WorldWideScience

Sample records for pulse generator frequency

  1. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  2. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  3. Practical system for the generation of pulsed quantum frequency combs.

    Science.gov (United States)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  4. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  5. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  6. Frequency notching applicable to CMOS implementation of WLAN compatible IR-UWB pulse generators

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Jiang, Hao

    2012-01-01

    Due to overlapping frequency bands, IEEE 802.11a WLAN and Ultra Wide-Band systems potentially suffer from mutual interference problems. This paper proposes a method for inserting frequency notches into the IR-UWB power spectrum to ensure compatibility with WLAN systems. In contrast to conventional...... approaches where complicated waveform equations are used, the proposed method uses a dual-pulse frequency notching approach to achieve frequency suppression in selected bands. The proposed method offers a solution that is generically applicable to UWB pulse generators using different pulse waveforms...

  7. Gyromagnetic nonlinear transmission line generator of high voltage pulses modulated at 4 GHz frequency with 1000 Hz pulse repetition rate

    International Nuclear Information System (INIS)

    Ulmasculov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N

    2017-01-01

    Results of testing of a generator based on a solid-state drive and the parallel gyromagnetic nonlinear transmission lines with external bias are presented. Stable rf-modulated high-voltage nanosecond pulses were shaped in each of the four channels in 1 s packets with 1000 Hz repetition frequencies. Pulse amplitude reaches -175 kV, at a modulation depth of rf-oscillations to 50 % and the effective frequency ∼4 GHz. (paper)

  8. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  9. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  10. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  11. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    International Nuclear Information System (INIS)

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-01-01

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength λ=8.5 μm suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length Nλ. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users' experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 μm have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up

  12. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  13. Frequency up-conversion and spectral breaking of a high power microwave pulse propagation in a self-generated plasma

    International Nuclear Information System (INIS)

    Kuo, S.P.; Ren, A.

    1993-01-01

    The main concern of the propagation of high power microwave pulse is the energy loss of the pulse before reaching the destination. The loss is caused by self-generated plasma. There are two processes which are responsible for the energy loss (so called tail erosion). They are collisional damping and cutoff reflection. In very high power region, the cutoff reflection is much more severe than the collisional damping. A frequency up-conversion process may help to avoid the cutoff reflection of powerful electromagnetic pulse propagating in a self-generated plasma. Both chamber experiments and numerical simulation are performed. When the field amplitude only slightly exceeds the breakdown threshold field of the background gas, the result shows that the carrier frequency ω of the pulse shifts upward during the growth of local plasma frequency ωpe 2 . Thus, the self-generated plasma remains underdense to the pulse. However, the spectrum of the pulse starts to break up into two major peaks when the amplitude of the pulse is further increased. The frequency of one of the peaks is lower than the original carrier frequency and that of the other peak is higher than the original carrier frequency. These phenomena are observed both experimentally and numerically. The frequency down shift result is believed to be caused by damping mechanisms. Good agreement between the experimental results and the numerical simulation is obtained

  14. Songbirds use pulse tone register in two voices to generate low-frequency sound

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Cooper, Brenton G.; Larsen, Ole Næsbye

    2007-01-01

    , the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse...... generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously...

  15. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  16. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    Science.gov (United States)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  17. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  18. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    Science.gov (United States)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  19. PULSE SYNTHESIZING GENERATOR

    Science.gov (United States)

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  20. Frequency of pacemaker malfunction associated with monopolar electrosurgery during pulse generator replacement or upgrade surgery.

    Science.gov (United States)

    Lin, Yun; Melby, Daniel P; Krishnan, Balaji; Adabag, Selcuk; Tholakanahalli, Venkatakrishna; Li, Jian-Ming

    2017-08-01

    The aim of this study is to investigate the frequency of electrosurgery-related pacemaker malfunction. A retrospective study was conducted to investigate electrosurgery-related pacemaker malfunction in consecutive patients undergoing pulse generator (PG) replacement or upgrade from two large hospitals in Minneapolis, MN between January 2011 and January 2014. The occurrence of this pacemaker malfunction was then studied by using MAUDE database for all four major device vendors. A total of 1398 consecutive patients from 2 large tertiary referral centers in Minneapolis, MN undergoing PG replacement or upgrade surgery were retrospectively studied. Four patients (0.3% of all patients), all with pacemakers from St Jude Medical (2.8%, 4 of 142) had output failure or inappropriately low pacing rate below 30 bpm during electrosurgery, despite being programmed in an asynchronous mode. During the same period, 1174 cases of pacemaker malfunctions were reported on the same models in MAUDE database, 37 of which (3.2%) were electrosurgery-related. Twenty-four cases (65%) had output failure or inappropriate low pacing rate. The distribution of adverse events was loss of pacing (59.5%), reversion to backup pacing (32.4%), inappropriate low pacing rate (5.4%), and ventricular fibrillation (2.7%). The majority of these (78.5%) occurred during PG replacement at ERI or upgrade surgery. No electrosurgery-related malfunction was found in MAUDE database on 862 pacemaker malfunction cases during the same period from other vendors. Electrosurgery during PG replacement or upgrade surgery can trigger output failure or inappropriate low pacing rate in certain models of modern pacemakers. Cautions should be taken for pacemaker-dependent patients.

  1. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  2. Pulsed current generator

    International Nuclear Information System (INIS)

    Semenov, V.D.; Furman, Eh.G.

    1974-01-01

    The paper describes a current pulse generator with an auxiliary network consisting of a choke and diode in series designed to enlarge the range of pulse frequency control. One output of the network is connected to an adjustable valve cathode and via antoher auxiliary condenser to the point where the cathode of the main key unit is joined to the start of the magnetizing coil. A second output is connected to the anode of another adjustable valve and via another auxiliary condenser to the point where the anode of the other main key unit is joined to the end of the magnetizing coil. The generator can be used to excite the electromagnets of charged particle accelerators or in devices designed to produce magnetic fields. (author)

  3. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  4. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  5. Powerful nanosecond pulse train generator

    International Nuclear Information System (INIS)

    Isakov, I.F.; Logachev, E.I.; Opekunov, M.S.; Pechenkin, S.A.; Remnev, G.E.; Usov, Yu.P.

    1987-01-01

    A generator permitting to shape on the load pulsed with the repetition frequency of 10 3 -10 6 Hz and more is described. The amplitude of shaped voltage pulses is up to 150 kV at pulse duration equal to 50 ns. The generator comprises connected in-series with the load two shaping and two transmission lines realized on the base of the KVI-300 low-ohmic cable. The shaping lines are supplied from two independently connected pulse voltage generators for obtaining time interval between pulses > 10 -6 s; they may be also supplied from one generator for obtaining time interval -6 s. At the expense of reducing losses in the discharge circuit the amplitude of the second pulse grows with increase of time interval between pulses up to 300 ns, further on the curve flat-topping exists. The described generator is used in high-current accelerators, in which the primary negative pulse results in generation of explosive-emission plasma, and the second positive pulse provides ion beam shaping including ions of heavy metal used for production of a potential electrode. The generator multipulse mode is used for successive ion acceleration in the transport system

  6. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  7. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  8. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    International Nuclear Information System (INIS)

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-01-01

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  9. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  10. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides

    Science.gov (United States)

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-01

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  11. Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control

    International Nuclear Information System (INIS)

    Baroch, P; Potocky, S; Saito, N

    2011-01-01

    Presented work focuses on the investigation and characterization of plasma discharges generated in water by newly developed bipolar pulse power supply. The main aim of our work was to solve and overcome problems with intensive arc discharge transition when the discharge is ignited and maintained by a low output impedance pulse power supply. For this purpose a novel type of bipolar pulse power supply was developed and tested. It was found that two distinguished stable modes of discharges generated in the water can be realized. Effects of water conductivity, pulse frequency and initial water temperature on the discharge properties were investigated. Optical emission spectroscopy was employed to study plasma parameters of the discharge and the correlation between the data obtained from the optical emission spectroscopy and the chemical species measured in the water was carried out.

  12. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  13. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  14. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  15. Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2012-08-15

    Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

  16. Frequency modulation of semiconductor disk laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  17. Digital substraction angiography (DSA) in a universal radiodiagnostic room with a novel multi-pulse high-frequency generator

    International Nuclear Information System (INIS)

    Ellegast, H.H.; Kloss, R.; Mayr, H.; Ammann, E.; Kuehnel, W.; Siemens A.G., Erlangen

    1985-01-01

    Application of digital subtraction angiography in a universal radiodiagnostic room can be implemented rapidly and reliably. The number of examinations could be increased without negative effects to conventional operations in this room. At optimum radiation hygiene and high-degree operational safety, the multipulse high-frequency generator with its DSA parameter automatic system guarantees a reproducibly good image quality equalling that of a special DSA facility. In this way, the examination room constitutes an economic solution for small-sized hospitals without any special angiography room, too. (orig.) [de

  18. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  19. Assembly delay line pulse generators

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  20. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W...... of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2....... The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected....

  1. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  2. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  3. The Vulcan pulse generating system

    International Nuclear Information System (INIS)

    Danson, C.N.; Edwards, C.B.; Wyatt, R.W.W.

    1985-01-01

    During the past two years several changes have been made to the front end system on the VULCAN pulse generating system. These changes give greater flexibility and a wider choice of operating conditions. This note gives an updated description of the system capabilities, and gives users of the facility an idea of the various pulse combinations that are available. (author)

  4. An Ultra Low Noise Self-Starting Pulse Generator

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz.......We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz....

  5. Part I. Generation of tailored radio-frequency pulses for NMR. Part II. Deuterium NMR studies of oriented DNA, and its interaction with water

    International Nuclear Information System (INIS)

    Brandes, R.

    1988-01-01

    A novel method for generating tailored radio-frequency pulses for use in NMR is presented. For this purpose, an inexpensive device based on analog audio filters was built. As an application, the superior selectivity of this method is shown by comparing it with a soft pulse excitation. The theoretical response of the magnetization to these tailored rf pulses is also calculated. Deuterium NMR line shapes of 2 H-labeled purine bases in solid, uniaxially oriented Li- and Na-DNA have been obtained. The spectral densities of motion were determined for the Li-DNA samples to test a model for uncorrelated, restricted base motion. For the first time, a 2 H spectrum is reported for 2 H labeled DNA in the liquid crystalline state. A procedure is outlined to separate the base motion from the DNA axis motion. In addition to the studies of DNA itself, the interaction of water (D 2 O) with samples of uniaxially oriented Na- and Li-DNA have been studied by high resolution 2 H NMR

  6. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  7. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  8. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  9. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  10. Universal pulse generator with a nanosecond fast responce

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Nguen Kuang Min'.

    1977-01-01

    A pulse generator with nanosecond action is described; it is mainly designed for testing and tuning fast electronic devices operating with pulses in the N/1/M standard. The generator is principally based on integral circuits and has wide functional potentialities: it includes a main-pulse channel, a delayed-pulse channel, and an overall output, which sums up these pulses; in addition to the logic pulse outputs it includes a linear pulse output with an amplitude smoothly regulated in the range from 0.3 to 6.0 V; it can operate in the self-oscillation mode, in the pulse series formation mode, in the starting mode, and in the single-start mode. Two generators are placed in a double-width CAMAC cell. The generation frequency is from 3 Hz to 75 MHz, pulse duration from 8 to 320 ns, and pulse front duration 2 ns

  11. Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air

    Science.gov (United States)

    Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri

    2018-04-01

    In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.

  12. High-voltage pulse generator

    International Nuclear Information System (INIS)

    Roche, M.

    1991-01-01

    This generator is composed of elementary impulsion generators connected in series. Each of them have -storage capacities, and switchs. The closure of switch causes an accumulator discharge. -control means of these switches are electrically independent and forecast to switch on by pulses in the same time -loading means of storage means have a very low enough electric dependence not to induce a loss of power at the exit of the generator. Applications to particle accelerators [fr

  13. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  14. Dual-pulse frequency compounded superharmonic imaging.

    Science.gov (United States)

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.

  15. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  16. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  17. Terahertz pulse generation from metal nanoparticle ink

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  18. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  19. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  20. Sync transmission method and apparatus for high frequency pulsed neutron spectral analysis systems

    International Nuclear Information System (INIS)

    Culver, R.B.

    1981-01-01

    An improved synchronization system was developed for high-frequency pulsed-neutron gamma ray well-logging which extends the upper limit of the usable source pulsing frequency. A clock is used to pulse the neutron generator at a given frequency and a scaler generates scaled-down sync pulses at a lower frequency. Radiation from the formations surrounding the borehole is detected and electrical signals related functionally to the radiation are generated. The scaled-down sync pulses and electrical signals are transmitted to the earth's surface via a seven conductor well logging cable. (DN)

  1. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  2. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  3. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  4. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  5. Nanosecond bipolar pulse generators for bioelectrics.

    Science.gov (United States)

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Custom pulse generator for RPC testing

    International Nuclear Information System (INIS)

    Gil, A.; Castro, E.; Diaz, J.; Fonte, P.; Garzon, J.A.; Montes, N.; Zapata, M.

    2009-01-01

    We present a pulse generator able to generate pulses statistically similar to the ones produced by RPC cells. The device generates up to four arrays of fast and narrow random-like pulses. Polarity, maximum amplitudes, widths and pulse rate in each channel may be modified independently in order to simulate different RPC setups and environments. This portable and cost-effective pulse generator is a versatile instrument for testing FE-Electronics and different real detector features related with the signal propagation inside the detector. It has been developed in the framework of the ESTRELA project of the HADES experiment at GSI.

  7. Pulse amplitude and frequency effects in a pulsed packed column

    International Nuclear Information System (INIS)

    Russell, S.H.

    1954-04-01

    A study has been made of the effect on the efficiency and capacity of applying pulses of varying amplitude and frequency to a packed column. In the efficiency studies, the maximum efficiency was obtained with a pulse having an amplitude of 3/8'' and a frequency of 140 cycles per minute. Under these conditions, the column was about five times as efficient as a simple packed column. Two general types of results were obtained in the capacity studies. Under certain conditions, the capacity increased over that of a simple packed column, but under others, it decreased. Some of the factors causing this were investigated but the fundamental reasons were not determined due to a lack of personnel for the necessary experiments. (author)

  8. Pulse amplitude and frequency effects in a pulsed packed column

    Energy Technology Data Exchange (ETDEWEB)

    Russell, S H

    1954-04-15

    A study has been made of the effect on the efficiency and capacity of applying pulses of varying amplitude and frequency to a packed column. In the efficiency studies, the maximum efficiency was obtained with a pulse having an amplitude of 3/8'' and a frequency of 140 cycles per minute. Under these conditions, the column was about five times as efficient as a simple packed column. Two general types of results were obtained in the capacity studies. Under certain conditions, the capacity increased over that of a simple packed column, but under others, it decreased. Some of the factors causing this were investigated but the fundamental reasons were not determined due to a lack of personnel for the necessary experiments. (author)

  9. Fast pulse beam generation systems for electron accelerators

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1977-01-01

    The fast pulse beam generation system to supply the SLAC storage ring, SPEAR, by the two one nanosecond bunch electron beam pulses is described. Generation of these pulses is accomplished with a combination of a fast pulsed grided gun and a synchronized transverse beam chopper. Fast gun based on spherical cathode-grid assembly has output current up to 2As. Fast pulse amplifier system can handle trains of short pulses with repetition rates up to 40 MHz during the 1.6 μs normal accelerating time. Chopping deflector system consists of a resonant coaxial line with the deflecting plates. The resonator frequency is 39.667 MHz. A schematic diagram of the resonant system is shown. The fast beam pickup system has a one hundred picosecond rise time overrall. Fast beam generation and chopper systems permit to generate almost any short or single bunch beam profile needed for experiments

  10. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  11. Pulsed neutron generator for use with pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10 10 neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output

  12. Apparatus for generating nonlinear pulse patterns

    Science.gov (United States)

    Nakamura, N.M.I.

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  13. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  14. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  15. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  16. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  17. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  18. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review.

    Science.gov (United States)

    Vaz, Marco Aurélio; Frasson, Viviane Bortoluzzi

    2018-04-01

    To compare the effectiveness of low-frequency pulsed current versus kilohertz-frequency alternating current in terms of evoked force, discomfort level, current intensity, and muscle fatigability; to discuss the physiological mechanisms of each neuromuscular electrical stimulation type; and to determine if kilohertz-frequency alternating current is better than low-frequency pulsed current for clinical treatment. Articles were obtained from PubMed, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, and SPORTSDiscus databases using the terms Russian current or kilohertz current or alternating current or pulsed current or Aussie current and torque or discomfort or fatigue or current intensity, and through citation tracking up to July 2017. Two independent reviewers selected studies comparing the use of the 2 neuromuscular electrical stimulation currents. Studies describing maximal current intensity tolerated and the main effects of the 2 different current types on discomfort, muscle force, and fatigability were independently reviewed. Data were systematized according to (1) methodology; (2) electrical current characteristics; and (3) outcomes on discomfort level, evoked force, current intensity, and muscle fatigability. The search revealed 15 articles comparing the 2 current types. Kilohertz-frequency alternated current generated equal or less force, similar discomfort, similar current intensity for maximal tolerated neuromuscular electrical stimulation, and more fatigue compared with low-frequency pulsed current. Similar submaximal levels of evoked force revealed higher discomfort and current intensity for kilohertz-frequency alternated current compared with low-frequency pulsed current. Available evidence does not support the idea that kilohertz-frequency alternated current is better than low-frequency pulsed current for strength training and rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  19. Pulse power applications of flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources

  20. High reliability low jitter pulse generator

    Science.gov (United States)

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  1. Current pulse generator of an induction accelerator electromagnet

    International Nuclear Information System (INIS)

    Baginskij, B.A.; Makarevich, V.N.; Shtejn, M.M.

    1987-01-01

    Thyristor generator forming in betatron electromagnet coil sinusoidal and quasisinusoidal current unipolar pulses, the field being deforced at the beginning of acceleration cycle, and with the pulse flat top in the cycle end, is described. The current amplitude is controlled by pulse-phase method. The current pulse time shift permitted to decrease the loss rate in the accumulating capacitor. The generator is used in systems with 1-10 ms pulse duration, electromagnet magnetic field maximal energy - 45-450 J, the voltage amplitude in the coil 960-1500 V and amplitude of the current passing the coil 100-500 A, the repetition frequency being 50-200 Hz. In particular, the generator is used to supply betatrons designed for defectoscopy in nonstationary conditions, the accelerated electron energy being 4, 6, 8 and 15 MeV

  2. Stochastic modeling of the hypothalamic pulse generator activity.

    Science.gov (United States)

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  3. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J; Biswal, S; Mourou, G [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  4. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  5. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  6. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  7. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  8. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  9. A versatile programmable CAMAC random pulse generator

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1991-01-01

    A new technique for generating linear pulses which can be random in both amplitude and time is described. With this technique, desired values for both pulse amplitude and spacing are set for the individual pulses by the software on a pulse-by-pulse basis. The versatility offered by this software programming allows a wide range of distributions to be obtained; with the user having close control on the distribution parameters. A number of such distributions may also be combined into a single output pulse stream. An implementation in a CAMAC module is presented. Both hardware and software aspects are described and typical performance results for amplitude and time distributions of the uniform and Gaussian type are given. Implications of using the pulser in a typical data acquisition environment on both the data acquisition and the pulser performance are considered. Typical applications are discussed together with some of the limitations. (orig.)

  10. A system for long pulse REB generation

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya; Hasegawa, Mitsuru; Narihara, Kazumichi; Tomita, Yukihiro; Kubo, Shin; Kobata, Tadasuke; Mohri, Akihiro.

    1987-02-01

    A high voltage pulse generator system producing intense relativistic electron beams (REB) (1.5 μs pulse width, 30 kA peak current, 1 MeV energy) was developed to the use of REB ring formation. The system consists of a Marx generator, a transmission line with plastics-water hybrid insulators and a magnetically insulated transmission line connected with a cathode. The system has been well operated more than twenty thousands shots without troubles. (author)

  11. Macroscopic effects in attosecond pulse generation

    International Nuclear Information System (INIS)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L'Huillier, A; Hauri, C P; Lopez-Martens, R

    2008-01-01

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium

  12. Macroscopic effects in attosecond pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Hauri, C P; Lopez-Martens, R [Laboratoire d' Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees (ENSTA)-Ecole Polytechnique CNRS UMR 7639, 91761 Palaiseau (France)], E-mail: anne.lhuillier@fysik.lth.se

    2008-02-15

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium.

  13. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  14. Design and construction of a precision pulse generator

    International Nuclear Information System (INIS)

    Robles G, J.C.

    1977-06-01

    The design and consruction of a pulse generator is considered to simulate in due form and magnitude the pulses obtained in semiconductor detectors of nuclear radiation in a frequency interval to allow its use in testing and calibration of spectrometric systems. A parameters analysis which define the pulse form through the various types of semiconductor detectors was realized with the object to obtain the most important characteristics of the pulse transmitted by the generator. These are the characteristics: Variable frequency from 0.0124 to 120 Hz, variable amplitude from 0 to 1 V, Integral lineality +- 0.25%, amplitude stability -0.031%/degC exponential going up time and variable according to steps of 6.5, 25, 60, 130 and 275 nsec., decay time constant 200 or 400μsec. with output ending at 100Ω. According to the results, the stability is less than the established in the design. In order to improve it, an analysis was made in function with the temperature of the components which integrate the circuit that produces the pulse. This analysis allow us to define the specifications related to the components which integrate the circuit that produces the pulse. This analysis allow us to define the specifications related to the components. Finally a compilation was made of the most common applications of the generator in nuclear instrumentation. (author)

  15. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  16. Precise generator of stability amplitude pulses

    International Nuclear Information System (INIS)

    Zhuk, N.A.; Zdesenko, Yu.G.; Kuts, V.N.

    1989-01-01

    A generator of stability amplitude pulses, designed for stabilization of a low-noise semiconducting spectrometer, used in investigations of 76 Ge2β-decay, is described. The generator contains a permanent-voltage source, a storage element and a switch based on a Hg relay. A thermostatic source provides a relative voltage instability less than ±5x10 -6 per 80h (standard deviation). The Hg relay is placed into a separate thermostat. The relative instability of output generator pulse amplitude does not exceed ±1.5x10 -5 per 24h

  17. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  18. Programmable pulse series generator for NMR relaxometer

    International Nuclear Information System (INIS)

    Stolbunov, R.N.; Chichikov, S.A.; Lundin, A.G.

    2005-01-01

    Paper describes a pulse series generator for NMR relaxometer. The operation mode is set on the basis of the PC program by the PCI bus in the internal memory. The design is based on two Altera Company MAX7000S and Cyclone family microcircuits using the Qartus II 4.0 software. The basic parameters are as follows: pulse minimum length - 50 ns, time resolution - 10 ns, pulse maximum number - 1024, number of controlled output channels - 8. The designed device as a part of the NMR hardware-software system enables to record, to process and to store the experiment results in the form of electronic document [ru

  19. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  20. High-voltage variable-duration pulse generator

    International Nuclear Information System (INIS)

    Anisimova, T.E.; Akkuratov, E.V.; Gromovenko, V.M.; Nikonov, Yu.P.; Malinin, A.N.

    1988-01-01

    A high-voltage generator is described that allows pulse duration tau to be varied within wide limits and has high efficiency (at least 50% for tau = 0.5 tau/sub max/) and an amplitude of up to 5 kV, a repetition frequency of up to 200 Hz,and a variable duration of 0-30 μsec. The generator is used in the controller of an electron accelerator

  1. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  2. A 6.4 kV pulse generator with transformations

    International Nuclear Information System (INIS)

    Bastein, W.L.

    1989-01-01

    The possibility has been investigated to perform a pulse generator which generates pulse for the cathode of the injector of the NIKHEF electron accelerator, which generates pulses of 6.4 kV with sides of 100 ns a duration of 2 to 50 microseconds and a frequency of 2500 Hz. The voltage ripple should be smaller than frequency part and one for the high-frequency part, it is possible to generate a pulse which fulfills the requirements with regard to the sides. However installing an tuning of circuits in order to obtain a sufficiently flat pulse will cost much time. Moreover the losses are such high that it deserves recommendation to investigate the possibility ot generate the pulse with a number of MOSFets connected in series. (author). 8 refs.; 8 figs.; 14 photos; 1 tab

  3. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  4. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  5. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  6. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  7. 4-channel time delayed pulse generator

    International Nuclear Information System (INIS)

    Wetzel, L.F.S.; Rossi, J.O.; Del Bosco, E.

    1987-02-01

    It is described the project of a 4-channel delayed pulse generator employed to trigger the plasma centrifuge experiment of the Laboratorio Associado de Plasmas. The circuit delivers pulses with amplitude of 15V, full width at half maximum of 50μs and rise time of 0.7μs. The maximum time delay is 100ms. There are two channels with a fine adjustment of 0-1ms. The system can be manually or automatically driven. (author) [pt

  8. Pulse tube coolers for Meteosat third generation

    International Nuclear Information System (INIS)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-01

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing

  9. Voltage-pulse generator for electron gun

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    A voltage-pulse generator with combined capacitive and inductive storage devices of an electron gun is described. The current interrupter is a hydrogen thyratron (TGI1-100/8, TGI1-500/16, or TGI1-1000/25) installed in a short magnetic lens. The current interruption time of the thyratrons is 100-300 nsec. When the capacitive storage device is charged to 1 kV, a voltage pulse with an amplitude of 25 kV is obtained at the load

  10. Generation and characterization of atto second pulses

    International Nuclear Information System (INIS)

    Mairesse, Y.

    2005-07-01

    Atto-second pulse trains in the extreme ultraviolet range can be produced by high-order harmonic generation, by focusing an intense femtosecond pulse in a rare gas jet. In this thesis, we present a temporal characterization of this radiation on the femtosecond and atto-second timescales. By transposing a spectral interferometry technique commonly used in the infrared range (SPIDER), we make a complete single-shot characterization of the temporal profile of individual harmonics, on the femtosecond timescale. In a second part, we study experimentally the atto-second structure of the harmonic radiation, and demonstrate a temporal drift in the emission: the lowest harmonics are emitted before the highest ones. This chirp, which is directly related to the electron dynamics in the generation process, imposes a lower limit to the duration that can be achieved by increasing the spectral range. We show how generating conditions can be optimized in order to enhance the synchronization in the emission, and how atto-second pulses can be re-compressed. Last, we propose a new technique for the complete characterization of arbitrary atto-second pulses: FROGCRAB. This method would allow simultaneous measurements of the femtosecond and atto-second structures of the radiation, and thus a complete knowledge of the atto-second light source in the perspective of applications. (author)

  11. 1 MV low-induction pulse generator

    International Nuclear Information System (INIS)

    Koba, G.I.; Koba, Yu.V.; Slivkov, I.N.; Sukhov, A.D.; Tarumov, Eh.Z.

    1980-01-01

    A high-voltage pulse generator is described. The generator Uses the Arkadiev-Marx circuit at 1 MV voltage and 12 kJ energy; the inductance of the discharge circuit is 1.3 μN. Low inductance of the generator has been obtained due to the use of low-inductance capacitors and employment of bifilar buses with oil barrier insulation. To provide reliable generator triggering, an ignition circuit has been developed with a resistive coupling between generator steps, based on controlled three-electrode sparkgaps with a distorted field. The generator switching time is slightly dependent on pressure and constitutes 200-300 ns. The generator efficiency is 83%

  12. Origin of unipolar half-cycle pulses generation in inversion symmetric media

    International Nuclear Information System (INIS)

    Song, Xiaohong; Hao, Zhizhen; Yan, Ming; Wu, Miaoli; Yang, Weifeng

    2015-01-01

    We investigate the physical mechanism of unipolar half-cycle pulses generation in resonant two-level media with inversion symmetry. The unipolar half-cycle pulse contains substantial nonzero dc or zero-frequency component in its Fourier spectrum of the electric field. Here the origin of zero-frequency component generation in inversion symmetric media driven by symmetric electric field is identified. We show that in the regime of extreme nonlinear optics, i.e. the Rabi frequency is comparable to or even larger than the carrier frequency of the laser pulse, the time evolution of the polarization can display obvious up-down asymmetric structure under certain conditions, which manifests in the zero-frequency component generation, and is responsible for the formation of unipolar half-cycle pulses in the course of pulse propagation. (letter)

  13. PNG-300 a nanosecond pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.C.; Devkin, B.V.

    1985-01-01

    The design and operation of a nanosecond-pulse neutron generator is reported. It was constructed for the measurement of prompt neutron and gamma radiation in experimental studies of fast neutron reactions by time of flight techniques. The acceleration voltage is 300 kV and the total resolution of the generator-neutron spectrometer system is 2 ns. The ion-optical system, the vacuum system and the control of the neutron generator is described in detail. The equipment was used for prompt neutron and gamma radiation induced in construction materials. (R.P.)

  14. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    Science.gov (United States)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  15. High-voltage pulsed generator for dynamic fragmentation of rocks.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  16. High-voltage pulsed generator for dynamic fragmentation of rocks

    Science.gov (United States)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  17. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  18. Frequency chirp of harmonic and attosecond pulses

    International Nuclear Information System (INIS)

    Varju, K.; Johansson, P; L'Huillier, A.L.; Mairesse, Y.; Salieres, P.

    2005-01-01

    Full text: We have explored in detail the first- and second-order variations of the atomic phase as a function of the laser intensity and harmonic order. This unravels the similitudes and differences existing between the chirp of individual harmonic pulses and the chirp of the attosecond pulses. We show that the two techniques XFROG and RABITT used to characterize the two chirps (respectively) converge to give the same information, namely the values of the mixed partial derivatives of the atomic phase. This underlines the common physical origin of all these phenomena and provides a unified frame for their description and understanding. Ref. 1 (author)

  19. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  20. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  1. Ultrafast pulse generation in photoconductive switches

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Dykaar, D. R.

    1996-01-01

    Carrier and field dynamics in photoconductive switches are investigated by electrooptic sampling and voltage-dependent reflectivity measurements. We show that the nonuniform field distribution due to the two-dimensional nature of coplanar photoconductive switches, in combination with the large di...... difference in the mobilities of holes and electrons, determine the pronounced polarity dependence. Our measurements indicate that the pulse generation mechanism is a rapid voltage breakdown across the photoconductive switch and not a local field breakdown...

  2. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  3. Design of a ns-pulse generator with microwave studio

    NARCIS (Netherlands)

    Huiskamp, T.; Voeten, S.J.; Pemen, A.J.M.

    2012-01-01

    In this paper we present a design approach of a nanosecond pulse generator by using CST MICROWAVE STUDIO R . Through detailed simulation we arrive at a design for a fast rise-time variable pulse duration pulse generator which is able to produce 1–10 nanosecond pulses with tens of kilovolt amplitude.

  4. Control of the electrode metal transfer by means of the welding current pulse generator

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  5. Generation of sub-100-fs Stokes pulses upon SRS in a barium nitrate crystal

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2010-01-01

    72-fs pulses are generated at the first Stokes component frequency upon stimulated Raman scattering in a barium nitrate crystal for the radiation of the Ti 3+ :Al 2 O 3 laser with the pulse duration of 50 fs. The energy efficiency of conversion is 20%. The barium nitrate crystal was optically pumped by two consecutive orthogonally polarised chirped pulses with the following time compression of the Stokes radiation pulse. (nonlinear optical phenomena)

  6. S100 lathe bed pulse generator applied to pulsed nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cernicchiaro, G.R.C.; Rudge, M.G.; Albuquerque, M.P.

    1989-01-01

    The project and construction of four channel pulse generator in the S100 standard plate and its control software for microcomputer are described. The microcomputer has total control on the pulse generator, which has seven programable parameters, defining the position of four pulses and the width for the three first ones. This pulse generator is controlled by a software developed in c language, and is used in pulsed nuclear magnetic resonance experiences. (M.C.K.) [pt

  7. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    Science.gov (United States)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  8. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    International Nuclear Information System (INIS)

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-01-01

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. We also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time

  9. Improved Nyquist Pulses Produced By A Filter with Senary Piece-wise Polynomial Frequency Characteristic

    Directory of Open Access Journals (Sweden)

    BALAN, A. L.

    2014-05-01

    Full Text Available A novel family of inter-symbol interference (ISI free pulses generated by improved Nyquist filters with a frequency characteristic composed of six parabolic pieces is proposed. We studied the performance of the new pulses in terms of the ISI error probability when the impulse response is sampled with a timing offset. To illustrate the achieved improvement, the new pulses are compared with other performing pulses that were reported in the literature. Simulation results show that comparable or enhanced ISI performance can be obtained at reasonable complexity.

  10. 21 CFR 870.3600 - External pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External pacemaker pulse generator. 870.3600... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a... intrinsic pacing sytem until a permanent pacemaker can be implanted, or to control irregular heartbeats in...

  11. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...

  12. Pulse generation and compression using an asymmetrical porous ...

    Indian Academy of Sciences (India)

    2016-11-03

    Nov 3, 2016 ... DOI 10.1007/s12043-016-1301-z. Pulse generation ... Silicon nanophotonics; porous silicon waveguide; pulse generation and compression. PACS Nos 42.70. ..... a switching single- and double-pulse generation tech- nique is ...

  13. A pulse generator of arbitrary shaped waveform

    International Nuclear Information System (INIS)

    Jiang Jiayou; Chen Zhihao

    2011-01-01

    The three bump magnets in the booster extraction system of SSRF are driven by a signal generator with an external trigger. The signal generator must have three independent and controllable outputs, and both amplitude and make-and-break should be controllable, with current state information being readable. In this paper, we describe a signal generator based on FPGA and DAC boards. It makes use of characteristics of both FPGA flex programmable and rich reconfigurable IO resources. The system has a 16-bit DAC with four outputs, using Matlab to write a GUI based on RS232 protocol for control. It was simulated in Modelsim and tested on board. The results indicate that the system is well designed and all the requirements are met. The arbitrary waveform is writable, and the pulse width and period can be controlled. (authors)

  14. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  15. Saturation of subjective reward magnitude as a function of current and pulse frequency.

    Science.gov (United States)

    Simmons, J M; Gallistel, C R

    1994-02-01

    In rats with electrodes in the medial forebrain bundle, the upper portion of the function relating the experienced magnitude of the reward to pulse frequency was determined at currents ranging from 100 to 1,000 microA. The pulse frequency required to produce an asymptotic level of reward was inversely proportional to current except at the lowest currents and highest pulse frequencies. At a given current, the subjective reward magnitude functions decelerated to an asymptote over an interval in which the pulse frequency doubled or tripled. The asymptotic level of reward was approximately constant for currents between 200 and 1,000 microA but declined substantially at currents at or below 100 microA and pulse frequencies at or above 250 to 400 pulses per second. The results are consistent with the hypothesis that the magnitude of the experienced reward depends only on the number of action potentials generated by the train of pulses in the bundle of reward-relevant axons.

  16. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  17. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    International Nuclear Information System (INIS)

    Xi-Peng, Zhang; Hong-Bing, Jiang; Shan-Chun, Tang; Qi-Huang, Gong

    2009-01-01

    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800 nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction. (fundamental areas of phenomenology (including applications))

  18. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  19. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  20. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  1. Experimental Testing of a Van De Graaff Generator as an Electromagnetic Pulse Generator

    Science.gov (United States)

    2016-07-01

    EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR THESIS...protection in the United States AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR

  2. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  3. A 350 KV nanosecond pulse voltage generator with adjustable pulsed-width

    International Nuclear Information System (INIS)

    Wang, X.; Wang, M.; Chen, Y.Q.; Zeng, L.G.; Han, M.

    2002-01-01

    This paper presents a 350 kV nanosecond pulse voltage generator (NPVG). The voltage pulsed-width can be adjusted from 30 to 160 ns. The generator consists of: Marx generator, pulsed forming line (PFL), main switch and matched impedance. The output voltage of Marx generator is over than nU c (n- the stage number of Marx generator, U c -the charging voltage of capacitor). When the pulse forming line is terminated with an impedance that is over than the characteristic impedance of PFL, the higher voltage pulse was provided for the load

  4. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  5. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  6. Twenty-channel high-voltage pulse generators

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Kashirin, A.P.

    1980-01-01

    A 20-channel high-voltage pulse generator operating with a mismatched load is described. The generator contains shaping lines 20 m long made of coaxial cable, a trigatron-type discharged, and isolating plates. The channel characteristic impedance is 50 Ohm. The maximum pulse amplitude is up to 15 kV on a high-resistance load and 7.5 kV on a matched one. The pulse duration is 100 ns at a pulse rise time of 12 ns, the delay introduced by the generator is 200 +-2.5 ns. Provision is made in the control circuit for compensation of the shaped pulse and separation of a pulse reflected from the load. The reflected pulse shape and amplitude characterize load parameters. Generator tests proved its high operational reliability (after 10 5 operations no significant changes in generator performances have been observed). The generator is intended for filmless data output from spark chambers

  7. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Czech Academy of Sciences Publication Activity Database

    Ruma, Ruma.; Lukeš, Petr; Aoki, N.; Doležalová, Eva; Hosseini, S.H.R.; Sakugawa, T.; Akiyama, H.

    2013-01-01

    Roč. 46, č. 12 (2013), s. 125202-125202 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GD104/09/H080 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : discharge in water * pulsed power * pulse frequency * hydrogen peroxide * organic dye * bacteria * generator * liquids Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.521, year: 2013 http://dx.doi.org/10.1088/0022-3727/46/12/125202

  8. Spectrally modified chirped pulse generation of sustained shock waves

    International Nuclear Information System (INIS)

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  9. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  10. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  11. Preliminary design of a 100 Hz, 350 kV short pulse generator

    International Nuclear Information System (INIS)

    Rohwein, G.J.; Buttram, M.T.

    1977-06-01

    This report describes a 350 kV pulser designed to generate 100 ns square pulses with 300 joules total energy at a pulse repetition frequency of 100 per second. This design incorporates a transformer charged helical coaxial pulse forming line. The considerations leading to this design are presented together with results from prototype experiments. The pulser which is presently in the construction and testing phase is described in detail. The pulser will be used for electron beam acceleration

  12. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    International Nuclear Information System (INIS)

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence

  13. Electrodialytic soil remediation enhanced by low frequency pulse current

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.; Mortensen, John

    2013-01-01

    The effect of low frequency pulse current on decreasing the polarization and energy consumption during the process of electrodialytic soil remediation was investigated in the present work. The results indicated that the transportation of cations through the cation exchange membrane was the rate...

  14. Generation of a frequency comb and applications thereof

    Science.gov (United States)

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  15. High frequency pulse anodising of magnetron sputtered Al–Zr and Al–Ti Coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Bordo, Kirill; Engberg, Sara

    2016-01-01

    High frequency pulse anodising of Al–Zr and Al–Ti coatings is studied as a surface finishing technique and compared to conventional decorative DC anodising. The Al–Zr and Al–Ti coatings were deposited using DC magnetron sputtering and were heat treated after deposition to generate a multiphase mi...

  16. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates....... The lightwave synthesized frequency sweeper is a suitable generator yielding fast pulse repetition rates and stable equidistant frequency steps. Theoretical range resolution profiles of modulated lidars are presented....

  17. Generation of ozone by Ns-width pulsed power

    International Nuclear Information System (INIS)

    Shimomura, Naoyuki; Wakimoto, Masaya; Shinke, Yosuke; Nagata, Masayoshi; Namihira, Takao; Akiyama, Hidenori

    2002-01-01

    The demand of ozone will be increasing for wholesome and environment-conscious sterilizations. The generation of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge principally. The breakdown in reactor often limits the efficient generation. Therefore, the pulse shape should be controlled for dimension of the reactor. It is clear that a pulse shortening is one of effective approaches. Pulsed power voltage with ns-width applies for ozone generation. The effects, on concentration and efficiency of generation, of pulse shape, repetition rate of pulse, flow rate of oxygen gas, and dimension and configuration of reactor, are discussed. The dimension and configuration of the reactor are optimized for the pulse width

  18. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  19. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  20. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  1. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    2014-07-11

    Jul 11, 2014 ... Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes ...

  2. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  3. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  4. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.

    1980-01-01

    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  5. Soliton generation from a multi-frequency optical signal

    International Nuclear Information System (INIS)

    Panoiu, N-C; Mel'nikov, I V; Mihalache, D; Etrich, C; Lederer, F

    2002-01-01

    We present a comprehensive analysis of the generation of optical solitons in a monomode optical fibre from a superposition of soliton-like optical pulses at different frequencies. It is demonstrated that the structure of the emerging optical field is highly dependent on the number of input channels, the inter-channel frequency separation, the time shift between the pulses belonging to adjacent channels, and the polarization of the pulses. Also, it is found that there exists a critical frequency separation above which wavelength-division multiplexing with solitons is feasible and that this critical frequency increases with the number of transmission channels. Moreover, for the case in which only two channels are considered, we analyse the propagation of the emerging two-soliton solutions in the presence of several perturbations important for optical networks: bandwidth-limited amplification, nonlinear amplification, and amplitude and phase modulation. Finally, the influence of the birefringence of the fibre on the structure of the emerging optical field is discussed. (review article)

  6. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  7. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...

  8. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    Science.gov (United States)

    2015-01-02

    SUBTITLE Phase and Frequency Control of Laser Arrays for Pulse Synthesis 875 North Randolph Street Arlington VA 22203-1768 5a. CONTRACT NUMBER...Hachtel, M. Gillette, J. Barkeloo, E. Clements, S. Bali , B. Unks, N. Proite, D. Yavuz, P. Martin, J. Thorn, and D. Steck, Am. J. Phys., 82, 805 (2014...Opt. 37, 4871-4875 (1998). 17. J. Kangara, A. Hachtel, M. Gillette, J. Barkeloo, E. Clements, S. Bali , B. Unks, N. Proite, D. Yavuz, P. Martin, J

  9. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  10. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  11. Design for a FET based 1 MHz, 10 kV pulse generator

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1995-08-01

    A pulse generator consisting of a coaxial cable and a high voltage modulator, incorporating two stacks of Field-Effect Transistor (FET) switches operating in ''push-pull'' mode, has been designed and built. The modulator generates a continuous, unipolar, pulse train at a fundamental frequency of 1 MHz and a magnitude of 10 kV. The rise and fall times of the pulses are less than 39 ns. The two stacks each utilize 14 FETS, which are individually rated at 1 kV. The design incorporates a low-loss coaxial cable on which pulses are stored. Extensive PSpice simulations have been carried out to evaluate various design options. Subsequent measurements on the prototype pulse generator confirm the PSpice predictions. This system is applicable for the kicker system at TRIUMF

  12. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  13. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    Science.gov (United States)

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  14. Fast Hopping Frequency Generation in Digital CMOS

    CERN Document Server

    Farazian, Mohammad; Gudem, Prasad S

    2013-01-01

    Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio.   Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power s...

  15. A kilohertz picosecond x-ray pulse generation scheme

    International Nuclear Information System (INIS)

    Guo, W.; Borland, M.; Harkay, K. C.; Wang, C.-X.; Yang, B.

    2007-01-01

    The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1 utilde2 kHz, which can be used for pump-probe experiments

  16. Fast SMES for generation of high power pulses

    International Nuclear Information System (INIS)

    Juengst, K.P.; Salbert, H.

    1996-01-01

    A technique for generation of high power pulses based on a fast SMES has been developed and a model of a power modulator for linear accelerators was built. The basic function of the modulator that generates 2 ms long, approximately 1 MW power pulses at a repetition rate of 10 Hz is described in this paper. A modular construction of the SMES that consists of up to six coils has been chosen to meet the demands of several applications in high energy physics and energy distribution. The rate of change of magnetic field achieved during ramping of the magnet was more than 60 T/s without a quench. The magnet was designed with respect to the high AC losses during repetitive ramping of the SMES. The suitability of mixed matrix superconductors instead of more expensive net frequency wires for this kind of AC stress was investigated. The applied mixed matrix Cu/CuNi/NbTi wire and the construction of a single coil is described

  17. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    Science.gov (United States)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  18. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  19. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation

    Science.gov (United States)

    2012-02-29

    picosecond green light from a frequency-doubled hybrid cryogenic Yb:YAG laser system,” 36 UFO /HFSW 2009 (Arcachon, France, Aug. 31-Sept. 4, 2009...High Fields Short Wavelength,” ( UFO VII – HFSW XIII), Arcachon, France, August 31 – September 4, 2009 (invited). 25) Kyung-Han Hong, Juliet Gopinath

  20. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  1. Generation of atto-second pulses in atoms and molecules

    International Nuclear Information System (INIS)

    Haessler, St.

    2009-12-01

    When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually re-collide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent X-UV light and the macroscopic gas medium then becomes a source of X-UV light pulses of atto-second (1 as equals 10 -18 s) duration. This is the natural time-scale of electron dynamics in atoms and molecules. The largest part of this thesis deals with experiments where molecules are the harmonic generation medium and the re-colliding electron wave packet acts as a 'self-probe'. In several experiments, we demonstrate the potential of this scheme to observe or image ultra-fast intra-molecular electronic and nuclear dynamics. In particular, we have performed the first phase measurements of the high harmonic emission from aligned molecules and we have extracted the recombination dipole matrix element. This observable contains signatures of quantum interference between the continuum and bound parts of the total electronic wavefunction. It is shown how this quantum interference can be utilized to shape the atto-second light emission from the molecules. In a second part of this thesis, we use the well characterized coherent X-UV light emitted by rare gas atoms to photo-ionize molecules. Measuring the ejected photoelectron wave packet then allows to extract information on the photoionization process itself, and possibly about the initial bound and final continuum states of the electron. The last chapter of this manuscript describes studies of high harmonic and atto-second light pulse generation in a different medium: ablation plasmas. (author)

  2. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  3. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  4. Linear transformer driver for pulse generation with fifth harmonic

    Science.gov (United States)

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  5. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  6. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  7. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

  8. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    Science.gov (United States)

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  9. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  10. High-explosive-driven delay line pulse generator

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1982-01-01

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies

  11. DynPeak: An Algorithm for Pulse Detection and Frequency Analysis in Hormonal Time Series

    Science.gov (United States)

    Vidal, Alexandre; Zhang, Qinghua; Médigue, Claire; Fabre, Stéphane; Clément, Frédérique

    2012-01-01

    The endocrine control of the reproductive function is often studied from the analysis of luteinizing hormone (LH) pulsatile secretion by the pituitary gland. Whereas measurements in the cavernous sinus cumulate anatomical and technical difficulties, LH levels can be easily assessed from jugular blood. However, plasma levels result from a convolution process due to clearance effects when LH enters the general circulation. Simultaneous measurements comparing LH levels in the cavernous sinus and jugular blood have revealed clear differences in the pulse shape, the amplitude and the baseline. Besides, experimental sampling occurs at a relatively low frequency (typically every 10 min) with respect to LH highest frequency release (one pulse per hour) and the resulting LH measurements are noised by both experimental and assay errors. As a result, the pattern of plasma LH may be not so clearly pulsatile. Yet, reliable information on the InterPulse Intervals (IPI) is a prerequisite to study precisely the steroid feedback exerted on the pituitary level. Hence, there is a real need for robust IPI detection algorithms. In this article, we present an algorithm for the monitoring of LH pulse frequency, basing ourselves both on the available endocrinological knowledge on LH pulse (shape and duration with respect to the frequency regime) and synthetic LH data generated by a simple model. We make use of synthetic data to make clear some basic notions underlying our algorithmic choices. We focus on explaining how the process of sampling affects drastically the original pattern of secretion, and especially the amplitude of the detectable pulses. We then describe the algorithm in details and perform it on different sets of both synthetic and experimental LH time series. We further comment on how to diagnose possible outliers from the series of IPIs which is the main output of the algorithm. PMID:22802933

  12. Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Wu, Yun; Ren, Chunsheng

    2018-03-01

    A magnetic field, with the direction parallel to the electric field, is applied to the repetitively unipolar positive nanosecond pulsed dielectric barrier discharge. The effect of the parallel magnetic field on the plasma generated between two parallel-plate electrodes in quiescent air is experimentally studied under different pulse repetition frequencies (PRFs). It is indicated that only the current pulse in the rising front of the voltage pulse occurs, and the value of the current is increased by the parallel magnetic field under different PRFs. The discharge uniformity is improved with the decrease in PRF, and this phenomenon is also observed in the discharge with the parallel magnetic field. By using the line-ratio technique of optical emission spectra, it is found that the average electron density and electron temperature under the considered PRFs are both increased when the parallel magnetic field is applied. The incremental degree of average electron density is basically the same under the considered PRFs, while the incremental degree of electron temperature under the higher-PRFs is larger than that under the lower-PRFs. All the above phenomena are explained by the effect of parallel magnetic field on diffusion and dissipation of electrons.

  13. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  14. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    Science.gov (United States)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  15. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang, E-mail: zhaoliang0526@163.com; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China)

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  16. Third-harmonic generation in isotropic media by focused pulses

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Band, Y.B.

    2004-01-01

    For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case

  17. DPOAE generation dependence on primary frequencies ratio

    Science.gov (United States)

    Botti, Teresa; Sisto, Renata; Moleti, Arturo; D'Amato, Luisa; Sanjust, Filippo

    2015-12-01

    Two different mechanisms are responsible for the DPOAE generation. The nonlinear distortion wave-fixed mechanism generates the DPOAE Zero-Latency (ZL) component, as a backward traveling wave from the "overlap" region. Linear reflection of the forward DP wave (IDP) generates the DPOAE Long-Latency (LL) component through a place-fixed mechanism. ZL and LL components add up vectorially to generate the DPOAE recorded in the ear canal. The 2f1 - f2 and 2f2 - f1 DPOAE intensity depends on the stimulus level and on the primary frequency ratio r = f2/f1, where f1 and f2 are the primary stimuli frequencies. Here we study the behavior of the ZL and LL DPOAE components as a function of r by both numerical and laboratory experiments, measuring DPAOEs with an equal primary levels (L1 = L2) paradigm in the range [35, 75] dB SPL, with r ranging in [1.1, 1.45]. Numerical simulations of a nonlocal nonlinear model have been performed without cochlear roughness, to suppress the linear reflection mechanism. In this way the model solution at the base represents the DPOAE ZL component, and the solution at the corresponding DPOAE tonotopic place corresponds to the IDP. This technique has been not effectual to study the 2f2 - f1 DPOAE, as a consequence of its generation mechanism. While the 2f1 - f2 generation place is known to be the tonotopic place x(f2), the 2f2 - f1 DPOAE one has to be assumed basal to its corresponding reflection place. That is because ZL components generated in x(f2) cannot significantly pass through their resonant place. Moreover increasing the ratio r, 2f2 - f1 ZL and LL generation place approach each other, because the overlap region of primary tones decreases. Consequently, the distinction between the two places becomes complicated. DPOAEs have been measured in six young normal-hearing subjects. DPOAE ZL and LL components have been separated by a time-frequency filtering method based on the wavelet transform 1. due to their different phase gradient delay

  18. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    Science.gov (United States)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  19. Generation and amplification of nanaosecond duration multiline hf laser pulses

    International Nuclear Information System (INIS)

    Getzinger, R.L.; Ware, K.D.; Carpenter, J.P.

    1976-01-01

    High-power, fast-rising pulses of hydrogen fluoride laser energy suitable for laser-fusion target interaction experiments can in principle be generated by directing an electro-optically shuttered oscillator pulse through one or more electron-beam driven amplifiers. A three-stage HF master oscillator-power amplifier (MOPA) configuration was constructed and tested using SF 6 -C 2 H 6 in which an E-O generated 4-ns-FWHM pulse was amplified in an electron-beam-excited third stage and subsequently isolated with a Brewster angle splitter. Independent experiments in which a 100-ns-FWHM pilot pulse interacted with the power amplifier demonstrated for the first time complete extraction of the available laser energy. These two results provide strong evidence that with upgrading to H 2 -F 2 , it should be possible to obtain nanosecond duration pulses with power levels sufficient for meaningful laser fusion target coupling experiments

  20. Elemental analysis using temporal gating of a pulsed neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sudeep

    2018-02-20

    Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing device outputs data that is indicative of elemental composition of the sample based upon the binned pulses.

  1. Generation of a single-cycle optical pulse

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.; Harris, S.E.

    2005-01-01

    We make use of coherent control of four-wave mixing to the ultraviolet as a diagnostic and describe the generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length, and where the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series. Specifically, using seven sidebands, we report the generation of a train of single-cycle optical pulses with a pulse width of 1.6 fs, a pulse separation of 11 fs, and a peak power of 1 MW

  2. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  3. Role of PTHrP(1-34) Pulse Frequency Versus Pulse Duration to Enhance Mesenchymal Stromal Cell Chondrogenesis.

    Science.gov (United States)

    Fischer, Jennifer; Ortel, Marlen; Hagmann, Sebastien; Hoeflich, Andreas; Richter, Wiltrud

    2016-12-01

    Generation of phenotypically stable, articular chondrocytes from mesenchymal stromal cells (MSCs) is still an unaccomplished task, with formation of abundant, hyaline extracellular matrix, and avoidance of hypertrophy being prime challenges. We recently demonstrated that parathyroid hormone-related protein (PTHrP) is a promising factor to direct chondrogenesis of MSCs towards an articular phenotype, since intermittent PTHrP application stimulated cartilage matrix production and reduced undesired hypertrophy. We here investigated the role of frequency, pulse duration, total exposure time, and underlying mechanisms in order to unlock the full potential of PTHrP actions. Human MSC subjected to in vitro chondrogenesis for six weeks were exposed to 2.5 nM PTHrP(1-34) pulses from days 7 to 42. Application frequency was increased from three times weekly (3 × 6 h/week) to daily maintaining either the duration of individual pulses (6 h/day) or total exposure time (18 h/week; 2.6 h/day). Daily PTHrP treatment significantly increased extracellular matrix deposition regardless of pulse duration and suppressed alkaline-phosphatase activity by 87%. High total exposure time significantly reduced cell proliferation at day 14. Pulse duration was critically important to significantly reduce IHH expression, but irrelevant for PTHrP-induced suppression of the hypertrophic markers MEF2C and IBSP. COL10A1, RUNX2, and MMP13 expression remained unaltered. Decreased IGFBP-2, -3, and -6 expression suggested modulated IGF-I availability in PTHrP groups, while drop of SOX9 protein levels during the PTHrP-pulse may delay chondroblast formation and hypertrophy. Overall, the significantly optimized timing of PTHrP-pulses demonstrated a vast potential to enhance chondrogenesis of MSC and suppress hypertrophy possibly via superior balancing of IGF- and SOX9-related mechanisms. J. Cell. Physiol. 231: 2673-2681, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    International Nuclear Information System (INIS)

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  5. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  6. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  7. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Jens [Pressure Wave Systems GmbH, Häberlstr. 8, 80337 Munich (Germany)

    2014-01-29

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  8. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    International Nuclear Information System (INIS)

    Li Gang; Zhang Zhongshuai; Chi Qian; Liu Linmao

    2012-01-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 10 8 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  9. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Zhang Zhongshuai [Northeast Normal University, Changchun 130024 (China); Chi Qian [Guang Hua College of Chang Chun University, Changchun 130117 (China); Liu Linmao, E-mail: ll888@nenu.edu.cn [Northeast Normal University, Changchun 130024 (China)

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 Multiplication-Sign 10{sup 8} n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 {mu}s. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  10. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  11. The nanosecond generator RG-1 with near-rectangular pulse

    International Nuclear Information System (INIS)

    Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.

    1996-01-01

    The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs

  12. A programmable Gaussian random pulse generator for automated performance measurements

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1989-01-01

    This paper describes a versatile random signal generator which produces logic pulses with a Gaussian distribution for the pulse spacing. The average rate at the pulse generator output can be software-programmed, which makes it useful in performing automated measurements of dead time and CPU time performance of data acquisition systems and modules over a wide range of data rates. Hardware and software components are described and data on the input-output characteristics and the statistical properties of the pulse generator are given. Typical applications are discussed together with advantages over using radioactive test sources. Results obtained from an automated performance run on a VAX 11/785 data acquisition system are presented. (orig.)

  13. The nanosecond generator RG-1 with near-rectangular pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bulan, V V; Grabovskij, E V; Gribov, A N; Luzhnov, V G [TRINITI, Troitsk (Russian Federation)

    1997-12-31

    The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs.

  14. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2017-01-01

    We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...... of the generated microwave waveforms is larger than 100 GHz, and it has wide bandwidth when changing the time delay of the adjacent taps and compactness, capability for integration with electronics and small power consumption are also its merits.......We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...

  15. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  16. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Science.gov (United States)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  17. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  18. Programmable pseudo-random detector-pulse-pattern generator

    International Nuclear Information System (INIS)

    Putten, R. van der; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1990-01-01

    This report discusses the design and realization of the digital part of the programmable pseudo-random detector pulse-pattern generator. For the design and realization use has been made of F-TTL and high speed special purpose ic's, in particular FAL's (15 ns). The design possibilities offered by the software for pro-gramming of the FAL's have been utilized as much as possible. In this way counters, registers and a state machine with extended control possibilities have been designed and an advanced 8 channel pulse generator has been developed which is controlled via the VME system bus. the generator possesses an internal clock oscillator of 16 MHZ. The moment when a pulse is generated can be adjusted with a step size of 250 ps. 2000 different periods (time windows) can be stored for generating a pattern. (author). 37 refs.; 6 figs

  19. Broadband and short (10-ps) pulse generation on Nova

    International Nuclear Information System (INIS)

    Perry, M.D.; Browning, D.; Bibeau, C.; Patterson, F.G.; Wilcox, R.; Henesian, M.

    1990-01-01

    The ability to produce high power broadband pulses for purposes of focal spot beam smoothing has recently become an important issue in inertial confinement fusion (ICF). As the first step toward the generation and propagation of such pulses on Nova, the authors have performed a series of experiments with 10-ps pulses. Aside from the inherently broad bandwidth, these short pulses have important applications in ICF experiments and x-ray laser research. The author's experimental results are discussed. The short pulses were produced by diffraction grating pulse compression of chirped pulses formed from self-phase modulation in a single-mode 10-m fused silica fiber. Use of such a short fiber produces a nonlinearly chirped spectrum of 0.74 nm. The central nearly linearly chirped 0.26 nm is selected by polarization discrimination and compressed using 1800-line/mm diffraction gratings to a nearly Gaussian pulse of 10 ps FWHM with an energy contrast ratio of 20:1. This 1-nJ pulse is injected into a Nova amplifier chain with selected amplifiers unfired

  20. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  1. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  2. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  3. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  4. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  5. Comparison of pulse characteristic of low frequency ultrasonic probes for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Suhairy Sani; Muhammad Pauzi Ismail

    2006-01-01

    Ultrasonic testing of concrete or large volume of composites usually is done in low frequency range. To obtain low frequency pulse, a low frequency pulser/receiver is used attached to a low frequency probe as transmitter/receiver. Concrete is highly attenuative and a high energy pulse is essential to ensure good penetration of test samples. High energy pulse can be obtained by producing low frequency ultrasonic waves.To achieve high penetration in concrete, a low frequency probe is fabricated with the centre frequency lying at around 100 kHz. The probe is fabricated with single crystal of 18 mm thickness without any backing material to obtain wider pulse and higher pulse power. Then, comparison of pulse characteristic is done between the fabricated probe and a commercially available probe to determine the quality of the probe fabricated. (Author)

  6. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    Science.gov (United States)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  7. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  8. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    Science.gov (United States)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  9. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  10. Subnanosecond-rise-time, low-impedance pulse generator

    International Nuclear Information System (INIS)

    Druce, R.; Vogtlin, G.

    1983-01-01

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform

  11. Subnanosecond-rise-time, low-impedance pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  12. Subnanosecond-rise-time, low-impedance pulse generator

    Science.gov (United States)

    Druce, R.; Vigtlin, G.

    1983-06-01

    A fast rise, low impedance pulse generator developed at the Lawrence Livermore National Laboratory is described. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  13. Generation of frequencies of megahertz order with ultrasound

    International Nuclear Information System (INIS)

    Abrego, J.; Siles, S.; Cruz, A.; Azorin, J.

    2004-01-01

    At the present time, to international scale they have been observing a series of interactions with the matter that have not been possible to explain until the moment. Some effects are the calls ''hot points'' whose development generates temperatures of the order of 5000 C, pressures of 500 atmospheres and superior gradients of temperature to the 600 C/s. Experimentally, with the help of spectrum analyzers, it has been possible to detect the production of frequencies of 23 GHz, starting from an ultrasonic pulse of 5 MHz. Also, by means of ultrasonic excitement achievement the decoloration of a solution of methylene blue, effect that alone it had been achieved with gamma radiation the one that is very well-known as ionizing. Another observed interesting aspect is the generation of an electric current with ultrasonic excitement in deionized water and two electrodes. (Author)

  14. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  15. Development of a 100 KV 10 a pulse generator on the basis of electron tubes for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Kaur, Mandeep; Barve, D.N.; Chakravarthy, D.P.

    2006-01-01

    The design of a high-voltage pulsing system on the basis of hard tube of hard tube for a plasma immersion ion implantation (PIII) facility is presented. A list of requirements, which have to be fulfilled by a high-voltage pulse generator to get best results and an optimum operation of the PIII system, is given. The requirement for the pulse generator can be fulfilled well using a pulse generator design, which employs a hard tube switch. The pulse generator design presented is optimized for PIII systems. The hard tube control can produce nearly rectangular pulses of any duration and repetition frequencies and is especially optimized for obtaining voltage rise times as short as possible. (author)

  16. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  17. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  18. Generation of nanosecond S band microwave pulses based on superradiance

    International Nuclear Information System (INIS)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M.

    2002-01-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  19. Generation of nanosecond S band microwave pulses based on superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M. [Russian Academy of Science, Institute of Applied Physics, Nizhny Novgorod (RU)] [and others

    2002-06-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  20. Calibration of an audio frequency noise generator

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1966-01-01

    a noise bandwidth Bn = π/2 × (3dB bandwidth). To apply this method to low audio frequencies, the noise bandwidth of the low Q parallel resonant circuit has been found, including the effects of both series and parallel damping. The method has been used to calibrate a General Radio 1390-B noise generator...... it is used for measurement purposes. The spectral density of a noise source may be found by measuring its rms output over a known noise bandwidth. Such a bandwidth may be provided by a passive filter using accurately known elements. For example, the parallel resonant circuit with purely parallel damping has...

  1. Two-wave generator of subnanosecond radiation pulses on an yttrium-aluminium garnet

    International Nuclear Information System (INIS)

    Babikov, Yu.I.; Ir, K.S.; Mironov, V.E.

    1988-01-01

    Great attention is paid to the electron accelerator based on the mechanism of electron accelerator in the field of plasma wave, excited by laser radiation. The laser system master generator based on serial LTIPC-8 laser is described. The system is intended for investigating the plasma excitation processes initiated by two-frequency laser radiation beats. Pulse duration is ≤1 ns at 3-4 pulse train. Radiation on 1.0615 and 1.0641 μm wave length is generated. 5 refs.; 3 figs

  2. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  3. CORRELATION OF FERMI PHOTONS WITH HIGH-FREQUENCY RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; Kondratiev, V. I.; McLaughlin, M. A.; Mickaliger, M.; Ransom, S. M.; Lyutikov, M.; Langston, G. I.

    2011-01-01

    To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at γ-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hr of simultaneous observations we obtained a sample of 2.1 x 10 4 GPs, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to ±40 minutes of observed γ-ray photons. The 95% upper limit for a γ-ray flux enhancement in pulsed emission phase window around all GPs is four times the average pulsed γ-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed γ-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.

  4. Pulsed corona generation using a diode-based pulsed power generator

    NARCIS (Netherlands)

    Pemen, A.J.M.; Grekhov, I.V.; Heesch, van E.J.M.; Yan, K.; Nair, S.A.; Korotkov, S.V.

    2003-01-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and

  5. Attosecond pulse trains generated using two color laser fields

    International Nuclear Information System (INIS)

    Mauritsson, J.; Louisiana State University, Baton Rouge, LA; Johnsson, P.; Gustafsson, E.; L'Hullier, A.; Schafer, K.J.; Gaarde, M.B.

    2006-01-01

    Complete test of publication follows. We present the generation of attosecond pulse trains from a superposition of an infrared (IR) laser field and its second harmonic. Our attosecond pulses are synthesized by selecting a number of synchronized harmonics generated in argon. By adding the second harmonic to the driving field the inversion symmetry of generation process is broken and both odd and even harmonics are generated. Consecutive half cycles in the two color field differ beyond the simple sign change that occurs in a one color field and have very different shapes and amplitudes. This sub-cycle structure of the field, which governs the generation of the attosecond pulses, depends strongly on the relative phase and intensity of the two fields, thereby providing additional control over the generation process. The generation of attosecond pulses is frequently described using the semi-classical three step model where an electron is: (1) ionized through tunneling ionization during one half cycle; (2) reaccelerated back towards the ion core by the next half cycle; where it (3) recombines with the ground-state releasing the access energy in a short burst of light. In the two color field the symmetry between the ionizing and reaccelerating field is broken, which leads to two possible scenarios: the electron can either be ionized during a strong half cycle and reaccelerated by a weaker field or vice versa. The periodicity is a full IR cycle in both cases and hence two trains of attosecond pulses are generated which are offset from each other. The generation efficiency, however, is very different for the two cases since it is determined mainly by the electric field strength at the time of tunneling and one of the trains will therefore dominate the other. We investigate experimentally both the spectral and temporal structure of the generated attosecond pulse trains as a function of the relative phase between the two driving fields. We find that for a wide range of

  6. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode

    NARCIS (Netherlands)

    Driessen, A.B.J.M.; Heesch, van E.J.M.; Huiskamp, T.; Beckers, F.J.C.M.; Pemen, A.J.M.

    2014-01-01

    In this paper, a compact circuit topology is presented for pulsed power generation with a semiconductor opening switch (SOS). Such circuits require the generation of a fast forward current through the diode, followed by a reverse current that activates the recovery process. In general, magnetic

  7. Digitally controlled twelve-pulse firing generator

    International Nuclear Information System (INIS)

    Berde, D.; Ferrara, A.A.

    1981-01-01

    Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control, which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface

  8. Negative feedback governs gonadotrope frequency-decoding of gonadotropin releasing hormone pulse-frequency.

    Directory of Open Access Journals (Sweden)

    Stefan Lim

    Full Text Available The synthesis of the gonadotropin subunits is directed by pulsatile gonadotropin-releasing hormone (GnRH from the hypothalamus, with the frequency of GnRH pulses governing the differential expression of the common alpha-subunit, luteinizing hormone beta-subunit (LHbeta and follicle-stimulating hormone beta-subunit (FSHbeta. Three mitogen-activated protein kinases, (MAPKs, ERK1/2, JNK and p38, contribute uniquely and combinatorially to the expression of each of these subunit genes. In this study, using both experimental and computational methods, we found that dual specificity phosphatase regulation of the activity of the three MAPKs through negative feedback is required, and forms the basis for decoding the frequency of pulsatile GnRH. A fourth MAPK, ERK5, was shown also to be activated by GnRH. ERK5 was found to stimulate FSHbeta promoter activity and to increase FSHbeta mRNA levels, as well as enhancing its preference for low GnRH pulse frequencies. The latter is achieved through boosting the ultrasensitive behavior of FSHbeta gene expression by increasing the number of MAPK dependencies, and through modulating the feedforward effects of JNK activation on the GnRH receptor (GnRH-R. Our findings contribute to understanding the role of changing GnRH pulse-frequency in controlling transcription of the pituitary gonadotropins, which comprises a crucial aspect in regulating reproduction. Pulsatile stimuli and oscillating signals are integral to many biological processes, and elucidation of the mechanisms through which the pulsatility is decoded explains how the same stimulant can lead to various outcomes in a single cell.

  9. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  10. Effect of High Frequency Pulsing on the Interfacial Structure of Anodised Aluminium-TiO2

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2015-01-01

    High frequency anodizing of friction stir processed Al-TiO2 surface composites was investigated. The effect of anodizing parameters on the structure and morphology of the anodic layer including the incorporation of the TiO2 particles into the anodic layer is studied. Anodizing process was carried...... out using a high frequency pulse and pulse reverse pulse technique at a fixed frequency in a sulfuric acid bath. The structure of the composites and the anodized layer was studied using scanning and transmission electron microscopy. The pulse reverse pulse anodizing technique, using a negative...

  11. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    International Nuclear Information System (INIS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-01-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ (3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the

  12. Generation of Phase-Stable Sub-Cycle Mid-Infrared Pulses from Filamentation in Nitrogen

    Directory of Open Access Journals (Sweden)

    Takao Fuji

    2013-02-01

    Full Text Available Sub-single-cycle pulses in the mid-infrared (MIR region were generated through a laser-induced filament. The fundamental (ω1 and second harmonic (ω2 output of a 30-fs Ti:sapphire amplifier were focused into nitrogen gas and produce phase-stable broadband MIR pulses (ω0 by using a four-wave mixing process (ω1 + ω1 - ω2 → ω0 through filamentation. The spectrum spread from 400 cm-1 to 5500 cm-1, which completely covered the MIR region. The low frequency components were detected by using an electro-optic sampling technique with a gaseous medium. The efficiency of the MIR pulse generation was very sensitive to the delay between the fundamental and second harmonic pulses. It was revealed that the delay dependence of the efficiency came from the interference between two opposite parametric processes, ω1 + ω1 - ω2 → ω0 and ω2 - ω1 - ω1 → ω0. The pulse duration was measured as 6.9 fs with cross-correlation frequency-resolved optical gating by using four-wave mixing in nitrogen. The carrier-envelope phase of the MIR pulse was passively stabilized. The instability was estimated as 154 mrad rms in 2.5 h.

  13. Effect of Pulse Width on Ozone Generation in Pulsed Streamer Discharges

    OpenAIRE

    Tamaribuchi, Hiroyuki; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; タマリブチ, ヒロユキ; オウ, トエン; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 溜渕, 浩之; 王, 斗艶; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2007-01-01

    Ozone has been used in treatment of drinking water andwaste water (e.g., deodorization, decolorization, anddisinfection). Though general ozonizers based on silentdischarge or barrier discharge have been used to supplyozone at many industrial situations, there is still someproblem, such as improvements of ozone concentrationand ozone yield.In this work, ozone was generated by pulsed powerdischarge in order to improve the characteristics of ozonegeneration. High electric field with short pulse ...

  14. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    Science.gov (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  15. NGI-9 pulsed neutron generator with a fluence to 1010 n/s

    International Nuclear Information System (INIS)

    Allakhverdov, A.Sh.; Ogarkin, V.I.; Silicheva, G.P.; Timofeev, Yu.I.

    1975-01-01

    A neutron pulse generator with 14 MeV energy used for the activation analysis, is described. Its functional diagram and the technical characteristics are presented. The studies of the generator that resulted in determination of the effect of the accelerating voltage amplitude, the delay in the ion source firing with respect to the pulse of the accelerating voltage, the amount of operating ion sources and the energy imparted to them on the neutron flux magnitude are conducted. It is confirmed by the studies that the neutron generator operating in the nominal regime makes it possible to obtain a neutron flux of 5x10 9 -10 10 neutr./s. The dependence of the neutron flux variation on the frequency of pulse sequence for various ion sources is shown

  16. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  17. Generator of pulses with the nanosecond duration and accurate amplitude using the digital control in the CAMAC standard

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Nguen Kuang Min'

    1980-01-01

    A generator of square-wave fine-amplitude nanosecond pulses is described. The generator is primarily intended for checking the performances of fast electronics analog-to-digital units with the help of a computer. In addition to digital control the pulse amplitude can be controlled manually or by the external voltage. Basic circuits of main generator assemblies: a triggering circuit, transistor key and digital-to-analog converter are given. Output pulses produced by the generator have the following parameters: the amplitude from - 0.15 to - 10 V (smooth or gradual, with a minimum step of 5 mV), the rising and decay pulse times approximately 2 ns, the maximum repetition frequency 10 kHz, the control linearity at a pulse duration of more than 50 ns 0.15%. A double-width CAMAC cell accomodates two generators

  18. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  19. Pulsed White Spectrum Neutron Generator for Explosive Detection

    International Nuclear Information System (INIS)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-01-01

    Successful explosive material detection in luggage and similar sized containers is a critical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designed and fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set of parallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80-120 kV. First experiments demonstrated ion source operation and successful beam pulsing

  20. Phase-locked high-order-harmonic and sub-100-as pulse generation from stretched molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin; Yang Guang

    2006-01-01

    High harmonic generation from diatomic molecules in a linearly polarized intense laser field is investigated and the emission time of the harmonics is discussed with the time-frequency analysis method. It is shown that high harmonic generation from molecules at equilibrium distance is similar to that from atoms. Only the harmonics in the cutoff are synchronized, i.e., well phase-locked, whereas the other harmonics are not phase-locked. For the molecule stretched well beyond its equilibrium distance, the harmonics exhibit distinct time-frequency characteristics. The harmonic spectrum can be extended to I p +8U p , where I p and U p are the ionization and ponderomotive potential, and the harmonics with energies below I p +3.17U p are not phase-locked and the harmonics with energies beyond I p +3.17U p are well phase-locked. Thus a large range of harmonics which are well phase-locked are produced, and a train of clean attosecond (as) pulses with a single 90-as pulse in each half optical cycle can be generated with a multicycle laser pulse. Using a few-cycle laser pulse, an isolated attosecond pulse with a duration of about 95 as is obtained

  1. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  2. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  3. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  4. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    Science.gov (United States)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  5. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  6. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  7. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  8. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  9. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  10. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  11. Utilization of a pulsed D-T neutron generator

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Tippawan, U.

    2000-01-01

    In the past two decades the IAEA has supported the establishment of neutron laboratories in many developing countries by providing small D-T neutron generators. The neutron generator is basically a low energy (100-400 keV) ion accelerator capable of producing a continuous beam of deuterons with a current in the range between 1-2.5 mA. These neutron generators are primarily intended to be used for fast neutron activation analysis. This paper describes the utilization of a 14 MeV neutron generator in continuous and pulsed beam modes in applied neutron physics program at Chiang Mai University. (author)

  12. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation.

    Science.gov (United States)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  13. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  14. Compact biomedical pulsed signal generator for bone tissue stimulation

    Science.gov (United States)

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  15. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  16. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources

    International Nuclear Information System (INIS)

    Wang Qi; Sun Jizhong; Zhang Jianhong; Ding Zhenfeng; Wang Dezhen

    2010-01-01

    Atmospheric-pressure capacitive discharges driven by combined radio frequency (rf) and trapezoidal pulse sources are investigated using a one-dimensional self-consistent fluid model. The results show that the plasma intensity in the rf discharge can be enhanced drastically when a low duty ratio short pulse source is additionally applied. The mechanism for the increase in the plasma density can be attributed to a strong localized electric field induced by the applied short pulse; the strong electric field generates a great number of high energy electrons and chemically active particles, which subsequently generate more electrons and ions. The rf capacitive discharges with the aid of externally applied short pulses can achieve a high plasma density with better power efficiency.

  17. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Scalable UWB photonic generator based on the combination of doublet pulses.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  19. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation.

    Science.gov (United States)

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki

    2008-10-01

    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  20. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Trebino, R.

    1994-01-01

    We report on significant improvements in the pulse-retrieval algorithm used to reconstruct the amplitude and the phase of ultrashort optical pulses from the experimental frequency-resolved optical gating trace data in the polarization-gate geometry. These improvements involve the use of an intensity constraint, an overcorrection technique, and a multidimensional minimization scheme. While the previously published, basic algorithm converged for most common ultrashort pulses, it failed to retrieve pulses with significant intensity substructure. The improved composite algorithm successfully converges for such pulses. It can now retrieve essentially all pulses of practical interest. We present examples of complex waveforms that were retrieved by the improved algorithm

  1. Theory of sum-frequency generation spectroscopy of adsorbed molecules using the density matrix method-broadband vibrational sum-frequency generation and applications

    International Nuclear Information System (INIS)

    Bonn, M; Ueba, H; Wolf, M

    2005-01-01

    A generalized theory of frequency- and time-resolved vibrational sum-frequency generation (SFG) spectroscopy of adsorbates at surfaces is presented using the density matrix formalism. Our theoretical treatment is specifically aimed at addressing issues that accompany the relatively novel SFG approach using broadband infrared pulses. The ultrashort duration of these pulses makes them ideally suited for time-resolved investigations, for which we present a complete theoretical treatment. A second key characteristic of these pulses is their large bandwidth and high intensity, which allow for highly non-linear effects, including vibrational ladder climbing of surface vibrations. We derive general expressions relating the density matrix to SFG spectra, and apply these expressions to specific experimental results by solving the coupled optical Bloch equations of the density matrix elements. Thus, we can theoretically reproduce recent experimentally demonstrated hot band SFG spectra using femtosecond broadband infrared excitation of carbon monoxide (CO) on a Ru(001) surface

  2. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  3. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  4. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  5. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  6. Multi-frequency accelerating strategy for the contrast source inversion method of ultrasound waveform tomography using pulse data

    Science.gov (United States)

    Lin, Hongxiang; Azuma, Takashi; Qu, Xiaolei; Takagi, Shu

    2017-03-01

    In this work, we construct a multi-frequency accelerating strategy for the contrast source inversion (CSI) method using pulse data in the time domain. CSI is a frequency-domain inversion method for ultrasound waveform tomography that does not require the forward solver through the process of reconstruction. Several prior researches show that the CSI method has a good performance of convergence and accuracy in the low-center-frequency situation. In contrast, utilizing the high-center-frequency data leads to a high-resolution reconstruction but slow convergence on large numbers of grid. Our objective is to take full advantage of all low frequency components from pulse data with the high-center-frequency data measured by the diagnostic device. First we process the raw data in the frequency domain. Then multi-frequency accelerating strategy helps restart CSI in the current frequency using the last iteration result obtained from the lower frequency component. The merit of multi- frequency accelerating strategy is that computational burden decreases at the first few iterations. Because the low frequency component of dataset computes on the coarse grid with assuming a fixed number of points per wavelength. In the numerical test, the pulse data were generated by the K-wave simulator and have been processed to meet the computation of the CSI method. We investigate the performance of the multi-frequency and single-frequency reconstructions and conclude that the multi-frequency accelerating strategy significantly enhances the quality of the reconstructed image and simultaneously reduces the average computational time for any iteration step.

  7. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  8. CIAE 600 kV ns pulse neutron generator

    International Nuclear Information System (INIS)

    Shen Guanren; Guan Xialing; Chen Hongtao

    2001-01-01

    The overall composition of CIAE 600 kV ns Pulse Neutron Generator (CPNG) are introduced, and its characteristic, main technological performance and application were also given. CPNG consists of high voltage power supply with highest output voltage 600 kV, direct current 15 mA, stability and ripple ≤0.1%, 2214 mm x 1604 mm x 1504 mm stainless steel high voltage electrode, built in head equipment uniform field accelerating tube, ns pulsed installation, turbomolecular vacuum pump system and drift pipes at 0 degree and 45 degree. Its characteristics are: (1) high current beam; (2) high current beam ns pulsed installation made use of low energy for chopper and high energy for buncher; (3) compactly laid out and simple in structure

  9. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  10. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  11. Femtosecond pulse with THz repetition frequency based on the coupling between quantum emitters and a plasmonic resonator

    Science.gov (United States)

    Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li

    2018-03-01

    Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.

  12. Programmable pulse sequence generator with multiple output lines

    Science.gov (United States)

    Drabczyk, Hubert

    2006-10-01

    This paper presents a novel concept of pulse sequence generator and its prototype as an electronic circuit testing laboratory tool. The generator has multiple output lines and is capable of using control data defining different pulse sequences to be given to the outputs. It is also possible to use different voltage levels in output signal and switch output lines for reading data from driven system. The pulse sequence generator can be used for runtime environment simulation, as hardware tester or auxiliary tool in new designs. Important design factors were to keep cost of the tool low and allow integration with other projects by using flexible architecture. The prototype was based on universal programmer with adjustable power supply, '51 microcontroller and Altera Cyclone chip. The generator communicates witch PC computer via RS232 port. Dedicated software was developed in the course of this project, to control the tool and data transmission. The prototype confirmed the possibility to create an inexpensive multipurpose laboratory tool for programming, testing and simulation of digital devices.

  13. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  14. Stable optical frequency comb generation and applications in arbitrary waveform generation, signal processing and optical data mining

    Science.gov (United States)

    Ozharar, Sarper

    This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.

  15. Applications of lightweight composite materials in pulsed rotating electrical generators

    International Nuclear Information System (INIS)

    Walls, W.A.; Maifold, S.M.

    1987-01-01

    Present rotating electrical pulse power generators are limited in energy storage capability, specific energy, and peak power density by the use of iron-magnetic circuits. This paper discusses lightweight and compact iron-core homopolar generators (HPGs) which have attained specific energies of 6 kJ/kg and have the potential to achieve 8 kJ/kg in the near future. Prototype iron based pulsed alternators are the favored choice for high power to mass ratio applications and have estimated peak ratings of 180 kW/kg. In terms of total energy storage capability, these machines are limited to several hundred MJ due to the availability of large steel forgings for rotors and basic design considerations including rotor dynamics, allowable rotor tip speeds, and present high speed current collection technology

  16. Low-cost programmable pulse generator for particle telescope calibration

    CERN Document Server

    Sanchez, S; Seisdedos, M; Meziat, D; Carbajo, M; Medina, J; Bronchalo, E; Peral, L D; Rodríguez-Pacheco, J

    1999-01-01

    In this paper we present a new calibration system for particle telescopes including multipulse generator and digital controller. The calibration system generates synchronized pulses of variable height for every detector channel on the telescope. The control system is based on a commercial microcontroller linked to a personal computer through an RS-232 bidirectional line. The aim of the device is to perform laboratory calibration of multi-detector telescopes prior to calibration at accelerator. This task includes evaluation of linearity and resolution of each detector channel, as well as coincidence logic. The heights of the pulses sent to the detectors are obtained by Monte Carlo simulation of telescope response to a particle flux of any desired geometry and composition.

  17. Operation and technology of high pulsed power generators

    International Nuclear Information System (INIS)

    Eyl, P.; Romary, P.

    1995-01-01

    In order to satisfy the needs of ''components and electronic circuits hardness'', a range of high pulsed power generators is available in the French Atomic Energy Commission. The goal of this paper is to present the general principles of operation and the main characteristics of the irradiation facilities which are operational at the CESTA center. Finally, we give a brief outline of the new technology developments. (authors). 6 refs., 16 figs

  18. Mechanism for the generation of cavitation maxima by pulsed ultrasound

    International Nuclear Information System (INIS)

    Flynn, H.G.; Church, C.C.

    1984-01-01

    A train of 1-MHz pulses can generate maxima of cavitation activity at pulse lengths of 6 and 60 ms and at pressure amplitudes, P/sub A/, between 5.4 and 9.4 bars (or intensities between 10 and 30 W/cm 2 ). Generation of maxima at P/sub A/ between these limits on pressure amplitude implies that the increase in cavitation activity originates from gas nuclei with radii lying in a critical size range centered at about 0.08 μm. The mechanism proposed for this phenomenon suggests that nuclei in this critical range are unstabilized nuclei generated in one pulse and surviving to the next with an appreciable fraction of the survivors lying in the critical range. Transient cavities that grow from such small nuclei are shown to behave as isolated mechanical systems that on reaching maximum size collapse as imploding spheres. The maximum pressures reached in such imploding cavities would then approximate those calculated for the spherical collapse of cavities. The occurrence of the observed maxima is ascribed to the spherical collapse of transient cavities. 17 references, 5 figures

  19. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  20. Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation

    International Nuclear Information System (INIS)

    Valiulis, G.; Jukna, V.; Jedrkiewicz, O.; Clerici, M.; Rubino, E.; DiTrapani, P.

    2011-01-01

    This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation (SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with, in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are also presented.

  1. Generation of atto-second pulses on relativistic mirror plasma

    International Nuclear Information System (INIS)

    Vincenti, H.

    2012-12-01

    When an ultra intense femtosecond laser (I > 10 16 W.cm -2 ) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get

  2. Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication

    International Nuclear Information System (INIS)

    Kim, Y-J; Chun, B J; Kim, Y; Hyun, S; Kim, S-W

    2010-01-01

    We exploit the frequency comb of a fs laser as the frequency ruler to generate reference optical frequencies for multi-channel DWDM (dense wavelength-division-multiplexing) telecommunication. Our fiber-based scheme of single-mode extraction enables on-demand generation of optical frequencies within the telecommunication band with an absolute frequency uncertainty of 9.1×10 -13 . The linewidth of extracted optical modes is less than 1 Hz, and the instability is measured 2.3×10 -15 at 10 s averaging. This outstanding performance of optical frequency generation would lead to a drastic improvement of the spectral efficiency for the next-generation DWDM telecommunication

  3. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    Science.gov (United States)

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  4. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  5. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.

    1999-01-01

    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  6. Current multiplier to improved generator-to-load coupling for pulse-power generators

    International Nuclear Information System (INIS)

    Chuvatin, A.S.; Rudakov, L.I.; Weber, B.V.; Bayol, F.; Cadiergues, R.

    2005-01-01

    The circuit presented improves the coupling of existing and future pulsed power generators to physical loads. The efficiency of the proposed current multiplication scheme could theoretically exceed the values for a typical direct load-to-generator circuit. The scheme could be beneficial for use in actual applications and two examples of such applications are given [ru

  7. Optimization of Industrial Ozone Generation with Pulsed Power

    Science.gov (United States)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  8. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    Science.gov (United States)

    2016-07-02

    order phase-matched cascaded frequency gene , high harmonic generation, fine structure constant measurements, -envelope phase stabilization, ultra fast...MHz repetition rate are generated from a picosecond fiber laser (Pritel FFL-500) before amplifica- tion in an erbium- doped fiber amplifier (EDFA). The...width from 1 to 36 nm with central wavelength tunable over 1527–1550 nm. The pump pulses were combined with the seed and injected into 9.5 m of Ge- doped

  9. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  10. Solid state Ka-band pulse oscillator with frequency electronic switching

    Directory of Open Access Journals (Sweden)

    Dvornichenko V. P.

    2015-08-01

    Full Text Available Transmitting devices for small radars in the millimeter wavelength range with high resolution on range and noise immunity. The work presents the results of research and development of compact pulse oscillators with digital frequency switching from pulse to pulse. The oscillator consists of a frequency synthesizer and a synchronized amplifier on the IMPATT diode. Reference oscillator of synthesizer is synchronized by crystal oscillator with digital PLL system and contains a frequency multiplier and an amplifier operating in pulse mode. Small-sized frequency synthesizer of 8 mm wave lengths provides an output power of ~1.2 W per pulse with a frequency stability of no worse than 2•10–6. Radiation frequency is controlled by three-digit binary code in OOL levels. Synchronized amplifier made on IMPATT diodes provides microwave power up to 20 W in oscillator output with microwave pulse duration of 100—300 ns in an operating band. The oscillator can be used as a driving source for the synchronization of semiconductor and electro-vacuum devices of pulsed mode, and also as a transmitting device for small-sized radar of millimeter wave range.

  11. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  12. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission

    Science.gov (United States)

    Garwood, Michael; Uğurbil, Kamil

    2018-06-01

    The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

  13. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  14. PWM pulse pattern optimization method using carrier frequency modulation. Carrier shuhasu hencho ni yoru PWM pulse pattern saitekikaho

    Energy Technology Data Exchange (ETDEWEB)

    Iwaji, Y.; Fukuda, S. (Hokkaido University, Sapporo (Japan))

    1991-07-15

    Sinusoidal inverters are getting more widely used keeping pace with the development of semiconductor switching elements. This paper discusses optimizing a PWM pulse pattern at an inverter output to drive an induction motor, proposes methods for improving distortion and torque ripples using a carrier frequency modulation (CFM), and describes a method for realizing the improvement through use of a single-chip microcomputer. The method defines evaluation parameters corresponding to the distortion and torque ripples, and optimizes the CFM depth to the parameters. The PWM pulse pattern has its voltage vector and time width so selected that the time integrated space vector of a three-phase voltage approaches a circular locus. Furthermore, the carrier frequency, that is the sampling frequency of the inverter, is also adjusted so that the above evaluation parameters are minimized. The addition of a new variable called the frequency modulation provides freedom in selecting an output characteristic as called for by the purpose. 12 refs., 18 figs.

  15. A new digital pulse generator for the CALIFA detector

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, Michael; Gernhaeuser, Roman; Heiss, Benjamin; Klenze, Philipp; Remmels, Patrick; Winkel, Max [Physik Department E12, Technische Universitaet Muenchen (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    The 4π-calorimeter CALIFA ist one of the major detectors of the R3B-experiment at the upcoming Facility for Antiproton and Ion Research in Darmstadt. The monitoring of stability, single channel properties, temperature effects and rate dependency in a high resolution, high granularity calorimeter is essential for the success of the whole experiment. A new digital pulse generator will emulate the complex signal of the CsI(Tl) crystals in order to fine tune the online pulse shape analysis for particle identification, background suppression, energy calibration and for deadtime and pileup studies. The total pulse generator firmware is implemented into the digital readout platform FEBEX used in CALIFA. The FPGA and a small analog add on board allow for highly flexible parameter adjustment. New applications are easy to implement and even very complex shapes are produced by simple lookup tables. The concept, features and implementation of a prototype and a first application in the CALIFA Demonstrator Experiment in October 2014 at GSI in Darmstadt are presented.

  16. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Huo, W. G.; Li, R. M.; Shi, J. J. [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Ding, Z. F., E-mail: huowg.wg@tom.com [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2016-08-15

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a high RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).

  17. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    Science.gov (United States)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  18. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Science.gov (United States)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  19. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  20. Frequency Dependent PD-pulse Distortion in Rotating Machines

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens

    1996-01-01

    at the machine terminals. The results show a variation of the attenuation of the discharge pulses inside the machine of about 20 dB highest for pulses from the far end, i.e. the neutral point. The capability of exact localization of the discharges in the winding gives a correct measure of the range...... of the current transformer based detection method, when being applied to rotating machines. The results are discussed with regard to the practical application of PD detection systems on rotating machines, particularly considering aspects of range and applicability of systems in the HF ranges...

  1. Photoconductive switch enhancements for use in Blumlein pulse generators

    International Nuclear Information System (INIS)

    Davanloo, F.; Park, H.; Collins, C. B.; Agee, F. J.

    1999-01-01

    Stacked Blumlein pulse generators developed at the University of Texas at Dallas have produced high-power waveforms with risetimes and repetition rates in the range of 0.2-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap or photoconductive switch. Adaptation of the design has enabled the stacked Blumleins to produce 80 MW, nanosecond pulses with risetimes better than 200 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single GaAs photoconductive switch triggered by a low power laser diode array. Our current investigations involve the switch characteristics that affect the broadening of the current channels in the avalanche, pre-avalanche seedings, the switch lifetime and the durability. This report presents the progress toward improving the GaAs switch operation and lifetime in stacked Blumlein pulsers. Advanced switch treatments including diamond film overcoating are implemented and discussed

  2. Criteria for formation of low-frequency sound under wide-aperture repetitively pulsed laser irradiation of solids

    International Nuclear Information System (INIS)

    Tishchenko, V N; Posukh, V G; Gulidov, A I; Zapryagaev, V I; Pavlov, A A; Boyarintsev, Ye L; Golubev, M P; Kavun, I N; Melekhov, A V; Golobokova, L S; Miroshnichenko, I B; Pavlov, Al A; Shmakov, A S

    2011-01-01

    The criteria for merging shock waves formed by optical breakdowns on the surface of solids have been investigated. Targets made of different materials were successively irradiated by two CO 2 -laser pulses with energies up to 200 J and a duration of ∼1 μs. It is shown that the criteria under consideration can be applied to different targets and irradiation regimes and make it possible to calculate the parameters of repetitively pulsed laser radiation that are necessary to generate low-frequency sound and ultrasound in air.

  3. Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried

  4. Symposium on CIAE 600 kV ns pulse neutron generator

    International Nuclear Information System (INIS)

    Shen Guanren

    2001-01-01

    CIAE 600 kV ns Pulse Neutron Generator was built by China National Nuclear Corporation, which is an important facility mainly used for experimental researches of nuclear reactions induced by 14 MeV neutrons, experimental measurements of energy spectra of secondary neutrons and charged particles and macro-checking experiments of evaluated neutron database and dosimetry researches of neutrons and γ rays. It is the first home made one, but the fourth similar facility in the world. Six articles are included in this symposium. The articles details the general structure, radio frequency ion source, high current beam ns pulsed system, etc. The main technical problems resolved during development are discussed. And attentions and experiences in the generator adjustments are introduced

  5. Frequency Properties Research of Elevator Drive System with Direct Torque Control-Pulse with Modulation

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2008-01-01

    Full Text Available In the article problems of frequency properties research for electric drive system with direct torque control and pulse width modulator are described. The mathematical description of elevator is present. Simplified mathematical description of direct torque control - pulse width modulator electric drive system is shown. Transfer functions for torque and speed loops are determined. Logarithmic frequency characteristics are computed. Damping properties of elevator drive system are estimated.

  6. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  7. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...... and electrical noise have been observed....

  8. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  9. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  10. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    Directory of Open Access Journals (Sweden)

    I. O. Zolotovskii

    2012-01-01

    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  11. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  12. Frequency deviations and generation scheduling in the nordic system

    DEFF Research Database (Denmark)

    Li, Zhongwei; Samuelsson, Olaf; Garcia-Valle, Rodrigo

    2011-01-01

    to be considered, the disturbances caused to this control by the hourly dispatch of generation has received less attention and is the focus of this paper. Based on years of recorded PMU data, statistics of frequency events and analysis of frequency quality are made to demonstrate the relation between the frequency...

  13. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-06-20

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.

  14. Measurements on a FET based 1 MHz, 10 kV pulse generator

    International Nuclear Information System (INIS)

    Wait, G.D.; Barnes, M.J.

    1995-08-01

    A prototype pulser, which incorporates thirty-two 1 kV Field-Effect Transistor (FET) modules, has been built and tested at TRIUMF. The pulser has been developed for application in a scheme for pulsed extraction from the TRIUMF 500 MeV cyclotron. Deflection of the beam will be provided by an electric field between a set of 1 in long deflector plates. The pulser generates a continuous, unipolar, pulse train at a fundamental frequency of approximately 1 MHz and a magnitude of 10 kV. The pulses have 38 ns rise and fall times and are stored on a low-loss coaxial cable which interconnects the pulse generator and the deflector plates. The circuit performance was evaluated with the aid of PSpice in the design stage and confirmed by measurements on the prototype. Temperature measurements have been performed on 1 kV FET modules under DC conditions and compared with temperatures under operating conditions to ensure that switching losses are acceptable. Results of various measurements are presented and compared with simulations

  15. Measurements on a FET based 1 MHz, 10 kV pulse generator

    International Nuclear Information System (INIS)

    Wait, G.D.; Barnes, M.J.

    1995-08-01

    A prototype pulser, which incorporates thirty-two 1 kV Field-Effect Transistor (FET) modules, has been built and tested at TRIUMF. The pulser has been developed for application in a scheme for pulsed extraction from the TRIUMF 500 MeV cyclotron. Deflection of the beam will be provided by an electric field between a set of 1 m long deflector plates. The pulser generates a continuous unipolar, pulse train at a fundamental frequency of approximately 1 MHz and a magnitude of 10 kV. The pulses have 38 ns rise and fall times and are stored on a low-loss coaxial cable which interconnects the pulse generator and the deflector plates. The circuit performance was evaluated with the aid of PSpice in the design stage and confirmed by measurements on the prototype. Temperature measurements have been performed on 1 kV FET modules under DC conditions and compared with temperatures under operating conditions to ensure that switching losses are acceptable. Results of various measurements are presented and compared with simulations. (author)

  16. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  17. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  18. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  19. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  20. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  1. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  2. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation.

    Science.gov (United States)

    Mi, Yan; Rui, Shaoqin; Li, Chengxiang; Yao, Chenguo; Xu, Jin; Bian, Changhao; Tang, Xuefeng

    2017-07-01

    High-frequency nanosecond-pulsed electric fields were recently introduced for tumor or abnormal tissue ablation to solve some problems of conventional electroporation. However, it is necessary to study the thermal effects of high-field-intensity nanosecond pulses inside tissues. The multi-parametric analysis performed here is based on a finite element model of liver tissue with a tumor that has been punctured by a pair of needle electrodes. The pulse voltage used in this study ranges from 1 to 4 kV, the pulse width ranges from 50 to 500 ns, and the repetition frequency is between 100 kHz and 1 MHz. The total pulse length is 100 μs, and the pulse burst repetition frequency is 1 Hz. Blood flow and metabolic heat generation have also been considered. Results indicate that the maximum instantaneous temperature at 100 µs can reach 49 °C, with a maximum instantaneous temperature at 1 s of 40 °C, and will not cause thermal damage during single pulse bursts. By parameter fitting, we can obtain maximum instantaneous temperature at 100 µs and 1 s for any parameter values. However, higher temperatures will be achieved and may cause thermal damage when multiple pulse bursts are applied. These results provide theoretical basis of pulse parameter selection for future experimental researches.

  3. High reliability low jitter 80 kV pulse generator

    International Nuclear Information System (INIS)

    Savage, Mark Edward; Stoltzfus, Brian Scott

    2009-01-01

    Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 (Omega), from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K.W. Struve, W.A. Stygar, L.K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6 (Omega), 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10 -4 . The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While

  4. The Real-time Frequency Spectrum Analysis of Neutron Pulse Signal Series

    International Nuclear Information System (INIS)

    Tang Yuelin; Ren Yong; Wei Biao; Feng Peng; Mi Deling; Pan Yingjun; Li Jiansheng; Ye Cenming

    2009-01-01

    The frequency spectrum analysis of neutron pulse signal is a very important method in nuclear stochastic signal processing Focused on the special '0' and '1' of neutron pulse signal series, this paper proposes new rotation-table and realizes a real-time frequency spectrum algorithm under 1G Hz sample rate based on PC with add, address and SSE. The numerical experimental results show that under the count rate of 3X10 6 s -1 , this algorithm is superior to FFTW in time-consumption and can meet the real-time requirement of frequency spectrum analysis. (authors)

  5. WOx cluster formation in radio frequency assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Filipescu, M.; Ossi, P.M.; Dinescu, M.

    2007-01-01

    The influence of oxygen gas pressure and radio-frequency power on the characteristics of the WO x films produced by laser ablation of a W target at room temperature in oxygen reactive atmosphere were investigated. Changing buffer gas pressure in the hundreds of Pa range affects the bond coordination, roughness and morphology of the deposited films, as investigated by micro-Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The combination of radio-frequency discharge and buffer gas pressure on film nanostructure, as reflected by bond coordination, surface morphology and roughness is discussed

  6. Induction heating of gears - pulsing dual-frequency concept

    Directory of Open Access Journals (Sweden)

    R. Przyłucki

    2013-04-01

    Full Text Available The paper concerns analysis of gears hardening process. In order to obtain required temperature distribution several variations of single and combined frequencies for selected gear-wheel configurations were considered. The paper includes the calculation models and analysis of geometry and current intensity as well frequency influence on temperature distribution of the tooth surface. All calculations have been carried out by means of the use of Flux3D simulation program, which enables to provide, coupled electromagnetic and temperature fields analysis.

  7. Isolated sub-100-attosecond pulse generation via controlling electron dynamics

    OpenAIRE

    Lan, Pengfei; Lu, Peixiang; Cao, Wei; Li, Yuhua; Wang, Xinlin

    2007-01-01

    A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be a...

  8. Triboelectric-generator-driven pulse electrodeposition for micropatterning.

    Science.gov (United States)

    Zhu, Guang; Pan, Caofeng; Guo, Wenxi; Chen, Chih-Yen; Zhou, Yusheng; Yu, Ruomeng; Wang, Zhong Lin

    2012-09-12

    By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.

  9. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  10. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  11. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    Science.gov (United States)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  12. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  13. 76 FR 64223 - Cardiovascular Devices; Reclassification of External Pacemaker Pulse Generator Devices

    Science.gov (United States)

    2011-10-17

    ... Drug Administration 21 CFR Part 870 Cardiovascular Devices; Reclassification of External Pacemaker... Special Controls Guidance Document: External Pacemaker Pulse Generator; Availability; Proposed Rule and... [Docket No. FDA-2011-N-0650] Cardiovascular Devices; Reclassification of External Pacemaker Pulse...

  14. Safe protocols for generating power pulses with heterogeneous populations of thermostatically controlled loads

    International Nuclear Information System (INIS)

    Sinitsyn, Nikolai A.; Kundu, Soumya; Backhaus, Scott

    2013-01-01

    Highlights: ► Algorithms to produce useful load response from a heterogeneous group of TCLs. ► Generation of sharp power pulses without initiating any unwanted oscillation. ► Open-loop methods, not requiring any detailed system modeling. ► One-way, utility-to-consumer, communication. ► Potential use in secondary frequency regulation, generation-load balancing, etc. - Abstract: We explore methods to use thermostatically controlled loads (TCLs), such as water heaters and air conditioners, to provide ancillary services by assisting in balancing generation and load. We show that by adding simple imbedded instructions and a small amount of memory to temperature controllers of TCLs, it is possible to design open-loop control algorithms capable of creating short-term pulses of demand response without unwanted power oscillations associated with temporary synchronization of the TCL dynamics. By moving a small amount of intelligence to each of the end point TCL devices, we are able to leverage our knowledge of the time dynamics of TCLs to shape the demand response pulses for different power system applications. A significant benefit of our open-loop method is the reduction from two-way to one-way broadcast communication which also eliminates many basic consumer privacy issues. In this work, we focus on developing the algorithms to generate a set of fundamental pulse shapes that can subsequently be used to create demand response with arbitrary profiles. Demand response control methods, such as the one developed here, open the door to fast, nonperturbative control of large aggregations of TCLs

  15. Experimental Observation of Generation of Superradiance Pulses in the Process of Backscattering of Pump Wave on the Intense Electron Bunch

    CERN Document Server

    Ginzburg, N S; Denisov, G G; Rozental, R M; Sergeev, A; Zotova, I V

    2005-01-01

    Recently significant progress was archived in the generation of multimegawatt subnanosecond pulses in millimeter wave band utilizing the cyclotron and Cherenkov mechanisms of superradiance (SR) [1,2]. We study the novel mechanism of SR when the powerful pumping wave undergoes the stimulated back scattering on the intense electron bunch. Due to the Doppler up shift the radiation frequency can significantly exceed the frequency of the pumping wave. With the relativistic microwave generator as a pumping wave source such a mechanism can be used for generation of the powerful pulse radiation in the short millimeter and submillimeter wave bands. Experiments on the observation of the stimulated scattering in the superradiance regime were carried out at Institute of Electrophysics RAS with two synchronized accelerators. The 4 ns electron beam from the first accelerator is used for generation of the 38 GHz 100 MW pumping wave which subsequently scattered on the subnanosecond 250 keV 1 kA electron bunch produced by the...

  16. Generation of programmable temporal pulse shape and applications in micromachining

    Science.gov (United States)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  17. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    Science.gov (United States)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  18. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  19. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  20. A novel pulse compression algorithm for frequency modulated active thermography using band-pass filter

    Science.gov (United States)

    Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet

    2017-05-01

    This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.

  1. Distortions in frequency spectra of signals associated with sampling-pulse shapes

    International Nuclear Information System (INIS)

    Njau, E.C.

    1983-04-01

    A method developed earlier by the author [IC/82/44; IC/82/45] is used to investigate distortions introduced into frequency spectra of signals by the shapes of the sampling pulses involved. Conditions are established under which the use of trapezoid or exponentially-edged pulses to digitize signals can make the frequency spectra of the resultant data samples devoid of the main features of the signals. This observation does not, however, apply in any way to cosinusoidally-edged pulses or to pulses with cosine-squared edges. Since parts of the Earth's surface and atmosphere receive direct solar energy in discrete samples (i.e. only from sunrise to sunset) we have extended the technique and attempted to develop a theory that explains the observed solar terrestrial relationships. A very good agreement is obtained between the theory and previous long-term and short-term observations. (author)

  2. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  3. Energy concentration on S-300 pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Bakshaev, Yu Z; Chernenko, A S; Korolev, V D; Mizhiritskij, V I; Zazhivikhin, V V [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Energy concentration in fast Z-pinch investigation experiments on an 8-module 10 TW pulsed power S-300 generator (1.3 MV, 45 ns FWHM, 0.15 Ohm) is realized by a 3-d vacuum energy concentrator. The concentrator was constructed on the basis of triplate MITLs connected in parallel at the central unit where the Z-pinch is formed. At some start-up experiments on the 8-module installation version at 700 kV incident wave amplitude on concentrator for a gas puff load current of 4 MA with rise time of about 60 ns was obtained. The efficiency or current transfer from the concentrator input to the load for both a gas liner and a short-circuited case was practically the same. (author). 4 figs., 4 refs.

  4. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  5. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction

    Science.gov (United States)

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H.; Ciofi, Philippe

    2014-02-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  6. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  7. Isolated sub-100-as pulse generation via controlling electron dynamics

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    A method to coherently control electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp; thus an isolated 80-as pulse is straightforwardly obtained, and even shorter pulses are achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes. In addition, the few-cycle synthesized pulse is expected to be useful for manipulating a wide range of laser-atom interactions

  8. Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.

    Science.gov (United States)

    Chen, Nelson G

    2016-08-01

    Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.

  9. A CMOS frequency generation module for 60-GHz applications

    International Nuclear Information System (INIS)

    Zhou Chunyuan; Zhang Lei; Wang Hongrui; Qian He

    2012-01-01

    A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency generation module has a wide operating frequency range to cover process, voltage, and temperature variation. It is implemented in a 90-nm CMOS process, and occupies a chip area of 0.64 × 0.65 mm 2 including pads. The measurement results show that the designed frequency generation module functions properly with input frequency over 15 GHz to 25 GHz. The whole chip dissipates 12.1 mW from a 1.2-V supply excluding the output buffers. (semiconductor integrated circuits)

  10. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution

    OpenAIRE

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-01-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  11. Quantum state population transfer of lithium atoms induced by frequency-chirped laser pulses

    International Nuclear Information System (INIS)

    Ma Huanqiang; Zhang Xianzhou; Jia Guangrui; Zhang Yonghui; Jiang Lijuan

    2011-01-01

    Using the time-dependent multilevel approach (TDMA) and B-splines function, we have calculated the five quantum state population transfer of rydberg lithium atoms. We also analyse the influence of the four major parameters of the frequency-chirped laser pulses field on transition. The result shows that the population can be completely transferred to the target state by changing the parameters of the laser pulse and achieve manual controls to a certain degree. (authors)

  12. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    Energy Technology Data Exchange (ETDEWEB)

    Yurkin, A A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  13. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  14. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  15. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection

    Directory of Open Access Journals (Sweden)

    Shreejoy Tripathy

    2010-03-01

    Full Text Available Each down stroke of an insect’s wings accelerates axial airflow over the antennae. Modeling studies suggest that this can greatly enhance penetration of air and air-born odorants through the antennal sensilla thereby periodically increasing odorant-receptor interactions. Do these periodic changes result in entrainment of neural responses in the antenna and antennal lobe (AL? Does this entrainment affect olfactory acuity? To address these questions, we monitored antennal and AL responses in the moth Manduca sexta while odorants were pulsed at frequencies from 10-72 Hz, encompassing the natural wingbeat frequency. Power spectral density (PSD analysis was used to identify entrainment of neural activity. Statistical analysis of PSDs indicates that the antennal nerve tracked pulsed odor up to 30 Hz. Furthermore, at least 50% of AL local field potentials (LFPs and between 7-25% of unitary spiking responses also tracked pulsed odor up to 30 Hz in a frequency-locked manner. Application of bicuculline (200µM abolished pulse tracking in both LFP and unitary responses suggesting that GABAA receptor activation is necessary for pulse tracking within the AL. Finally, psychophysical measures of odor detection establish that detection thresholds are lowered when odor is pulsed at 20 Hz. These results suggest that AL networks can respond to the oscillatory dynamics of stimuli such as those imposed by the wing beat in a manner analogous to mammalian sniffing.

  16. Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters

    CERN Document Server

    Aguglia, D; Martins, C.D.A.

    2014-01-01

    This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...

  17. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency ...

  18. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  19. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    Science.gov (United States)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  20. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  1. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.

  2. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  3. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  4. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    International Nuclear Information System (INIS)

    Hack, Szabolcs; Varró, Sándor; Czirják, Attila

    2016-01-01

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  5. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  6. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  7. CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Bagcivan, N.; Bobzin, K.; Ludwig, A.; Grochla, D.; Brugnara, R.H.

    2014-01-01

    Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2 nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual

  8. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  9. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  10. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  11. Pulse excitation experiment of a superconducting generator; chodendo hatsudenki no parusu reiki shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaike, K.; Iimura, T.; Nishimura, M.; Arata, M.; Takabatake, M. [Toshiba Ltd., Tokyo (Japan); Yamada, M.; Kanamori, Y.; Hasegawa, K. [Kansai Electric Power Co., Inc., Osaka (Japan)

    1999-11-10

    Efficiency improvement, improvement in the stability of electric power system it is miniaturization and weight reduction can be expected in comparison with the traditional-model generator superconducting generator. We produce the small superconducting generator for the experiment experimentally, and performance characteristics verification of the generator is carried out experimentally. This time, pulse excitation test of the superconducting generator was carried out, and the ac loss of the conductor by the pulse excitation investigated the effect on the quenching current. (NEDO)

  12. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    Science.gov (United States)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  13. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  14. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  15. Frequency-resolved pump-probe characterization of femtosecond infrared pulses

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuška, A.; Haan, F. de; Pshenichnikov, M.S.; Wiersma, D.A.

    2002-01-01

    A novel method for ultrashort IR pulse characterization is presented. The technique utilizes a frequency-resolved pump-probe geometry that is common in applications of ultrafast spectroscopy, without any modifications of the setup. The experimental demonstration of the method was carried out to

  16. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation

    International Nuclear Information System (INIS)

    Kananovich, A; Grabtchikov, A; Orlovich, V; Demidovich, A; Danailov, M

    2010-01-01

    Quasi continuous-wave (qCW) yellow emission (pulse duration 5 ms, repetition rate 20 Hz) at 559 nm is demonstrated through intracavity sum frequency generation (SFG) of Stokes and fundamental fields in Nd:YVO 4 diode pumped self-Raman laser for the first time. Average in pulse output power at 559 nm was 0.47 W for 22 W of pump power, which corresponds to 2.1% of diode-to-yellow efficiency. The pulsed mode of operation was due to diode pump modulation and was used to reduce thermal stress of the crystal

  17. Temperature measurement on neurological pulse generators during MR scans

    Directory of Open Access Journals (Sweden)

    Alesch François

    2002-09-01

    Full Text Available Abstract According to manufacturers of both magnetic resonance imaging (MRI machines, and implantable neurological pulse generators (IPGs, MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures.

  18. Pulsed x-ray generation from a plasma focus device

    International Nuclear Information System (INIS)

    Zambra, M; Bruzzone, H; Sidelnikov, Y; Kies, W; Moreno, C; Sylvester, G; Silva, P; Moreno, J; Soto, L

    2003-01-01

    Dynamical pinches coupled to electrodes like the dense Z-pinch or the dense plasma focus have been intensively studied in the last four decades for their high fusion efficiency and their application potential. Though the expectations of the eighties of the last century, scaling these pinches up to fusion reactors, did not come true, the development of fast and powerful experiments resulted in new insights in pinch physics and paved the way for developing compact dynamical pinches as pulsed neutron and X-radiation sources for many applications. There is a permanent and growing interest in the research community for understanding and determining the generation properties of X-rays, neutrons and charged particles emitted from a high-temperature high-density plasmas, especially in the plasma focus configuration. The Plasma Physics and Plasma Technology Group of the CCHEN has developed the SPEED4 fast-plasma focus device, in collaboration with the Plasma Physics Group of the Dusseldorf University, in order to perform experimental studies such as X-ray and neutron emission, and electron and ion beam characterization (author)

  19. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  20. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  1. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  2. Generation of THz frequency using PANDA ring resonator for THz imaging

    Directory of Open Access Journals (Sweden)

    Ong CT

    2012-02-01

    Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter

  3. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Goektas, H.

    2001-12-01

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  4. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    input Gaussian pulse into a non-diffractive and non-dispersive conical wavepacket [4,5], source of secondary radiation [6], and remote actions to mention a few. ... gas before propagation of the ionizing pulse: NAr(t → −∞) = N0. e and me ...

  5. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  6. Experiments of a 100 kV-level pulse generator based on metal-oxide varistor

    Science.gov (United States)

    Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu

    2018-03-01

    This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

  7. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  8. Efficient temporal compression of coherent nanosecond pulses in compact SBS generator-amplifier setup

    OpenAIRE

    Schiemann, S.; Ubachs, W.M.G.; Hogervorst, W.

    1997-01-01

    A pulse compressor based on stimulated Brillouin scattering (SBS) in liquids is experimentally and theoretically investigated. It allows for the compression of Fourier-transform limited nanosecond pulses of several hundreds of millijoules of energy with both high conversion efficiency and a high temporal compression factor. The two-cell generator-amplifier arrangement is of a compact design not requiring external attenuation of the generator cell input energy. Pulses from an injection-seeded,...

  9. Characterization of a low frequency magnetic noise from a two stage pulse tube cryocooler

    International Nuclear Information System (INIS)

    Eshraghi, Mohamad Javad; Sasada, Ichiro; Kim, Jin Mok; Lee, Yong Ho

    2008-01-01

    Magnetic noise of a two stage pulse tube cryocooler(PT) has been measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS SQUID gradiometer. The magnetometer was installed in a Dewar made of aluminum at 12 cm apart from a section containing magnetic regenerative materials of the PT. The magnetic noise shows a clear peak at 1.8 Hz which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise took a peak, during the cooling process, when the cold stage temperature was at (or close to) 12 K, which resembles the variation of the temperature of the second cold stage of 1.8 Hz. Hence we attributed the main source of this magnetic noise to the temperature dependency of magnetic susceptibility of magnetic regenerative materials such as Er3Ni and HoCu2 used at the second stage. We pointed out that the superconducting magnetic shield by lead sheets reduced the interfering magnetic noise generated from this part. With this scheme, the magnetic noise amplitude measured with the first order gradiometer DROS, mounted in the vicinity of the magnetic regenerator, when the noise amplitude is minimum, which could be found from the fluxgate measurement results, was less than 500 pT peak to peak. Whereas without lead shielding the noise level was higher than the dynamic range of SQUID instrumentations which is around ±10nT. (author)

  10. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    Science.gov (United States)

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  11. The frequency-independent control method for distributed generation systems

    DEFF Research Database (Denmark)

    Naderi, Siamak; Pouresmaeil, Edris; Gao, Wenzhong David

    2012-01-01

    In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG are contr......In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG...

  12. Results and plans on the development of a pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.

    1976-01-01

    Using the vacuum system of an old van de Graaff machine a new pulsed neutron generator has been developed. The block diagram, the scheme of generators arrangement and the electrode system of the ion bunching parts are shown

  13. Generation of fast-rise time, repetitive, (sub) nanosecond, high-voltage pulses

    NARCIS (Netherlands)

    Huiskamp, T.; Pemen, A.J.M.

    2017-01-01

    In this contribution we present our fast-rise time nanosecond pulse generator, capable of generating up to 50 kV (positive and negative) rectangular pulses at a repetition rate of up to 1 kHz and with a rise time of less than 200 picoseconds. We focus on the general concepts involved in the design

  14. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells.

    Science.gov (United States)

    Kim, Hong Bae; Baik, Ku Youn; Choung, Pill-Hoon; Chung, Jong Hoon

    2017-11-21

    Photobiomodulation (PBM) therapy contributes to pain relief, wound healing, and tissue regeneration. The pulsed wave (PW) mode has been reported to be more effective than the continuous wave (CW) mode when applying PBM to many biological systems. However, the reason for the higher effectiveness of PW-PBM is poorly understood. Herein, we suggest using delayed luminescence (DL) as a reporter of mitochondrial activity after PBM treatment. DL originates mainly from mitochondrial electron transport chain systems, which produce reactive oxygen species (ROS) and adenosine triphosphate (ATP). The decay time of DL depends on the pulse frequencies of applied light, which correlate with the biological responses of human dental pulp stem cells (hDPSCs). Using a low-power light whose wavelength is 810 nm and energy density is 38 mJ/cm 2 , we find that a 300-Hz pulse frequency prolonged the DL pattern and enhanced alkaline phosphatase activity. In addition, we analyze mitochondrial morphological changes and their volume density and find evidence supporting mitochondrial physiological changes from PBM treatment. Our data suggest a new methodology for determining the effectiveness of PBM and the specific pulse frequency dependency of PBM in the differentiation of hDPSCs.

  15. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    Science.gov (United States)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  16. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  17. Changes in mean plasma ACTH reflect changes in amplitude and frequency of secretory pulses

    International Nuclear Information System (INIS)

    Carnes, M.; Lent, S.J.; Erisman, S.; Feyzi, J.

    1988-01-01

    ACTH is secreted in an episodic manner from the anterior pituitary. Unanesthetized rats with indwelling jugular and femoral venous cannulae were continuously bled and simultaneously infused with isotonic fluid by peristaltic pump. Two-minute blood samples were collected for up to five hours in 8 male rats. ACTH was measured by radioimmunoassay. The resulting time series were analyzed for significant secretory pulses with the PULSAR program. Elevations or declines in mean plasma ACTH levels were associated with significant changes in amplitude and frequency of secretory pulses

  18. Micro-pulses generation in ECR breakdown stimulated by gyrotron radiation at 37,5 GHz

    International Nuclear Information System (INIS)

    Skalyga, V.; Zorin, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Vodopyanov, A.

    2012-01-01

    The present work is devoted to experimental and theoretical investigation of the creation of short pulsed (< 100 μs) multicharged ion beams. The possibility of quasi-stationary generation of short pulsed beams under conditions of quasi-gasdynamic plasma confinement was shown in recent experiments. Later another way of such beams creation based on the Pre-glow effect was proposed. In present work it was demonstrated that in the case when duration of microwave (MW) pulse is less than formation time of Pre-glow peak, realization of a regime when ion current is negligible during MW pulse and intense multicharged ions flux appears only when MW ends could be possible. Such pulses after the end of MW were called micro-pulses. In the present work the generation of micro-pulses was observed in experiments with ECR discharge stimulated by gyrotron radiation at 37,5 GHz, 100 kW. In this case pulses with duration less than 30 μs were obtained. Probably the same effect was observed in GANIL where 14 GHz radiation was used and pulses with duration about 2 ms were registered. In present work it was shown that the intensity of such micro-pulse could be higher than intensity of Pre-glow peak at the same conditions but with longer MW pulse. The generation of micro-pulses of nitrogen and argon multicharged ions with current of a few mA and length about 30 μs after MW pulse with duration of 30-100 μs was demonstrated. The low level of impurities, high current density and rather high average charge make possible to consider such micro-pulse regime as a possibility for the creation of a short pulsed ion source. The paper is followed by the slides of the presentation. (authors)

  19. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  20. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  1. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  2. Design of double-fed control system for J-TEXT 100 MVA pulse generator unit

    International Nuclear Information System (INIS)

    Fang, Jianming; Yu, Kexun; Zhang, Ming; Zhuang, Ge; Xiao, Zhiguo; Jiang, Guozhong; Yang, Cheng; Xu, Jiayu

    2013-01-01

    Highlights: ► A double-fed control system is designed for J-TEXT 100 MVA pulse generator unit. ► The double-fed system can control the motor speed and reactive power individually. ► Experiment on a prototype motor shows a good control result. -- Abstract: The 100 MVA pulse generator unit is the main power supply of J-TEXT. This unit supplies energy for the toroidal coil, the ohmic heat coil and the divertor coil, with the maximum stored energy 185 MJ. For the difference of grid frequency between China and USA, the rotational speed and stored energy of this unit are less than the designed value. A double-fed control system for the unit is designed to raise them. This double-fed system has applied a control method using a rotational reference frame oriented by stator flux. With this control system, the speed and reactive power of motor could be controlled individually. Experiments on a prototype motor show a good control result

  3. Simple method of generating and distributing frequency-entangled qudits

    Science.gov (United States)

    Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide

    2016-11-01

    High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.

  4. Apparatus and method for generating high density pulses of electrons

    International Nuclear Information System (INIS)

    Lee, C.; Oettinger, P.E.

    1981-01-01

    An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)

  5. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  6. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  7. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  8. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-01-01

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10 8 n/s was obtained at a pulsed discharge of -51 kV, 7.3 A

  9. Multiplex Outputs ns Grade High-voltage Fast Pulse Generator Study

    International Nuclear Information System (INIS)

    Wang Xin; Chen Kenan

    2009-01-01

    Using a double-grid hydrogen thyratron, a fast pulse generator with four outputs, high-voltage, low jitter, was made to use at special occasion.In this paper, the basic structure of pulser, switching theory and double-grid driving of hydrogen thyratron was introduced, and also, the effects of grids driving pulses characteristics, the delay between too grids driving, the reservoir heater voltage and cathode heater voltage on the output are carefully examined in experiments. The pulse generator with four outputs was made to producing pulses with amplitude up to 4 kV, rise-time less than 15 ns and jitter less than 3 ns. (authors)

  10. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  11. Controlling the high frequency response of H{sub 2} by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm (Germany)

    2016-01-28

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

  12. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  13. The effect of electric field maximum on the Rabi flopping and generated higher frequency spectra

    International Nuclear Information System (INIS)

    Niu Yueping; Cui Ni; Xiang Yang; Li Ruxin; Gong Shangqing; Xu Zhizhan

    2008-01-01

    We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.

  14. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  15. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.

    Science.gov (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill

    2014-11-03

    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  16. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  17. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  18. LPS levels in root canals after the use of ozone gas and high frequency electrical pulses

    Directory of Open Access Journals (Sweden)

    Tiago André Fontoura de MELO

    2016-01-01

    Full Text Available Abstract The present study aims to verify the effect of ozone gas (OZY® System and high frequency electric pulse (Endox® System systems on human root canals previously contaminated with Escherichia colilipopolysaccharide (LPS. Fifty single-rooted teeth had their dental crowns removed and root lengths standardized to 16 mm. The root canals were prepared up to #60 hand K-files and sterilized using gamma radiation with cobalt 60. The specimens were divided into the following five groups (n = 10 based on the disinfection protocol used: OZY® System, one 120-second-pulse (OZY 1p; OZY® System, four 24-second-pulses (OZY 4p; and Endox® System (ENDOX. Contaminated and non-contaminated canals were exposed only to apyrogenic water and used as positive (C+ and negative (C- controls, respectively. LPS (O55:B55 was administered in all root canals except those belonging to group C-. After performing disinfection, LPS samples were collected from the canals using apyrogenic paper tips. Limulus Amoebocyte Lysate (LAL was used to quantify the LPS levels, and the data obtained was analyzed using one-way ANOVA. The disinfection protocols used were unable to reduce the LPS levels significantly (p = 0.019. The use of ozone gas and high frequency electric pulses was not effective in eliminating LPS from the root canals.

  19. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Yung Szen, E-mail: yungszen@utm.my [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan); Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Tabuchi, Yutaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro, E-mail: kitagawa@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan)

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  20. Low frequency, ca. 40 Hz, pulse trains recorded in the humpback whale assembly in Hawaii.

    Science.gov (United States)

    Darling, James D

    2015-11-01

    During studies of humpback whale song and social sounds in Hawaii, bouts of low frequency (ca. 40 Hz) pulses were periodically recorded. One example was made near an active group of eight adults (included 22 bouts, 2-13 s long, over 90 min); another close to an adult male-female pair (12 bouts, 9-93 s long, over 22 min). The mean peak and center frequencies (39 to 40 Hz) and bandwidth (13 Hz) were similar in both, but the organization of the pulses differed. Song components, social sounds, bubble trains, or other species do not provide a ready explanation for this sound.

  1. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  2. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...

  3. Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging.

    Science.gov (United States)

    Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling

    2017-09-01

    In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.

  4. MOSFET-based high voltage double square-wave pulse generator with an inductive adder configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Qiaogen, E-mail: hvzhang@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Long, Jinghua [College of Physics, Shenzhen University, Shenzhen 518060 (China); Lei, Yunfei; Liu, Jinyuan [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-09-01

    This paper presents a fast MOSFET-based solid-state pulse generator for high voltage double square-wave pulses. The generator consists mainly of an inductive adder system stacked of 20 solid-state modules. Each of the modules has 18 power MOSFETs in parallel, which are triggered by individual drive circuits; these drive circuits themselves are synchronously triggered by a signal from avalanche transistors. Our experiments demonstrate that the output pulses with amplitude of 8.1 kV and peak current of about 405 A are available at a load impedance of 20 Ω. The pulse has a double square-wave form with a rise and fall time of 40 ns and 26 ns, respectively and bottom flatness better than 12%. The interval time of the double square-wave pulses can be adjustable by varying the interval time of the trigger pulses.

  5. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  6. Dead-Time Generation in Six-Phase Frequency Inverter

    Directory of Open Access Journals (Sweden)

    Aurelijus Pitrėnas

    2016-06-01

    Full Text Available In this paper control of multi-phase induction drives is discussed. Structure of six-phase frequency inverter is examined. The article deals with dead-time generation circuits in six-phase frequency inverter for transistor control signals. Computer models of dead-time circuits is created using LTspice software package. Simulation results are compared with experimental results of the tested dead-time circuits. Parameters obtained in simulation results are close to the parameters obtained in experimental results.

  7. Compact generator with semiconductor current interrupter, voltage to 300 kV and pulse repetition rate to 2 kHz

    International Nuclear Information System (INIS)

    Lyubutin, S.K.; Rukin, S.N.; Slovikovskij, B.G.

    2000-01-01

    Compact generator with a semiconductor current interrupter (SOS-diode), forming on the resistive load pulses with the amplitude up to 300 kV, duration from 30 up to 50 ns and the pulse sequence frequency 300 Hz by long operation and up to 2 kHz in the 30-second packet, is described. The generator contains a thyristor charge unit, magnetic compressor and inductive storage with a semiconductor current interrupter on the SOS-diode basis. The generator mean output capacity by the pulse maximum sequence frequency and 250 kV voltage equals 16 kw. The generator dimensions are 0.85 x 0.65 x 0.42 m, its mass equals approximately 115 kg [ru

  8. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency.

    Science.gov (United States)

    Mohler, Kathrin J; Bohn, Bernhard J; Yan, Ming; Mélen, Gwénaëlle; Hänsch, Theodor W; Picqué, Nathalie

    2017-01-15

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate a spectra of liquids, which span 1100  cm-1 of Raman shifts. At a resolution of 6  cm-1, their measurement time may be as short as 5 μs for a refresh rate of 2 kHz. The waiting period between acquisitions is improved 10-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  9. Extremely short pulses via stark modulation of the atomic transition frequencies.

    Science.gov (United States)

    Radeonychev, Y V; Polovinkin, V A; Kocharovskaya, Olga

    2010-10-29

    We propose a universal method to produce extremely short pulses of electromagnetic radiation in various spectral ranges. The essence of the method is a resonant interaction of radiation with atoms under the conditions of adiabatic periodic modulation of atomic transition frequencies by a far-off-resonant control laser field via dynamic Stark shift of the atomic levels and proper adjustment of the control field intensity and frequency, as well as the optical depth of the medium. The potential of the method is illustrated by an example in a hydrogenlike atomic system.

  10. Analytic description of Raman-induced frequency shift in the case of non-soliton ultrashort pulses

    International Nuclear Information System (INIS)

    Bugay, Aleksandr N.; Khalyapin, Vyacheslav A.

    2017-01-01

    Raman-induced frequency shift of ultrashort pulses have been studied extensively for the soliton propagation regime. Here we derive explicit analytic expressions for the evolution of Raman-induced frequency shift in much less studied case of non-soliton ultrashort pulses. Pulse spectra may belong to any region of group velocity dispersion including zero group dispersion point. The analysis is based on the moment method. Obtained expressions fit well to the numerical solution of the nonlinear wave equation. - Highlights: • Explicit analytic formulas for the evolution of Raman-induced frequency shift are derived in the case of non-soliton pulses. • Dynamics of non-soliton ultrashort pulses in the cases of positive and zero group dispersion is considered. • The deceleration and the saturation of Raman-induced frequency shift are analyzed. • The calculation relies on the moment method and fit well to the numerical solution of the nonlinear wave equation.

  11. Analytic description of Raman-induced frequency shift in the case of non-soliton ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bugay, Aleksandr N., E-mail: bugay_aleksandr@mail.ru [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Moscow Region (Russian Federation); Khalyapin, Vyacheslav A., E-mail: slavasxi@gmail.com [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kaliningrad State Technical University, Kaliningrad, 236000 (Russian Federation)

    2017-01-30

    Raman-induced frequency shift of ultrashort pulses have been studied extensively for the soliton propagation regime. Here we derive explicit analytic expressions for the evolution of Raman-induced frequency shift in much less studied case of non-soliton ultrashort pulses. Pulse spectra may belong to any region of group velocity dispersion including zero group dispersion point. The analysis is based on the moment method. Obtained expressions fit well to the numerical solution of the nonlinear wave equation. - Highlights: • Explicit analytic formulas for the evolution of Raman-induced frequency shift are derived in the case of non-soliton pulses. • Dynamics of non-soliton ultrashort pulses in the cases of positive and zero group dispersion is considered. • The deceleration and the saturation of Raman-induced frequency shift are analyzed. • The calculation relies on the moment method and fit well to the numerical solution of the nonlinear wave equation.

  12. Generation of an incident focused light pulse in FDTD.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  13. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  14. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  15. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  16. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  17. Flat-top pulse generation based on a fiber Bragg grating in transmission.

    Science.gov (United States)

    Preciado, Miguel A; Muriel, Miguel A

    2009-03-15

    We propose and analyze a flat-top pulse generator based on a fiber Bragg grating (FBG) in transmission. As is shown in the examples, a uniform period FBG properly designed can exhibit a spectral response in transmission close to sinc function (in amplitude and phase) in a certain bandwidth, because of the logarithm Hilbert transform relations, which can be used to reshape a Gaussian-like input pulse into a flat-top pulse.

  18. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    International Nuclear Information System (INIS)

    Lim, Heuijin; Jeong, Dong Hyeok; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-01-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun

  19. Layout of NALM fiber laser with adjustable peak power of generated pulses.

    Science.gov (United States)

    Smirnov, Sergey; Kobtsev, Sergey; Ivanenko, Alexey; Kokhanovskiy, Alexey; Kemmer, Anna; Gervaziev, Mikhail

    2017-05-01

    The Letter proposes a new layout of a passively mode-locked fiber laser based on a nonlinear amplifying loop mirror (NALM) with two stretches of active fiber and two independently controlled pump modules. In contrast with conventional NALM configurations using a single piece of active fiber that yields virtually constant peak power, the proposed novel laser features larger than a factor of 2 adjustment range of peak power of generated pulses. The proposed layout also provides independent adjustment of duration and peak power of generated pulses as well as power-independent control of generated pulse spectral width impossible in NALM lasers with a single piece of active fiber.

  20. Research on determine the absolute neutron output of distributed pulse generators

    International Nuclear Information System (INIS)

    Li Bojun; Tang Zhangkui; Wang Dong; Yang Gaozhao; Peng Taiping

    2009-01-01

    In order to determine the absolute neutron output of distributed pulse generators, we deduced equivalent length to deal with experimental data, according to the different layout and weighting of multiple pulse generators. The deposited energy in scintillation crystal and the integral flux which drilling through crystal interface was simulated by MCNP code. The result shows the simulated proportion of different distributed pulse generators is approximately agreed with experimental data. The validity of the equivalent length model was proved by the consistent results between calculation and experimental data. (authors)

  1. Development of a fast rise-time, high-voltage pulse generator

    International Nuclear Information System (INIS)

    Zhang Yanxia; Zhu Jie; Li Xianyou

    2006-01-01

    In order to test the attenuation of the system, a fast rise-time, high-voltage pulse generator is required for the fast pulse signal measurement. The paper presents the development of the generator. More emphasis is paid on the discussion of the difficulties occurring in the circuit debugging and their resolutions. The output rise-time of the generator is 700 ps, the amplitude is adjustable in the range of 0 to 500 V, the pulse-width is adjustable in the range of 4ns to 1μs. (authors)

  2. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  3. Online frequency estimation with applications to engine and generator sets

    Science.gov (United States)

    Manngård, Mikael; Böling, Jari M.

    2017-07-01

    Frequency and spectral analysis based on the discrete Fourier transform is a fundamental task in signal processing and machine diagnostics. This paper aims at presenting computationally efficient methods for real-time estimation of stationary and time-varying frequency components in signals. A brief survey of the sliding time window discrete Fourier transform and Goertzel filter is presented, and two filter banks consisting of: (i) sliding time window Goertzel filters (ii) infinite impulse response narrow bandpass filters are proposed for estimating instantaneous frequencies. The proposed methods show excellent results on both simulation studies and on a case study using angular speed data measurements of the crankshaft of a marine diesel engine-generator set.

  4. Frequency noise in frequency swept fiber laser

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-01-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto......- optical modulators and forward propagating Brillouin scattering appear in the spectrum. © 2013 Optical Society of America....

  5. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Science.gov (United States)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  6. EFFICACY OF LASER PULSE FREQUENCIES ON BLOOD FLOW IN TYPE 2 DIABETIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amir Nazih Wadee

    2017-04-01

    Full Text Available Background: Research reports had noted an apparent increase in cutaneous and deep blood flow as a result of low-intensity laser therapy (LLLT in normal subjects. The purpose of te study was to investigate the effective laser pulse frequency either (200 or 2000 Hz on improving blood flow in type 2 diabetic patients. Forty-five diabetic patients selected from out clinic of Kasr El-Aini Hospital, Cairo University assigned randomly into three groups. The blood flow volume, blood flow velocity and caliper of the blood vessel were evaluated before laser application and after twelve sessions using duplex Doppler ultrasound. Methods: Combined He-Ne and infrared LILT was administered three times a week for twelve sessions at intensity of 3 J, power 500 mW, 808 nm duration 15 min and pulse frequency 200 Hz for group I, 2000 Hz for group II, and sham LILT for group III on the sural artery at posterior aspect of dominant leg. Result: Paired t-test revealed that low pulse frequency (200 Hz LILT produced significant improvement in blood flow volume and blood flow velocity (t= 1.76, p= 0.001 and t= 2.8, p= 0.01 respectively (P<0.05. While there was no significant changes in caliper of the blood vessel of group I, blood flow volume, blood flow velocity or caliper of the blood vessel of group II and group III (t= 2.15, p= 1, t= 2.15, p= 1, t= 1.11 p= 0.31, t= 1.54, p= 0.15, t= 2.51, p= 1, t= 1.21 p= 0.33, t= 1.45, p= 0.15 respectively (P<0.05. ANOVA test in between groups revealed insignificant changes in all pre and post- measures except significant results in blood flow volume and velocity which indicating the superiority of group I on both group II and III by post hoc test. Conclusion: low pulse frequency of LILT (200 Hz could improve blood flow than high pulse frequency (2000 Hz.

  7. Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.

    2002-01-01

    We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three...

  8. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  9. Multiple frequency generation by bunched solitons in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1981-01-01

    A detailed numerical study of a long Josephson tunnel junction modeled by a perturbed sine-Gordon equation demonstrates the existence of a variety of bunched soliton configurations. Thus, on the third zero-field step of the V-I characteristic, two simultaneous adjacent frequencies are generated...... in a narrow bias current range. The analysis of the soliton modes provides an explanation of recent experimental observations....

  10. Dynamics of microresonator frequency comb generation: models and stability

    Directory of Open Access Journals (Sweden)

    Hansson Tobias

    2016-06-01

    Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  11. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    International Nuclear Information System (INIS)

    De Marco, M.; Krása, J.; Margarone, D.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Korn, G.; Weber, S.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Ullschmied, J.; Ahmed, H.; Borghesi, M.; Kar, S.; Limpouch, J.; Velardi, L.; Side, D. Delle; Nassisi, V.

    2016-01-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  12. The change of electric potentials in the oral cavity after application of extremely low frequency pulsed magnetic field

    Directory of Open Access Journals (Sweden)

    Piotr Skomro

    2012-12-01

    Full Text Available Electric potentials occurring in the oral cavity deserve attention as they may cause various diseases and subjective feelings, which are very difficult to treat. The aim of this study was to evaluate the electric potentials within the oral cavity in patients with metal fillings and metal prosthetic restorations, after using a pulsed electromagnetic field. The study was carried out on 84 patients. The Viofor JPS Classic device was used in the treatment. It generates a pulsed electromagnetic field with low induction of the extremely low frequency (ELF range. Average values of electric potentials in the preliminary test were about the same in both groups; they were 148.8 mV and 145.5 mV. After another appliance of ELF fields there was found a steady decline in the average value of electric potentials in the study group. This decrease was statistically highly significant, while mean values of electric potentials in the control group were characterized by a slightly upward tendency. The obtained statistically significant reduction of electric potentials in the oral cavity of patients having metal fillings and metal prosthetic restorations, after application of the Viofor JPS Classic device, implies a huge impact of ELF pulsed electromagnetic field on inhibition of electrochemical processes, as well as on inhibition of dental alloy corrosion. 

  13. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  14. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  15. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  16. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  17. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  18. Built and operation of three powerful AC pulse flywheel generator sets

    International Nuclear Information System (INIS)

    Wang Shujin; Li Huajun; Li Zhijian; Huang Zhaorong; Wang Xiaoping; Xu Lirong; Liu Xuemei; Bu Mingnan; Hu Haotian; Mao Weicheng

    2006-10-01

    Based on modification of the old pulse generator sets the new flywheel generator system has been developed. Now it is successfully used in supplying power to the HL-2A tokamak and meets the needs of HL-2A physical experiments. By far it is the most powerful pulse flywheel generator system on in-stalled gross capacity, energy storage and release in China today. In addition, the characteristic of the flywheel generator system is that each generator stator has two Y windings with 30 degree phase shift to avoid damaging the rotor due to rectifying load. (authors)

  19. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    Science.gov (United States)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  20. High-voltage many-pulses generator with inductive energy store and fuse

    International Nuclear Information System (INIS)

    Kovalev, V.P.; Diyankov, V.S.; Kormilitsin, A.I.; Lavrent'ev, B.N.

    1996-01-01

    The high-voltage generator with inductive energy store and fuses as opening switch that generate series of powerful pulses is considered. This generator differs from the ordinary generator with inductive store by the cross-section of the series copper wires. The parameters of the wires are chosen based on empirical relations. The generation principle was tested on the two high-voltage generators with characteristic impedance 2.2 ohm, 4 ohm and with output voltages of 140 kV and 420 kV, respectively. Copper wires 0.1 to 0.23 mm in diameter were used. Series of 2 to 5 pulses of 100 to 300 ns duration, 400 to 1000 kV amplitude and 1 - 10 GW power were obtained. Pulses can be both the same and different. Two successive bremsstrahlung radiation pulses were obtain on the EMIR-M and IGUR-3 devices. Series power megavolt pulses can be generated with a power exceeding 10 11 W, pulse duration of 10 -3 to 10 -6 s, and time interval between them 10 -7 to 10 -5 s. (author). 4 figs., 2 refs

  1. High-voltage many-pulses generator with inductive energy store and fuse

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, V P; Diyankov, V S; Kormilitsin, A I; Lavrent` ev, B N [All-Russian Research Inst. of Technical Physics, Snezhinsk (Russian Federation)

    1997-12-31

    The high-voltage generator with inductive energy store and fuses as opening switch that generate series of powerful pulses is considered. This generator differs from the ordinary generator with inductive store by the cross-section of the series copper wires. The parameters of the wires are chosen based on empirical relations. The generation principle was tested on the two high-voltage generators with characteristic impedance 2.2 ohm, 4 ohm and with output voltages of 140 kV and 420 kV, respectively. Copper wires 0.1 to 0.23 mm in diameter were used. Series of 2 to 5 pulses of 100 to 300 ns duration, 400 to 1000 kV amplitude and 1 - 10 GW power were obtained. Pulses can be both the same and different. Two successive bremsstrahlung radiation pulses were obtain on the EMIR-M and IGUR-3 devices. Series power megavolt pulses can be generated with a power exceeding 10{sup 11} W, pulse duration of 10{sup -3} to 10{sup -6} s, and time interval between them 10{sup -7} to 10{sup -5} s. (author). 4 figs., 2 refs.

  2. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  3. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    Science.gov (United States)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  4. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  5. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  6. Study of novel plasma devices generated by high power lasers coupled with a micro-pulse power technology

    International Nuclear Information System (INIS)

    Nishida, A; Chen, Z L; Jin, Z; Kondo, K; Nakagawa, M; Kodama, R; Arima, H; Yoneda, H

    2008-01-01

    The authors have proposed introducing a micro pulse power technology in high power laser plasma experiments to boost up the return current, resulting in efficiently guiding of energetic electrons. High current pulse power generators with a pulse laser trigger system generate high-density plasma that is well conductor. To efficiently guiding by using a micro pulse power, we estimated parameter of a micro pulse power system that is voltage of rise time, current, charging voltage and capacitance

  7. Autocapture compatibility in patients with the MembraneEX lead and Affinity pulse generators.

    Science.gov (United States)

    Schuchert, A; Voitk, J; Liu, B; Kolk, R; Stammwitz, E; Beiras, J

    2001-10-01

    The first Autocapture generation worked well with all recommended leads. The newer Autocapture generation provides a more sensitive resolution for evoked response testing and its implementation in a dual-chamber device. The purpose of the study was to evaluate the performance of the Affinity SR/DR pacemaker with the new Autocapture algorithm in combination with the small surface area pacing lead MembraneEX in 129 patients. Autocapture ventricular threshold, sensing threshold, lead impedance, evoked response (ER) and polarization signals were determined at implantation and discharge, as well as after 1 and 3 months. Autocapture recommendation rate was based on the ER sensitivity test. The median pacing threshold was 0.38, 0.50, 0.75, 0.75 V at implant, discharge, 1 and 3 months post-implant, respectively. The respective data for median lead impedance were 744, 605, 649 and 691 ohms; median sensing threshold was 12.5 mV at all visits. The median ER amplitude was 9.0, 10.1, 9.9 and 10.1 mV and the median polarization signal 0.39 mV at all visits. The frequency of recommended Autocapture activation was 98.3%, 99.2%, 98.3% and 96.2% of all patients at implant, at discharge, 1 and 3 months post-implant respectively. In conclusion, the studied pulse generator enabled, in combination with this pacing lead, in >95% of all patients activation of Autocapture.

  8. Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hung-I. Hsieh

    2013-01-01

    Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.

  9. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  10. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    International Nuclear Information System (INIS)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-01-01

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  11. A low-cost programmable pulse generator for physiology and behavior

    Directory of Open Access Journals (Sweden)

    Joshua I Sanders

    2014-12-01

    Full Text Available Precisely timed experimental manipulations of the brain and its sensory environment are often employed to reveal principles of brain function. While complex and reliable pulse trains for temporal stimulus control can be generated with commercial instruments, contemporary options remain expensive and proprietary. We have developed Pulse Pal, an open source device that allows users to create and trigger software-defined trains of voltage pulses with high temporal precision. Here we describe Pulse Pal’s circuitry and firmware, and characterize its precision and reliability. In addition, we supply online documentation with instructions for assembling, testing and installing Pulse Pal. While the device can be operated as a stand-alone instrument, we also provide application programming interfaces in several programming languages. As an inexpensive, flexible and open solution for temporal control, we anticipate that Pulse Pal will be used to address a wide range of instrumentation timing challenges in neuroscience research.

  12. Spike train generation and current-to-frequency conversion in silicon diodes

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  13. High-voltage nanosecond Marx generator with quasi-rectangular pulses

    International Nuclear Information System (INIS)

    Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.

    1999-01-01

    The automated high-voltage nanosecond generator, forming single pulses of any polarity on the load of 17 Ohm with polarity voltage from 100 up to 300 kV at the semiheight of 80 ns and the front of 7 ns is described. The generator is assembled on the basis of low-inductive capacitors, which by discharge form the pulse, close by form to rectangular one [ru

  14. Understanding of self-terminating pulse generation using silicon controlled rectifier and RC load

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chris, E-mail: chrischang81@gmail.com; Karunasiri, Gamani, E-mail: karunasiri@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, CA 93943 (United States); Alves, Fabio, E-mail: falves@alionscience.com [Alion Science and Technology at NPS, Monterey, CA 93943 (United States)

    2016-01-15

    Recently a silicon controlled rectifier (SCR)-based circuit that generates self-terminating voltage pulses was employed for the detection of light and ionizing radiation in pulse mode. The circuit consisted of a SCR connected in series with a RC load and DC bias. In this paper, we report the investigation of the physics underlying the pulsing mechanism of the SCR-based. It was found that during the switching of SCR, the voltage across the capacitor increased beyond that of the DC bias, thus generating a reverse current in the circuit, which helped to turn the SCR off. The pulsing was found to be sustainable only for a specific range of RC values depending on the SCR’s intrinsic turn-on/off times. The findings of this work will help to design optimum SCR based circuits for pulse mode detection of light and ionizing radiation without external amplification circuitry.

  15. Third order effects generated by refractive lenses on sub 20 femtosecond optical pulses

    International Nuclear Information System (INIS)

    Estrada-Silva, F C; Rosete-Aguilar, M; Garduno-Mejia, J; Gonzalez-Galicia, M A; Bruce, N C; Ortega-Martinez, R

    2011-01-01

    When using lenses to focus ultra-short pulses, chromatic aberration produces pulse spreading, after propagation through the lens. The focusing of ultra-short pulses has been analyzed by using Fourier optics where the field amplitude of the pulse is evaluated around the focal region of the lens by performing a third order expansion on the wave number around the central frequency of the carrier. In the literature, the pulse focusing in the neighborhood of the focal region of the lens has been calculated by expanding the wave number up to second order. The second order approximation works for pulses with a duration greater than 20fs, or pulses propagating through low dispersion materials; but, it is necessary to do third order approximation for pulses with a shorter duration, or propagating through highly dispersive materials. In this paper we analyze 15fs and 20fs pulses, with a carrier wavelength of 810nm, at the paraxial focal plane of singlets and achromatic doublets. The analysis includes the third order GVD and the results are compared with those obtained when the wave number is expanded up to second order.

  16. Study and realisation of a programmable generator of pulse sequences, for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lambert, Daniel

    1974-01-01

    After having recalled the operation of pulse-based nuclear magnetic resonance and the use of pulse sequences in NMR-based measurements, and outlined the need for a pulse sequence generator, the author reports the design and realisation of such a device. He describes its general organisation with its base sequence, base clock, sequence start, duration, displays, data transfers, data processing, and signal distribution. He presents the chosen technology (ECL logics), the sequence base set, time bases, multiplexers, comparison sets, the distribution set, the sequence programming, the sampling and output set. He reports tests and the use of the so-designed generator [fr

  17. Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers

    Directory of Open Access Journals (Sweden)

    José Azaña

    2005-06-01

    Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.

  18. Frequency Invariant Beam Steering for Short-Pulse Systems with a Rotman Lens

    Directory of Open Access Journals (Sweden)

    Andreas Lambrecht

    2010-01-01

    Full Text Available A promising approach for beam steering of high-voltage transient signals for HPEM-systems (High Power Electro Magnetic is presented. The inherent capability of the Rotman lens to provide true time delays is used to develop a prototype beam steering device for an antielectronics HPEM system in the frequency range from 350 MHz to 5 GHz. Results of analytical calculations, simulations, and measurements from a hardware prototype are presented. The detailed mechanical setup of the Rotman lens is presented. Additionally the output pulses are investigated when inputting a Gaussian-like transient signal. Then time domain measures of quality (full width at half maximum, ringing, delay spread, maximum of transfer function are investigated for these output transients, and the simulation and measurement results are compared. A concluding analysis of the realizable time domain array pattern shows the radiated pulse form.

  19. A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate

    Science.gov (United States)

    Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.

    2018-04-01

    Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.

  20. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat.

    Science.gov (United States)

    Li, S Y; Li, X F; Hu, M H; Shao, B; Poston, L; Lightman, S L; O'Byrne, K T

    2014-08-01

    The neural mechanisms controlling puberty onset remain enigmatic. Humans with loss of function mutations in TAC3 or TACR3, the genes encoding neurokinin B (NKB) or its receptor, neurokinin-3 receptor (NK3R), respectively, present with severe congenital gonadotrophin deficiency and pubertal failure. Animal studies have shown ambiguous actions of NKB-NK3R signalling with respect to controlling puberty onset. The present study aimed to determine the role of endogenous NKB-NK3R signalling in the control of pulsatile luteinising hormone (LH) secretion and the timing of puberty onset, and also whether precocious pubertal onset as a result of an obesogenic diet is similarly regulated by this neuropeptide system. Prepubertal female rats, chronically implanted with i.c.v. cannulae, were administered SB222200, a NK3R antagonist, or artificial cerebrospinal fluid via an osmotic mini-pump for 14 days. SB222200 significantly delayed the onset of vaginal opening and first oestrus (as markers of puberty) compared to controls in both normal and high-fat diet fed animals. Additionally, serial blood sampling, via chronic indwelling cardiac catheters, revealed that the increase in LH pulse frequency was delayed and that the LH pulse amplitude was reduced in response to NK3R antagonism, regardless of dietary status. These data suggest that endogenous NKB-NK3R signalling plays a role in controlling the timing of puberty and the associated acceleration of gonadotrophin-releasing hormone pulse generator frequency in the female rat. © 2014 British Society for Neuroendocrinology.