WorldWideScience

Sample records for pulse counting mode

  1. Pulse mode counting system with parallel port interface

    International Nuclear Information System (INIS)

    Farooq, M.A.; Mushtaq, N.; Sultan, M.; Karim, A.

    2010-11-01

    Pulse mode Counting System (PPCS) module has been designed and developed which is compatible with SPP (Standard Parallel Port) and EPP Enhanced Parallel Port). This system can capture, present and store real time data in a well formatted form. The stored data is in a format that can be imported in different packages for further analysis. The purpose of this system is to facilitate the research experiments having frequency range up to 4 MHz and storing range up to 16 million counts. (author)

  2. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    Science.gov (United States)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  3. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode and/or with gas amplification

    CERN Document Server

    Charpak, Georges; Breuil, P; Peskov, Vladimir

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and cetera. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification. . To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of 1. The second type alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10E4). A detailed comparison between these two detectors is given as well as comparison with the commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible ap...

  4. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.

  5. CERNDxCTA counting mode chip

    International Nuclear Information System (INIS)

    Moraes, D.; Kaplon, J.; Nygard, E.

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e - , for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors

  6. CERN_DxCTA counting mode chip

    CERN Document Server

    Moraes, D; Nygård, E

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e−, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  7. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    International Nuclear Information System (INIS)

    Charpak, G; Benaben, P; Breuil, P; Peskov, V

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10 4 ). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  8. CERN{sub D}xCTA counting mode chip

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, D. [CERN, CH-1211 Geneva 23 (Switzerland)], E-mail: danielle.moraes@cern.ch; Kaplon, J. [CERN, CH-1211 Geneva 23 (Switzerland); Nygard, E. [Interon AS, Asker, Norway and DX-ray Inc., Northridge, CA (United States)

    2008-06-11

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 {mu}m CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e{sup -}, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  9. Multiplicity counting from fission chamber signals in the current mode

    Energy Technology Data Exchange (ETDEWEB)

    Pázsit, I. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, 114, POB 49, H-1525 Budapest (Hungary); Nagy, L. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Budapest University of Technology and Economics, Institute of Nuclear Techniques, H-1111 Budapest (Hungary)

    2016-12-11

    In nuclear safeguards, estimation of sample parameters using neutron-based non-destructive assay methods is traditionally based on multiplicity counting with thermal neutron detectors in the pulse mode. These methods in general require multi-channel analysers and various dead time correction methods. This paper proposes and elaborates on an alternative method, which is based on fast neutron measurements with fission chambers in the current mode. A theory of “multiplicity counting” with fission chambers is developed by incorporating Böhnel's concept of superfission [1] into a master equation formalism, developed recently by the present authors for the statistical theory of fission chamber signals [2,3]. Explicit expressions are derived for the first three central auto- and cross moments (cumulants) of the signals of up to three detectors. These constitute the generalisation of the traditional Campbell relationships for the case when the incoming events represent a compound Poisson distribution. Because now the expressions contain the factorial moments of the compound source, they contain the same information as the singles, doubles and triples rates of traditional multiplicity counting. The results show that in addition to the detector efficiency, the detector pulse shape also enters the formulas; hence, the method requires a more involved calibration than the traditional method of multiplicity counting. However, the method has some advantages by not needing dead time corrections, as well as having a simpler and more efficient data processing procedure, in particular for cross-correlations between different detectors, than the traditional multiplicity counting methods.

  10. An Economical Fast Discriminator for Nuclear Pulse Counting

    International Nuclear Information System (INIS)

    Issarachai, Opas; Punnachaiya, Suvit

    2009-07-01

    Full text: This research work was aimed to develop a fast discriminator at low cost but high capability for discrimination a nanosecond nuclear pulse. The fast discriminator can be used in association with fast photon counting system. The designed structure consisted of the ultra-fast voltage comparator using ADCMP601 integrated circuit, the monostable multivibrator with controllable pulse width output by propagation delay of logic gate, and the fast response buffer amplifier. The tested results of pulse height discrimination of 0-5 V nuclear pulse with 20 ns (FWHM) pulse width showed the correlation coefficient (R 2 ) between discrimination level and pulse height was 0.998, while the pulse rate more than 10 MHz could be counted. The 30 ns logic pulse width output revealed high stable and could be smoothly driven to low impedance load at 50 Ω. For pulse signal transmission to the counter, it was also found that the termination of reflected signal must be considered because it may cause pulse counting error

  11. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Fast pulse discriminator for photon counting at high photon densities

    International Nuclear Information System (INIS)

    Benoit, R.; Pedrini, A.

    1977-03-01

    A fast tunnel diode discriminator for photon counting up to 200MHz count frequency is described. The tunnel diode is operated on its apparent I.V. characteristics displayed when the diode is driven into its oscillating region. The pulse shaper-discriminator is completely D.C. coupled in order to avoid base-line shift at high pulse rates

  13. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  14. Multimode pulse counter

    International Nuclear Information System (INIS)

    Natanzon, D.D.

    1982-01-01

    A pulse counter with code conversion is described. The counter is based on the integrated circuits of direct-counting devices of medium integration. The counter ensures various modes of pulse counting depending on the logical control signals: reversible, two-channel summing, one-channel summing binary, summing with ''storage'' signal code fixation without interrupting pulse counting. Arrangement of the suggested structure as a microcircuit of medium integration might contribute to reduction in the counter type nomenclature in digital families of widely used integrated circuits

  15. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  16. Studies on the Pulse Rate, Pedometer Count and Satisfactoin Degree at Various Exercise

    OpenAIRE

    小原, 史朗

    2004-01-01

    This investigation examined whether free exercise of students became good stimulation of breathing circulation function from relation of pulse rate and pedometer count. And, I examined it on satisfaction degree after exercise. Object person was 432 man students (total of 1391) and 94 woman students (total of 472). As for relation of pulse rate and pedometer count, statistical meaning was recognized by man and women. The exercise that a pulse rate and pedometer count were high together seemed ...

  17. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  18. Resonant count diagram and solar g mode oscillations

    International Nuclear Information System (INIS)

    Guenther, D.B.; Demarque, P.

    1984-01-01

    Evidence is provided to support the hypothesis that, because of the particular frequency separations of the solar g modes, resonant three-wave interactions stimulate only a selected few g modes. A resonant count diagram was obtained by plotting the total number of possible resonant three-wave interactions or a given beat frequency against the inverse of the beat frequency (the beat period), within a given frequency tolerance. The 1 = 1, 2, 3, 4 g modes calculated by Christensen-Dalsgaard, Gough and Morgan (1979) for a standard model of the Sun were used. The diagram has a significant peak at 160 minutes as well as other peaks at longer periods. The g modes that Delache and Scherrer (1983) tentatively identified from the Crimea-Stanford data were also plotted. These modes were found to correspond with the other peaks in the diagram. This coincidence between the observed g modes and the peaks in the resonant count diagram suggest that the observed g modes do owe their observability to resonant three-wave interactions

  19. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  20. The detection and estimation of spurious pulses

    International Nuclear Information System (INIS)

    1976-01-01

    Spurious pulses which may interfere with the counting of particles can sometimes easily be detected by integral counting as a function of amplification or by pulse-height analysis. However, in order to estimate their count rate, more elaborate methods based on their time relationship are needed. Direct techniques (delayed coincidences, use of a multichannel analyser in time mode, time-to-amplitude conversion) and gating techniques (simple subtraction, correlation counting, pulsed sources, modulo counting) are discussed. These techniques are compared to each other and their application to various detectors is studied as well as the influence of a dead time on spurious pulses

  1. Pulse-duration discrimination for increasing counting characteristic plateau and for improving counting rate stability of a scintillation counter

    International Nuclear Information System (INIS)

    Kuz'min, M.G.

    1977-01-01

    For greater stability of scintillation counters operation, discussed is the possibility for increasing the plateau and reducing its slope. Presented is the circuit for discrimination of the signal pulses from input pulses of a photomultiplier. The counting characteristics have been measured with the scintillation detectors being irradiated by different gamma sources ( 60 Co, 137 Cs, 241 Am) and without the source when the scintillation detector is shielded by a tungsten cylinder with a wall thickness of 23 mm. The comparison has revealed that discrimination in duration increase the plateau and reduces its slope. Proceeding from comparison of the noise characteristics, the relationship is found between the noise pulse number and gamma radiation energy. For better stability of the counting rate it is suggested to introduce into the scintillation counter the circuit for duration discrimination of the output pulses of a photomultiplier

  2. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  3. Polymeric electrochemical element for adaptive networks: Pulse mode

    International Nuclear Information System (INIS)

    Smerieri, Anteo; Berzina, Tatiana; Erokhin, Victor; Fontana, M. P.

    2008-01-01

    An electrochemically controlled polymeric heterojunction working as a memristor, i.e., having memory properties, was investigated in pulse mode, mimicking synaptic behavior of signal transmission in biological systems. Influence of parameters such as pulse duration, interval between pulses, and value of potential base level was analyzed. Learning capabilities were shown to be reversible and repeatable for both potentiation and inhibition of signal transmission. The adaptive behavior of the element was investigated and was shown to be more efficient than the dc mode

  4. Spectrum library concept and pulse shape analysis in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Kaihola, L [Wallac Oy, Turku (Finland)

    1997-03-01

    Wallac introduced in 1990 a new absolute liquid scintillation counting (LSC) method, Digital Overlay Technique (DOT) to correct for quench. This method allows quantization of multilabel samples by referring to library spectra which are generated against chemical and color quench indices at the factory. The libraries can further be expanded to any beta emitter by user with a method called fine tuning, which can be carried out even with a single sample. Spectrum libraries are created over the whole spectrum range of the radionuclide and allow automatic identification of a single label beta emitting radionuclide, called Easy Count method. Another improvement in LSC is commercial introduction of Pulse Shape Analysis (PSA) in 1986 by Wallac. This method recognizes alpha particle decay by pulse shape and leads to excellent sensitivity in alpha counting because most of the background signal in LSC comprises of short or beta like pulses. PSA detects alpha events in the presence of high excess of beta activity over alphas, up to a ratio 100000 to 1. (orig.)

  5. Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R C; Hayes, D W [Du Pont de Nemours (E.I.) and Co., Aiken, S.C. (USA). Savannah River Lab.

    1975-12-01

    A pulse-shape analysis (PSA) unit of commercial design has been incorporated into a proportional counting system to determine the effectiveness of pulse-shape discrimination in increasing the sensitivity of tritium counting. It was found that a quantitative determination of tritium could be obtained directly from the PSA time spectrum eliminating the need for beta-ray energy selection used in the pulse-shape discrimination (PSD) technique. The performance of the proportional counting system was tested using the PSA unit and anticoincidence shielding, both singly and combined, under several types of background. A background reduction factor of 169 was obtained from the combined PSA-anticoincidence system with only a 2% loss in tritium counting efficiency. The PSA method was also found to offer significant reductions in noise background.

  6. Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis

    International Nuclear Information System (INIS)

    Hochel, R.C.; Hayes, D.W.

    1975-01-01

    A pulse-shape analysis (PSA) unit of commercial design has been incorporated into a proportional counting system to determine the effectiveness of pulse-shape discrimination in increasing the sensitivity of tritium counting. It was found that a quantitative determination of tritium could be obtained directly from the PSA time spectrum eliminating the need for beta-ray energy selection used in the pulse-shape discrimination (PSD) technique. The performance of the proportional counting system was tested using the PSA unit and anticoincidence shielding, both singly and combined, under several types of background. A background reduction factor of 169 was obtained from the combined PSA-anticoincidence system with only a 2% loss in tritium counting efficiency. The PSA method was also found to offer significant reductions in noise background. (Auth.)

  7. Pulse amplifier with high 'common mode rejection'

    International Nuclear Information System (INIS)

    Ijlst, P.

    1987-01-01

    The input signal of a pulse amplifier contains large 'common-mode' signals which have to be suppressed. A transformer, especially constructed for this purpose, is described. It has been tried to optimize the signal to noise ratio of the pulse amplifier by means of noise analysis. (Auth.)

  8. Comprehensive nuclear counting and detector characterisation system for the radiochemistry laboratory

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Mishra, G.K.; Srinivas, K.C.; Venkatasubramani, C.R.

    2004-01-01

    The paper describes a comprehensive nuclear pulse counting system that can cater to up to seven nuclear detector set-ups located in different places in the laboratory. Each detector set up has an interfacing module that conditions the amplifier pulses and transmits them to a common counting system. The microcontroller-based system receives these pulses through a multiplexer and counts the pulses for a user specified preset time. The system has a routine to determine detector plateau characteristics and fix the detector operating voltage. In this mode, the system collects the EHT-versus- counts data in a EHT programmed sequence and plots the profile. The system conducts the counting routine for a stipulated number of times and does all necessary statistical tests to ensure the proper functioning of the detector under test. The system also includes a test routine that checks the performance of the counting system by connecting it to a local pulse generator. The microcontroller based system interacts with a PC through RS232 communication for user interaction and reporting. (author)

  9. Study on the behaviour of timing photomultipliers at a high counting rate

    International Nuclear Information System (INIS)

    Gladyshev, D.A.; Li, B.N.; Yunusov, Kh.R.

    1978-01-01

    Variations in the amplification factor K of a photomultiplier (PMU) with the accuracy of 1% in a pulse mode are studied. Measurements were performed by means of a light pulse generator based on a light diode which generates pulses at the repetition rate of 250-10 5 pulse/s. Relative variations in K were determined by the position of the peak gravity centre from the light diode using a pulse analyzer and a frequency meter. Results of PM testing show that, at a sudden counting rate increase, the amplification increases during the time period less than, the measurement time (less than 1 s) and returns to the stationary value. When the counting rate returns from 10 5 pulse/s to the initial value of 250 pulse/s, the amplification decreases and than increases to stationary value. The total time of K stabilization after counting rate applying constitutes 10-70 min. Restoration of K after counting rate removal occurs to be much slower, during 3 hr. 40 min. K values varied from 1 to 12%

  10. Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    NARCIS (Netherlands)

    Gordon Gallegos, Carlos; Guzmán, R.C.; Jimenez, A.; Leijtens, X.J.M.; Carpintero, G.

    2014-01-01

    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation

  11. Reducing the beam current in Linac4 in pulse to pulse mode.

    CERN Document Server

    Lallement, JB; CERN. Geneva. BE Department

    2009-01-01

    In order to deliver different beam intensities to users, we studied the possibility of varying the Linac4 beam current at PS Booster injection in pulse to pulse mode. This report gives the possible configurations of Linac4 Low and Medium Energy Beam Transport lines (LEBT and MEBT) that lead to a consistent current reduction.

  12. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    International Nuclear Information System (INIS)

    Langrock, Gert; Wiehl, Norbert; Kling, Hans-Otto; Mendel, Matthias; Naehler, Andrea; Tharun, Udo; Eberhardt, Klaus; Trautmann, Norbert; Kratz, Jens Volker

    2015-01-01

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s -1 (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  13. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Energy Technology Data Exchange (ETDEWEB)

    Elter, Zs. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Jammes, C., E-mail: christian.jammes@cea.fr [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pázsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49 (Hungary); Filliatre, P. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-02-21

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  14. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Langrock, Gert; Wiehl, Norbert; Kling, Hans-Otto; Mendel, Matthias; Naehler, Andrea; Tharun, Udo; Eberhardt, Klaus; Trautmann, Norbert; Kratz, Jens Volker [Mainz Univ. (Germany). Inst. fuer Kernchemie; Omtvedt, Jon-Petter [Oslo Univ. (Norway). Dept. of Chemistry; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2015-05-01

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s{sup -1} (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  15. Design criteria for pulse transformers used in neutron detector pulse counting channels

    International Nuclear Information System (INIS)

    Powler, E.P.

    1963-10-01

    The need for long cables between the detector and head amplifier in neutron pulse counting channels has led to the development of systems in which a transformer is used to 'match' the high impedance of a fission or proportional counter to the characteristic impedance of the cable. A further transformer can be used to match the cable to the input of a low noise pulse amplifier if this has a high impedance. This report is intended to give the designer sufficient information to optimise a system and predict the performance in terms of signal to noise ratio, resolving time and gain. Related problems are covered and include the use of balanced twin cables, the requirements of temperatures up to 500 deg. C and the need for high interference rejection. Two systems are described in some detail to emphasise the principles of design. (author)

  16. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    International Nuclear Information System (INIS)

    Yao, X K

    2015-01-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research. (paper)

  17. Single electron counting using a dual MCP assembly

    International Nuclear Information System (INIS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming

    2016-01-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 µm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained. - Highlights: • Dual MCPs assembly with four electrodes using different voltage combinations has been investigated for single electron counting. • Both the MCP voltages and the gap voltage can affect the gain, pulse height resolution and P/V ratio. • A high gain of the first stage MCP, a saturation mode of the second stage MCP and an appropriately reverse gap voltage can improve the resolution greatly. • The optimum voltage arrangements is significant for the design of MCP detectors in single electron counting applications.

  18. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  19. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker.

    Science.gov (United States)

    Hu, Guoqing; Pan, Yingling; Zhao, Xin; Yin, Siyao; Zhang, Meng; Zheng, Zheng

    2017-12-01

    The evolution from asynchronous to synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser is experimentally investigated by tailoring the intracavity dispersion. Through tuning the intracavity-loss-dependent gain profile and the birefringence-induced filter effect, asynchronous dual-wavelength soliton pulses can be generated until the intracavity anomalous dispersion is reduced to ∼8  fs/nm. The transition from asynchronous to synchronous pulse generation is then observed at an elevated pump power in the presence of residual anomalous dispersion, and it is shown that pulses are temporally synchronized at the mode-locker in the cavity. Spectral sidelobes are observed and could be attributed to the four-wave-mixing effect between dual-wavelength pulses at the carbon nanotube mode-locker. These results could provide further insight into the design and realization of such dual-wavelength ultrafast lasers for different applications such as dual-comb metrology as well as better understanding of the inter-pulse interactions in such dual-comb lasers.

  20. Counting statistics and loss corrections for the APS

    International Nuclear Information System (INIS)

    Lee, W.K.; Mills, D.M.

    1992-01-01

    It has been suggested that for timing experiments, it might be advantageous to arrange the bunches in the storage ring in an asymmetrical mode. In this paper, we determine the counting losses from pulsed x-ray sources from basic probabilistic arguments and from Poisson statistics. In particular the impact on single photon counting losses of a variety of possible filling modes for the Advanced Photon Source (APS) is examined. For bunches of equal current, a loss of 10% occurs whenever the count rate exceeds 21% of the bunch repetition rate. This changes slightly when bunches containing unequal numbers of particles are considered. The results are applied to several common detector/electronics systems

  1. Counting statistics and loss corrections for the APS

    International Nuclear Information System (INIS)

    Lee, W.K.; Mills, D.M.

    1992-01-01

    It has been suggested that for timing experiments, it might be advantageous to arrange the bunches in the storage ring in an asymmetrical mode. In this paper, we determine the counting losses from pulsed x-ray sources from basic probabilistic arguments and from Poisson statistics. In particular the impact on single-photon counting losses of a variety of possible filling modes for the Advanced Photon Source (APS) is examined. For bunches of equal current, a loss of 10% occurs whenever the count rate exceeds 21% of the bunch repetition rate. This changes slightly when bunches containing unequal numbers of particles are considered. The results are applied to several common detector/electronics systems

  2. The periodically pulsed mode of operation of magnet systems in particle accelerators

    International Nuclear Information System (INIS)

    Stange, G.

    1980-01-01

    Since in many applications in particle accelerator technology the beam duty factor, defined by the ratio of beam pulse length to the pulse to pulse period, is very small- typically in the order of 10 - 3 to 10 - 9 - it is interesting to operate the beam optical magnetic system in the periodically pulsed mode as well. Thus, by reducing the average Ohmic losses, it is possible to save energy and material. The pulsed mode of operation of magnet systems is especially adapted to those of linear accelerators and their beam transport systems, since linear accelerators are exclusively operated in this mode. But it is equally suitable for transport systems between cyclic accelerators and large storage rings as they are under development at present. (orig./WL) [de

  3. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  4. Experimental subcritical reactivity determinations employing APSD measurements with pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Lee, Seung Min; Diniz, Ricardo; Jerez, Rogerio

    2011-01-01

    This work aims to determine experimentally the subcritical reactivity levels of several configurations of the IPEN/MB-01 reactor in an approach based on the subcritical kinetic model developed by Gandini and Salvatores. The procedure employs the measurements of the APSD (Auto Power Spectral Density) using pulse mode detectors. The proposed approach is based only on measured quantities such as counting rates and the parameters arising from the least square approach of the APSD. Other difficult quantity such as detector efficiencies is not needed in the method. Several measurements of APSD were performed in varying degrees of sub-criticality (up to around -7000 pcm). The APSD data were least-square fitted to get the prompt decay mode (α). Beside the startup source, an external neutron sources of Am-Be was installed near the core in order to improve neutron count statistics. The final experimental results are of very good quality. The experiment shows clearly that the classical one point kinetic theory cannot describe the measured reactivity. MCNP K eff results were compared to the corresponding experimental results. The agreement was fairly good. (author)

  5. Determination of plutonium-241 by liquid scintillation counting method and its application to environmental samples

    International Nuclear Information System (INIS)

    Watanabe, Miki; Amano, Hikaru

    1997-03-01

    Radionuclides are usually measured by gross counting mode in liquid scintillator counting (LSC) which measures both α and β pulses. This method can easily measure radioactivities, but its background counting is high. Recently reported α-β pulse shape discrimination method (α-β PSD method) in LSC which distinguishes α pulses from β pulses, shows low background counting, so it makes the detection limit lower. The aim of this research is to develop the best method for the determination of 241 Pu which is β-emitter, and Pu isotopes of α-emitters which have long half-lives and stay long in animal body. In this research, two LSC machines was carried out in different scintillators, vial volumes, measurement modes and so on. The following things were found. 1. The liquid scintillator based on naphthalene is proved to be the best separator of α-ray from β-ray, because it acts quickly in energy translation procedure between solvent and aromatic compounds. 2. α-β PSD method makes the background counting rate ten times lower than usual method. It makes the measurement performance better. 3. It is possible to determine 241 Pu in environmental samples around Chernobyl by the combination of LSC and radiochemical separation methods. (author)

  6. Pulse-shape discrimination in radioanalytical methods. Part I. Delayed fission neutron counting

    International Nuclear Information System (INIS)

    Posta, S.; Vacik, J.; Hnatowicz, V.; Cervena, J.

    1999-01-01

    In this study the principle of pulse shape discrimination (PSD) has been employed in delayed fission neutron counting (DNC) method. Effective elimination of unwanted gamma background signals in measured radiation spectra has been proved. (author)

  7. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  8. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  9. Influence of mode-beating pulse on laser-induced plasma

    Science.gov (United States)

    Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.

    2018-04-01

    This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.

  10. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  11. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  12. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  13. On the fast response of charnel electron multipliers in coUnting mode operation

    International Nuclear Information System (INIS)

    Belyaevskij, O.A.; Gladyshev, I.L.; Korobochko, Yu.S.; Mineev, V.I.

    1983-01-01

    Dependences of amplitude distribution of pulses at the outlet of channel electron multipliers (CEM) and effectiveness of monitoring on counting rate at different supply voltages are determined. It is shown that the maximUm counting rate of CEM runs into 6x10 5 s -1 at short-term and 10 5 s -1 at long-term operation using monitoring eqUipment with operation threshold of 2.5 mV

  14. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  15. Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates

    Science.gov (United States)

    Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael

    2018-03-01

    Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.

  16. Preliminary study of pseudorandom binary sequence pulsing of ORELA

    International Nuclear Information System (INIS)

    Larson, N.M.; Olsen, D.K.

    1980-03-01

    It has been suggested that pseudorandom binary sequence (PRBS) pulsing might enhance the performance of the Oak Ridge Electron Linear Accelerator (ORELA) for neutron-induced, time-of-flight (TOF) cross-section measurements. In this technical memorandum, equations are developed for expected count rates, statistical variances, and backgrounds for a pulsing scheme in which a PRBS is superimposed on the periodic equalintensity ORELA bursts. Introduction of the PRBS modification permits neutrons of different energies originating from different bursts to reach the detector simultaneously, and the signal corresponding to a unique flight time to be extracted mathematically. Relative advantages and disadvantages of measurements from conventional and PRBS pulsing modes are discussed in terms of counting statistics and backgrounds. Computer models of TOF spectra are generated for both pulsing modes, using as examples a 20-meter 233 U fission-chamber measurement and a 155-meter 238 U sample-in transmission measurement. Detailed comparisons of PRBS vs conventional results are presented. This study indicates that although PRBS pulsing could enhance ORELA performance for selected measurements, for general ORELA operation the disadvantages from PRBS pulsing probably outweigh the advantages

  17. Voltage-Mode All-Pass Filters Including Minimum Component Count Circuits

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2007-01-01

    Full Text Available This paper presents two new first-order voltage-mode all-pass filters using a single-current differencing buffered amplifier and four passive components. Each circuit is compatible to a current-controlled current differencing buffered amplifier with only two passive elements, thus resulting in two more circuits, which employ a capacitor, a resistor, and an active element, thus using a minimum of active and passive component counts. The proposed circuits possess low output impedance, and hence can be easily cascaded for voltage-mode systems. PSPICE simulation results are given to confirm the theory.

  18. Resistance-driven bunching mode of an accelerated ion pulse

    International Nuclear Information System (INIS)

    Lee, E.P.

    1981-01-01

    Amplification of a longitudinal perturbation of an ion pulse in a linear induction accelerator is calculated. The simplified accelerator model consists only of an applied field (E/sub a/), distributed gap impedance per meter (R) and beam-pipe capacity per meter (C). The beam is treated as a cold, one-dimensional fluid. It is found that normal mode frequencies are nearly real, with only a very small damping rate proportional to R. This result is valid for a general current profile and is not restricted to small R. However, the mode structure exhibits spatial amplification from pulse head to tail by the factor exp(RCLv/sub o//2), where L is pulse length and v 0 is drift velocity. This factor is very large for typical HIF parameters. An initially small disturbance, when expanded in terms of the normal modes, is found to oscillate with maximum amplitude proportional to the amplification factor. Unlike the analogous problem in a circular machine, linear growth is limited in amplitude bntegrating the void fraction profile and comparing the cross-sectionally averaged void fraction with direct measurements using two quick closing valves. Results on the calibration of combinations of full-flow turbine meters, Pitot tube rakes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  19. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  20. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    International Nuclear Information System (INIS)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I.; Viktorov, E. A.; Abusaa, M.; Danckaert, J.; Kolykhalova, E. D.; Soboleva, K. K.; Zhukov, A. E.; Sibbett, W.; Rafailov, E. U.; Erneux, T.

    2015-01-01

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes

  1. Short pulse generation in a passively mode-locked photonic crystal semiconductor laser

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties......We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties...

  2. Random noise effects in pulse-mode digital multilayer neural networks.

    Science.gov (United States)

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  3. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  4. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  5. Remote system for counting of nuclear pulses; Sistema remoto de conteo de pulsos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Ingenieria Electronica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  6. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  7. APPLICATION OF PULSE-PERIODICAL MODE FOR IMPROVEMENT OF LASER TREATMENT EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available The purpose of the paper is to estimate an application of pulse-periodical mode for improvement of laser treatment efficiency. Laser technologies have been widely used in the processes of material treatment with the purpose to provide them the required surface properties and also for high accuracy cutting of sheet materials. Application of complex treatment is of great interest and especially when it is used for worn-out surfaces with formation of a coating by gas-flame laying of powder mixture of specific composition and subsequent laser fusion.Increase of laser unit capacity is very important task for higher efficiency of laser technology application in mechanical engineering. Nowadays technological processes using lasers with high average power (more than 100 W have been applying only sources that are working in two modes, namely: continuous and pulse- periodical (P-P with pulse repetition rate from some units to several hundred hertz and pulse duration within dozens to hundreds of microseconds and even within milliseconds. On the other hand, in some cases shielding effect of plasma cloud formed during laser alloying, cladding or welding reduces the efficiency of laser treatment up to 50 % depending on plasma composition and laser beam length. High frequency P-P laser systems with high average power working in mode of Q-factor modulation allow to realize principally other mechanism of irradiation interaction with materials that is an ablation. In this case it is possible to provide local energy release both in space and time.The performed analysis has revealed that P-P mode of laser operation for a majority of treatment processes is much better and more efficient from energetic point of view in comparison with the continuous mode. On the basis of the developments it is possible to make a conclusion that there is a possibility to create laser systems working in high frequency P-P mode with high average power above hundreds watt.

  8. Overview of long pulse H-mode operation on EAST

    Science.gov (United States)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  9. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  10. Pulse Propagation in Presence of Polarization Mode Dispersion and Chromatic Dispersion in Single Mode Fibers

    Directory of Open Access Journals (Sweden)

    Hassan Abid Yasser

    2013-01-01

    Full Text Available The presence of (first and second orders polarization mode dispersion (PMD, chromatic dispersion, and initial chirp makes effects on the propagated pulses in single mode fiber. Nowadays, there is not an accurate mathematical formula that describes the pulse shape in the presence of these effects. In this work, a theoretical study is introduced to derive a generalized formula. This formula is exactly approached to mathematical relations used in their special cases. The presence of second-order PMD (SOPMD will not affect the orthogonality property between the principal states of polarization. The simulation results explain that the interaction of the SOPMD components with the conventional effects (chromatic dispersion and chirp will cause a broadening/narrowing and shape distortion. This changes depend on the specified values of SOPMD components as well as the present conventional parameters.

  11. Pulse counting period meter output during startup transients

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1962-12-01

    The time response of a period meter whose input signal comes from a pulse counting channel may be calculated using a Ferranti Mercury autocode programme details of which are given. The period meter considered is the type for which the logarithmic characteristic is approximated by several diode pump circuits. The input excitation is a terminated ramp of reactivity. Other reactivity inputs may be treated. In particular the step change of reactivity may be used as the input excitation. Allowance is made for the effective time constants of the diode pump circuits and the period meter. The programme may be used for instrument assessment and for safety and operations studies on reactors which use this type of period meter. An example of the use of the programme is given. (author)

  12. Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media

    International Nuclear Information System (INIS)

    Shi, L W; Chen, Y H; Xu, B; Wang, Z C; Jiao, Y H; Wang, Z G

    2007-01-01

    In this review, the potential of mode-locked lasers based on advanced quantum-dot (QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects. (topical review)

  13. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  14. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  15. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...... diode; the excitonic semiconductor response for varying material thickness in the case of linear optics; and modulational instability of electromagnetic waves in media with spatially varying non-linearity....

  16. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  17. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection

    OpenAIRE

    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O

    2004-01-01

    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  18. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  19. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  20. Count-doubling time safety circuit

    International Nuclear Information System (INIS)

    Keefe, D.J.; McDowell, W.P.; Rusch, G.K.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary

  1. Count-doubling time safety circuit

    Science.gov (United States)

    Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.

  2. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-01-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined. (letter)

  3. Methematical model of a neutron counting system used for the characteristics control of spontaneously fissioning material

    International Nuclear Information System (INIS)

    Bessis, J.

    1986-09-01

    Methods are described for calculating the probabilities, p(m), of detection of m neutrons, inside a split millisecond counting gate, m varying from zero to some units. At the present stage, these methods suppose the source to be very small. Using the generating function concept, they concern both possible modes of the counting system, for opening gates, i.e.: 1) Trigger pulses randomly with regard to the emitted neutrons, 2) Trigger pulses from the detected neutrons themselves. Computed values are finally compared to the measured ones. This comparison seems to be very favourable, since the respective deviations are often lower than 1 % [fr

  4. Formation of the electrical pulse in the SQS mode

    International Nuclear Information System (INIS)

    Han Jiaxiang; Xu Zizong; Li Hongdi; Chen Hongfang

    1994-01-01

    The pulse of the electrical signals from the counter working in SQS mode have been displayed and studied carefully. Some interesting information on the formation of SQS avalanche has been presented. The typical value of the transition time from the primary to the SQS avalanche is 15 ns, that of its spread is 10 ns

  5. 256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser

    Science.gov (United States)

    Jiang, Zike; Chen, Hao; Li, Jiarong; Yin, Jinde; Wang, Jinzhang; Yan, Peiguang

    2017-12-01

    We demonstrate an Er-doped fiber laser (EDFL) mode-locked by a MoS2 saturable absorber (SA), delivering a 256 fs, 2 nJ soliton pulse at 1563.4 nm. The nonlinear property of the SA prepared by magnetron sputtering deposition (MSD) is measured with a modulation depth (MD) of ∼19.48% and a saturable intensity of 4.14 MW/cm2. To the best of our knowledge, the generated soliton pulse has the highest pulse energy of 2 nJ among the reported mode-locked EDFLs based on transition metal dichalcogenides (TMDs). Our results indicate that MSD-grown SAs could offer an exciting platform for high pulse energy and ultrashort pulse generation.

  6. A pulse shape discriminator with high precision of neutron and gamma ray selection at high counting rate

    International Nuclear Information System (INIS)

    Bialkowski, J.; Moszynski, M.; Wolski, D.

    1989-01-01

    A pulse shape discriminator based on the zero-crossing principle is described. Due to dc negative feedback loops stabilizing the shaping amplifier and the zero-crossing discriminator, the working of the circuit is not affected by the high counting rate and the temperature variations. The pileup rejection circuit built into the discriminator improves the quality of the n-γ separation at high counting rates. A full γ-ray rejection is obtained for a recoil energy of electrons down to 25 keV. At high counting rates the remaining γ-ray contribution is evidently due to the pileup effect which is equal to about 2% at 4x10 5 counts/s. (orig.)

  7. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  8. Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode

    Science.gov (United States)

    Chatterjee, Monita; Kulkarni, Aditya M.

    2014-01-01

    The objective of this study was to investigate charge-integration at threshold by cochlear implant listeners using pulse train stimuli in different stimulation modes (monopolar, bipolar, tripolar). The results partially confirmed and extended the findings of previous studies conducted in animal models showing that charge-integration depends on the stimulation mode. The primary overall finding was that threshold vs pulse phase duration functions had steeper slopes in monopolar mode and shallower slopes in more spatially restricted modes. While the result was clear-cut in eight users of the Cochlear CorporationTM device, the findings with the six user of the Advanced BionicsTM device who participated were less consistent. It is likely that different stimulation modes excite different neuronal populations and/or sites of excitation on the same neuron (e.g., peripheral process vs central axon). These differences may influence not only charge integration but possibly also temporal dynamics at suprathreshold levels and with more speech-relevant stimuli. Given the present interest in focused stimulation modes, these results have implications for cochlear implant speech processor design and protocols used to map acoustic amplitude to electric stimulation parameters. PMID:25096116

  9. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    Science.gov (United States)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  10. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  11. Performance of n-γ pulse-shape discrimination with simple pile-up rejection at high γ-ray count rates

    International Nuclear Information System (INIS)

    Okuda, T.; Yamazaki, H.; Kawabata, M.; Kasagi, J.; Harada, H.

    1999-01-01

    The performance of n-γ pulse-shape discrimination for a liquid scintillation detector has been investigated for γ-ray count rates up to 50 kcps. A method in which the ratio of the total to partial charge in the anode pulse is directly measured has shown much improved quality of the pulse-shape discrimination when pile-up events are rejected; it can discriminate neutron events of 50 cps from γ-ray events of 29 kcps. The method with simple pile-up rejection has the advantage that only general purpose electronics are required

  12. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  13. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  14. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  15. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    International Nuclear Information System (INIS)

    Marti, Othmar; Holzwarth, Michael; Beil, Michael

    2008-01-01

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells

  16. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Othmar; Holzwarth, Michael [Institute of Experimental Physics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine, Ulm University, D-89069 Ulm (Germany)], E-mail: othmar.marti@uni-ulm.de, E-mail: michael.holzwarth@uni-ulm.de, E-mail: michael.beil@uni-ulm.de

    2008-09-24

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells.

  17. Neutron coincidence counting with digital signal processing

    International Nuclear Information System (INIS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-01-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of 'virtual instruments.' These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  18. A dose-per-pulse monitor for a dual-mode medical accelerator

    International Nuclear Information System (INIS)

    Galbraith, D.M.; Martell, E.S.; Fueurstake, T.; Norrlinger, B.; Schwendener, H.; Rawlinson, J.A.

    1990-01-01

    On a radiotherapy accelerator, the dose monitoring system is the last level of protection between the patient and the extremely high dose rate which all accelerators are capable of producing. The risk of losing this level of protection is substantially reduced if two or more dose monitoring systems are used which are mechanically and electrically independent in design. This paper describes the installation of an independent radiation monitor in a dual-mode, computer-controlled accelerator with a moveable monitor chamber. The added device is fixed in the beam path, is capable of monitoring each beam pulse, and is capable of terminating irradiation within the pulse repetition period if any measured pulse is unacceptably high

  19. Comparison of Thresholds for Pulmonary Capillary Hemorrhage Induced by Pulsed-wave and B-mode Ultrasound

    Science.gov (United States)

    Miller, Douglas L.; Dou, Chunyan; Raghavendran, Krishnan

    Pulsed ultrasound was found to induce pulmonary capillary hemorrhage (PCH) in mice about 25 years ago but remains a poorly understood risk factor for pulmonary diagnostic ultrasound. In early research using laboratory fixed beam ultrasound, thresholds for PCH had frequency variation from 1-4 MHz similar to the Mechanical Index. In recent research, thresholds for B mode diagnostic ultrasound from 1.5-12 MHz had little dependence on frequency. To compare the diagnostic ultrasound method to laboratory pulsed exposure, thresholds for fixed beam ultrasound were determined using comparable methods at 1.5 and 7.5 MHz. PCH thresholds were lower for simple fixed-beam pulse modes than for B mode and in approximate agreement with early research. However, for comparable timing parameters, PCH thresholds had little dependence on ultrasonic frequency. These findings suggest that the MI may not be directly useful as a dosimetric parameter for safety guidance in pulmonary ultrasound.

  20. Evaluation of bias and variance in low-count OSEM list mode reconstruction

    International Nuclear Information System (INIS)

    Jian, Y; Carson, R E; Planeta, B

    2015-01-01

    Statistical algorithms have been widely used in PET image reconstruction. The maximum likelihood expectation maximization reconstruction has been shown to produce bias in applications where images are reconstructed from a relatively small number of counts. In this study, image bias and variability in low-count OSEM reconstruction are investigated on images reconstructed with MOLAR (motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction) platform. A human brain ([ 11 C]AFM) and a NEMA phantom are used in the simulation and real experiments respectively, for the HRRT and Biograph mCT. Image reconstructions were repeated with different combinations of subsets and iterations. Regions of interest were defined on low-activity and high-activity regions to evaluate the bias and noise at matched effective iteration numbers (iterations × subsets). Minimal negative biases and no positive biases were found at moderate count levels and less than 5% negative bias was found using extremely low levels of counts (0.2 M NEC). At any given count level, other factors, such as subset numbers and frame-based scatter correction may introduce small biases (1–5%) in the reconstructed images. The observed bias was substantially lower than that reported in the literature, perhaps due to the use of point spread function and/or other implementation methods in MOLAR. (paper)

  1. 110GHz-500kW long-pulse gyrotron with built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Kariya, Tsuyoshi; Hayashi, Ken-ichi.

    1994-01-01

    We have designed, fabricated, and tested a 110 GHz-500 kW long-pulse gyrotron. The gyrotron incorporates a quasi-optical mode converter which transforms the oscillation mode, TE 22,2 , into a Gaussian radiation beam. The adoption of a built-in mode converter enabled us to design the electron beam collector so as to be capable of tolerating a 2 MW heat load. Attention was also paid to designing the gyrotron cavity and output window so as to permit long-pulse operations. In an experiment, we observed a maximum output power of 550 kW and achieved 1.3 s operation at a power level of 410 kW. (author)

  2. Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2015-06-01

    Full Text Available Q-switched and mode-locked erbium-doped fibre lasers (EDFLs are demonstrated by using non-conductive graphene oxide (GO paper as a saturable absorber (SA. A stable and self-starting Q-switched operation was achieved at 1534.4 nm by using a 0.8 m long erbium-doped fibre (EDF as a gain medium. The pulse repetition rate changed from 14.3 to 31.5 kHz, whereas the corresponding pulse width decreased from 32.8 to 13.8 µs as the pump power increased from 22 to 50.5 mW. A narrow spacing dual-wavelength Q-switched EDFL could also be realised by including a photonics crystal fibre and a tunable Bragg filter in the setup. It can operate at a maximum repetition rate of 31 kHz, with a pulse duration of 7.04 µs and pulse energy of 2.8 nJ. Another GOSA was used to realise mode-locked EDFL in a different cavity consisting of a 1.6 m long EDF in conjunction with 1480 nm pumping. The laser generated a soliton pulse train with a repetition rate of 15.62 MHz and pulse width of 870 fs. It is observed that the proposed fibre lasers have a low pulsing threshold pump power as well as a low damage threshold.

  3. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Böttge, C. N., E-mail: boettge@optics.arizona.edu; Hader, J.; Kilen, I.; Moloney, J. V. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Koch, S. W. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2014-12-29

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates.

  4. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  5. Dynamic pulse difference circuit

    International Nuclear Information System (INIS)

    Erickson, G.L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry is disclosed which comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter

  6. Apparatus for generating nonlinear pulse patterns

    Science.gov (United States)

    Nakamura, N.M.I.

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  7. Current status of liquid scintillation counting

    International Nuclear Information System (INIS)

    Klingler, G.W.

    1981-01-01

    Scintillation counting of alpha particles has been used since the turn of the century. The advent of pulse shape discrimination has made this method of detection accurate and reliable. The history, concepts and development of scintillation counting and pulse shape discrimination are discussed. A brief look at the ongoing work in the consolidation of components now used for pulse shape discrimination is included

  8. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  9. Low-noise pulse-mode current power supply for magnetic field measurements of magnets for accelerators

    International Nuclear Information System (INIS)

    Omel'yanenko, M.M.; Borisov, V.V.; Donyagin, A.M.; Kostromin, S.A.; Makarov, A.A.; Khodzhibagiyan, G.G.; Shemchuk, A.V.

    2017-01-01

    The described pulse-mode current power supply has been designed and fabricated for the magnetic field measurement system of superconducting magnets for accelerators. The power supply is based on a current regulator with pass transistor bank in linear mode. The output current pulses (0-100 A) are produced by using the energy of preliminary charged capacitor bank (5-40 V), which is charged additionally after each pulse. There is no AC-line frequency and harmonics ripple in the output current, the relative noise level is less than -100 dB (or 10 -5 ) of RMS value (it is defined as the ratio of output RMS noise current to the maximal output current 100 A within the operating bandwidth, expressed in dB).

  10. PC based alpha, beta and gamma counting system

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Gopalakrishnan, K.R.; Bairi, B.R.

    1992-01-01

    In the field of radiation protection and safety a large number of samples have to be assayed for estimation of their radioactivity at various stages in nuclear fuel. A PC based alpha, beta and gamma counting system has been designed for the above application. The system is fully automatic and requires minimum of operator intervention. The main units in the system are detector and pulse processing electronics, sample changer and assembly and IBM PC interface and supporting software. The main function of interface is to control the sample changer which is basically loading and unloading of sample, data acquisition and further processing by software. The pulses from detector are analysed in a pulse shape discriminator. A pulse identified as an alpha, beta or gamma event is converted to digital pulse. These digital pulses are accumulated in the three channels on PC interface each corresponding to alpha, beta and gamma. The sample movements are controlled by interface depending upon sample position. The software has been developed so as to maintain user friendliness and convenience of the operator. Various selection modes for parameters and operation of system provide lot of flexibility in operation of the system. (author). 1 fig

  11. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  12. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  13. Instant recording of the duration of a single mode-locked Nd:YAG laser pulse

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Thebault, J.

    1975-01-01

    An electro-optic streak camera incorporating a storage memory video system has been developed and used to instantly visualize and record the shape of a 1.06-μ-wavelength pulse generated by a mode-locked Nd:YAG laser. The duration of a single laser pulse (approximately 30 psec) has been directly measured with and without laser amplification. (U.S.)

  14. Pulse-forming and line-broadening in AM mode locking of the TEA-CO2laser

    NARCIS (Netherlands)

    Witteman, W.J.; Olbertz, A.H.M.

    1977-01-01

    The present paper describes AM mode locking for homogeneously broadened systems, a procedure for measuring linewidths under laser conditions, and finally, experimental results for a 1-atm CO2laser. Working in the frequency domain, analytic solutions are given for the pulse bandwidth and pulse shape

  15. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    Science.gov (United States)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  16. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  17. Fast counting electronics for neutron coincidence counting

    International Nuclear Information System (INIS)

    Swansen, J.E.

    1987-01-01

    This patent describes a high speed circuit for accurate neutron coincidence counting comprising: neutron detecting means for providing an above-threshold signal upon neutron detection; amplifying means inputted by the neutron detecting means for providing a pulse output having a pulse width of about 0.5 microseconds upon the input of each above threshold signal; digital processing means inputted by the pulse output of the amplifying means for generating a pulse responsive to each input pulse from the amplifying means and having a pulse width of about 50 nanoseconds effective for processing an expected neutron event rate of about 1 Mpps: pulse stretching means inputted by the digital processing means for producing a pulse having a pulse width of several milliseconds for each pulse received form the digital processing means; visual indicating means inputted by the pulse stretching means for producing a visual output for each pulse received from the digital processing means; and derandomizing means effective to receive the 50 ns neutron event pulses from the digital processing means for storage at a rate up to the neutron event rate of 1 Mpps and having first counter means for storing the input neutron event pulses

  18. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  19. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  20. Loss-Free Counting with Digital Signal Processors

    International Nuclear Information System (INIS)

    Markku Koskelo; Dave Hall; Martin Moslinger

    2000-01-01

    Loss-free-counting (LFC) techniques have frequently been used with traditional analog pulse processing systems to compensate for the time or pulses lost when a spectroscopy system is unavailable (busy) for processing an accepted pulse. With the availability of second-generation digital signal processing (DSP) electronics that offer a significantly improved performance for both high and low count rate applications, the LFC technique has been revisited. Specific attention was given to the high and ultra-high count rate behavior, using high-purity germanium (HPGe) detectors with both transistor reset preamplifiers (TRP) and conventional RC preamplifiers. The experiments conducted for this work show that the known LFC techniques further benefit when combined with modern DSP pulse shaping

  1. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  2. Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-08-31

    A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)

  3. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Association of Pulse Pressure with Serum TNF-α and Neutrophil Count in the Elderly

    Directory of Open Access Journals (Sweden)

    Eriko Yamada

    2014-01-01

    Full Text Available Aims. Elevated pulse pressure (PP has been reported to be a risk factor for type 2 diabetes in elderly patients with hypertension. Methods. Cross-sectional relationships of PP with known risk factors for type 2 diabetes and inflammatory markers were examined in 150 elderly community-dwelling women, 79 women (52.7% of whom had hypertension. Results. Systolic blood pressure (standardized β, 0.775, log tumor necrosis factor-α (TNF-α, standardized β, 0.110, age (standardized β, 0.140, and neutrophil count (standardized β, 0.114 emerged as determinants of PP independent of high-sensitivity C-reactive protein, interleukin-6, monocyte count, plasminogen activator inhibitor-1, homeostasis model assessment of insulin resistance, HDL-cholesterol, and adiponectin (R2 = 0.772. Conclusions. The present studies have demonstrated an independent association of higher PP with higher TNF-α, a marker of insulin resistance, and neutrophil count in community-living elderly women and suggest that insulin resistance and chronic low-grade inflammation may in part be responsible for the association between high PP and incident type 2 diabetes found in elderly patients with hypertension.

  5. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  6. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  7. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    Science.gov (United States)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  8. Passive mode locking of a femtosecond Ti:sapphire laser with pulsed synchronous pumping by a finite train of picosecond pulses

    International Nuclear Information System (INIS)

    Borisevich, N A; Buganov, O V; Tikhomirov, S A; Tolstorozhev, G B; Shkred, G L

    1999-01-01

    An analysis is made, with the aid of the self-consistent nonlinear ABCD matrix method, of the specific features of the mechanism of passive mode locking of a femtosecond Ti:sapphire laser under conditions of pulsed synchronous pumping. The conditions of stable laser operation are studied. It is proposed to use an additional aperture as an element of negative feedback for the stabilisation of passive mode locking. Practical recommendations concerning the optimisation of a femtosecond laser are given. (control of laser radiation parameters)

  9. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample

    International Nuclear Information System (INIS)

    Denby, P.M.; Botter-Jensen, L.; Murray, A.S.; Thomsen, K.J.; Moska, P.

    2006-01-01

    It is known that the pulsed optically stimulated luminescence (OSL) characteristics of quartz and feldspars are very different. These differences can be used to preferentially discriminate against the feldspar signal in mixed quartz-bar feldspar mineral assemblages, or in separated quartz contaminated with a feldspar signal. We have developed instrumentation for the study of high-speed pulse stimulated OSL. Our system uses the standard blue/IR LED stimulation unit of a Riso reader (allowing stimulation pulses down to 1-2μs duration) and can thus be applied to the routine analysis of samples. Using this stimulation source, and high-speed photon timing, the OSL yield can be monitored throughout the pulsing cycle and subsequent OSL decay. It is found that the total photon yield per unit stimulation power in pulsed mode is, for quartz, twice and, for feldspar, nearly four times, that in continuous wave mode. Observation of this OSL signal, between stimulation pulses, is seen to be characteristic of the mineral being examined, and has been used to preferentially discriminate against feldspar contamination in a mixed quartz/feldspar sample. Simple implementation of this technique by gating the counting period, so that counts are only accumulated during a windowed period, reduces the feldspar signal to 1.6% of its original value relative to that of the quartz

  10. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  11. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    Science.gov (United States)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  12. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  13. 35 GHz passive mode-locking of InGaAs/GaAs quantum dot lasers at 1.3 μm with Fourier-limited pulses

    DEFF Research Database (Denmark)

    Kuntz, M.; Fiol, G.; Laemmlin, M.

    2004-01-01

    We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses.......We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses....

  14. Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser

    Science.gov (United States)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-06-01

    We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.

  15. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  16. Experimental investigations of pulse shape control in passively mode-locked fiber lasers with net-normal dispersion

    International Nuclear Information System (INIS)

    Wang, L R; Han, D D

    2013-01-01

    Pulse shape control in passively mode-locked fiber lasers with net-normal dispersion is investigated experimentally. Three kinds of pulses with different spectral and temporal shapes are observed, and their pulse-shaping mechanisms are discussed. After a polarization-resolved system external to the cavity, the maximum intensity differences of the two polarization components for the rectangular-spectrum (RS), Gaussian-spectrum (GS), and super-broadband (SB) pulses are measured as ∼20 dB, ∼15 dB, and ∼1 dB, respectively. It is suggested that the equivalent saturable absorption effect plays an increasingly important role from the RS to GS and then to SB pulses in the pulse-shaping processes, while the spectral filtering effect declines. This work could help in systematically understanding pulse formation and proposing guidelines for the realization of pulses with better performance in fiber lasers. (paper)

  17. Discharge behavior of vacuum arc ion source working in pulse mode

    International Nuclear Information System (INIS)

    Tang Pingying; Dai Jingyi; Tan Xiaohua; Jin Dazhi; Liu Tie; Ding Bonan

    2005-01-01

    Discharge behavior of the vacuum arc ion source working in pulse mode was investigated using high-speed photography and spectrum diagnosis. The evolvement of cathode spot on hydrogen-impregnated electrode was captured by high-speed photography, and the emission spectra of cathode spot at different pulse currents were analyzed. The experimental results show that in most cases, only one cathode spot can be found in the discharge zone of vacuum arc ion source, and the spot moves a little during the same discharge. Temperature of the cathode spot may rise while the discharge current increases, and ultimately the density of hydrogen ion will be increased. At the same time, sputtering of the electrode is enhanced and the quality of ion plasma will be reduced. (authors)

  18. Excitation and deexcitation of the Si-H stretching mode in a Si:H with picosecond free electron laser pulses

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, M.; Rella, C.W.

    1995-01-01

    Hydrogen in amorphous and crystalline silicon has been the topic of intense theoretical and experimental investigations for more than one decade. To better understand how the Si-H bonds interact with the Si matrix and how they can be broken, it would be useful to excite selectively these bonds and monitor the energy flow from the Si-H bonds into the bulk Si modes. One attractive way of exciting the Si-H modes selectively is with an infrared laser tuned to a Si-H vibrational mode. Unfortunately, up to now, this type of experiment had not been possible because of the lack of a laser producing intense, ultrashort pulses that are tunable in the mid infrared. In this presentation, we report the first measurement where a 1 picosecond long laser pulse was used to excite the Si-H stretching modes near 2000 cm -1 and another identical laser pulse was used to measure the deexcitation from that specific vibrational mode. The laser was the Stanford free electron laser generating ∼1 ps-long pulses, tunable in the 5 μm region and focussed to an intensity of ∼1 GW/cm 2 . The pump-probe measurements were performed in transmission at room temperature on several 2 μm thick a-Si:H films deposited on c-Si. Samples with predominant Si-H 1 modes, predominant Si-H n>1 modes and with a mixture of modes were prepared. The laser was tuned on resonance with either of these modes. Immediately after excitation, we observe a bleaching of the infrared absorption, which can be attributed to excitation of the Si-H mode. Beaching is expected since, as a result of anharmonicity, the detuning between the (E 3 - E 2 ) resonance and the (E 2 - E 1 ) resonance is larger than the laser bandwidth. Note that despite the anharmonicity, it should be possible to climb the vibrational ladder due to power broadening

  19. Impact of gas pressure on fission chamber sensitivity in Campbelling mode

    International Nuclear Information System (INIS)

    Geslot, B.; Blaise, P.; Loiseau, P.; Filliatre, P.; Jammes, C.; Breaud, S.; Villard, J-F.; Blanc-de-Lanaute, N.

    2013-06-01

    The study presented in this paper is based on measurements conducted in the MINERVE zero power reactor operated at CEA Cadarache with a CEA-made U-235 miniature fission chamber (8 mm in diameter) and obtained in both pulse and Campbelling modes. Our objective was to investigate the impact of the filling gas mixture and pressure on each operating mode, using the capacity of the chamber to be refilled with gas. Three gas mixtures were tested (pure Ar, Ar+4%N 2 and Ar+10%CH 4 ) with pressure ranging from 1 to 9 bars. The Mean Fission Product Charge (MFPC), which is the mean charge deposited in the gas by fission products, was obtained from pulse mode signals for each detector setting. It is shown the MFPC is another key parameter to optimize the detector neutron sensitivity, after the fissile coating cross section. Campbelling mode signal was acquired with the Fast Neutron Detector System (FNDS) recently developed by CEA and SCK·CEN. Interesting results were obtained which improve our knowledge of the detector operation. Firstly, it was found that the measurements obtained in both modes are very consistent. The MFPC as a function of the gas pressure was found to be not monotonic. Instead, it features a maximum between 3 and 4 bars. This behavior is expected if the detector does not operate in saturation regime. Indeed, our standard voltage bias of 300 V appeared to be not high enough so that the saturation regime is established. Saturation curves measured in Campbelling mode were fitted using a detector modeling in order to extrapolate the saturation regime MFPC, which came to be independent from the gas. Secondly, obtained results show that the measuring range in Campbelling mode with this detector starts from fission rates as low as a few thousand counts per second. So the so called overlapping range, in which both pulse and Campbelling modes are usable, is about one decade with our spectroscopy modules and more than two decades with fast counting electronic

  20. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    OpenAIRE

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb...

  1. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    Science.gov (United States)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  2. Application in low level counting of corona counters operating in voltage or current pulse recording modes

    International Nuclear Information System (INIS)

    Oravec, J.; Usacev, S.; Duka-Zojomi, A.; Sitar, B.; Benovic, D.; Holy, K.

    1977-01-01

    The advantages of current or voltage modes of recording are discussed. It appears that the current mode is more advantageous in measurements of rare events caused by highly ionizing particles on a high background of weakly ionizing particles. A 2.3 litre multiwire corona counter was used for the determination of 226 Ra content in drinking water. The 226 Ra content was estimated by measuring 222 Rn activity. The minimum measurable activity of the system was 0.07 pCi/l of water. (author)

  3. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  4. Application of PSD for low level alpha counting using liquid scintillation counting

    International Nuclear Information System (INIS)

    Krishnamachari, G.; Vaze, P.K.; Iyer, M.R.

    1989-01-01

    In the liquid scintillator the light produced by alpha particles decays differently than those produced by electrons. Pulse shape discrimination (PSD) methods are employed to estimate low levels of alpha emitting radionuclides by reducing the background due to either beta or gamma events. An attempt is being made to develop a liquid scintillation counting sytem using a simple PSD circuit to achieve a background of 0.01 counts/min. The PSD circuit is based on measuring zero cross over points to differentiate particle types. The input signal is first differentiated by a delay line and subsequently by a RC circuit. The width of the initial part of the doubly differentiated pulse is different for alpha and beta pulses. This width is converted to amplitude by a time-to-amplitude converter (TAC). The higher amplitude pulses from the TAC are due to alpha particles and they are separated by an integral discriminator. The output from the integral discriminator opens a linear gate to record the pulse height spectrum. The figure of merit of the PSD circuit and background in the alpha energy channel have been worked out using different scintillator types. (author). 4 figs

  5. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  6. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  7. Count rate effect in proportional counters

    International Nuclear Information System (INIS)

    Bednarek, B.

    1980-01-01

    A new concept is presented explaining changes in spectrometric parameters of proportional counters which occur due to varying count rate. The basic feature of this concept is that the gas gain of the counter remains constant in a wide range of count rate and that the decrease in the pulse amplitude and the detorioration of the energy resolution observed are the results of changes in the shape of original current pulses generated in the active volume of the counter. In order to confirm the validity of this statement, measurements of the gas amplification factor have been made in a wide count rate range. It is shown that above a certain critical value the gas gain depends on both the operating voltage and the count rate. (author)

  8. Use of delayed gamma rays for active non-destructive assay of {sup 235}U irradiated by pulsed neutron source (plasma focus)

    Energy Technology Data Exchange (ETDEWEB)

    Andola, Sanjay; Niranjan, Ram [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C., E-mail: tckk@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ashwani; Paranjape, D.B.; Kumar, Pradeep; Tomar, B.S.; Ramakumar, K.L. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, S.C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    A pulsed neutron source based on plasma focus device has been used for active interrogation and assay of {sup 235}U by monitoring its delayed high energy γ-rays. The method involves irradiation of fissile material by thermal neutrons obtained after moderation of a burst of neutrons emitted upon fusion of deuterium in plasma focus (PF) device. The delayed gamma rays emitted from the fissile material as a consequence of induced fission were detected by a large volume sodium iodide (NaI(Tl)) detector. The detector is coupled to a data acquisition system of 2k input size with 2k ADC conversion gain. Counting was carried out in pulse height analysis mode for time integrated counts up to 100 s while the temporal profile of delayed gamma has been obtained by counting in multichannel scaling mode with dwell time of 50 ms. To avoid the effect of passive (natural) and active (from surrounding materials) backgrounds, counts have been acquired for gamma energy between 3 and 10 MeV. The lower limit of detection of {sup 235}U in the oxide samples with this set-up is estimated to be 14 mg.

  9. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    Science.gov (United States)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  10. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  11. Computed neutron coincidence counting applied to passive waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-01-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs

  12. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  13. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  14. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    Science.gov (United States)

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  15. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  16. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov

    2001-01-01

    In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...

  17. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  18. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    Science.gov (United States)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  19. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    International Nuclear Information System (INIS)

    Pushkarev, Alexander I.; Isakova, Yulia I.

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode. (15th asian conference on electrical discharge)

  20. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  1. Lifetime measurement of the cesium 6P3/2 state using ultrafast laser-pulse excitation and ionization

    International Nuclear Information System (INIS)

    Sell, J. F.; Patterson, B. M.; Ehrenreich, T.; Brooke, G.; Scoville, J.; Knize, R. J.

    2011-01-01

    We report a precision measurement of the cesium 6P 3/2 excited-state lifetime. Two collimated, counterpropagating thermal Cs beams cross perpendicularly to femtosecond pulsed laser beams. High timing accuracy is achieved from having excitation and ionization laser pulses which originate from the same mode-locked laser. Using pulse selection we vary the separation in time between excitation and ionization laser pulses while counting the ions produced. We obtain a Cs 6P 3/2 lifetime of 30.460(38) ns, which is a factor of two improvement from previous measurements and with an uncertainty of 0.12%, is one of the most accurate lifetime measurements on record.

  2. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    International Nuclear Information System (INIS)

    DeVol, T.A.; Fjeld, R.A.

    1995-01-01

    A project has been initiated at Clemson Univ. to develop a HPLC/flow- cell system for analysis of non-gamma emitting radionuclides in environmental samples; an important component is development of a low background flow-cell detector that counts alpha and beta particles separately through pulse shape discrimination. Objective of the work presented here is to provide preliminary results of an evaluation of the following scintillators: CaF 2 :Eu, scintillating glass, and BaF 2 . Slightly acidic aqueous solutions of the alpha emitter 233 U and the beta emitter 45 Ca were used. Detection efficiencies and minimum detectable activities were determined

  3. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  4. Picosecond trigger system useful in mode-locked laser pulse measurements

    International Nuclear Information System (INIS)

    Cunin, B.; Miehe, J.A.; Sipp, B.; Thebault, J.

    1976-01-01

    A highly sensitive tunnel diode trigger useful in temporal intensity build-up measurements of mode-locked lasers has been developed; the device reduces notably the time walk due to the lack of repeatability in intensity of the laser output. The performance of the trigger have been established by means of a GHz wideband-0.1V/cm sensitive real-time oscilloscope and of an image converter camera having a picosecond resolution: the experimental results show that a variation of the amplitude of the laser pulse train of a factor 5 leads to a time jitter of less than 30 ps (Auth.)

  5. Self-pulsing and chaos in inhomogeneously broadened single mode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R; Cho, Y

    1983-08-01

    A four-dimensional model and a six-dimensional model describing the self-pulsing instabilities and chaotic dynamics of inhomogeneously broadened single-mode lasers are derived as the first two steps of an infinite hierarchy of approximations increasing in accuracy and complexity. The results of a linear stability analysis of the time-independent states and some numerical solutions are given to show the various types of dynamic behavior which can occur in these models. The dynamic behavior is found to be much more complex than in the homogeneously broadened case and is obtained under physically more realistic conditions. 10 references.

  6. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  7. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    Science.gov (United States)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  8. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  9. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers

    Science.gov (United States)

    Cai, Wangyang; Wang, Lei; Wen, Shuangchun

    2018-04-01

    The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.

  10. Photon-counting monolithic avalanche photodiode arrays for the super collider

    International Nuclear Information System (INIS)

    Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.

    1994-01-01

    In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV

  11. A short-pulse mode for the SPHINX LTD Z-pinch driver

    Science.gov (United States)

    D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander

    2015-11-01

    The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.

  12. Digital coincidence counting

    Science.gov (United States)

    Buckman, S. M.; Ius, D.

    1996-02-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.

  13. Digital coincidence counting

    International Nuclear Information System (INIS)

    Buckman, S.M.; Ius, D.

    1996-01-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method. (orig.)

  14. Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses

    OpenAIRE

    Hudert, Florian; Bruchhausen, Axel; Issenmann, Daniel; Schecker, Olivier; Waitz, Reimar; Erbe, Artur; Scheer, Elke; Dekorsy, Thomas; Mlayah, Adnen; Huntzinger, Jean-Roch

    2009-01-01

    In this Rapid Communication we report the first time-resolved measurements of confined acoustic phonon modes in free-standing Si membranes excited by fs laser pulses. Pump-probe experiments using asynchronous optical sampling reveal the impulsive excitation of discrete acoustic modes up to the 19th harmonic order for membranes of two different thicknesses. The modulation of the membrane thickness is measured with fm resolution. The experimental results are compared with a theoretical model in...

  15. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    Science.gov (United States)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  16. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  17. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    Science.gov (United States)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  18. Self-oscillations in cw solid-state ultrashort-pulse-generating lasers with mode locking by self-focusing

    International Nuclear Information System (INIS)

    Kalashnikov, V L; Krimer, D O; Mejid, F; Poloiko, I G; Mikhailov, V P

    1999-01-01

    Steady-state and transient regimes of ultrashort pulse generation are studied for cw solid-state lasers with mode locking by self-focusing. It is shown that the control parameter, which governs the nature of lasing, is the relationship between self-phase-modulation and the saturation intensity of an efficient shutter, induced by the Kerr self-focusing. Numerical modelling based on mapping the parameters of a quasi-soliton ultrashort pulse, considered in the aberration-free approximation, yields results in good agreement with experiments. (control of laser radiation parameters)

  19. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  20. The high beta tokamak-extended pulse magnetohydrodynamic mode control research program

    International Nuclear Information System (INIS)

    Maurer, D A; Bialek, J; Byrne, P J; De Bono, B; Levesque, J P; Li, B Q; Mauel, M E; Navratil, G A; Pedersen, T S; Rath, N; Shiraki, D

    2011-01-01

    The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15 0 , spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.

  1. Pulsed-mode operation and performance of a ferromagnetic shape memory alloy actuator

    International Nuclear Information System (INIS)

    Asua, E; García-Arribas, A; Etxebarria, V; Feuchtwanger, J

    2014-01-01

    The actuation capabilities and positioning performance of a single crystal ferromagnetic shape memory alloy (FSMA) operated in pulsed mode are evaluated in a prototype device. It consists of two orthogonal coil pairs that produce the magnetic fields necessary for the non-contact deformation of the material. The position of the top of the crystal after actuation is measured by a capacitive sensor. A specifically designed power module drives the discharge of a set of capacitors through the coils, producing fast current pulses of large amplitudes (about 250 A), the coil pairs are driven independently to control the direction of actuation. Open-loop experiments demonstrate that successive pulses of increasing magnitude successfully produced the desired expansion and contraction of the crystal, depending on the pair of coils that is activated. The deformation achieved is maintained after the pulses, highlighting the advantageous set-and-forget operation of the device. Closed-loop experiments are performed using a double proportional–integral–derivative controller, designed to take advantage of the energy-saving quality of the set-and-forget operation. Despite the nonlinear response and hysteric response of FSMA materials, a reference position can be reached and maintained with a maximum error of 0.5 μm. (paper)

  2. Spectral dynamics of square pulses in passively mode-locked fiber lasers

    Science.gov (United States)

    Semaan, Georges; Komarov, Andrey; Niang, Alioune; Salhi, Mohamed; Sanchez, François

    2018-02-01

    We investigate experimentally and numerically the spectral dynamics of square pulses generated in passively mode-locked fiber lasers under the dissipative soliton resonance. The features of the transition from the single-peak spectral profile to the doublet spectrum with increasing pump power are studied. The used master equation takes into account the gain saturation, the quadratic frequency dispersion of the gain and the refractive index, and the cubic-quintic nonlinearity of the losses and refractive index. Experimental data are obtained for an Er:Yb-doped fiber ring laser. The theoretical and experimental results are in good agreement with each other.

  3. Multiple sample, radioactive particle counting apparatus

    International Nuclear Information System (INIS)

    Reddy, R.R.V.; Kelso, D.M.

    1978-01-01

    An apparatus is described for determining the respective radioactive particle sample count being emitted from radioactive particle containing samples. It includes means for modulating the information on the radioactive particles being emitted from the samples, coded detecting means for sequentially detecting different respective coded combinations of the radioactive particles emitted from more than one but less than all of the samples, and processing the modulated information to derive the sample count for each sample. It includes a single light emitting crystal next to a number of samples, an encoder belt sequentially movable between the crystal and the samples. The encoder belt has a coded array of apertures to provide corresponding modulated light pulses from the crystal, and a photomultiplier tube to convert the modulated light pulses to decodable electrical signals for deriving the respective sample count

  4. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  5. Investigation of reduction in background counts of clover detector

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    The peak-to-total ratio can be improved by increasing the full energy peak (FEP) counts and/or by decreasing the background counts. It is notable that FEP counts will be effected by mode of operation, while background counts will be effected by both modes of operation and suppression cases. It would be interesting to know if the reduction in background is caused more by active suppression or by add back process. We introduce a simple formalism to investigate the reduction of background counts for different cases-single crystal or add back mode with active or passive suppression. A more sophisticated formalism for modeling a general composite detector had been presented in a series of six recent papers by the author

  6. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  7. Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system.

    Science.gov (United States)

    Naud, Richard; Houtman, Dave; Rose, Gary J; Longtin, André

    2015-11-01

    Information can be encoded in the temporal patterning of spikes. How the brain reads these patterns is of general importance and represents one of the greatest challenges in neuroscience. We addressed this issue in relation to temporal pattern recognition in the anuran auditory system. Many species of anurans perform mating decisions based on the temporal structure of advertisement calls. One important temporal feature is the number of sound pulses that occur with a species-specific interpulse interval. Neurons representing this pulse count have been recorded in the anuran inferior colliculus, but the mechanisms underlying their temporal selectivity are incompletely understood. Here, we construct a parsimonious model that can explain the key dynamical features of these cells with biologically plausible elements. We demonstrate that interval counting arises naturally when combining interval-selective inhibition with pulse-per-pulse excitation having both fast- and slow-conductance synapses. Interval-dependent inhibition is modeled here by a simple architecture based on known physiology of afferent nuclei. Finally, we consider simple implementations of previously proposed mechanistic explanations for these counting neurons and show that they do not account for all experimental observations. Our results demonstrate that tens of millisecond-range temporal selectivities can arise from simple connectivity motifs of inhibitory neurons, without recourse to internal clocks, spike-frequency adaptation, or appreciable short-term plasticity. Copyright © 2015 the American Physiological Society.

  8. Digital pulse-shape discrimination applied to an ultra-low-background gas-proportional counting system. First results

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Hoppe, E.W.; Keillor, M.E.; Mace, E.K.; Myers, A.W.; Overman, C.T.; Panisko, M.E.; Seifert, A.

    2013-01-01

    A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (∼30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a 'self-calibrating' template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed. (author)

  9. REM meter for pulsed sources of neutrons

    International Nuclear Information System (INIS)

    Thorngate, J.E.; Hunt, G.F.; Rueppel, D.W.

    1980-01-01

    A rem meter was constructed specifically for measuring neutrons produced by fusion experiments for which the source pulses last 10 ms or longer. The detector is a 6 Li glass scintillator, 25.4 mm in diameter and 3.2 mm thick, surrounded by 11.5 cm of polyethylene. This detector has a sensitivity of 8.5 x 10 4 counts/mrem. The signals from this fast scintillator are shaped using a shorted delay line to produce pulses that are only 10 ns long so that dose equivalent rates up to 12 mrem/s can be measured with less than a 1% counting loss. The associated electronic circuits store detector counts only when the count rate exceeds a preset level. When the count rate returns to background, a conversion from counts to dose equivalent is made and the results are displayed. As a means of recording the number of source pulses that have occurred, a second display shows how many times the preset count rate has been exceeded. Accumulation of detector counts and readouts can also be controlled manually. The unit will display the integrated dose equilavent up to 200 mrem in 0.01 mrem steps. A pulse-height discriminator rejects gamma-ray interactions below 1 MeV, and the detector size limits the response above that energy. The instrument can be operated from an ac line or will run on rechargeable batteries for up to 12 hours

  10. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    Science.gov (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  11. Intensity Correlation Analysis on Blue-Violet FemtosecondPulses from a Dispersion-Compensated GaInN Mode-LockedSemiconductor Laser Diode

    Directory of Open Access Journals (Sweden)

    Shunsuke Kono

    2015-09-01

    Full Text Available We investigated the spectral and temporal characteristics of blue-violetfemtosecond optical pulses generated by a passively mode-locked GaInN laser diode ina dispersion-compensated external cavity. The output optical pulses at 400 nm wereanalyzed in detail by intensity auto- and cross-correlation measurements using secondharmonic generation on the surface of a β-BaB2O4 crystal. The obtained results clarifiedwavelength-dependent chirp characteristics of the optical pulses. The analysis suggestedthat a large frequency shift due to saturation in the saturable absorber and gain sectionsplayed an important role in the generation of femtosecond optical pulses.

  12. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  13. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    Science.gov (United States)

    Pelissier, B.; Sadeghi, N.

    1996-10-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar+*(2G9/2) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge.

  14. Effect of time walk in the use of single channel analyzer/discriminator for saturated pulses in the 4πβ–γ coincidence experiments

    International Nuclear Information System (INIS)

    Kawada, Yasushi; Yunoki, Akira; Yamada, Takahiro; Hino, Yoshio

    2016-01-01

    Using the TAC technique, the timing properties of a 4πβ–γ coincidence counting system were experimentally studied with an emphasis on saturated pulses. Experiments were performed for several discriminators (integral mode of TSCA) each with different kinds of timing techniques. Timing spectra were measured at various applied voltage to the 4π proportional detector covering the entire region of the plateau. Most of timing discriminators show good timing property when the pulses remain the linear region, but suddenly deteriorate after the pulses was saturated, and the timing spectra expands seriously up to a few μs in some types of timing discriminator. To overcome this problem, two techniques were proposed. - Highlights: • Timing properties of several kinds of SCA/Discriminators were studied, including trailing edge CFT. • Focus of study on saturated pulses, using a 4πβ–γ coincidence counting system and TAC. • Validity of two novel techniques to overcome this problem was shown.

  15. Electrical addressing and temporal tweezing of localized pulses in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2017-08-01

    This work presents an overview of a combined experimental and theoretical analysis on the manipulation of temporal localized structures (LSs) found in passively Vertical-Cavity Surface-Emitting Lasers coupled to resonant saturable absorber mirrors. We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures, also called localized pulses. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode-locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  16. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  17. Determination of pseudo multi-pulse production rate in GM counters by correlation analysis between signal pulses

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ueda, Taizou

    1996-01-01

    A technique, based on the correlation analysis of signal pulses in time sequence, is proposed to determine the production rate of the pseudo multi-pulse in Geiger-Mueller (GM) counter. With a multi-channel scaler initiated by a signal pulse, subsequent pulses are recorded in sequence. The production of the multi-pulse increases the counting probability immediately after the initiation. By examining the deviation of the measured probability from the ideal counting probability, the production rate and the average lag time to produce the multi-pulse can be determined. By the use of the present technique, the production rate and the average lag time were obtained for the various GM tubes. These results indicate that the consumption of the quench gas results in a significant increase in the production rate but little variation in the lag time, and that the lag time strongly depends on the tube diameter. (author)

  18. Proportional counters for measuring plutonium-239 'in vivo' - The choice of counting gas and the use of pulse shape discrimination techniques

    International Nuclear Information System (INIS)

    Pike, R.A.; Ramsden, D.

    1969-08-01

    The system for determining insoluble plutonium 'in vivo', now in routine use at A.E.E-. Winfrith, has a limit of detection of the order of 4 nCi plutonium - 239. The method of reducing background by using pulse shape discrimination techniques whilst retaining a high detection efficiency is described. The choice of a counting gas mixture to obtain optimum performance is discussed as are the techniques of gas handling. (author)

  19. Universal pulse generator with a nanosecond fast responce

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Nguen Kuang Min'.

    1977-01-01

    A pulse generator with nanosecond action is described; it is mainly designed for testing and tuning fast electronic devices operating with pulses in the N/1/M standard. The generator is principally based on integral circuits and has wide functional potentialities: it includes a main-pulse channel, a delayed-pulse channel, and an overall output, which sums up these pulses; in addition to the logic pulse outputs it includes a linear pulse output with an amplitude smoothly regulated in the range from 0.3 to 6.0 V; it can operate in the self-oscillation mode, in the pulse series formation mode, in the starting mode, and in the single-start mode. Two generators are placed in a double-width CAMAC cell. The generation frequency is from 3 Hz to 75 MHz, pulse duration from 8 to 320 ns, and pulse front duration 2 ns

  20. Growth modes of pentacene films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, G.; Kuzma, M.; Virt, I.; Sagan, P.; Rudyj, I.

    2011-01-01

    Thin pentacene films were deposited on KCl and ITO/glass substrates by the pulsed laser deposition method (PLD) using a YAG:Nd 3+ laser with a second harmonic (λ = 532 nm). We compared the structure of the layer on differently oriented substrates with respect to the pentacene plasma plume - vertical and parallel orientation. The structure of the layers formed was examined using SEM, RHEED and THEED methods. The lattice parameters of the layer deposited on KCl were determined from THEED pattern (a = 5.928 A, b 7.874 A, c = 14,98 A, α = 76.54 o , β 75.17 o , γ = 89.20 o ). The preferred direction [11-bar 0] of the layer growth on KCl substrate was addressed. The effect of the substrate orientation results in a different growth mode of the layers.

  1. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    Science.gov (United States)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  2. On-line statistical processing of radiation detector pulse trains with time-varying count rates

    International Nuclear Information System (INIS)

    Apostolopoulos, G.

    2008-01-01

    Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed

  3. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    Science.gov (United States)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  4. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    International Nuclear Information System (INIS)

    Pelissier, B.; Sadeghi, N.

    1996-01-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar + *( 2 G 9/2 ) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge. copyright 1996 American Institute of Physics

  5. Recent progress with digital coincidence counting

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Watt, G.C.; Alexiev, D.

    1999-01-01

    Digital Coincidence Counting (DCC) is a new technique, based on the older method of analogue coincidence counting. It has been developed by ANSTO as a faster more reliable means of determining the activity of ionising radiation samples. The technique employs a dual channel analogue to digital converter acquisition system for collecting pulse information from a 4Π beta detector and a NaI(Tl) gamma detector. The digitised pulse information is stored on a high speed hard disk and timing information for both channels is also stored. The data may subsequently be recalled and analysed using software based algorithms. The system is operational and results are now being routinely collected and analysed. Some of the early work is presented for Co-60, Na-22 and Sm-153

  6. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Katrina E., E-mail: kkoehler@lanl.gov [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Croft, Stephen S. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Henzlova, Daniela; Santi, Peter A. [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States)

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  7. Wiring of instrument for measuring pulse count of pseudocoincidences in radiation detectors

    International Nuclear Information System (INIS)

    Hekrdle, J.

    1978-01-01

    A network is described consisting of a flip-flop circuit, a pulse counter, a shift register, a gate and a clock generator. Pulses from an alpha detector are applied to the adjusting input of the control flip-flop whose output is connected to the reset input of the pulse counter and to the control input of the gate for beta pulses delayed by the shift register. The pulse counter is supplied with pulses from the clock generator output. The pulses also energize the shift register. The control flip-flop is reset by the output of the pulse counter overflow and also by the beta pulse passing through the open gate to the output terminal. (H.S.)

  8. Principles of correlation counting

    International Nuclear Information System (INIS)

    Mueller, J.W.

    1975-01-01

    A review is given of the various applications which have been made of correlation techniques in the field of nuclear physics, in particular for absolute counting. Whereas in most cases the usual coincidence method will be preferable for its simplicity, correlation counting may be the only possible approach in such cases where the two radiations of the cascade cannot be well separated or when there is a longliving intermediate state. The measurement of half-lives and of count rates of spurious pulses is also briefly discussed. The various experimental situations lead to different ways the correlation method is best applied (covariance technique with one or with two detectors, application of correlation functions, etc.). Formulae are given for some simple model cases, neglecting dead-time corrections

  9. Passive harmonic mode locking by mode selection in Fabry-Perot diode lasers with patterned effective index.

    Science.gov (United States)

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2010-07-01

    We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.

  10. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    Science.gov (United States)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  11. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  12. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  13. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  14. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    Science.gov (United States)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  15. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  16. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  17. [Pulse flows of populations of cortical neurons under low-intensity pulsed microwave: interspike intervals].

    Science.gov (United States)

    Chizhenkova, R A

    2014-01-01

    Pulse flows of populations of cortical neurons were investigated on unanesthetized nonimmobilized rabbits prior, during, and after 1-min microwave irradiation (wavelength 37.5 cm, power density 0.5-1.0 mW/cm2) in continuous and pulse-modulated modes with a frequency of 5, 20 and 100 Hz. The changes in the characteristics of interspike intervals resulted from these exposures. The peculiarity of rearrangements of pulse flows and their dynamics was determined by modes of irradiation.

  18. Radiation intensity counting system

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1982-01-01

    A method is described of excluding the natural dead time of the radiation detector (or eg Geiger-Mueller counter) in a ratemeter counting circuit, thus eliminating the need for dead time corrections. Using a pulse generator an artificial dead time is introduced which is longer than the natural dead time of the detector. (U.K.)

  19. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    International Nuclear Information System (INIS)

    Kruschwitz, Craig; Ming Wu; Moy, Ken; Rochau, Greg

    2008-01-01

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP-based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations

  20. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  1. Fast differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Shelevoj, K.D.

    1985-01-01

    The flowsheet of a differential pulse discriminator counter is described; the result of discrimination here is independent from the shape of the input pulse. Rate of the analysis of input pulses with minimum amplitude up to 0.3 mV coming out from the photomultiplier makes up 220 MHz. The flowsheet of the discriminator used in the system of photon counting for atmosphere probing is presented

  2. Project of the electron linear accelerator on the biperiodical accelerating structure with deep energy retuning in a pulse mode

    International Nuclear Information System (INIS)

    Bogdanovich, B.Yu.; Zavadtsev, D.A.; Kaminskij, V.I.; Sobenin, N.P.; Fadin, A.I.; Zavadtsev, A.A.

    2001-01-01

    The schemes of the electron linear accelerator (ELA), realized on the basis of a biperiodical accelerating structure and ensuring the possibility of deep retuning of the beam energy in a pulse mode, are considered. Advantages and shortcomings of the proposed methods of pulse regulation of the electron energy are discussed. A project of a two-section ELA with two levels of energy (10 and 4 MeV) is presented as a base version. The beam dynamics is calculated for two versions of the ELA. Their main parameters are given [ru

  3. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A. J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber......We present an Yb-fiber oscillator with an all-polarizationmaintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling...

  4. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A.J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber......We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling...

  5. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  6. Accuracy and precision of loss-free counting in γ-ray spectrometry

    International Nuclear Information System (INIS)

    Pomme, S.; Alzetta, J-P.; Uyttenhove, J.; Denecke, B.; Arana, G.; Robouch, P.

    1999-01-01

    The performance of a 'Loss-Free Counting' (LFC) method for pulse loss compensation is tested on two HPGe detectors; one with classical RC feedback preamplifier and another with Transistor Reset Preamplifier (TRP). Results are excellent on both, though extra fine-tuning precautions are required for the latter. Pulse loss by pileup is at the origin of an increased count variance in LFC spectra. A new formula for LFC uncertainty is presented and its validity demonstrated for a HPGe detector set-up

  7. High count problems in elemental analysis using pulsed neutron inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.

    1983-03-01

    Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.

  8. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    International Nuclear Information System (INIS)

    Stebel, L.; Sigalotti, P.; Ressel, B.; Cautero, G.; Malvestuto, M.; Capogrosso, V.; Bondino, F.; Magnano, E.; Parmigiani, F.

    2011-01-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ∼500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L 3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  9. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation

    Directory of Open Access Journals (Sweden)

    O. A. Vorozheeva

    2014-01-01

    Full Text Available Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is therefore necessary in the development phase of a new product. Accordingly, the aim of this work is the mathematical modeling and computational study of the thermal state of gaseous oxygen-methane propellant RDMT operating in pulse mode.In this paper we consider a model RDTM working on gaseous propellants oxygen-methane in pulse mode.To calculate the temperature field of the chamber wall of model RDMT under consideration is used the mathematical model of non-stationary heat conduction in a two-dimensional axisymmetric formulation that takes into account both the axial heat leakages and the nonstationary processes occurring inside the chamber during pulse operation of RDMT.As a result of numerical study of the thermal state of model RDMT, are obtained the temperature fields during engine operation based on convective, conductive, and radiative mechanisms of heat transfer from the combustion products to the wall.It is shown that the elements of flanges of combustion chamber of model RDMT act as heat sinks structural elements. Temperatures in the wall of the combustion chamber during the engine mode of operation are considered relatively low.Raised temperatures can also occur in the mixing head in the feeding area of the oxidant into the combustion chamber.During engine operation in the area forming the critical section, there is an intensive heating of a wall, which can result in its melting, which in turn will increase the minimum nozzle throat area and hence

  10. The effect of pulse pile-up on discrimination between neutrons and gamma rays

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    Pulse pile-up lengthens the rise-time of pulses. With an organic scintillator such as NE 213, pile-up can cause a short rise-time pulse originating from gamma rays to be interpreted by a rise-time analyser as a neutron. The degradation of pulse shape analyser performance at high count rates is shown to be directly related to pulse pile-up. Using this relationship, the contribution of piled-up gamma rays and neutrons to count rate related errors is calculated for a time-dependent fast neutron energy spectrum measurement. Errors of a few per cent occur even when the probability of a count per burst is as low as 0.01. (orig.)

  11. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  12. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2014-01-01

    Full Text Available The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  13. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  14. Energy-dependent losses in pulsed-feedback preamplifiers

    International Nuclear Information System (INIS)

    Landis, D.A.; Madden, N.W.; Goulding, F.S.

    1978-11-01

    Energy dependent counting losses occur in most pulsed-feedback preamplifiers due to the loss of those pulses which activate the recharge system. A pulsed-feedback system that overcomes this inefficiency is described. Pulsed-light feedback as used with germanium gamma-ray spectrometers is discussed as used at high energies and high rates where those losses become significant. Experimental results are presented

  15. Mass counting of radioactivity samples

    International Nuclear Information System (INIS)

    Oesterlin, D.L.; Obrycki, R.F.

    1977-01-01

    A method and apparatus for concurrently counting a plurality of radioactive samples is claimed. The position sensitive circuitry of a scintillation camera is employed to sort electrical pulses resulting from scintillations according to the geometrical locations of scintillations causing those pulses. A scintillation means, in the form of a scintillating crystal material or a liquid scintillator, is positioned proximate to an array of radioactive samples. Improvement in the accuracy of pulse classification may be obtained by employing collimating means. If a plurality of scintillation crystals are employed to measure the iodine-125 content of samples, a method and means are provided for correcting for variations in crystal light transmission properties, sample volume, and sample container radiation absorption. 2 claims, 7 drawing figures

  16. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  17. Pulse formation of gas-filled counter

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Teshima, Kazunori; Shizuma, Kiyoshi; Hasai, Hiromi

    1991-01-01

    The pulse formation of gas-filled counter has been calculated by simple models for the proportional and self-quenching streamer (SQS) modes. Calculated pulse shapes of counter output have accurately reproduced the observed ones for both modes. As a result, it is shown that the special density distribution of ion pairs in a streamer can be estimated with the rising part of observed pulse shape, using the model. (author)

  18. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  19. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  20. Key technology research of nuclear signal digitized pulse shaping in real time

    International Nuclear Information System (INIS)

    Zhou Jianbin; Wang Min; Zhou Wei; Zhu Xing; Liu Yi; Chen Bao; Lu Baoping; Yue Aizhong; Qin Li; He Xuxin

    2014-01-01

    The computer simulation and analysis were carried out for the ideal nuclear pulse signal and the actual detector output signals, and the determination method of digital trapezoidal shape parameter for different nuclear pulse shaping time was summarized. At high count rate measurement occasion, the effective count rate is increased, some pile-up pulses are eliminated and the accumulation of dead time of the system is reduced. Meanwhile, Si-PIN semiconductor detector performance was tested by 256 points and 512 points digital triangle forming methods and the analog circuit forming methods for comparative tests. Test results show that the pulse forming treatment method increases the count rate performance and the resolution of detector. (authors)

  1. Method and system of simulating nuclear power plant count rate for training purposes

    International Nuclear Information System (INIS)

    Alliston, W.H.; Koenig, R.H.

    1975-01-01

    A method and system are described for the real-time simulation of the dynamic operation of a nuclear power plant in which nuclear flux rate counters are provided for monitoring the rate of nuclear fission of the reactor. The system utilizes apparatus that includes digital computer means for calculating data relating to the rate of nuclear fission of a simulated reactor model, which rate is controlled in accordance with the operation of control panel devices. A digital number from the computer corresponding to the flux rate controls an oscillator driven counter means to produce a pulse after a predetermined count. This pulse controls an oscillator driven polynomial counter to count a random number that controls a third counter in accordance with pulse from the first counter to produce a random fission count for operating the meters. (U.S.)

  2. A real-time integrator of storage-area contents for SA 40B or DIDAC 800 analyzers. Use in the digital single-channel mode

    International Nuclear Information System (INIS)

    Rigaudiere, Roger; Daburon, M.-L.

    1976-09-01

    An apparatus was developed in order to sum up, during counting, the channel contents from several storage areas of SA 40 B or DIDAC 800 multichannel analyzers. The pulse number stored in the energy bands interesting the operator are known and if necessary subsequent operation can be modified accordingly. Coupled with an autonomous amplitude encoder, this apparatus can be operated in the digital single-channel mode [fr

  3. The H-mode Pedestal and Edge Localized Modes in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Fredrickson, E.D.; Menard, J.E.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.

    2004-01-01

    The research program of the National Spherical Torus Experiment (NSTX) routinely utilizes the H-mode confinement regime to test and extend beta and pulse length limits. As in conventional aspect ratio tokamaks, NSTX observes a variety of edge localized modes (ELMs) in H-mode. Hence a significant part of the research program is dedicated to ELMs studies

  4. A novel mode-locking technique

    International Nuclear Information System (INIS)

    Chen Shaoh; Chen Youming; Chen Taolue; Si Xiangdong; Yang Yi; Deng Ximing

    1993-01-01

    A novel mode-locked Nd:YAG oscillator has been developed by using an ultrafast photoconductive feedback controlled loop, and mode-locked pulses with a duration of 100ps have been obtained. The energy instability of the pulse trains is ±5%. In this type of mode-locking technology, a type of deep-level doped GaAs (Cr-doped) photoconductive switch, which has a fast response in time and is free of avalance process, is used to drive a Pockels' cell to realize mode-locking. The dark resistance of this type of photoconductive switch is 6 orders of magnitude higher than that of the intrinsic single-crystal silicon, and it can reach a level as high as 10 9 ohms. Consequently, it is able to withstand longterm operation at several thousand DC volts. By means of the photoconductive ohmic switch characteristics, the authors have designed a positive feedback control network which has a very fast response time, and can couple a voltage of up to a thousand volts. Using this unit in a Nd:YAG laser, they have successfully realized a very stable mode-locked pulse train with pulse width shorter than 100 ps. The operation principle, and the results of the preliminary experiments are presented here. 1 ref., 3 figs

  5. Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.

    Science.gov (United States)

    Junker, André; Brenner, Karl-Heinz

    2018-03-01

    The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.

  6. Effective dark count rate reduction by modified SPAD gating circuit

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Ivan; Blazej, Josef, E-mail: blazej@fjfi.cvut.cz; Kodet, Jan

    2015-07-01

    For our main application of single photon counting avalanche detectors in focus – laser ranging of space objects and laser time transfer – the ultimate requirements are relatively large and homogeneous active area having a diameter of 100 to 200 µm and a sub-picosecond stability of timing. The detector dark count rate and after-pulsing probability are parameters of relatively lower, but not negligible importance. In presented paper we will focused on them. We have developed a new active quenching and gating scheme which can reduce afterpulsing effect and hence also effective dark count rate at lower temperature. In satellite laser ranging system the effective dark count rate was reduced more than 35 times. This improvement will contribute in increasing the data yield and hence to increase precision and productivity. - Highlights: • Signal and quenching path in a control circuit stayed unaffected by gating. • The detector package optimized for laser time transfer systems is considered. • After-pulsing effect is reduced by a modification of the use of gate signal. • The dark count rate is reduced for gate rates of the order of units of kHz.

  7. Method of and system for determining a spectrum of radiation characteristics with full counting-loss compensation

    International Nuclear Information System (INIS)

    Westphal, G.P.

    1984-01-01

    Real-time correction of counting losses in the operation of a pulse-height analyzer, connected to the output of a radiation detector, is accomplished by establishing a gating interval at a time when the analyzer is available after processing the last detector pulse, this interval beginning at an instant delayed beyond the trailing edge of that last pulse by at least a predetermined rise time and ending with the leading edge of the next detector pulse. Test pulses generated during this gating interval are counted and their number is used to determine a probability ratio whose reciprocal constitutes a weighting factor; the digitized amplitude of each detector pulse addresses a corresponding memory cell whose contents are thereupon increased by the current weighting factor

  8. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  9. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  10. Microincision versus small-incision coaxial cataract surgery using different power modes for hard nuclear cataract.

    Science.gov (United States)

    Kim, Eun Chul; Byun, Yong Soo; Kim, Man Soo

    2011-10-01

    To compare the efficacy of microincision and small-incision coaxial phacoemulsification in treating hard cataracts using different ultrasound power modes. Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea. Randomized clinical trial. Eyes with hard cataract were randomized to have an initial incision of 1.80 mm, 2.20 mm, or 2.75 mm. The eyes in each group were equally randomized to treatment with burst, pulse, or continuous mode. Ultrasound time (UST), mean cumulative dissipated energy (CDE), corrected distance visual acuity (CDVA), surgically induced corneal astigmatism, incisional and central corneal thickness (CCT), and endothelial cell counts were evaluated. The study enrolled 180 eyes, 60 in each group. Two months postoperatively, there were no statistically significant differences in UST, CDE, CDVA, CCT, or percentage endothelial cell loss between the 3 incision groups. The 2.75 mm incision induced more astigmatism at 2 months and less incisional corneal edema at 1 week than the 1.80 mm or 2.20 mm incision (Phard cataract. The intraoperative energy use and ocular damage was less with the pulse and burst modes than with the continuous mode. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  12. Bunch mode specific rate corrections for PILATUS3 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trueb, P., E-mail: peter.trueb@dectris.com [DECTRIS Ltd, 5400 Baden (Switzerland); Dejoie, C. [ETH Zurich, 8093 Zurich (Switzerland); Kobas, M. [DECTRIS Ltd, 5400 Baden (Switzerland); Pattison, P. [EPF Lausanne, 1015 Lausanne (Switzerland); Peake, D. J. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Radicci, V. [DECTRIS Ltd, 5400 Baden (Switzerland); Sobott, B. A. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Walko, D. A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Broennimann, C. [DECTRIS Ltd, 5400 Baden (Switzerland)

    2015-04-09

    The count rate behaviour of PILATUS3 detectors has been characterized for seven bunch modes at four different synchrotrons. The instant retrigger technology of the PILATUS3 application-specific integrated circuit is found to reduce the dependency of the required rate correction on the synchrotron bunch mode. The improvement of using bunch mode specific rate corrections based on a Monte Carlo simulation is quantified. PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  13. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  14. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Science.gov (United States)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  15. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  16. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    Science.gov (United States)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  17. Dispersion - does it degrade a pulse envelope

    International Nuclear Information System (INIS)

    Deighton, M.O.

    1985-01-01

    In hostile environments, transmitting information as ultrasonic Lamb wave pulses has advantages, since the stainless steel strip serving as a waveguide is very durable. Besides attenuation, velocity dispersion (inherent in Lamb waves) can be important even in fairly short guides. Theory shows that unlimited propagation of a pulsed r.f. envelope is possible, even with dispersion present. The constant group velocity needed would favour asub(o)-mode pulses over other modes, provided ordinary attenuation is small. An approximate formula indicates the useful range of a pulse, when group velocity does vary. (author)

  18. Usability of a new multiple high-speed pulse time data registration, processing and real-time display system for pulse time interval analysis

    International Nuclear Information System (INIS)

    Yawata, Takashi; Sakaue, Hisanobu; Hashimoto, Tetsuo; Itou, Shigeki

    2006-01-01

    A new high-speed multiple pulse time data registration, processing and real-time display system for time interval analysis (TIA) was developed for counting either β-α or α-α correlated decay-events. The TIA method has been so far limited to selective extraction of successive α-α decay events within the milli-second time scale owing to the use of original electronic hardware. In the present pulse-processing system, three different high-speed α/β(γ) pulses could be fed quickly to original 32 bit PCI board (ZN-HTS2) within 1 μs. This original PCI board is consisting of a timing-control IC (HTS-A) and 28 bit counting IC (HTS-B). All channel and pulse time data were stored to FIFO RAM, followed to transfer into temporary CPU RAM (32 MB) by DMA. Both data registration (into main RAM (200 MB)) and calculation of pulse time intervals together with real-time TIA-distribution display simultaneously processed using two sophisticate softwares. The present system has proven to succeed for the real-time display of TIA distribution spectrum even when 1.6x10 5 cps pulses from pulse generator were given to the system. By using this new system combined with liquid scintillation counting (LSC) apparatus, both a natural micro-second order β-α correlated decay-events and a milli-second order α-α correlated decay-event could be selectively extracted from the mixture of natural radionuclides. (author)

  19. Comparative performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs

    Directory of Open Access Journals (Sweden)

    Sudip Bhattrai

    2013-09-01

    Full Text Available Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems. In the present study, design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs is presented. Analysis is done with respect to Mach number at two consecutive modes of operation: (1 Combined-cycle PDTE using a pulse detonation afterburner mode (PDA-mode and (2 combined-cycle PDTE in pulse detonation ramjet engine mode (PDRE-mode. The performance of combined-cycle PDTEs is compared with baseline afterburning turbofan and ramjet engines. The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions, while that of pulse detonation ramjet engine (PDRE is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions. The analysis shows that the propulsive performance of a turbine engine can be greatly improved by replacing the conventional afterburner with a pulse detonation afterburner (PDA. The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein. The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.

  20. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  1. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    OpenAIRE

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 ...

  2. Evaluation of cell count and classification capabilities in body fluids using a fully automated Sysmex XN equipped with high-sensitive Analysis (hsA) mode and DI-60 hematology analyzer system.

    Science.gov (United States)

    Takemura, Hiroyuki; Ai, Tomohiko; Kimura, Konobu; Nagasaka, Kaori; Takahashi, Toshihiro; Tsuchiya, Koji; Yang, Haeun; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Tabe, Yoko; Ohsaka, Akimichi

    2018-01-01

    The XN series automated hematology analyzer has been equipped with a body fluid (BF) mode to count and differentiate leukocytes in BF samples including cerebrospinal fluid (CSF). However, its diagnostic accuracy is not reliable for CSF samples with low cell concentration at the border between normal and pathologic level. To overcome this limitation, a new flow cytometry-based technology, termed "high sensitive analysis (hsA) mode," has been developed. In addition, the XN series analyzer has been equipped with the automated digital cell imaging analyzer DI-60 to classify cell morphology including normal leukocytes differential and abnormal malignant cells detection. Using various BF samples, we evaluated the performance of the XN-hsA mode and DI-60 compared to manual microscopic examination. The reproducibility of the XN-hsA mode showed good results in samples with low cell densities (coefficient of variation; % CV: 7.8% for 6 cells/μL). The linearity of the XN-hsA mode was established up to 938 cells/μL. The cell number obtained using the XN-hsA mode correlated highly with the corresponding microscopic examination. Good correlation was also observed between the DI-60 analyses and manual microscopic classification for all leukocyte types, except monocytes. In conclusion, the combined use of cell counting with the XN-hsA mode and automated morphological analyses using the DI-60 mode is potentially useful for the automated analysis of BF cells.

  3. Low level alpha activity measurements with pulse shape discrimination

    International Nuclear Information System (INIS)

    Noguchi, Masayasu; Satoh, Kaneaki; Higuchi, Hideo.

    1984-01-01

    Pulse shape discrimination of α and β rays with liquid scintillation counting was investigated for the purpose of low level α activity measurements. Various liquid scintillators for pulse shape discrimination were examined by means of pulse rise time analysis. A new scintillator of low cost and of superior characteristics was found. The figure of merits better than 3.5 in risetime spectrum and the energy resolution better than 9% were obtained for carefully prepared samples. The background counting rate for a sample of 10 ml was reduced to 0.013 cpm/MeV in the range of α ray energy 5 to 7 MeV. (author)

  4. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    Muehllehner, G.; Buchin, M.P.

    1980-01-01

    Improvements to a positron camera imaging system are described. A pair of Angear-type scintillation cameras serve as the detectors, each camera being positioned on opposite sides of the organ of interest. Pulse shaping circuits reduce the pulse duration below 900 nanoseconds and the integration time below 500 noneseconds, improving the count rate capability and the counting statistics of the system and thus the image quality and processing speed. The invention also provides means for rotating the opposed camera heads about an axis which passes through the organ of interest. The cameras do not use collimators, and are capable of accepting radiation travelling in planes not perpendicular to the scintillation crystals. (LL)

  5. Cascaded systems analysis of photon counting detectors

    International Nuclear Information System (INIS)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f 50 (spatial-frequency at

  6. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  7. Mode-locking of a terahertz laser by direct phase synchronization.

    Science.gov (United States)

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  8. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  9. Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM

    International Nuclear Information System (INIS)

    Chaplin, Vandiver; Bhat, Narayana; Briggs, Michael S.; Connaughton, Valerie

    2013-01-01

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's shaping and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: ‘peak’ and ‘tail’ pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to increased complexity. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup including high order effects. We use the pulse shape of the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by expressing exposure time with a state-space expansion of overlapping pileup states and is valid up to very high rates. The model correctly predicts deadtime and pileup losses, and energy-dependent losses due to tail subtraction (sub-threshold) effects. We discuss total losses in terms of the true rate of photon detections versus the recorded count rate. -- Highlights: • A derivation of pulse-pileup spectral and intensity distortion is presented. • Applies to bipolar shaping instruments in general, but is calculated for Fermi-GBM. • Exposure time is partitioned with pulse widths as states of a Poisson process. • Each state has an associated energy distribution function for peak and tail pileup. • The total spectrum is the union of pulse states and their associated spectra

  10. Critical Behavior of Light in Mode-Locked Lasers

    Science.gov (United States)

    Weill, Rafi; Rosen, Amir; Gordon, Ariel; Gat, Omri; Fischer, Baruch

    2005-06-01

    Light is shown to exhibit critical and tricritical behavior in passively mode-locked lasers with externally injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many-body light-mode system. The phase diagrams consist of regimes with continuous wave, driven parapulses, spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines that terminate with critical or tricritical points. Enhanced non-Gaussian fluctuations and collective dynamics are present at the critical and tricritical points, showing a mode system analog of the critical opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field theory, which is rigorous in the light system.

  11. System and process for pulsed multiple reaction monitoring

    Science.gov (United States)

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  12. High Sensitivity Detection of Xe Isotopes Via Beta-Gamma Coincidence Counting

    International Nuclear Information System (INIS)

    Bowyer, Ted W.; McIntyre, Justin I.; Reeder, Paul L.

    1999-01-01

    Measurement of xenon fission product isotopes is a key element in the global network being established to monitor the Comprehensive Nuclear-Test-Ban Treaty. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which includes a beta-gamma counting system for 131mXe, 133mXe, 133Xe, and 135Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. The counting geometry is nearly 100% for beta and conversion electrons. The resolution in the pulse height spectrum from the plastic scintillator is sufficient to observe distinct peaks for specific conversion electrons. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse height spectra of gamma energy versus beta energy are obtained. Each of the four xenon isotopes has a distinctive signature in the two-dimensional energy array. The details of the counting system, examples of two-dimensional beta-gamma data, and operational experience with this counting system will be described

  13. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  14. High rate 4π β-γ coincidence counting system

    International Nuclear Information System (INIS)

    Johnson, L.O.; Gehrke, R.J.

    1978-01-01

    A high count rate 4π β-γ coincidence counting system for the determination of absolute disintegration rates of short half-life radionuclides is described. With this system the dead time per pulse is minimized by not stretching any pulses beyond the width necessary to satisfy overlap coincidence requirements. The equations used to correct for the β, γ, and coincidence channel dead times and for accidental coincidences are presented but not rigorously developed. Experimental results are presented for a decaying source of 56 Mn initially at 2 x 10 6 d/s and a set of 60 Co sources of accurately known source strengths varying from 10 3 to 2 x 10 6 d/s. A check of the accidental coincidence equation for the case of two independent sources with varying source strengths is presented

  15. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  16. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  17. Resolving time of scintillation camera-computer system and methods of correction for counting loss, 2

    International Nuclear Information System (INIS)

    Iinuma, Takeshi; Fukuhisa, Kenjiro; Matsumoto, Toru

    1975-01-01

    Following the previous work, counting-rate performance of camera-computer systems was investigated for two modes of data acquisition. The first was the ''LIST'' mode in which image data and timing signals were sequentially stored on magnetic disk or tape via a buffer memory. The second was the ''HISTOGRAM'' mode in which image data were stored in a core memory as digital images and then the images were transfered to magnetic disk or tape by the signal of frame timing. Firstly, the counting-rates stored in the buffer memory was measured as a function of display event-rates of the scintillation camera for the two modes. For both modes, stored counting-rated (M) were expressed by the following formula: M=N(1-Ntau) where N was the display event-rates of the camera and tau was the resolving time including analog-to-digital conversion time and memory cycle time. The resolving time for each mode may have been different, but it was about 10 μsec for both modes in our computer system (TOSBAC 3400 model 31). Secondly, the date transfer speed from the buffer memory to the external memory such as magnetic disk or tape was considered for the two modes. For the ''LIST'' mode, the maximum value of stored counting-rates from the camera was expressed in terms of size of the buffer memory, access time and data transfer-rate of the external memory. For the ''HISTOGRAM'' mode, the minimum time of the frame was determined by size of the buffer memory, access time and transfer rate of the external memory. In our system, the maximum value of stored counting-rates were about 17,000 counts/sec. with the buffer size of 2,000 words, and minimum frame time was about 130 msec. with the buffer size of 1024 words. These values agree well with the calculated ones. From the author's present analysis, design of the camera-computer system becomes possible for quantitative dynamic imaging and future improvements are suggested. (author)

  18. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  19. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-01-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30–40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  20. CAMAC differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Tselikov, N.V.

    1987-01-01

    Differential pulse discriminator-counter for Moessbauer spectrometer is described. Input pulse setting into the channel is performed according to the following algorithm: the pulse is transmitted to the channel depending on the fact whether the preceding pulse has got to the discrimination window or not. The circuit does not contain delay lines, taking into account the delay of a signal from the upper level discriminator in relation to the lower level discriminator signal, which is connected with input pulse rise finite time, which in turn allows one to reduce the discriminator dead time up to the operation time of threshold circuits. The pulse counting rate is 150 MHz, input signal amplitude is ±3 V, dead time is 6 ns, delay time from input to output is 14 ns. The unit is made in CAMAC system

  1. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  2. An experimental comparison of triggered and random pulse train uncertainties

    International Nuclear Information System (INIS)

    Henzlova, Daniela; Menlove, Howard O.; Swinhoe, Martyn T.

    2010-01-01

    response) have used only one of the two analysis methods for the nuclear material assay. The aim of this study is to provide a systematic comparison of the precision of the measured S, D, T rates and 240 Pu effective mass obtained using the above mentioned pulse train sampling techniques. In order to perform this task, a LANL developed list mode based data acquisition system is used, where the entire pulse train is recorded and subsequently analyzed. The list mode acquisition brings an essential advantage for this type of comparison, since the very same pulse train can be analyzed using signal-triggered as well as randomly triggered counting gates. The aim of this study is not only to compare the precision of signal-triggered versus random triggered sampling techniques, but also to investigate the influence of fast accidental sampling on the precision of signal-triggered results. In addition the different random sampling techniques used in safeguards are investigated. For this purpose we implement two types of random sampling - non-overlapping gates (Feynrnan approach) and periodic overlapping gates (fast accidentals). In the following sections the equations utilized in the pulse train analysis are described, experimental setup and measurement techniques are discussed and finally the results are summarized and discussed.

  3. Testing of quality of welded joints using heavy-current pulse X-ray apparatuses

    International Nuclear Information System (INIS)

    Gusev, E.A.; Firstov, V.G.

    1988-01-01

    The possibilities of carrying out of radiographic and electroradiographic testing of quality of welded joints using heavy-current pulse X-ray apparatuses under the mode of single pulses are shown. Basic quantitative characteristics of radiographic testing permitting to detect the focus distance, sensitivity behaviour and optical density of image are presented. Peculiarities of electroradiographic image formation under the mode of single pulses of nanosecond range are analysed. The outlook of heavy-current pulse X-ray apparatus application under the mode of single pulses in industry is estimated

  4. Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chambonneau, M., E-mail: maxime.chambonneau@hotmail.fr; Grua, P.; Rullier, J.-L.; Lamaignère, L. [CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex (France); Natoli, J.-Y. [Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille (France)

    2015-03-14

    With the use of multiple longitudinal modes nanosecond laser pulses at 1064 nm, laser damage sites at the exit surface of fused silica clearly and systematically exhibit ring patterns. It has been shown in our previous works that the apparent chronology of rings was closely related to the temporal shape of the laser pulses. This particular correspondence had suggested an explanation of the ring morphology formation based on the displacement of an ionization front in the surrounding air. To provide a former basis for this hypothesis and deeper understanding of ring pattern formation, additional experiments have been performed. First, the impact of fluence has been investigated, revealing that a wide variety of damage sites are produced within a very narrow fluence range; this fact involves the chronology of appearance of a surface plasma during the laser pulse. The sizes of the damage sites are proportional to the fluence of their expansion occurring between the beginning of the plasma and the end of the laser pulse. Second, specific experiments have been carried out at different angles of incidence, resulting in egg-shaped patterns rather than circular ones. This behavior can be explained by our previous hypothesis of creation of a plasma in air, its expansion being tightly conditioned by the illumination angle. This series of experiments, in which the angle of incidence is varied up to 80°, permits us to link quantitatively the working hypothesis of ionization front propagation with theoretical hydrodynamics modeling.

  5. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  6. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  7. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  8. A 500-MHz x-ray counting system with a silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2009-01-01

    In the present measurements using a Si-APD X-ray detector and a 500-MHz counting system, the maximum output rate of 3.3x10 8 s -1 was achieved for 8-keV X-rays in beamline BL-14A of the Photon Factory. A small Si-APD of 4-pF electric capacity was used as the detector device in order to output a pulse of a width shorter than 2 ns on the baseline. For processing the fast pulses, the discriminator and the scaler having a throughput of >500 MHz, were prepared. Since the acceleration frequency at the PF ring was 500.1 MHz and the empty-bunch spacing was 12/312 bunches per circumference, the expected maximum rate was 4.8x10 8s-1 according to the counting model for a pulsed photon source. The reason why the present system did not reach the expected value was the baseline shift at the amplifier outputs. The rise of +0.2 V was observed at a discriminator output of 3.3x10 8 s -1 , while the pulse height was lower than 0.2 V. The baseline shift was caused by an AC coupling circuit in the amplifier. If a DC coupling circuit can be used for the amplifier, instead of the AC coupling circuit, or an active adjustment to compensate the baseline shift is installed, the counting system will show an ideal response. Although the present system including NIM modules was not so compact, we would like to develop a new fast-counting circuit for a Si-APD array detector of more than 100 channels of small pixels, in near future. (author)

  9. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  10. Large-Area Neutron Detector based on Li-6 Pulse Mode Ionization Chamber

    International Nuclear Information System (INIS)

    Chung, K.; Ianakiev, K.D.; Swinhoe, M.T.; Makela, M.F.

    2005-01-01

    Prototypes of a Li-6 Pulse Mode Ionization Chamber (LiPMIC) have been in development for the past two years for the purpose of providing large-area neutron detector. this system would be suitable for remote deployment for homeland security and counterterrorism needs at borders, ports, and nuclear facilities. A prototype of LiPMIC is expected to provide a similar level of performance to the current industry-standard, He-3 proportional counters, while keeping the initial cost of procurement down by an order of magnitude, especially where large numbers of detectors are required. The overall design aspect and the efficiency optimization process is discussed. Specifically, the MCNP simulations of a single-cell prototype were performed and benchmarked with the experimental results. MCNP simulations of a three dimensional array design show intrinsic efficiency comparable to that of an array of He-3 proportional counters. LiPMIC has shown steady progress toward fulfilling the design expectations and future design modification and optimization are discussed.

  11. A method to reduce the suppression of relevant pulses in pulse weight discriminators

    International Nuclear Information System (INIS)

    Schwartz, P.

    1975-01-01

    The pulse height analyzer is used, for instance, with proportional counters. Pulses are broken down into amplitude ranges in accordance with their maximum amplitudes. In pulse height analyzers with real time analog-digital conversion only one deadtime is needed for the respective range selected. For this purpose, all discriminator thresholds of the amplitude stores connected parallel are actuated as an input pulse arrives. The leading edges of the discriminator signals set the amplitude range flip-flop. Only the flip-flop circuit of the maximum amplitude range reached remains set whilst all the others are erased. The trailing edge of the discriminator signals actuates the evaluation of the information stored by the flip-flop circuit selected. It triggers a pulse extender and resets the flip-flop selected. Therefore, only the amplitude range selected needs a deadtime. The pulse extender in addition reduces the processing time of the analyzer by the output pulse length. The characteristic used for the trailing edge is the backward count of the real time analog-digital converter. (DG/RF) [de

  12. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  13. Delay differential equations for mode-locked semiconductor lasers.

    Science.gov (United States)

    Vladimirov, Andrei G; Turaev, Dmitry; Kozyreff, Gregory

    2004-06-01

    We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

  14. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  15. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  16. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Science.gov (United States)

    Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.

    2015-12-01

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  17. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Directory of Open Access Journals (Sweden)

    C. Sun

    2015-12-01

    Full Text Available Pseudosingle-bunch kick-and-cancel (PSB-KAC is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  18. Pulse Detecting Genetic Circuit – A New Design Approach

    Science.gov (United States)

    Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045

  19. A training and educational tool for neutron coincidence measurements

    International Nuclear Information System (INIS)

    Huszti, J.; Bagi, J.; Langner, D.

    2009-01-01

    Neutron coincidence counting techniques are widely used for nuclear safeguards inspection. They are based on the detection of time correlated neutrons created from spontaneous or induced fission of plutonium and some other actinides. IAEA inspectors are trained to know and to use this technique, but it is not easy to illustrate and explain the basics of the neutron coincidence counting. The traditional shift registers or multiplicity counters give only multiplicity distributions and the singles, doubles and triples count rates. Using the list mode method for the recording and evaluation of neutron coincidence data makes it easier to teach this technique. List mode acquisition is a relatively new way to collect data in neutron coincidence counting. It is based on the recording of the follow-up times of neutron pulses originating from a neutron detector into a file. The recorded pulse train can be evaluated with special software after the measurement. Hardware and software for list mode neutron coincidence acquisition have been developed in the Institute of Isotopes and is called a Pulse Train Reader. A system called Virtual Source for replaying pulse trains registered with the list mode device has also been developed. The list mode device and the pulse train 're-player' together build a good educational tool for teaching the basics of neutron coincidence counting. Some features of the follow-up time, multiplicity and Rossi-alpha distributions can be well demonstrated by replaying artificially generated or pre-recorded pulse trains. The choice of real sources is stored on DVD. There is no need to transport and maintain real sources for the training. Virtual sources also give the possibility of investigating rare sources that trainees would not have access to otherwise. (authors)

  20. Method and apparstus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1980-01-01

    A method and apparatus for the reliable determination of a random coincidence count attributable to chance coincidences of single-photon events which are each detected in only a single detector of a scintillation counter utilizing two detectors in a coincidence counting technique are described. A firstdelay device is employed to delay output pulses from one detector, and then the delayed signal is compared with the undelayed signal from the other detector in a coincidence circuit, to obtain an approximate random coincidence count. The output of the coincidence circuit is applied to an anti-coincidence circuit, where it is corrected by elimination of pulses coincident with, and attributable to, conventionally detected real coincidences, and by elimination of pulses coincident with, and attributable to, real coincidences that have been delayed by a second delay device having the same time parameter as the first. 8 claims

  1. Dispersion engineering of mode-locked fibre lasers

    Science.gov (United States)

    Woodward, R. I.

    2018-03-01

    Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.

  2. Practical issues of retrieving isolated attosecond pulses

    International Nuclear Information System (INIS)

    Wang He; Chini, Michael; Khan, Sabih D; Chen, Shouyuan; Gilbertson, Steve; Feng Ximao; Mashiko, Hiroki; Chang Zenghu

    2009-01-01

    The attosecond streaking technique is used for the characterization of isolated extreme ultraviolet (XUV) attosecond pulses. This type of measurement suffers from low photoelectron counts in the streaked spectrogram, and is thus susceptible to shot noise. For the retrieval of few- or mono-cycle attosecond pulses, high-intensity streaking laser fields are required, which cause the energy spectrum of above-threshold ionized (ATI) electrons to overlap with that of the streaked photoelectrons. It is found by using the principal component generalized projections algorithm that the XUV attosecond pulse can accurately be retrieved for simulated and experimental spectrograms with a peak value of 50 or more photoelectron counts. Also, the minimum streaking intensity is found to be more than 50 times smaller than that required by the classical streaking camera for retrieval of pulses with a spectral bandwidth supporting 90 as transform-limited pulse durations. Furthermore, spatial variation of the streaking laser intensity, collection angle of streaked electrons and time delay jitter between the XUV pulse and streaking field can degrade the quality of the streaked spectrogram. We find that even when the XUV and streaking laser focal spots are comparable in size, the streaking electrons are collected from a 4π solid angle, or the delay fluctuates by more than the attosecond pulse duration, the attosecond pulses can still be accurately retrieved. In order to explain the insusceptibility of the streaked spectrogram to these factors, the linearity of the streaked spectrogram with respect to the streaking field is derived under the saddle point approximation.

  3. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  4. Self-mode-locked AlGaInP-VECSEL

    Science.gov (United States)

    Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.

    2017-10-01

    We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.

  5. High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates

    International Nuclear Information System (INIS)

    Liu, Yang; Li, Wenxue; Zhao, Jian; Bai, Dongbi; Luo, Daping; Zeng, Heping

    2015-01-01

    Femtosecond pulses at 250 MHz repetition rate from a mode-locked fiber laser are amplified to high power in a pre-chirp managed amplifier. The experimental strategy offers a potential towards high-power ultrashort laser pulses at high repetition rates. By investigating the laser pulse evolution in the amplification processes, we show that self-similar evolution, finite gain bandwidth and mode instabilities determine pulse characteristics in different regimes. Further average power scaling is limited by the mode instabilities. Nevertheless, this laser system enables us to achieve sub-50 fs pulses with an average power of 93 W. (letter)

  6. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    Science.gov (United States)

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  7. Long Pulse EBW Start-up Experiments in MAST

    Directory of Open Access Journals (Sweden)

    Shevchenko V.F.

    2015-01-01

    Full Text Available Start-up technique reported here relies on a double mode conversion (MC for electron Bernstein wave (EBW excitation. It consists of MC of the ordinary (O mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR. Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  8. Mode-locked silicon evanescent lasers.

    Science.gov (United States)

    Koch, Brian R; Fang, Alexander W; Cohen, Oded; Bowers, John E

    2007-09-03

    We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

  9. Modification of MEA modulator-klystron units enabling short pulse injection into a pulse-stretcher ring

    International Nuclear Information System (INIS)

    Kroes, F.B.; Heine, E.

    1989-01-01

    In order to modify the present 500 MeV, 1% duty factor electron accelerator MEA into a 900 MeV, 0.1% d.f. injector for a newly to be build pulse- stretching ring, the present modulator-klystron units have to be adapted from 4 MW, 2% d.f. mode of operation into the 10 MW, 0.2% d.f. mode. Suitable klystrons are commercially available, the matching modulators, however, will be obtained by modifying the present ones, which policy is dictated by economical considerations. The design principles of these modulators -a proto-type is presently under construction- will be discussed. Special attention is given to the video-pulse shape requirements, dictated by the future performance of the pulse-stretcher. This device has to deliver low emittance, high duty factor (n90%) beams for nuclear physics experiments. Some proto-type tests of the video-pulse forming modifications will be presented. (author). 5 refs.; 11 figs.; 2 tabs

  10. Liquid scintillation alpha counting and spectrometry and its application to bone and tissue samples

    International Nuclear Information System (INIS)

    McDowell, W.J.; Weiss, J.F.

    1976-01-01

    Three methods for determination of alpha-emitting nuclides using liquid scintillation counting are compared, and the pertinent literature is reviewed. Data showing the application of each method to the measurement of plutonium concentration in tissue and bone samples are presented. Counting with a commercial beta-liquid scintillation counter and an aqueous-phase-accepting scintillator is shown to be accurate only in cases where the alpha activity is high (several hundred counts/min or more), only gross alpha counting is desired, and beta-gamma emitters are known to be absent from the sample or present at low levels compared with the alpha activity. Counting with the same equipment and an aqueous immiscible scintillator containing an extractant for the nuclide of interest (extractive scintillator) is shown to allow better control of alpha peak shift due to quenching, a significant reduction of beta-gamma interference, and, usually, a low background. The desirability of using a multichannel pulse-height analyzer in the above two counting methods is stressed. The use of equipment and procedures designed for alpha liquid scintillation counting is shown to allow alpha spectrometry with an energy resolution capability of 200 to 300 keV full-peak-width-at-half-peak-height and a background of 0.3 to 1.0 counts/min, or as low as 0.01 counts/min if pulse-shape discrimination methods are used. Methods for preparing animal bone and tissue samples for assay are described

  11. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  12. Self-starting and overclocking a harmonically mode-locking WRC-FPLD with a dual-loop feedback controller for 10 Gb s−1 pulse-data transmission

    International Nuclear Information System (INIS)

    Lin, Chun-Ju; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The self-starting and overclocking of a harmonically mode-locked weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) with a dual-loop coupled optoelectronic oscillator (COEO) based feedback controller is demonstrated to perform a clock-free pulsed data transmission at 10 Gb s −1 . The WRC-FPLD is considered as the preferred candidate for harmonic mode-locking due to its highly asymmetric cavity architecture, whereby the spontaneous noise can be significantly suppressed without inducing large intra-cavity loss. With the dual-loop COEO configuration, the WRC-FPLD can be boosted to four times of its original modulation bandwidth such that the pulsed carrier quality can be refined. The structure-optimizing principle with the closed-loop model is corroborated by the effective spurious-noise-suppression. The lowest phase noises as low as −100 dBc Hz −1 at 10 kHz with corresponding RMS timing jitter of 0.67 ps are measured. This is achieved by individually inserting 100 and 120 m long single mode fiber segments into two decoupled arms, the dual-loop COEO before the optical receiver pair. The BER performance reaches a minimum with the optimized SMF segment lengths. However, the spurious peaks arise to degrade the BER performance as the phase noise and jitter are inevitably enlarged when inserting longer SMF segments. After modulating the optimized output pulse train with the pseudo-random-bit-sequence data triggered by the same COEO clock, the SNR can achieve 10.9 dB and the receiving sensitivity is −19.2 dBm. (letter)

  13. Operation of LIA-30 linear induction accelerator in the mode of generation of two bremsstrahlung pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bossamykin, V S; Gerasimov, A I; Gordeev, V S; Grishin, A V; Gritsina, V P; Tarasov, A D; Fedotkin, A S; Lazarev, S A; Averchenkov, A Ya [All-Russian Scientific Research Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The operating mode was studied of the LIA-30 linear induction accelerator ({approx} 40 MeV, {approx} 100 kA, {approx} 30 ns) with the generation of two bremsstrahlung pulses separated by a specified time interval from 0 to 5 {mu}s. In the accelerating channel an additional tube cathode was installed, and a synchronization system for two accelerating module groups triggering the formation and acceleration, at different initial times, of two annular electron beams with different outer diameters was changed. The energy limit of each beam electron acceleration can be controlled, and the energy sum limit is {<=} 540 MeV. (author). 2 tabs., 2 figs.

  14. CAMAC-compatible differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Tselikov, I.V.

    1988-01-01

    A differential pulse discriminator-counter for a Moessbauer spectrometer is described. Input pulses are collected according to the following algorithm; a pulse is admitted into the channel depending on whether or not the preceding pulse fell into the discrimination window. The circuit does not contain delay lines to allow for the delay lines to allow for the delay of the signal from the upper-level discriminator with respect to the signal from the lower-level discriminator due to the finite rise time of the input pulses, which makes it possible to reduce the dead time of the discriminator to the actuation time of the threshold circuits. The pulse count rate is 150 MHz, the input amplitude is +/-3 V, the dead time is 6 nsec, and the delay from input to output is 14 nsec. The unit is CAMAC-compatible

  15. Deep-red semiconductor monolithic mode-locked lasers

    International Nuclear Information System (INIS)

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A.; Wang, H. L.; Pan, J. Q.; Wang, X. L.; Cui, B. F.; Ding, Y.

    2014-01-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications

  16. Characteristics and instabilities of mode-locked quantum-dot diode lasers.

    Science.gov (United States)

    Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J

    2013-04-08

    Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.

  17. Roughness generation during Si etching in Cl{sub 2} pulsed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr; Darnon, Maxime; Despiau-Pujo, Emilie; Brichon, Paulin; Lattu-Romain, Eddy; Pons, Michel; Joubert, Olivier [Univ. Grenoble Alpes, CNRS, CEA-Leti Minatec, LTM, F-38054 Grenoble Cedex (France)

    2016-07-15

    Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that the Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.

  18. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    Science.gov (United States)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  19. A scintillation detector signal processing technique with active pileup prevention for extending scintillation count rates

    International Nuclear Information System (INIS)

    Wong, W.H.; Li, H.

    1998-01-01

    A new method for processing signals from scintillation detectors is proposed for very high count-rate situations where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in determining the energy of the event. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. With this technique, pileup events can be recovered and the energy of every recovered event can be optimally measured despite multiple pileups. A prototype circuit demonstrated that the maximum count rates have been increased by more than 10 times, comparing to the standard pulse-shaping method, while the energy resolution is as good as that of the pulse shaping (or the fixed integration) method at normal count rates. At 2 x 10 6 events/sec for NaI(Tl), the true counts acquired are 3 times more than the delay-line clipping method (commonly used in fast processing designs) due to events recovered from pileups. Pulse-height spectra up to 3.5 x 10 6 events/sec have been studied

  20. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Science.gov (United States)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  1. SiOx Ink-Repellent Layer Deposited by Radio Frequency (RF) Plasmas in Continuous Wave and Pulse Mode

    International Nuclear Information System (INIS)

    Chen Qiang; Fu Yabo; Pang Hua; Zhang Yuefei; Zhang Guangqiu

    2007-01-01

    Low surface energy layers, proposed application for non-water printing in computer to plate (CTP) technology, are deposited in both continuous wave and pulse radio frequency (13.56 MHz) plasma with hexamethyldisiloxane (HMDSO) as precursor. It is found that the plasma mode dominates the polymer growth rate and the surface composition. Derived from the spectra of X-ray photoelectron spectroscopy (XPS) and combined with printable test it is concluded that concentration of Si in coatings plays an important role for the ink printability and the ink does not adhere on the surface with high silicon concentration

  2. Photon counting with small pore microchannel plates

    International Nuclear Information System (INIS)

    Martindale, A.; Lapington, J.S.; Fraser, G.W.

    2007-01-01

    We describe the operation of microchannel plates (MCPs) with 3.2μm diameter channels as photon counting detectors of soft X-rays. Gain and temporal resolution measurements are compared with theoretical scaling laws for channel diameter. A minimum pulse width of 264ps is observed for a two stage multiplier at a total bias voltage of ∼1930V

  3. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    Science.gov (United States)

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  4. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.

    Science.gov (United States)

    Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang

    2017-07-24

    In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

  5. SORE - a pulse stretcher for the Saskatchewan 300-MeV linac

    International Nuclear Information System (INIS)

    Bergstrom, J.C.; Caplan, H.S.; Norum, B.E.; Servranckx, R.V.

    1983-01-01

    A design study has been made of a pulse stretcher to increase the duty factor of the 300 MeV electron accelerator of the Saskatchewan Accelerator Laboratory. The design was constrained by the desire to house the pulse stretcher within the existing accelerator building and to make maximal use of existing beam transport lines. The pulse stretcher ring consists of two 180 0 bend regions connected by achromatic straight sections. The overall length is 50.49 m and the width is 6.64m. The modes of injection and extraction will be available. In the first mode a shortened linac pulse of 300 ns duration will be injected during a single turn directly into the closed orbit of the pulse stretcher. A second mode of injection/extraction involves use of a longer linac pulse. The basic geometry of the PSR is dictated by the dimensions of the accelerator vault and access room

  6. The transient evolution of AM mode locking a TEA CO2laser

    NARCIS (Netherlands)

    van Goor, F.A.; Bonnie, Ronald J.M.; Witteman, W.J.

    1985-01-01

    The evolution of the pulse in an AM mode-locked TEA CO2laser has been investigated. The experiments have been performed by injecting the mode-locked pulses in a high-pressure slave oscillator at various time intervals after the initiation of the mode-lock process. This technique allows the

  7. Determination of Np, Pu and Am in high level radioactive waste with extraction-liquid scintillation counting

    International Nuclear Information System (INIS)

    Yang Dazhu; Zhu Yongjun; Jiao Rongzhou

    1994-01-01

    A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products ( 90 Sr, 137 Cs etc.) are 10 4 -10 6 . Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of α-activity is >99% and the rejection of β-counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste. (author) 7 refs.; 7 figs.; 4 tabs

  8. Capacitor charging FET switcher with controller to adjust pulse width

    Science.gov (United States)

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  9. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  10. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Matsumoto, Yuzuru

    1996-07-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a `flag` which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  11. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru; Matsumoto, Yuzuru.

    1996-01-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a 'flag' which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  12. Research on Pulsed Jet Flow Control without External Energy in a Blade Cascade

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-12-01

    Full Text Available To control the flow separation in the compressors, a novel pulsed jet concept without external energy injection is proposed. The new concept designs a slot in the middle of the blade and sets a micro device to switch the slot periodically. Such a structure is expected to generate a pulsed jet by the pressure difference between the pressure side and the suction side of the blade. In order to analyze the interaction between the pulsed jet and unsteady separated flow, our numerical and experimental study is based on a specific cascade (with a flow separation inside and a pulsed jet (one of the unsteady flow control method. The experimental and numerical results both show that when the frequency of pulsed jet is approximate to that of the separation vortex, then the control tends to be more effective. Based on the numerical simulations, the proper orthogonal decomposition (POD is then used to reveal the control mechanism, extracting the different time-space structures from the original field. The results with the aid of POD show that the pulsed jet can redistribute the kinetic energy of each mode, and strengthen or weaken certain modes, particularly, while the steady jet reduces the kinetic energy of high-order modes in whole. Also, pulsed jet with proper parameters can transfer the energy from higher modes to the first flow mode (averaged flow, which is due to the conversion of the spatial vortical structures and the time evolution of the modes.

  13. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  14. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    Science.gov (United States)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  15. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  16. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Ghazali, A B; Ahmad, T S; Abdullah, N A

    2013-01-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  17. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  18. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  19. Repetitively pulsed, double discharge TEA CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D C; James, D J; Ramsden, S A

    1975-10-01

    The design and operation of a repetitively pulsed TEA CO/sub 2/ laser is described. Average powers of up to 400 W at a repetition frequency of 200 pulses/s have been obtained. The system has also been used to provide long pulses (over 20 ..mu..s) and tunable single axial mode pulses.

  20. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    Science.gov (United States)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  1. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  2. Digital pulse-shape analyzer based on fast sampling of an integrated charge pulse

    International Nuclear Information System (INIS)

    Jordanov, V.T.; Knoll, G.F.

    1995-01-01

    A novel configuration for pulse-shape analysis and discrimination has been developed. The current pulse from detector is sent to a gated integrator and then sampled by a flash analog-to-digital converter (ADC). The sampled data are processed digitally, thus allowing implementation of a near-optimum weighting function and elimination some of the instabilities associated with the gated integrator. The analyzer incorporates pileup rejection circuit that reduces the pileup effects at high counting rates. The system was tested liquid scintillator. Figures of merit for neutron-gamma pulse-shape discrimination were found to be: 0.78 for 25 keV (electron equivalent energy) and 3.5 for 500 keV. The technique described in this paper was developed to be used in a near tissue-equivalent neutron-gamma dosimeter which employs a liquid scintillator detector

  3. 532 nm continuous wave mode-locked Nd:GdVO4 laser with SESAM

    International Nuclear Information System (INIS)

    Li, L; Liu, J; Liu, M; Liu, S; Chen, F; Wang, W; Wang, Y

    2009-01-01

    We obtain continuous wave mode-locked Nd:GdVO 4 -KTP laser with a SESAM. This is the first report of CW mode-locked Nd:GdVO 4 -KTP laser with a SESAM to our knowledge. 396 mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM

  4. The study on acquisition mode and reconstruction parameters of brain FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chuantao; Liu Yongchang; Guan Yihui; Zhao Jun; Lin Xiangtong

    2001-01-01

    Objective: To evaluate the effect of acquisition mode on the brain PET images. Methods: After changing conditions and parameters, the authors got brain PET images of different acquisition modes, different emission counts, different transmission times; and compared with the reference images the impacts of different acquisition modes, different acquisition conditions were assessed. Results: Compared with 2D mode, much higher background and noise were observed on the reconstruction images of 3D mode, and the bottoms of the brain structure were not well displayed. But the middle part of brain structure displayed well in 2D and 3D mode without difference; the gray/white radioactivity ratios were 2.108 +- 0.183 and 2.286 +- 0.232 under 2D and 3D mode, respectively. The gray/white radioactivity ratios with different emission counts were 2.108 +- 0.183, 2.215 +- 0.158, 2.161 +- 0.176, respectively, there was no evident difference among them. With transmission counts increasing, the segmented image outline of Hoffman phantom and brain structure became clear and integral. Conclusions: Different acquisition modes, different emission counts and different transmission times are of certain impacts on brain FDG PET images, and it should be paid more attention in clinical practice

  5. Understanding the dynamic performance of microchannel plates in pulsed mode

    International Nuclear Information System (INIS)

    Ray Thomas; Ming Wu; Nathan Joseph; Craig Kruschwitz; Gregroy A. Rochau

    2007-01-01

    The dynamic performance of a microchannel plate (MCP) is highly dependent on the high-voltage waveforms that are applied to it. Impedance mismatches in MCP detectors can significantly vary the waveforms on the MCP compared to the input pulses. High-voltage pulse waveforms launched onto surface coatings on the MCPs have historically been difficult and expensive to measure. Over the past few years, we have developed and tested techniques utilizing probes to measure the voltage propagation on the surface of MCPs. Square and Gaussian pulses with widths ranging from 200 ps to 2 ns have been applied. We have investigated the effects of coating thickness, microstrip width, and openended versus terminated strips. These data provide a wealth of knowledge that is enabling a better understanding of images recorded with these devices. This presentation discusses a method for measuring voltage profiles on the surface of the MCP and presents Monte Carlo simulations of the optical gate profiles based on the measured waveforms. Excellent agreement in the optical gate profiles have been achieved between the simulations and the experimental measurements using a short-pulse ultraviolet laser

  6. Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm

    Science.gov (United States)

    Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu

    2017-11-01

    We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.

  7. Simultaneous and separate, low background counting of beta rays and gamma rays using the phoswich principle

    International Nuclear Information System (INIS)

    Mayhugh, M.R.; Utts, B.K.; Shoffner, B.M.

    1978-01-01

    A phoswich constructed using thin calcium fluoride optically coupled to a thicker sodium iodide crystal and operated with pulse shape analysis equipment can be used as an efficient low background counting assembly. Low background in the beta ray counting channel is achieved by judicious choice of pure materials in the assembly and by operating the analysis equipment so as to reject background events which occur simultaneously in the sodium iodide crystal. Careful survey of construction materials and methods has resulted in reducing beta ray counting background to 0.6 c/min for a 2-inch diameter assembly. The radioactivity of typical building materials will be discussed. A pulse shape analyzer has been constructed which provides separately adjusted time windows and separate output information for the beta ray and gamma ray channels. The dual channel capability combined with the low beta ray background reduces the sample counting time significantly for typical laboratory samples. (author)

  8. Electronic system for recording proportional counter rare pulses with the pulse shape analysis

    International Nuclear Information System (INIS)

    Barabanov, I.R.; Gavrin, V.N.; Zakharov, Yu.I.; Tikhonov, A.A.

    1984-01-01

    The anutomated system for recording proportional counter rare pulses is described. The proportional counters are aimed at identification of 37 Ar and H7 1 Gr decays in chemical radiation detectors of solar neutrino. Pulse shape recording by means of a storage oscilloscope and a TV display is performed in the system considered besides two-parametric selection of events (measurement of pulse amplitude in a slow channel and the amplitude of pulse differentiated with time constant of about 10 ns in a parallel fast channel). Pulse discrimination by a front rise rate provides background decrease in the 55 Fe range (5.9 keV) by 6 times; the visual analysis of pulse shapes recorded allows to decrease the background additionally by 25-30%. The background counting rate in the 55 Fe range being equal to 1 pulse per 1.5 days, is obtained when using the installation described above, as well as the passive Pb shield 5 cm thick, and the active shield based on the anticoincidence NaI(Tl) detector with the cathode 5.6 mm in-diameter made of Fe fabircated by zone melting. The installation described allows to reach the background level of 0.6 pulse/day (the total coefficient of background attenuation is 400). Further background decrease is supposed to be provided by installation allocation in the low-noise underground laboratory of the Baksan Neutrino Observatory

  9. Experimental study of pulsed heating of electromagnetic cavities

    International Nuclear Information System (INIS)

    Pritzkau, D.P.; Menegat, A.; Siemann, R.H.

    1997-01-01

    An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE 011 mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 μs. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE 012 mode in the cavity with a low-power CW signal at a frequency of 17.8 GHz. The relevant theory of pulsed heating will be discussed and the results from cold-testing the structure will be presented

  10. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  11. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  12. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  13. Generation of a microelectron beam by an intense short pulse laser in the TEM(1, 0) + TEM(0, 1) mode in vacuum

    International Nuclear Information System (INIS)

    Miyazaki, Shuji; Kawata, Shigeo; Kong, Qing; Miyauchi, Koichi; Sakai, Kei; Hasumi, Shotaro; Sonobe, Ryo; Kikuchi, Takashi

    2005-01-01

    The generation of a high energy microelectron bunch in vacuum by an intense short pulse laser in the TEM(1, 0) + TEM(0, 1) mode is investigated in this paper numerically and analytically. A focused short pulse laser in the TEM(1, 0) + TEM(0, 1) mode has a confinement effect on electrons in the transverse direction due to the transverse ponderomotive force, and at the same time the electrons are accelerated and compressed longitudinally by a longitudinal electric field. In our three-dimensional particle simulations, the maximum kinetic energy of electrons reaches 455 MeV, the maximum density is 3.87 x 10 10 cm -3 , and the normalized transverse and longitudinal rms emittances of accelerated electrons are of the order of 10 -6 m rad at the following parameter values: a 0 = eE 0 /(m e ω c) = 10 (where a 0 is the dimensionless parameter of the laser amplitude, e and m e are the electron charge and rest mass, respectively, E 0 is the laser amplitude, ω the angular frequency of the laser and c the speed of light in vacuum), a laser wavelength λ = 0.8 μm, laser spot size 20λ, laser pulse length 5λ and initial electron velocity 0.99c. Moreover, the transverse and longitudinal sizes of the compressed electron bunch are about 600λ and 10λ, respectively. In this paper, we also present a scaling law of the maximum electron energy. The estimated results of the maximum electron energy coincide well with the simulation results

  14. Color center lasers passively mode locked by quantum wells

    International Nuclear Information System (INIS)

    Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.

    1989-01-01

    This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes

  15. Soft X ray spectrometry at high count rates

    International Nuclear Information System (INIS)

    Blanc, P.; Brouquet, P.; Uhre, N.

    1978-06-01

    Two modifications of the classical method of X-ray spectrometry by a semi-conductor diode permit a count rate of 10 5 c/s with an energy resolution of 350 eV. With a specially constructed pulse height analyzer, this detector can measure four spectra of 5 ms each, in the range of 1-30 keV, during a plasma shot

  16. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    International Nuclear Information System (INIS)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin; Rong, John X.; Wu, Xizeng; Liu, Hong

    2017-01-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 µm to 50 µm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (µA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 µm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 µm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications. - Highlights: • A micro focus x-ray source that operates in both continuous and pulse emission modes was quantitatively characterized. • The source output, beam quality, focal spot measurements, kV accuracy, spectra analyses and spatial resolution were measured. • Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam

  17. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin [Center for Biomedical Engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Rong, John X. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Wu, Xizeng [Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical Engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2017-05-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 µm to 50 µm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (µA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 µm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 µm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications. - Highlights: • A micro focus x-ray source that operates in both continuous and pulse emission modes was quantitatively characterized. • The source output, beam quality, focal spot measurements, kV accuracy, spectra analyses and spatial resolution were measured. • Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam

  18. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  19. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    Science.gov (United States)

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  20. A high count rate position decoding and energy measuring method for nuclear cameras using Anger logic detectors

    International Nuclear Information System (INIS)

    Wong, W.H.; Li, H.; Uribe, J.

    1998-01-01

    A new method for processing signals from Anger position-sensitive detectors used in gamma cameras and PET is proposed for very high count-rate imaging where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in the measurement of energy and position. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. The remnant subtraction is exact even for multiple pileup events. A prototype circuit for energy recovery demonstrated that the maximum count rates can be increased by more than 10 times comparing to the pulse-shaping method, and the energy resolution is as good as pulse shaping (or fixed integration) at low count rates. At 2 x 10 6 events/sec on NaI(Tl), the true counts acquired with this method is 3.3 times more than the delay-line clipping method (256 ns clipping) due to events recovered from pileups. Pulse-height spectra up to 3.5 x 10 6 events/sec have been studied. Monte Carlo simulation studies have been performed for image-quality comparisons between different processing methods

  1. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  2. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  3. The study of 80 MHz self starting passively mode-locked Erbium-Doped Fiber Laser via nonlinear polarization rotation with SESAM

    International Nuclear Information System (INIS)

    Qamar, F.

    2013-01-01

    Erbium-Doped Fiber Laser, EDF L, passively mode-locked via only Nonlinear Polarization Rotation, NPR, and via NPR with Semiconductor Saturable Absorber Mirror, SESAM, is studied. Self start single pulse train with pulse width of 114 fs and repetition rate (PRR) of 80 MHz has been obtained when 55 cm EDFL, passively mode-locked via NPR only. Inserting SESAM in EDFL cavity leads to shorten the pulse width up to 88 fs, increases the amplitude stability up to 96% and lower the phase noise jittering to around 26 fsec. Stable second harmonic self starting passively mode-locked EDFL with pulse width of 284 fs has also been observed only when SESAM was used in the cavity. Multi-pulsed system passively mode-locked via NPR for EDFL length of 80 cm with time difference between the successive multi-pulses ranged from few picoseconds to nanoseconds, has been observed. The time difference can be controlled by the polarizer controller and the half wave plate. Further controlling of the cavity polarization leads to developing the multiple mode locking pulses train to second harmonic mode-locking pulse train with PRR of 160MHz and pulse width of 156 fs. Three harmonic superposed trains of mode locked pulse have been achieved only when SESAM added to the cavity. (author)

  4. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    Science.gov (United States)

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity

    International Nuclear Information System (INIS)

    Xu, C W; Tang, D Y; Zhu, H Y; Zhang, J

    2013-01-01

    We report on the passive mode locking of a diode pumped Yb:GdYAG ceramic laser with a near isotropic cavity. It is found that the laser could simultaneously mode lock in the two orthogonal principal polarization directions of the cavity, and the mode locked pulses of the two polarizations have identical features and are temporally perfectly synchronized. However, their pulse energy varies out-of-phase periodically, manifesting the antiphase dynamics of mode locked lasers. (letter)

  6. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  7. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  8. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  9. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers

    International Nuclear Information System (INIS)

    Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    High-pulse-energy harmonic mode-locking in 2 μm Tm-doped fiber lasers (TDFLs) is realized, for the first time, by using a short piece of anomalous dispersion gain fiber and the dissipative soliton mode-locking mechanism. Appropriately designing the cavity dispersion map and adjusting the cavity gain, stable harmonic mode-locking of the dissipative soliton TDFL from the 2nd to the 4th order is achieved, with the pulsing repetition rates and pulse energy being 43.4, 65.1, 86.8 MHz, and 6.27, 4.32 and 3.29 nJ, respectively. The harmonic laser pulse has a pulse width of ∼30 ps and a center wavelength of ∼1929 nm with a spectral bandwidth of ∼3.26 nm, giving a highly chirped laser pulse. Two types of soliton molecules are also observed in this laser system. (letter)

  10. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  11. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    Energy Technology Data Exchange (ETDEWEB)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.; Phillips, K.; Voelker, M. [Canberra Industries Inc. (United States)

    2015-07-01

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - X and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube

  12. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    International Nuclear Information System (INIS)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.; Phillips, K.; Voelker, M.

    2015-01-01

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - X and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube

  13. High-Sensitivity Fast Neutron Detector KNK-2-8M

    Science.gov (United States)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  14. ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE SINGLE MODE LASER HOMOGENEOUS BROADENING IN THE PULSE REGIME

    Directory of Open Access Journals (Sweden)

    S. Ayadi

    2015-07-01

    Full Text Available The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1],  similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have proposed a simple harmonic expansion method to obtain a series of harmonics terms that yield analytical solutions to the laser equations. ¶This method allows us to derive an analytical expression of the laser field amplitude  when this last  undergoes a  periodic oscillations around zero mean value. We also obtain an analytical expression of the pulsing frequency.

  15. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  16. Single-pulse and burst-mode ablation of gold films measured by quartz crystal microbalance

    Science.gov (United States)

    Andrusyak, Oleksiy G.; Bubelnik, Matthew; Mares, Jeremy; McGovern, Theresa; Siders, Craig W.

    2005-02-01

    Femtosecond ablation has several distinct advantages: the threshold energy fluence for the onset of damage and ablation is orders of magnitude less than for traditional nanosecond laser machining, and by virtue of the rapid material removal of approximately an optical penetration depth per pulse, femtosecond machined cuts can be cleaner and more precise than those made with traditional nanosecond or longer pulse lasers. However, in many materials of interest, especially metals, this limits ablation rates to 10-100 nm/pulse. We present the results of using multiple pulse bursts to significantly increase the per-burst ablation rate compared to a single pulse with the same integrated energy, while keeping the peak intensity of each individual pulse below the air ionization limit. Femtosecond ablation with pulses centered at 800-nm having integrated energy of up to 30 mJ per pulse incident upon thin gold films was measured via resonance frequency shifts in a gold-electrode-coated quartz-crystal oscillator. Measurements were performed using Michelson-interferometer-based burst generators, with up to 2 ns pulse separations, as well as pulse shaping by programmable acousto-optic dispersive filter (Dazzler from FastLite) with up to 2 ps pulse separations.

  17. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    precious materials. In particular, single-longitudinal mode dye lasers are useful ... to the longitudinal mode spacing of 10 GHz. Grating of 3300 .... the band of wavelength covering 3 pm and SLM operation was shown in the band of 0.5 pm.

  18. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  19. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    Science.gov (United States)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  20. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    Science.gov (United States)

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  1. Spark counting technique with an aluminium oxide film

    International Nuclear Information System (INIS)

    Kawai, H.; Koga, T.; Morishima, H.; Niwa, T.; Nishiwaki, Y.

    1980-01-01

    Automatic spark counting of etch-pits on a polycarbonate film produced by nuclear fission fragments is now used for neutron monitoring in several countries. A method was developed using an aluminium oxide film instead of a polycarbonate as the neutron detector. Aluminium oxide films were prepared as follows: A cleaned aluminium plate as an anode and a nickel plate as a cathode were immersed in dilute sulfuric acid solution and electric current flowed between the electrodes at 12degC for 10-30 minutes. Electric current density was about 10 mA/cm 2 . The aluminium plate was then kept in boiling water for 10-30 minutes for sealing. The thickness of the aluminium oxide layer formed was about 1μm. The aluminium plate attached to a plate of suitable fissionable material, such as uranium or thorium, was irradiated with neutrons and set in a usual spark counter for fission track counting. One electrode was the aluminium plate and the other was an aluminized polyester sheet. Sparked pulses were counted with a usual scaler. The advantage of using spark counting with an aluminium oxide film for neutron monitoring is rapid measurement of neutron exposure, since chemical etching which is indispensable for spark counting with a polycarbonate detector film, is not needed. (H.K.)

  2. Statistical analysis of random pulse trains

    International Nuclear Information System (INIS)

    Da Costa, G.

    1977-02-01

    Some experimental and theoretical results concerning the statistical properties of optical beams formed by a finite number of independent pulses are presented. The considered waves (corresponding to each pulse) present important spatial variations of the illumination distribution in a cross-section of the beam, due to the time-varying random refractive index distribution in the active medium. Some examples of this kind of emission are: (a) Free-running ruby laser emission; (b) Mode-locked pulse trains; (c) Randomly excited nonlinear media

  3. Low fluid level in pulse rod shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, H. C.

    1974-07-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  4. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    Aderhold, H.C.

    1974-01-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  5. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  6. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  7. Low level alpha activity measurements with pulse shape discrimination

    International Nuclear Information System (INIS)

    Satoh, Kaneaki; Higuchi, Hideo; Kitamura, Kiyoshi; Noguchi, Masayasu.

    1984-01-01

    Liquid scintillation counting of α rays with pulse shape discrimination was applied to the analysis of 226 Ra and 239+240 Pu in environmental samples and of α-emitters in/on a filter paper. The instrument used in this study was either a specially designed detector or a commercial liquid scintillation counter with an automatic sample changer, both of which were connected to the pulse shape discrimination circuit. The background counting rate in α energy region of 5-7 MeV was 0.01 or 0.04 cpm/MeV, respectively. The figure of merit indicating the resolving power for α- and β-particles in time spectrum was found to be 5.7 for the commercial liquid scintillation counter. (author)

  8. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiyev, I. M., E-mail: idris.intop@mail.ru; Buyalo, M. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Gubenko, A. E. [Innolume GmbH (Germany); Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  9. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    International Nuclear Information System (INIS)

    Gadzhiyev, I. M.; Buyalo, M. S.; Gubenko, A. E.; Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L.

    2016-01-01

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  10. Multi-shape pulse pile-up correction: The MCPPU code

    International Nuclear Information System (INIS)

    Sabbatucci, Lorenzo; Scot, Viviana; Fernandez, Jorge E.

    2014-01-01

    In spectroscopic measurements with high counting rate, pulse pile-up (PPU) is a common distortion of the spectrum. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a purely physical model. Since PPU occurs after the transport inside the detector, this is the first correction to perform in case of spectrum unfolding. Many producers include electronic rejection circuits to limit the appearance of PPU, but it is never suppressed completely. Therefore, it is always necessary to correct PPU distortions after the measurement. In the present work, it is described the post-processing tool MCPPU (Monte Carlo Pulse Pile-Up), based on the MC algorithm developed by Guo et al. (2004, 2005). MCPPU automatically determines the dead time of the counting system and corrects for PPU effects even in the presence of electronic suppression. The capability of allowing a user defined pulse shape makes the code suitable to be used with any kind of detector. The features of MCPPU are illustrated with some examples. - Highlights: • Pulse pile-up (PPU) is a common distortion in radiation detection. • MCPPU is a Monte Carlo code to perform post-processing PPU correction. • MCPPU evaluates automatically the dead time to use in the pile-up recovery. • The measured pulse shape can be introduced as a normalized discrete distribution. • MCPPU is compatible with detectors using electronic rejection circuitry

  11. TUKAN—An 8K Pulse Height Analyzer and Multi-Channel Scaler With a PCI or a USB Interface

    Science.gov (United States)

    Guzik, Z.; Borsuk, S.; Traczyk, K.; Plominski, M.

    2006-02-01

    In this paper we present two types of 8K-channel analyzers designed for spectroscopy and intensity versus time measurements. The first type (Tukan-8K-PCI) incorporates a PCI interface and is designed to be plugged into a PCI slot of a normal PC. The second type (Tukan-8K-USB) incorporates a USB interface. It is mounted in a separate screened box and can be powered either directly from the USB port or from an external dc source (wall adapter or battery). Each type of device may operate in either of two independent operational modes: Multi Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The most crucial component for the MCA mode-the Peak Detect and Hold circuit-is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with rise times as short as 100 ns and has a differential linearity below 1% with sliding scale averaging over the full scale. The functionality includes automatic stop on a programmable count in the Region-Of-Interest (ROI) and on preset live- or real time. The MCS mode works at medium counting rates of up to 8 MHz. The dwell time, the number of channels and single or multi-sweep mode may be preset. Each of these parameters can also be controlled externally via four user configurable logical I/O lines. A single Altera FLEX 10KE30 FPGA provides all control functions and incorporates PCI interface. The USB interface is based on FTDI FIFO controller. Advanced and user-friendly software has been developed for the analyzer

  12. Gamma camera system with improved means for correcting nonuniformity

    International Nuclear Information System (INIS)

    Lange, K.; Jeppesen, J.

    1979-01-01

    In a gamma camera system, means are provided for correcting nonuniformity or lack of correspondence between the positions of scintillations and their calculated and displayed by x-y coordinates. In an accumulation mode, pulse counts corresponding with scintillations in various areas of the radiation field are stored in memory locations corresponding with their locations in the radiation field. A uniform radiation source is presented to the detectors during the accumulation is interrupted at which time other locations have fewer counts in them. In the run mode, counts are stored in corresponding locations of a memory and these counts are compared continuously with those stored in the accumulation mode. Means are provided for injecting a number of counts during the run mode proportional to the difference between the counts accumulated during the accumulation mode in a given area increment and the counts that should have been obtained from a uniform source

  13. Accuracy in activation analysis: count rate effects

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Fleming, R.F.

    1980-01-01

    The accuracy inherent in activation analysis is ultimately limited by the uncertainty of counting statistics. When careful attention is paid to detail, several workers have shown that all systematic errors can be reduced to an insignificant fraction of the total uncertainty, even when the statistical limit is well below one percent. A matter of particular importance is the reduction of errors due to high counting rate. The loss of counts due to random coincidence (pulse pileup) in the amplifier and to digitization time in the ADC may be treated as a series combination of extending and non-extending dead times, respectively. The two effects are experimentally distinct. Live timer circuits in commercial multi-channel analyzers compensate properly for ADC dead time for long-lived sources, but not for pileup. Several satisfactory solutions are available, including pileup rejection and dead time correction circuits, loss-free ADCs, and computed corrections in a calibrated system. These methods are sufficiently reliable and well understood that a decaying source can be measured routinely with acceptably small errors at a dead time as high as 20 percent

  14. Fringe counting method for synthetic phase with frequency-modulated laser diodes

    International Nuclear Information System (INIS)

    Onodera, Ribun; Sakuyama, Munechika; Ishii, Yukihiro

    2007-01-01

    Fringe counting method with laser diodes (LDs) for displacement measurement has been constructed. Two LDs are frequency modulated by mutually inverted sawtooth currents on an unbalanced two-beam interferometer. The mutually inverted sawtooth-current modulation of LDs produces interference fringe signals with opposite signs for respective wavelengths. The two fringe signals are fed to an electronic mixer to produce a synthetic fringe signal with a reduced sensitivity to the synthetic wavelength. Synthetic fringe pulses derived from the synthetic fringe signal make a fringe counting system possible for faster movement of the tested mirror

  15. Range walk error correction and modeling on Pseudo-random photon counting system

    Science.gov (United States)

    Shen, Shanshan; Chen, Qian; He, Weiji

    2017-08-01

    Signal to noise ratio and depth accuracy are modeled for the pseudo-random ranging system with two random processes. The theoretical results, developed herein, capture the effects of code length and signal energy fluctuation are shown to agree with Monte Carlo simulation measurements. First, the SNR is developed as a function of the code length. Using Geiger-mode avalanche photodiodes (GMAPDs), longer code length is proven to reduce the noise effect and improve SNR. Second, the Cramer-Rao lower bound on range accuracy is derived to justify that longer code length can bring better range accuracy. Combined with the SNR model and CRLB model, it is manifested that the range accuracy can be improved by increasing the code length to reduce the noise-induced error. Third, the Cramer-Rao lower bound on range accuracy is shown to converge to the previously published theories and introduce the Gauss range walk model to range accuracy. Experimental tests also converge to the presented boundary model in this paper. It has been proven that depth error caused by the fluctuation of the number of detected photon counts in the laser echo pulse leads to the depth drift of Time Point Spread Function (TPSF). Finally, numerical fitting function is used to determine the relationship between the depth error and the photon counting ratio. Depth error due to different echo energy is calibrated so that the corrected depth accuracy is improved to 1cm.

  16. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  17. Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(1 1 1) trilayers

    International Nuclear Information System (INIS)

    Clavero, C.; Cebollada, A.; Armelles, G.; Fruchart, O.

    2010-01-01

    The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(1 1 1) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(1 1 0) buffer layer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(1 1 1) interface, a close-to layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower (≤5mT). The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior.

  18. Pulse pile-up in nuclear particle detection systems with rapidly varying counting rates

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up in nuclear particle detection systems is the distortion of the measured pulse height distribution which occurs when there is a significant probability that more than one particle will arrive within the detector resolving time. This paper treats the problem in cases where the probability of pile-up varies on a time scale comparable to the rise time of the detector system electronics. These variations introduce structure into the pulse height distributions which cannot occur for a time-independent pile-up probability. Three classes of problems which exemplify these effects are as follows: 1) Pile-up rejection circuits. 2) Cascaded nuclear decays, in which the lifetime for emission of a second X-ray is comparable to the detector rise time. 3) Bursts of particles where the intensity is modulated on a time scale comparable to the detector rise time. These problems are solved computationally by an extension of a numerical technique previously developed. (Auth.)

  19. MTR2: a discriminator and dead-time module used in counting systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2000-01-01

    In the field of radioactivity measurement, there is a constant need for highly specialized electronic modules such as ADCs, amplifiers, discriminators, dead-time modules, etc. But sometimes it is almost impossible to find on the market the modules having the performances corresponding to our needs. The purpose of the module presented here, called MTR2 (Module de Temps-mort Reconductible), is to process, in terms of pulse height discrimination and dead-time corrections, the pulses delivered by the detectors used in counting systems. This dead-time, of the extendible type, is triggered by both the positive and negative parts of the incoming pulse and the dead-time corrections are made according to the live-time method. This module, which has been developed and tested at LPRI, can be used alone in simple counting channels or in more complex systems such as coincidence systems. The philosophy governing the choice and the implementation of this type of dead-time as well as the system used for the dead-time corrections is presented. The electronic scheme and the performances are also presented. This module is available in the NIM standard

  20. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  1. {alpha} counting device with pulse ionization chamber; Ensemble de comptage {alpha} a chambre d'ionisation a impulsion

    Energy Technology Data Exchange (ETDEWEB)

    Engelman, J; Guillon, H [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    This device has been achieved more especially in view of the control, by measure of activity {alpha}, of chemical separations. The sought-after features were the following: - simple handling; possibility to do some measures fast and frequent. It imposed the choice of an ionization chamber at air pressure; - possibility to count {alpha} in presence of a continuous {beta} background noise, which imposed a resolution time as short as possible; - absence of micro-phonics, which imposed a study of suspension of the room; - great safety of use. (author) [French] Cet appareil a ete realise plus particulierement en vue du controle, par mesure d'activite {alpha}, de separations chimiques. Les caracteristiques recherchees etaient les suivantes: - maniement simple; possibilite d'effectuer des mesures rapides et frequentes. Cela imposait le choix d'une chambre d'ionisation a air a pression atmospherique; - possibilite de compter des {alpha} en presence d'un fond continu de {beta}, ce qui imposait un temps de resolution aussi court que possible; - absence de microphonie, ce qui demandait une etude du mode de suspension de la chambre; - grande securite de fonctionnement. (auteur)

  2. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  3. Recent progress in EAST towards long-pulse high-performance operations

    International Nuclear Information System (INIS)

    Wang Liang; Wan Baonian; Li Jiangang; Guo Houyang; Liang Yunfeng; Xu Guosheng; Gong Xianzu; Garofalo, Andrea

    2015-01-01

    Significant advance has been made in EAST on both physics and technology fronts towards the long-pulse operation of high-confinement plasma regimes since the last IAEA-FEC. The EAST capabilities have been greatly upgraded, including the significantly enhanced CW H and CD system with up to 26 MW heating power, more than 70 diagnostics, ITER-like W monoblock top divertor, two internal cryo-pumps and RMP coils, enabling EAST to investigate long-pulse H-mode operation with dominant electron heating and low input torque, and to address some of critical issues for ITER. Remarkable physics progress has been made on controlling transient ELM and stationary divertor heat fluxes, e.g., ELM mitigation/suppression/pacing with LHCD and SMBI, real-time Li aerosol injection for long pulse ELM-free H-mode, edge coherent mode for continuous pedestal particle and power removal, and the combination of LHCD and SMBI to actively modify the stationary power footprint by regulating the divertor conditions. In the 2014 commissioning campaign, long-pulse high-performance H-mode up to 28 s has been obtained with H_9_8∼1.15, i.e., about ∼ 30% higher than the record 32 s H-mode achieved in the 2012 campaign. Other key new experimental achievements are: (1) high performance H-mode with β_N ∼ 2 and plasma stored energy ∼ 220 kJ, (2) high performance operation with core T_e ∼ 4.5 keV, (3) H-mode plasma enabled by NBI alone or LHW+NBI modulation for the first time in EAST, (4) demonstration of a quasi snowflake divertor configuration, (5) new findings on L-H transition and pedestal physics. (author)

  4. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Jons, Christian; Fritz-Hansen, Thomas

    2009-01-01

    BACKGROUND: Myocardial velocities can be measured with both pulsed-wave tissue Doppler (PWTD) and color tissue Doppler (CTD) echocardiography. We aimed to (A) to explore which of the two methods better approximates true tissue motion and (B) to examine the agreement and the reproducibility...... of the two methods in a routine clinical setting. METHODS: For Study A, the displacements of 63 basal myocardial segments from 13 patients were examined with M-mode and compared with the velocity-time integral of PWTD and CTD velocities. For Study B, the basal lateral segments from 58 patients were examined...... with PWTD and CTD, and the peak myocardial velocities during systole (Sm), early diastole (Em), and late diastole (Am) were measured. RESULTS: Study A: CTD-based measurements of displacement were 12% lower than M-mode measurements (95% CI: -18%; -6%). PWTD velocity-time integrals measured at the outer edge...

  5. Fast neutron spectrometer with pulse shape discrimination

    International Nuclear Information System (INIS)

    Verbitsky, S.S.

    1978-01-01

    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  6. Front-end counting mode electronics for CdZnTe sensor readout

    CERN Document Server

    Moraes, Danielle; Kaplon, Jan

    2004-01-01

    The development of a front-end circuit optimized for CdZnTe detector readout, implemented in 0.25 mu m CMOS technology, is reported. The ASIC comprises 17 channels of a charge sensitive amplifier with an active feedback, followed by a gain-shaper stage and a discriminator with a 5 bit fine-tune DAC. The signal from the discriminator is sensed by a 25 ns mono-stable circuit and an 18-bit static ripple- counter. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at a maximum counting rate of 2 million counts/second. The amplifier shows a linear sensitivity of 24 mV/fC with 50 ns peaking time and an equivalent noise charge of about 650 e/sup -/, for a detector capacitance of 10 pF. When connected to a 3*3*7 mm/sup 3/ CdZnTe detector the amplifier gain is about 8 mV/keV with a noise around 3.6 keV.

  7. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation.

    Science.gov (United States)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  8. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  9. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  10. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    Science.gov (United States)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  11. Automation system for optical counting of nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V

    1999-06-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2{center_dot}10{sup 5} tracks/cm{sup 2}. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  12. Automation system for optical counting of nuclear tracks

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V.

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2·10 5 tracks/cm 2 . The automatic system was applied in the experimental investigation of uranium and transuranium elements

  13. Automation system for optical counting of nuclear tracks

    CERN Document Server

    Boulyga, S F; Lomonosova, E M; Zhuk, I V

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2 centre dot 10 sup 5 tracks/cm sup 2. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  14. Developing a Rubric and Best Practices for Conducting Counts of Non-Motorized Transportation Users

    Science.gov (United States)

    2016-01-01

    Over the past five years non-motorized modes of transportation have become ever more prevalent on Utahs roadways. Historically, these modes have not been included in traffic counts nor are they accurately represented in the long range planning mod...

  15. Influence of ion bombardment on structural and electrical properties of SiO2 thin films deposited from O2/HMDSO inductively coupled plasmas under continuous wave and pulsed modes

    International Nuclear Information System (INIS)

    Bousquet, A.; Goullet, A.; Leteinturier, C.; Granier, A.; Coulon, N.

    2008-01-01

    Low pressure Plasma Enhanced Chemical Vapour Deposition is commonly used to deposit insulators on temperature sensitive substrates. In these processes, the ion bombardment experienced by films during its growth is known to have benefits but also some disadvantages on material properties. In the present paper, we investigate the influence of this bombardment on the structure and the electrical properties of SiO 2 -like film deposited from oxygen/hexa-methyl-di-siloxane radiofrequency plasma in continuous and pulsed modes. First, we studied the ion kinetics thanks to time-resolved measurements by Langmuir probe. After, we showed the ion bombardment in such plasma controls the OH bond content in deposited films. Finally, we highlight the impressive reduction of fixed charge and interface state densities in films obtained in pulsed mode due to a lower ion bombardment. (authors)

  16. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  17. Pulsed transport critical currents of Bi2212 tapes in pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rogacki, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Gilewski, A; Klamut, J [International Laboratory of High Magnetic Fields and Low Temperatures, Polish Academy of Sciences, Wroclaw (Poland); Newson, M; Jones, H [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom); Glowacki, B A [IRC in Superconductivity and Department of Materials Science, University of Cambridge, Cambridge (United Kingdom)

    2002-07-01

    If high-T{sub C} superconductors are ever to be used in high-field applications, it is vital that the critical surfaces can be mapped under high-field conditions. However, the latest superconductors have high currents even at fields over 20 T, making accurate measurements very difficult due to the thermal and mechanical problems. In this paper, we compare measurements on BSCCO-2212 tape using a number of different methods, particularly an innovative pulsed transport current and pulsed field mode. We show how the analysis of the voltage signal from BSCCO-2212 tape in pulsed conditions may be used to extract the critical current in quasi-stationary conditions. The effect of a metallic substrate on the results is also briefly discussed. (author)

  18. High core count single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Aikawa, K.; Sasaki, Y.; Amma, Y.

    2016-01-01

    Multicore fibers and few-mode fibers have the potential to realize dense-space-division multiplexing systems. Several dense-space-division multiplexing system transmission experiments over multicore fibers and few-mode fibers have been demonstrated so far. Multicore fibers, including recent resul...

  19. Powerful nanosecond pulse train generator

    International Nuclear Information System (INIS)

    Isakov, I.F.; Logachev, E.I.; Opekunov, M.S.; Pechenkin, S.A.; Remnev, G.E.; Usov, Yu.P.

    1987-01-01

    A generator permitting to shape on the load pulsed with the repetition frequency of 10 3 -10 6 Hz and more is described. The amplitude of shaped voltage pulses is up to 150 kV at pulse duration equal to 50 ns. The generator comprises connected in-series with the load two shaping and two transmission lines realized on the base of the KVI-300 low-ohmic cable. The shaping lines are supplied from two independently connected pulse voltage generators for obtaining time interval between pulses > 10 -6 s; they may be also supplied from one generator for obtaining time interval -6 s. At the expense of reducing losses in the discharge circuit the amplitude of the second pulse grows with increase of time interval between pulses up to 300 ns, further on the curve flat-topping exists. The described generator is used in high-current accelerators, in which the primary negative pulse results in generation of explosive-emission plasma, and the second positive pulse provides ion beam shaping including ions of heavy metal used for production of a potential electrode. The generator multipulse mode is used for successive ion acceleration in the transport system

  20. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration

    Science.gov (United States)

    Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.

    2018-01-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.

  2. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  3. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  4. Pulsed Power for a Dynamic Transmission Electron Microscope

    International Nuclear Information System (INIS)

    DeHope, W.J.; Browning, N.; Campbell, G.; Cook, E.; King, W.; Lagrange, T.; Reed, B.; Stuart, B.; Shuttlesworth, R.; Pyke, B.

    2009-01-01

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM

  5. Neutron-gamma discrimination in mixed field by pulse shape discriminator

    International Nuclear Information System (INIS)

    Sharghi Ido, A.; Shahriari, M.; Etaati, G. R.

    2009-01-01

    In this study, a pulse shape discriminator, incorporating zero-crossing method has been developed. The separate measurements with 241 Am-Be and 252 Cf sources undertaken by BC501A liquid have shown that the purposed and the common-used pulse shape discriminator's are in good agreement. The improved characteristics of the presented pulse shape discriminator are FOM=1.36 at a threshold of 60 ke Vee and 1.5μsec dead time which allows the count rates up to 50 k Hz

  6. Photon counting and fluctuation of molecular movement

    International Nuclear Information System (INIS)

    Inohara, Koichi

    1978-01-01

    The direct measurement of the fluctuation of molecular motions, which provides with useful information on the molecular movement, was conducted by introducing photon counting method. The utilization of photon counting makes it possible to treat the molecular system consisting of a small number of molecules like a radioisotope in the detection of a small number of atoms, which are significant in biological systems. This method is based on counting the number of photons of the definite polarization emitted in a definite time interval from the fluorescent molecules excited by pulsed light, which are bound to the marked large molecules found in a definite spatial region. Using the probability of finding a number of molecules oriented in a definite direction in the definite spatial region, the probability of counting a number of photons in a definite time interval can be calculated. Thus the measurable count rate of photons can be related with the fluctuation of molecular movement. The measurement was carried out under the condition, in which the probability of the simultaneous arrival of more than two photons at a detector is less than 1/100. As the experimental results, the resolving power of photon-counting apparatus, the frequency distribution of the number of photons of some definite polarization counted for 1 nanosecond are shown. In the solution, the variance of the number of molecules of 500 on the average is 1200, which was estimated from the experimental data by assuming normal distribution. This departure from the Poisson distribution means that a certain correlation does exist in molecular movement. In solid solution, no significant deviation was observed. The correlation existing in molecular movement can be expressed in terms of the fluctuation of the number of molecules. (Nakai, Y.)

  7. Array design considerations for exploitation of stable weakly dispersive modal pulses in the deep ocean

    Science.gov (United States)

    Udovydchenkov, Ilya A.

    2017-07-01

    Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.

  8. Design and application of pulse information acquisition and analysis ...

    African Journals Online (AJOL)

    ... two-dimensional information acquisition, multiplex signals combination and deep data mining. Conclusions: The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel. Keywords: Visualized pulse information; Radial artery; B mode ultrasound; Traditional ...

  9. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  10. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, John [Colorado State University, Department of Environmental and Radiological Health Sciences, Molecular and Radiological Biosciences Building, Colorado State University, Fort Collins, Colorado, 80523 (United States)

    2013-07-01

    We propose a radiation detection system which generates its own discrete sampling distribution based on past measurements of background. The advantage to this approach is that it can take into account variations in background with respect to time, location, energy spectra, detector-specific characteristics (i.e. different efficiencies at different count rates and energies), etc. This would therefore be a 'machine learning' approach, in which the algorithm updates and improves its characterization of background over time. The system would have a 'learning mode,' in which it measures and analyzes background count rates, and a 'detection mode,' in which it compares measurements from an unknown source against its unique background distribution. By characterizing and accounting for variations in the background, general purpose radiation detectors can be improved with little or no increase in cost. The statistical and computational techniques to perform this kind of analysis have already been developed. The necessary signal analysis can be accomplished using existing Bayesian algorithms which account for multiple channels, multiple detectors, and multiple time intervals. Furthermore, Bayesian machine-learning techniques have already been developed which, with trivial modifications, can generate appropriate decision thresholds based on the comparison of new measurements against a nonparametric sampling distribution. (authors)

  11. Synchronization circuit for shaping picosecond accelerated-electron pulses

    International Nuclear Information System (INIS)

    Pavlov, Y.S.; Solov'ev, N.G.; Tomnikov, A.P.

    1986-01-01

    The authors discuss a high-speed circuit for synchronization of trigger pulses of the deflector modulator of an accelerator with a given phase of rf voltage of 200 MHz. The measured time instability between the output trigger pulses of the circuit and the input rf voltage is ≤ + or - 0.05 nsec. The circuit is implemented by ECL integrated circuits of series K100 and K500, and operates in both the pulse (pulse duration 3 μsec and repetition frequency 400 Hz) and continuous modes

  12. Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Fukumoto, Ryohei; Takenaga, Katsuhiro

    2016-01-01

    A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously....

  13. Role of quenching on alpha/beta separation in liquid scintillation counting for several high capacity cocktails

    International Nuclear Information System (INIS)

    Pujol, L.; Sanchez-Cabeza, J.-A.

    1997-01-01

    The optimization of alpha/beta separation in liquid scintillation using pulse shape analysis is convenient for the simultaneous determination of alpha and beta emitters in natural water and other samples. In this work, alpha/beta separation was studied for different scintillant/vial combinations and it was observed that both the optimum pulse shape discrimination level and the total interference value (that is, the summed relative interference between alpha and beta spectra) were dependent on the sample quenching and independent of the scintillant/vial combination. These results provide a simple method for modifying the counting configuration, such as a change in the cocktail, vial or sample characteristics, without the need to perform exhaustive parameter optimizations. Also, it was observed that, for our counting conditions, the combination of Ultima Gold AB scintillation cocktail with Zinsser low diffusion vials presented the lowest total interference, namely 0.94 ± 0.28%, which is insignificant for the counting of environmental samples. (Author)

  14. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  15. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  16. Device geometry considerations for ridge waveguide quantum dot mode-locked lasers

    International Nuclear Information System (INIS)

    Mee, J K; Raghunathan, R; Lester, L F; Wright, J B

    2014-01-01

    Quantum dot mode-locked lasers have emerged as a leading source for the efficient generation of high-quality optical pulses from a compact package, attracting considerable attention for support of multiple high-speed applications, owing to characteristics such as low noise operation and high pulse peak power, in addition to the ability to multiplex the output pulse train in temporal and frequency domains in order to obtain hundreds of GHz pulse repetition rates potentially operating at 1 Tbps. This topical review provides a detailed explanation into the primary advantages of quantum dots, identifying the key features that have made them superior to other material systems for passive mode-locking in semiconductor lasers. Following this account, the impact of the device's cavity geometry on the operational range of two-section, monolithic passively mode-locked lasers is investigated both experimentally and analytically. A model is described that predicts regimes of pulsed operation as a function of absorber length to gain length ratio. Experimental measurements of the pulse time-domain characteristics over a wide range of operating temperatures are found to be in excellent agreement with analytical predictions. The impact of ridge waveguide design on the operational range is also examined and the key dimensions that most strongly impact efficient operation are identified. (topical review)

  17. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  18. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  19. Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy

    International Nuclear Information System (INIS)

    Jordanov, Valentin T.; Knoll, Glenn F.

    1994-01-01

    Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high count rate pulse spectroscopy. ((orig.))

  20. Higher order mode analysis of the SNS superconducting linac

    CERN Document Server

    Sang Ho Kim; Dong Jeon; Sundelin, R

    2001-01-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...

  1. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study.

    Science.gov (United States)

    Trelles, Mario A; Shohat, Michael; Urdiales, Fernando

    2011-02-01

    Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and

  2. Autonomous miniaturised device with USB interface for pulse height analysis and multi-channel scaling (TUKAN-8K-USB)

    International Nuclear Information System (INIS)

    Guzik, Z.; Borsuk, S.; Plominski, M.; Traczyk, K.

    2005-01-01

    We present autonomous a 8K-channel miniature device designed for spectroscopy or intensity vs. time measurements. The device (TUKAN-8K-USB) is based on the USB interface, and is contained in a screened separate box - it can be proved either directly from the USB port or from an external DC source (wall adapter of battery). The device may work in two independent operational modes: Multi-Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The crucial MCA component - Peak detect and Hold circuitry - is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with front edges down to 100 ns and has a differential linearity below 0.5% (full scale sliding scale averaging). Automatic stops on count in Region-Of-Interest (ROI) and on preset live or real time are implemented. The MCS works at medium speed counting rates (up to 8 MHz), with preset dwell time, number of channels and multi-sweep mode. Each these parameters can also be controlled externally. Digital interfacing is based on four used configurable logical I/O lines. A single CYCLONE EP1C3 Altera FPGA provides all control functions. The USB communication is based on FYDI FIFO controller. The analyzer is equipped with advanced, user-friendly software, which is subjected of another publication. )author)

  3. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  4. Pulse shape adjustment for the SLC damping ring kickers

    International Nuclear Information System (INIS)

    Mattison, T.; Cassel, R.; Donaldson, A.; Fischer, H.; Gough, D.

    1991-05-01

    The difficulties with damping ring kickers that prevented operation of the SLAC Linear Collider in full multiple bunch mode have been overcome by shaping the current pulse to compensate for imperfections in the magnets. The risetime was improved by a peaking capacitor, with a tunable inductor to provide a locally flat pulse. The pulse was flattened by an adjustable droop inductor. Fine adjustment was provided by pulse forming line tuners driven by stepping motors. Further risetime improvement will be obtained by a saturating ferrite pulse sharpener. 4 refs., 3 figs

  5. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  6. A generalization of the preset count moving average algorithm for digital rate meters

    International Nuclear Information System (INIS)

    Arandjelovic, Vojislav; Koturovic, Aleksandar; Vukanovic, Radomir

    2002-01-01

    A generalized definition of the preset count moving average algorithm for digital rate meters has been introduced. The algorithm is based on the knowledge of time intervals between successive pulses in random-pulse sequences. The steady state and transient regimes of the algorithm have been characterized. A measure for statistical fluctuations of the successive measurement results has been introduced. The versatility of the generalized algorithm makes it suitable for application in the design of the software of modern measuring/control digital systems

  7. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  8. The obtaining of giant laser pulses by optical pumping

    International Nuclear Information System (INIS)

    Briquet, Georges

    1970-12-01

    From coherent pumping studies a laser of short pulse duration was developed. Further study of laser effects in organic substances was envisaged. The first part of the work yielded awaited results, and led to the development of a single mode emitter (due to the small dimensions of the cavity). The principles of laser action were enumerated and the relative parameters defined. Various methods of obtaining pulses were discussed; the reasons behind the particular choice mode were given. A theoretical study was then made leading to the establishment of the fundamental equations defining the pulse formation process. An important part of the test deals with technical implications and the experimental results, which have arisen. The conclusion reviews possible applications. (author) [fr

  9. Solid state Ka-band pulse oscillator with frequency electronic switching

    Directory of Open Access Journals (Sweden)

    Dvornichenko V. P.

    2015-08-01

    Full Text Available Transmitting devices for small radars in the millimeter wavelength range with high resolution on range and noise immunity. The work presents the results of research and development of compact pulse oscillators with digital frequency switching from pulse to pulse. The oscillator consists of a frequency synthesizer and a synchronized amplifier on the IMPATT diode. Reference oscillator of synthesizer is synchronized by crystal oscillator with digital PLL system and contains a frequency multiplier and an amplifier operating in pulse mode. Small-sized frequency synthesizer of 8 mm wave lengths provides an output power of ~1.2 W per pulse with a frequency stability of no worse than 2•10–6. Radiation frequency is controlled by three-digit binary code in OOL levels. Synchronized amplifier made on IMPATT diodes provides microwave power up to 20 W in oscillator output with microwave pulse duration of 100—300 ns in an operating band. The oscillator can be used as a driving source for the synchronization of semiconductor and electro-vacuum devices of pulsed mode, and also as a transmitting device for small-sized radar of millimeter wave range.

  10. Single-photon counting in the 1550-nm wavelength region for quantum cryptography

    International Nuclear Information System (INIS)

    Park, Chul-Woo; Park, Jun-Bum; Park, Young-Soo; Lee, Seung-Hun; Shin, Hyun-Jun; Bae, Byung-Seong; Moon, Sung; Han, Sang-Kook

    2006-01-01

    In this paper, we report the measured performance of an InGaAs avalanche photodiode (APD) Module fabricated for single-photon counting. We measured the dark current noise, the after-pulse noise, and the quantum efficiency of the single- photon detector for different temperatures. We then examined our single-photon source and detection system by measuring the coincident probability. From our measurement, we observed that the after-pulse effect of the APD at temperatures below 105 .deg. C caused cascade noise build-up on the succeeding electrical signals.

  11. Equilibrium radionuclide assessment of left ventricular ejection and filling. Comparison of list mode-and multigated frame-mode measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, D.D.; McKenna, W.J.; Dickie, S.; Oakley, C.M.; Myers, M.J.; Lavender, J.P. (Royal Postgraduate Medical School, London (UK))

    1983-10-01

    The relationship as studied between radionuclide indices of left ventricular systolic and diastolic function acquired in conventional multigated frame-mode compared to list-mode in patients with sinus rhythm. The study showed that frame-mode and list-mode measurements of ejection and filling indices are not significantly different in these patients but that backward reformatting of data acquired in list-mode is necessary to measure the atrial contribution to LV stroke counts. It was concluded that valid measurements of left ventricular systolic ejection and diastolic filling can be made in patients in sinus rhythm using frame-mode acquisition with the exception of measurements of the contribution from atrial systole to stroke volume.

  12. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  13. Investigation of the performance of alpha particle counting and alpha-gamma discrimination by pulse shape with micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Ahmadov, G.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Jafarova, E.; Ahmadov, G.; Sadygov, Z.; Olshevski, A.; Zerrouk, F.; Mukhtarov, R.

    2015-01-01

    Being capable measuring small lights gives possibility to use micro-pixel avalanche photodiodes with scintillators. It is shown two prototypes to use micro-pixel avalanche photodiodes with and without scintillators as alpha and gamma counters in this paper. First prototype is to use two micro-pixel avalanche photodiodes. One for detecting alpha particles and closer to it, the second one with a thin plastic scintillator for detecting gamma rays. Second prototype is called two-layers configuration in which it is used only one micro-pixel avalanche photodiode, but two scntillators with different decay times. One can distinquish alpha particle and gamma ray events by using pulse shape discrimination techniques in the two-layer configuration. In this work an alpha particle and gamma ray counting performance of micro-pixel avalanche photodiodes without scintillators and its combination of plastic and BGO+ plastic scintillators was investigated. Obtained results showed the detection performance of the micro-pixel avalanche photodiodes in combination with plastic scintillator was about the same as conventional semiconductor detectors

  14. Quantitative Compton suppression spectrometry at elevated counting rates

    International Nuclear Information System (INIS)

    Westphal, G.P.; Joestl, K.; Schroeder, P.; Lauster, R.; Hausch, E.

    1999-01-01

    For quantitative Compton suppression spectrometry the decrease of coincidence efficiency with counting rate should be made negligible to avoid a virtual increase of relative peak areas of coincident isomeric transitions with counting rate. To that aim, a separate amplifier and discriminator has been used for each of the eight segments of the active shield of a new well-type Compton suppression spectrometer, together with an optimized, minimum dead-time design of the anticoincidence logic circuitry. Chance coincidence losses in the Compton suppression spectrometer are corrected instrumentally by comparing the chance coincidence rate to the counting rate of the germanium detector in a pulse-counting Busy circuit (G.P. Westphal, J. Rad. Chem. 179 (1994) 55) which is combined with the spectrometer's LFC counting loss correction system. The normally not observable chance coincidence rate is reconstructed from the rates of germanium detector and scintillation detector in an auxiliary coincidence unit, after the destruction of true coincidence by delaying one of the coincidence partners. Quantitative system response has been tested in two-source measurements with a fixed reference source of 60 Co of 14 kc/s, and various samples of 137 Cs, up to aggregate counting rates of 180 kc/s for the well-type detector, and more than 1400 kc/s for the BGO shield. In these measurements, the net peak areas of the 1173.3 keV line of 60 Co remained constant at typical values of 37 000 with and 95 000 without Compton suppression, with maximum deviations from the average of less than 1.5%

  15. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  16. Passively Q-switched mode-locked Nd3+:LuVO4 laser by LT-GaAs saturable absorber

    International Nuclear Information System (INIS)

    Li, M; Zhao, S; Li, Y; Yang, K; Li, G; Li, D; An, J; Li, T; Yu, Z

    2009-01-01

    By using LT-GaAs as saturable absorber, we have demonstrated the stable Q-switched and mode-locked (QML) Nd:LuVO 4 laser run in a Z-type folded cavity. Nearly 100% modulation depth of mode locking can be obtained as long as the pump power reaches the oscillation threshold. The repetition rate of the passively Q-switched pulse envelops ranges from 37.5 to 139 kHz as the pump power increased from 1.7 to 8.2 W. The mode-locked pulse inside the Q-switched envelop has an estimated pulse width of about 220 ps and a repetition rate of 111 MHz. Under an incident pump power of 8.2 W, the highest pulse energy of 6 μJ of each Q-switched envelope, and the highest peak power about 2.73 kW of Q-switched mode-locked pulses can be obtained

  17. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    Indian Academy of Sciences (India)

    ing (GIG) cavity, single-mode dye laser pumped by high repetition rate ... in a high loss cavity, a detailed theoretical study and optimization of cavity ..... rate for high conversion efficiency and longer pulse width of the single-mode dye laser.

  18. Synchronization circuit for shaping electron beam picosecond pulses

    International Nuclear Information System (INIS)

    Pavlov, Yu.S.; Solov'ev, N.G.; Tomnikov, A.P.

    1985-01-01

    A fast response circuit of modulator trigger pulse synchronization of a deflector of the electron linear accelerator at 13 MeV with the given phase of HF-voltage is described. The circuit is constructed using K500 and K100 integrated emitter-coupled logics circuits. Main parameters of a synchropulse are duration of 20-50 ns, pulse rise time of 1-5 ns, pulse amplitude >=10 V, delay instability of a trigger pulse <=+-0.05 ns. A radiopulse with 3 μs duration, 5 V amplitude and 400 Hz frequency enters the circuit input. The circuit can operate at both pulsed operation and continuous modes

  19. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  20. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  1. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    International Nuclear Information System (INIS)

    Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.

    2012-01-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  2. Electrochemical machining of titanium alloys with the use of anodal activating pulses

    International Nuclear Information System (INIS)

    Davydov, A.D.; Klepikov, R.P.; Moroz, I.I.

    1980-01-01

    A comparative investigation of electrochemical machining of VT-6 titanium alloy by direct current and in different pulse mode is carried out taking into account the peculiarities of anodal behaviour of titanium alloys at high current desities. The mode of electrochemical machining of VT-6 alloy with activating pulses is chosen. It allows to conduct a process at lower voltages and small interelectrode gaps

  3. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    Science.gov (United States)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  4. Spatiotemporal light-beam compression from nonlinear mode coupling

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan

    2018-04-01

    We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.

  5. Simultaneous determination of environmental α-radionuclides using liquid scintillation counting combined with time interval analysis (TIA) and pulse shape discrimination (PSD)

    International Nuclear Information System (INIS)

    Hashimoto, T.; Sato, K.; Yoneyama, Y.; Fukuyama, N.

    1997-01-01

    Some improvements of the detection sensitivity in pulse time interval analysis (TIA) based on selective extraction of successively α-α correlated decay events within millisecond order from random or background events, were established by the utilization of PSD, to reject β/γ-pulses from α-ones and a simple chemical procedure of radium separation, together with the use of well resolved scintillator. By applying the PSD, the contribution of β-decay events was completely eliminated in both the α-spectra and the TIA distribution curves as well as the improvement into clear energy resolution and the enhancement of detection sensitivity for the TIA. As a result, the TIA and α-spectrometric analysis of 226 Ra-extract showed the existence of 223 Ra (Ac-series) and β/α-correlated events with correlated life (due to 0.16 ms due to 214 Bi(β)-> 214 Po(α)->) along with a singly well resolved α-peak to be useful for the determination of 226 Ra (U-series). The difference of half-lives (145 and 1.78 ms) due to 216 Po and 215 Po (direct daughters of 224 Ra for Th-series and 223 Ra for Ac-series, respectively) was also proven for the possibility of the simultaneous determination of both correlated events by using the TIA/PSD combined with chemical separation and liquid scintillation counting method. Finally, the simultaneous determination of three natural decay series, which include U-, Th- and Ac-series nuclides, have been conveniently carried out for some environmental samples using the present method combined with 225 Ra yield tracer (Np-series). (author)

  6. Radiofrequency glow discharge time of flight mass spectrometry: pulsed vs. continuous mode

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Tempez, A.; Chapon, P.; Hohl, M.; Michler, J.

    2009-01-01

    Full text: Glow discharge (GD) is a well established tool for the direct analysis of solids. The application field of the original direct current GD, restricted to conductive samples, has been extended by radiofrequency powered GDs that can be applied for conductive and non-conductive samples. Moreover, the introduction of pulsed GD has opened the possibility of applying higher instantaneous powers that can improve the atomization-ionization processes and therefore the sensitivity. Furthermore, pulsed-GD may enable temporal separation of discharge gas species from the sample ions. In this work the analytical performances of radiofrequency and pulsed radiofrequency glow discharges are evaluated by using a time of flight mass analyzer (TOFMS). (author)

  7. The role of the waveform in pulse pile-up

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up is the distortion of pulse-height distributions due to the overlap of detector responses to the arrival of two or more particles or photons within the detector resolving time. This paper presents a computational technique for simulating pile-up effects, which includes explicitly the dependence on the pulse-shape of the detector system. The basis of the technique is the manipulation of probability densities. The method is applicable to all types of linear pulse counting systems for nucleons, electrons, and photons, as long as the result is a pulse-height distribution. The algorithms are highly efficient in the amount of computing required for simulations, and internal checks for the numerical accuracy of the results are included. Studies of pile-up by monoenergetic pulses are used to determine the interrelationship between pulse shapes and spectral features; this information can be used to minimize pile-up. For broad spectra, the square wave approximation is compared with the present model including the correct waveform; introducing the pulse shape information smooths spectral features but does not qualitatively change the spectrum. (Auth.)

  8. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  9. Influence of materials and counting-rate effects on 3He neutron spectrometry

    International Nuclear Information System (INIS)

    Evans, A.E.

    1984-01-01

    The high energy resolution of the Cuttler-Shalev 3 He neutron spectrometer causes spectral measurements with this instrument to be strongly susceptible to artifacts caused by the presence of scattering or absorbing materials in or near the detector or the source, and to false peaks generated by pileup coincidences of the rather long-risetime pulses from the detector. These effects are particularly important when pulse-height distributions vary over several orders of magnitude in count rate versus channel. A commercial pile-up elimination circuit greatly improves but does not eliminate the pileup problem. Previously reported spurious peaks in the pulse-height distributions from monoenergetic neutron sources have been determined to be due to the influence of the iron in the detector wall. 6 references, 9 figures

  10. Photonic-band-gap gyrotron amplifier with picosecond pulses

    Science.gov (United States)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.

    2017-12-01

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  11. Description and characterization of the ACRR's programmable transient rod withdrawal mode

    International Nuclear Information System (INIS)

    Boldt, K.R.; Sullivan, W.H.; Kefauver, H.L.

    1980-01-01

    To satisfy experiment needs for Sandia's Advanced Reactor Safety Program, a programmable Transient Rod Withdrawal (TRW) mode has been developed for the Annular Core Research Reactor (ACRR). The programmable mode is a modification of the existing continuous-withdrawal TRW mode and permits speed and direction changes during the pulse sequence. Basically, a TRW operation is similar to a routine pulse operation except that transient rods are mechanically withdrawn rather than pneumatically fired. Being a pulse-type operation, the TRW mode complies with pulse-mode safety system settings. Control system interlocks prevent the pneumatic firing of rods in the TRW mode. The hardware for the programmable TRW mode includes three ACRR transient rods, the ACRR timer, two rod programmers, a minicomputer and a summing circuit for position indication. Each ACRR transient rod is mechanically driven by a stepping motor (rated torque at 4.24 joules) and is capable of a maximum TRW speed of 26.7 centimeters/ second. The maximum reactivity insertion rate is $2.45/second with a transient rod bank worth of $3.00 and $3.47/second with a bank worth of $4.25, which is expected to be installed soon. The ACRR timer is a multifunctional timer used in all operating modes of the reactor. In the programmable TRW mode, the timer starts the rod programmers and drops regulating rods to terminate the operation. Programmed withdrawal capability is provided by one of two rod programmers (a hardwire-based unit and a microprocessor-based unit). The hardwire unit has eight intervals in which speed, direction and distance are selected by switches on the front panel. The microprocessor-based unit has the capability of 64 intervals in which speed, direction, and distance or time can be specified. Programming this unit is accomplished from the front panel or by inputting data from an HP-9845. minicomputer via a digital I/O interface. Self-test programs in the software provide a continual check of an operating

  12. Innovation on high-power long-pulse gyrotrons

    International Nuclear Information System (INIS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-01-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H and CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  13. Changes in some Hematological Parameters and Thyroid Hormones in Rats Exposed to Pulsed Electromagnetic Field

    International Nuclear Information System (INIS)

    EL-Abiad, N.M.; Marzook, E.A.; EI-Aragi, G.M.

    2007-01-01

    In the present study pulsed electromagnetic spectrum was used to evaluate the effect of exposure on some biochemical and hematological parameters in male albino rats. Three groups of rats (10 each) were exposed to 10, 15, 20 pulses of electromagnetic spectrum 3 times per week for 3 weeks, the unexposed group was considered as the control group. At the end of experiment, serum levels of thyroid hormones triiodothryronine and thyroxine (T 3 ,T 4 ) and some hematological parameters were estimated. The hematological studies revealed that exposure to electromagnetic spectrum induced significant reduction in red blood cell count(RBC),and also in hemoglobin concentration(Hb), while reticulocytic count(Ret.) was elevated in the three exposed groups, platelets count was increased only on the second exposed group, while leukocytic count (WBC's), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MGH), mean corpuscular hemoglobin concentration (MCHC) were not affected, lymphocytic count was decreased only on the second exposed group, the impairment of thyroid functions was noticed by elevation of T 3 and T 4 in the three exposed groups

  14. Non-Poisson counting statistics of a hybrid G-M counter dead time model

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Jae, Moosung; Gardner, Robin P.

    2007-01-01

    The counting statistics of a G-M counter with a considerable dead time event rate deviates from Poisson statistics. Important characteristics such as observed counting rates as a function true counting rates, variances and interval distributions were analyzed for three dead time models, non-paralyzable, paralyzable and hybrid, with the help of GMSIM, a Monte Carlo dead time effect simulator. The simulation results showed good agreements with the models in observed counting rates and variances. It was found through GMSIM simulations that the interval distribution for the hybrid model showed three distinctive regions, a complete cutoff region for the duration of the total dead time, a degraded exponential and an enhanced exponential regions. By measuring the cutoff and the duration of degraded exponential from the pulse interval distribution, it is possible to evaluate the two dead times in the hybrid model

  15. L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber

    International Nuclear Information System (INIS)

    Du, J; Zhang, S M; Li, H F; Meng, Y C; Li, X L; Hao, Y P

    2012-01-01

    We have proposed and demonstrated an L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber (SA). By adjusting the pump power and the polarization controller, we have experimentally observed L-band fundamental and harmonic mode-locked optical pulses. The fundamental optical pulse has the duration of 1.3 ps, and the maximum average output power of 13.16 mW at the incident pump power of 98.8 mW. The order of the harmonic mode-locked optical pulses can be changed over the range from the second to the fourth. From the experimental results, we deduced that the likely origin of the harmonic mode-locked self-stabilization was the result of global and local soliton interactions induced by the unstability continuous wave (CW) components

  16. Geiger-Mueller haloid counter dead time dependence on counting rate

    International Nuclear Information System (INIS)

    Onishchenko, A.M.; Tsvetkov, A.A.

    1980-01-01

    The experimental dependences of the dead time of Geiger counters (SBM-19, SBM-20, SBM-21 and SGM-19) on the loading, are presented. The method of two sources has been used to determine the dead time counters of increased stability. The counters are switched on according to the usually used circuit of discrete counting with loading resistance of 50 MOhm and the separating capacity of 10 pF. Voltage pulses are given to the counting device with the time of resolution of 100 ns, discrimenation threshold 3 V, input resistance 3.6 Ω and the input capacity-15 pF. The time constant of the counter RC-circuit is 50 μs

  17. High performance mode locking characteristics of single section quantum dash lasers.

    Science.gov (United States)

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  18. MICROCALORIMETER SPECTROSCOPY AT HIGH PULSE RATES: A MULTI-PULSE FITTING TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. W.; Alpert, B. K.; Doriese, W. B.; Joe, Y. I.; O’Neil, G. C.; Swetz, D. S.; Ullom, J. N. [National Institute of Standards and Technology, 325 Broadway MS 686.02, Boulder, CO 80305 (United States); Fischer, D. A.; Jaye, C. [National Institute of Standards and Technology, Brookhaven National Lab, Brookhaven, NY (United States)

    2015-08-15

    Transition Edge Sensor microcalorimeters can measure X-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future X-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current “optimal filtering” approaches to achieve the best possible energy resolution work only for photons that are well isolated in time, a requirement which is in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render this procedure computationally viable even for very long data records. The technique is employed to analyze X-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts s{sup −1} in microcalorimeters having exponential signal decay times of approximately 1.2 ms.

  19. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    Science.gov (United States)

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, Pvs. pretreatment) was significantly (Pvs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (PDark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  20. Stochastic modeling of the hypothalamic pulse generator activity.

    Science.gov (United States)

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  1. Dynamics of a pulsed continuous-variable quantum memory

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Pinard, Michel

    2006-01-01

    We study the transfer dynamics of nonclassical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show...... in particular that the fluctuations stored into the atoms are emitted in temporal modes which are always different from those of the readout pulse, but which can nevertheless be retrieved efficiently using a suitable temporal mode-matching technique. We give a simple toy model—a cavity with variable...... transmission—that accounts for the behavior of the atomic quantum memory....

  2. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  3. An integral whole circuit of amplifying and discriminating suited to high counting rate

    International Nuclear Information System (INIS)

    Dong Chengfu; Su Hong; Wu Ming; Li Xiaogang; Peng Yu; Qian Yi; Liu Yicai; Xu Sijiu; Ma Xiaoli

    2007-01-01

    A hybrid circuit consists of charge sensitive preamplifier, main amplifier, discriminator and shaping circuit was described. This instrument has characteristics of low power consumption, small volume, high sensitivity, potable and so on, and is convenient for use in field. The output pulse of this instrument may directly consist with CMOS or TTL logic level. This instrument was mainly used for count measurement, for example, for high sensitive 3 He neutron detector, meanwhile also may used for other heavy ion detectors, the highest counting rate can reach 10 6 /s. (authors)

  4. Bio-effects of repetitively pulsed ultra-fast distributed feedback dye lasers

    International Nuclear Information System (INIS)

    Khan, N.; Ahmad, M.I.; Sheikh, A.

    1999-01-01

    Results of experimental study showing an unexpected rise in pulses of distributed feedback dye laser (DFDL) output due to temperature accumulation in dye cell during passively Q-Switched, a Mode-locked operation is reported. This unintended increase in number of pulse duration, per pulse energy may cause side-effects when used for selective photo thermolysis. To probe this phenomenon most commonly dye was excited with 10 to 20 pulses of second harmonic of a passively Q-Switched and Mode-locked Nd-YaG laser. The outputs of DFDL and Nd:YaG laser were recorded by Imacon 675-streak camera. The peak of DFDL output pulses was found delayed proportionally from the peak of the NYAG pulses by more than one inter-pulse period of excitation laser. A computer program was used to simulate the experimentally measured delay to estimate thermal decay constants and energy retained by the medium to determine the amount of incremental fluctuations in output. The delay between peaks of Nd:YAG (input) and DFDL(output) pulses was found to vary from 10 to 14 nanoseconds for various cavity lengths. It was found that for smaller inter-pulse periods the effect of gradual build-up satisfies the threshold conditions for some of the pulses that otherwise can not. This may lead to unintended increase in energy fluence causing overexposure-induced side-effects. (author)

  5. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    Science.gov (United States)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  6. A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers

    DEFF Research Database (Denmark)

    Jespersen, Kim Giessmann; Le, Tuan; Grüner-Nielsen, Lars Erik

    2010-01-01

    We report the first higher-order-mode fiber with anomalous dispersion at 800nm and demonstrate its potential in femtosecond pulse delivery for Ti:Sapphire femtosecond lasers. We obtain 125fs pulses after propagating a distance of 3.6 meters in solid-silica fiber. The pulses could be further...... compressed in a quartz rod to nearly chirp-free 110fs pulses. Femtosecond pulse delivery is achieved by launching the laser output directly into the delivery fiber without any pre-chirping of the input pulse. The demonstrated pulse delivery scheme suggests scaling to >20meters for pulse delivery in harsh...

  7. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)

    2013-06-15

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  8. The capability of pulsed laser radiation for cutting band saws hardening

    Directory of Open Access Journals (Sweden)

    Marinin Evgeny

    2017-01-01

    Full Text Available The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion.

  9. Design and development of micro pulse lidar for cloud and aerosol studies

    Science.gov (United States)

    Dubey, P. K.; Arya, B. C.; Ahammed, Y. Nazeer; Kumar, Arun; Kulkarni, P. S.; Jain, S. L.

    2008-12-01

    A micro pulse lidar (MPL) has been indigenously designed and developed at the National Physical Laboratory, New Delhi using a 532 nm, 500 pico second pulsed laser having average power of 50mW (at 7.5 KHz PRR). Photon counting technique has been incorporated using the conventional optics, multichannel scaler (Stanford Research Systems SR430) and high sensitive photomultiplier tube. The sensitivity, range and bin etc are computer controlled in the present system. The interfacing between MPL and computer has been achieved by serial (RS232) and parallel printer port. The necessary software and graphical user interface has been developed using visual basic. In addition to this the telescope cover status sensing circuit has been incorporated to avoid conflict between dark count and background acquisition. The micro pulse lidar will be used for the aerosol, boundary layer and the cloud studies at a bin resolution of 6 meters. In the present communication the details of the system and preliminary results will be presented.

  10. Software filtering method to suppress spike pulse interference in multi-channel scaler

    International Nuclear Information System (INIS)

    Huang Shun; Zhao Xiuliang; Li Zhiqiang; Zhao Yanhui

    2008-01-01

    In the test on anti-jamming function of a multi-channel scaler, we found that the spike pulse interference on the second level counter caused by the motor start-stop operations brings a major count error. There are resolvable characteristics between effective signal and spike pulse interference, and multi-channel hardware filtering circuit is too huge and can't filter thoroughly, therefore we designed a software filtering method. In this method based on C8051F020 MCU, we dynamically store sampling values of one channel in only a one-byte variable and distinguish the rise-trail edge of a signal and spike pulse interference because of value changes of the variable. Test showed that the filtering software method can solve the error counting problem of the multi-channel scaler caused by the motor start-stop operations. The flow chart and source codes of the method were detailed in this paper. (authors)

  11. Study of a photomultiplier for the measurement of low light flows by photon counting

    International Nuclear Information System (INIS)

    Haye, Kleber

    1964-01-01

    After a recall of the history of the discovery and use of the photoemission effect, a presentation of the main characteristics of photomultipliers, a discussion of performance and weaknesses of electron multiplier-based cells, this research thesis addresses the study of low light flows. The author tried to determine whether it was possible, at ambient temperature, to reduce the influence of the thermoelectric effect. In order to do so, he made a detailed study of the amplitude spectrum of pulses of photoelectric origin. In order to analyse the influence of temperature of photomultiplier characteristics, he studied, with respect to temperature, the variation of the counting rate corresponding to darkness, the variation of pulse amplitude spectrum, and relative variations of the quantum efficiency for various wavelengths. In parallel with the study by counting, a study has been performed by using the well known mean current measurement [fr

  12. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  13. High repetition rate burst-mode spark gap

    International Nuclear Information System (INIS)

    Faltens, A.; Reginato, L.; Hester, R.; Chesterman, A.; Cook, E.; Yokota, T.; Dexter, W.

    1978-01-01

    Results are presented on the design and testing of a pressurized gas blown spark gap switch capable of high repetition rates in a burst mode of operation. The switch parameters which have been achieved are as follows: 220-kV, 42-kA, a five pulse burst at 1-kHz, 12-ns risetime, 2-ns jitter at a pulse width of 50-ns

  14. The μs and ns mode modulation system for grid controlled gun of the HESYRL linac

    International Nuclear Information System (INIS)

    Wang, Guicheng; Hong, Jun; Pei, Yuanji

    1988-01-01

    A μs and ns mode modulation system has been developed for the grid-controlled gun in the HESYRL. The gun drived by this system generated 1A and 500 MA pulse current for μs and ns mode respectively. In the ns mode modulation pulse formulation system, the sharper was built up using one transistor 3DA87D as avalanche switch and a shortcircuit coaxal cable as waveform sharp element. Outline of the μs mode system and details of the ns mode system are presented. (author)

  15. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW....

  16. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  17. Analytical criteria for fuel failure modes observed in reactivity initiated accidents

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2005-01-01

    The behaviour of nuclear fuel subjected to a short duration power pulse is of relevance to LWR and CANDU reactor safety. A Reactivity Initiated Accident (RIA) in an LWR would subject fuel to a short duration power pulse of large amplitude, whereas in CANDU a large break Loss of Coolant Accident (LOCA) would subject fuel to a longer duration, lower amplitude power excursion. The energy generated in the fuel during the power pulse is a key parameter governing the fuel response. This paper reviews the various power pulse tests that have been conducted in research reactors over the past three decades and summarizes the fuel failure modes that that have been observed in these tests. A simple analytical model is developed to characterize fuel behaviour under power pulse conditions and the model is applied to assess the experimental data from the power pulse tests. It is shown that the simple model provides a good basis for establishing criteria that demarcate the observed fuel failure modes for the various fuel designs that have been used in these tests. (author)

  18. Dynamics of a Dispersion-Managed Passively Mode-Locked Er-Doped Fiber Laser Using Single Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Norihiko Nishizawa

    2015-07-01

    Full Text Available We investigated the dynamics of a dispersion-managed, passively mode-locked, ultrashort-pulse, Er-doped fiber laser using a single-wall carbon nanotube (SWNT device. A numerical model was constructed for analysis of the SWNT fiber laser. The initial process of passive mode-locking, the characteristics of the output pulse, and the dynamics inside the cavity were investigated numerically for soliton, dissipative-soliton, and stretched-pulse mode-locking conditions. The dependencies on the total dispersion and recovery time of the SWNTs were also examined. Numerical results showed similar behavior to experimental results.

  19. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  20. Leukocyte subtype counts and its association with vascular structure and function in adults with intermediate cardiovascular risk. MARK study.

    Directory of Open Access Journals (Sweden)

    Leticia Gomez-Sanchez

    Full Text Available We investigated the relationship between leukocyte subtype counts and vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central augmentation index and cardio-ankle vascular index by gender in intermediate cardiovascular risk patients.This study analyzed 500 subjects who were included in the MARK study, aged 35 to 74 years (mean: 60.3±8.4, 45.6% women.Brachial ankle Pulse Wave Velocity (ba-PWV estimate by equation, Cardio-AnkleVascular Index (CAVI using the VaSera device and Carotid ultrasound was used to measure carotid Intima Media Thickness (IMT. The Mobil-O-Graph was used to measure the Central Augmentation Index (CAIx.Total leukocyte, neutrophil and monocyte counts were positively correlated with IMT (p < 0.01 in men. Monocyte count was positively correlated with CAIx in women (p < 0.01. In a multiple linear regression analysis, the IMT mean maintained a positive association with the neutrophil count (β = 1.500, p = 0.007 in men. CAIx maintained a positive association with the monocyte count (β = 2.445, p = 0.022 in women.The results of this study suggest that the relationship between subtype circulating leukocyte counts and vascular structure and function, although small, may be different by gender. In men, the neutrophil count was positively correlated with IMT and in women, the monocyte count with CAIx, in a large sample of intermediate-risk patients. These association were maintained after adjusting for age and other confounders.ClinicalTrials.gov NCT01428934.