetan Plateau and the coastal areas. The smallest PBL heights appear in the Tarim Basin and the northeast of China during the local winter. The comparison of PBL heights from CALIPSO and ECMWF under different land-cover conditions showed that, over ocean and forest surface, the PBL height estimated from the CALIPSO back-scatter climatology is larger than the ones estimated from ECMWF data. However, the PBL heights from ECMWF, over grass land and bare land surface in spring and summer are larger than the ones from CALIPSO.

  7. Polarization extinction ratio and polarization dependent intensity noise in long-pulse supercontinuum generation (Conference Presentation)

    DEFF Research Database (Denmark)

    Chin, Catherine; Engelsholm, Rasmus Dybbro; Moselund, Peter Morten

    2017-01-01

    to 2200 nm, and fast photo detectors, to record 800 consecutive pulses. Peaks from these pulses are first extracted, then distribution of their pulse height histogram (PHH) is constructed. Analysis using higher-order moments about the mean (variance, skewness and kurtosis) showed that: (1) around the pump...

  8. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  9. Application of avalanche photodiode for soft X-ray pulse-height analyses in the Ht-7 tokamak

    CERN Document Server

    Shi Yue Jiang; Hu Li Qun; Sun Yan Jun; LiuSheng; Ling Bil

    2002-01-01

    An avalanche photodiode (APD) has been used as soft X-ray energy pulse-height analysis system for the measurement of the electron temperature on the HT-7 tokamak. The experimental results obtained with the APD with its inferior energy resolution show a little difference compared to the conventional high energy-resolution Si (Li) detector. Both numerical analysis and experimental results prove that the APD is good enough for application of the electron temperature measurement in tokamaks.

  10. Multi-level modelling of the response of the ultraminiature proportional counter: gas gain phenomena and pulse height spectra

    International Nuclear Information System (INIS)

    Olko, P.; Moutarde, C.; Segur, P.

    1995-01-01

    The ultraminiature proportional counters, UMC, unique radiation detectors for monitoring high intensity therapy fields, designed by Kliauga and operated at Columbia University (USA), have yielded a number of pulse height distributions for photons, neutrons and ions at simulated diameters of 5-50 nm. Monte Carlo calculations of the gas gain in such a counter questioned the possibility of achieving proportionally at such low simulated diameters. The response of the UMC has now been modelled taking into account both fluctuations of energy deposited in the counter volume and its calculated gas gain. Energy deposition was calculated using the MOCA-14, MOCA-8 and TRION codes, whereby distributions of ionisations d(j) after irradiations with 137 Cs, 15 MeV neutrons and 7 MeV.amu -1 deuterons were obtained. Monte Carlo calculations of electron avalanches in UMC show that the size of the single-electron avalanche P(n) reaching the anode depends strongly on the location of the primary ionisation within the counter volume. Distributions of the size of electron avalanches for higher numbers of primary ionisations, P *j (n), were obtained by successive convolutions of P(n). Finally, the counter response was obtained by weighting P *j (n) over d(j) distributions. On comparing the measured and calculated spectra it was concluded that the previously proposed single-electron peak calibration method might not be valid for the UMC due to the excessive width and overlap of electron avalanche distributions. Better agreement between the measured and calculated spectra is found if broader electron avalanche distributions than those used in the present calculations, are assumed. (author)

  11. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  12. Improved stabilization scheme for computerized pulse-height analyzers

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1982-01-01

    A stabilization scheme has been adapted from a 24-bit to a 16-bit computer. A precision pulse generator produces tagged reference pulses alternately of high and low amplitude. Gain and zero corrections are obtained from these and applied to each normal event. Provisions are made to make the system robust against pileup corruption of the reference pulses. (orig.)

  13. Wave Height Distribution Observed by Ships in the North Atlantic

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup; Schrøter, Carsten; Jensen, Jørgen Juncher

    2005-01-01

    for the significant wave height, the relative speed and the ship heading relative to the wave direction is given. This distribution shows that for higher waves the crews avoid sailing in following sea and as expected the speed is decreased in higher waves. There is, however, still a relatively high probability...

  14. Method for measuring the stochastic properties of corona and partial-discharge pulses

    International Nuclear Information System (INIS)

    Van Brunt, R.J.; Kulkarni, S.V.

    1989-01-01

    A new method is described for measuring the stochastic behavior of corona and partial-discharge pulses which utilizes a pulse selection and sorting circuit in conjunction with a computer-controlled multichannel analyzer to directly measure various conditional and unconditional pulse-height and pulse-time-separation distributions. From these measured distributions it is possible to determine the degree of correlation between successive discharge pulses. Examples are given of results obtained from measurements on negative, point-to-plane (Trichel-type) corona pulses in a N 2 /O 2 gas mixture which clearly demonstrate that the phenomenon is inherently stochastic in the sense that development of a discharge pulse is significantly affected by the amplitude of and time separation from the preceding pulse. It is found, for example, that corona discharge pulse amplitude and time separation from an earlier pulse are not independent random variables. Discussions are given about the limitations of the method, sources of error, and data analysis procedures required to determine self-consistency of the various measured distributions

  15. Distribution of barrier heights in Au/porous GaAs Schottky diodes from current-voltage-temperature measurements

    International Nuclear Information System (INIS)

    Harrabi, Z.; Jomni, S.; Beji, L.; Bouazizi, A.

    2010-01-01

    In this work, we have studied the electrical characteristics of the Au/porous GaAs/p-GaAs diodes as a function of temperature. The (I-V)-T characteristics are analysed on the basis of thermionic emission (TE). The temperature behaviour of the barrier height potential and the ideality factor demonstrate that the current transport is controlled by the thermionic emission mechanism (TE) with Gaussian distribution of the barrier height potential. The Gaussian distribution of barrier height potential is due to barrier inhomogeneity, which is suggested to be caused by the presence of the porous GaAs interfacial layer. The experimental (I-V)-T characteristics of the Au/porous GaAs/p-GaAs heterostructure demonstrate the presence of a two Gaussian distributions having a mean barrier height potential Φ b0 -bar of about 0.67 and 0.54 V and standard deviations σ s 2 of about 8.4x10 -3 and 4.2x10 -3 V, respectively. Using the obtained standard deviation, the obtained Richardson constant value is in accordance with the well documented value (79.2 A cm -2 K -2 ) of p-type GaAs and the mean barrier height Φ b0 -bar is closed to the band gap of GaAs. The obtained values prove that the I-V-T characteristics of Au/porous GaAs/p-GaAs heterostructure are governed by the TE mechanism theory with two Gaussian distributions of barrier heights.

  16. Electro-optic measurement of terahertz pulse energy distribution

    NARCIS (Netherlands)

    Sun, J.H.; Gallacher, J.G.; Brussaard, G.J.H.; Lemos, N.; Issac, R.; Huang, Z.X.; Dias, J.M.; Jaroszynski, D.A.

    2009-01-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz

  17. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    Science.gov (United States)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P forests (R2 = 0.93, P forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  18. Description and verification of an algorithm for obtaining microdosimetric quantities for high-LET radiation using a single TEPC without pulse height analysis.

    Science.gov (United States)

    Borak, Thomas B; Chapman, Phillip L

    2014-10-01

    Microdosimetric spectra of single event distributions have been used to provide estimates of quality factors for radiation protection of high-LET radiation. In situations with high-dose rates it becomes difficult to measure, record and store energy deposition from single events. An alternative approach is to store random energy deposition events in a sequence of fixed time intervals that does not require identifying from single events. This can be accomplished with a single detector without pulse height analysis. We show the development of the algorithm using expectation analysis of the statistical estimators for moments of lineal energy: ȳf and ȳD. The method was tested using Monte Carlo simulations based on single event distributions measured with spherical tissue equivalent proportional counters where the event sizes spanned more than two orders of magnitude. The evaluation included testing at various mean numbers of events per interval (i.e., dose rate) and numbers of intervals (i.e., total duration). Results of the expectation analysis and Monte Carlo simulation showed that the algorithm corrects for the excess dispersion due to the random number of events in each time interval when the underlying dose rate is constant. It also converges to the correct value when there is a linear trend in dose rate of the duration of the measurement process. Although this system is not applicable for pulsed radiation fields it proved to be robust when applied to measured distributions with single event spectra (PuBe neutrons, Fe ions at 1,000 MeV/nucleon and a power function distribution of single event sizes) with a coefficient of variation of 25% for estimates of ȳD using 100 sampling intervals and 10% using 400 sampling intervals.

  19. Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean

    Science.gov (United States)

    Choi, Byung Ho; Hong, Sung Jin; Pelinovsky, Efim

    2006-07-01

    A massive earthquake with magnitude 9.3 occurred on December 26, 2004 off the northern Sumatra generated huge tsunami waves affected many coastal countries in the Indian Ocean. A number of field surveys have been performed after this tsunami event; in particular, several surveys in the south/east coast of India, Andaman and Nicobar Islands, Sri Lanka, Sumatra, Malaysia, and Thailand have been organized by the Korean Society of Coastal and Ocean Engineers from January to August 2005. Spatial distribution of the tsunami runup is used to analyze the distribution function of the wave heights on different coasts. Theoretical interpretation of this distribution is associated with random coastal bathymetry and coastline led to the log-normal functions. Observed data also are in a very good agreement with log-normal distribution confirming the important role of the variable ocean bathymetry in the formation of the irregular wave height distribution along the coasts.

  20. Research on determine the absolute neutron output of distributed pulse generators

    International Nuclear Information System (INIS)

    Li Bojun; Tang Zhangkui; Wang Dong; Yang Gaozhao; Peng Taiping

    2009-01-01

    In order to determine the absolute neutron output of distributed pulse generators, we deduced equivalent length to deal with experimental data, according to the different layout and weighting of multiple pulse generators. The deposited energy in scintillation crystal and the integral flux which drilling through crystal interface was simulated by MCNP code. The result shows the simulated proportion of different distributed pulse generators is approximately agreed with experimental data. The validity of the equivalent length model was proved by the consistent results between calculation and experimental data. (authors)

  1. Pulse pile-up in nuclear particle detection systems with rapidly varying counting rates

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up in nuclear particle detection systems is the distortion of the measured pulse height distribution which occurs when there is a significant probability that more than one particle will arrive within the detector resolving time. This paper treats the problem in cases where the probability of pile-up varies on a time scale comparable to the rise time of the detector system electronics. These variations introduce structure into the pulse height distributions which cannot occur for a time-independent pile-up probability. Three classes of problems which exemplify these effects are as follows: 1) Pile-up rejection circuits. 2) Cascaded nuclear decays, in which the lifetime for emission of a second X-ray is comparable to the detector rise time. 3) Bursts of particles where the intensity is modulated on a time scale comparable to the detector rise time. These problems are solved computationally by an extension of a numerical technique previously developed. (Auth.)

  2. The development of 128 ch fast multi channel pulse height analyzer for a tokamak plasmas

    International Nuclear Information System (INIS)

    Kawashima, Hisato; Matoba, Tohru; Ogawa, Toshihide; Kawakami, Tomohide

    1985-02-01

    A high counting rate multi channel pulse height analyzer was developed and tested to measure the detailed time evolution of X-ray energy spectrun radiated from a tokamak plasmas. Main developing objects of this analyzer are as follows. 1. The maximum counting rate and the minimum time resolution are 4 Mcps and 10 ms, respectively. 2. The energy resolution has ability to distinguish the characterisitic X-ray line. 3. Computer has to be used for operating system. This fast multi channel analyzer is using to measure the Soft X-ray spectrum on JFT-2M tokamak, and is confirmed to be useful for a practical measuring system. (author)

  3. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.

    Science.gov (United States)

    Weaver, Carolyn A; Armitage, Anna R

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010-2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  4. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment

    Science.gov (United States)

    Armitage, Anna R.

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010–2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  5. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    Energy Technology Data Exchange (ETDEWEB)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn (Germany); Haud, U., E-mail: pkalberla@astro.uni-bonn.de [Tartu Observatory, 61602 Tõravere (Estonia)

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  6. Pulse height distribution and radiation tolerance of CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dangelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F. E-mail: f.hartjes@nikhef.nl; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; D.Tromson,; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.; Fenyvesi, A.; Molnar, J.; Sohler, D

    2000-06-01

    The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal.

  7. Pulse height distribution and radiation tolerance of CVD diamond detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dangelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; D.Tromson,; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.; Fenyvesi, A.; Molnar, J.; Sohler, D.

    2000-01-01

    The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal

  8. Height and weight distribution of lower-middle income group of radiation workers

    International Nuclear Information System (INIS)

    Datta, S.; Sharma, R.C.; Sunta, C.M.

    1982-01-01

    Workers in the nuclear industry who are occasionally exposed to a radioactive environment were monitored for possible internal contamination. Calibration of the detection equipment was carried out with the help of a phantom. It is imperative that the phantom should have the physical dimensions of the subjects being monitored. As a step towards evolving a reference phantom, the height and weight distribution of the workers has been studied. The subjects included in this study are from lower middle income group drawing salaries between Rs 500 to 1000 per month. Mean weight +- SD was found to be 56.2 +- 8.70 kg and height 167 +- 5.90 cm. these averages match well with the data given by certain Life Insurance Companies in India. Although mean weight was found to be appreciably higher than the value reported in 1966, based on autopsy data, the mean weight and height are much less than the reference man values adopted by International Commission on Radiological Protection (ICRP) which are based on western man (average weight = 70 kg., average height = 174 cm). (author)

  9. Pulse shape analyzer/timing-SCA application to beta measurement

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2001-01-01

    Electrical noise contribution to pulse height distributions from beta sources due to BC-400 plastic scintillator(PS), preamplifier and spectroscopy amplifier was rejected by setting the electronic set-up processing of the modified beta spectrometer consisted of pulse shape analyzer/timing single channel analyzer (PSA/SCA) and related complementary equipments. Improved noise rejection performance was evaluated in terms of elimination practically only all of the noise band of C-14 and Tl-204 spectra obtained using the two alternate beta spectrometer

  10. Pulse height distribution and radiation tolerance of CVD diamond detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal. (11 refs).

  11. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    Devanney, J.A.

    1974-01-01

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  12. Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses

    International Nuclear Information System (INIS)

    Hergenroeder, R; Miclea, M; Hommes, V

    2006-01-01

    The laser generation of size-controlled semiconductor nanoparticle formation under gas phase conditions is investigated. It is shown that the size distribution can be changed if picosecond pulse sequences of tailored ultra short laser pulses (<200 fs) are employed. By delivering the laser energy in small packages, a temporal energy flux control at the target surface is achieved, which results in the control of the thermodynamic pathway the material takes. The concept is tested with silicon and germanium, both materials with a predictable response to double pulse sequences, which allows deduction of the materials' response to complicated pulse sequences. An automatic, adaptive learning algorithm was employed to demonstrate a future strategy that enables the definition of more complex optimization targets such as particle size on materials less predictable than semiconductors

  13. Control of a pulse height analyzer using an RDX workstation

    International Nuclear Information System (INIS)

    Montelongo, S.; Hunt, D.N.

    1984-12-01

    The Nuclear Chemistry Division of Lawrence Livermore National laboratory is in the midst of upgrading its radiation counting facilities to automate data acquisition and quality control. This upgrade requires control of a pulse height analyzer (PHA) from an interactive LSI-11/23 workstation running RSX-11M. The PHA is a micro-computer based multichannel analyzer system providing data acquisition, storage, display, manipulation and input/output from up to four independent acquisition interfaces. Control of the analyzer includes reading and writing energy spectra, issuing commands, and servicing device interrupts. The analyzer communicates to the host system over a 9600-baud serial line using the Digital Data Communications link level Protocol (DDCMP). We relieved the RSX workstation CPU from the DDCMP overhead by implementing a DEC compatible in-house designed DMA serial line board (the ISL-11) to communicate with the analyzer. An RSX I/O device driver was written to complete the path between the analyzer and the RSX system by providing the link between the communication board and an application task. The I/O driver is written to handle several ISL-11 cards all operating in parallel thus providing support for control of multiple analyzers from a single workstation. The RSX device driver, its design and use by application code controlling the analyzer, and its operating environment will be discussed

  14. A multistation pulse height analysis system based on a PDP9L computer

    International Nuclear Information System (INIS)

    Ellis, P.J.

    1976-06-01

    A PDP9L computer is used as the basis for a multistation pulse height analysis system. Each station which is equipped with an analog-to-digital converter, a display and a keyboard-printer can perform the basic operations associated with a commercial hard-wired system. The stations are independent of one another but two or more accumulating or displaying simultaneously result in a slight increase in analog-to-digital converter dead time. The keyboard-printer operates in conversational mode with no output forthcoming if incorrect characters are entered. System procedures are initiated from the station keyboard to control the display, accumulate, integrate, and read and write functions as flexibly as possible without excessively increasing the program-to-data ratio for core usage. This system was designed to enable software to be modified when different procedures become necessary, and to enable adaptation of the available equipment to other modes of accumulation and display. (author)

  15. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    International Nuclear Information System (INIS)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrödinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy

  16. Numerical simulation of the temperature, electron density, and electric field distributions near the ionospheric reflection height after turn-on of a powerful HF wave

    International Nuclear Information System (INIS)

    Muldrew, D.B.

    1986-01-01

    The time variation of the electron temperature profile in the ionosphere following turn-on of a powerful 1-s HF pulse is determined numerically from the energy balance equation. Using this and the equations of motion and continuity for a plasma, the effect of heating and the pondermotive force of a powerful HF wave on the electron density and electric field distributions are determined by numerical simulation. The temperature variation and ponderomotive force modify the density distribution, and this new density distribution, in turn, modifies the electric field distribution of the HF wave. The density deviations grow for a few hundred milliseconds after HF turn-on and then begin to fluctuate in time. At all heights the wave number of the density deviations is approximately twice the wave number of the HF wave. For electric fields near reflection of about 6.0 V/m, the electric field distribution becomes complicated, apparently depending on Bragg scattering of the HF wave from the density deviations. Density impulses propagate away (up and down) from electric field maxima, at the ion thermal velocity, at both turn-on and turn-off of the HF wave

  17. Distributions of freak wave heights measured in the North Sea

    International Nuclear Information System (INIS)

    Stansell, P.

    2004-01-01

    We present a statistical analysis of some of the largest waves occurring during 793 h of surface elevation measurements collected during 14 severe storms in the North Sea. This data contains 104 freak waves. It is found that the probability of occurrence of freak waves is only weekly dependent on the significant wave height, significant wave steepness and spectral bandwidth. The probability does show a slightly stronger dependency on the skew and kurtosis of the surface elevation data, but on removing the contribution to these measures from the presence of the freakwaves themselves, this dependency largely disappears. Distributions of extreme waves are modelled by fitting Generalised Pareto distributions, and extreme value distributions and return periods are given for freak waves in terms of the empirical fitted parameters. It is shown by comparison with these fits that both the Rayleigh distribution and the fit of Nerzic and Prevosto severely under-predict the probability of occurrence of extreme waves. For the most extreme freak wave in our data, the Rayleigh distribution over-predicts the return period by about 300 times when compared to the fitted model. (author)

  18. Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

    International Nuclear Information System (INIS)

    Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan

    2010-01-01

    This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Comparing Johnson’s SBB, Weibull and Logit-Logistic bivariate distributions for modeling tree diameters and heights using copulas

    Energy Technology Data Exchange (ETDEWEB)

    Cardil Forradellas, A.; Molina Terrén, D.M.; Oliveres, J.; Castellnou, M.

    2016-07-01

    Aim of study: In this study we compare the accuracy of three bivariate distributions: Johnson’s SBB, Weibull-2P and LL-2P functions for characterizing the joint distribution of tree diameters and heights. Area of study: North-West of Spain. Material and methods: Diameter and height measurements of 128 plots of pure and even-aged Tasmanian blue gum (Eucalyptus globulus Labill.) stands located in the North-west of Spain were considered in the present study. The SBB bivariate distribution was obtained from SB marginal distributions using a Normal Copula based on a four-parameter logistic transformation. The Plackett Copula was used to obtain the bivariate models from the Weibull and Logit-logistic univariate marginal distributions. The negative logarithm of the maximum likelihood function was used to compare the results and the Wilcoxon signed-rank test was used to compare the related samples of these logarithms calculated for each sample plot and each distribution. Main results: The best results were obtained by using the Plackett copula and the best marginal distribution was the Logit-logistic. Research highlights: The copulas used in this study have shown a good performance for modeling the joint distribution of tree diameters and heights. They could be easily extended for modelling multivariate distributions involving other tree variables, such as tree volume or biomass. (Author)

  20. Laboratory tests of the Pulse Height Analysis system for Wendelstein 7-X

    Science.gov (United States)

    Kubkowska, M.; Czarnecka, A.; Figacz, W.; Jabłoński, S.; Kaczmarczyk, J.; Krawczyk, N.; Ryć, L.; Biedermann, C.; Koenig, R.; Thomsen, H.; Weller, A.; W7-X Team

    2015-10-01

    A pulse height analysis (PHA) system has been designed and manufactured for the Wendelstein 7-X stellarator, in such a way as to be already compatible with later quasi-continuous operation requirements. The diagnostic will provide X-ray spectra with energy resolution better than 180 eV . The system has three energy channels: 0.25-20 keV, 0.95-20 keV and 1.5-20 keV . For each channel a separate Silicon Drift Detector (SDD) equipped with a suitably selected beryllium foil is used. The range of the 3 energy channels can be further adapted to particular experiments by moving via a pneumatic actuator additional beryllium filters in front of the fixed ones. The PHA system is intended for measuring impurity species (e.g. C, Fe, Ni), electron temperature and for investigating possible suprathermal tails in the spectra. The system will be installed on the horizontal port AEK50 on W7-X. The SDD detectors, the replaceable filters and the adjustable piezo driven slits which allow to suitably adapt the X-ray signal intensity are mounted inside a vacuum chamber which is connected to the plasma vessel via a gate valve. The on-air diagnostic components are the preamplifiers, the Digital X-Ray Processor (XIA, U.S.A.), a computer, and an X-ray calibration source. For controlling the operation of the entire diagnostic system, as well as, for the data acquisition of the electrical pulses coming a special code was developed. The paper presents the construction of the PHA system for W7-X and the laboratory tests of its mechanical parts together with the information on the code developed to operate the diagnostic. The diagnostic was also tested and characterised by measuring Fe55 spectrum and fluorescence spectra of Ni, Fe, Cr and Cu induced by an X-ray mini-tube.

  1. Energy and intensity distributions of 0.279 MeV multiply Compton-scattered photons in soldering material

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2007-01-01

    An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a photon spectrum. This also results in extraction of intensity distribution of multiply scattered events originating from interactions of 0.279 MeV photons with thick targets of soldering material. The observed pulse-height distributions are a composite of singly and multiply scattered events in addition to bremmstrahlung-and Rayleigh-scattered events. To evaluate the contribution of multiply scattered events, the spectrum of singly scattered events contributing to inelastic Compton peak is reconstructed analytically. The optimum thickness (saturation depth), at which the number of multiply scattered events saturates, has been measured. Monte Carlo calculations also support the present results

  2. A method to reduce the suppression of relevant pulses in pulse weight discriminators

    International Nuclear Information System (INIS)

    Schwartz, P.

    1975-01-01

    The pulse height analyzer is used, for instance, with proportional counters. Pulses are broken down into amplitude ranges in accordance with their maximum amplitudes. In pulse height analyzers with real time analog-digital conversion only one deadtime is needed for the respective range selected. For this purpose, all discriminator thresholds of the amplitude stores connected parallel are actuated as an input pulse arrives. The leading edges of the discriminator signals set the amplitude range flip-flop. Only the flip-flop circuit of the maximum amplitude range reached remains set whilst all the others are erased. The trailing edge of the discriminator signals actuates the evaluation of the information stored by the flip-flop circuit selected. It triggers a pulse extender and resets the flip-flop selected. Therefore, only the amplitude range selected needs a deadtime. The pulse extender in addition reduces the processing time of the analyzer by the output pulse length. The characteristic used for the trailing edge is the backward count of the real time analog-digital converter. (DG/RF) [de

  3. Height premium for job performance.

    Science.gov (United States)

    Kim, Tae Hyun; Han, Euna

    2017-08-01

    This study assessed the relationship of height with wages, using the 1998 and 2012 Korean Labor and Income Panel Study data. The key independent variable was height measured in centimeters, which was included as a series of dummy indicators of height per 5cm span (wages to assess the heterogeneity in the height-wage relationship, across the conditional distribution of monthly wages. We found a non-linear relationship of height with monthly wages. For men, the magnitude of the height wage premium was overall larger at the upper quantile of the conditional distribution of log monthly wages than at the median to low quantile, particularly in professional and semi-professional occupations. The height-wage premium was also larger at the 90th quantile for self-employed women and salaried men. Our findings add a global dimension to the existing evidence on height-wage premium, demonstrating non-linearity in the association between height and wages and heterogeneous changes in the dispersion and direction of the association between height and wages, by wage level. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Zhaozhao Tang

    2017-12-01

    Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.

  5. Comparable Analysis of the Distribution Functions of Runup Heights of the 1896, 1933 and 2011 Japanese Tsunamis in the Sanriku Area

    Science.gov (United States)

    Choi, B. H.; Min, B. I.; Yoshinobu, T.; Kim, K. O.; Pelinovsky, E.

    2012-04-01

    Data from a field survey of the 2011 tsunami in the Sanriku area of Japan is presented and used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated using a theoretical log-normal curve [Choi et al, 2002]. The characteristics of the distribution functions derived from the runup-heights data obtained during the 2011 event are compared with data from two previous gigantic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large (more than 5,247), which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and number of observations suggested by Kajiura [1983]. The distribution function of the 2011 event demonstrates the sensitivity to the number of observation points (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

  6. Comparable analysis of the distribution functions of runup heights of the 1896, 1933 and 2011 Japanese Tsunamis in the Sanriku area

    Directory of Open Access Journals (Sweden)

    B. H. Choi

    2012-05-01

    Full Text Available Data from a field survey of the 2011 Tohoku-oki tsunami in the Sanriku area of Japan is used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated by a theoretical log-normal curve. The characteristics of the distribution functions of the 2011 event are compared with data from two previous catastrophic tsunamis (1896 and 1933 that occurred in almost the same region. The number of observations during the last tsunami is very large, which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and the number of observed runup heights suggested by Kajiura (1983 based on a small amount of data on previous tsunamis. The distribution function of the 2011 event demonstrates the sensitivity to the number of measurements (many of them cannot be considered independent measurements and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

  7. Nest plasticity of Cornitermes silvestrii (Isoptera, Termitidae, Syntermitinae in response to flood pulse in the Pantanal, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Tarik G. D. Plaza

    2014-03-01

    Full Text Available Nest plasticity of Cornitermes silvestrii (Isoptera, Termitidae, Syntermitinae in response to flood pulse in the Pantanal, Mato Grosso, Brazil. The Pantanal is one of the largest wetlands in the world. Since many areas in Pantanal are flooded during part of the year, it is expected that plants and animals would have mechanisms for their survival during the flooded period. This study investigated the existence of differences in nest shape and inquilines of Cornitermes silvestrii in areas influenced by the flood pulse. We measured the volume, height, width, and height/width ratio of 32 nests in flooded areas and 27 in dry areas, and performed an one-way-Anova with the quasi-Poisson distribution to determine if there were differences in the nest measurements between the points. To analyze the relationship of nest inquilines to flood pulse and nest shape, we performed a regression with a Poisson distribution with the inquiline richness and flood pulse, and the above measurements. The nests of C. silvestrii in flooded areas were significantly higher than nests in dry areas, and had a larger height/width ratio. Colonies in periodically flooded areas would probably make a larger effort to extend their nests vertically, to maintain at least some portion of the structure out of the water and prevent the entire colony from being submerged. Neither the size of the nest nor the flood pulses influenced the assemblage of 11 species found in nests of C. silvestrii.

  8. Seasonal and Non-Seasonal Generalized Pareto Distribution to Estimate Extreme Significant Wave Height in The Banda Sea

    Science.gov (United States)

    Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang

    2018-02-01

    The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.

  9. Bio-effects of repetitively pulsed ultra-fast distributed feedback dye lasers

    International Nuclear Information System (INIS)

    Khan, N.; Ahmad, M.I.; Sheikh, A.

    1999-01-01

    Results of experimental study showing an unexpected rise in pulses of distributed feedback dye laser (DFDL) output due to temperature accumulation in dye cell during passively Q-Switched, a Mode-locked operation is reported. This unintended increase in number of pulse duration, per pulse energy may cause side-effects when used for selective photo thermolysis. To probe this phenomenon most commonly dye was excited with 10 to 20 pulses of second harmonic of a passively Q-Switched and Mode-locked Nd-YaG laser. The outputs of DFDL and Nd:YaG laser were recorded by Imacon 675-streak camera. The peak of DFDL output pulses was found delayed proportionally from the peak of the NYAG pulses by more than one inter-pulse period of excitation laser. A computer program was used to simulate the experimentally measured delay to estimate thermal decay constants and energy retained by the medium to determine the amount of incremental fluctuations in output. The delay between peaks of Nd:YAG (input) and DFDL(output) pulses was found to vary from 10 to 14 nanoseconds for various cavity lengths. It was found that for smaller inter-pulse periods the effect of gradual build-up satisfies the threshold conditions for some of the pulses that otherwise can not. This may lead to unintended increase in energy fluence causing overexposure-induced side-effects. (author)

  10. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  11. Boron distribution in silicon after excimer laser annealing with multiple pulses

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have studied B re-distribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted using both B and BF 2 ions with energies from 1 to 20 keV and doses of 1 x 10 14 and 1 x 10 15 cm -2 . ELA with the number of pulses from 1 to 100 was performed in vacuum with the sample kept at room temperature and 450 deg. C. Independently of the implantation parameters and the ELA conditions used, a peak in the B concentration is observed near the maximum melting depth after 10 pulses of ELA. A detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. An increase in the carrier concentration at the maximum melt depth is observed after ELA with 100 pulses. No structural defects have been detected by transmission electron microscopy in the region of the B accumulation

  12. First result from x-ray pulse height analyzer with radial scanning system for LHD

    Science.gov (United States)

    Muto, Sadatsugu; Morita, Shigeru

    2001-01-01

    Radial profiles of x-ray spectrum have been successfully obtained using an assembly of x-ray pulse height analyzer in large helical device. The observed profile is obtained from plasma heated by ICRF and neutral beam injection (NBI). As a detector, Si(Li) semiconductor is used with a histogramming memory and analog-to-digital converter (ADC) basically working at high counting rate up to 500 kcps. In routine operation a count rate of 62 kcps has been normally obtained with energy resolution better than 400 eV at iron Kα line. The assembly is equipped with four detectors and a radial scanning system which modulates sight lines of the detectors in major radius direction. The profiles of electron temperature and the intensity of metallic impurities have been obtained with a spatial resolution of a few centimeters. Measured electron temperature is in good agreement with that from Thomson scattering. The system is applicable to steady-state discharge. The design philosophy of the assembly and recent results on the performance tests are also presented.

  13. An Economical Fast Discriminator for Nuclear Pulse Counting

    International Nuclear Information System (INIS)

    Issarachai, Opas; Punnachaiya, Suvit

    2009-07-01

    Full text: This research work was aimed to develop a fast discriminator at low cost but high capability for discrimination a nanosecond nuclear pulse. The fast discriminator can be used in association with fast photon counting system. The designed structure consisted of the ultra-fast voltage comparator using ADCMP601 integrated circuit, the monostable multivibrator with controllable pulse width output by propagation delay of logic gate, and the fast response buffer amplifier. The tested results of pulse height discrimination of 0-5 V nuclear pulse with 20 ns (FWHM) pulse width showed the correlation coefficient (R 2 ) between discrimination level and pulse height was 0.998, while the pulse rate more than 10 MHz could be counted. The 30 ns logic pulse width output revealed high stable and could be smoothly driven to low impedance load at 50 Ω. For pulse signal transmission to the counter, it was also found that the termination of reflected signal must be considered because it may cause pulse counting error

  14. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.

    Science.gov (United States)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo

    2012-01-01

    The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  15. Fuzzy coarse coding UP-grades A/D converters for pulse-height analysis

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P; Maranesi, P [Politecnico di Milano (Italy). Ist. di Ingegneria Nucleare

    1983-01-15

    Since they were first employed in nuclear pulse-height analysis, analog-to-digital converters show an evolution characterized by a continuous increase in their amplitude resolution. This trend looks as if it will continue in the immediate future but this forecast disagrees with the fact that the circuit complexity of the ADCs realized by conventional techniques rises sharply beyond 12 bit resolution. This paper describes and proposes a new A/D encoding technique. A successive-approximation ADC operating over a limited input range and having correspondingly a reduced resolution is employed. In order to adapt the input signal to this dynamic limitation, the signal is at first roughtly and quickly estimated by a flash converter and then, if necessary, an analog level is subtracted through a DAC. The input digit of this DAC is added to the result of the successive-approximations conversion to get the final correct result. The inherent differential non-linearities of the successive-approximations ADC and of the DAC are avoided by the combined actions of a sliding scale circuit and of an innovative circuit named 'shaker'. The satisfactory performance of the encoder has been experimentally verified through a 13 bit prototype. The simplicity of the proposed technique in comparison to conventional ones leads to the possibility of further raising the standard performance of nuclear spectroscopy ADCs.

  16. Diffuse Ceiling Ventilation and the Influence of Room Height and Heat Load Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Vilsbøll, Rasmus W; Liu, Li

    2015-01-01

    Diffuse ceiling (inlet) ventilation is an air distribution system that supplies air from the entire ceiling surface, giving a low supply velocity. The flow pattern in the room is controlled by the heat sources. The system generates high mixing flow and the air velocities in the room are expected...... to be not much influenced by the flow rate to the room but dependent on the heat load. Previous studies have shown that diffuse ceiling ventilation has an ability to remove large heat loads without compromising the indoor climate. However, recent experiments indicate that the maximum accepted heat load decreases...... with a large room height and it decreases in connection with certain heat load distributions. Room geometries and heat load distributions that are optimal for diffuse ceiling ventilation are discussed. A simplified design procedure is introduced....

  17. Study on the dynamic holdup distribution of the pulsed extraction column

    International Nuclear Information System (INIS)

    Wang, S.; Chen, J.; Wu, Q.

    2013-01-01

    In the study, a CSTR cascade dynamic hydraulic model was developed to investigate the dynamic holdup distribution of the pulsed extraction column. It is assumed that the dynamic process of the dispersed phase holdup of pulsed extraction column has equal effects with the operational process of multiple cascade CSTRs. The process is consistent with the following assumptions: the holdups vary on different stages but maintain uniform on each stage; the changes of the hydraulic parameters have impact initially on the inlet of dispersed phase, and stability will be reached gradually through stage-by-stage blending. The model was tested and verified utilizing time domain response curves of the average holdup. Nearly 150 experiments were carried out with different capillary columns, various feed liquids, and diverse continuous phases and under different operation conditions. The regression curves developed by the model show a good consistency with the experimental results. After linking parameters of the model with operational conditions, the study further found that the parameters are only linearly correlated with pulse conditions and have nothing to do with flow rate for a specific pulsed extraction column. The accuracy of the model is measured by the average holdup, and the absolute error is ±0.01. The model can provide supports for the boundary studies on hydraulics and mass transfer by making simple and reliable prediction of the dynamic holdup distribution, with relatively less accessible hydraulic experimental data. (authors)

  18. Study on the dynamic holdup distribution of the pulsed extraction column

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chen, J.; Wu, Q. [Tsinghua University, Beijing 100084 (China)

    2013-07-01

    In the study, a CSTR cascade dynamic hydraulic model was developed to investigate the dynamic holdup distribution of the pulsed extraction column. It is assumed that the dynamic process of the dispersed phase holdup of pulsed extraction column has equal effects with the operational process of multiple cascade CSTRs. The process is consistent with the following assumptions: the holdups vary on different stages but maintain uniform on each stage; the changes of the hydraulic parameters have impact initially on the inlet of dispersed phase, and stability will be reached gradually through stage-by-stage blending. The model was tested and verified utilizing time domain response curves of the average holdup. Nearly 150 experiments were carried out with different capillary columns, various feed liquids, and diverse continuous phases and under different operation conditions. The regression curves developed by the model show a good consistency with the experimental results. After linking parameters of the model with operational conditions, the study further found that the parameters are only linearly correlated with pulse conditions and have nothing to do with flow rate for a specific pulsed extraction column. The accuracy of the model is measured by the average holdup, and the absolute error is ±0.01. The model can provide supports for the boundary studies on hydraulics and mass transfer by making simple and reliable prediction of the dynamic holdup distribution, with relatively less accessible hydraulic experimental data. (authors)

  19. Evaluation equivalent pulse of pulse-like ground motion to estimate the response of RC moment-resisting frames

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-08-01

    Full Text Available In this study the ability of equivalent pulse extracted by a mathematical model from pulse-like ground motion is investigated in order to estimate the response of RC moment-resisting frames. By examining the mathematical model, it is obvious that the model-based elastic response spectra are compatible with the actual pulse-like record. Also, the model simulates the long-period portion of actual pulse-like records by a high level of precision. The results indicate that the model adequately simulates the components of time histories. In order to investigate the ability of equivalent pulse of pulse-like ground motion in estimating the response of RC moment-resisting frames, five frame models including 3, 6, 9, 12 and 15 stories analyzed under actual record and simulated one. The results of the base shear demand, the maximum value of the inter-story drift and the distribution of inter-story drift along the height of the structures in three levels of design ductility is investigated. According to the results of this study, the equivalent pulses can predict accurately the response of regular RC moment-resisting frames when the fundamental period of the structure is equal to or greater than the equivalent pulse of the record. For the ground motion with high-frequency content the difference is high; but with increasing the number of stories and approaching pulse period to the fundamental period of the structure and increasing the level of design ductility of structure, more accurately predict the structural response.

  20. The conversion of a pulse height analyzer to a time analyzer

    International Nuclear Information System (INIS)

    Adib, M.; Salama, M.; Abdel-Kawy, A.; Faragalla, S.; Sayed, E.M.; Hamouda, I.

    1975-01-01

    A transistorized time unit circuit has been designed to convert a 400-channel amplitude analyser (RIDL model 34-12B) to a 400 channel time analyser. The obtained time analyser has channel widths of 24.4 μs, 48.8 μs, 97.6 μs. Experimental determination of the stability of the obtained time analyser was carried out by measuring statistically distributed pulses at constant rate. The stability of the time analyser for long time operation was found to be not less than 0.14%. The linearity of the time scale calibration was checked by measuring the transmission of neutrons through a polycrystalline powder of nickel. This method was found to give a more precise calibration of the time scale than the method based on using the transmission of the elements with well known resonances. From the experimental values obtained for Bragg's cut-off positions for nickel, the non linearity was calculated and found not to exceed 0.3%

  1. Study of the distribution of radon in the atmosphere to a height of 457 meters. Final report

    International Nuclear Information System (INIS)

    Clifford, C.E.; Rubin, R.M.; Wells, M.B.

    1981-05-01

    An experimental program has been conducted to provide a measurement of the distribution of radon in the atmosphere from ground level to a height of 457 meters above the ground. An extensive set of measurements were obtained using alpha-particle detectors of the Track Etch/sup TM/ type supplied by the Terradex Corporation. These detectors were exposed for periods of approximately three months on four television towers and were read by Terradex. Radon measurements were also made as a function of ground depth. A statistical F-test analysis of the readings from the exposed Track Etch/sup TM/ detectors on the towers leads to the conclusion that the radon concentration in air at each of the tower sites does not vary with height above ground for heights to 457 meters. In order to obtain additional measured data on the altitude variation of the radon concentration in the air, five NaI detectors were incrementally placed in positions ranging from ground level to 457-meters altitude on the Oklahoma City tower. The NaI measurements were evaluated through comparison with calculated predictions of the expected count rate as a function of altitude using ANISN, a discrete-ordinates-transport code. The source distributions in the air and ground and the NaI counter efficiency versus energy were determined analytically. Considering the large uncertainties in the Track Etch/sup TM/ detector data from the 4 television towers and the results of the analysis of the NaI detector measurements on the Oklahoma City tower, it is concluded that the radon concentration in air does not vary significantly with height above ground for heights up to 457 m

  2. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation.

    Science.gov (United States)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  3. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  4. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 Me

  5. Design and development of a high-power, 500 kV pulsed line

    International Nuclear Information System (INIS)

    Nicolas, A.

    A study was made of very high voltage (500 kV) pulse production for 50 ns at half height. A coaxial line was coupled to a Marx generator for obtaining the pulses on an impedance-adapted electron diode. The maximum power obtained was 6.4 x 10 10 W with a current front in the diode of about 30 ns (80 ns pulse length at half height)

  6. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    International Nuclear Information System (INIS)

    Lui, Brian J. M.; Hunt, D. C.; Reznik, A.; Tanioka, K.; Rowlands, J. A.

    2006-01-01

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 μm a-Se layer with a maximum gain of ∼300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor

  7. A combinatorial and probabilistic study of initial and end heights of descents in samples of geometrically distributed random variables and in permutations

    Directory of Open Access Journals (Sweden)

    Helmut Prodinger

    2007-01-01

    Full Text Available In words, generated by independent geometrically distributed random variables, we study the l th descent, which is, roughly speaking, the l th occurrence of a neighbouring pair ab with a>b. The value a is called the initial height, and b the end height. We study these two random variables (and some similar ones by combinatorial and probabilistic tools. We find in all instances a generating function Ψ(v,u, where the coefficient of v j u i refers to the j th descent (ascent, and i to the initial (end height. From this, various conclusions can be drawn, in particular expected values. In the probabilistic part, a Markov chain model is used, which allows to get explicit expressions for the heights of the second descent. In principle, one could go further, but the complexity of the results forbids it. This is extended to permutations of a large number of elements. Methods from q-analysis are used to simplify the expressions. This is the reason that we confine ourselves to the geometric distribution only. For general discrete distributions, no such tools are available.

  8. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....

  9. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    Science.gov (United States)

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  10. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  11. Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation

    Science.gov (United States)

    Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel

    2018-02-01

    We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.

  12. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  13. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo; Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2004-03-07

    The spatial distribution of ozone density is measured in pulsed corona discharges with a 40 {mu}m spatial resolution using a two-dimensional laser absorption method. Discharge occurs in a 13 mm point-to-plane gap in dry air with a pulse duration of 100 ns. The result shows that the ozone density increases for about 100 {mu}s after the discharge pulse. The rate coefficient of the ozone-producing reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 3.5 x 10{sup -34} cm{sup 6} s{sup -1}. It is observed that ozone is mostly distributed in the secondary-streamer channel. This suggests that most of the ozone is produced by the secondary streamer, not the primary streamer. After the discharge pulse, ozone diffuses into the background from the secondary-streamer channel. The diffusion coefficient of ozone is estimated to be approximately 0.1 to 0.2 cm{sup 2} s{sup -1}.

  14. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2004-01-01

    The spatial distribution of ozone density is measured in pulsed corona discharges with a 40 μm spatial resolution using a two-dimensional laser absorption method. Discharge occurs in a 13 mm point-to-plane gap in dry air with a pulse duration of 100 ns. The result shows that the ozone density increases for about 100 μs after the discharge pulse. The rate coefficient of the ozone-producing reaction, O + O 2 + M → O 3 + M, is estimated to be 3.5 x 10 -34 cm 6 s -1 . It is observed that ozone is mostly distributed in the secondary-streamer channel. This suggests that most of the ozone is produced by the secondary streamer, not the primary streamer. After the discharge pulse, ozone diffuses into the background from the secondary-streamer channel. The diffusion coefficient of ozone is estimated to be approximately 0.1 to 0.2 cm 2 s -1

  15. Measurement of mass distribution of U-235 fission products in the intermediate neutron region

    International Nuclear Information System (INIS)

    Nakagomi, Yoshihiro; Kobayashi, Shohei; Yamamoto, Shuji; Kanno, Ikuo; Wakabayashi, Hiroaki.

    1982-01-01

    The mass distribution and the momentum distribution of U-235 fission products in the intermediate neutron region were measured by using a combination system of the Yayoi intermediate neutron column and an electron linear accelerator. The double energy measurement method was applied. A fission chamber, which consists of an enriched uranium target and two Si surface barrier detectors, was used for the measurement of the neutrons with energy above 1.3 eV. The linear accelerator was operated at the repetition rate of 100 Hz and the pulse width of 10 ns. The data obtained by the two-dimensional pulse height analysis were analyzed by the Schmitt's method. The preliminary results of the mass distribution and the momentum distribution of fission fragments were obtained. (Kato, T.)

  16. Long-term statistics of extreme tsunami height at Crescent City

    Science.gov (United States)

    Dong, Sheng; Zhai, Jinjin; Tao, Shanshan

    2017-06-01

    Historically, Crescent City is one of the most vulnerable communities impacted by tsunamis along the west coast of the United States, largely attributed to its offshore geography. Trans-ocean tsunamis usually produce large wave runup at Crescent Harbor resulting in catastrophic damages, property loss and human death. How to determine the return values of tsunami height using relatively short-term observation data is of great significance to assess the tsunami hazards and improve engineering design along the coast of Crescent City. In the present study, the extreme tsunami heights observed along the coast of Crescent City from 1938 to 2015 are fitted using six different probabilistic distributions, namely, the Gumbel distribution, the Weibull distribution, the maximum entropy distribution, the lognormal distribution, the generalized extreme value distribution and the generalized Pareto distribution. The maximum likelihood method is applied to estimate the parameters of all above distributions. Both Kolmogorov-Smirnov test and root mean square error method are utilized for goodness-of-fit test and the better fitting distribution is selected. Assuming that the occurrence frequency of tsunami in each year follows the Poisson distribution, the Poisson compound extreme value distribution can be used to fit the annual maximum tsunami amplitude, and then the point and interval estimations of return tsunami heights are calculated for structural design. The results show that the Poisson compound extreme value distribution fits tsunami heights very well and is suitable to determine the return tsunami heights for coastal disaster prevention.

  17. Approximation of the breast height diameter distribution of two-cohort stands by mixture models III Kernel density estimators vs mixture models

    Science.gov (United States)

    Rafal Podlaski; Francis A. Roesch

    2014-01-01

    Two-component mixtures of either the Weibull distribution or the gamma distribution and the kernel density estimator were used for describing the diameter at breast height (dbh) empirical distributions of two-cohort stands. The data consisted of study plots from the Å wietokrzyski National Park (central Poland) and areas close to and including the North Carolina section...

  18. Interaction with the lower ionosphere of electromagnetic pulses from lightning - Heating, attachment, and ionization

    Science.gov (United States)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.

  19. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-01-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10 -9 s≥ pulse width τ≥1 fs=10 -15 s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for τ and numerical aperture of the focusing lens (0.1≤X NA ≤1.2). At X NA =0.8, rapid deterioration of the focused intensity distribution is observed at τ=1.2 fs. This happens because a 750-nm optical pulse with τ=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source

  20. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  1. Effect of concentration of the height of a transfer unit in a liquid/liquid solvent-extraction system

    International Nuclear Information System (INIS)

    Chamberlain, D.B.

    1981-05-01

    Pulsed, sieve-plate extraction columns were used to examine the effect of solute concentration on extraction efficiency. Cerium was extracted from an aqueous coprocessing solution, simulating reprocessing wastes produced at the Idaho Chemical Processing Plant. The organic extractant used in this process was dihexyl-N, N-diethylcarbamylmethylene phosphonate. Subsequently, cerium was stripped from the organic phase with 0.05 M nitric acid. The Heights of a Transfer Unit were calculated from the extraction and stripping column operating data. Both interstage and overall transfer units were calculated. Nine extraction and nine stripping tests were performed. Three extraction feed concentrations, each repeated at three different pulse frequencies were used to study the affect of concentration on height of a transfer unit. The stripping column was operated simultaneously with the extraction column. Both columns were operated at pulse amplitudes of 2.5 cm. Data based upon the overall extraction column showed a slight decrease in the height of a transfer unit as the solute concentration decreased. Based upon the overall stripping column data, a decrease in solute concentration resulted in a very slight increase in the height of a transfer unit. However, interstage transfer unit calculations for both columns indicated solute concentration had no significant effect on the height of a transfer unit. Based on the experimental tests, it was concluded that solute concentration caused only slight changes in extraction efficiency for the concentration range studied. Other factors such as pulse frequency, aqueous/organic flow ratio, and possibly the dispersed phase bubble size had a much greater effect on the extraction efficiency for the system studied

  2. Infrared study of the Crab pulsar: The ''shoulder'' pulse and the 3.45 micron pulse profile

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.; Burns, M.S.

    1983-01-01

    Infrared measurements of the Crab pulsar with the NASA IRTF 3.0 m telescope show that the spectrum of the main pulse turns downward for wavelengths longer than 3 μm. The ''shoulder'' pulse discovered by Pennypacker is measured in the 0.9--2.4 μm region, but disappears at 3.5 μm. This pulse rises from 0 to 20% of the height of the main pulse within 1 to 2 ms after the main pulse peak and decays with a 4 to 5 ms time constant. Excess infrared flux also appears after the interpulse. The main peak itself may be narrower at 3.45 μm than in the optical to 2.2 μm band

  3. The Effect of Flow Distribution on the Concentration of NO Produced by Pulsed Arc Discharge

    International Nuclear Information System (INIS)

    Hu Hui; Bao Bin; Wang Heli; Liang Haiyan; He Junjia; He Zhenghao; Li Jin

    2007-01-01

    As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO 2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power. The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO 2 could be controlled and the ratio of NO 2 /NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution

  4. Control programs of multichannel pulse height analyzer with CAMAC system using FACOM U-200 mini-computer

    International Nuclear Information System (INIS)

    Yamagishi, Kojiro

    1978-02-01

    The 4096 channel Pulse Height Analyzer (PHA) assembled with CAMAC plug-in units has been developed in JAERI. The PHA consists of ADC unit, CRT-display unit, and CAMAC plug-in units, which are memory-controller, MCA-timer, 4K words RAM memory and CRT-driver. The system is on-line connected to FACOM U-200 Mini-Computer through CAMAC interface unit Crate-controller. The softwares for on-line data acquisition of the system have been developed. These are four utility programs written in FORTRAN and two program packages written in assembler language FASP which are CAMAC Program Package and Basic Input/Output Program Package. CAMAC Program Package has 18 subroutine programs for control of CAMAC plug-in units from FACOM U-200 Mini-Computer; and Basic Input/Output Program Package has 26 subroutine programs to input/output data to/from a typewriter, keyboard, cassette magnetic tape and open reel magnetic tape. These subroutine programs are all FORTRAN callable. The PHA with CAMAC system is first outlined, and then usage is described in detail of four utility programs, CAMAC Program Package and Basic Input/Output Program Package. (auth.)

  5. Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients

    International Nuclear Information System (INIS)

    Zhang Jiefang; Tian Qing; Wang Yueyue; Dai Chaoqing; Wu Lei

    2010-01-01

    We present a systematic analysis of the self-similar propagation of optical pulses within the framework of the generalized cubic-quintic nonlinear Schroedinger equation with distributed coefficients. By appropriately choosing the relations between the distributed coefficients, we not only retrieve the exact self-similar solitonic solutions, but also find both the approximate self-similar Gaussian-Hermite solutions and compact solutions. Our analytical and numerical considerations reveal that proper choices of the distributed coefficients could make the unstable solitons stable and could restrict the nonlinear interaction between the neighboring solitons.

  6. The height of watermelons with wall

    International Nuclear Information System (INIS)

    Feierl, Thomas

    2012-01-01

    We derive asymptotics for the moments as well as the weak limit of the height distribution of watermelons with p branches with wall. This generalizes a famous result of de Bruijn et al (1972 Graph Theory and Computing (New York: Academic) pp 15–22) on the average height of planted plane trees, and results by Fulmek (2007 Electron. J. Combin. 14 R64) and Katori et al (2008 J. Stat. Phys. 131 1067–83) on the expected value and higher moments, respectively, of the height distribution of watermelons with two branches. The asymptotics for the moments depend on the analytic behaviour of certain multidimensional Dirichlet series. In order to obtain this information, we prove a reciprocity relation satisfied by the derivatives of one of Jacobi’s theta functions, which generalizes the well-known reciprocity law for Jacobi’s theta functions. (paper)

  7. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-02-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  8. Evaluation of dynamic range for LLNL streak cameras using high contrast pulsed and pulse podiatry on the Nova laser system

    International Nuclear Information System (INIS)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.

    1990-01-01

    This paper reports on a standard LLNL streak camera that has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1

  9. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    Science.gov (United States)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a

  10. Pulse-height loss in the signal readout circuit of compound semiconductor detectors

    Science.gov (United States)

    Nakhostin, M.; Hitomi, K.

    2018-06-01

    Compound semiconductor detectors such as CdTe, CdZnTe, HgI2 and TlBr are known to exhibit large variations in their charge collection times. This paper considers the effect of such variations on the measurement of induced charge pulses by using resistive feedback charge-sensitive preamplifiers. It is shown that, due to the finite decay-time constant of the preamplifiers, the capacitive decay during the signal readout leads to a variable deficit in the measurement of ballistic signals and a digital pulse processing method is employed to correct for it. The method is experimentally examined by using sampled pulses from a TlBr detector coupled to a charge-sensitive preamplifier with 150 μs of decay-time constant and 20 % improvement in the energy resolution of the detector at 662 keV is achieved. The implications of the capacitive decay on the correction of charge-trapping effect by using depth-sensing technique are also considered.

  11. The detection and estimation of spurious pulses

    International Nuclear Information System (INIS)

    1976-01-01

    Spurious pulses which may interfere with the counting of particles can sometimes easily be detected by integral counting as a function of amplification or by pulse-height analysis. However, in order to estimate their count rate, more elaborate methods based on their time relationship are needed. Direct techniques (delayed coincidences, use of a multichannel analyser in time mode, time-to-amplitude conversion) and gating techniques (simple subtraction, correlation counting, pulsed sources, modulo counting) are discussed. These techniques are compared to each other and their application to various detectors is studied as well as the influence of a dead time on spurious pulses

  12. Polarization dependent nanostructuring of silicon with femtosecond vortex pulse

    Directory of Open Access Journals (Sweden)

    M. G. Rahimian

    2017-08-01

    Full Text Available We fabricated conical nanostructures on silicon with a tip dimension of ∼ 70 nm using a single twisted femtosecond light pulse carrying orbital angular momentum (ℓ=±1. The height of the nano-cone, encircled by a smooth rim, increased from ∼ 350 nm to ∼ 1 μm with the pulse energy and number of pulses, whereas the apex angle remained constant. The nano-cone height was independent of the helicity of the twisted light; however, it is reduced for linear polarization compared to circular at higher pulse energies. Fluid dynamics simulations show nano-cones formation when compressive forces arising from the radial inward motion of the molten material push it perpendicular to the surface and undergo re-solidification. Simultaneously, the radial outward motion of the molten material re-solidifies after reaching the cold boundary to form a rim. Overlapping of two irradiated spots conforms to the fluid dynamics model.

  13. Technique for measuring charged particle distribution in a pulsed beam. Sposob izmereniya raspredeleniya zaryazhennykh chastits v impul'snom puchke

    Energy Technology Data Exchange (ETDEWEB)

    Zakutin, V V; Shenderovich, A M

    1988-11-07

    Technique for measuring charged particle distribution in a pulsed beam by producing beam imprint on a target is described. In order to measure beam particle distribution in longitudinal direction, all beam particles are deflected simultaneously to the target, located in parallel with initial direction of beam motion, by transverse pulse magnetic field, homogeneous in the field of trajectories of beam particle motion in the field. The invention enables to conduct measurements of longitudinal distribution of particle density in beams of 10{sup -9}-10{sup -11}s duration, this corresponds to longitudinal beam dimensions from 30 cm down to 3 mm. 1 fig.

  14. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-06-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  15. A 12-bit spectroscopy analog-to-digital converter type SAA (Successive Approximation type with channel width Averaging) intended for multichannel pulse height analyzer SWAN-1 based on IBM PC/XT/AT

    International Nuclear Information System (INIS)

    Borsuk, S.; Kulka, Z.

    1989-12-01

    A 12-bit spectroscopy analog-to-digital converter (ADC) type SAA (Successive Approximation type with channel width Averaging) intended for multichannel pulse height analyzer SWAN-1 based on IBM PC/XT/AT has been described. Design principles, specifications and measurements of a fundamental SAA-2 converter version are reported. Finally, two next versions of the converter with introduced modifications are discussed. 6 refs., 7 figs. (author)

  16. The Space-, Time-, and Energy-distribution of Neutrons from a Pulsed Plane Source

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Arne

    1962-05-15

    The space-, time- and energy-distribution of neutrons from a pulsed, plane, high energy source in an infinite medium is determined in a diffusion approximation. For simplicity the moderator is first assumed to be hydrogen gas but it is also shown that the method can be used for a moderator of arbitrary mass.

  17. Vocalization Source Level Distributions and Pulse Compression Gains of Diverse Baleen Whale Species in the Gulf of Maine

    Directory of Open Access Journals (Sweden)

    Delin Wang

    2016-10-01

    Full Text Available The vocalization source level distributions and pulse compression gains are estimated for four distinct baleen whale species in the Gulf of Maine: fin, sei, minke and an unidentified baleen whale species. The vocalizations were received on a large-aperture densely-sampled coherent hydrophone array system useful for monitoring marine mammals over instantaneous wide areas via the passive ocean acoustic waveguide remote sensing technique. For each baleen whale species, between 125 and over 1400 measured vocalizations with significantly high Signal-to-Noise Ratios (SNR > 10 dB after coherent beamforming and localized with high accuracies (<10% localization errors over ranges spanning roughly 1 km–30 km are included in the analysis. The whale vocalization received pressure levels are corrected for broadband transmission losses modeled using a calibrated parabolic equation-based acoustic propagation model for a random range-dependent ocean waveguide. The whale vocalization source level distributions are characterized by the following means and standard deviations, in units of dB re 1 μ Pa at 1 m: 181.9 ± 5.2 for fin whale 20-Hz pulses, 173.5 ± 3.2 for sei whale downsweep chirps, 177.7 ± 5.4 for minke whale pulse trains and 169.6 ± 3.5 for the unidentified baleen whale species downsweep calls. The broadband vocalization equivalent pulse-compression gains are found to be 2.5 ± 1.1 for fin whale 20-Hz pulses, 24 ± 10 for the unidentified baleen whale species downsweep calls and 69 ± 23 for sei whale downsweep chirps. These pulse compression gains are found to be roughly proportional to the inter-pulse intervals of the vocalizations, which are 11 ± 5 s for fin whale 20-Hz pulses, 29 ± 18 for the unidentified baleen whale species downsweep calls and 52 ± 33 for sei whale downsweep chirps. The source level distributions and pulse compression gains are essential for determining signal-to-noise ratios and hence detection regions for baleen whale

  18. Phase height measurements on the ionosphere

    International Nuclear Information System (INIS)

    Joyner, K.H.

    1974-01-01

    Phase height measurements have been taken on 2.5 MHz E-region reflection over two paths during the day. The two paths have equivalent vertical frequencies of 2.4 MHz and 1.8 MHz. Vertical pulse measurements on 2.4 MHz have also been recorded. Results and discussion on comparisons between these measurements are presented. Phase and amplitude measurements using 4.5 MHz O and E rays have also been taken at night, F-region reflection. In particular, spectral analysis of these results is discussed. (author)

  19. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    Science.gov (United States)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  20. Comparison of performance of analog-to-digital converters (ADC) for pulse height analyzers

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shoji

    1981-01-01

    In the recent ADCs for pulse height analyzers (PHA), Wilkinson type is a leading one, and those with 50 to 200 MHz clock frequency and 8K channel are mostly on the market. The comparison of the performance of ADCs was conducted under the condition of using these multi-channel PHAs as γ-ray spectrometers. The following three ADCs were compared: ADC incorporated in CANBERRA 8100 MCA, and CANBERRA 8060 ADCs used as the ADCs for 1st and 2nd GAMA systems. In this case, the conversion gains of these ADCs were set at 4K because the memory of 8100 MCA was 4K, and the GAMA systems were also mostly operated at 4K. In this paper, report is made on the measurements of dead time, the change of γ peaks immediately after the power was turned on, the temperature dependence of ADCs the long term stability of ADCs, derivative non-linearity, and integration non-linearity. The dead time of the ADC of 8100 CMA was shorter in the range up to 1000 channels. The temperature dependence was -0.017%/deg C in 8100 MCA, and -0.061 and -0.072%/deg C in GAMA. The long term stability was -0.02%/14 hr in 8100 MCA, and -0.027%/14 hr in 8060 of 1st GAMA. The derivative non-linearity was 0.45% in 8100 MCA, 0.67% in 8060 of 1st GAMA, and the integration non-linearity was 0.075% for 8100 MCA, and 0.085 - 0.1% in 8060 ADCs. Also, the change of γ peaks immediately after the power was turned on for 8100 ADC was better than that of 8060 ADC. (Wakatsuki, Y.)

  1. Weighting of field heights for sharpness and noisiness

    Science.gov (United States)

    Keelan, Brian W.; Jin, Elaine W.

    2009-01-01

    Weighting of field heights is important in cases when a single numerical value needs to be calculated that characterizes an attribute's overall impact on perceived image quality. In this paper we report an observer study to derive the weighting of field heights for sharpness and noisiness. One-hundred-forty images were selected to represent a typical consumer photo space distribution. Fifty-three sample points were sampled per image, representing field heights of 0, 14, 32, 42, 51, 58, 71, 76, 86% and 100%. Six observers participated in this study. The field weights derived in this report include both: the effect of area versus field height (which is a purely objective, geometric factor); and the effect of the spatial distribution of image content that draws attention to or masks each of these image structure attributes. The results show that relative to the geometrical area weights, sharpness weights were skewed to lower field heights, because sharpness-critical subject matter was often positioned relatively near the center of an image. Conversely, because noise can be masked by signal, noisiness-critical content (such as blue skies, skin tones, walls, etc.) tended to occur farther from the center of an image, causing the weights to be skewed to higher field heights.

  2. Evaluation of dynamic range for LLNL streak cameras using high contrast pulses and pulse podiatry'' on the Nova laser system

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.

    1990-07-01

    A standard LLNL streak camera has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1. 1 ref., 4 figs., 1 tab.

  3. SU-F-I-37: How Fat Distribution and Table Height Affect Estimates of Patient Size in CT Scanning: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Silosky, M; Marsh, R [University of Colorado School of Medicine, Aurora, CO (United States)

    2016-06-15

    Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and hence CTDIvol and SSDE. Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). This study sought to determine if patient size estimates made from localizer scans is affected by variations in fat distribution, specifically when the widest part of the patient is not at the geometric center of the patient. Methods: Lipid gel bolus material was wrapped around an anthropomorphic phantom to simulate two different body mass distributions. The first represented a patient with fairly rigid fat and had a generally oval shape. The second was bell-shaped, representing corpulent patients more susceptible to gravity’s lustful tug. Each phantom configuration was imaged using an AP localizer and then a PA localizer. This was repeated at various scanner table heights. The width of the phantom was measured from the localizer and diagnostic images using in-house software. Results: 1) The projected phantom width varied up to 39% as table height changed.2) At some table heights, the width of the phantom, designed to represent larger patients, exceeded the localizer field of view, resulting in an underestimation of the phantom width.3) The oval-shaped phantom approached a normalized phantom width of 1 at a table height several centimeters lower (AP localizer) or higher (PA localizer) than did the bell-shaped phantom. Conclusion: Accurate estimation of patient size from localizer scans is dependent on patient positioning with respect to scanner isocenter and is limited in large patients. Further, patient size is more accurately measured on projection images if the widest part of the patient, rather than the geometric center of the patient, is positioned at scanner isocenter.

  4. MASMA: a versatile multifunctional unit (gated window amplifier, analog memory, and height-to-time converter)

    International Nuclear Information System (INIS)

    Goursky, V.; Thenes, P.

    1969-01-01

    This multipurpose unit is designed to accomplish one of the following functions: - gated window amplifier, - Analog memory and - Amplitude-to-time converter. The first function is mainly devoted to improve the poor resolution of pulse-height analyzers with a small number of channels. The analog memory, a new function in the standard range of plug-in modules, is capable of performing a number of operations: 1) fixed delay, or variable delay dependent on an external parameter (application to the analog processing of non-coincident pulses), 2) de-randomiser to increase the efficiency of the pulse height analysis in a spectrometry experiment, 3) linear multiplexer to allow an analyser to serve as many spectrometry devices as memory elements that it possesses. Associated with a coding scaler, this unit, if used as a amplitude-to-time converter, constitutes a Wilkinson A.D.C with a capability of 10 bits (or more) and with a 100 MHz clock frequency. (authors) [fr

  5. Ultrashort pulse energy distribution for propulsion in space

    Science.gov (United States)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  6. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  7. YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.; Schooneveld, E. M.

    2004-01-01

    Recent studies indicate the resonance detector (RD) technique as an interesting approach for neutron spectroscopy in the electron volt energy region. This work summarizes the results of a series of experiments where RD consisting of YAlO 3 (YAP) scintillators were used to detect scattered neutrons with energy in the range 1-200 eV. The response of YAP scintillators to radiative capture γ emission from a 238 U analyzer foil was characterized in a series of experiments performed on the VESUVIO spectrometer at the ISIS pulsed neutron source. In these experiments a biparametric data acquisition allowed the simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time of flight spectra permitted to identify and distinguish the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the pulse height at about 600 keV equivalent photon energy. Present results strongly indicate YAP scintillators as the ideal candidate for neutron scattering studies with epithermal neutrons at both very low (<5 deg.) and intermediate scattering angles

  8. Simulation of pulse height analysis soft X-ray spectra expected from W7-X

    Science.gov (United States)

    Jabłoński, S.; Czarnecka, A.; Kubkowska, M.; Ryć, L.; Weller, A.; Biedermann, C.; König, R.; W7-X Team

    2015-10-01

    A computer code named RayX has been developed for checking the performance of a spectroscopy system and optimizing individual parts, like detectors and filters for the pulse height analysis (PHA) diagnostic system designed for the stellarator W7-X. Using the code, the intensity and shape of the X-ray spectra are simulated for different plasma scenarios characterized by varying the temperature and density profiles as well as the electron cyclotron resonance heating (ECRH) power over a wide range. In the simulations of the recorded spectra, the influence of geometrical configuration changes of the diagnostic system (pinhole size, detector size, location of each diagnostic component), of the timing of data collection, as well as of the type and thickness of filters are being investigated. The atomic processes of free-free (bremsstrahlung), free-bound (recombination radiation), and bound-bound emission (line radiation) are considered. For the impurities fractional abundancies of 3% carbon (C), 0.5% oxygen (O) and 0.002% iron (Fe) are taken into account. Information about the number of photons which reach the detector and the current generated inside the detector is given. It is shown that the distance between pinhole and detector has a larger impact on the registered spectra (intensity and total number of photons) than the distance between plasma and pinhole. Based on the results of the simulations, the expected optimal positions of the individual components (pinholes, detectors) were defined for the PHA W7-X diagnostic system. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  9. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    Science.gov (United States)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  10. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution

    Directory of Open Access Journals (Sweden)

    Zhang Yuan-ting

    2005-03-01

    Full Text Available Abstract Background The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2, has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD for the reduction of motion artifacts affecting pulse oximetry. Methods The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA and the fast Fourier transform (FFT approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. Results and Discussion The SPWVD approach shows significant improvement (p Conclusion The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters.

  11. A single chip pulse processor for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hilsenrath, F.; Bakke, J.C.; Voss, H.D.

    1985-01-01

    A high performance digital pulse processor, integrated into a single gate array microcircuit, has been developed for spaceflight applications. The new approach takes advantage of the latest CMOS high speed A/D flash converters and low-power gated logic arrays. The pulse processor measures pulse height, pulse area and the required timing information (e.g. multi detector coincidence and pulse pile-up detection). The pulse processor features high throughput rate (e.g. 0.5 Mhz for 2 usec gausssian pulses) and improved differential linearity (e.g. + or - 0.2 LSB for a + or - 1 LSB A/D). Because of the parallel digital architecture of the device, the interface is microprocessor bus compatible. A satellite flight application of this module is presented for use in the X-ray imager and high energy particle spectrometers of the PEM experiment on the Upper Atmospheric Research Satellite

  12. Low-cost programmable pulse generator for particle telescope calibration

    CERN Document Server

    Sanchez, S; Seisdedos, M; Meziat, D; Carbajo, M; Medina, J; Bronchalo, E; Peral, L D; Rodríguez-Pacheco, J

    1999-01-01

    In this paper we present a new calibration system for particle telescopes including multipulse generator and digital controller. The calibration system generates synchronized pulses of variable height for every detector channel on the telescope. The control system is based on a commercial microcontroller linked to a personal computer through an RS-232 bidirectional line. The aim of the device is to perform laboratory calibration of multi-detector telescopes prior to calibration at accelerator. This task includes evaluation of linearity and resolution of each detector channel, as well as coincidence logic. The heights of the pulses sent to the detectors are obtained by Monte Carlo simulation of telescope response to a particle flux of any desired geometry and composition.

  13. Distribution and evolution of electrons in a cluster plasma created by a laser pulse

    International Nuclear Information System (INIS)

    Smirnov, M.B.

    2003-01-01

    We analyze the properties and the character of the evolution of an electron subsystem of a large cluster (with a number of atoms n ∼ 10 4 -10 6 ) interacting with a short laser pulse of high intensity (10 17 -10 19 W/cm 2 ). As a result of ionization in a strong laser field, cluster atoms are converted into multicharged ions, part of the electrons being formed leaves the cluster, and the other electrons move in a self-consistent field of the charged cluster and the laser wave. It is shown that electron-electron collisions are inessential both during the cluster irradiation by the laser pulse and in the course of cluster expansion; the electron distribution in the cluster therefore does not transform into the Maxwell distribution even during cluster expansion. During cluster expansion, the Coulomb field of a cluster charge acts on cluster ions more strongly than the pressure resulting from electron-ion collisions. In addition, bound electrons remain inside the cluster in the course of its expansion, and cluster expansion therefore does not lead to additional cluster ionization

  14. Sexual Orientation, Objective Height, and Self-Reported Height.

    Science.gov (United States)

    Skorska, Malvina N; Bogaert, Anthony F

    2017-01-01

    Studies that have used mostly self-reported height have found that androphilic men and women are shorter than gynephilic men and women, respectively. This study examined whether an objective height difference exists or whether a psychosocial account (e.g., distortion of self-reports) may explain these putative height differences. A total of 863 participants, recruited at a Canadian university, the surrounding region, and through lesbian, gay, bisexual, and transgender (LGBT) events across Canada, self-reported their height and had their height measured. Androphilic men were shorter, on average, than gynephilic men. There was no objective height difference between gynephilic, ambiphilic, and androphilic women. Self-reported height, statistically controlling for objective height, was not related to sexual orientation. These findings are the first to show an objective height difference between androphilic and gynephilic men. Also, the findings suggest that previous studies using self-reported height found part of a true objective height difference between androphilic and gynephilic men. These findings have implications for existing biological theories of men's sexual orientation development.

  15. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  16. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgi, G., E-mail: giorgia.sangiorgi1@unimib.it [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Ferrero, L.; Perrone, M.G.; Bolzacchini, E. [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Duane, M. [Institute for Environment and Sustainability, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy); Larsen, B.R. [Institute for Health and Consumer Protection, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy)

    2011-12-15

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 {+-} 20 min. - Graphical abstract: Display Omitted Highlights: > Experimental vertical profiles of HCs and particle concentration by tethered balloon. > Effect of mixing height on the vertical distribution of HCs and particles. > Effect of tropospheric reactivity on vertical profiles of HCs. > Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  17. Three-dimensional mapping of light transmittance and foliage distribution using lidar

    International Nuclear Information System (INIS)

    Todd, K.W.; Csillag, F.; Atkinson, P.M.

    2003-01-01

    The horizontal and vertical distributions of light transmittance were evaluated as a function of foliage distribution using lidar (light detection and ranging) observations for a sugar maple (Acer saccharum) stand in the Turkey Lakes Watershed. Along the vertical profile of vegetation, horizontal slices of probability of light transmittance were derived from an Optech ALTM 1225 instrument's return pulses (two discrete, 15-cm diameter returns) using indicator kriging. These predictions were compared with (i) below canopy (1-cm spatial resolution) transect measurements of the fraction of photosynthetically active radiation (FPAR) and (ii) measurements of tree height. A first-order trend was initially removed from the lidar returns. The vertical distribution of vegetation height was then sliced into nine percentiles and indicator variograms were fitted to them. Variogram parameters were found to vary as a function of foliage height above ground. In this paper, we show that the relationship between ground measurements of FPAR and kriged estimates of vegetation cover becomes stronger and tighter at coarser spatial resolutions. Three-dimensional maps of foliage distribution were computed as stacks of the percentile probability surfaces. These probability surfaces showed correspondence with individual tree-based observations and provided a much more detailed characterization of quasi-continuous foliage distribution. These results suggest that discrete-return lidar provides a promising technology to capture variations of foliage characteristics in forests to support the development of functional linkages between biophysical and ecological studies. (author)

  18. The effects of temperature on Schottky diode barrier height and evidence of multiple barrier

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1994-07-01

    Experimental study of Capacitance-Voltage-Temperature (C-V-T) plots, Current-Voltage-Temperature (I-V-T) characteristics have been undertaken in order to determine the height of the Schottky barrier. The results of the barrier height obtained by the above two methods were found to differ as well as vary with temperature change. In view of this discrepancy in barrier height values, two further experiments were performed: one on activation energy (I-T) plots and the other on pulsed (I-V-T) characteristics, and the results were found to show a similar trend. The Schottky diode studied was a 30CP040. (author). 23 refs, 9 figs, 3 tabs

  19. [Effect of pulse magnetic field on distribution of neuronal action potential].

    Science.gov (United States)

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  20. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  1. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  2. A versatile programmable CAMAC random pulse generator

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1991-01-01

    A new technique for generating linear pulses which can be random in both amplitude and time is described. With this technique, desired values for both pulse amplitude and spacing are set for the individual pulses by the software on a pulse-by-pulse basis. The versatility offered by this software programming allows a wide range of distributions to be obtained; with the user having close control on the distribution parameters. A number of such distributions may also be combined into a single output pulse stream. An implementation in a CAMAC module is presented. Both hardware and software aspects are described and typical performance results for amplitude and time distributions of the uniform and Gaussian type are given. Implications of using the pulser in a typical data acquisition environment on both the data acquisition and the pulser performance are considered. Typical applications are discussed together with some of the limitations. (orig.)

  3. PR/VI Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Puerto Rico and the Virgin Islands is distributed as a GEOID96 model. The computation used 26,000 terrestrial and marine gravity data...

  4. Fear of heights and visual height intolerance.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Doreen

    2014-02-01

    The aim of this review is, first, to cover the different aspects of visual height intolerance such as historical descriptions, definition of terms, phenomenology of the condition, neurophysiological control of gaze, stance and locomotion, and therapy, and, second, to identify warranted epidemiological and experimental studies. Vivid descriptions of fear of heights can be found in ancient texts from the Greek, Roman, and Chinese classics. The life-time prevalence of visual height intolerance is as high as 28% in the general population, and about 50% of those who are susceptible report an impact on quality of life. When exposed to heights, visual exploration by eye and head movements is restricted, and the velocity of locomotion is reduced. Therapy for fear of heights is dominated by the behavioral techniques applied during real or virtual reality exposure. Their efficacy might be facilitated by the administration of D-cycloserine or glucocorticoids. Visual height intolerance has a considerable impact on daily life and interpersonal interactions. It is much more frequent than fear of heights, which is defined as an environmental subtype of a specific phobia. There is certainly a continuum stretching from acrophobia to a less-pronounced visual height intolerance, to which the categorical distinction of a specific phobia does not apply.

  5. Neural network cloud top pressure and height for MODIS

    Science.gov (United States)

    Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara

    2018-06-01

    Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found

  6. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  7. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  8. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    Science.gov (United States)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  9. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    International Nuclear Information System (INIS)

    Sangiorgi, G.; Ferrero, L.; Perrone, M.G.; Bolzacchini, E.; Duane, M.; Larsen, B.R.

    2011-01-01

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. - Graphical abstract: Display Omitted Highlights: → Experimental vertical profiles of HCs and particle concentration by tethered balloon. → Effect of mixing height on the vertical distribution of HCs and particles. → Effect of tropospheric reactivity on vertical profiles of HCs. → Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  10. Analysis of a new phase and height algorithm in phase measurement profilometry

    Science.gov (United States)

    Bian, Xintian; Zuo, Fen; Cheng, Ju

    2018-04-01

    Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.

  11. Meteor head echo altitude distributions and the height cutoff effect studied with the EISCAT HPLA UHF and VHF radars

    Directory of Open Access Journals (Sweden)

    A. Westman

    2004-04-01

    Full Text Available Meteor head echo altitude distributions have been derived from data collected with the EISCAT VHF (224MHz and UHF (930MHz high-power, large-aperture (HPLA radars. At the high-altitude end, the distributions cut off abruptly in a manner reminiscent of the trail echo height ceiling effect observed with classical meteor radars. The target dimensions are shown to be much smaller than both the VHF and the UHF probing wavelengths, but the cutoff heights for the two systems are still clearly different, the VHF cutoff being located several km above the UHF one. A single-collision meteor-atmosphere interaction model is used to demonstrate that meteors in the (1.3–7.2µg mass range will ionise such that critical electron density at 224MHz is first reached at or around the VHF cutoff altitude and critical density at 930MHz will be reached at the UHF cutoff altitude. The observed seasonal variation in the cutoff altitudes is shown to be a function of the seasonal variation of atmospheric density with altitude. Assuming that the electron density required for detection is in the order of the critical density, the abrupt altitude cutoffs can be explained as a consequence of the micrometeoroid joint size-speed distribution dropping off so fast at the large-mass, high-velocity end that above a certain altitude the number of detectable events becomes vanishingly small. Conversely, meteors at the low-mass end of the distribution will be gradually retarded such that the ionisation they generate never reaches critical density. These particles will remain unobservable.Key words. Radio science (instruments and techniques – Interplatery physics (interplanetary dust – General or miscellaneous (new fields

  12. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Silva

    2017-10-01

    Full Text Available Airborne lidar is a technology well-suited for mapping many forest attributes, including aboveground biomass (AGB stocks and changes in selective logging in tropical forests. However, trade-offs still exist between lidar pulse density and accuracy of AGB estimates. We assessed the impacts of lidar pulse density on the estimation of AGB stocks and changes using airborne lidar and field plot data in a selectively logged tropical forest located near Paragominas, Pará, Brazil. Field-derived AGB was computed at 85 square 50 × 50 m plots in 2014. Lidar data were acquired in 2012 and 2014, and for each dataset the pulse density was subsampled from its original density of 13.8 and 37.5 pulses·m−2 to lower densities of 12, 10, 8, 6, 4, 2, 0.8, 0.6, 0.4 and 0.2 pulses·m−2. For each pulse density dataset, a power-law model was developed to estimate AGB stocks from lidar-derived mean height and corresponding changes between the years 2012 and 2014. We found that AGB change estimates at the plot level were only slightly affected by pulse density. However, at the landscape level we observed differences in estimated AGB change of >20 Mg·ha−1 when pulse density decreased from 12 to 0.2 pulses·m−2. The effects of pulse density were more pronounced in areas of steep slope, especially when the digital terrain models (DTMs used in the lidar derived forest height were created from reduced pulse density data. In particular, when the DTM from high pulse density in 2014 was used to derive the forest height from both years, the effects on forest height and the estimated AGB stock and changes did not exceed 20 Mg·ha−1. The results suggest that AGB change can be monitored in selective logging in tropical forests with reasonable accuracy and low cost with low pulse density lidar surveys if a baseline high-quality DTM is available from at least one lidar survey. We recommend the results of this study to be considered in developing projects and national

  13. Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data

    Science.gov (United States)

    Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.

    2017-12-01

    This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode

  14. Characterization of paraffin based breast tissue equivalent phantom using a CdTe detector pulse height analysis.

    Science.gov (United States)

    Cubukcu, Solen; Yücel, Haluk

    2016-12-01

    In this study, paraffin was selected as a base material and mixed with different amounts of CaSO 4 ·2H 2 O and H 3 BO 3 compounds in order to mimic breast tissue. Slab phantoms were produced with suitable mixture ratios of the additives in the melted paraffin. Subsequently, these were characterized in terms of first half-value layer (HVL) in the mammographic X-ray range using a pulse-height spectroscopic analysis with a CdTe detector. Irradiations were performed in the energy range of 23-35 kV p under broad beam conditions from Mo/Mo and Mo/Rh target/filter combinations. X-ray spectra were acquired with a CdTe detector without and with phantom material interposition in increments of 1 cm thickness and then evaluated to obtain the transmission data. The net integral areas of the spectra for the slabs were used to plot the transmission curves and these curves were fitted to the Archer model function. The results obtained for the slabs were compared with those of standard mammographic phantoms such as CIRS BR series phantoms and polymethylmethacrylate plates (PMMA). From the evaluated transmission curves, the mass attenuation coefficients and HVLs of some mixtures are close to those of the commercially available standard mammography phantoms. Results indicated that when a suitable proportion of H 3 BO 3 and CaSO 4 ·2H 2 O is added to the paraffin, the resulting material may be a good candidate for a breast tissue equivalent phantom.

  15. Development of the pulse transformer for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Koontz, R.; Krasnykh, A.

    1997-05-01

    We have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests are also presented

  16. Source fault model of the 2011 off the pacific coast of Tohoku Earthquake, estimated from the detailed distribution of tsunami run-up heights

    International Nuclear Information System (INIS)

    Matsuta, Nobuhisa; Suzuki, Yasuhiro; Sugito, Nobuhiko; Nakata, Takashi; Watanabe, Mitsuhisa

    2015-01-01

    The distribution of tsunami run-up heights generally has spatial variations, because run-up heights are controlled by coastal topography including local-scale landforms such as natural levees, in addition to land use. Focusing on relationships among coastal topography, land conditions, and tsunami run-up heights of historical tsunamis—Meiji Sanriku (1896 A.D.), Syowa Sanriku (1933 A.D.), and Chilean Sanriku (1960 A.D.) tsunamis—along the Sanriku coast, it is found that the wavelength of a tsunami determines inundation areas as well as run-up heights. Small bays facing the Pacific Ocean are sensitive to short wavelength tsunamis, and large bays are sensitive to long wavelength tsunamis. The tsunami observed off Kamaishi during the 2011 off the Pacific coast of Tohoku Earthquake was composed of both short and long wavelength components. We examined run-up heights of the Tohoku tsunami, and found that: (1) coastal areas north of Kamaishi and south of Yamamoto were mainly attacked by short wavelength tsunamis; and (2) no evidence of short wavelength tsunamis was observed from Ofunato to the Oshika Peninsula. This observation coincides with the geomorphologically proposed source fault model, and indicates that the extraordinary large slip along the shallow part of the plate boundary off Sendai, proposed by seismological and geodesic analyses, is not needed to explain the run-up heights of the Tohoku tsunami. To better understand spatial variations of tsunami run-up heights, submarine crustal movements, and source faults, a detailed analysis is required of coastal topography, land conditions, and submarine tectonic landforms from the perspective of geomorphology. (author)

  17. A Rational Procedure for Determination of Directional Individual Design Wave Heights

    DEFF Research Database (Denmark)

    Sterndorff, M.; Sørensen, John Dalsgaard

    2001-01-01

    For code-based LRFD and for reliability-based assessment of offshore structures such as steel platforms it is essential that consistent directional and omnidirectional probability distributions for the maximum significant wave height, the maximum individual wave height, and the maximum individual...

  18. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    International Nuclear Information System (INIS)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-01-01

    Recently, RMD has investigated the use of CLYC (Cs 2 LiYCl 6 :Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam TM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our 252 Cf source was possible using both pulse height and pulse shape discrimination with CLYC. • Imaging

  19. Encountered Wave Height Distributions for Ships in the North Atlantic

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup; Schrøter, C.; Jensen, Jørgen Juncher

    2004-01-01

    About 20 000 observations of wave heights taken on board vessels sailing in the North Atlantic are presented. The data covers year 2002 and 2003 and stem from a variety of ship types. From the preliminary analysis of the data some conclusions are reached about the effect of weather routing whether...

  20. An Expansion Method to Unfold Proton Recoil Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kockum, J

    1970-07-01

    A method is given to obtain a good estimate of the input neutron spectrum from a pulse-height distribution measured with proportional counters filled with a hydrogenous gas. The method consists of expanding the sought estimate as a product of two functions where one is obtained by differentiating the pulse-height distribution and the other is a power series of the neutron energy. The coefficients of this series are determined by a least-squares fit of the calculated pulse-height distribution to the measured one. The method has been tested on pulse-height distributions obtained by calculations from a realistic neutron spectrum and response functions for a spherical counter 3. 94 cm in diameter and filled with 7 atm. of methane and 1 atm. of hydrogen, respectively. In the former case it is possible with the method described, to unfold pulse-height distributions up to a neutron energy of about 3 MeV to within 10 % of the input spectrum. The differentiating procedure included in the method ensures that all spectral details not smoothed out by the finite resolution of the counter, are kept in the spectrum estimate. A realistic estimate of the statistical uncertainty of each neutron spectrum value is given. Some of the possible systematical errors caused by uncertainties in input data have been investigated.

  1. Femtosecond versus picosecond laser pulses for film-free laser bioprinting.

    Science.gov (United States)

    Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric

    2017-11-01

    We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.

  2. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    Science.gov (United States)

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  3. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  4. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  5. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    International Nuclear Information System (INIS)

    Kaplan, A.C.; Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A.

    2013-01-01

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from 252 Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background

  6. Pulse transformer R and D for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Krasnykh, A.; Koontz, R.

    1997-07-01

    The authors have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and requires a larger core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and a pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests using a klystron load are also presented

  7. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  8. Principal Hawaiian Islands Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the Principal Hawaiian Islands is distributed as a GEOID96 model. The computation used 61,000 terrestrial and marine gravity data held...

  9. Memory for target height is scaled to observer height.

    Science.gov (United States)

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2012-04-01

    According to the embodied approach to visual perception, individuals scale the environment to their bodies. This approach highlights the central role of the body for immediate, situated action. The present experiments addressed whether body scaling--specifically, eye-height scaling--occurs in memory when action is not immediate. Participants viewed standard targets that were either the same height as, taller than, or shorter than themselves. Participants then viewed a comparison target and judged whether the comparison was taller or shorter than the standard target. Participants were most accurate when the standard target height matched their own heights, taking into account postural changes. Participants were biased to underestimate standard target height, in general, and to push standard target height away from their own heights. These results are consistent with the literature on eye-height scaling in visual perception and suggest that body scaling is not only a useful metric for perception and action, but is also preserved in memory.

  10. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    Science.gov (United States)

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  11. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E

    1986-07-01

    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  12. Signatures of collective electron dynamics in the angular distributions of electrons ejected during ultrashort laser pulse interactions with C+

    International Nuclear Information System (INIS)

    Lysaght, M A; Hutchinson, S; Van der Hart, H W

    2009-01-01

    We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C + driven by the repulsion of two equivalent p electrons. By studying the two-dimensional momentum distributions of the ejected electron as a function of the time-delay between an ultrashort pump pulse and an ionizing ultrashort probe pulse it is possible to track the collective dynamics inside the C + ion in the time domain.

  13. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  14. Childhood height, adult height, and the risk of prostate cancer

    DEFF Research Database (Denmark)

    Bjerregaard, Lise Geisler; Aarestrup, Julie; Gamborg, Michael

    2016-01-01

    PURPOSE: We previously showed that childhood height is positively associated with prostate cancer risk. It is, however, unknown whether childhood height exerts its effects independently of or through adult height. We investigated whether and to what extent childhood height has a direct effect...... on the risk of prostate cancer apart from adult height. METHODS: We included 5,871 men with height measured at ages 7 and 13 years in the Copenhagen School Health Records Register who also had adult (50-65 years) height measured in the Danish Diet, Cancer and Health study. Prostate cancer status was obtained...... through linkage to the Danish Cancer Registry. Direct and total effects of childhood height on prostate cancer risk were estimated from Cox regressions. RESULTS: From 1996 to 2012, 429 prostate cancers occurred. Child and adult heights were positively and significantly associated with prostate cancer risk...

  15. Angular distribution of species in pulsed laser deposition of LaxCa1-xMnO3

    Science.gov (United States)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-05-01

    The angular distribution of species from a La0.4Ca0.6MnO3 target irradiated with a 248 nm nanosecond pulsed laser was investigated by Rutherford backscattering spectrometry for four different Ar pressures. The film thickness angular distribution was also analyzed using profilometry. Depending on the background gas pressure, the target to substrate distance, and the angular location the film thickness and composition varies considerably. In particular the film composition could vary by up to 17% with respect to the composition of the target material.

  16. Study and Evaluation of Ultrasound System for Detecting the Height of Corn Canopy

    Directory of Open Access Journals (Sweden)

    T Mesri Gundoshmian

    2017-10-01

    system design The height measurement electronic system includes: 40 kHz Ultrasonic transmitter with diameter of 10 mm, 67 db ultrasonic receiver, Signal amplifier circuit (op-amp, AVR Microcontroller, (atmega 128 and a 64×128 pi LCD. Electronic part of system produces 40 kHz pulse initially and locates on one of the outlet bases of microcontroller. Then, this pulse is amplified and sent to ultrasonic sensor transmitter for maximum performance of the transmitter. The received pulse has low power so it shoud be amplified by an amplifier to be recognizable by the microcontroller. The received signal transmitted to digital signal by a high-speed 128 AVR atmega microcontroller. The sensor calibrated in the first phase using artificial barriers, the data analyzed by linear regression and paired mean comparison test in SPSS and EXCEL software. Results and Discussion Corn height measured by designed system in a test by 100 plots and 10 blocks. Thus, the blocks had a dimension of 1m length and 10cm width. System output recorded in first block and the block length passed by system with 10cm distances. Actual measurement accuracy comprised as pixels to data from manual measurement. The results didn’t show any significant difference between means. The regression coefficient of model was calculated 99%. The operating phase continued in a lab to measure maize height. The results showed high linear correlation between ultrasonic output voltage and manual measurement. This linear correlation led to present a linear regression model with the regression coefficient of 95%. Correlated mean comparison used for all of data too, i.e. the data obtained by the two measurement methods were compared by t-paired test. So it’s defensible that with 99% confidence, sensor can estimate the real value of height with high accuracy. Conclusions Utilization of measurement technologies and accuracy enhancement in agricultural production systems are unavoidable. In this research, corn height was

  17. Statistical analysis of random pulse trains

    International Nuclear Information System (INIS)

    Da Costa, G.

    1977-02-01

    Some experimental and theoretical results concerning the statistical properties of optical beams formed by a finite number of independent pulses are presented. The considered waves (corresponding to each pulse) present important spatial variations of the illumination distribution in a cross-section of the beam, due to the time-varying random refractive index distribution in the active medium. Some examples of this kind of emission are: (a) Free-running ruby laser emission; (b) Mode-locked pulse trains; (c) Randomly excited nonlinear media

  18. Fall from heights: does height really matter?

    Science.gov (United States)

    Alizo, G; Sciarretta, J D; Gibson, S; Muertos, K; Romano, A; Davis, J; Pepe, A

    2018-06-01

    Fall from heights is high energy injuries and constitutes a fraction of all fall-related trauma evaluations while bearing an increase in morbidity and mortality. We hypothesize that despite advancements in trauma care, the overall survivability has not improved in this subset of trauma patients. All adult trauma patients treated after sustaining a fall from heights during a 40-month period were retrospectively reviewed. Admission demographics, clinical data, fall height (ft), injury patterns, ISS, GCS, length of stay, and mortality were reviewed. 116 patients sustained a fall from heights, 90.4% accidental. A mean age of 37± 14.7 years, 86% male, and a fall height of 19 ± 10 ft were encountered. Admission GCS was 13 ± 2 with ISS 10 ± 11. Overall LOS was 6.6 ± 14.9 days and an ICU LOS of 2.8 ± 8.9 days. Falls ≥ 25 ft.(16%) had lower GCS 10.4 ± 5.8, increased ISS 22.6 ± 13.8, a fall height 37.9 ± 13.1 ft and associated increased mortality (p < 0.001). Mortality was 5.2%, a mean distance fallen of 39 ± 22 ft. and an ISS of 31.5 ±16.5. Brain injury was the leading cause of death, 50% with open skull fractures. Level of height fallen is a good predictor of overall outcome and survival. Despite advances in trauma care, death rates remain unchanged. Safety awareness and injury prevention programs are needed to reduce the risk of high-level falls.

  19. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  20. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  1. Some aspects of estimation of mixing height using vertical sodar records

    Energy Technology Data Exchange (ETDEWEB)

    Walczewski, J. [Inst. for Meteorology and Water Management, Cracow (Poland)

    1997-10-01

    The changes of the vertical range of sodar, depending on technical parameters, were illustrated by resulting changes of the height distribution of convective and elevated layers echoes. The extent of the difference`s in vertical range may be compartively large. In analyzed case, the maximal heights of convective plumes recorded at the same site with use of 3 types of sodar, were like 1:1.35:1.96. The relations of mean centers of gravity of frequency distributions were like 1:1.4:2.4. (au)

  2. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  3. MICROCALORIMETER SPECTROSCOPY AT HIGH PULSE RATES: A MULTI-PULSE FITTING TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. W.; Alpert, B. K.; Doriese, W. B.; Joe, Y. I.; O’Neil, G. C.; Swetz, D. S.; Ullom, J. N. [National Institute of Standards and Technology, 325 Broadway MS 686.02, Boulder, CO 80305 (United States); Fischer, D. A.; Jaye, C. [National Institute of Standards and Technology, Brookhaven National Lab, Brookhaven, NY (United States)

    2015-08-15

    Transition Edge Sensor microcalorimeters can measure X-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future X-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current “optimal filtering” approaches to achieve the best possible energy resolution work only for photons that are well isolated in time, a requirement which is in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render this procedure computationally viable even for very long data records. The technique is employed to analyze X-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts s{sup −1} in microcalorimeters having exponential signal decay times of approximately 1.2 ms.

  4. Probabilistic SSME blades structural response under random pulse loading

    Science.gov (United States)

    Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.

    1987-01-01

    The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.

  5. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...

  6. Strong-field ionization with twisted laser pulses

    Science.gov (United States)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  7. Comparative efficiency of wind turbines with different heights of rotor hubs: performance evaluation for Latvia

    International Nuclear Information System (INIS)

    Bezrukovs, V P; Zacepins, A J; Bezrukovs, V V

    2014-01-01

    Performance evaluation of wind turbines (WT) for different heights of the rotor hub is made based on the wind speed and direction data obtained in 2009–2013 on-shore in the north of Latvia using a LOGGER 9200 Symphonie measurement system mounted on a 60 m mast. Based on the measurement analysis results, wind speed distribution curves have been modelled for heights of up to 200 m using power and logarithmic (log) law approximation methods. The curves for the modelled Weibull's parameters are plotted in dependence on height. The efficiency comparison is made for different WT types taking into account the distribution of the wind energy potential in height in the Latvian territory. The annual electric energy production was calculated for the WTs with different heights of rotor hubs. In the calculations the technical data on the following WT types were used: E-3120 (50 kW, hub height 20.5/30.5/36.5/42.7 m), E-33 (330 kW, hub height 37/44/49/50 m), E-48 (800 kW, hub height 50/60/75 m) and E-82 (2.3 MW, hub height of 78/85/98/108/138 m)

  8. Fast quadrupole pulsed power supply in the AGS

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Halama, H.J.; Lambiase, R.F.; Montemurro, P.A.

    1984-01-01

    As part of the Polarized Proton Project at the AGS, a pulsed power supply system has been developed to energize a set of twelve fast quadrupoles which are symmetrically distributed around the 1/2-mile circumference of the machine. During a typical acceleration cycle, which is normally repeated every 2.4 s, these magnets are energized with bursts of triangular current pulses. The rise-time of each pulse is less than 2 μs and the width at the base varies from 1 to 3.5 ms depending on the pulse. Within a burst, pulses alternate in polarity and vary in amplitude from 160 A to 2700 A peak. Pulse separation is on the order of 40 ms. Due to the distributed nature of the load and high di/dt, each magnet is powered by a separate modulator. Magnets are driven via coaxial pulse transmission cables up to 200 ft long. In the modulators, the high power pulses are switched with thyratron/ignitron switch pairs. All modulators are charged in parallel with a common system of programmable high voltage power supplies. The overall system is controlled with a distributed network of microcomputers. This paper describes the development, construction and initial performance of the pulsed power supply system

  9. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Hansen, Aksel Walle

    in atmospheric transport- and dispersion models. A new method of filtering clouds from the ceilometer data is presented. This allows for the inclusion of more than half of the data in the subsequent analysis, as the presence of clouds would otherwise complicate the boundary-layer height estimations. The boundary....... The boundary-layer height estimates are then used to analyse the daily evolution of the boundary layer and to perform monthly and annual frequency distributions of the boundary-layer height. For westerly winds bi-modal distributions are often found, which may be separated by different criteria, while...

  10. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    Science.gov (United States)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated

  11. Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition

    NARCIS (Netherlands)

    Nishikawa, H.; Hasegawa, T; Miyake, A.; Tashiro, Y.; Hashimoto, Y.; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Variation of the Ca/P ratio in hydroxyapatite (Ca10(PO4)6(OH)2) thin films was studied in relation to the spot size of the ablation laser for two different spatial energy distributions in pulsed laser deposition. One energy distribution is the defocus method with a raw distribution and the other is

  12. High-altitude electromagnetic pulse environment over the lossy ground

    International Nuclear Information System (INIS)

    Xie Yanzhao; Wang Zanji

    2003-01-01

    The electromagnetic field above ground produced by an incident high-altitude electromagnetic pulse plane wave striking the ground plane was described in this paper in terms of the Fresnel reflection coefficients and the numerical FFT. The pulse reflected from the ground plane always cancel the incident field for the horizontal field component, but the reflected field adds to the incident for the vertical field component. The results of several cases for variations in the observation height, angle of incidence and lossy ground electrical parameters were also presented showing different e-field components above the earth

  13. Apparatus for reducing pulse pileup in an elemental analyzer measuring gamma rays arising from neutron capture in bulk substances

    International Nuclear Information System (INIS)

    Marshall, J.H. III.

    1979-01-01

    The active reduction of the number of analyzed events with pulse amplitudes which pileup has distorted improves measurement accuracy and response time in an apparatus for neutron-capture-based on-line elemental analysis of bulk substances. Within the apparatus, the analyzed bulk substance is exposed to neutrons, and neutron capture generates prompt gamma rays therefrom. A detector interacts with some of these gamma rays to produce electrical signals used to measure their energy spectrum by pulse-height analysis. Circuits associated with this pulse-height analysis also detect the pileup of the signals of two or more independent gamma rays using one or more of several techniques. These techniques include multiple outputs from a special amplifier-discriminator system, which has been optimized for low pulse-pair resolving time and may have adaptive thresholds, and the requirement that the relative amplitudes of the outputs of slow and fast amplifiers be consistent with a single event producing both outputs. Pulse-width measurements are also included in the pileup detection

  14. Boron distribution in silicon after multiple pulse excimer laser annealing

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have studied B redistribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted with energies of 1 and 10 keV and doses of 1x10 14 and 1x10 15 cm -2 . ELA with the number of pulses from 1 to 100 was performed at room temperature and 450 deg. C in vacuum. Irrespective of the implantation parameters and the ELA conditions used, a pile-up in the B concentration is observed near the maximum melting depth after ten pulses of ELA. Moreover, a detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. Besides, an increase in the carrier concentration is observed at the maximum melt depth, suggesting electrical activity of the accumulated B. Formation of Si-B complexes and vacancy accumulation during multiple ELA are discussed as possible mechanisms for the B build-up

  15. Optimal Height Calculation and Modelling of Noise Barrier

    Directory of Open Access Journals (Sweden)

    Raimondas Grubliauskas

    2011-04-01

    Full Text Available Transport is one of the main sources of noise having a particularly strong negative impact on the environment. In the city, one of the best methods to reduce the spread of noise in residential areas is a noise barrier. The article presents noise reduction barrier adaptation with empirical formulas calculating and modelling noise distribution. The simulation of noise dispersion has been performed applying the CadnaA program that allows modelling the noise levels of various developments under changing conditions. Calculation and simulation is obtained by assessing the level of noise reduction using the same variables. The investigation results are presented as noise distribution isolines. The selection of a different height of noise barriers are the results calculated at the heights of 1, 4 and 15 meters. The level of noise reduction at the maximum overlap of data, calculation and simulation has reached about 10%.Article in Lithuanian

  16. Concordant preferences for actual height and facial cues to height

    OpenAIRE

    Re, Daniel Edward; Perrett, David I.

    2012-01-01

    Physical height has a well-documented effect on human mate preferences. In general, both sexes prefer opposite-sex romantic relationships in which the man is taller than the woman, while individual preferences for height are affected by a person’s own height. Research in human mate choice has demonstrated that attraction to facial characteristics, such as facial adiposity, may reflect references for body characteristics. Here, we tested preferences for facial cues to height. In general, incre...

  17. Optimal Linear Filters. 2. Pulse Time Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1966-09-15

    The problem of calculating the maximum available timing information contained in nuclear pulses in the presence of noise is solved theoretically. Practical experiments show that the theoretical values can be obtained by very simple, but untraditional, means. An output pulse from a practical filter connected to a charge sensitive amplifier with a Ge(Li) detector showed a rise time of 30 ns and a noise level of less than 5 keV. The time jitter measured was inversely proportional to the pulse height and less than 30 ns for 10 keV pulses. With the timing filter shown solid state detectors can be classified somewhere between Nal scintillators and organic scintillators with respect to time resolution.

  18. Optimal Linear Filters. 2. Pulse Time Measurements in the Presence of Noise

    International Nuclear Information System (INIS)

    Nygaard, K.

    1966-09-01

    The problem of calculating the maximum available timing information contained in nuclear pulses in the presence of noise is solved theoretically. Practical experiments show that the theoretical values can be obtained by very simple, but untraditional, means. An output pulse from a practical filter connected to a charge sensitive amplifier with a Ge(Li) detector showed a rise time of 30 ns and a noise level of less than 5 keV. The time jitter measured was inversely proportional to the pulse height and less than 30 ns for 10 keV pulses. With the timing filter shown solid state detectors can be classified somewhere between Nal scintillators and organic scintillators with respect to time resolution

  19. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    Science.gov (United States)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  20. BOREAS AFM-6 Boundary Layer Height Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. Influence of media size on energy distribution of pulsed thermal neutrons

    International Nuclear Information System (INIS)

    Dabrowska, J.

    2007-01-01

    The work is devoted to the investigation of the diffusion cooling phenomenon of pulsed thermalized neutron fields in bounded media. It is aimed at the examination of the validity of the neutron temperature model that involves the assumption that an asymptotic energy distribution of neutrons in bounded media can be described by the Maxwell distribution but with a shifted temperature, lower than a temperature of medium. The research carried out entirely by means of Monte Carlo simulation of the neutron transport was preceded by a measurement of the time decay constants obtained in all variants of Monte Carlo simulations of the experiment and the measured one was stated. The form of asymptotic energy distribution of neutrons and its dependence on the size of medium was investigated in three kinds of materials of different thermal neutron transport properties: energy independent scatterer with negligible absorption (silica), energy dependent scatterer with 1/v absorption (borated silica) and energy dependent scatterer with 1/v absorption (water). As it was expected, in the case of large media, which can be treated as infinite, neutrons attained the Maxwell energy distribution at the temperature of the medium. For all materials under investigation the average and the most probable values of the energy distribution steadily decreased with decreasing geometric dimensions of the media. At the same time a growing distortion from the pure Maxwellian energy distribution was observed, which means that the concept of the neutron temperature fails in the case of small media. Although the spectra under investigation in general did not have the Maxwellian shape, the most probable velocity in a neutron density distribution decreased linearly with the increasing geometric buckling of the medium. This dependence manifested a stronger cooling than the one predicted by a certain approximate formula. The neutron spectrum in a small medium of pure silica was cooler than the spectrum in

  2. Kinetic studies on a repetitively pulsed fast reactor

    International Nuclear Information System (INIS)

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  3. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    Science.gov (United States)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  4. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  5. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  6. Love and fear of heights: the pathophysiology and psychology of height imbalance.

    Science.gov (United States)

    Salassa, John R; Zapala, David A

    2009-01-01

    Individual psychological responses to heights vary on a continuum from acrophobia to height intolerance, height tolerance, and height enjoyment. This paper reviews the English literature and summarizes the physiologic and psychological factors that generate different responses to heights while standing still in a static or motionless environment. Perceptual cues to height arise from vision. Normal postural sway of 2 cm for peripheral objects within 3 m increases as eye-object distance increases. Postural sway >10 cm can result in a fall. A minimum of 20 minutes of peripheral retinal arc is required to detect motion. Trigonometry dictates that a 20-minute peripheral retinal arch can no longer be achieved in a standing position at an eye-object distance of >20 m. At this distance, visual cues conflict with somatosensory and vestibular inputs, resulting in variable degrees of imbalance. Co-occurring deficits in the visual, vestibular, and somatosensory systems can significantly increase height imbalance. An individual's psychological makeup, influenced by learned and genetic factors, can influence reactions to height imbalance. Enhancing peripheral vision and vestibular, proprioceptive, and haptic functions may improve height imbalance. Psychotherapy may improve the troubling subjective sensations to heights.

  7. Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges

    Science.gov (United States)

    Zhang, Yuan-Tao; Wang, Yan-Hui

    2018-02-01

    In this paper, we present a modeling study on the discharge characteristics driven by short pulsed voltages, focusing on the effects of pulse rise rate based on the fluid description of atmospheric plasmas. The numerical results show that the breakdown voltage of short pulsed discharge is almost linearly dependent on the pulse rise rate, which is also confirmed by the derived equations from the fluid model. In other words, if the pulse rise rate is fixed as a constant, the simulation results clearly suggest that the breakdown voltage is almost unchanged, although the amplitude of pulsed voltage increases significantly. The spatial distribution of the electric field and electron density are given to reveal the underpinning physics. Additionally, the computational data and the analytical expression also indicate that an increased repetition frequency can effectively decrease the breakdown voltage and current density, which is consistent with the experimental observation.

  8. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  9. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  10. Determination of energy distribution for photon and neutron microdosimetry

    International Nuclear Information System (INIS)

    Todo, A.S.

    1989-01-01

    This work was undertaken to provide basic physical data for use in both microdosimetry and dosimetry of high energy photons and also in the neutron radiation field. It is described the formalism to determine the initial electron energy spectra in water irradiated by photons with energies up to 1 GeV. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. The conditions under which first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical case. A study has been carried out, on the use of cylindrical, energy-proportional pulse-height detector for determining microdosimetric quantities, as neutron fractional dose spectra, D (L), in function of linear energy transfer, TLE. In the present study the Hurst detector was used and this device satisfies the requirement of the Bragg-Gray principle. It is developed a Monte Carlo Method to obtain the D(L) spectrum from a measured pulse-height spectrum H(h), and the knowledge of the distribution of recoil-particle track lenght, P(T) in the sensitive volume of the detector. These developed programs to find P(T) and D(L) are presented. The distribution of D(L) in LET were obtained using a known distribution of P(T) and the measured H(h) spectrum from sup(252)Cf neutron source. All the results are discussed and the conclusions are presented. (author)

  11. The P1-approximation for the Distribution of Neutrons from a Pulsed Source in Hydrogen

    International Nuclear Information System (INIS)

    Claesson, A.

    1963-12-01

    The asymptotic distribution of neutrons from a pulsed, high energy source in an infinite moderator has been obtained earlier in a 'diffusion' approximation. In that paper the cross section was assumed to be constant over the whole energy region and the time derivative of the first moment was disregarded. Here, first, an analytic expression is obtained for the density in a P 1 -approximation. However, the result is very complicated, and it is shown that an asymptotic solution can be found in a simpler way. By taking into account the low hydrogen scattering cross section at the source energy it follows that the space dependence of the distribution is less than that obtained earlier. The importance of keeping the time derivative of the first moment is further shown in a perturbation approximation

  12. INFLUENCE OF ARMATURE PARAMETERS OF A LINEAR PULSE ELECTROMECHANICAL CONVERTER ON ITS EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. F. Bolyukh

    2017-12-01

    Full Text Available Purpose. The evaluation of the effect of armature parameters on the efficiency of a linear pulsed electromechanical converter, taking into account the power, speed, constructive and environmental parameters. Methodology. First, the height of the electrically conductive, coil and ferromagnetic armature of a linear pulse electromechanical converter is determined, at which the highest velocity develops. An integral efficiency index is introduced, which takes into account, in a relative way, the power, speed, energy, electrical and field characteristics of the converter. Variants of the efficiency evaluation strategy are used that take into account the priority of each indicator of a linear pulse electromechanical converter using the appropriate weighting factor in the integral efficiency index. Results. A mathematical model of a linear pulsed electromechanical converter is developed. It is established that as the height of the electroconductive, coil and ferromagnetic armature increases, the force pulse increases. The greatest speed develops with the use of a coil armature, and the smallest with an electroconductive armature. In the converter with coil and ferromagnetic armature, practically the same values of the electrodynamic and electromagnetic force pulse are realized, while in the converter the electrodynamic force is 1.52 times smaller in the converter by the electrically conductive armature. It is established that with all efficiency evaluation strategies, the converter with a coil armature is the most effective, even in spite of its constructive complexity, and the converter with a ferromagnetic armature is the least effective, although it is constructively the simplest. Originality. For the first time, using the integral efficiency index, which takes into account the power, speed, energy, electrical and field indices in a relative way, it is established that with all efficiency evaluation strategies, the converter with a coil armature is

  13. Generation of organic scintillators response function for fast neutrons using the Monte Carlo method

    International Nuclear Information System (INIS)

    Mazzaro, A.C.

    1979-01-01

    A computer program (DALP) in Fortran-4-G language, has been developed using the Monte Carlo method to simulate the experimental techniques leading to the distribution of pulse heights due to monoenergetic neutrons reaching an organic scintillator. The calculation of the pulse height distribution has been done for two different systems: 1) Monoenergetic neutrons from a punctual source reaching the flat face of a cylindrical organic scintillator; 2) Environmental monoenergetic neutrons randomly reaching either the flat or curved face of the cylindrical organic scintillator. The computer program has been developed in order to be applied to the NE-213 liquid organic scintillator, but can be easily adapted to any other kind of organic scintillator. With this program one can determine the pulse height distribution for neutron energies ranging from 15 KeV to 10 MeV. (Author) [pt

  14. Intercept-resend attacks in the Bennett-Brassard 1984 quantum-key-distribution protocol with weak coherent pulses

    International Nuclear Information System (INIS)

    Curty, Marcos; Luetkenhaus, Norbert

    2005-01-01

    Unconditional security proofs of the Bennett-Brassard 1984 protocol of quantum key distribution have been obtained recently. These proofs cover also practical implementations that utilize weak coherent pulses in the four signal polarizations. Proven secure rates leave open the possibility that new proofs or new public discussion protocols will obtain larger rates over increased distance. In this paper we investigate limits to the error rate and signal losses that can be tolerated by future protocols and proofs

  15. The absorbed dose in air of photons generated from secondary cosmic rays at sea level at Nagoya, Japan

    International Nuclear Information System (INIS)

    Akhmad, Y.R.

    1995-01-01

    Investigations have been carried out to determine the absorbed dose in air of photons generated from secondary cosmic radiation at sea level at Nagoya, Japan. To isolate the contribution from cosmic photons, the pulse-height distributions due to μ particles and electrons were eliminated from the observed pulse-height distribution of a measurement with a 3'' diam. spherical NaI(Tl) detector. The pulse height due to μ particles and electrons was inferred from the coincidence technique using two types of scintillation detectors with different sensitivities to photons. To obtain the photon fluence rate for further dose calculation, the pulse-height distribution of cosmic photons was unfolded by the iterative method. The mean and its standard deviation of the absorbed dose in air and fluence rate due to cosmic photons calculated from a one year observation are 2.86±0.05 nGy.h -1 and 0.1342±0.0015 photons.cm -2 .s -1 , respectively. The absorbed dose in air from cosmic photons was 0.5% lower during autumn to winter and 0.6% higher during spring to summer than the mean taken over the year. (author)

  16. Analysis of pulse-shape discrimination techniques for BC501A using GHz digital signal processing

    International Nuclear Information System (INIS)

    Rooney, B.D.; Dinwiddie, D.R.; Nelson, M.A.; Rawool-Sullivan, Mohini W.

    2001-01-01

    A comparison study of pulse-shape analysis techniques was conducted for a BC501A scintillator using digital signal processing (DSP). In this study, output signals from a preamplifier were input directly into a 1 GHz analog-to-digital converter. The digitized data obtained with this method was post-processed for both pulse-height and pulse-shape information. Several different analysis techniques were evaluated for neutron and gamma-ray pulse-shape discrimination. It was surprising that one of the simplest and fastest techniques resulted in some of the best pulse-shape discrimination results. This technique, referred to here as the Integral Ratio technique, was able to effectively process several thousand detector pulses per second. This paper presents the results and findings of this study for various pulse-shape analysis techniques with digitized detector signals.

  17. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Chand, Subhash; Kumar, Rajender

    2014-01-01

    Highlights: • The Ni/n-ZnO/p-Si/Al heterojunction diodes are fabricated by pulsed laser deposition. • The band gap of the deposit ZnO films was found to be 3.43 eV. • Forward I–V data of Ni/n-ZnO/p-Si/Al hetrojunction are interpreted in terms of thermionic emission–diffusion mechanism. • The C–V characteristics of the Ni/n-ZnO/p-Si/Al hetrojunction diode are measured in the temperature range 80–300 K. • The barrier height of Ni/n-ZnO/p-Si/Al hetrojunction diode is also calculated from C–V measurements. - Abstract: The ZnO thin films are grown on the p-Si for the heterojunction fabrication by pulsed laser deposition method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) plane as preferred direction. High purity vacuum evaporated nickel and aluminum metals were used to make contacts to the n-ZnO and p-Si, respectively. The current–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al hetero structure measured over the temperature range 80–300 K have been studied on the basis of thermionic emission diffusion mechanism. The equivalent Schottky barrier height and diode ideality factor are determined by fitting of measured current–voltage data in to thermionic diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al heterojunction diode are also studied over wide temperature range. From the measured capacitance–voltage data the built in voltage and impurity concentration in n-type ZnO is estimated

  18. Computer aided method of low voltage power distribution networks protection system against lightning and electromagnetic pulse generated by high altitude nuclear burst

    International Nuclear Information System (INIS)

    Laroubine, J.

    1989-01-01

    The lightning creates an electromagnetic field which produces a slow duration and high energy pulse of current on low voltage power distribution networks. On the other hand an high altitude nuclear burst generates an electromagnetic pulse which causes fast and intense interferences. We describe here the specifications of a passive filter that can reject these interferences. We used a computer aided method of simulation to create a prototype. Experimental results confirm the validity of the model used for simulation [fr

  19. Can Pillow Height Effect the Body Pressure Distribution and Sleep Comfort: a Study of Quinquagenarian Women

    Science.gov (United States)

    Li, Xinzhu; Hu, Huimin; Liao, Su

    2018-03-01

    A proper sleeping pillow can relax the neck muscles during sleep, yet does not impose stress on the spine or other tissues. By analyzing the different body pressure and subjective comfort evaluation of quinquagenarian women with different pillow heights (3cm, 7cm, 11cm and 15cm), this paper found that as the pillow height increased, the neck contact pressure, contact area and force increased at the same time, as well as the peak force and peak contact pressure gradually shifted from the head to the hip area. It was shown that the pillow with a height of 7cm was the most comfortable for supine positions.

  20. Pulse formation of gas-filled counter

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Teshima, Kazunori; Shizuma, Kiyoshi; Hasai, Hiromi

    1991-01-01

    The pulse formation of gas-filled counter has been calculated by simple models for the proportional and self-quenching streamer (SQS) modes. Calculated pulse shapes of counter output have accurately reproduced the observed ones for both modes. As a result, it is shown that the special density distribution of ion pairs in a streamer can be estimated with the rising part of observed pulse shape, using the model. (author)

  1. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    Science.gov (United States)

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  2. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Hudy, L J; Li, L; Li, C H

    2015-01-01

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current–voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions. (paper)

  3. Effect of plyometric training on vertical jump height in high school basketball players: randomised control trial

    Directory of Open Access Journals (Sweden)

    Chhaya Verma, Lakshmi Subramanium, Vijaya Krishnan

    2015-01-01

    Full Text Available Background: Plyometric involve high intensity eccentric contraction immediately after a powerful concentric contraction. A vertical leap in basketball also involves rapid & repeated muscle contraction & stretching. Various methods have been used to improve the vertical leap in players, but only few studies mention about plyometrics. Aim: To determine the effect of Plyometric training on vertical jump height in high school basketball players & compare them with their untrained counterparts. Methods and Materials: 144 students were randomly selected & distributed in Group I (Pre-pubertal & Group II (Pubertal which was further divided into Group A (trained players & Group B (untrained students. A gender wise distribution followed this. Plyometric training of 6 weeks was conducted & the vertical jump height pre & post training were recorded & compared. Results: Vertical jump height improved significantly post Plyometric in Group Bcompared to Group A. Boys showed improvement in Group B, however girls were better in Group A. Correlation of BMI with vertical jump height was negative & significant in Group B. Conclusion: Plyometric training brought significant change in untrained students. Boys gained more jump height while girls showed significant increase in jump height during pubertal growth spurt. Also, increased BMI reduced jump height.

  4. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  5. Direct Measurement of Tree Height Provides Different Results on the Assessment of LiDAR Accuracy

    Directory of Open Access Journals (Sweden)

    Emanuele Sibona

    2016-12-01

    Full Text Available In this study, airborne laser scanning-based and traditional field-based survey methods for tree heights estimation are assessed by using one hundred felled trees as a reference dataset. Comparisons between remote sensing and field-based methods were applied to four circular permanent plots located in the western Italian Alps and established within the Alpine Space project NewFor. Remote sensing (Airborne Laser Scanning, ALS, traditional field-based (indirect measurement, IND, and direct measurement of felled trees (DIR methods were compared by using summary statistics, linear regression models, and variation partitioning. Our results show that tree height estimates by Airborne Laser Scanning (ALS approximated to real heights (DIR of felled trees. Considering the species separately, Larix decidua was the species that showed the smaller mean absolute difference (0.95 m between remote sensing (ALS and direct field (DIR data, followed by Picea abies and Pinus sylvestris (1.13 m and 1.04 m, respectively. Our results cannot be generalized to ALS surveys with low pulses density (<5/m2 and with view angles far from zero (nadir. We observed that the tree heights estimation by laser scanner is closer to actual tree heights (DIR than traditional field-based survey, and this was particularly valid for tall trees with conical shape crowns.

  6. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  7. Agreement between measured height, and height predicted from ...

    African Journals Online (AJOL)

    lower limb measurements, such as knee height, as well as upper limb measures ... had with bone injuries/fractures affecting height or ulna length; and n = 1 had a ... and heels, buttocks and upper back in contact with the vertical surface of the .... found striking similarity in linear growth of infants to five-year- olds among all ...

  8. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M.; Mahmood, K.; Rabia, S.; BM, S.; Shahid, M. Y.; Hasan, M. A.

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 - 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Fap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Fap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(ds) (0.02 V) at zero bais. (author)

  9. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Rabia, S; M, Samaa B; Shahid, M Y; Hasan, M A

    2014-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 – 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Φ ap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Φ ap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(δ s ) (0.02 V) at zero bais

  10. Accuracy of recumbent height measurement.

    Science.gov (United States)

    Gray, D S; Crider, J B; Kelley, C; Dickinson, L C

    1985-01-01

    Since many patients requiring specialized nutritional support are bedridden, measurement of height for purposes of nutritional assessment or prescription must often be done with the patient in bed. This study examined the accuracy of measuring body height in bed in the supine position. Two measurements were performed on 108 ambulatory inpatients: (1) standing height using a standard height-weight scale, and (2) bed height using a flexible tape. Patients were divided into four groups based on which of two researchers performed each of the two measurements. Each patient was also weighed and self-reported height, weight, sex, and age were recorded. Bed height was significantly longer than standing height by 3.68 cm, but the two measurements were equally precise. It was believed, however, that this 2% difference was probably not clinically significant in most circumstances. Bed height correlated highly with standing height (r = 0.95), and the regression equation was standing height = 13.82 +/- 0.09 bed height. Patients overestimated their heights. Heights recorded by nurses were more accurate when patients were measured than when asked about their heights, but the patients were more often asked than measured.

  11. An updated analysis of the Lucas Heights climatology 1991-2003

    International Nuclear Information System (INIS)

    Clark, G.H.

    2003-12-01

    Meteorological data collected from 1991 to 2003 in the Lucas Heights region have been summarised to provide an update on the climatology. This report represents analysis of data collected at the Lucas Heights Science and Technology Centre since 1991 when an advanced digital recording system was installed. The small network of meteorological stations installed in the surrounding region since 1993 has allowed an investigation of the influence of complex terrain on wind flow and atmospheric dispersion patterns. For a period between 1999 and 2001 a Bureau of Meteorology disdrometer was installed at Lucas Heights to investigate raindrop size distributions. A large number of statistical summaries for all meteorological data are presented in in two appendices at the end of the report as a resource for reference purposes

  12. AIRBORNE X-HH INCIDENCE ANGLE IMPACT ON CANOPY HEIGHT RETREIVAL: IMPLICATIONS FOR SPACEBORNE X-HH TANDEM-X GLOBAL CANOPY HEIGHT MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Tighe

    2012-07-01

    Full Text Available To support international climate change mitigation efforts, the United Nations REDD+ initiative (Reducing Emissions from Deforestation and Degradation seeks to reduce land use induced greenhouse gas emissions to the atmosphere. It requires independent monitoring of forest cover and forest biomass information in a spatially explicit form. It is widely recognised that remote sensing is required to deliver this information. Synthetic Aperture Radar interferometry (InSAR techniques have gained traction in the last decade as a viable technology from which vegetation canopy height and bare earth elevations can be derived. The viewing geometry of a SAR sensor is side-looking where the radar pulse is transmitted out to one side of the aircraft or satellite, defining an incidence angle (θ range. The incidence angle will change from near-range (NR to far-range (FR across of the track of the SAR platform. InSAR uses image pairs and thus, contain two set of incidence angles. Changes in the InSAR incidence angles can alter the relative contributions from the vegetation canopy and the ground surface and thus, affect the retrieved vegetation canopy height. Incidence angle change is less pronounced in spaceborne data than in airborne data and mitigated somewhat when multiple InSAR-data takes are combined. This study uses NEXTMap® single- and multi-pass X-band HH polarized InSAR to derive vegetation canopy height from the scattering phase centre height (hspc. Comparisons with in situ vegetation canopy height over three test sites (Arizona-1, Minnesota-2; the effect of incidence angle changes across swath on the X-HH InSAR hspc was examined. Results indicate at steep incidence angles (θ = 35º, more exposure of lower vegetation canopy structure (e.g. tree trunks led to greater lower canopy double bounce, increased ground scattering, and decreased volume scattering. This resulted in a lower scattering phase centre height (hspc or a greater underestimation of

  13. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Rubio-Roy, M; Bertran, E; Portal, S; Pascual, E; Polo, M C; Andujar, J L, E-mail: corbella@ub.edu [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ MartI i Franques 1, 08028 Barcelona (Spain)

    2011-02-15

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH{sub 4}) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  14. Signatures of tunneling and multiphoton ionization in the electron-momentum distributions of atoms by intense few-cycle laser pulses

    International Nuclear Information System (INIS)

    Wickenhauser, M.; Tong, X. M.; Arbo, D. G.; Burgdoerfer, J.; Lin, C. D.

    2006-01-01

    Electron-momentum distributions for above-threshold ionization of argon in a few-cycle, linearly polarized laser pulse are investigated. Spectral features characteristic of multiphoton as well as tunneling ionization coexist over a range of the Keldysh parameter γ in the transition regime γ∼1. Surprisingly, the simple strong-field approximation (SFA) is capable of reproducing the key features of the two-dimensional momentum distributions found in the full solution of the time-dependent Schroedinger equation, despite the fact that SFA is known to severely underestimate the total ionization probability

  15. Vanadium determination in raw materials and products of aluminium production using pulse polarography

    International Nuclear Information System (INIS)

    Grigor'eva, M.F.; Bal'de, I.; Markovich, I.A.

    1992-01-01

    Possibility of using differential pulse polarography (DPP) for determination of vanadium in raw materials and products of aluminium production was studied. Ammonium-cheoride buffer solution with pH 9-10, aqueous solution of mixture of sodium carbonate and borax (1:3) and rhodanide-acefic acid solutions (1:1) were tested as a background. Current-voltage curves of vanadium reduction were plotted and peak potentials on DPP were determined against the background of chosen electrolytes. Effect of parameters, providing the maximal height of DPP peak, on the height of measured signal, was studied. Rhodanide background was chosen for polarographic determination of vanadium, because the detection limit of vanadium was the lowest against this background. Pulse polarography enafles to determine vanadium in products of aluminium production in amounts from 1x10 -4 to 0.01 % and more

  16. Real-time evolvable pulse shaper for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lanchares, Juan, E-mail: julandan@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Garnica, Oscar, E-mail: ogarnica@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Risco-Martín, José L., E-mail: jlrisco@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Ignacio Hidalgo, J., E-mail: hidalgo@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Regadío, Alberto, E-mail: alberto.regadio@insa.es [Área de Tecnologías Electrónicas, Instituto Nacional de Técnica Aeroespacial (INTA), 28850 Torrejón de Ardoz, Madrid (Spain)

    2013-11-01

    In the last two decades, recursive algorithms for real-time digital pulse shaping in pulse height measurements have been developed and published in number of articles and textbooks. All these algorithms try to synthesize in real time optimum or near optimum shapes in the presence of noise. Even though some of these shapers can be considered effective designs, some side effects like aging cannot be ignored. We may observe that after sensors degradation, the signal obtained is not valid. In this regard, we present in this paper a novel technique that, based on evolvable hardware concepts, is able to evolve the degenerated shaper into a new design with better performance than the original one under the new sensor features.

  17. A comparison of two methods of pulse-shape discrimination for alpha-gamma separation with trans-stilbene

    International Nuclear Information System (INIS)

    Shani, G.; Cojocaru, M.

    1977-01-01

    A method for measurement of low level alpha particles in high level gamma background is investigated. Because of its pulse-shape-discrimination properties and being a solid scintillator, trans-stilbene seems to be the proper scintillator, for this purpose. The investigation was done by measuring the effect of different gamma background level (from very low to very high) on constant alpha count rate. Two different pulse-shape-discrimination systems were used and compared. The Ortec system measures the pulse fall time and supplies a corresponding pulse height and the Elscint system checks whether the pulse is what is expected to be the gamma pulse, or is a longer pulse. Both systems yielded good results and were found to be adequate for alpha-gamma separation with trans-stilbene. (Auth.)

  18. Pulse-shape discrimination in NE213 liquid scintillator detectors

    International Nuclear Information System (INIS)

    Cavallaro, M.; Tropea, S.; Agodi, C.; Assié, M.; Azaiez, F.; Boiano, C.; Bondì, M.; Cappuzzello, F.; Carbone, D.; De Napoli, M.; Séréville, N. de; Foti, A.; Linares, R.; Nicolosi, D.; Scarpaci, J.A.

    2013-01-01

    The 16-channel fast stretcher BaFPro module, originally developed for processing signals of Barium Fluoride scintillators, has been modified to make a high performing analog pulse-shape analysis of signals from the NE213 liquid scintillators of the EDEN neutron detector array. The module produces two Gaussian signals, whose amplitudes are proportional to the height of the fast component of the output light and to the total energy deposited into the scintillator, respectively. An in-beam test has been performed at INFN-LNS (Italy) demonstrating a low detection threshold, a good pulse-shape discrimination even at low energies and a wide dynamic range for the measurement of the neutrons energy.

  19. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    Science.gov (United States)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  20. Photodissociation of H2+ by intense chirped pulses - beyond the effect of pulse duration and peak power

    International Nuclear Information System (INIS)

    Lev, U; Prabhudesai, V; Natan, A; Bruner, B; Diner, A; Heber, O; Strasser, D; Schwalm, D; Silberberg, Y; Zajfman, D; Ben-Itzhak, I; Hua, J J; Esry, B D

    2009-01-01

    H 2 + photodissociation, induced by intense short laser pulses, was measured by a full 3D imaging system. We have conducted a series of experiments, in which we systematically changed the linear chirp, using a pulse shaper, and observed the kinetic energy release spectra(KER). Distinct differences in the KER spectra are observed both in peak positions and angular distribution for laser pulses with similar duration and intensity but opposite chirp sign.

  1. Measurement of the pulse night spectrum Cerenkov flashes in the atmosphere

    International Nuclear Information System (INIS)

    Schlemmer, G.

    1981-03-01

    The determination of the energy spectrum of Cosmic Rays is difficult because of the low particle density at high energies. Normally such observations would require detectors with large collecting areas and long measurement periods. However the difficulty can be overcome by measuring shower induced Cerenkov radiation, the photon density of which is proportional to the shower energy. The Cerenkov radiation measurements reported here were made using two photomultipliers connected to a coincidence counter unit. The shower energy was deduced from measurements of the height of the pulses observed at the multiplier output,which should be proportional to the number of Cerenkov photons arriving at the photocathode. In order to make meaningful statements about the shower energy the statistical response of the photomultiplier system had to be standardized. This calibration was carried out by illuminating the photomultiplier cathode with a pulsed LED of pulsewidth 5 ns. For different light intensities of the LED a pulse-height spectrum was taken at the multiplier output. In addition to the Cerenkov photons counted by the photomultipliers, there exists a strong constant background light intensity. This background can be eliminated by employing a coincidence amplifier with a resolution time of 10 ns. To reduce background induced accidental coincidences the apparatus was equipped with a variable trigger level. To test the apparatus the Cerenkov radiation induced by cosmic rays in a water basin and in the photomultiplier window itself was measured and compared to theoretical estimates. The agreement was good. The pulse height spectrum of atmospheric Cerenkov radiation was obtained at the Cosmic Ray Physics Laboratory at the Hafelekar Observatory near Innsbruck. The measurements obtained there allowed the exponnent $delta in the differential energy spectrum N(E) dE c.Esup(-$delta)dE of the primary Cosmic Radiation to be evaluated. The value of $delta in the energy range 2,5 x 10 14

  2. Seasonal distribution of wave heights off Yanam on the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, B.U.; Chandramohan, D.; Sakhardande, R.N.

    , maximum wave height and zero crossing wave period are presented and discussed. Inter-comparison of wave parameters computEd. by the three different methods was also done and linear relationships were obtainEd. by the method of least square...

  3. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis.

    Science.gov (United States)

    Knijnenburg, S L; Raemaekers, S; van den Berg, H; van Dijk, I W E M; Lieverst, J A; van der Pal, H J; Jaspers, M W M; Caron, H N; Kremer, L C; van Santen, H M

    2013-04-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of 573 CCS. Multivariable regression analyses were carried out to estimate the influence of different determinants on height SDS at follow-up. Overall, survivors had a normal height SDS at cancer diagnosis. However, at follow-up in adulthood, 8.9% had a height ≤-2 SDS. Height SDS at diagnosis was an important determinant for adult height SDS. Children treated with (higher doses of) radiotherapy showed significantly reduced final height SDS. Survivors treated with total body irradiation (TBI) and craniospinal radiation had the greatest loss in height (-1.56 and -1.37 SDS, respectively). Younger age at diagnosis contributed negatively to final height. Height at diagnosis was an important determinant for height SDS at follow-up. Survivors treated with TBI, cranial and craniospinal irradiation should be monitored periodically for adequate linear growth, to enable treatment on time if necessary. For correct interpretation of treatment-related late effects studies in CCS, pre-treatment data should always be included.

  4. Evolution of Human Body Height and Its Implications in Ergonomics

    Directory of Open Access Journals (Sweden)

    İzzet DUYAR

    2009-06-01

    Full Text Available Body height is an crucial variable in the design and production of all physical spaces, primarily in the manifacturing of clothes and means of transportation. Having such an ergonomic significance, the height of the human being has constantly changed during the course of history. There exist strong data suggesting that this change is still continue. To find out stages of evolution of human height throughout the ages up to the present will help us to illuminate the human-environment relations, and to predict the possible changes that the human height might be subjected to in the future. In view of these reasons, the changes that has occured in human height from the period at which hominids appeared until humans’ transition into settled life have been closely examined. The study was carried out on the basis of the data obtained from the earlier studies in literature. These data, when considered as a whole, reveal that the human height did not continuously increase in a linear fashion in its evolutionary path but recorded some increases and decreases at different stages. The difference between males and females (sexual dimorphism has not shown a steady decrease either; instead, it has exhibited an oscillating pattern. The modern humans as a species is not unique in terms of their height; as a matter of fact, two million years ago hominids had existed at approximately the same height as the Homo sapiens. Although the average height had shown some decrease in Homo erectus, its distribution pattern was not much different than the one observed in the modern human societies. In the findings dated to the early stages of the Upper Paleolithic Age, height showed a tendency to increase again

  5. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2014-01-01

    Full Text Available The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  6. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  7. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  8. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    Science.gov (United States)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  9. The P{sub 1}-approximation for the Distribution of Neutrons from a Pulsed Source in Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, A

    1963-12-15

    The asymptotic distribution of neutrons from a pulsed, high energy source in an infinite moderator has been obtained earlier in a 'diffusion' approximation. In that paper the cross section was assumed to be constant over the whole energy region and the time derivative of the first moment was disregarded. Here, first, an analytic expression is obtained for the density in a P{sub 1} -approximation. However, the result is very complicated, and it is shown that an asymptotic solution can be found in a simpler way. By taking into account the low hydrogen scattering cross section at the source energy it follows that the space dependence of the distribution is less than that obtained earlier. The importance of keeping the time derivative of the first moment is further shown in a perturbation approximation.

  10. Bivariate Rayleigh Distribution and its Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Saeed Akhter

    2007-01-01

    Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.

  11. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  12. Waist circumference and waist-to-height ratio distributions in polish and german schoolchildren: Comparative analysis

    Directory of Open Access Journals (Sweden)

    Tadeusz Nawarycz

    2013-01-01

    Full Text Available Background: To analyze differences in the distributions of waist circumference (WC and waist-to-height ratio (WHtR between Polish (PL and German (GE children and adolescents. Methods: Two samples of children and adolescents aged 7-18 y: From PL ( n = 11,326 GE ( n = 8,218 participated. The two WC cut-off points (WC1 as central fat distribution and WC2 as central obesity corresponding at age 18 to the adult criteria were determined. Furthermore, the mean WC cut-off points (WC1m, WC2m for boys and girls aged 14-18 from both countries were evaluated. For the WHtR, values over 0.5 were used as a definition of central fat distribution. The effect of different WC and WHtR criteria on the prevalence of abdominal obesity in both study groups was evaluated. Results: The mean and percentile values of WC and WHtR were generally higher in all German children as compared to their peers from Poland. When WC1m is used, the mean (95% CI prevalence of central fat distribution in the 14-18 y Polish groups was lower ( P 0.5, the results were similar for boys - 6.7% (5.9-7.5 vs. 8.5% (8.1-8.9; they were significantly ( P < 0.05 lower for Polish and German girls: 5.3% (5.0-5.6 vs. 12.7% (9.7-16.4. The prevalence of central obesity using WC2m as a criterion in the Polish vs. German groups was as follows: (boys - 1.1% (0.8-1.4 vs. 3.1% (2.2-4.0, P < 0.05; girls - 3.1% (2.5-3.7 vs. 10.2% (8.4-12.0, P < 0.05. Conclusions: The results highlight the greater central obesity associated with the German children, both in terms of WC and WHtR, in comparison to their peers from Poland. The prevalence of AO is significantly associated with the criteria used. The results demonstrate the need for the development of international WC references for pediatric subjects.

  13. Social inequalities in height: persisting differences today depend upon height of the parents.

    Directory of Open Access Journals (Sweden)

    Bruna Galobardes

    Full Text Available Substantial increases in height have occurred concurrently with economic development in most populations during the last century. In high-income countries, environmental exposures that can limit genetic growth potential appear to have lessened, and variation in height by socioeconomic position may have diminished. The objective of this study is to investigate inequalities in height in a cohort of children born in the early 1990s in England, and to evaluate which factors might explain any identified inequalities.12,830 children from The Avon Longitudinal Study of Parents and Children (ALSPAC, a population based cohort from birth to about 11.5 years of age, were used in this analysis. Gender- and age-specific z-scores of height at different ages were used as outcome variables. Multilevel models were used to take into account the repeated measures of height and to analyze gender- and age-specific relative changes in height from birth to 11.5 years. Maternal education was the main exposure variable used to examine socioeconomic inequalities. The roles of parental and family characteristics in explaining any observed differences between maternal education and child height were investigated. Children whose mothers had the highest education compared to those with none or a basic level of education, were 0.39 cm longer at birth (95% CI: 0.30 to 0.48. These differences persisted and at 11.5 years the height difference was 1.4 cm (95% CI: 1.07 to 1.74. Several other factors were related to offspring height, but few changed the relationship with maternal education. The one exception was mid-parental height, which fully accounted for the maternal educational differences in offspring height.In a cohort of children born in the 1990s, mothers with higher education gave birth to taller boys and girls. Although height differences were small they persisted throughout childhood. Maternal and paternal height fully explained these differences.

  14. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  15. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    International Nuclear Information System (INIS)

    Das, Mala; Seth, S.; Saha, S.; Bhattacharya, S.; Bhattacharjee, P.

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252 Cf fission neutron source and 137 Cs gamma source, respectively, separately. Analysis of pulse height of signals at the neutron and gamma-ray sensitive temperature provides significant information on the identification of neutron and gamma-ray induced events.

  16. Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chen, Z.W.; Lai, J.K.L.; Shek, C.H.

    2005-01-01

    The concept of fractal geometry has proved useful in describing structures and processes in experimental systems. In this Letter, the surface topographies of SnO 2 thin films prepared by pulsed laser deposition for various substrate temperatures were measured by scanning electron microscope (SEM). Multifractal spectra f(α) show that the higher the substrate temperature, the wider the spectrum, and the larger the Δf(Δf=f(α min )-f(α max )). It is apparent that the nonuniformity of the height distribution increases with the increasing substrate temperature, and the liquid droplets of SnO 2 thin films are formed on previous thin films. These results show that the SEM images can be characterized by the multifractal spectra

  17. Analysis of chromatic dispersion compensation by measuring time domain optical spectrum distribution of light pulse; Hikari pulse chu no hacho jikan bunpu sokutei ni yoru bunsan hosho gijutsu no hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.; Kurono, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-01

    A large number of single mode fibers (SMF) for 1.3 {mu}m light are installed in electric power communication facilities. On the other hand, light of 1.5 {mu}m band is being used more in the capacity increasing technology to minimize transmission loss. If this is applied to the current SMF, waveform distortion is generated due to wavelength dispersion, thus the transmission speed and distance are limited. In order to evaluate quantitatively the effects of a wavelength dispersion compensating technology, a method was developed to derive time change in each wavelength component in light pulse. No sufficient wavelength separation is possible if permeation bandwidth of a wavelength filter is wider than the wavelength width of the light pulse. Therefore, a method was developed to derive time change in the wavelength components in the light pulse from small difference in the measured light waveforms after transmission when the central wavelength of a wavelength variable filter is varied. It was possible from comparing the method to derive the wavelength dispersion amount and the dispersion compensation amount. Since the method reveals simultaneously the distribution of strength against wavelength and time contained in light pulse, the method is advantageous in elucidating compensation limit and causes for compensation errors. The effectiveness of the method was verified by a 1.5-{mu}m light transmission test. 14 refs., 26 figs., 2 tabs.

  18. EMISSION HEIGHT AND TEMPERATURE DISTRIBUTION OF WHITE-LIGHT EMISSION OBSERVED BY HINODE/SOT FROM THE 2012 JANUARY 27 X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    Watanabe, Kyoko; Shimizu, Toshifumi; Masuda, Satoshi; Ichimoto, Kiyoshi; Ohno, Masanori

    2013-01-01

    White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere

  19. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures o...

  20. Features of single and double ionization processes induced by few cycle laser pulses

    International Nuclear Information System (INIS)

    Starace, A.F.

    2005-01-01

    Full text: The advent of laser pulses with attosecond pulse lengths ushers in the regime of few cycle laser pulse interactions with atoms and ions, including the interesting cases of single and half cycle laser pulses. In this talk I will present results of recent studies of single electron ionization/detachment and double electron ionization/detachment produced by a few cycle laser pulse. For the former case, we shall demonstrate that the ionized/detached electron momentum distribution reflects the interference of electron probability wave packets produced by each half cycle of a single cycle pulse. Also, that the ionized/detached electron momentum distribution uniquely characterizes the phase of the single cycle laser pulse within the laser pulse envelope. Regarding double ionization/detachment, our numerical experiments have shown that single cycle and double half cycle pulses produce different electron angular distributions. Some double ionization features that are present only in the single cycle case can only have been produced by electron impact ionization during rescattering of an initially ionized electron and thus represent a sensitive measure of the rescattering process. Refs. 2 (author)

  1. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  2. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  3. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    Science.gov (United States)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  4. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis

    NARCIS (Netherlands)

    Knijnenburg, S. L.; Raemaekers, S.; van den Berg, H.; van Dijk, I. W. E. M.; Lieverst, J. A.; van der Pal, H. J.; Jaspers, M. W. M.; Caron, H. N.; Kremer, L. C.; van Santen, H. M.

    2013-01-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of

  5. Standing steady-state wave-making calculation method for air cushion vehicles; Air cushion vehicle no teijo zoha keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-04-10

    The pulse-height distribution of a cushion room of air cushion vehicle (ACV) has been tried to be approached by means of the panel shift type Rankine source method. When using this method, it was not required to introduce the pressure distribution model simulating the fall-off effect for the step-formed cushion pressure distribution. The wave form and wave making resistance could be estimated precisely by assigning the pressure gradient to one longitudinal direction panel in the calculation. The waveform shape within the cushion room could be calculated rather precisely by comparing with the analytic solution. This calculation method did have an ability providing the pulse-height information in the cushion room of ACV for seal design and configuration of ships. The analytic solution using for the comparison was sufficient for determining the pulse-height in the high speed region. However, it was hard to respond to non-linear problems or optional shape problems. It was pointed out to be further improved. 5 refs., 8 figs.

  6. Optimally combined regional geoid models for the realization of height systems in developing countries - ORG4heights

    Science.gov (United States)

    Lieb, Verena; Schmidt, Michael; Willberg, Martin; Pail, Roland

    2017-04-01

    Precise height systems require high-resolution and high-quality gravity data. However, such data sets are sparse especially in developing or newly industrializing countries. Thus, we initiated the DFG-project "ORG4heights" for the formulation of a general scientific concept how to (1) optimally combine all available data sets and (2) estimate realistic errors. The resulting regional gravity field models then deliver the fundamental basis for (3) establishing physical national height systems. The innovative key aspects of the project incorporate the development of a method which links (low- up to mid-resolution) gravity satellite mission data and (high- down to low-quality) terrestrial data. Hereby, an optimal combination of the data utilizing their highest measure of information including uncertainty quantification and analyzing systematic omission errors is pursued. Regional gravity field modeling via Multi-Resolution Representation (MRR) and Least Squares Collocation (LSC) are studied in detail and compared based on their theoretical fundamentals. From the findings, MRR shall be further developed towards implementing a pyramid algorithm. Within the project, we investigate comprehensive case studies in Saudi Arabia and South America, i. e. regions with varying topography, by means of simulated data with heterogeneous distribution, resolution, quality and altitude. GPS and tide gauge records serve as complementary input or validation data. The resulting products include error propagation, internal and external validation. A generalized concept then is derived in order to establish physical height systems in developing countries. The recommendations may serve as guidelines for sciences and administration. We present the ideas and strategies of the project, which combines methodical development and practical applications with high socio-economic impact.

  7. Application of the Monte Carlo method in calculation of energy-time distribution from a pulsed photon source in homogeneous air environment

    International Nuclear Information System (INIS)

    Ilic, R.D.; Vojvodic, V.I.; Orlic, M.P.

    1981-01-01

    The stochastic nature of photon interactions with matter and the characteristics of photon transport through real materials, are very well suited for applications of the Monte Carlo method in calculations of the energy-space distribution of photons. Starting from general principles of the Monte Carlo method, physical-mathematical model of photon transport from a pulsed source is given for the homogeneous air environment. Based on that model, a computer program is written which is applied in calculations of scattered photons delay spectra and changes of the photon energy spectrum. Obtained results provide the estimation of the timespace function of the electromagnetic field generated by photon from a pulsed source. (author)

  8. Statistical pulses generator. Application to nuclear instrumentation (1962); Generateur d'impulsions aleatoires. Application a l'instrumentation nucleaire (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Beranger, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This report describes a random pulses generator adapted to nuclear instrumentation. After a short survey on the statistical nature of electronic signals, the different ways for generating pulses with a Poisson's time-distribution are studied. The final generator built from a gaseous thyratron in a magnetic field is then described. Several tests are indicated : counting-rate stability, Pearson's criterion, distribution of time-intervals. Applications of the generator in 'whole testing' of nuclear instrumentation are then indicated for sealers, dead time measurements, time analyzers. In this application, pulse-height spectrums have been made by Poissonian sampling of a recurrent or random low-frequency signal. (author) [French] Cette etude decrit un generateur d'impulsions aleatoires et ses applications a l'instrumentation nucleaire. Apres un bref rappel sur la nature statistique des signaux en electronique nucleaire, sont passes en revue les principaux moyens d'obtenir des impulsions distribuees en temps suivant une loi de Poisson. Le generateur utilisant un thyratron a gaz dans un champ magnetique est ensuite decrit; diverses methodes de test sont appliquees (stabilite du taux de comptage, criterium de Pearson, spectre des intervalles ds temps). Les applications du generateur a l'electronique nucleaire dans le domaine des 'essais globaux' sont indiques: test des echelles de comptage et mesure des temps morts, test des analyseurs en temps apres division du taux de comptage par une puissance de deux, test des analyseurs multicanaux en amplitude. Pour cette derniere application, on a realise des spectres d'amplitudes suivant une loi connue, par echantillonnage poissonien d'un signal basse frequence recurrent ou aleatoire. (auteur)

  9. Germanium crystal dimensions and their influences on the observed peak-to-background distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, W [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, AG-Personendosimetrie, Oberschleissheim (Germany); Koenig, K [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Inst. fuer Strahlenhygiene

    1997-03-01

    This description applies to the parameters of in vivo and in vitro detection systems as they relate to the type of the detector (or arrangements of detectors) and the performance of the choice. In detail, measurements of a set of pulse-height distributions were done to determine the influence from the detector-crystal dimensions on the peak-to-background variation for point and volume sources as well as ambient radiation. The current capability in suppression of Compton scattered {gamma}-rays using coincidence/anti-coincidence arrangements both for in vivo and in vitro system are presented. Criteria and relations as well as advantages and disadvantages of the applicability are discussed. (orig.)

  10. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    Science.gov (United States)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; Levelt, Pieternel F.

    2018-04-01

    A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2 - O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462-648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 - O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  11. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  12. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    International Nuclear Information System (INIS)

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  13. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  14. Effect of the Earth's inner structure on the gravity in definitions of height systems

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified

  15. Noise Pulses in Large Area Optical Modules

    International Nuclear Information System (INIS)

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  16. Pulse pileup effects of plasma electron temperature measurements by soft x-ray energy analysis

    International Nuclear Information System (INIS)

    Dyer, G.R.; Neilson, G.H.; Kelley, G.G.

    1978-10-01

    The electron temperature of hot plasmas is conveniently derived from bremsstrahlung spectra obtained by pulse-height analysis using a lithium-compensated silicon detector. Time-resolved temperature measurements require high counting rates, with ultimate rate limited by pulse pileup. To evaluate this limit, spectral distortion due to pileup and consequent effects on temperature determination are investigated. Expressions for distorted spectra are derived as functions of Maxwellian temperature and pileup fraction for both square and triangular pulse shapes. A comparison of temperatures obtained from distorted spectra with actual values indicates that measurements with less than 10% error can be made in the absence of line radiation, even from spectra containing 40% pileup

  17. Links of the significant wave height distribution in the Mediterranean sea with the Northern Hemisphere teleconnection patterns

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2008-06-01

    Full Text Available This study analyzes the link between the SWH (Significant Wave Height distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure teleconnection patterns.

    The SWH distribution is computed using the WAM (WAve Model forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958–2001. The time series of mid-latitude teleconnection patterns are downloaded from the NOAA web site. This study shows that several mid-latitude patterns are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic Pattern (EA, Scandinavian Pattern (SCA, North Atlantic Oscillation (NAO, East Atlantic/West Russia Pattern (EA/WR and East Pacific/ North Pacific Pattern (EP/NP. Though the East Atlantic pattern exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other patterns. Some link results from possibly spurious structures. Patterns which have a very different global structure are associated to similar spatial features of the wave variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection patterns.

  18. A low-cost multichannel pulse-height analyzer PHA 256 using single-chip microcomputer

    International Nuclear Information System (INIS)

    Koehler, M.; Meiling, W.

    1985-01-01

    The PHA 256 multichannel analyzer on the base of the U8820 single-chip microcomputer applied for radiation measurements, for example in monitoring systems with scintillation detectors, is described. The analyzer contains a power supply unit and 7 boards, namely, the processor board; data and program memory; 8-bit analog-to-digital converter; driver to display device; keyboard with 23 function keys; pulse amplifier and high-voltage supply (up to 2 kV). Software used provides preprocessing of spectra supported by following functions: addition and subtraction of different spectra, spectrum monitoring by use of a 5-point-algorithm, calculation of peak areas with linearly interpolated background

  19. Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method

    Science.gov (United States)

    Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao

    2018-04-01

    Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.

  20. Photodissociation of H{sub 2}{sup +} by intense chirped pulses - beyond the effect of pulse duration and peak power

    Energy Technology Data Exchange (ETDEWEB)

    Lev, U; Prabhudesai, V; Natan, A; Bruner, B; Diner, A; Heber, O; Strasser, D; Schwalm, D; Silberberg, Y; Zajfman, D [Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Ben-Itzhak, I; Hua, J J; Esry, B D, E-mail: uri.lev@Weizmann.ac.i [Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-01

    H{sub 2}{sup +} photodissociation, induced by intense short laser pulses, was measured by a full 3D imaging system. We have conducted a series of experiments, in which we systematically changed the linear chirp, using a pulse shaper, and observed the kinetic energy release spectra(KER). Distinct differences in the KER spectra are observed both in peak positions and angular distribution for laser pulses with similar duration and intensity but opposite chirp sign.

  1. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation

    International Nuclear Information System (INIS)

    Wang Cong; Jiang Lan; Wang Feng; Li Xin; Yuan Yanping; Xiao Hai; Tsai, Hai-Lung; Lu Yongfeng

    2012-01-01

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train. (paper)

  2. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  3. Height-Deterministic Pushdown Automata

    DEFF Research Database (Denmark)

    Nowotka, Dirk; Srba, Jiri

    2007-01-01

    We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class...... of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...

  4. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Katrina E., E-mail: kkoehler@lanl.gov [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Croft, Stephen S. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Henzlova, Daniela; Santi, Peter A. [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States)

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  5. General theory for thermal pulses of finite amplitude in nuclear shell-burnings

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y

    1978-09-01

    Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.

  6. Angular distribution of species in pulsed laser deposition of La{sub x}Ca{sub 1−x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-G-P, Alejandro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Schneider, Christof W., E-mail: christof.schneider@psi.ch [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Lippert, Thomas; Wokaun, Alexander [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2015-05-01

    Highlights: • The angular distribution of species was analyzed for different pressures. • Results show a non-congruent transfer of composition from target to substrate. • Film thickness and composition show different angular distributions. - Abstract: The angular distribution of species from a La{sub 0.4}Ca{sub 0.6}MnO{sub 3} target irradiated with a 248 nm nanosecond pulsed laser was investigated by Rutherford backscattering spectrometry for four different Ar pressures. The film thickness angular distribution was also analyzed using profilometry. Depending on the background gas pressure, the target to substrate distance, and the angular location the film thickness and composition varies considerably. In particular the film composition could vary by up to 17% with respect to the composition of the target material.

  7. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  8. The varying distribution of intra- and inter-vertebral height ratios determines the prevalence of vertebral fractures.

    Science.gov (United States)

    Zebaze, Roger Martin Djoumessi; Djoumessi, Roger Martin Zebaze; Maalouf, Ghassan; Wehbe, Joseph; Nehme, Alexandre; Maalouf, Naim; Seeman, Ego

    2004-08-01

    Credible inferences regarding the burden of vertebral fractures (VFs) cannot be made without a globally accepted quantitative definition of 'fracture'. Currently, differences in anterior, middle, or posterior vertebral heights (VHs) within a vertebra, or between adjacent vertebrae, are used to define 'fracture'. However, VH differences are essential for the construction of thoracolumbar curves, evolutionary adaptations that provide stability in bipedal stance and gait. As there is no reference standard to distinguish anatomical variation from fracture, approaches to defining a VF use a reference range of VH ratios derived in premenopausal women or derived by trimming, a method that iteratively removes the tails of a distribution of VH ratios to produce a normal distribution. From this, reference ranges of VH ratio means and standard deviations (SDs) are obtained and a nominal deviation of 15% or more, or 3 SD or more is regarded as a 'fracture'. We measured VHs by quantitative vertebral morphometry (QVM) and bone mineral density (BMD) by dual energy X-ray absorptiometry in 697 Lebanese women (age 20-89 years) to compare the prevalence of VF ascertained by published methods and a new method that uses the premenopausal range (without trimming) and requires two VH abnormalities. VF prevalence using published methods reached 60% to 70% in pre- and post-menopausal women, and in women with normal or high BMD because VH ratios were not normally distributed and cut-offs used to define VF fracture fell within the observed distribution of the data. The new method resulted in a VF prevalence of 3.3% in younger and 14% in older women, 7% (high), 10% (middle), and 20% (low) BMD tertiles consistent with the notion that the method detected VF due to bone fragility. We suggest that using a fixed trimming method to define reference range and cut-offs or applying fixed cut-offs to identify VFs in populations, where these ratios are not normally distributed, may result in the capture

  9. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  10. Ion energy distributions in a pulsed dual frequency inductively coupled discharge of Ar/CF4 and effect of duty ratio

    International Nuclear Information System (INIS)

    Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P 2 MHz  = 2 MHz) and high (P 13.56 MHz  = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF 4 (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers from 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P 13.56 MHz ; however, it shows opposite trends with P 2 MHz . It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant

  11. Comparative Study on the Pulse Wave Variables and Sasang Constitution in Cerebral Infarction Patients and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Ko KiDuk

    2007-06-01

    Full Text Available This study was performed to determine whether a pulse analyzer was useful 1 to characterize the variables of pulse wave of cerebral infarction patieno (CI, compared with those of healthy subjects, as well as 2 to determine Sasang Constitution in CI and healthy subjects. 1. Calibrated in Gwan, the amount of energy(Energy, height of main peak(H1, height of aorticvalley(H2, height of aortic peak(H3, total area of pulse wave(At, and area of main peak width(Aw of the CI group were higher than those of the healthy group. 2. Calibrated in Cheek, Energy, H1, H2, H3, height of valve valley(H4, At, Aw, and main peak angle(MPA of the CI group were higher than those of the healthy group. 3. Among the healthy (subjects group, Taeumin showed the highest contact pressure(CP and height of valve peak(H5 calibrated in Chon. The main peak width divided by whole time of pulse wave(MPW/T calibrated in Gwan and Cheok, was highest in Soyangin and was lowest in Taeumin. The H3 divided by H1(H3/H1 and the time to valve valley minus the time to main peak and divided by T[(T4-T1/T] calibrated in Cheek were highest in Soyangin. The time to main peak(T1 was longest in Soumin. 4. Among the CI group, At calibrated in Chon was widest in Taeumin and was narrowest in Soumin The time to aortic peak(T3 calibrated in Cheek was longest in Soumin and was shortest in Soyangin. The time to valve peak(T5 was shortest in Soyangin. 5. There were main effects of cerebral infarction in the area of systolic period(As and area of diastolic period(Ad calibrated in Chon, Energy calibrated in Cwan, and Energy, H1, H2, H3, (H4+H5/Hl, and MPA calibrated in Cheek. 6. There were main effects of Sasang Constitution in (T4-T1/T, area of systolic period(As, and Ad calibrated in Chon. 7. The interactions between the cerebral infarction and Sasang Constitution were observed in H5/H1 , T, At, As, Ad, and MPA calibrated in Chon, H4, T4, (T4-T1/T, As, and Ad calibrated in Cwan, and 74,75, and MPW calibrated

  12. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    International Nuclear Information System (INIS)

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence

  13. Estimation of design wave heights based on exterme value statistics for Kakinada coast, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Raju, N.S.N.

    Statistical analyses for longterm distribution of significant wave heights were performed using Lognormal, Weibull, Gumbel and Fretcher distributions for waves measured off Kakinada, Andhra Pradesh, India from June 1983 to May 1984. Fretcher...

  14. The distribution of the barrier height in Al–TiW–Pd2Si/n-Si Schottky diodes from I–V–T measurements

    International Nuclear Information System (INIS)

    Dökme, Ilbilge; Altındal, Şemsettin; Afandiyeva, Izzet M

    2008-01-01

    The forward and reverse bias current–voltage (I–V) characteristics of Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes (SBDs) were measured in the temperature range of 300–400 K. The estimated zero-bias barrier height Φ B0 and the ideality factor n assuming thermionic emission (TE) theory show a strong temperature dependence. While n decreases, Φ B0 increases with increasing temperature. The Richardson plot is found to be linear in the temperature range measured, but the activation energy value of 0.378 eV and the Richardson constant (A*) value of 15.51 A cm −2 K −2 obtained in this plot are much lower than the known values. Such behavior is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution of barrier heights (BHs) due to BH inhomogeneities that prevail at the interface. Also, the Φ B0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and Φ B0 = 0.535 eV and σ 0 = 0.069 V for the mean BH and zero-bias standard deviation, respectively, have been obtained from this plot. Thus, the modified ln(I 0 /T 2 ) − q 2 σ 2 0 /2k 2 T 2 versus q/kT plot gives Φ B0 and A* as 0.510 eV and 121.96 A cm −2 K −2 , respectively. This value of the Richardson constant 121.96 A cm −2 K −2 is very close to the theoretical value of 120 A K −2 cm −2 for n-type Si. Hence, it has been concluded that the temperature dependence of the forward I–V characteristics of the Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes can be successfully explained on the basis of a thermionic emission mechanism with a Gaussian distribution of the BHs

  15. Effective height of the core of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam); Martin, D P; Yip, F G [High Institute of Nuclear Sciences and Technology (Cuba)

    1994-10-01

    Measurements of thermal neutron relative distributions in axial direction at different positions in the reactor core and for various control rod configurations have been carried out, and axial buckling and effective height of the core deduced. (author). 4 refs., 3 figs., 1 tab.

  16. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  17. Local Intraarterial Thrombolysis: In Vitro Comparison Between Automatic and Manual Pulse-Spray Infusion

    International Nuclear Information System (INIS)

    Froelich, Jens J.; Freymann, Christina; Hoppe, Martin; Thiel, Thomas; Wagner, H. Joachim; Barth, Klemens H.; Klose, Klaus J.

    1996-01-01

    Purpose: Manual and automatic pulse-spray infusion techniques are compared in vitro to evaluate the efficacy of thrombolysis and the distribution of urokinase and saline solution within thrombus using a pulse-spray catheter. Methods: A pulse-spray catheter was introduced into a human thrombus within a stenotic flow model. Automatic and manual pulsed infusion of urokinase and automatic pulsed infusion of saline solution were compared. To quantify the efficacy of thrombolysis, pressure gradients were recorded proximal and distal to the thrombus and during the course of infusion. Distribution of infused urokinase was assessed radiographically. Results: The fastest and most homogeneous dissolution of the thrombus was achieved with automatic pulsed infusion of urokinase, shown by decreasing transthrombotic pressure gradients (p < 0.001, Wilcoxon, matched pairs). Manual pulsed infusion of urokinase or saline solution resulted in inhomogeneous thrombus dissolution and delayed thrombolysis. Conclusion: Application of automatic pulse-spray injectors seems beneficial for more effective and homogeneous intraarterial pulse-spray thrombolysis when compared with conventional manual pulsed technique

  18. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    Science.gov (United States)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  19. Explosive Nucleosynthesis Study Using Laser Driven γ-ray Pulses

    Directory of Open Access Journals (Sweden)

    Takehito Hayakawa

    2017-03-01

    Full Text Available We propose nuclear experiments using γ-ray pulses provided from high field plasma generated by high peak power laser. These γ-ray pulses have the excellent features of extremely short pulse, high intensity, and continuous energy distribution. These features are suitable for the study of explosive nucleosyntheses in novae and supernovae, such as the γ process and ν process. We discuss how to generate suitable γ-ray pulses and the nuclear astrophysics involved.

  20. Unified height systems after GOCE

    Science.gov (United States)

    Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger

    2015-04-01

    The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the

  1. Global effects of income and income inequality on adult height and sexual dimorphism in height.

    Science.gov (United States)

    Bogin, Barry; Scheffler, Christiane; Hermanussen, Michael

    2017-03-01

    Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children. © 2017 Wiley Periodicals, Inc.

  2. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  3. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Caricato, A.P.; Anni, M.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Tunno, T.; Valerini, D.

    2009-01-01

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  4. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    International Nuclear Information System (INIS)

    Holwerda, B. W.; Bouwens, R.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; Ryan, R.; De Marchi, G.; Andersen, M.

    2014-01-01

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin 2 ) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r 50 ), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selection of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m F125W < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z 0 = 3-4 kpc) and later types M5 and above in the thin disk (z 0 = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of high-redshift galaxies

  5. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    Energy Technology Data Exchange (ETDEWEB)

    Holwerda, B. W.; Bouwens, R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Trenti, M. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Clarkson, W. [Department of Natural Sciences College of Arts, Sciences and Letters, University of Michigan-Dearborn 4901 Evergreen Road, Dearborn, MI 48128 (United States); Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; Ryan, R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); De Marchi, G. [European Space Agency, ESA-ESTEC, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Andersen, M., E-mail: holwerda@strw.leidenuniv.nl [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041 Grenoble (France)

    2014-06-10

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selection of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of

  6. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  7. Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Mukundan, Shruti; Chandan, Greeshma; Mohan, Lokesh; Krupanidhi, S. B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2015-03-15

    We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height (φ{sub b}) and the ideally factor (η) estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of ln(J{sub s}/T{sup 2}) versus 1/kT showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants (A{sup ∗}) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation (σ{sub s}{sup 2}) of 0.044 and 0.022 V, respectively. The modified Richardson plot of ln(J{sub s}/T{sup 2}) − (q{sup 2}σ{sub s}{sup 2}/2k{sup 2}T{sup 2}) versus 1/kT for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants (A{sup ∗}) values 25.5 Acm{sup −2}K{sup −2} and 43.9 Acm{sup −2}K{sup −2}, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.

  8. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...

  9. Global synchronization of parallel processors using clock pulse width modulation

    Science.gov (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  10. Irradiation of amorphous Ta{sub 42}Si{sub 13}N{sub 45} film with a femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Romano, V. [University of Bern, Institute of Applied Physics, Bern (Switzerland); Bern University of Applied Sciences, Bern (Switzerland); Meier, M. [University of Bern, Institute of Applied Physics, Bern (Switzerland); Theodore, N.D. [Freescale Semiconductor Inc., Tempe, AZ (United States); Marble, D.K. [Tarleton State University, Stephenville, TX (United States); Nicolet, M.A. [California Institute of Technology, Pasadena, CA (United States)

    2011-07-15

    Films of 260 nm thickness, with atomic composition Ta{sub 42}Si{sub 13}N{sub 45}, on 4'' silicon wafers, have been irradiated in air with single laser pulses of 200 femtoseconds duration and 800 nm wave length. As sputter-deposited, the films are structurally amorphous. A laterally truncated Gaussian beam with a near-uniform fluence of {proportional_to}0.6 J/cm{sup 2} incident normally on such a film ablates 23 nm of the film. Cross-sectional transmission electron micrographs show that the surface of the remaining film is smooth and flat on a long-range scale, but contains densely distributed sharp nanoprotrusions that sometimes surpass the height of the original surface. Dark field micrographs of the remaining material show no nanograins. Neither does glancing angle X-ray diffraction with a beam illuminating many diffraction spots. By all evidence, the remaining film remains amorphous after the pulsed femtosecond irradiation. The same single pulse, but with an enhanced and slightly peaked fluence profile, creates a spot with flat peripheral terraces whose lateral extents shrink with depth, as scanning electron and atomic force micrographs revealed. Comparison of the various figures suggests that the sharp nanoprotrusions result from an ejection of material by brittle fraction and spallation, not from ablation by direct beam-solid interaction. Conditions under which spallation should dominate over ablation are discussed. (orig.)

  11. Precise ion optical description of strip-line pulsed magnetic lenses

    International Nuclear Information System (INIS)

    Varentsov, D.; Spiller, P.; Eickhoff, H.; Hoffmann, D.H.H.

    2002-01-01

    A specific computer code has been developed to investigate ion optical properties of a new generation of pulsed strip-line high current magnets. The code is based on a modern 'Differential Algebra' computational technique and it is able to calculate transfer matrices of pulsed strip-line magnets up to arbitrary order. The realistic three-dimensional distribution of the magnetic field in pulsed lenses as well as all the fringing field effects are taken into account in the simulations. We have demonstrated, that for precise description of such magnets one cannot use the existing ion optical codes where ideal multipole field distributions and fringing fields, typical for conventional iron-dominated magnets are assumed. The transfer matrix elements of pulsed strip-line lenses differ significantly from those of conventional magnets, especially in higher orders

  12. Modeling of Pulsed Direct-Current Glow Discharge

    International Nuclear Information System (INIS)

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  13. Study of radial distribution of 239,240Pu and 90Sr in annual tree rings and trunk bark of a 103 years old Norway spruce at four different heights above ground

    International Nuclear Information System (INIS)

    Holgye, Z.; Schlesingerova, E.

    2016-01-01

    Radial distribution of 239,240 Pu and 90 Sr originating from atmospheric nuclear tests in tree rings and trunk bark at heights of 1.3, 10, 18 and 22 m above ground was studied. 239,240 Pu activity concentrations in air dried tree ring samples (each containing 10 annual rings) at all heights were under detection limit of the used method. 90 Sr activity concentrations in tree ring samples ranged from 0.54 to 2.81 Bq kg -1 . 239,240 Pu and 90 Sr were present in the trunk bark. The paper presents data for 239,240 Pu and 90 Sr aggregated transfer factors to tree trunk. (author)

  14. A new mathematical model of wrist pulse waveforms characterizes patients with cardiovascular disease - A pilot study.

    Science.gov (United States)

    He, Dianning; Wang, Lu; Fan, Xiaobing; Yao, Yang; Geng, Ning; Sun, Yingxian; Xu, Lisheng; Qian, Wei

    2017-10-01

    The purpose of this study was to analyze and compare a series of measured radial pulse waves as a function of contact pressure for young and old healthy volunteers, and old patients with cardiovascular disease. The radial pulse waves were detected with a pressure sensor and the contact pressure of the sensor was incremented by 20gf during the signal acquisition. A mathematical model of radial pulse waveform was developed by using two Gaussian functions modulated by radical functions and used to fit the pulse waveforms. Then, a ratio of area (r A ) and a ratio of peak height (r PH ) between percussion wave and dicrotic wave as a function of contact pressure were calculated based on fitted parameters. The results demonstrated that there was a maximum for waveform peak height, a minimum for r A (r A min ) and a minimum for r PH (r PH min ) appeared as contact pressure varied. On average, older patients had higher peak amplitude and a significantly smaller r A min (pmathematical model had moderate to strong positive linear correlations (r=0.66 to 0.84, pmodel. The receiver operating characteristic (ROC) analysis showed that the r A min calculated with the model and the contact pressure measured at the r A min had good diagnostic accuracy to distinguish healthy volunteers vs. diseased patients. Therefore, using the mathematical model to quantitatively analyze the radial pulse waveforms as a function of contact pressure could be useful in the diagnosis of cardiovascular diseases. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. SOME ASPECTS IN HEIGHT MEASUREMENT BY UAV PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    R. Matsuoka

    2013-08-01

    Full Text Available We conducted an experiment to investigate the feasibility of the deformation measurement of a large-scale solar power plant on reclaimed land by UAV photogrammetry. Two teams engaged in the experiment at first. One, which is called Team-A, carried out orientation of images following the procedure of conventional aerial photogrammetry. The other, which is called Team-C, executed that in the manner of close range photogrammetry. The RMSE in height measurement by Team-A was 121.5 mm, while that by Team-C was 8.7 mm. This paper reports an analysis conducted in order to investigate the cause of the large difference in height measurement accuracy between Team-A and Team-C. In the analysis the third team, which is called Team-S, conducts supplementary orientation by using the images utilized by Team-A in the same manner as Team-C did. The RMSE in height measurement by Team-S is 19.1 mm. Our investigation focuses on the difference of the arrangement of points utilized in the orientation. Team-A selected pass points and tie points on image automatically by Intergraph’s ImageStation Automatic Triangulation (ISAT software, while Team-C and Team-S selected points to be utilized in orientation manually so that selected points are distributed uniformly in the experiment area. From the results of the analysis we conclude that the sets of tie points along a straight line on a plane that were selected automatically by the ISAT would bring the low accuracy in height measurement by Team-A.

  16. Mechanical study of 20 MJ superconducting pulse coil

    International Nuclear Information System (INIS)

    Hattori, Yasuhide; Shimamoto, Susumu

    1985-09-01

    This paper describes calculation methods and computer codes of stress distribution in a circular-shaped superconducting pulsed coils. The stress problems of a large sized superconducting coil, for example, are discussed for 20 MJ pool-cooled pulse coil. Young's modulus of a stranded flat cable, low rigidity, is measured and evaluated. (author)

  17. Nest height of the red bishop ( Eupiectes orix ) | Woodall | African ...

    African Journals Online (AJOL)

    Heights of nests and reeds in a colony of red bishops (Euplectes orix) in Phragmites mauritianus reeds on the Makabusi River, Zimbabwe were measured in two breeding seasons. Nests were placed high in the reeds with fewer above the mean and more below the mean than in a normal distribution. During the course of a ...

  18. Solar Energetic Particle Composition over Two Solar Cycles as Observed by the Ulysses/HISCALE and ACE/EPAM Pulse Height Analyzers.

    Science.gov (United States)

    Patterson, J. D.; Madanian, H.; Manweiler, J. W.; Lanzerotti, L. J.

    2017-12-01

    We present the compositional variation in the Solar Energetic Particle (SEP) population in the inner heliosphere over two solar cycles using data from the Ulysses Heliospheric Instrument for Spectra, Composition, and Anisotropy at Low Energies (HISCALE) and Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM). The Ulysses mission was active from late 1990 to mid-2009 in a heliopolar orbit inclined by 80° with a perihelion of 1.3 AU and an aphelion of 5.4 AU. The ACE mission has been active since its launch in late 1997 and is in a halo orbit about L1. These two missions provide a total of 27 years of continuous observation in the inner heliosphere with twelve years of simultaneous observation. HISCALE and EPAM data provide species-resolved differential flux and density of SEP between 0.5-5 MeV/nuc. Several ion species (He, C, O, Ne, Si, Fe) are identified using the Pulse Height Analyzer (PHA) system of the Composition Aperture for both instruments. The He density shows a noticeable increase at high solar activity followed by a moderate drop at the quiet time of the solar minimum between cycles 23 and 24. The density of heavier ions (i.e. O and Fe) change minimally with respect to the F10.7 index variations however, certain energy-specific count rates decrease during solar minimum. With Ulysses and ACE observing in different regions of the inner heliosphere, there are significant latitudinal differences in how the O/He ratios vary with the solar cycle. At solar minimum, there is reasonable agreement between the observations from both instruments. At solar max 23, the differences in composition over the course of the solar cycle, and as observed at different heliospheric locations can provide insight to the origins of and acceleration processes differentially affecting solar energetic ions.

  19. Concepts for the Temporal Characterization of Short Optical Pulses

    Directory of Open Access Journals (Sweden)

    Walmsley Ian A

    2005-01-01

    Full Text Available Methods for the characterization of the time-dependent electric field of short optical pulses are reviewed. The representation of these pulses in terms of correlation functions and time-frequency distributions is discussed, and the strategies for their characterization are explained using these representations. Examples of the experimental implementations of the concepts of spectrography, interferometry, and tomography for the characterization of pulses in the optical telecommunications environment are presented.

  20. Physiological pattern of lumbar disc height

    International Nuclear Information System (INIS)

    Biggemann, M.; Frobin, W.; Brinckmann, P.

    1997-01-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this 'physiological sequence of disc height in the statistical mean' was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the 'physiological sequence of lumbar disc height' leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [de

  1. Study of surface layer assessment of solids by ultra-slow and short-pulsed positron beams

    International Nuclear Information System (INIS)

    Suzuki, Ryouichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Yamada, Kawakatsu

    2004-01-01

    Thin films of insulators with low dielectric constant, as a candidate for next generation LSI (large scale integration), were assessed by two dimensional positron life time and wave height measurements using variable incident energy and also short pulsed positron beams. Linkages and openness of nano-scale voids in the films were evaluated by the measurements. Amorphous SiO 2 films were compared with SiCOH films synthesized by plasma CVD (Chemical Vapor Deposition) by measurements of the correlation between positron lifetime and momentum using short-pulsed positron beams. From the measurements, many hydrocarbons were found on void surface of SiCOH films. Positron lifetime measurement gives information about void sizes, and Doppler broadening due to annihilation γ-rays offers electron momentum distribution, which is a counterpart of positron annihilation. Two γ-rays are emitted on the positron annihilation. Coincident measurements of these two γ-rays provide the correlation spectra between positron lifetime and momentum. An instrument for positron annihilation excitation Auger electron spectroscopy (PAES) was improved, and a time-of-flight (TOF) PAES instrument was developed. Double counting rate and high resolution, compared with a conventional Auger electron spectrometer, were attained in elementary analysis using above TOF-PAES instrument. (Y. Kazumata)

  2. Verbal attribute magnitude estimates of pulse trains acros selectrode places and stimulation rates in cochlear implant listeners

    DEFF Research Database (Denmark)

    Lamping, Wiebke; Santurette, Sébastien; Marozeau, Jeremy

    2017-01-01

    For cochlear implant users, temporal and place cue are assumed to varyalong two orthogonal perceptual dimensions linked to pitch height and timbre.Here, the effect of electrode place, pulse rate, and amplitude modulationfrequency on those perceptual dimensions was investigated. Combinations...

  3. Adult height, nutrition, and population health

    Science.gov (United States)

    Perkins, Jessica M.; Subramanian, S.V.; Davey Smith, George

    2016-01-01

    In this review, the potential causes and consequences of adult height, a measure of cumulative net nutrition, in modern populations are summarized. The mechanisms linking adult height and health are examined, with a focus on the role of potential confounders. Evidence across studies indicates that short adult height (reflecting growth retardation) in low- and middle-income countries is driven by environmental conditions, especially net nutrition during early years. Some of the associations of height with health and social outcomes potentially reflect the association between these environmental factors and such outcomes. These conditions are manifested in the substantial differences in adult height that exist between and within countries and over time. This review suggests that adult height is a useful marker of variation in cumulative net nutrition, biological deprivation, and standard of living between and within populations and should be routinely measured. Linkages between adult height and health, within and across generations, suggest that adult height may be a potential tool for monitoring health conditions and that programs focused on offspring outcomes may consider maternal height as a potentially important influence. PMID:26928678

  4. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  5. Validation and Spatiotemporal Distribution of GEOS-5-Based Planetary Boundary Layer Height and Relative Humidity in China

    Science.gov (United States)

    Si, Yidan; Li, Shenshen; Chen, Liangfu; Yu, Chao; Wang, Zifeng; Wang, Yang; Wang, Hongmei

    2018-04-01

    Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions—North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.

  6. Neutron spectrum measurement using rise-time discrimination method

    International Nuclear Information System (INIS)

    Luo Zhiping; Suzuki, C.; Kosako, T.; Ma Jizeng

    2009-01-01

    PSD method can be used to measure the fast neutron spectrum in n/γ mixed field. A set of assemblies for measuring the pulse height distribution of neutrons is built up,based on a large volume NE213 liquid scintillator and standard NIM circuits,through the rise-time discrimination method. After that,the response matrix is calculated using Monte Carlo method. The energy calibration of the pulse height distribution is accomplished using 60 Co radioisotope. The neutron spectrum of the mono-energetic accelerator neutron source is achieved by unfolding process. Suggestions for further improvement of the system are presented at last. (authors)

  7. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    Directory of Open Access Journals (Sweden)

    J. Chimot

    2018-04-01

    Full Text Available A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH was retrieved from the OMI 477 nm O2 − O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462–648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 − O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  8. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  9. Influence of materials and counting-rate effects on 3He neutron spectrometry

    International Nuclear Information System (INIS)

    Evans, A.E.

    1984-01-01

    The high energy resolution of the Cuttler-Shalev 3 He neutron spectrometer causes spectral measurements with this instrument to be strongly susceptible to artifacts caused by the presence of scattering or absorbing materials in or near the detector or the source, and to false peaks generated by pileup coincidences of the rather long-risetime pulses from the detector. These effects are particularly important when pulse-height distributions vary over several orders of magnitude in count rate versus channel. A commercial pile-up elimination circuit greatly improves but does not eliminate the pileup problem. Previously reported spurious peaks in the pulse-height distributions from monoenergetic neutron sources have been determined to be due to the influence of the iron in the detector wall. 6 references, 9 figures

  10. In defense of the classical height system

    Science.gov (United States)

    Foroughi, Ismael; Vaníček, Petr; Sheng, Michael; Kingdon, Robert William; Santos, Marcelo C.

    2017-11-01

    In many European countries, normal heights referred to the quasi-geoid as introduced by Molodenskij in the mid-20th century are preferred to the classical height system that consists of orthometric heights and the geoid as a reference surface for these heights. The rationale for this choice is supposed to be that in the classical height system, neither the geoid, nor the orthometric height can be ever known with centimetre level accuracy because one would need to know the topographical mass density to a level that can never be achieved. The aim of this paper is to question the validity of this rationale. The common way of assessing the congruency of a local geoid model and the orthometric heights is to compare the geoid heights with the difference between orthometric heights provided by leveling and geodetic heights provided by GNSS. On the other hand, testing the congruency of a quasi-geoidal model with normal height a similar procedure is used, except that instead of orthometric heights, normal heights are employed. For the area of Auvergne, France, which is now a more or less standard choice for precise geoid or quasi-geoid testing, only the normal heights are supplied by the Institute Geographic National, the provider of the data. This is clearly the consequence of the European preference for the Molodenskij system. The quality of the height system is to be judged by the congruency of the difference of the geoid/quasi-geoid heights subtracted from the geodetic heights and orthometric/normal heights. To assess the congruency of the classical height system, the Helmert approximation of orthometric heights is typically used as the transformation between normal and Helmert's heights is easily done. However, the evaluation of the differences between Helmert's and the rigorous orthometric heights is somewhat more involved as will be seen from the review in this paper. For the area of interest, the differences between normal and Helmert's heights at the control

  11. Analytical Approximation of Spectrum for Pulse X-ray Tubes

    International Nuclear Information System (INIS)

    Vavilov, S; Fofanof, O; Koshkin, G; Udod, V

    2016-01-01

    Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses. (paper)

  12. Future directions of the AMS program at Lucas Heights

    International Nuclear Information System (INIS)

    Tuniz, C.

    1998-01-01

    The research program based on the ANTARES AMS spectrometer involves applications of the long-lived radionuclides 14 C, 10 Be, 26 Al, 36 Cl and 129 I in earth sciences and archaeology. Examples of environmental applications of AMS at Lucas Heights include: use of the 14 C bomb pulse to determine the age and age-spread of air trapped in Antarctic ice bubbles, key parameters to study the variability of CO 2 and other greenhouse gases in the past; analyses of 14 C bomb-pulse curves in tree rings from tropical regions and the southern hemisphere to improve our understanding of the carbon cycle and air-sea interactions, important processes for the global climate; analyses of 10 Be and 36 Cl produced in-situ in polished glacial bedrock and moraine boulders from Tasmania, New Zealand and Antarctica, as part of a major national project to unravel the timing of glacial cycles in the southern hemisphere. A recent archaeological application has been the radiocarbon dating of charcoal fragments from the rock shelter at Jinmium in the Northern Territory demonstrating that this site was occupied by Aboriginal people only during the late Holocene. In environmental monitoring, the analysis of 129 I, 14 C and 36 Cl in water specimens from Mururoa and Fangatauga contributed to an IAEA study regarding residual radioactivity in the Pacific after the French nuclear program

  13. REM meter for pulsed sources of neutrons

    International Nuclear Information System (INIS)

    Thorngate, J.E.; Hunt, G.F.; Rueppel, D.W.

    1980-01-01

    A rem meter was constructed specifically for measuring neutrons produced by fusion experiments for which the source pulses last 10 ms or longer. The detector is a 6 Li glass scintillator, 25.4 mm in diameter and 3.2 mm thick, surrounded by 11.5 cm of polyethylene. This detector has a sensitivity of 8.5 x 10 4 counts/mrem. The signals from this fast scintillator are shaped using a shorted delay line to produce pulses that are only 10 ns long so that dose equivalent rates up to 12 mrem/s can be measured with less than a 1% counting loss. The associated electronic circuits store detector counts only when the count rate exceeds a preset level. When the count rate returns to background, a conversion from counts to dose equivalent is made and the results are displayed. As a means of recording the number of source pulses that have occurred, a second display shows how many times the preset count rate has been exceeded. Accumulation of detector counts and readouts can also be controlled manually. The unit will display the integrated dose equilavent up to 200 mrem in 0.01 mrem steps. A pulse-height discriminator rejects gamma-ray interactions below 1 MeV, and the detector size limits the response above that energy. The instrument can be operated from an ac line or will run on rechargeable batteries for up to 12 hours

  14. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  15. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  16. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  17. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser

    Science.gov (United States)

    Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung

    2012-11-01

    Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.

  18. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  19. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  20. Laser pulse heating of steel mixing with WC particles in a irradiated region

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  1. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention....... In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....

  2. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  3. Usability of a new multiple high-speed pulse time data registration, processing and real-time display system for pulse time interval analysis

    International Nuclear Information System (INIS)

    Yawata, Takashi; Sakaue, Hisanobu; Hashimoto, Tetsuo; Itou, Shigeki

    2006-01-01

    A new high-speed multiple pulse time data registration, processing and real-time display system for time interval analysis (TIA) was developed for counting either β-α or α-α correlated decay-events. The TIA method has been so far limited to selective extraction of successive α-α decay events within the milli-second time scale owing to the use of original electronic hardware. In the present pulse-processing system, three different high-speed α/β(γ) pulses could be fed quickly to original 32 bit PCI board (ZN-HTS2) within 1 μs. This original PCI board is consisting of a timing-control IC (HTS-A) and 28 bit counting IC (HTS-B). All channel and pulse time data were stored to FIFO RAM, followed to transfer into temporary CPU RAM (32 MB) by DMA. Both data registration (into main RAM (200 MB)) and calculation of pulse time intervals together with real-time TIA-distribution display simultaneously processed using two sophisticate softwares. The present system has proven to succeed for the real-time display of TIA distribution spectrum even when 1.6x10 5 cps pulses from pulse generator were given to the system. By using this new system combined with liquid scintillation counting (LSC) apparatus, both a natural micro-second order β-α correlated decay-events and a milli-second order α-α correlated decay-event could be selectively extracted from the mixture of natural radionuclides. (author)

  4. Genetic analysis of plant height in induced mutants of aromatic rice

    International Nuclear Information System (INIS)

    Kole, P.C.

    2005-01-01

    Inheritance of plant height in five gamma-ray induced mutants of aromatic rice cultivar Gobindabhog was studied through 6 x 6 diallel cross and segregation analyses. Diallel analysis revealed presence of additive and non-additive gene action with the preponderance of the latter. Proportion of dominant and recessive alleles was distributed unequally among the parents. The direction of dominance was towards tallness. The number of groups of genes was found to be three. The segregation analysis indicated the role of a single major recessive gene for height reduction in three mutants and, in another mutant, a single major recessive gene with negative modifiers. The other semi-dwarf mutant had two major recessive genes with almost equal effect in height reduction. The mutant allele(s) of the latter two mutants were non-allelic to sd sub(1) gene, which could be used as an alternative source of Dee Gee Woo Gen to widen the genetic diversity in semi-dwarfism [it

  5. Spatially inhomogeneous barrier height in graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant; Rajput, Shivani; Li, Lian

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. In this study, graphene Schottky junctions are fabricated by transferring CVD monolayer graphene on mechanically exfoliated MoS2 multilayers. The forward bias current-voltage characteristics are measured in the temperature range of 210-300 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature. Such behavior is attributed to Schottky barrier inhomogeneities possibly due to graphene ripples and ridges at the junction interface as suggested by atomic force microscopy. Assuming a Gaussian distribution of the barrier height, mean barrier of 0.97+/-0.10 eV is found for the graphene MoS2 junction. Our findings provide significant insight on the barrier height inhomogeneities in graphene/two dimensional semiconductor Schottky junctions. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award No. DEFG02-07ER46228.

  6. Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations

    Directory of Open Access Journals (Sweden)

    André Gracioso Peres Silva

    2015-12-01

    Full Text Available This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs statistics using wall-to-wall discrete return airborne laser scanning (ALS, and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89. The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93. Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively.

  7. Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators

    Science.gov (United States)

    Wolszczak, W.; Dorenbos, P.

    2017-06-01

    Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.

  8. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    Science.gov (United States)

    Mohamed, Ahmed

    protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

  9. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  10. Effect of nonlinear crystal thickness on the parameters of the autocorrelator of femtosecond light pulses

    International Nuclear Information System (INIS)

    Masalov, Anatolii V; Chudnovsky, Aleksandr V

    2004-01-01

    It is shown that the finite thickness of the second-harmonic crystal distorts the results of measurements in nonlinear autocorrelators intended for measuring the durations and fields of femtosecond light pulses mainly due to dispersive broadening (or compression) of the pulses being measured, as well as due to the group velocity mismatch between the fundamental and sum-frequency pulses. The refractive index dispersion of the crystal, scaled by half its thickness, distorts the pulse duration to a certain extent depending on its initial chirp and thus determines the width of the energy distribution recorded in the autocorrelator. As the crystal thickness increases, the group velocity mismatch leads to a transformation of the recorded distribution from the correlation function of intensity to the squared modulus of the field correlation function. In the case of Gaussian pulses, such a transformation does not affect significantly the recorded distribution. Errors of pulse duration measurements are estimated. (nonlinear optical phenomena)

  11. Absence of modulatory action on haptic height perception with musical pitch

    Directory of Open Access Journals (Sweden)

    Michele eGeronazzo

    2015-09-01

    Full Text Available Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., high in pitch or low in pitch. Pitch-height is known to modulate (and interact with the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step.We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point’s height within (i a narrower and (ii a wider pitch range, or (iii a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only. Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non musicians when estimations of the auditory conditions are matched with estimations in the no sound condition.

  12. Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferreiro, E.; Miranda, D.; Barreiro-Fernandez, L.; Bujan, S.; Garcia-Gutierrez, J.; Dieguez-Aranda, U.

    2013-07-01

    Aims of study: To evaluate the potential use of canopy height and intensity distributions, determined by airborne LiDAR, for the estimation of crown, stem and aboveground biomass fractions. To assess the effects of a reduction in LiDAR pulse densities on model precision. Area of study: The study area is located in Galicia, NW Spain. The forests are representative of Eucalyptus globulus stands in NW Spain, characterized by low-intensity silvicultural treatments and by the presence of tall shrub. Material and methods: Linear, multiplicative power and exponential models were used to establish empirical relationships between field measurements and LiDAR metrics. A random selection of LiDAR returns and a comparison of the prediction errors by LiDAR pulse density factor were performed to study a possible loss of fit in these models. Main results: Models showed similar goodness-of-fit statistics to those reported in the international literature. R2 ranged from 0.52 to 0.75 for stand crown biomass, from 0.64 to 0.87 for stand stem biomass, and from 0.63 to 0.86 for stand aboveground biomass. The RMSE/MEAN 100 of the set of fitted models ranged from 17.4% to 28.4%. Models precision was essentially maintained when 87.5% of the original point cloud was reduced, i.e. a reduction from 4 pulses m{sup 2} to 0.5 pulses m{sup 2}. Research highlights: Considering the results of this study, the low-density LiDAR data that are released by the Spanish National Geographic Institute will be an excellent source of information for reducing the cost of forest inventories. (Author)

  13. As tall as my peers - similarity in body height between migrants and hosts.

    Science.gov (United States)

    Bogin, Barry; Hermanussen, Michael; Scheffler, Christiane

    2018-01-12

    Background: We define migrants as people who move from their place of birth to a new place of residence. Migration usually is directed by "Push-Pull" factors, for example to escape from poor living conditions or to find more prosperous socio-economic conditions. Migrant children tend to assimilate quickly, and soon perceive themselves as peers within their new social networks. Differences exist between growth of first generation and second generation migrants. Methods: We review body heights and height distributions of historic and modern migrant populations to test two hypotheses: 1) that migrant and adopted children coming from lower social status localities to higher status localities adjust their height growth toward the mean of the dominant recipient social network, and 2) social dominant colonial and military migrants display growth that significantly surpasses the median height of both the conquered population and the population of origin. Our analytical framework also considered social networks. Recent publications indicate that spatial connectedness (community effects) and social competitiveness can affect human growth. Results: Migrant children and adolescents of lower social status rapidly adjust in height towards average height of their hosts, but tend to mature earlier, and are prone to overweight. The mean height of colonial/military migrants does surpass that of the conquered and origin population. Conclusion: Observations on human social networks, non-human animal strategic growth adjustments, and competitive growth processes strengthen the concept of social connectedness being involved in the regulation of human migrant growth.

  14. Are human mating preferences with respect to height reflected in actual pairings?

    Science.gov (United States)

    Stulp, Gert; Buunk, Abraham P; Pollet, Thomas V; Nettle, Daniel; Verhulst, Simon

    2013-01-01

    Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK) and compared the distribution of height difference in actual couples to simulations of random mating to test how established mate preferences map on to actual mating patterns. In line with mate preferences, we found evidence for: (i) assortative mating (r = .18), (ii) the male-taller norm, and, for the first time, (iii) for the male-not-too-tall norm. Couples where the male partner was shorter, or over 25 cm taller than the female partner, occurred at lower frequency in actual couples than expected by chance, but the magnitude of these effects was modest. We also investigated another preference rule, namely that short women (and tall men) prefer large height differences with their partner, whereas tall women (and short men) prefer small height differences. These patterns were also observed in our population, although the strengths of these associations were weaker than previously reported strength of preferences. We conclude that while preferences for partner height generally translate into actual pairing, they do so only modestly.

  15. Are human mating preferences with respect to height reflected in actual pairings?

    Directory of Open Access Journals (Sweden)

    Gert Stulp

    Full Text Available Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK and compared the distribution of height difference in actual couples to simulations of random mating to test how established mate preferences map on to actual mating patterns. In line with mate preferences, we found evidence for: (i assortative mating (r = .18, (ii the male-taller norm, and, for the first time, (iii for the male-not-too-tall norm. Couples where the male partner was shorter, or over 25 cm taller than the female partner, occurred at lower frequency in actual couples than expected by chance, but the magnitude of these effects was modest. We also investigated another preference rule, namely that short women (and tall men prefer large height differences with their partner, whereas tall women (and short men prefer small height differences. These patterns were also observed in our population, although the strengths of these associations were weaker than previously reported strength of preferences. We conclude that while preferences for partner height generally translate into actual pairing, they do so only modestly.

  16. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  17. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  18. Determination of normal heights in the area of Polish Economic Zone

    Directory of Open Access Journals (Sweden)

    Jerzy B. Rogowski

    2017-12-01

    Full Text Available The article presents a method of determining the level of the seabed in the Polish reference system. The authors show how to determine the ellipsoidal height of the seabed using GNSS measurements and single-beam echo sounders. The authors propose the transition to the system of normal heights referred to the average level of the North Sea as defined by the tide-gauge in Amsterdam to be made using the EGM 2008 model and data from the official Polish quasi-geoid model as well as data from another model distributed by GUGiK (Head Office of Geodesy and Cartography. The article presents also potential errors of the presented method.

  19. Digital pulse shape discrimination of detector data using fuzzy clustering

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chatterjee, A.; Ramachandran, K.; Shrivastava, A.; Mahata, K.

    2011-01-01

    In accelerator based experiments, data acquisition is done by CAMAC, VME and other systems. The current trend is to digitize the pulse shapes and not just the peak heights of all the input channels, by means of Flash ADCs. In view of the large number of channels involved, this leads to unprecedented data volumes. Therefore, attempts to perform a first level of analysis in real time using algorithms implemented in FPGA have become important. In the present work, digital pulse shape discrimination using fuzzy clustering has been investigated. The attempt has been to devise general purpose PSD Techniques, loosely coupled with the characteristics of detector or particle type, for particle identification. The method is applicable to neutron-gamma discrimination for liquid scintillators and charged particles detected by Si detectors

  20. Timing Solution and Single-pulse Properties for Eight Rotating Radio Transients

    Energy Technology Data Exchange (ETDEWEB)

    Cui, B.-Y.; McLaughlin, M. A. [Department of Physics and Astronomy West Virginia University Morgantown, WV 26506 (United States); Boyles, J. [Department of Physics and Astronomy West Kentucky University Bowling Green, KY 42101 (United States); Palliyaguru, N. [Physics and Astronomy Department Texas Tech University Lubbock, TX 79409-1051 (United States)

    2017-05-01

    Rotating radio transients (RRATs), loosely defined as objects that are discovered through only their single pulses, are sporadic pulsars that have a wide range of emission properties. For many of them, we must measure their periods and determine timing solutions relying on the timing of their individual pulses, while some of the less sporadic RRATs can be timed by using folding techniques as we do for other pulsars. Here, based on Parkes and Green Bank Telescope (GBT) observations, we introduce our results on eight RRATs including their timing-derived rotation parameters, positions, and dispersion measures (DMs), along with a comparison of the spin-down properties of RRATs and normal pulsars. Using data for 24 RRATs, we find that their period derivatives are generally larger than those of normal pulsars, independent of any intrinsic correlation with period, indicating that RRATs’ highly sporadic emission may be associated with intrinsically larger magnetic fields. We carry out Lomb–Scargle tests to search for periodicities in RRATs’ pulse detection times with long timescales. Periodicities are detected for all targets, with significant candidates of roughly 3.4 hr for PSR J1623−0841 and 0.7 hr for PSR J1839−0141. We also analyze their single-pulse amplitude distributions, finding that log-normal distributions provide the best fits, as is the case for most pulsars. However, several RRATs exhibit power-law tails, as seen for pulsars emitting giant pulses. This, along with consideration of the selection effects against the detection of weak pulses, imply that RRAT pulses generally represent the tail of a normal intensity distribution.

  1. Timing Solution and Single-pulse Properties for Eight Rotating Radio Transients

    Science.gov (United States)

    Cui, B.-Y.; Boyles, J.; McLaughlin, M. A.; Palliyaguru, N.

    2017-05-01

    Rotating radio transients (RRATs), loosely defined as objects that are discovered through only their single pulses, are sporadic pulsars that have a wide range of emission properties. For many of them, we must measure their periods and determine timing solutions relying on the timing of their individual pulses, while some of the less sporadic RRATs can be timed by using folding techniques as we do for other pulsars. Here, based on Parkes and Green Bank Telescope (GBT) observations, we introduce our results on eight RRATs including their timing-derived rotation parameters, positions, and dispersion measures (DMs), along with a comparison of the spin-down properties of RRATs and normal pulsars. Using data for 24 RRATs, we find that their period derivatives are generally larger than those of normal pulsars, independent of any intrinsic correlation with period, indicating that RRATs’ highly sporadic emission may be associated with intrinsically larger magnetic fields. We carry out Lomb-Scargle tests to search for periodicities in RRATs’ pulse detection times with long timescales. Periodicities are detected for all targets, with significant candidates of roughly 3.4 hr for PSR J1623-0841 and 0.7 hr for PSR J1839-0141. We also analyze their single-pulse amplitude distributions, finding that log-normal distributions provide the best fits, as is the case for most pulsars. However, several RRATs exhibit power-law tails, as seen for pulsars emitting giant pulses. This, along with consideration of the selection effects against the detection of weak pulses, imply that RRAT pulses generally represent the tail of a normal intensity distribution.

  2. More practical critical height sampling.

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2015-01-01

    Critical Height Sampling (CHS) (Kitamura 1964) can be used to predict cubic volumes per acre without using volume tables or equations. The critical height is defined as the height at which the tree stem appears to be in borderline condition using the point-sampling angle gauge (e.g. prism). An estimate of cubic volume per acre can be obtained from multiplication of the...

  3. Solution of the pulse width modulation problem using orthogonal polynomials and Korteweg-de Vries equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1999-10-26

    The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent "accurately" harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in "accurate" reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Pade approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.

  4. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    Science.gov (United States)

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  5. Imagery and fear influence height perception.

    Science.gov (United States)

    Clerkin, Elise M; Cody, Meghan W; Stefanucci, Jeanine K; Proffitt, Dennis R; Teachman, Bethany A

    2009-04-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n=65) versus low (n=64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony's height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling).

  6. Relationship between thrombolysis efficiency induced by pulsed focused ultrasound and cavitation bubble size

    International Nuclear Information System (INIS)

    Xu, S; Liu, X; Wang, S; Wan, M

    2015-01-01

    In this study, the relationship between the efficiency of pulsed focused ultrasound (FUS)-induced thrombolysis and the size distribution of cavitation bubbles has been studied. Firstly, the thrombolysis efficiency, evaluated by degree of mechanical fragmentation was investigated with varying duty cycle. Secondly, the size distribution of cavitation bubbles after the 1st, 10 3 th and 10 5 th pulse during experiments for various duty cycles was studied. It was revealed that the thrombolysis efficiency was highest when the cavitation bubble size distribution was centred around linear resonance radius of the emission frequency of the FUS transducer. Therefore, in cavitation enhanced therapeutic applications, the essential of using a pulsed FUS may be controlling the size distribution of cavitation nuclei within an active size range so as to increase the treatment efficiency. (paper)

  7. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  8. Phonon transport in a curved aluminum thin film due to laser short pulse irradiation

    Science.gov (United States)

    Mansoor, Saad Bin; Yilbas, Bekir Sami

    2018-05-01

    Laser short-pulse heating of a curved aluminum thin film is investigated. The Boltzmann transport equation is incorporated to formulate the heating situation. A Gaussian laser intensity distribution is considered along the film arc and time exponentially decaying of pulse intensity is incorporated in the analysis. The governing equations of energy transport in the electron and lattice sub-systems are coupled through the electron-phonon coupling parameter. To quantify the phonon intensity distribution in the thin film, equivalent equilibrium temperature is introduced, which is associated with the average energy of all phonons around a local point when the phonon energies are redistributed adiabatically to an equilibrium state. It is found the numerical simulations that electron temperature follows similar trend to the spatial distribution of the laser pulse intensity at the film edge. Temporal variation of electron temperature does not follow the laser pulse intensity distribution. The rise of temperature in the electron sub-system is fast while it remains slow in the lattice sub-system.

  9. Mathematical model and simulation of the hydrodynamic of air-pulsed sieve plate columns

    International Nuclear Information System (INIS)

    Hannappel, J.; Pfeifer, W.; Rathjen, E.

    1979-02-01

    In this work the dynamic flow events in an air pulsed sieve plate column are described by a simulation model. The model consists of a system of differential equations. The pressure built up by the pulsed air is brought to equilibrium with the pressure losses of the oscillating liquid column in the pulsation tube and in the column. In case of definition of the a) column geometry, b) integral holdup of the column, c) density of the participating phases, d) control times of the pulsed air valves, e) pulse repetition frequency and pulsed air reservoir pressure the height of oscillation and hence the intensity of pulsation are calculated. It is shown by a concrete example that 1) the oscillation of the liquid column in the pulsation tube and in the column is sinusoidal in all cases; 2) generation of a defined pulsation is restricted to the range between 0.3 and 3 Hz; 3) the amount of air needed for pulsation depends on the geometry of the column and in the intensity of pulsation. It can be optimized by appropriate selection of the diameter of the pulsation tube. (orig.) [de

  10. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Radu, C.; Simion, S.; Zamfirescu, M.; Ulmeanu, M.; Enculescu, M.; Radoiu, M.

    2011-01-01

    The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl 4 ) and fluorine (C 2 Cl 3 F 3 ) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400 pulses at 330 mJ/cm 2 laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 μm, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 μm in height and with a full width at half maximum of 2.3 μm with irradiation of 700 pulses at 560 mJ/cm 2 laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology on cell

  11. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    International Nuclear Information System (INIS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong

    2014-01-01

    Highlights: • Single 50 fs laser pulse ablation of an aluminium target in vacuum is investigated in our experiments. • Nanoparticles with large radii of several hundred nanometers are observed. • The nanoparticles are most likely from the mechanical tensile stress relaxation. - Abstract: Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm 2 to 0.63 J/cm 2 . The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium

  12. On the Specification of Smoke Injection Heights for Aerosol Forecasting

    Science.gov (United States)

    da Silva, A.; Schaefer, C.; Randles, C. A.

    2014-12-01

    The proper forecasting of biomass burning (BB) aerosols in global or regional transport models requires not only the specification of emission rates with sufficient temporal resolution but also the injection layers of such emissions. While current near realtime biomass burning inventories such as GFAS, QFED, FINN, GBBEP and FLAMBE provide such emission rates, it is left for each modeling system to come up with its own scheme for distributing these emissions in the vertical. A number of operational aerosol forecasting models deposits BB emissions in the near surface model layers, relying on the model's parameterization of turbulent and convective transport to determine the vertical mass distribution of BB aerosols. Despite their simplicity such schemes have been relatively successful reproducing the vertical structure of BB aerosols, except for those large fires that produce enough buoyancy to puncture the PBL and deposit the smoke at higher layers. Plume Rise models such as the so-called 'Freitas model', parameterize this sub-grid buoyancy effect, but require the specification of fire size and heat fluxes, none of which is readily available in near real-time from current remotely-sensed products. In this talk we will introduce a bayesian algorithm for estimating file size and heat fluxes from MODIS brightness temperatures. For small to moderate fires the Freitas model driven by these heat flux estimates produces plume tops that are highly correlated with the GEOS-5 model estimate of PBL height. Comparison to MINX plume height estimates from MISR indicates moderate skill of this scheme predicting the injection height of large fires. As an alternative, we make use of OMPS UV aerosol index data in combination with estimates of Overshooting Convective Tops (from MODIS and Geo-stationary satellites) to detect PyCu events and specify the BB emission vertical mass distribution in such cases. We will present a discussion of case studies during the SEAC4RS field campaign in

  13. Modeling nonstationary extreme wave heights in present and future climates of Greek Seas

    Directory of Open Access Journals (Sweden)

    Panagiota Galiatsatou

    2016-01-01

    Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climates. The available significant wave height data were divided into groups corresponding to the present period (1951–2000, a first future period (2001–2050, and a second future period (2051–2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoretical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.

  14. Traveling waves of the regularized short pulse equation

    International Nuclear Information System (INIS)

    Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J

    2014-01-01

    The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)

  15. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    Science.gov (United States)

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P abutment heights.

  16. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    Science.gov (United States)

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    Science.gov (United States)

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  18. Direct observation of interaction between plasma ions and grid-excited pulses in a Q-machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1970-01-01

    The change in velocity-distribution function caused by interaction between ions and density pulses in a Q-machine is observed experimentally.......The change in velocity-distribution function caused by interaction between ions and density pulses in a Q-machine is observed experimentally....

  19. Effective pollutant emission heights for atmospheric transport modelling based on real-world information

    International Nuclear Information System (INIS)

    Pregger, Thomas; Friedrich, Rainer

    2009-01-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling. - The comprehensive analysis of real-world stack data provides detailed default parameter values for improving vertical emission distribution in atmospheric modelling

  20. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance.

    Science.gov (United States)

    Srivastava, Madhur; Freed, Jack H

    2017-11-16

    Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.

  1. Neighbor and Height Effects on Crown Properties Associated with the Uniform-Stress Principle of Stem Formation

    Directory of Open Access Journals (Sweden)

    Thomas J. Dean

    2018-06-01

    Full Text Available According to the uniform-stress principle of stem formation, the amount of leaf area a tree carries and the leverage it exerts on the stem determine the stem dimensions. Within an even-aged monoculture, the leaf area per tree and the leverage placed on the stem are functions of tree density and tree height. The uniform-stress principle presents the means to translate density effects on crown characteristics into stem dimensions and total standing volume. This approach is truly a top-down method of simulating growth tree and stand growth because leaf area and other crown properties must be determined before stem size and taper can be calculated. Each crown property influences either the sail area or the leverage placed on the stem, but the degree to which a specific crown property affects these parameters changes with stand density and height. Leverage is the more complicated of the two variables, being a function of the height to the base of the live crown and the vertical distribution of leaf area. The purpose of this brief review is to summarize the effects of stand density on the height to the base of the live tree and the vertical distribution of leaf area and the various ways these variables have been quantified.

  2. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  3. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Li, L

    2017-01-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS 2 to fabricate Schottky junctions. These junctions exhibit rectifying current–voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions. (paper)

  4. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    Science.gov (United States)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  5. Future directions of the AMS program at Lucas Heights

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-12-31

    The research program based on the ANTARES AMS spectrometer involves applications of the long-lived radionuclides {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I in earth sciences and archaeology. Examples of environmental applications of AMS at Lucas Heights include: use of the {sup 14}C bomb pulse to determine the age and age-spread of air trapped in Antarctic ice bubbles, key parameters to study the variability of CO{sub 2} and other greenhouse gases in the past; analyses of {sup 14}C bomb-pulse curves in tree rings from tropical regions and the southern hemisphere to improve our understanding of the carbon cycle and air-sea interactions, important processes for the global climate; analyses of {sup 10}Be and {sup 36}Cl produced in-situ in polished glacial bedrock and moraine boulders from Tasmania, New Zealand and Antarctica, as part of a major national project to unravel the timing of glacial cycles in the southern hemisphere. A recent archaeological application has been the radiocarbon dating of charcoal fragments from the rock shelter at Jinmium in the Northern Territory demonstrating that this site was occupied by Aboriginal people only during the late Holocene. In environmental monitoring, the analysis of {sup 129}I, {sup 14}C and {sup 36}Cl in water specimens from Mururoa and Fangatauga contributed to an IAEA study regarding residual radioactivity in the Pacific after the French nuclear program Extended abstract. 5 refs.

  6. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  7. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  8. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height.

    Science.gov (United States)

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-04-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin(®)) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean duration of 4.1 yr. The anabolic steroid hormone was started approximately 1 yr after initiation of treatment with the GnRH analog. The mean pubertal height gain from onset of puberty till adult height was significantly greater in the combination treatment group (33.9 cm) than in the untreated group (26.4 cm) (ppenis and pubic hair is promoted by the anabolic steroid hormone, no psychosocial problems arose because of delayed puberty. No clinically significant adverse events appeared. Combined treatment with GnRH analog and anabolic steroid hormone significantly increased height gain during puberty and adult height in boys who entered puberty with a short stature, since the period until epiphyseal closure was extended due to deceleration of the bone age maturation by administration of the GnRH analog and the growth rate at this time was maintained by the anabolic steroid hormone.

  9. Lithium-sodium separation by ion-exchange. Particular study of a pulsed column

    International Nuclear Information System (INIS)

    Auvert, H.

    1966-02-01

    A study is made of the operational conditions and constraints in the case of a moving-bed ion-exchange column subjected to pulses. The example chosen to illustrate its application concerns the lithium-sodium separation in a hydroxide medium (LiOH, NaOH). In the first part, the physico-chemical characteristics of the exchange and the kinetic characteristics of the exchange-reaction are considered. In the second part, the operation of the pulsed column is studied. Using the results obtained in the first part, the conditions required for study state operation are determined. When this is obtained, it is possible to calculate the height equivalent of the theoretical plate (HETP) of the installation. A study is also made of 'sliding', a phenomenon peculiar to pulsed columns. The results obtained show that it is possible, using laboratory tests, to determine the characteristics and the operational condition of a moving-bed ion-exchange column. (author) [fr

  10. Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM

    International Nuclear Information System (INIS)

    Chaplin, Vandiver; Bhat, Narayana; Briggs, Michael S.; Connaughton, Valerie

    2013-01-01

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's shaping and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: ‘peak’ and ‘tail’ pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to increased complexity. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup including high order effects. We use the pulse shape of the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by expressing exposure time with a state-space expansion of overlapping pileup states and is valid up to very high rates. The model correctly predicts deadtime and pileup losses, and energy-dependent losses due to tail subtraction (sub-threshold) effects. We discuss total losses in terms of the true rate of photon detections versus the recorded count rate. -- Highlights: • A derivation of pulse-pileup spectral and intensity distortion is presented. • Applies to bipolar shaping instruments in general, but is calculated for Fermi-GBM. • Exposure time is partitioned with pulse widths as states of a Poisson process. • Each state has an associated energy distribution function for peak and tail pileup. • The total spectrum is the union of pulse states and their associated spectra

  11. Modelling of sludge blanket height and flow pattern in UASB reactors treating municipal wastewater

    International Nuclear Information System (INIS)

    Singh, K.S.; Viraraghavan, T.

    2002-01-01

    Two upflow anaerobic sludge blanket (UASB) reactors were started-up and operated for approximately 900 days to examine the feasibility of treating municipal wastewater under low temperature conditions. A modified solid distribution model was formulated by incorporating the variation of biogas production rate with a change in temperature. This model was used to optimize the sludge blanket height of UASB reactors for an effective operation of gas-liquid-solid (GLS) separation device. This model was found to simulate well the solid distribution as confirmed experimental observation of solid profile along the height of the reactor. Mathematical analysis of tracer curves indicated the presence of a mixed type of flow pattern in the sludge-bed zone of the reactor. It was found that the dead-zone and by-pass flow fraction were impacted by the change in operating temperatures. (author)

  12. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  13. Maternal Height and Child Growth Patterns

    OpenAIRE

    Addo, O. Yaw; Stein, Aryeh D.; Fall, Caroline H.; Gigante, Denise P.; Guntupalli, Aravinda M.; Horta, Bernardo L.; Kuzawa, Christopher W.; Lee, Nanette; Norris, Shane A.; Prabhakaran, Poornima; Richter, Linda M.; Sachdev, Harshpal S.; Martorell, Reynaldo

    2013-01-01

    OBJECTIVE:\\ud To examine associations between maternal height and child growth during 4 developmental periods: intrauterine, birth to age 2 years, age 2 years to mid-childhood (MC), and MC to adulthood.\\ud \\ud STUDY DESIGN:\\ud Pooled analysis of maternal height and offspring growth using 7630 mother-child pairs from 5 birth cohorts (Brazil, Guatemala, India, the Philippines, and South Africa). We used conditional height measures that control for collinearity in height across periods. We estim...

  14. Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors Over Southeast Asia

    Science.gov (United States)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai

    2016-01-01

    This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

  15. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    International Nuclear Information System (INIS)

    Ida, T; Matsuzaki, H; Morita, E; Sakashita, H; Harada, T; Ogata, H; Kimura, Y; Miki, M; Kitano, M; Izumi, M

    2006-01-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux

  16. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  17. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  18. Standardizing Scale Height Computation of Maven Ngims Neutral Data and Variations Between Exobase and Homeopause Scale Heights

    Science.gov (United States)

    Elrod, M. K.; Slipski, M.; Curry, S.; Williamson, H. N.; Benna, M.; Mahaffy, P. R.

    2017-12-01

    The MAVEN NGIMS team produces a level 3 product which includes the computation of Ar scale height an atmospheric temperatures at 200 km. In the latest version (v05_r01) this has been revised to include scale height fits for CO2, N2 O and CO. Members of the MAVEN team have used various methods to compute scale heights leading to significant variations in scale height values depending on fits and techniques within a few orbits even, occasionally, the same pass. Additionally fitting scale heights in a very stable atmosphere like the day side vs night side can have different results based on boundary conditions. Currently, most methods only compute Ar scale heights as it is most stable and reacts least with the instrument. The NGIMS team has chosen to expand these fitting techniques to include fitted scale heights for CO2, N2, CO, and O. Having compared multiple techniques, the method found to be most reliable for most conditions was determined to be a simple fit method. We have focused this to a fitting method that determines the exobase altidude of the CO2 atmosphere as a maximum altitude for the highest point for fitting, and uses the periapsis as the lowest point and then fits the altitude versus log(density). The slope of altitude vs log(density) is -1/H where H is the scale height of the atmosphere for each species. Since this is between the homeopause and the exobase, each species will have a different scale height by this point. This is being released as a new standardization for the level 3 product, with the understanding that scientists and team members will continue to compute more precise scale heights and temperatures as needed based on science and model demands. This is being released in the PDS NGIMS level 3 v05 files for August 2017. Additionally, we are examining these scale heights for variations seasonally, diurnally, and above and below the exobase. The atmosphere is significantly more stable on the dayside than on the nightside. We have also found

  19. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs

    International Nuclear Information System (INIS)

    Kolstad, Frode; Myhr, Gunnar; Kvistad, Kjell Arne; Nygaard, Oystein P.; Leivseth, Gunnar

    2005-01-01

    Study design: Descriptive study comparing MRI classifications with measurements from radiographs. Objectives: 1.Define the relationship between MRI classified cervical disc degeneration and objectively measured disc height. 2.Assess the level of inter- and intra-observer errors using MRI in defining cervical disc degeneration. Summary of background data: Cervical spine degeneration has been defined radiologically by loss of disc height, decreased disc and bone marrow signal intensity and disc protrusion/herniation on MRI. The intra- and inter-observer error using MRI in defining cervical degeneration influences data interpretation. Few previous studies have addressed this source of error. The relation and time sequence between cervical disc degeneration classified by MRI and cervical disc height decrease measured from radiographs is unclear. Methods: The MRI classification of degeneration was based on nucleus signal, prolaps identification and bone marrow signal. Two neuro-radiologists evaluated the MR-images independently in a blinded fashion. The radiographic disc height measurements were done by a new computer-assisted method compensating for image distortion and permitting comparison with normal level-, age- and gender-appropriate disc height. Results/conclusions: 1.Progressing disc degeneration classified from MRI is on average significantly associated with a decrease of disc height as measured from radiographs. Within each MRI defined category of degeneration measured disc heights, however, scatter in a wide range. 2.The inter-observer agreement between two neuro-radiologists in both defining degeneration and disc height by MRI was only moderate. Studies addressing questions related to cervical disc degeneration should take this into consideration

  20. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Kolstad, Frode [National Centre of Spinal Disorders, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway)]. E-mail: frode.kolstad@medisin.ntnu.no; Myhr, Gunnar [Department of Radiology, University Hospital of Trondheim, 7006 Trondheim (Norway); Kvistad, Kjell Arne [Department of Radiology, University Hospital of Trondheim, 7006 Trondheim (Norway); Nygaard, Oystein P. [National Centre of Spinal Disorders, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway); Leivseth, Gunnar [Department of Neuromedicine, Faculty of Medicine, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway)

    2005-09-01

    Study design: Descriptive study comparing MRI classifications with measurements from radiographs. Objectives: 1.Define the relationship between MRI classified cervical disc degeneration and objectively measured disc height. 2.Assess the level of inter- and intra-observer errors using MRI in defining cervical disc degeneration. Summary of background data: Cervical spine degeneration has been defined radiologically by loss of disc height, decreased disc and bone marrow signal intensity and disc protrusion/herniation on MRI. The intra- and inter-observer error using MRI in defining cervical degeneration influences data interpretation. Few previous studies have addressed this source of error. The relation and time sequence between cervical disc degeneration classified by MRI and cervical disc height decrease measured from radiographs is unclear. Methods: The MRI classification of degeneration was based on nucleus signal, prolaps identification and bone marrow signal. Two neuro-radiologists evaluated the MR-images independently in a blinded fashion. The radiographic disc height measurements were done by a new computer-assisted method compensating for image distortion and permitting comparison with normal level-, age- and gender-appropriate disc height. Results/conclusions: 1.Progressing disc degeneration classified from MRI is on average significantly associated with a decrease of disc height as measured from radiographs. Within each MRI defined category of degeneration measured disc heights, however, scatter in a wide range. 2.The inter-observer agreement between two neuro-radiologists in both defining degeneration and disc height by MRI was only moderate. Studies addressing questions related to cervical disc degeneration should take this into consideration.

  1. Recent results from CVD-diamond heavy-ion detectors

    International Nuclear Information System (INIS)

    Berdermann, E.; Fischer, B.E.; Schloegl, M.; Stelzer, H.; Voss, B.

    2000-03-01

    Latest results from radiation hardness measurements as well as single-particle pulse shape parameters, pulse-height distributions and time spectra are presented. An intrinsic time resolution of 29 ps is achieved with 52 Cr ions of 650 MeV/amu and of 53 ps with 12 C ions of 1.5 Gev/amu, respectively. The resolution is by 20% worse when increasing the beam intensity from 10 6 ions/s to 10 8 ions/s. Performing 58 Ni fragmentation, collected charge distributions are measured in the range 15 241 Am-α-distributions increasing the electric field applied to the detector. In order to visualize and to quantify the influence of the electric field as well as of the total particle fluence to the charge-collection efficiency micro-beam measurements are performed with 12 C ions of 5.9 MeV/amu stopped in the diamond bulk. Pulse-height spectra and charge-collection maps under different conditions are discussed. (orig.)

  2. Monte Carlo simulation of response of a phoswich detector to 241Am in the lungs of a mathematical phantom

    International Nuclear Information System (INIS)

    Bhati, Sharda

    2009-01-01

    To simulate photon transport in the thorax region of the MIRD phantom for a given uniform source distribution of 241 Am in the lungs of the phantom and to compute the pulse height response of a 20 cm dia phoswich detector located right above the lungs on the thorax surface. The total peak counts in the simulated pulse height spectrum of 241 Am can be used to compute the calibration factors of the phoswich for estimation of the lung burdens of 241 Am

  3. Plantar Pressure Variation during Jogging with Different Heel Height

    Directory of Open Access Journals (Sweden)

    Y. D. Gu

    2013-01-01

    Full Text Available This paper presents the key testing and analysis results of an investigation on the effect of heel height on the plantar pressure over different foot areas in jogging. It is important in improving the understanding of jogging with high heels and damage/injury prevention. It can also potentially guide the development of suitable/adaptive exercise schemes in between daily activities with high heels. In this work, plantar pressure data were collected from 10 habituated healthy female subjects (aged 21–25 years at their natural jogging speed with three different conditions: flat heeled shoes (0.8 cm, low heeled shoes (4.0 cm, and high heeled shoes (6.6 cm. Data analysis showed significantly differences in plantar pressure distribution associated with the heel heights with increased pressure in the first metatarsal region and decreased pressure in the lateral metatarsal and midfoot sections. However, there is no significant alteration of plantar pressure in the central area of the forefoot with jogging gait.

  4. Earthquake Scenario-Based Tsunami Wave Heights in the Eastern Mediterranean and Connected Seas

    Science.gov (United States)

    Necmioglu, Ocal; Özel, Nurcan Meral

    2015-12-01

    We identified a set of tsunami scenario input parameters in a 0.5° × 0.5° uniformly gridded area in the Eastern Mediterranean, Aegean (both for shallow- and intermediate-depth earthquakes) and Black Seas (only shallow earthquakes) and calculated tsunami scenarios using the SWAN-Joint Research Centre (SWAN-JRC) code ( Mader 2004; Annunziato 2007) with 2-arcmin resolution bathymetry data for the range of 6.5—Mwmax with an Mw increment of 0.1 at each grid in order to realize a comprehensive analysis of tsunami wave heights from earthquakes originating in the region. We defined characteristic earthquake source parameters from a compiled set of sources such as existing moment tensor catalogues and various reference studies, together with the Mwmax assigned in the literature, where possible. Results from 2,415 scenarios show that in the Eastern Mediterranean and its connected seas (Aegean and Black Sea), shallow earthquakes with Mw ≥ 6.5 may result in coastal wave heights of 0.5 m, whereas the same wave height would be expected only from intermediate-depth earthquakes with Mw ≥ 7.0 . The distribution of maximum wave heights calculated indicate that tsunami wave heights up to 1 m could be expected in the northern Aegean, whereas in the Black Sea, Cyprus, Levantine coasts, northern Libya, eastern Sicily, southern Italy, and western Greece, up to 3-m wave height could be possible. Crete, the southern Aegean, and the area between northeast Libya and Alexandria (Egypt) is prone to maximum tsunami wave heights of >3 m. Considering that calculations are performed at a minimum bathymetry depth of 20 m, these wave heights may, according to Green's Law, be amplified by a factor of 2 at the coastline. The study can provide a basis for detailed tsunami hazard studies in the region.

  5. An antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2013-01-01

    Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...

  6. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    Science.gov (United States)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  7. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  8. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses

    International Nuclear Information System (INIS)

    Degert, J.

    2002-12-01

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  9. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Energy Technology Data Exchange (ETDEWEB)

    Elter, Zs. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Jammes, C., E-mail: christian.jammes@cea.fr [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pázsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49 (Hungary); Filliatre, P. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-02-21

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  10. Movement of a charged particle beam in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Veselovskij, I.S.

    1977-01-01

    The motion of a charged particle beam injected into the Earth magnetosphere in a dipole magnetic field was investigated. Examined were the simplest stationary distributions of particles. The evolution of the distribution function after pulse injection of the beam into the magnetosphere was studied. It was shown that the pulse shape depends on its starting duration. A long pulse spreads on the base and narrows on the flat top with the distance away from the point of injection. A short pulse spreads both on the base and along the height. The flat top is not present. An analytical expression for the pulse shape as a time function is given

  11. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  12. Observed Correlation between Aerosol and Cloud Base Height for Low Clouds at Baltimore and New York, United States

    Directory of Open Access Journals (Sweden)

    Sium Gebremariam

    2018-04-01

    Full Text Available The correlation between aerosol particulate matter with aerodynamic diameter ≤2.5 μ m (PM2.5 and cloud base height (CBH of low clouds (CBH lower than 1.5 km a.g.l. at Baltimore and New York, United States, for an 8 year period (2007–2014 was investigated using information from the Automated Surface Observing System (ASOS observations and collocated U.S. Environmental Protection Agency (EPA observations. The lifting condensation level (LCL heights were calculated and compared with the CBH. The monthly average observations show that PM2.5 decreases from 2007 to 2014 while there is no significant trend found for CBH and LCL. The variability of the LCL height agrees well with CBH but LCL height is systematically lower than CBH (~180 m lower. There was a significant negative correlation found between CBH–LCL and PM2.5. All of the cloud cases were separated into polluted and clean conditions based on the distribution of PM2.5 values. The distributions of CBH–LCL in the two groups show more cloud cases with smaller CBH–LCL in polluted conditions than in clean conditions.

  13. Height perception influenced by texture gradient.

    Science.gov (United States)

    Tozawa, Junko

    2012-01-01

    Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.

  14. Optimization of plasma mirror reflectivity and optical quality using double laser pulses

    International Nuclear Information System (INIS)

    Scott, G G; Clarke, R J; Green, J S; Heathcote, R I; Neely, D; Bagnoud, V; Brabetz, C; Zielbauer, B; Powell, H W; McKenna, P; Arber, T D

    2015-01-01

    We measure a record 96 ±2.5% specularly reflected energy fraction from an interaction with a plasma mirror (PM) surface preionized by a controlled prepulse and find that the optical quality is dependent on the inter pulse time delay. Simulations show that the main pulse reflected energy is a strong function of plasma density scale length, which increases with the time delay and reaches a peak reflectivity for a scale length of 0.3 μm, which is achieved here for a pulse separation time of 3 ps. It is found that the incident laser quasi near field intensity distribution leads to nonuniformities in this plasma expansion and consequent critical surface position distribution. The PM optical quality is found to be governed by the resultant perturbations in the critical surface position, which become larger with inter pulse time delay. (paper)

  15. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  16. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  17. Design of pulsed perforated-plate columns for industrial scale mass transfer applications - present experience and the need for a model based approach

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    Mass transfer is a vital unit operation in the processing of spent nuclear fuel in the backend of closed fuel cycle and Pulsed perforated plate extraction columns are used as mass transfer device for more than five decades. The pulsed perforated plate column is an agitated differential contactor, which has wide applicability due to its simplicity, high mass transfer efficiency, high through put, suitability for maintenance free remote operation, ease of cleaning/decontamination and cost effectiveness. Design of pulsed columns are based on a model proposed to describe the hydrodynamics and mass transfer. In equilibrium stage model, the HETS values are obtained from pilot plant experiments and then scaled empirically to design columns for industrial application. The dispersion model accounts for mass transfer kinetics and back-mixing. The drop population balance model can describe complex hydrodynamics of dispersed phase, that is, drop formation, break-up and drop-to-drop interactions. In recent years, significant progress has been made to model pulsed columns using CFD, which provides complete mathematical description of hydrodynamics in terms of spatial distribution of flow fields and 3D visualization. Under the condition of pulsation, the poly-dispersed nature of turbulent droplet swarm renders modeling difficult. In the absence of industry acceptance of proposed models, the conventional chemical engineering practice is to use HETS-NTS concept or HTU-NTU approach to design extraction columns. The practicability of HTU-NTU approach has some limitations due to the lack of experimental data on individual film mass transfer coefficients. Presently, the HETS-NTS concept has been used for designing the columns, which has given satisfactory performance. The design objective is mainly to arrive at the diameter and height of the mass transfer section for a specific plate geometry, fluid properties and pulsing condition to meet the intended throughput (capacity) and mass

  18. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR

    Directory of Open Access Journals (Sweden)

    Shangpeng Sun

    2017-04-01

    Full Text Available A LiDAR-based high-throughput phenotyping (HTP system was developed for cotton plant phenotyping in the field. The HTP system consists of a 2D LiDAR and an RTK-GPS mounted on a high clearance tractor. The LiDAR scanned three rows of cotton plots simultaneously from the top and the RTK-GPS was used to provide the spatial coordinates of the point cloud during data collection. Configuration parameters of the system were optimized to ensure the best data quality. A height profile for each plot was extracted from the dense three dimensional point clouds; then the maximum height and height distribution of each plot were derived. In lab tests, single plants were scanned by LiDAR using 0.5° angular resolution and results showed an R2 value of 1.00 (RMSE = 3.46 mm in comparison to manual measurements. In field tests using the same angular resolution; the LiDAR-based HTP system achieved average R2 values of 0.98 (RMSE = 65 mm for cotton plot height estimation; compared to manual measurements. This HTP system is particularly useful for large field application because it provides highly accurate measurements; and the efficiency is greatly improved compared to similar studies using the side view scan.

  19. Measurement of Aortic Pulse Wave Velocity With a Connected Bathroom Scale.

    Science.gov (United States)

    Campo, David; Khettab, Hakim; Yu, Roger; Genain, Nicolas; Edouard, Paul; Buard, Nadine; Boutouyrie, Pierre

    2017-09-01

    Measurement of arterial stiffness should be more available. Our aim was to show that aortic pulse wave velocity can be reliably measured with a bathroom scale combining the principles of ballistocardiography (BCG) and impedance plethysmography on a single foot. The calibration of the bathroom scale was conducted on a group of 106 individuals. The aortic pulse wave velocity was measured with the SphygmoCor in the supine position. Three consecutive measurements were then performed on the Withings scale in the standing position. This aorta-leg pulse transit time (alPTT) was then converted into a velocity with the additional input of the height of the person. Agreement between the SphygmoCor and the bathroom scale so calibrated is assessed on a separate group of 86 individuals, following the same protocol. The bias is 0.25 m·s-1 and the SE 1.39 m·s-1. This agreement with Sphygmocor is "acceptable" according to the ARTERY classification. The alPTT correlated well with cfPTT with (Spearman) R = 0.73 in pooled population (cal 0.79, val 0.66). The aorta-leg pulse wave velocity correlated with carotid-femoral pulse wave velocity with R = 0.76 (cal 0.80, val 0.70). Estimation of the aortic pulse wave velocity is feasible with a bathroom scale. Further investigations are needed to improve the repeatability of measurements and to test their accuracy in different populations and conditions. © The Author 2017. Published by Oxford University Press on behalf of American Journal of Hypertension.

  20. Periodic nanostructures fabricated on GaAs surface by UV pulsed laser interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Huo, Dayun; Guo, Xiaoxiang; Rong, Chen; Shi, Zhenwu, E-mail: zwshi@suda.edu.cn; Peng, Changsi, E-mail: changsipeng@suda.edu.cn

    2016-01-01

    Graphical abstract: - Highlights: • Periodic nanostructures were fabricated on GaAs wafers by four-beam laser interference patterning which have potential applications in many fields. • Significant different results were obtained on epi-ready and homo-epitaxial GaAs substrate surfaces. • Two-pulse patterning was carried out on homo-epitaxial GaAs substrate, a noticeable morphology transformation induced by the second pulse was observed. • Temperature distribution on sample surface as a function of time and position was calculated by solving the heat diffusion equations. The calculation agrees well with the experiment results. - Abstract: In this paper, periodic nanostructures were fabricated on GaAs wafers by four-beam UV pulsed laser interference patterning. Significant different results were observed on epi-ready and homo-epitaxial GaAs substrate surfaces, which suggests GaAs oxide layer has an important effect on pulsed laser irradiation process. In the case of two-pulse patterning, a noticeable morphology transformation induced by the second pulse was observed on homo-epitaxial GaAs substrate. Based on photo-thermal mode, temperature distribution on sample surface as a function of time and position was calculated by solving the heat diffusion equations.

  1. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures.

    Science.gov (United States)

    Joo, Woo-Deok; Kim, Seungman; Park, Jiyong; Lee, Keunwoo; Lee, Joohyung; Kim, Seungchul; Kim, Young-Jin; Kim, Seung-Woo

    2013-07-01

    Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Besides, the lateral field-of-view extendable for a single measurement is restricted by the low spatial coherence of broadband light sources. Here, we cope with the limitations of the conventional low-coherence interferometer by exploiting unique characteristics of femtosecond laser pulses, i.e., low temporal but high spatial coherence. By scanning the pulse repetition rate with direct reference to the Rb atomic clock, step heights of ~69.6 μm are determined with a repeatability of 10.3 nm. The spatial coherence of femtosecond pulses provides a large field-of-view with superior visibility, allowing for a high volume measurement rate of ~24,000 mm3/s.

  2. The pulses as a diagnostic technique in the sun

    International Nuclear Information System (INIS)

    Das, G.C.

    1980-01-01

    In this paper we discuss a method of finding physical parameters by studying the pulses in the Sun. For the sake of a mathematical approach, we consider an ideal, highly relevant model which could exist in the Sun with the effects of ionization, due to which there will be a continuous formation of ionized particles. It is observed that the pulse originated at the centre of a dipole field propagates along the magnetic field. We derive a dispersion relation for these types of pulses, propagating from the centre to the solar surface. The time taken by the pulse from its source to the solar surface is also estimated, with due account of the ionization effects on the pulse. Without proper account of these effects, the technique employed in determing the physical parameters may lead to error. Temporal and spatial damping of the pulses lead to estimates of the velocity distribution of the ionized particles and of the amplitude of the magnetic field of the wave in pulse. (orig.)

  3. Design and initial performance of the Sandia Pulsed Reactor-III

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Estes, B.F.

    1976-01-01

    The Sandia Pulsed Reactor-III (SPR-III) is a new fast pulsed reactor which has recently undergone initial testing at Sandia Laboratories. SPR-III is a uranium-10 weight percent molybdenum fuel assembly with a 17.78 cm irradiation cavity similar in design to SPR-II which has been in operation since 1967. The basic SPR-III design utilizes the same split-core configuration which has been proven with SPR-II; however, SPR-III uses external reflectors for control and external bolts to hold the fuel plates together. The core consists of sixteen fuel plates with an inside diameter of 17.78 cm, an outside diameter of 29.72 cm, and a core height of 31.9 cm. The fuel mass is about 227 kg of fully enriched uranium-10 weight percent molybdenum alloy. SPR III has completed the initial series of startup tests which included the critical experiment, zero and low-power tests, and pulse testing. The reactor design and results from the initial testing program are described in this paper. A portion of the startup experiments with SPR-III have been completed and this paper discusses the more important aspects of the initial testing program

  4. Random noise effects in pulse-mode digital multilayer neural networks.

    Science.gov (United States)

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  5. Climate and the weight/height relationship in sub-Saharan Africa.

    Science.gov (United States)

    Hiernaux, J; Rudan, P; Brambati, A

    1975-01-01

    25 populations of the rain forest and 44 of the open country, all descended from the West-Central African stock which lived in the latter biome, are compared for body weight and height. On a log weight/height diagram, the 69 populations cluster along a straight line which intersects the lines of equal body weight/surface ratio: the shorter the body size, the lower the ratio tends to be. The rain forest populations are concentrated in the lower part of the bivariate distribution. The shortest one, the Mbuti Pygmies, has a very low ratio despite a relatively heavy weight. The shorter stature of the rain forest populations seems to be largely genetic in origin; it probably results from selective pressure exerted by the thermal stres in this hot and wet biome where sweating is of low thermolytic efficiency. The amount of reduction of adult stature depends for a large part on the number of generations spent in the forest by the population. Line A (in figure 1) is similar to a growth trend. The 69 populations differ genetically by the target that growth has to reach on a common log weight/height trend line. They achieve this differentiation through different speeds of growth.

  6. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  7. Potential change in forest types and stand heights in central Siberia in a warming climate

    International Nuclear Information System (INIS)

    Tchebakova, N M; Parfenova, E I; Korets, M A; Conard, S G

    2016-01-01

    Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: a 80%–90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ∼400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30–40 m stand height) were simulated to increase at the expense of less productive forests (10–20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%–25%. Stand height increases of 10 m were simulated over 35%–50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25–30 m) would occur over 8%–12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30–40 m may cover some 15% of the area under sufficient moisture. (letter)

  8. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  9. Proposal for a fast, zero suppressing circuit for the digitization of analog pulses over long memory times

    International Nuclear Information System (INIS)

    Bourgeois, F.

    1984-01-01

    This report describes the design principles of a fast (100 MHz) time and pulse height digitizer that can record up to 15 analog pulses over 10-80 μs memory times. Unlike other triggered circuits prepulse samples are recorded without the help of an analog delay line. The low power requirements of the circuit as well as its fast read-out characteristics make it very attractive for detectors with many digitizing channels. Conventional circuits are described as a reference for the evaluation of this new design. An ECL 10 K implementation of the circuit is presented in the third section. (orig.)

  10. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  11. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Velasquez, A.A.; Trujillo, J.M.; Morales, A.L.; Tobon, J.E.; Gancedo, J.R.; Reyes, L.

    2005-01-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Moessbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Moessbauer spectrometer

  12. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  13. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  14. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses

    Science.gov (United States)

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa

    2018-03-01

    Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.

  15. Ion kinetic energy distribution in a pulsed vacuum arc with a straight magnetic filter

    International Nuclear Information System (INIS)

    Giuliani, L; Grondona, D; Kelly, H; Minotti, F

    2008-01-01

    In vacuum arcs of interest for film deposition the ion kinetic energy is of importance because it influences the coating properties. In this kind of discharge, the ions come out from the cathode spots with a high kinetic energy (20-150 eV). In the present work, we present measurements of vacuum arc ion energy distributions in a pulsed vacuum arc with a straight magnetic filter. A retarding field analyser (RFA) was used to perform the measurements that were carried out with a variable magnetic field strength (of the order of 10 mT). Since the interpretation of the results obtained from the RFA lies in the knowledge of the plasma and floating potential values, we have employed also Langmuir probes for determining those quantities. The obtained results for the ion kinetic energy are similar to those reported by other authors, but they were also found to be independent of the magnetic field strength. The electron temperature was also found to be independent of the magnetic field strength and of the axial position along the filter, indicating the absence of collisions.

  16. SIMULTANEOUS OBSERVATIONS OF GIANT PULSES FROM PULSAR PSR B0031-07 AT 38 AND 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Jr-Wei; Simonetti, John H.; Bear, Brandon [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Gough, Jonathan D. [Department of Chemistry, Lehman College, CUNY, Bronx, NY 10468 (United States); Newton, Joseph R. [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Kavic, Michael [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States)

    2016-03-15

    The first station of the Long Wavelength Array was used to study PSR B0031-07 with simultaneous observations at 38 and 74 MHz. We found that 158 (0.35%) of the observed pulses at 38 MHz and 221 (0.49%) of the observed pulses at 74 MHz qualified as giant pulses (GPs) in a total of 12 hr of observations. GPs are defined as having flux densities of a factor of ≥90 times that of an average pulse (AP) at 38 MHz and ≥80 times that of an AP at 74 MHz. The cumulative distribution of pulse strength follows a power law, with an index of −4.2 at 38 MHz and −4.9 at 74 MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure (DM) value which resulted in the largest signal to noise for dedispersed pulses was DM = 10.9 pc cm{sup −3}. No other transient pulses were detected in the data in the wide DM range from 1 to 5000 pc cm{sup −3}. There were 12 GPs detected within the same period from both 38 and 74 MHz, meaning that the majority of them are not generated in a wide band.

  17. A novel digital pulse processing architecture for nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Moline, Yoann; Thevenin, Mathieu; Corre, Gwenole [CEA, LIST - Laboratoire Capteurs et Architectures electroniques, F-91191 Gif-sur-Yvette, (France); Paindavoine, Michel [CNRS, Universite de Bourgogne - Laboratoire d' Etude de l' Apprentissage et du Developpement, 21000 DIJON, (France)

    2015-07-01

    the need of performance to operate online and not allow scaling with the increase in the number of measurement channel. That is why an innovative DPP architecture is proposed in this paper. This architecture is able to overcome dead-time while being programmable and is flexible with the number of measurement channel. Proposed architecture is based on an innovative execution model for pulse processing applications which can be summarized as follow. The signal is not composed of pulses only, consequently, pulses processing does not have to operate on the entire signal. Therefore, the first step of our proposal is pulse extraction by the use of dedicated components named pulse extractors. The triggering step can be achieved after the analog-to-digital conversion without any signal shaping or filtering stages. Pileup detection and accurate pulse time stamping are done at this stage. Any application downstream this step can work on adaptive variable-sized array of samples simplifying pulse processing methods. Then, once the data flow is broken, it is possible to distribute pulses on Functional Units (FUs) which perform processing. As the date of each pulse is known, they can be processed individually out-of-order to provide the results. To manage the pulses distribution, a scheduler and an interconnection network are used. pulses are distributed on the first FU which is not busy without congesting the interconnection network. For this reason, the process duration does not result anymore in dead-time if there are enough FUs. FUs are designed to be standalone and to comprises at least a programmable general purpose processor (ARM, Microblaze) allowing the implementation of complex algorithms without any modification of the hardware. An acquisition chain is composed of a succession of algorithms which lead to organize our FUs as a software macro-pipeline, A simple approach consists in assigning one algorithm per FU. Consequently, the global latency becomes the worst latency

  18. A novel digital pulse processing architecture for nuclear instrumentation

    International Nuclear Information System (INIS)

    Moline, Yoann; Thevenin, Mathieu; Corre, Gwenole; Paindavoine, Michel

    2015-01-01

    the need of performance to operate online and not allow scaling with the increase in the number of measurement channel. That is why an innovative DPP architecture is proposed in this paper. This architecture is able to overcome dead-time while being programmable and is flexible with the number of measurement channel. Proposed architecture is based on an innovative execution model for pulse processing applications which can be summarized as follow. The signal is not composed of pulses only, consequently, pulses processing does not have to operate on the entire signal. Therefore, the first step of our proposal is pulse extraction by the use of dedicated components named pulse extractors. The triggering step can be achieved after the analog-to-digital conversion without any signal shaping or filtering stages. Pileup detection and accurate pulse time stamping are done at this stage. Any application downstream this step can work on adaptive variable-sized array of samples simplifying pulse processing methods. Then, once the data flow is broken, it is possible to distribute pulses on Functional Units (FUs) which perform processing. As the date of each pulse is known, they can be processed individually out-of-order to provide the results. To manage the pulses distribution, a scheduler and an interconnection network are used. pulses are distributed on the first FU which is not busy without congesting the interconnection network. For this reason, the process duration does not result anymore in dead-time if there are enough FUs. FUs are designed to be standalone and to comprises at least a programmable general purpose processor (ARM, Microblaze) allowing the implementation of complex algorithms without any modification of the hardware. An acquisition chain is composed of a succession of algorithms which lead to organize our FUs as a software macro-pipeline, A simple approach consists in assigning one algorithm per FU. Consequently, the global latency becomes the worst latency

  19. Final height and intrauterine growth retardation.

    Science.gov (United States)

    Tauber, Maïthé

    2017-06-01

    Approximately 10% of small for gestational age (SGA) children maintain a small body size throughout childhood and often into adult life with a decreased pubertal spurt. Growth hormone (GH) therapy increases short-term growth in a dose-dependent manner and adult height had now been well documented. Shorter children might benefit from a higher dose at start (50μg/kg/day). The response to GH treatment was similar for both preterm and term short SGA groups and the effect of GH treatment on adult height showed a wide variation in growth response. As a whole, mean adult height is higher than -2 SDS in 60% of patients and 70% reached an adult height in their target height with better results with higher doses and combined GnRH analog therapy in those who were short at onset of puberty. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Realtime aspects of pulse-to-pulse modulation

    International Nuclear Information System (INIS)

    Steiner, R.; Riedel, C.; Roesch, W.

    1992-01-01

    The pulse-to-pulse modulation of the SIS-ESR control system is described. Fast response to operator interaction and to changes in process conditions is emphasized as well as the essential part played by the timing system in pulse-to-pulse modulation. (author)

  1. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Abu-samha, M.; Madsen, L. B.

    2011-01-01

    We solve the three-dimensional time-dependent Schroedinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration.

  2. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  3. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    Directory of Open Access Journals (Sweden)

    Aspasia Efthimiadou

    2014-01-01

    Full Text Available The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.

  4. Study and realisation of a programmable generator of pulse sequences, for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lambert, Daniel

    1974-01-01

    After having recalled the operation of pulse-based nuclear magnetic resonance and the use of pulse sequences in NMR-based measurements, and outlined the need for a pulse sequence generator, the author reports the design and realisation of such a device. He describes its general organisation with its base sequence, base clock, sequence start, duration, displays, data transfers, data processing, and signal distribution. He presents the chosen technology (ECL logics), the sequence base set, time bases, multiplexers, comparison sets, the distribution set, the sequence programming, the sampling and output set. He reports tests and the use of the so-designed generator [fr

  5. Measurement of angular distribution of neutron flux for the 6 MeV race-track microtron based pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India)

    2010-09-15

    The 6 MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-{gamma} target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in {gamma}-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  6. Experimental Testing of a Van De Graaff Generator as an Electromagnetic Pulse Generator

    Science.gov (United States)

    2016-07-01

    EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR THESIS...protection in the United States AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR

  7. On the height scale of magnetic fields above sunspots derived from RATAN-600 observations

    International Nuclear Information System (INIS)

    Akhmedov, Sh.B.; Gelfreikh, G.B.; Fuerstenberg, F.; Hildebrandt, J.; Krueger, A.

    1983-01-01

    Model calculations of the S-component are compared with observations of the RATAN-600 telescope at five discrete microwave frequencies referring to active region McMath No. 15974 on May 1, 1979. The spectral variations of source diameter, flux density, and degree of polarization are used to derive the height scale of the magnetic field in accordance with a magnetic dipole distribution under the assumption of advanced temperature and electron density distributions according to most recent EUV observations. (orig.)

  8. Magnetohydrodynamic Electromagnetic Pulse (MHD-EMP) Interaction with Power Transmission and Distribution Systems

    National Research Council Canada - National Science Library

    Tesche, F. M; Barnes, P. R; Meliopoulos, A. P

    1992-01-01

    .... This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP , is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm...

  9. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  10. Time profiles and pulse structure of bright, long gamma-ray bursts using BATSE TTS data

    International Nuclear Information System (INIS)

    Lee, A.; Bloom, E.; Scargle, J.

    1996-04-01

    The time profiles of many gamma-ray bursts observed by BATSE consist of distinct pulses, which offer the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse-shape parameters. This pulse analysis has previously been performed on some bright, long bursts using binned data, and on some short bursts using BATSE Time-Tagged Event (TTE) data. The BATSE Time- to-Spill (TTS) burst data records the times required to accumulate a fixed number of photons, giving variable time resolution. The spill times recorded in the TTS data behave as a gamma distribution. We have developed an interactive pulse-fitting program using the pulse model of Norris et al. and a maximum-likelihood fitting algorithm to the gamma distribution of the spill times. We then used this program to analyze a number of bright, long bursts for which TTS data is available. We present statistical information on the attributes of pulses comprising these bursts

  11. Big and tall: Does a height premium dwarf an obesity penalty in the labor market?

    Science.gov (United States)

    Lee, Wang-Sheng

    2017-11-01

    Previous studies have shown that both height and weight are associated with wages. However, some gaps in our understanding of the relationship between body size and wages remain. For example, given a height premium and an obesity penalty, due to forces working in opposite directions, the current literature is unable to provide clear answers to questions such as whether a tall obese woman or a short healthy weight woman would earn a higher wage premium. Using Australian data and iso-contour wage curves derived from a semi-parametric wage regression model, this paper illustrates the complex nature of the relationship between height, weight and wages and how the nature of these differences depends on gender and age. As adult height is fixed, a key focus of the paper is illustrating for various height ranges whether there are any wage benefits in the labor market to increasing or decreasing one's weight. For individuals aged 25-54 as a whole, I find that there are strong effects of weight reduction at lower ends of the height distribution for females (between 1.50-1.70m) but not for males (men (>1.85m), a wage premium is found for being overweight. For relatively taller women (>1.72m), no penalty for being overweight is discernible. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. DIFFUSION OF THE PULSED ELECTROMAGNETIC FIELD INTO THE MULTI-LAYER CORE OF INDUCTOR AT PULSED DEVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr T. Chemerys

    2008-02-01

    Full Text Available  The problem of the pulsed magnetic field distribution in the cross section of the inductor core at the induction accelerator of electron beam is under consideration in this paper. Owing to multi-layer structure of the core package it has the magnetic and electric anisotropy with different speed of the field diffusion along the sheets of magnetic and across the sheets. At the pulse duration less than one microsecond the essential non-uniformity of the field along both axes of the core cross section can be found. This effect reduces the efficiency of the ferromagnetic material using with corresponding loss of the accelerator efficiency. The main conclusion of the paper consists of the necessity to check the field diffusion characteristics in the process of inductor design to be sure that the pulsed field is able to fill the cross section of the core during the pulse switching. The magnetic characteristics of the anisotropic core have been investigated in the paper by one-dimensional and two-dimensional simulation in the quasi-stationary approximation using the traditional equation of the field diffusion.

  13. Challenges in Defining Tsunami Wave Height

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  14. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height

    OpenAIRE

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-01-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin?) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean d...

  15. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    Energy Technology Data Exchange (ETDEWEB)

    Howansky, A; Peng, B; Lubinsky, A; Zhao, W [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) on an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of

  16. Prediction of Canopy Heights over a Large Region Using Heterogeneous Lidar Datasets: Efficacy and Challenges

    Directory of Open Access Journals (Sweden)

    Ranjith Gopalakrishnan

    2015-08-01

    Full Text Available Generating accurate and unbiased wall-to-wall canopy height maps from airborne lidar data for large regions is useful to forest scientists and natural resource managers. However, mapping large areas often involves using lidar data from different projects, with varying acquisition parameters. In this work, we address the important question of whether one can accurately model canopy heights over large areas of the Southeastern US using a very heterogeneous dataset of small-footprint, discrete-return airborne lidar data (with 76 separate lidar projects. A unique aspect of this effort is the use of nationally uniform and extensive field data (~1800 forested plots from the Forest Inventory and Analysis (FIA program of the US Forest Service. Preliminary results are quite promising: Over all lidar projects, we observe a good correlation between the 85th percentile of lidar heights and field-measured height (r = 0.85. We construct a linear regression model to predict subplot-level dominant tree heights from distributional lidar metrics (R2 = 0.74, RMSE = 3.0 m, n = 1755. We also identify and quantify the importance of several factors (like heterogeneity of vegetation, point density, the predominance of hardwoods or softwoods, the average height of the forest stand, slope of the plot, and average scan angle of lidar acquisition that influence the efficacy of predicting canopy heights from lidar data. For example, a subset of plots (coefficient of variation of vegetation heights <0.2 significantly reduces the RMSE of our model from 3.0–2.4 m (~20% reduction. We conclude that when all these elements are factored into consideration, combining data from disparate lidar projects does not preclude robust estimation of canopy heights.

  17. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  18. Modelling of the Hypothalamic-Pituitary-Adrenal Axis Perturbations by Externally Induced Cholesterol Pulses of Finite Duration and with Asymmetrically Distributed Concentration Profile

    Science.gov (United States)

    Stanojević, A.; Marković, V. M.; Čupić, Ž.; Vukojević, V.; Kolar-Anić, L.

    2017-12-01

    A model was developed that can be used to study the effect of gradual cholesterol intake by food on the HPA axis dynamics. Namely, well defined oscillatory dynamics of vital neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis has proven to be necessary for maintaining regular basal physiology and formulating appropriate stress response to various types of perturbations. Cholesterol, as a precursor of all steroid HPA axis hormones, can alter the dynamics of HPA axis. To analyse its particular influence on the HPA axis dynamics we used stoichiometric model of HPA axis activity, and simulate cholesterol perturbations in the form of finite duration pulses, with asymmetrically distributed concentration profile. Our numerical simulations showed that there is a complex, nonlinear dependence between the HPA axis responsiveness and different forms of applied cholesterol concentration pulses, indicating the significance of kinetic modelling, and dynamical systems theory for the understanding of large-scale self-regulatory, and homeostatic processes within this neuroendocrine system.

  19. Effect of firing conditions & release height on terminal performance of submunitions and conditions for optimum height of release

    Directory of Open Access Journals (Sweden)

    L.K. Gite

    2017-06-01

    Full Text Available Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters like forward throw, remaining velocity, impact angle and flight time. In this paper, the effects of initial firing conditions and height of release on terminal performance of submunitions discussed in detail. For different height of release, the relation between range and forward throw is also established & validated for a number of firing altitude and rocket configurations.

  20. A programmable Gaussian random pulse generator for automated performance measurements

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1989-01-01

    This paper describes a versatile random signal generator which produces logic pulses with a Gaussian distribution for the pulse spacing. The average rate at the pulse generator output can be software-programmed, which makes it useful in performing automated measurements of dead time and CPU time performance of data acquisition systems and modules over a wide range of data rates. Hardware and software components are described and data on the input-output characteristics and the statistical properties of the pulse generator are given. Typical applications are discussed together with advantages over using radioactive test sources. Results obtained from an automated performance run on a VAX 11/785 data acquisition system are presented. (orig.)