WorldWideScience

Sample records for pulse analyzers

  1. Development of pulse neutron coal analyzer

    Science.gov (United States)

    Jing, Shi-wie; Gu, De-shan; Qiao, Shuang; Liu, Yu-ren; Liu, Lin-mao; Shi-wei, Jing

    2005-04-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented.

  2. A Vector Network Analyzer Based on Pulse Generators

    Directory of Open Access Journals (Sweden)

    B. Schulte

    2005-01-01

    Full Text Available A fast four channel network analyzer is introduced to measure S-parameters in a frequency range from 10MHz to 3GHz. The signal generation for this kind of analyzer is based on pulse generators, which are realized with bipolar transistors. The output signal of the transistor is differentiated and two short pulses, a slow and a fast one, with opposite polarities are generated. The slow pulse is suppressed with a clipping network. Thus the generation of very short electrical pulses with a duration of about 100ps is possible. The structure of the following network analyzer is similar to the structure of a conventional four channel network analyzer. All four pulses, which contain the high frequency information of the device under test, are evaluated after the digitalization of intermediate frequencies. These intermediate frequencies are generated with sampling mixers. The recorded data is evaluated with a special analysis technique, which is based on a Fourier transformation. The calibration techniques used are the same as for conventional four channel network analyzers, no new calibration techniques need to be developed.

  3. Intensity stabilized pulsed analyzing lamp for ultraviolet transient spectrometry

    Science.gov (United States)

    Fenger, Jørgen

    1981-12-01

    This report describes an apparatus for increasing the light intensity of a Varian VIX-150 UV xenon lamp. The increase is a factor 100 times greater at 220 nm. The light pulse width can be varied from 1 to 10 ms. The intensity of the light pulse can be controlled in two different modes: (1) the light flux from the lamp is kept constant by means of a parallel close-loop control on a small fraction, 10%, of the radiated flux from the lamp. The intensity variation of a 10-ms light pulse detected by a photomultiplier used for detecting the transient absorption signal can be held constant to within 5%. The accuracy is not limited by the lamp intensifier, but by a lack of precision in optical alignment of the absorption spectrometer; (2) the photomultiplier for the transient absorption signal controls the light intensity. During the first period of the light pulse the photomultiplier signal acts to provide feedback for the lamp intensifier and a constant light level is then obtained. In the subsequent period a hold circuit continues to keep the light level constant. Within the hold period the feedback signal from the photomultiplier is switched off and it continues as the detector for the transient absorption signal. In this mode of operation, a useful light pulse of 1 ms is obtained; the intensity variation is within 3%.

  4. Microprocessor-Based Neural-Pulse-Wave Analyzer

    Science.gov (United States)

    Kojima, G. K.; Bracchi, F.

    1983-01-01

    Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2

  5. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  6. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    Science.gov (United States)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled

  7. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  8. High-speed nuclear quality pulse height analyzer for synchrotron-based applications

    Energy Technology Data Exchange (ETDEWEB)

    Beche, Jean-Francois; Bucher, Jerome J.; Fabris, Lorenzo; Riot, Vincent J.

    2001-04-01

    A high throughput Pulse Height Analyzer system for synchrotron-based applications requiring high resolution, high processing speed and low dead time has been developed. The system is comprised of a 120ns 12-bit nuclear quality Analog to Digital converter with a self-adaptive fast peak detector-stretcher and a custom-made fast histogramming memory module that records and processes the digitized data. The histogramming module is packaged in a VME or VXI compatible interface. Data is transferred through a fast optical link from the memory interface to a computer. A dedicated data acquisition program matches the hardware characteristics of the histogramming memory module. The data acquisition system allows for two data collection modes: ''standard'' data acquisition mode where the data is accumulated and read in synchronization with an external trigger and ''live'' data acquisition mode where the system operates as a standard Pulse Height Analyzer. The acquisition, standard or live, can be performed on several channels simultaneously. A two-channel prototype has been demonstrated at the Stanford Synchrotron Radiation Laboratory accelerator in conjunction with an X-ray Fluorescence Absorption Spectroscopy experiment. A detailed description of the entire system is given and experimental data is shown.

  9. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  10. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Mössbauer Spectroscopy

    Science.gov (United States)

    Velásquez, A. A.; Gancedo, J. R.; Trujillo, J. M.; Morales, A. L.; Tobón, J. E.; Reyes, L.

    2005-04-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Mössbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Mössbauer spectrometer.

  11. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Takehiro Tachizaki

    2013-03-01

    Full Text Available We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  12. A real-time terahertz time-domain polarization analyzer with 80-MHz repetition-rate femtosecond laser pulses.

    Science.gov (United States)

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-03-11

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  13. A high-resolution time-of-flight energy analyzer for femtosecond electron pulses at 30 keV

    Science.gov (United States)

    Gliserin, Alexander; Walbran, Matthew; Baum, Peter

    2016-03-01

    We report a time-of-flight spectrometer for electron pulses at up to 30 keV, which is a suitable energy for atomic-resolution femtosecond investigations via time-resolved electron diffraction, microscopy, and energy loss spectroscopy. For realistic femtosecond beams without apertures, the instrument's energy resolution is ˜0.5 eV (full width at half maximum) or 2 × 10-5 at a throughput of 50%-90%. We demonstrate the analyzer's versatility by three first applications, namely, femtosecond electron pulse metrology via optical streaking, in situ drift correction in laser-microwave synchronization for electron pulse compression, and time-resolved electron energy loss spectroscopy of aluminum, showing the instrument's capability of tracking plasmonic loss peak positions with few-meV accuracy.

  14. Mining Archived HYSPEC User Data to Analyze the Prompt Pulse at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Hybrid-Spectrometer (HYSPEC) is one of 17 instruments currently operated at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratories (ORNL). The secondary spectrometer of this instrument is located inside an out-building off the north side of the SNS instrument hall. HYSPEC has experienced a larger background feature than similar inelastic instruments since its commissioning in 2011. This background feature is caused by a phenomenon known as the “prompt pulse” which is an essential part of neutron production in a pulsed spallation source but comes with unfortunate side effects.

  15. A commercial elemental on-line coal analyzer using pulsed neutrons

    Science.gov (United States)

    Belbot, Michael; Vouvopoulos, George; Paschal, Jonathan

    2001-07-01

    Because of its heterogeneity and the delay involved, traditional laboratory analysis of coal samples does not allow real time control of coal bulk parameters. Large excursions in important parameters (such as sulfur or calorific content) can be expensive and can be avoided with an on-line coal analyzer. The system that we developed utilizes nuclear reactions produced from fast and thermal neutrons and from neutron activation producing isotopes with half-lives longer than a few seconds. Characteristic gamma rays detected with BGO (bismuth germanate) detectors are used for the identification of the various chemical elements. The main features of the analyzer are elemental self-calibration independent of the coal seam; better accuracy in the determination of elements such as carbon, oxygen, and sodium; and diminished radiation risk. A prototype coal analyzer has been built and the first commercial model is currently being developed.

  16. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  17. LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS

    Directory of Open Access Journals (Sweden)

    Pablo González

    2016-04-01

    Full Text Available The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.

  18. Effect of low-intensity pulsed ultrasound (LIPUS) on mandibular condyle growth in rats analyzed with micro-CT.

    Science.gov (United States)

    Sasaki, Kyozo; Motoyoshi, Mitsuru; Horinuki, Eri; Arai, Yoshinori; Shimizu, Noriyoshi

    2016-01-01

    This study examined the effects of a bite-jumping appliance combined with low-intensity pulsed ultrasound (LIPUS) stimulation on the mandibular condyle of growing rats using micro CT (mCT) and histological examinations. Twelve Wistar rats were divided into three groups of four individuals each: Group 1 was an untreated control group, Group 2 received bite-jumping appliances, and Group 3 received bite-jumping appliances and LIPUS stimulation (15 min/day, 2 weeks) to the temporomandibular region. We measured the length and three-dimensional bone volume of each rat's mandibular condyle using mCT. The condylar cartilage was observed after the rats had been sacrificed. There was no significant difference in condylar sagittal width among the groups. The bite-jumping appliance combined with LIPUS stimulation increased the condylar major axis, mandibular sagittal length and condylar bone volume to a greater degree than use of the bite-jumping appliance alone. Histological examination demonstrated hypertrophy of the condylar cartilage layers, the fibrous layer and hypertrophic cell layer of the rats treated with bite-jumping appliances combined with LIPUS stimulation in comparison to rats treated with bite-jumping appliances alone. (J Oral Sci 58, 415-422, 2016).

  19. Analyzing the Chemical and Spectral Effects of Pulsed Laser Irradiation to Simulate Space Weathering of a Carbonaceous Chondrite

    Science.gov (United States)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Space weathering processes alter the chemical composition, microstructure, and spectral characteristics of material on the surfaces of airless bodies. The mechanisms driving space weathering include solar wind irradiation and the melting, vaporization and recondensation effects associated with micrometeorite impacts e.g., [1]. While much work has been done to understand space weathering of lunar and ordinary chondritic materials, the effects of these processes on hydrated carbonaceous chondrites is poorly understood. Analysis of space weathering of carbonaceous materials will be critical for understanding the nature of samples returned by upcoming missions targeting primitive, organic-rich bodies (e.g., OSIRIS-REx and Hayabusa 2). Recent experiments have shown the spectral properties of carbonaceous materials and associated minerals are altered by simulated weathering events e.g., [2-5]. However, the resulting type of alteration i.e., reddening vs. bluing of the reflectance spectrum, is not consistent across all experiments [2-5]. In addition, the microstructural and crystal chemical effects of many of these experiments have not been well characterized, making it difficult to attribute spectral changes to specific mineralogical or chemical changes in the samples. Here we report results of a pulsed laser irradiation experiment on a chip of the Murchison CM2 carbonaceous chondrite to simulate micrometeorite impact processing.

  20. A FPGA-based Multi-channel Pulse Amplitude Analyzer Design%基于FPGA的多道脉冲幅度分析器的设计

    Institute of Scientific and Technical Information of China (English)

    周春枚; 田正凯; 曾军

    2012-01-01

    This paper presents a method of FPGA (Field-Programmable Gate Array) based on the mul-ti-channel pulse amplitude analyzer (MCA) design.In terms of hardware,A3P250 FPGA is the core de- vice.First of alI,A3P250 FPGA through the ADC sampling module,the data sample to FPGA internal,then make use of peak modules to baseline discriminate and judge the pulse is coming.When a pulse arrival, seeking peak module use of comparison method to extract maximum pulse.Then open the spectrum module and it start into spectrum function.At the same time,the spectrum results and real time data will be sent to the computer.%介绍了一种基于FPGA(Field—Programmable Gate Array)的多道脉冲幅度分析器(MCA)的设计。硬件上使用A3P250FPGA作为核心器件。首先,A3P250FPGA通过ADC采样模块,将数据采样到FPGA内部,然后利用寻峰模块进行基线判别,判断脉冲是否到来。当有脉冲到来时,寻峰模块使用比较法提取脉冲的最大值,接着成谱模块启动成谱功能,与此同时将成谱结果及实时数据发送给计算机。

  1. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  2. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  3. Based on four organs of TCM to analyze pulse of anemia%基于中医四脏分型的贫血脉象解析

    Institute of Scientific and Technical Information of China (English)

    方英嵩; 滕晶

    2015-01-01

    The physiological process of the blood generation ,the blood transformation and so on is a complex cycle system . The basic theory of TCM thinks that the heart has the role of producing the blood animate .The spleen can has the power to produce and dominate the blood .The liver can recuperate the movement of the gas ,store the blood and prevent the bleeding . The kidney who can store the sperm ,is the most fundamental source of the blood and has the astringent effect of the blood . In the four ,any organ dysfunction is possibly lead to a decreased production and a loss of blood components ,resulting in a reduction in the capacity of the red blood cells which exist in the peripheral blood system .To sum up it ,the anemia is close-ly connected with the heart ,the live ,the spleen and the kidney .The“Systematic dialectical sphygmology” ,which is putfor-wed by Doc .Qi ,is a pulse system based on the study of the ancient and modern pulse results and the numerous clinical practice .According to the“Systematic dialectical sphygmology” ,the anemia has the pulse characteristics which are the dilute pulse ,the slippery pulse ,the fine pulse ,the weak pulse and the shen pulse .%血液的生成、转化等生理过程是一个复杂的循环体系。中医学认为,心主血脉,具有生成血液的作用;脾主生血统血,具有生化、统摄血液的作用;肝主藏血,具有贮藏血液、调节血量、防止出血的作用;肾藏精,为气血津液最根本的来源,且具有固摄血液的作用。任一脏器功能紊乱均有可能导致血液成分生成减少、丢失等病理环节的出现,导致外周血红细胞容量的减少,故贫血的产生与心、脾、肝、肾关系密切。“系统辨证脉学”是齐向华教授在古今脉学成果研究和大量临床实践的基础上总结和归纳出的脉学体系。根据“系统辨证脉学”分析可知,贫血多具有稀、滑、细、弱、沉的脉象特征。

  4. Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Klus, Jakub; Mikysek, Petr; Prochazka, David; Pořízka, Pavel; Prochazková, Petra; Novotný, Jan; Trojek, Tomáš; Novotný, Karel; Slobodník, Marek; Kaiser, Jozef

    2016-09-01

    The goal of this work is to provide high resolution mapping of uranium in sandstone-hosted uranium ores using Laser-Induced Breakdown Spectroscopy (LIBS) technique. In order to obtain chemical image with highest possible spatial resolution, LIBS system in orthogonal double pulse (DP LIBS) arrangement was employed. Owing to this experimental arrangement the spot size of 50 μm in diameter resulting in lateral resolution of 100 μm was reached. Despite the increase in signal intensity in DP LIBS modification, the detection of uranium is challenging. The main cause is the high density of uranium spectral lines, which together with broadening of LIBS spectral lines overreaches the resolution of commonly used spectrometers. It results in increased overall background radiation with only few distinguishable uranium lines. Three different approaches in the LIBS data treatment for the uranium detection were utilized: i) spectral line intensity, ii) region of apparent background and iii) multivariate data analysis. By utilizing multivariate statistical methods, a specific specimen features (in our case uranium content) were revealed by processing complete spectral information obtained from broadband echelle spectrograph. Our results are in a good agreement with conventional approaches such as line fitting and show new possibilities of processing spectral data in mapping. As a reference technique to LIBS was employed X-ray Fluorescence (XRF). The XRF chemical images used in this paper have lower resolution (approximately 1-2 mm per image point), nevertheless the elemental distribution is apparent and corresponds to presented LIBS experiments.

  5. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  6. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  7. Analyzing Orientations

    Science.gov (United States)

    Ruggles, Clive L. N.

    Archaeoastronomical field survey typically involves the measurement of structural orientations (i.e., orientations along and between built structures) in relation to the visible landscape and particularly the surrounding horizon. This chapter focuses on the process of analyzing the astronomical potential of oriented structures, whether in the field or as a desktop appraisal, with the aim of establishing the archaeoastronomical "facts". It does not address questions of data selection (see instead Chap. 25, "Best Practice for Evaluating the Astronomical Significance of Archaeological Sites", 10.1007/978-1-4614-6141-8_25) or interpretation (see Chap. 24, "Nature and Analysis of Material Evidence Relevant to Archaeoastronomy", 10.1007/978-1-4614-6141-8_22). The main necessity is to determine the azimuth, horizon altitude, and declination in the direction "indicated" by any structural orientation. Normally, there are a range of possibilities, reflecting the various errors and uncertainties in estimating the intended (or, at least, the constructed) orientation, and in more formal approaches an attempt is made to assign a probability distribution extending over a spread of declinations. These probability distributions can then be cumulated in order to visualize and analyze the combined data from several orientations, so as to identify any consistent astronomical associations that can then be correlated with the declinations of particular astronomical objects or phenomena at any era in the past. The whole process raises various procedural and methodological issues and does not proceed in isolation from the consideration of corroborative data, which is essential in order to develop viable cultural interpretations.

  8. Analyze the Eighth Item of Pulse Syndrome Complex and Treatment of Miscellaneous Gynecological Diseases from Jinkui Yaolve%《金匮要略·妇人杂病脉证并治》第八条浅析

    Institute of Scientific and Technical Information of China (English)

    杨娇娇; 徐光星

    2016-01-01

    [目的]探析《金匮要略》“妇人杂病脉证并治”篇第八条原文旨意。[方法]通过对《金匮要略》“妇人杂病脉证并治”篇的仔细研读、思考,并参阅历代医家对第八条条文的注解,围绕妇人杂病的因机证治对本条原文进行分析、阐释。[结果]《金匮要略》“妇人杂病脉证并治”篇第八条为妇女诸病纲领,“因虚、积冷、结气”六字为其病因机要,而“因虚”居六字之首;第2句“久成肺痈”之“痈”字当是“痿”字之误;病证“凝坚在上”、“在中盘结”,男女均可出现,非女子独有,“肺痿”、“寒疝”、“胁腹痛”、“脐下关元痛”、“劳热”、“肌肤甲错”等证在《金匮要略》其它篇章各有专述及记载;病证“在下”则专属妇人杂病,以经带诸病为主,证属虚寒夹瘀(郁)型。[结论]《金匮要略》妇人杂病脉证并治,开后世辨治妇人杂病之先河,随人类社会之发展,时代之更替,仲景对妇科杂病的认识至今仍具借鉴意义。%Objective]To explore and analyze its original implication of the eighth article in Chapter 22 from Jinkui Yaolve. [Methods]Through learning the Jinkui Yaolve closely and referring to the explanations of masters of generations,base on the original text to analyze and elaborate the etiology, pathogenesis, syndromes and therapeutic principles with regard to miscellaneous gynecological diseases.[Results] The eighth item is the general program of miscellaneous gynecological diseases,its principal pathogenic factors include deficiency, stale chills and stagnation of Qi.Moreover,the deficiency plays a leading role in the pathogenesis.Through exploring deeply,I hold that the pulmonary abscess is actually the pulmonary asthenia in the second sentence.When the pathogenic factors attack the body,the triple energizers manifest different symptoms and signs.There is no difference between male

  9. Analyzing therapeutic effect of 228 patients with port wine stains by new intense pulsed light (IPL-OPT)%新型强脉冲光(IPL-OPT)治疗228例微静脉畸形疗效分析

    Institute of Scientific and Technical Information of China (English)

    刘耿; 应朝霞; 张淑兰; 王永贤; 邹芥

    2011-01-01

    目的:回顾性分析新型强脉冲光(IPL-OPT)治疗228例微静脉畸形的临床疗效,探讨治疗参数、治疗次数、皮损情况与疗效的关系。方法:按治疗次数、皮损情况等对228例病例进行分组及统计学分析。结果:治疗次数与疗效呈正相关,总有效率为75.9%;皮损越厚总有效率越高,但治愈率降低(P<0.05);不同部位皮损疗效以颈部>面部>躯干>四肢近端>四肢末端;不同颜色皮损总有效率以紫红色>鲜红色,但治愈率两者相反(P<0.05)。结论:新型强脉冲光(IPI-OPT)治疗微静脉畸形安全、有效,疗效与皮损部位、颜色、厚度、治疗次数及合理的治疗参数等综合因素相关。%Objective To analyze the therapeutic effect of 228 Chinese patients with nevus flammeus by Intense pulsed light optimized production technology (IPL-OPT)retrospectively and to further explore the relationship among treatment parameters, treatment frequency, cutaneous lesions and curative efficacy. Methods Randomly, 228 patients with port wine stains were divided into groups according to treatment frequency and dermal lesion respectively and the curative results were analyzed statistically. Results The curative effect and treatment frequency was direct correlation and the total effect rate was 75.9%. The effect of adult was better than children's(P<0.05).The total effective rate of thicker lesion was higher, however, its cure rate was lower (P<0.05). The curative effect of lesions on neck was the best of all lesions, followed by on the face, on the trunk, and on the proximal as well as distal extremities. The curative effect was also related to the colour of lesions. The total effective rate of purple PWS was higher than the bright red PWS, while the previous cure rate was contrary (P<0.05). Conclusion IPL-OPT has been proven to be safe and effective in treating Nevus flammeus. Moreover, the efficacy was associated with the connected

  10. PULSE AMPLITUDE DISTRIBUTION RECORDER

    Science.gov (United States)

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  11. Measure and analyze the brachial-ankle pulse wave velocity of 125 plots%飞行员肢体动脉硬化与吸烟关系分析

    Institute of Scientific and Technical Information of China (English)

    单清; 王惠贤

    2011-01-01

    Objective : To explore the situation and related factors of the arteriosclerosis between the smoking pilots and non - smoking pilots. By means:125 pilots were randomly selected and divided into two groups: smoking group and non - smoking group. Measure the brachial - ankle pulse wave velocity of each pilot by Arteriosclerosis Checking Instrument , record the height , weight , systolic pressure , diastolic pressure , pulse pressure , driving plane period and smoking period of each pilot of the groups and compare the data of Bapwv of different ages between smoking pilots and non - smoking pilots. Results : There was little difference in Bapwv between the smoking pilots and non - smoking pilots with ages younger than 30 and 30 to 39( P >0. 05 ). The Bapwv of the smoking pilots who are over 40 years old are obvious higher than those same age non - smoking pilots( P < 0. 05 ). Conclusion: The brachial - ankle arteriosclerosis situation of the smoking pilots can be diagnosed correspondingly early. And we may prevent , interpose and doctor the arteriosclerosis of the smoking pilots to keep their flight safe.%目的:探讨飞行员肢体动脉硬化程度与吸烟关系.方法:随机选择125名飞行员分为吸烟组和非吸烟组,应用动脉硬化测定仪测定臂踝脉搏波传导速度,同时确定飞行员身高、体重、收缩压、舒张压、脉压、飞行时间等.对比各年龄段吸烟组与非吸烟组飞行员臂踝脉搏波传导速度.结果:30岁以下和30 ~39岁飞行员吸烟组臂踝脉搏波传导速度与非吸烟组无明显差异(P>0.05);40岁以上飞行员吸烟组臂踝脉搏波传导速度较非吸烟组显著升高(P<0.05).结论:通过对臂踝脉搏波传导速度的测定可以相对早期发现飞行员中特别是吸烟飞行员中动脉硬化程度,做到早预防、早干预,确保飞行安全.

  12. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  13. Population inversion by chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lu Tianshi [Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033 (United States)

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  14. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  15. Crew Activity Analyzer

    Science.gov (United States)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  16. Pulsed thermoelectricity

    Science.gov (United States)

    Apostol, M.; Nedelcu, M.

    2010-07-01

    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  17. Theoretical analysis of pulse modulation of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Baoxi; Zhan Yushu; Guo Siji

    1987-05-01

    Rate equations of Gaussian shape pulse modulated semiconductor lasers are solved by Runge--Kutta method, and the results are analyzed. The formulae for calculating the delay time, pulse width of laser pulse and maximum bit-rate of Gaussian shape pulse modulation are derived. The experimental results of modulation pattern effects are given.

  18. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  19. High order coherent control sequences of fat pulses

    CERN Document Server

    Pasini, S; Uhrig, G S

    2010-01-01

    We analyze the performance of sequences of fat pulses of various lengths and shapes for dynamic decoupling and we compare it with that of sequences of ideal, instantaneous pulses. The use of second order, shaped pulses represents a significant improvement. Non-equidistant sequences characterized by pulse durations scaled proportional to the duration T of the sequence strikingly outperform the sequences with pulses of constant length for small T. Interestingly, for longer durations sequences of pulses of substantial length are found to suppress dephasing better than sequences of ideal pulses.

  20. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  1. Analyzing Peace Pedagogies

    Science.gov (United States)

    Haavelsrud, Magnus; Stenberg, Oddbjorn

    2012-01-01

    Eleven articles on peace education published in the first volume of the Journal of Peace Education are analyzed. This selection comprises peace education programs that have been planned or carried out in different contexts. In analyzing peace pedagogies as proposed in the 11 contributions, we have chosen network analysis as our method--enabling…

  2. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  3. The Intermodulation Lockin Analyzer

    CERN Document Server

    Tholen, Erik A; Forchheimer, Daniel; Schuler, Vivien; Tholen, Mats O; Hutter, Carsten; Haviland, David B

    2011-01-01

    Nonlinear systems can be probed by driving them with two or more pure tones while measuring the intermodulation products of the drive tones in the response. We describe a digital lock-in analyzer which is designed explicitly for this purpose. The analyzer is implemented on a field-programmable gate array, providing speed in analysis, real-time feedback and stability in operation. The use of the analyzer is demonstrated for Intermodulation Atomic Force Microscopy. A generalization of the intermodulation spectral technique to arbitrary drive waveforms is discussed.

  4. Analyzing in the present

    DEFF Research Database (Denmark)

    Revsbæk, Line; Tanggaard, Lene

    2015-01-01

    The article presents a notion of “analyzing in the present” as a source of inspiration in analyzing qualitative research materials. The term emerged from extensive listening to interview recordings during everyday commuting to university campus. Paying attention to the way different parts...... the interdependency between researcher and researched. On this basis, we advocate an explicit “open-state-of mind” listening as a key aspect of analyzing qualitative material, often described only as a matter of reading transcribed empirical materials, reading theory, and writing. The article contributes...

  5. Pulsed Optics

    Science.gov (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  6. Analyzing binding data.

    Science.gov (United States)

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  7. Analog multivariate counting analyzers

    CERN Document Server

    Nikitin, A V; Armstrong, T P

    2003-01-01

    Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential calculus rather than by algebraic or logical means of digital signal processing. Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer fro...

  8. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  9. Analyzing Microarray Data.

    Science.gov (United States)

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Because there is no widely used software for analyzing RNA-seq data that has a graphical user interface, this protocol provides an example of analyzing microarray data using Babelomics. This analysis entails performing quantile normalization and then detecting differentially expressed genes associated with the transgenesis of a human oncogene c-Myc in mice. Finally, hierarchical clustering is performed on the differentially expressed genes using the Cluster program, and the results are visualized using TreeView.

  10. Total organic carbon analyzer

    Science.gov (United States)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  11. Analyzing radioligand binding data.

    Science.gov (United States)

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  12. Advances in hematology analyzers.

    Science.gov (United States)

    DeNicola, Dennis B

    2011-05-01

    The complete blood count is one of the basic building blocks of the minimum database in veterinary medicine. Over the past 20 years, there has been a tremendous advancement in the technology of hematology analyzers and their availability to the general practitioner. There are 4 basic methodologies that can be used to generate data for a complete blood count: manual methods, quantitative buffy coat analysis, automated impedance analysis, and flow cytometric analysis. This article will review the principles of these methodologies, discuss some of their advantages and disadvantages, and describe some of the hematology analyzers that are available for the in-house veterinary laboratory.

  13. The nonparaxial property of chirped pulsed beam

    Institute of Scientific and Technical Information of China (English)

    Daquan Lu(陆大全); Wei Hu(胡巍); Yizhou Zheng(郑一周); Zhenjun Yang(杨振军)

    2003-01-01

    The nonparaxial property of the chirped pulsed beam is analyzed both quantitatively and qualitatively.Through the qualitative investigation of the paraxial approximation condition, we show there are chirpinduced changes in the nonparaxial propagation of the chirped pulsed beam. A quantitative nonparaxial correction was developed by use of the perturbational technic and the Fourier transform for a few-cycle chirped pulsed beam with relative small chirp parameter. It was shown that the nonparaxial corrections were enhanced near the leading or trailing edge of pulse depending on weather the chirp parameter is positive or negative. An example for pulsed Gaussian beam driven by a chirped Gaussian pulse is shown in the numerical result to confirm our analysis.

  14. Analyzing Stereotypes in Media.

    Science.gov (United States)

    Baker, Jackie

    1996-01-01

    A high school film teacher studied how students recognized messages in film, examining how film education could help students identify and analyze racial and gender stereotypes. Comparison of students' attitudes before and after the film course found that the course was successful in raising students' consciousness. (SM)

  15. Analyzing Workforce Education. Monograph.

    Science.gov (United States)

    Texas Community & Technical Coll. Workforce Education Consortium.

    This monograph examines the issue of task analysis as used in workplace literacy programs, debating the need for it and how to perform it in a rapidly changing environment. Based on experiences of community colleges in Texas, the report analyzes ways that task analysis can be done and how to implement work force education programs more quickly.…

  16. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  17. Reliability of Pulse Measurements in Videoplethysmography

    Directory of Open Access Journals (Sweden)

    Rumiński Jacek

    2016-09-01

    Full Text Available Reliable, remote pulse rate measurement is potentially very important for medical diagnostics and screening. In this paper the Videoplethysmography was analyzed especially to verify the possible use of signals obtained for the YUV color model in order to estimate the pulse rate, to examine what is the best pulse estimation method for short video sequences and finally, to analyze how potential PPG-signals can be distinguished from other (e.g. background signals. The presented methods were verified using data collected from 60 volunteers.

  18. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huan; WANG An-Ting; XU Li-Xin; MING Hai

    2009-01-01

    We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking.Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter.

  19. PhosphoSiteAnalyzer

    DEFF Research Database (Denmark)

    Bennetzen, Martin V; Cox, Jürgen; Mann, Matthias

    2012-01-01

    an algorithm to retrieve kinase predictions from the public NetworKIN webpage in a semiautomated way and applies hereafter advanced statistics to facilitate a user-tailored in-depth analysis of the phosphoproteomic data sets. The interface of the software provides a high degree of analytical flexibility...... and is designed to be intuitive for most users. PhosphoSiteAnalyzer is a freeware program available at http://phosphosite.sourceforge.net ....

  20. Magnetoresistive emulsion analyzer.

    Science.gov (United States)

    Lin, Gungun; Baraban, Larysa; Han, Luyang; Karnaushenko, Daniil; Makarov, Denys; Cuniberti, Gianaurelio; Schmidt, Oliver G

    2013-01-01

    We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity to conventional optical approaches involving ferrofluids, and paves the way to the development of novel compact tools for diagnostics and nanomedicine including drug design and screening.

  1. IPv6 Protocol Analyzer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the emerging of next generation Intemet protocol (IPv6), it is expected to replace the current version of Internet protocol (IPv4) that will be exhausted in the near future. Besides providing adequate address space, some other new features are included into the new 128 bits of IP such as IP auto configuration, quality of service, simple routing capability, security, mobility and multicasting. The current protocol analyzer will not be able to handle IPv6 packets. This paper will focus on developing protocol analyzer that decodes IPv6 packet. IPv6 protocol analyzer is an application module,which is able to decode the IPv6 packet and provide detail breakdown of the construction of the packet. It has to understand the detail construction of the IPv6, and provide a high level abstraction of bits and bytes of the IPv6 packet.Thus it increases network administrators' understanding of a network protocol,helps he/she in solving protocol related problem in a IPv6 network environment.

  2. A method to obtain pulse contrast on a single shot

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Ouyang; Xiaoyan Li; Yanli Zhang; Zhaoyang Li; Guang Xu; Tao Wang; Baoqiang Zhu; Jianqiang Zhu

    2009-01-01

    @@ A novel method for obtaining a single shot multi-point high dynamic range pulse contrast measurement is presented.We use Dammann gratings to generate multiple beamlets by division of amplitude on ultra-short laser pulses.The analysis results show that this method can achieve high dynamic range in pulse contrast measurement on a single shot by using photomultiplier tube (PMT) detectors and the long work-ing distances to minimize cross talk between channels.Some distortion of pulse shape is also analyzed detailedly with the Dammann grating and its compensation grating, which may degrade the pulse contrast measurement in some degree by pulse stretching and spectrum clipping.

  3. Analyzing Chinese Financial Reporting

    Institute of Scientific and Technical Information of China (English)

    SABRINA; ZHANG

    2008-01-01

    If the world’s capital markets could use a harmonized accounting framework it would not be necessary for a comparison between two or more sets of accounting standards. However,there is much to do before this becomes reality.This article aims to pres- ent a general overview of China’s General Accepted Accounting Principles(GAAP), U.S.General Accepted Accounting Principles and International Financial Reporting Standards(IFRS),and to analyze the differ- ences among IFRS,U.S.GAAP and China GAAP using fixed assets as an example.

  4. Mineral/Water Analyzer

    Science.gov (United States)

    1983-01-01

    An x-ray fluorescence spectrometer developed for the Viking Landers by Martin Marietta was modified for geological exploration, water quality monitoring, and aircraft engine maintenance. The aerospace system was highly miniaturized and used very little power. It irradiates the sample causing it to emit x-rays at various energies, then measures the energy levels for sample composition analysis. It was used in oceanographic applications and modified to identify element concentrations in ore samples, on site. The instrument can also analyze the chemical content of water, and detect the sudden development of excessive engine wear.

  5. A Brief Journey into the History of the Arterial Pulse

    OpenAIRE

    2011-01-01

    Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its charac...

  6. Analyzing Aeroelasticity in Turbomachines

    Science.gov (United States)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  7. Field Deployable DNA analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  8. Analyzing the platelet proteome.

    Science.gov (United States)

    García, Angel; Zitzmann, Nicole; Watson, Steve P

    2004-08-01

    During the last 10 years, mass spectrometry (MS) has become a key tool for protein analysis and has underpinned the emerging field of proteomics. Using high-throughput tandem MS/MS following protein separation, it is potentially possible to analyze hundreds to thousands of proteins in a sample at a time. This technology can be used to analyze the protein content (i.e., the proteome) of any cell or tissue and complements the powerful field of genomics. The technology is particularly suitable for platelets because of the absence of a nucleus. Cellular proteins can be separated by either gel-based methods such as two-dimensional gel electrophoresis or one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by liquid chromatography (LC) -MS/MS or by multidimensional LC-MS/MS. Prefractionation techniques, such as subcellular fractionations or immunoprecipitations, can be used to improve the analysis. Each method has particular advantages and disadvantages. Proteomics can be used to compare the proteome of basal and diseased platelets, helping to reveal information on the molecular basis of the disease.

  9. Analyzing business models

    DEFF Research Database (Denmark)

    Nielsen, Christian

    2014-01-01

    , because the costs of processing and analyzing it exceed the benefits indicating bounded rationality. Hutton (2002) concludes that the analyst community’s inability to raise important questions on quality of management and the viability of its business model inevitably led to the Enron debacle. There seems...... financial statement. Plumlee (2003) finds for instance that such information imposes significant costs on even expert users such as analysts and fund managers and reduces their use of it. Analysts’ ability to incorporate complex information in their analyses is a decreasing function of its complexity...... to be evidence of the fact that all types of corporate stakeholders from management to employees, owners, the media and politicians have grave difficulties in interpreting new forms of reporting. One hypothesis could be that if managements’ own understanding of value creation is disclosed to the other...

  10. Analyzing architecture articles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present study, we express the quality, function, and characteristics of architecture to help people comprehensively understand what architecture is. We also reveal the problems and conflict found in population, land, water resources, pollution, energy, and the organization systems in construction. China’s economy is transforming. We should focus on the cities, architectural environment, energy conservation, emission-reduction, and low-carbon output that will result in successful green development. We should macroscopically and microscopically analyze the development, from the natural environment to the artificial environment; from the relationship between human beings and nature to the combination of social ecology in cities, and farmlands. We must learn to develop and control them harmoniously and scientifically to provide a foundation for the methods used in architecture research.

  11. Analyzing geographic clustered response

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.; Selvin, S.; Mohr, M.S.

    1991-08-01

    In the study of geographic disease clusters, an alternative to traditional methods based on rates is to analyze case locations on a transformed map in which population density is everywhere equal. Although the analyst's task is thereby simplified, the specification of the density equalizing map projection (DEMP) itself is not simple and continues to be the subject of considerable research. Here a new DEMP algorithm is described, which avoids some of the difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides constant magnification over each map polygon; (d) defines a continuous transformation over the entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such as fixed boundaries; and (g) can use commercially supported minimization software. Work is continuing to improve computing efficiency and improve the algorithm. 21 refs., 15 figs., 2 tabs.

  12. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  13. Very low cost multichannel analyzer with some additional features

    Science.gov (United States)

    Tudyka, Konrad; Bluszcz, Andrzej

    2011-12-01

    In this paper we present a multichannel analyzer (MCA) based on a digital signal controller (DSC). The multichannel analyzer is characterized by a very low cost and an additional feature of recording time intervals between pulses. The total cost of electronic parts used in construction of the MCA is around 50 USD. The electronic circuit is based on dsPIC30F2020 DSC unit from Microchip. The device has a 10-bit analogue-to-digital converter (ADC) which can sample and convert 2 samples per μs. The DSC samples the input voltage continuously and detects incoming pulses. The data belonging to a detected pulse and its time stamp are sent to a PC on-line. The analysis of data stored on the PC is performed off-line with the help of a genetic algorithm (GA) used to fit the pulse shape function. This allows determination of amplitude of each individual pulse. The effective resolution varies with the pulse length and is typically 1000 channels for pulses approximately 4 μs long.

  14. Effects of chirp of pump pulses on broadband terahertz pulse spectra generated by optical rectification

    Science.gov (United States)

    Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-11-01

    The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.

  15. Radial pulse (image)

    Science.gov (United States)

    ... heart. The arteries are the vessels with the "pulse", a rhythmic pushing of the blood in the ... a refilling of the heart chamber. To determine heart rate, one feels the beats at a pulse point ...

  16. Wrist pulse (image)

    Science.gov (United States)

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  17. Bios data analyzer.

    Science.gov (United States)

    Sabelli, H; Sugerman, A; Kovacevic, L; Kauffman, L; Carlson-Sabelli, L; Patel, M; Konecki, J

    2005-10-01

    The Bios Data Analyzer (BDA) is a set of computer programs (CD-ROM, in Sabelli et al., Bios. A Study of Creation, 2005) for new time series analyses that detects and measures creative phenomena, namely diversification, novelty, complexes, nonrandom complexity. We define a process as creative when its time series displays these properties. They are found in heartbeat interval series, the exemplar of bios .just as turbulence is the exemplar of chaos, in many other empirical series (galactic distributions, meteorological, economic and physiological series), in biotic series generated mathematically by the bipolar feedback, and in stochastic noise, but not in chaotic attractors. Differencing, consecutive recurrence and partial autocorrelation indicate nonrandom causation, thereby distinguishing chaos and bios from random and random walk. Embedding plots distinguish causal creative processes (e.g. bios) that include both simple and complex components of variation from stochastic processes (e.g. Brownian noise) that include only complex components, and from chaotic processes that decay from order to randomness as the number of dimensions is increased. Varying bin and dimensionality show that entropy measures symmetry and variety, and that complexity is associated with asymmetry. Trigonometric transformations measure coexisting opposites in time series and demonstrate bipolar, partial, and uncorrelated opposites in empirical processes and bios, supporting the hypothesis that bios is generated by bipolar feedback, a concept which is at variance with standard concepts of polar and complementary opposites.

  18. TEAMS Model Analyzer

    Science.gov (United States)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  19. Analyzing Teachers' Stories

    Directory of Open Access Journals (Sweden)

    Anat Kainan

    2002-09-01

    Full Text Available This article presents an integrated socio-literal approach as a way to analyze work stories. It uses a case of teachers' stories about the administration as an example. The stories focus on grumbles about various activities of members of the management of a school in a small town. The complaints appear in descriptions of the action, the characters, and, in particular, in the way the story is presented to the audience. The stories present a situation of two opposing groups-the administration and the teachers. The presentation of the stories creates a sense of togetherness among the veterans and new teachers in the staff room, and helps the integration of the new teachers into the staff. The veterans use the stories as an opportunity to express their anger at not having been assigned responsibilities on the one hand and their hopes of such promotion on the other. The stories act as a convenient medium to express criticism without entering into open hostilities. Behind them, a common principle can be discerned- the good of the school. The stories describe the infringement of various aspects of the school's social order, and it is possible to elicit from them what general pattern the teachers want to preserve in the school.

  20. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  1. Analyzing Spacecraft Telecommunication Systems

    Science.gov (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  2. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  3. Applications of fiberoptic pulsed photothermal radiometry

    Science.gov (United States)

    Scharf, Vered; Eyal, Ophir; Katzir, Abraham

    1998-10-01

    Pulsed photothermal radiometry is a nondestructive technique for measurements of surface and subsurface thermal parameters of a wide variety of materials. A fiber optic pulsed photothermal radiometric system is constructed and its feasibility is demonstrated. The radiometric system includes a pulsed CO2 laser, an IR detector, and two IR transmitting silver halide optical fibers for delivering IR radiation to and from the sample. A weak laser pulse, absorbed by the sample, initially heats the sample surface. The time evolution of the transient emitted IR radiation is measured and analyzed. The results establish the feasibility of using the fiber optic pulsed photothermal radiometric system to measure coating thickness, to detect flaws, and to diagnose thermal damage in tissue. This fiber optic method would be useful for industrial and medical applications.

  4. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  5. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  6. ANALYSE OF PULSE WAVE PROPAGATION IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    PAN Yi-shan; JIA Xiao-bo; CUI Chang-kui; XIAO Xiao-chun

    2006-01-01

    Based upon the blood vessel of being regarded as the elasticity tube, and that the tissue restricts the blood vessel wall, the rule of pulse wave propagation in blood vessel was studied. The viscosity of blood, the elastic modulus of blood vessel, the radius of tube that influenced the pulse wave propagation were analyzed. Comparing the result that considered the viscosity of blood with another result that did not consider the viscosity of blood, we finally discover that the viscosity of blood that influences the pulse wave propagation can not be neglected; and with the accretion of the elastic modulus the speed of propagation augments and the press value of blood stream heightens; when diameter of blood vessel reduces, the press of blood stream also heightens and the speed of pulse wave also augments. These results will contribute to making use of the information of pulse wave to analyse and auxiliarily diagnose some causes of human disease.

  7. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  8. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  9. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    Science.gov (United States)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  10. Soft Decision Analyzer

    Science.gov (United States)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  11. Fast initial continuous current pulses versus return stroke pulses in tower-initiated lightning

    Science.gov (United States)

    Azadifar, Mohammad; Rachidi, Farhad; Rubinstein, Marcos; Rakov, Vladimir A.; Paolone, Mario; Pavanello, Davide; Metz, Stefan

    2016-06-01

    We present a study focused on pulses superimposed on the initial continuous current of upward negative discharges. The study is based on experimental data consisting of correlated lightning current waveforms recorded at the instrumented Säntis Tower in Switzerland and electric fields recorded at a distance of 14.7 km from the tower. Two different types of pulses superimposed on the initial continuous current were identified: (1) M-component-type pulses, for which the microsecond-scale electric field pulse occurs significantly earlier than the onset of the current pulse, and (2) fast pulses, for which the onset of the field matches that of the current pulse. We analyze the currents and fields associated with these fast pulses (return-stroke type (RS-type) initial continuous current (ICC) pulses) and compare their characteristics with those of return strokes. A total of nine flashes containing 44 RS-type ICC pulses and 24 return strokes were analyzed. The median current peaks associated with RS-type ICC pulses and return strokes are, respectively, 3.4 kA and 8 kA. The associated median E-field peaks normalized to 100 km are 1.5 V/m and 4.4 V/m, respectively. On the other hand, the electric field peaks versus current peaks for the two data sets (RS-type ICC pulses and return strokes) are characterized by very similar linear regression slopes, namely, 3.67 V/(m kA) for the ICC pulses and 3.77 V/(m kA) for the return strokes. Assuming the field-current relation based on the transmission line model, we estimated the apparent speed of both the RS-type ICC pulses and return strokes to be about 1.4 × 108 m/s. A strong linear correlation is observed between the E-field risetime and the current risetime for the ICC pulses, similar to the relation observed between the E-field risetime and current risetime for return strokes. The similarity of the RS-type ICC pulses with return strokes suggests that these pulses are associated with the mixed mode of charge transfer to ground.

  12. Ultra short pulse reconstruction software: GROG

    Science.gov (United States)

    Galletti, M.; Galimberti, M.; Giulietti, D.; Curcio, A.

    2016-07-01

    A new algorithmic method based on the 1D Conjugate Gradient Minimization Method, is presented. The purpose is, analyzing experimental FROG/GRENOUILLE traces, to accurately retrieve intensity and phase both in temporal and spectral domain so as to completely characterize an Ultra Short High Power laser pulse. This algorithm shows important features in the reconstruction of many different pulse classes. The employment of this algorithm also permits the inclusion of material response function present in the FROG/GRENOUILLE set-up.

  13. Study of terahertz pulses at an edge

    Institute of Scientific and Technical Information of China (English)

    Zaijun Xi; Xiaohan Yu; Tiqiao Xiao

    2008-01-01

    The propagation behaviour of terahertz (THz) pulses at an edge is characterized. The phenomenon that the amplitude oscillates periodically in the frequency spectrum is similar to Young's interference, if the absorption effect is neglected. The oscillation cycle is shorter for a thicker sample. THz pulses at anedge are an alyzed by the broadband Huygens-Fresnel diffraction integral. The experimental results are in agreement with the simulation results approximately. The simulation errors are also analyzed.

  14. Advanced Pulse Oximetry System for Remote Monitoring and Management

    Directory of Open Access Journals (Sweden)

    Ju Geon Pak

    2012-01-01

    Full Text Available Pulse oximetry data such as saturation of peripheral oxygen (SpO2 and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient’s pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.

  15. Some nonlinear parameters of PP intervals of pulse main peaks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The PP intervals of pulse main peaks from healthy and unhealthy people (arrhythmia) have different nonlinear characteristics. In this paper, the extraction of PP intervals of pulse main peaks is achieved by picking up P peaks of pulse wave with wavelet transform. Furthermore, several nonlinear parameters (correlative dimensions, maximum Lyapunov exponents, complexity and approximate entropy) of the PP intervals of pulse main peaks extracted from normal and unhealthy pulse signals are calculated, with the results showing that these nonlinear parameters calculated from the main wave interval signals are helpful for analyzing human's health state and diagnosing heart diseases.

  16. PulseSoar

    Energy Technology Data Exchange (ETDEWEB)

    Carter, P.; Peglow, S.

    1992-07-21

    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  17. Analysis of ultra-short pulse shaping with programmable amplitude and phase masks

    Institute of Scientific and Technical Information of China (English)

    Shanhong You; Weidong Shao; Wenfeng Cai; Honglong Cao; M. Kavehrad

    2011-01-01

    @@ Specified ultra-short pulse waveforms could be synthesized with high-resolution zero-dispersion pulse shaping system.The system and parameters are analyzed and discussed.The pulse shaping system with optimized parameters could resolve the frequency components of ultra-broad bandwidth pulse and prevent the spatial shaping of individual frequency components.The specified waveforms, Meyer wavelet and square root raised cosine pulses, are generated with programmable amplitude and phase masks.%Specified ultra-short pulse waveforms could be synthesized with high-resolution zero-dispersion pulse shaping system. The system and parameters are analyzed and discussed. The pulse shaping system with optimized parameters could resolve the frequency components of ultra-broad bandwidth pulse and prevent the spatial shaping of individual frequency components. The specified waveforms, Meyer wavelet and square root raised cosine pulses, are generated with programmable amplitude and phase masks.

  18. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  19. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  20. Cavitation pulse extraction and centrifugal pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong Lind Shaoran [University of Electronic Science and Technology of China, Chengdu (China); Yu, Bo; Qing, Biao [Xihua University, Chengdu (China)

    2017-03-15

    This study extracted cavitation pulses from hydrophone signals sampled in a centrifugal pump and analyzed their characteristics. The modified and simplified Empirical mode decomposition (EMD) algorithm was proposed for extracting cavitation pulses from strong background noise. Experimental results showed that EMD can effectively suppress noise and obtain clear cavitation pulses, facilitating the identification of the number of pulses associated with the degree of cavitation. The cavitation characteristics were modeled to predict the value of incipient cavitation. Then, we proposed a method for detecting the wear of the impeller surface. That is, the information on the impeller surface of the centrifugal pump, including the roughness of the impeller surface and its wear trends, were quantified based on the net positive suction head available of incipient cavitation. The findings indicate that the proposed technique is suitable for condition monitoring of the pump.

  1. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  2. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    Science.gov (United States)

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  3. Influence of pulse line switch inductance on output characteristics of high-current nanosecond accelerators

    Science.gov (United States)

    Mashchenko, A. I.; Vintizenko, I. I.

    2016-06-01

    Various types of high-current nanosecond accelerators are simulated numerically using an equivalent circuit representation. The influence of pulse forming line switch inductance on the amplitude and waveform of output voltage and current pulses is analyzed.

  4. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  5. A Comparative analysis of three level VSC based multi-pulse STATCOM

    Directory of Open Access Journals (Sweden)

    Smruti Ranjan Barik

    2014-07-01

    Full Text Available This paper presents a comparative analysis among different models of three level NPC (Neutral point clamped VSC (Voltage source converter based STATCOMs. Here separate models of 12- pulse, 24-pulse, 36-pulse, 48-pulse VSC based STATCOMs are configured in MATLAB environment. These individual models are synthesized using appropriate number of three level converters which are switched at fundamental frequency and their gate pulse pattern are properly phase shifted to get desired number of pulses. The simulation results of each individual model are analyzed in three different modes: inductive, capacitive and floating mode. Harmonic content of the proposed higher pulse models are limited as per IEEE 519 standards.

  6. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  7. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  8. Soft Decision Analyzer and Method

    Science.gov (United States)

    Steele, Glen F. (Inventor); Lansdowne, Chatwin (Inventor); Zucha, Joan P. (Inventor); Schlesinger, Adam M. (Inventor)

    2016-01-01

    A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.

  9. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  10. On e(+)e(-) pair production by colliding electromagnetic pulses

    NARCIS (Netherlands)

    Narozhny, NB; Bulanov, SS; Mur, VD; Popov, VS

    2004-01-01

    Electron-positron pair production from vacuum in an electromagnetic field created by two counterpropagating focused laser pulses interacting with each other is analyzed. The dependence of the number of produced pairs on the intensity of a laser pulse and the focusing parameter is studied with a real

  11. Efficient Pulsed Quadrupole

    CERN Document Server

    Petzenhauser, I.; Spiller, P.; Tenholt, C.

    2016-01-01

    In order to raise the focusing gradient in case of bunched beam lines, a pulsed quadrupole was designed. The transfer channels between synchrotrons as well as the final focusing for the target line are possible applications. The quadrupole is running in a pulsed mode, which means an immense saving of energy by avoiding standby operation. Still the high gradients demand high currents. Hence a circuit had to be developed which is able to recover a significant amount of the pulsing energy for following shots. The basic design of the electrical circuit of the quadrupole is introduced. Furthermore more energy efficient circuits are presented and the limits of adaptability are considered.

  12. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  13. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo;

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  14. Pulse propagation through a dispersive intracavity medium

    CERN Document Server

    Yum, Honam; Shahriar, Selim

    2010-01-01

    In this paper, we study theoretically the behavior of a pulse as it propagates through an intracavity fast-light medium. The method of using a transfer function to determine a pulse after it passes through a cavity is well known. However, this approach cannot be used to determine the behavior of the pulse inside the cavity. To circumvent this constraint, we use an approach that starts by finding a self-consistent solution for a monochromatic field of infinite spatial and temporal extents, and determine its amplitudes before, inside, and after the cavity. We then construct a Gaussian input pulse by adding a set of these waves, properly phased and weighted, to represent a moving pulse before the cavity. Adding these waves at various time intervals then yields the complete spatial profile everywhere, including before, inside and after the cavity. We first confirm the prediction of this model by analyzing the behavior of a pulse passing through an empty cavity, and comparing the prediction of the output with the ...

  15. Gamma-Ray Bursts: Pulses and Populations

    Science.gov (United States)

    Loredo, Thomas J.; Hakkila, J. E.; Broadbent, M.; Wasserman, I. M.; Wolpert, R. L.

    2013-04-01

    We describe ongoing work on two projects that are enabling more thorough and accurate use of archival BATSE data for elucidating the nature of GRB sources; the methods and tools we are developing will also be valuable for analyzing data from other missions. The first project addresses modeling the spectro-temporal behavior of prompt gamma ray emission from GRBs by modeling gamma ray count and event data with a population of pulses, with the population drawn from one or more families of single-pulse kernels. Our approach is built on a multilevel nonparametric probabilistic framework we have dubbed "Bayesian droplets," and offers several important advances over previous pulse decomposition approaches: (1) It works in the pulse-confusion regime, quantifying uncertainty in the number, locations, and shapes of pulses, even when there is strong overlap. (2) It can self-consistently model pulse behavior across multiple spectral bands. (3) It readily handles a variety of spatio-temporal kernel shapes. (4) It reifies the idea of a burst as a population of pulses, enabling explicit modeling and estimation of the pulse population distribution. We describe the framework and present analyses of prototypical simple and complex GRB light curves. The second project aims to enable accurate demographic modeling of GRBs using the BATSE catalog. We present new calculations of the BATSE sky exposure, encompassing the full duration of the BATSE catalog for the first time, with many improvements over the currently available exposure map. A similar calculation of the detection efficiency is in progress. We also describe public Python software enabling access and accurate modeling of BATSE GRB data. The software enables demographic studies (e.g., modeling log N - log S distributions) with accurate accounting of both selection effects and measurement errors. It also enables spectro-temporal modeling of detailed data from individual GRBs. These projects are supported by NASA through the AISR

  16. Pulse measurement apparatus and method

    Science.gov (United States)

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  17. Pulse-train control of photofragmentation at constant field energy

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Henriksen, Niels Engholm

    2014-01-01

    We consider a phaselocked two-pulse sequence applied to photofragmentation in the weak-field limit. The two pulses are not overlapping in time, i.e., the energy of the pulse-train is constant for all time delays. It is shown that the relative yield of excited Br* in the nonadiabatic process: I + Br......*←IBr → I + Br, changes as a function of time delay when the two excited wave packets interfere. The underlying mechanisms are analyzed and the change in the branching ratio as a function of time delay is only a reflection of a changing frequency distribution of the pulse train; the branching ratio does...

  18. Pulse subtraction Doppler

    Science.gov (United States)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  19. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  20. Four pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2016-11-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called four pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ°(π/2) 180 ° + ϕ°(3π/2) 180 ° where ϕ = π/n (ϕ° = 180°/n) , and n is number of blocks in a two rotor period. The heteronuclear recoupling pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ1 °(π/2) 180 ° +ϕ1 °(3π/2) 180 ° and (π/2) 0 °(3π/2) ϕ2 °(π/2) 180 ° +ϕ2 °(3π/2) 180 ° on channel I and S, where ϕ1 = 3π/2n, ϕ2 = π2/n and n is number of blocks in a two rotor period. The recoupling pulse sequences mix the y magnetization. We show that four pulse recoupling is more broadband compared to three pulse recoupling [1]. Experimental quantification of this method is shown for 13Cα-13CO, homonuclear recoupling in a sample of Glycine and 15N-13Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF).

  1. Pulsed Plasma Thruster plume analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K. [Washington Univ., Aerospace and Energetics Research Program, Seattle, WA (United States)

    2003-11-01

    Micro-Pulsed Plasma Thrusters ({mu}PPTs) are a promising method for precision attitude control for small spacecraft in formation flying. They create an ionized plasma plume, which may interfere with other spacecraft in the formation. To characterize the ions in the plume, a diagnostic has been built that couples a drift tube with an energy analyzer. The drift tube provides time of flight measurements to determine the exhaust velocity, and the energy analyzer discriminates the ion energies. The energy analyzer measures the current on a collector plate downstream of four grids that repel electrons and ions below a specified energy. The first grid lowers the density of the plasma, therefore increasing Debye length. The second and fourth grids have a negative potential applied to them so they repel the electrons, while the third grid's voltage can be varied to repel lower energy ions. The ion energies can be computed by differentiating the data. Combining the information of the ion energies and their velocities identifies the ion masses in the PPT plume. The PPT used for this diagnostic is the micro-PPT developed for the Dawgstar satellite. This PPT uses 5.2 Joules per pulse and has a 2.3 cm{sup 2} propellant area, a 1.3 cm electrode length, and an estimated thrust of 85 {mu}N [C. Rayburn et al., AIAA-2000-3256]. This paper will describe the development and design of the time of flight/gridded energy analyzer diagnostic and present recent experimental results. (Author)

  2. PM 3655 PHILIPS Logic analyzer

    CERN Multimedia

    A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language, or may correlate assembly with source-level software. Logic Analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.

  3. A Brief Journey into the History of the Arterial Pulse

    Directory of Open Access Journals (Sweden)

    Nima Ghasemzadeh

    2011-01-01

    Full Text Available Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its characteristics have advanced from simple evaluation by touch to complex methodologies such as ultrasonography and plethysmography. Today's understanding of the various characteristics of the arterial pulse relies on our ancestors' observations and experiments. The pursuit of science continues to lead to major advancements in our knowledge of the arterial pulse and its application in diagnosis of atherosclerotic disease.

  4. A brief journey into the history of the arterial pulse.

    Science.gov (United States)

    Ghasemzadeh, Nima; Zafari, A Maziar

    2011-01-01

    Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its characteristics have advanced from simple evaluation by touch to complex methodologies such as ultrasonography and plethysmography. Today's understanding of the various characteristics of the arterial pulse relies on our ancestors' observations and experiments. The pursuit of science continues to lead to major advancements in our knowledge of the arterial pulse and its application in diagnosis of atherosclerotic disease.

  5. Development of subpicosecond pulse radiolysis system

    CERN Document Server

    Kozawa, T; Miki, M; Yamamoto, T; Suemine, S; Yoshida, Y; Tagawa, S

    2000-01-01

    The highest time resolution of the pulse radiolysis had remained about 30 ps since the late 1960s. To make clear the primary processes in the radiation chemistry and physics within 30 ps, we developed a stroboscopic pulse radiolysis system for the absorption spectroscopy with the time resolution of 2.0 ps (10-90% rise time). The time resolution of 2.0 ps was estimated from the time-dependent behavior of the hydrated electrons. The system consists of a subpicosecond electron linac as an irradiation source, a femtosecond laser as an analyzing light and a jitter compensation system.

  6. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  7. A pulse generator for xenon lamps

    Science.gov (United States)

    Janata, E.

    2002-10-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within ±0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 μs. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  8. Analyzing data files in SWAN

    CERN Document Server

    Gajam, Niharika

    2016-01-01

    Traditionally analyzing data happens via batch-processing and interactive work on the terminal. The project aims to provide another way of analyzing data files: A cloud-based approach. It aims to make it a productive and interactive environment through the combination of FCC and SWAN software.

  9. Analyzing Valuation Practices through Contracts

    DEFF Research Database (Denmark)

    Tesnière, Germain; Labatut, Julie; Boxenbaum, Eva

    This paper seeks to analyze the most recent changes in how societies value animals. We analyze this topic through the prism of contracts between breeding companies and farmers. Focusing on new valuation practices and qualification of breeding animals, we question the evaluation of difficult...

  10. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  11. Propagation of subcycle pulses in a two-level medium: Area-theorem breakdown and pulse shape

    CERN Document Server

    Novitsky, Denis

    2013-01-01

    We solve the problem of ultrashort pulse propagation in a two-level medium beyond the rotating-wave (RWA) and slowly-varying-envelope approximations. The method of solution is based on the Maxwell--Bloch equations represented in the form that allows one to switch between RWA and general (non-RWA) cases in the framework of a single numerical algorithm. Using this method, the effect of a subcycle pulse (containing less than a single period of field oscillations) on the two-level medium was analyzed. It is shown that for such short pulses, the clear breakdown of the area theorem occurs for the pulses of large enough area. Moreover, deviations from the area theorem appear to be strongly dependent on the pulse shape that cannot be observed for longer few-cycle pulses.

  12. Effect of inter-pulse delay time on production and size properties of colloidal nanoparticles prepared by collinear double-pulse laser ablation in liquid

    Science.gov (United States)

    Fattahi, Behzad; Mahdieh, Mohammah Hossein

    2016-08-01

    The influence of inter-pulse delay times (0-20 ns) between two collinear sequential nanosecond pulses on the production and size properties (mean size and size distribution) of colloidal nanoparticles prepared by pulsed laser ablation of a silver target in a distilled water medium has been studied. Various laser fluences at different inter-pulse delay times between two collinear pulses were used. Furthermore, for a better understanding of the effect of the double-pulse and single-pulse mode, experiments were performed. The characterization of the synthesized colloidal nanoparticles was investigated using scanning electron microscopy (SEM) and UV-vis absorption spectroscopy. Our results showed that 5 ns time-delayed double-pulse laser ablation results in the production of nanoparticles with the highest concentration among the other time-delayed ablation experiments and even more than single-pulse-mode experiments. It also found that using a double-pulse approach with inter-pulse delay times in the range of 0-20 ns leads to the production of nanoparticles with smaller mean sizes and narrower size distributions in comparison to single-pulse-mode laser ablation. The effect of time overlapping between two pulses in the case of double-pulse ablation was analyzed.

  13. Pulse mode operation of Love wave devices for biosensing applications

    OpenAIRE

    Newton, MI; McHale, G; Martin, F; Gizeli, E.; Melzak, KA

    2001-01-01

    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmi...

  14. Using ultra-short pulses to determine particle size and density distributions

    NARCIS (Netherlands)

    Lee, Christopher James; van der Slot, Petrus J.M.; Boller, Klaus J.

    2007-01-01

    We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was

  15. ANALYZE Users' Guide

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.

    1982-10-01

    This report is a reproduction of the visuals that were used in the ANALYZE Users' Guide lectures of the videotaped LLNL Continuing Education Course CE2018-H, State Space Lectures. The course was given in Spring 1982 through the EE Department Education Office. Since ANALYZE is menu-driven, interactive, and has self-explanatory questions (sort of), these visuals and the two 50-minute videotapes are the only documentation which comes with the code. More information about the algorithms contained in ANALYZE can be obtained from the IEEE book on Programs for Digital Signal Processing.

  16. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  17. Improved cylindrical mirror energy analyzer

    Science.gov (United States)

    Baranova, L. A.

    2017-03-01

    A study has been carried out of the electron-optical properties of improved design of the cylindrical mirror energy analyzer. Both external and internal electrodes of the analyzer are divided into three isolated parts, whereby the potentials on the individual parts can be regulated independently from each other. In symmetric operating mode at identical potentials on the side parts of the electrodes, a significant increase has been obtained in resolving power and light-gathering power of the analyzer compared to the standard design of the cylindrical mirror. In asymmetric operating mode, which is implemented in a linear potential distribution on the external electrode, the conditions have been found under which the linear dispersion of the analyzer increases several times.

  18. Market study: Whole blood analyzer

    Science.gov (United States)

    1977-01-01

    A market survey was conducted to develop findings relative to the commercialization potential and key market factors of the whole blood analyzer which is being developed in conjunction with NASA's Space Shuttle Medical System.

  19. C2Analyzer:Co-target-Co-function Analyzer

    Institute of Scientific and Technical Information of China (English)

    Md Aftabuddin; Chittabrata Mal; Arindam Deb; Sudip Kundu

    2014-01-01

    MicroRNAs (miRNAs) interact with their target mRNAs and regulate biological pro-cesses at post-transcriptional level. While one miRNA can target many mRNAs, a single mRNA can also be targeted by a set of miRNAs. The targeted mRNAs may be involved in different bio-logical processes that are described by gene ontology (GO) terms. The major challenges involved in analyzing these multitude regulations include identification of the combinatorial regulation of miR-NAs as well as determination of the co-functionally-enriched miRNA pairs. The C2Analyzer:Co-target-Co-function Analyzer, is a Perl-based, versatile and user-friendly web tool with online instructions. Based on the hypergeometric analysis, this novel tool can determine whether given pairs of miRNAs are co-functionally enriched. For a given set of GO term(s), it can also identify the set of miRNAs whose targets are enriched in the given GO term(s). Moreover, C2Analyzer can also identify the co-targeting miRNA pairs, their targets and GO processes, which they are involved in. The miRNA-miRNA co-functional relationship can also be saved as a .txt file, which can be used to further visualize the co-functional network by using other software like Cytoscape. C2Analyzer is freely available at www.bioinformatics.org/c2analyzer.

  20. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  1. Pulsed ELDOR detected NMR

    Science.gov (United States)

    Schosseler, P.; Wacker, Th.; Schweiger, A.

    1994-07-01

    A pulsed EPR method for the determination of small hyperfine interactions in disordered systems is described. A selective preparation pulse of frequency ω mw(1) excites allowed and forbidden transitions, thereby burning spectral holes into the EPR line. The positions of the holes caused by the excitation of forbidden transitions correspond to the nuclear transition frequencies of the spin system. A selective detection pulse of frequency ω mw(2) creates an FID with integrated intensity proportional to the magnetization at frequency ω mw(2). The entire hole pattern is obtained by recording the integrated intensity of the FID while varying the frequency difference Δω mw=ω mw(1)-ω mw(2) step by step.

  2. Herophilus on pulse

    Directory of Open Access Journals (Sweden)

    Afonasin, Eugene

    2015-01-01

    Full Text Available The first detailed study of the pulse (sphygmology is associated in antiquity with Herophilus (the end of the 4th century BCE, an Alexandrian physician, renowned for his anatomical discoveries. The scholars also attribute to him a discovery of a portable and adjustable water-clock, used for measuring ‘natural’ and ‘unnatural’ pulse and, accordingly, temperature of the patient. In the article we translate the principal ancient evidences and comment upon them. We study both the practical aspects of ancient sphygmology and the theoretical speculations associated with it. Ancient theory of proportion and musical harmony allowed to build a classification of the pulses, but the medical experience did not fit well in the Procrustean bed of this rather simple theory.

  3. Pulsed Artificial Electrojet Generation

    Science.gov (United States)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  4. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  5. Multi-channel analyzer controlled by applet and flash

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Both java applet and flash were applied to emulate virtual panel of multi-channel pulse height analyzer (MCA), and Microsoft IE browser was used to control MCA through internet to measure the γ-ray energy spectrum of 137Cs. It Was shown that most of the work completed by applet can be done by flash too, and with flash, more beautiful panel of the remote controlled instruments can be easily designed.

  6. Multi—channel analyzer controlled by applet and flash

    Institute of Scientific and Technical Information of China (English)

    HUANGWen-Da

    2002-01-01

    Both java applet and flash were applied to emulate virtual panel of multi-channel pulse height analyzer(MCA),and Microsoft IE browser was used to control MCA through internet to measure the γ-ray energy spectrum of 137Cs.It was shown that most of the work completed by applet can be done by flash too,and with flash,more beautiful panel of the remote controlled instruments can be easily designed.

  7. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  8. Pulsed Electron Holography

    CERN Document Server

    Germann, Matthias; Escher, Conrad; Fink, Hans-Werner

    2013-01-01

    A technique of pulsed low-energy electron holography is introduced that allows for recording highly resolved holograms within reduced exposure times. Therefore, stacks of holograms are accumulated in a pulsed mode with individual acquisition times as short as 50 {\\mu}s. Subsequently, these holograms are aligned and finally superimposed. The resulting holographic record reveals previously latent high-order interference fringes and thereby pushing interference resolution into the sub-nanometer regime. In view of the non-damaging character of low-energy electrons, the method is of particular interest for structural analysis of fragile biomolecules.

  9. Pulsed UV and VUV excilamps

    Science.gov (United States)

    Tarasenko, Victor F.; Erofeev, Mikhail V.; Kostyrja, Igor D.; Lomaev, Mikhail I.; Rybka, Dmitri V.

    2008-05-01

    Emission characteristics of a nanosecond discharge in nitrogen, inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. It has been shown that at VDIAEB excitation no less than 90% energy in the 120-850 nm range is emitted by Xe, Kr, Ar dimers. Xenon spectra in the range 120-850 nm and time-amplitude characteristics have been recorded and analyzed for various excitation regimes. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was ~ 45 mJ/cm3, and the FWHM of a radiation pulse was ~ 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed power densities of radiation of inert gases halogenides excited by VDIAEB was ~ 4.5 kW/cm2 at efficiency up to 5.5 %.

  10. Theoretical and experimental analysis of pulse delay in bacteriorhodopsin films by a saturable absorber theory.

    Science.gov (United States)

    Blaya, Salvador; Candela, Manuel; Acebal, Pablo; Carretero, Luis; Fimia, Antonio

    2014-05-19

    Time-delay of transmitted pulses with respect to the incident pulse in bacteriorhodopsin films has been studied without the use of a pump beam. Based on a modified saturable absorber model, analytical expressions of the transmitted pulse have been obtained. As a result, time delay, distortion and fractional delay have been analyzed for sinusoidal pulses with a low background. A good agreement between theory and experiences has been observed.

  11. An Advantage of the Equivalent Velocity Spectroscopy for Femtsecond Pulse Radiolysis

    CERN Document Server

    Kondoh, Takafumi; Tagawa, Seiichi; Tomosada, Hiroshi; Yang Jin Feng; Yoshida, Yoichi

    2005-01-01

    For studies of electron beam induced ultra-fast reaction process, femtosecond(fs) pulse radiolysis is under construction. To realize fs time resolution, fs electron and analyzing light pulses and their jitter compensation system are needed. About a 100fs electron pulse was generated by a photocathode RF gun linac and a magnetic pulse compressor. Synchronized Ti: Sapphire laser have a puleswidth about 160fs. And, it is significant to avoid degradation of time resolution caused by velocity difference between electron and analyzing light in a sample. In the 'Equivalent velocity spectroscopy' method, incident analyzing light is slant toward electron beam with an angle associated with refractive index of sample. Then, to overlap light wave front and electron pulse shape, electron pulse shape is slanted toward the direction of travel. As a result of the equivalent velocity spectroscopy for hydrated electrons, using slanted electron pulse shape, optical absorption rise time was about 1.4ps faster than normal electro...

  12. On-Demand Urine Analyzer

    Science.gov (United States)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  13. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  14. Pulse spectral evolution of GRBs: implication as standard candle

    CERN Document Server

    Basak, Rupal

    2012-01-01

    Using an \\emph{empirical} description of a prompt GRB pulse, we analyze the individual pulses of all Fermi/GBM GRBs with known redshifts, till July 2009. This description is simultaneous in time and energy and allows one to determine the peak energy of Band spectrum at zero fluence ($E_{peak,0}$). We demonstrate, for the first time, that the $E_{peak,0}$ bears a very strong correlation with the isotropic energy of the individual pulses, and hence, each pulse can be used as a luminosity indicator. As a physical description is needed in order to use GRB pulses for cosmological purposes, we explore other physical spectral models. As pulses are the building blocks of a GRB, we choose another sample of Fermi/GBM GRBs having bright, long and single/ separable pulse(s) and fit the time-resolved spectra of the individual pulses with the Band model and a model consisting of a blackbody and a power-law. Both these models give acceptable fits. We find that the peak energy/ temperature always decreases exponentially with...

  15. Research on mud pulse signal data processing in MWD

    Science.gov (United States)

    Tu, Bing; Li, De Sheng; Lin, En Huai; Ji, Miao Miao

    2012-12-01

    Wireless measure while drilling (MWD) transmits data by using mud pulse signal ; the ground decoding system collects the mud pulse signal and then decodes and displays the parameters under the down-hole according to the designed encoding rules and the correct detection and recognition of the ground decoding system towards the received mud pulse signal is one kind of the key technology of MWD. This paper introduces digit of Manchester encoding that transmits data and the format of the wireless transmission of data under the down-hole and develops a set of ground decoding systems. The ground decoding algorithm uses FIR (Finite impulse response) digital filtering to make de-noising on the mud pulse signal, then adopts the related base value modulating algorithm to eliminate the pump pulse base value of the denoised mud pulse signal, finally analyzes the mud pulse signal waveform shape of the selected Manchester encoding in three bits cycles, and applies the pattern similarity recognition algorithm to the mud pulse signal recognition. The field experiment results show that the developed device can make correctly extraction and recognition for the mud pulse signal with simple and practical decoding process and meet the requirements of engineering application.

  16. An update on chemistry analyzers.

    Science.gov (United States)

    Vap, L M; Mitzner, B

    1996-09-01

    This update of six chemistry analyzers available to the clinician discusses several points that should be considered prior to the purchase of equipment. General topics include how to best match an instrument to clinic needs and the indirect costs associated with instrument operation. Quality assurance recommendations are discussed and common terms are defined. Specific instrument features, principles of operation, performance, and costs are presented. The information provided offers potential purchasers an objective approach to the evaluation of a chemistry analyzer for the veterinary clinic.

  17. Analyzing the Grammar of English

    CERN Document Server

    Teschner, Richard V

    2007-01-01

    Analyzing the Grammar of English offers a descriptive analysis of the indispensable elements of English grammar. Designed to be covered in one semester, this textbook starts from scratch and takes nothing for granted beyond a reading and speaking knowledge of English. Extensively revised to function better in skills-building classes, it includes more interspersed exercises that promptly test what is taught, simplified and clarified explanations, greatly expanded and more diverse activities, and a new glossary of over 200 technical terms.Analyzing the Grammar of English is the only English gram

  18. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    Science.gov (United States)

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  19. Solid-state pulse forming module with adjustable pulse duration

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng

    2017-03-01

    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  20. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Science.gov (United States)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  1. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  2. Ultrafast optomechanical pulse picking

    Science.gov (United States)

    Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim

    2017-01-01

    State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.

  3. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  4. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  5. Downhole pulse tube refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  6. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Bruno Yue [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Mao, Xianglei [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hou, Huaming [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ocean University of China, Qingdao (China); Zorba, Vassilia; Russo, Richard E. [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cheung, Nai-Ho, E-mail: nhcheung@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2015-08-01

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm{sup −2} orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism.

  7. Methods of analyzing crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Jjunju, Fred Paul Mark; Li, Anyin; Rogan, Iman S.

    2017-08-15

    The invention generally relates to methods of analyzing crude oil. In certain embodiments, methods of the invention involve obtaining a crude oil sample, and subjecting the crude oil sample to mass spectrometry analysis. In certain embodiments, the method is performed without any sample pre-purification steps.

  8. Analyzing Classroom Instruction in Reading.

    Science.gov (United States)

    Rutherford, William L.

    A method for analyzing instructional techniques employed during reading group instruction is reported, and the characteristics of the effective reading teacher are discussed. Teaching effectiveness is divided into two categories: (1) how the teacher acts and interacts with children on a personal level and (2) how the teacher performs his…

  9. Strategies for Analyzing Tone Languages

    Science.gov (United States)

    Coupe, Alexander R.

    2014-01-01

    This paper outlines a method of auditory and acoustic analysis for determining the tonemes of a language starting from scratch, drawing on the author's experience of recording and analyzing tone languages of north-east India. The methodology is applied to a preliminary analysis of tone in the Thang dialect of Khiamniungan, a virtually undocumented…

  10. The Convertible Arbitrage Strategy Analyzed

    NARCIS (Netherlands)

    Loncarski, I.; Ter Horst, J.R.; Veld, C.H.

    2006-01-01

    This paper analyzes convertible bond arbitrage on the Canadian market for the period 1998 to 2004.Convertible bond arbitrage is the combination of a long position in convertible bonds and a short position in the underlying stocks. Convertible arbitrage has been one of the most successful strategies

  11. Analyzing Software Piracy in Education.

    Science.gov (United States)

    Lesisko, Lee James

    This study analyzes the controversy of software piracy in education. It begins with a real world scenario that presents the setting and context of the problem. The legalities and background of software piracy are explained and true court cases are briefly examined. Discussion then focuses on explaining why individuals and organizations pirate…

  12. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  13. Bacterial inactivation using pulsed light

    OpenAIRE

    Elmnasser, Noura; Ritz, Magali; Leroi, Francoise; Orange, Nicole; Bakhrouf, Amina; Federighi, Michel

    2007-01-01

    Pulsed light is a new method intended for the decontamination of food surfaces using short, high frequency pulses of an intense broad spectrum. The effects of broad spectrum pulsed light on the survival of Listeria monocytogenes Scott A, Listeria monocytogenes CNL, Pseudomonas fluorescens MF37 and Photobacterium phosphoreum SF680 populations on agar and in a liquid medium were investigated during this study. The sterilisation system generated 1.5 J cm(-2) per pulse with eight lamps for 300 mu...

  14. Introduction: why analyze single cells?

    Science.gov (United States)

    Di Carlo, Dino; Tse, Henry Tat Kwong; Gossett, Daniel R

    2012-01-01

    Powerful methods in molecular biology are abundant; however, in many fields including hematology, stem cell biology, tissue engineering, and cancer biology, data from tools and assays that analyze the average signals from many cells may not yield the desired result because the cells of interest may be in the minority-their behavior masked by the majority-or because the dynamics of the populations of interest are offset in time. Accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. In this chapter, we discuss the rationale for performing analyses on individual cells in more depth, cover the fields of study in which single-cell behavior is yielding new insights into biological and clinical questions, and speculate on how single-cell analysis will be critical in the future.

  15. The Statistical Loop Analyzer (SLA)

    Science.gov (United States)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  16. Methods for Analyzing Social Media

    DEFF Research Database (Denmark)

    Jensen, Jakob Linaa; [Ukendt], editors

    2013-01-01

    Social media is becoming increasingly attractive for users. It is a fast way to communicate ideas and a key source of information. It is therefore one of the most influential mediums of communication of our time and an important area for audience research. The growth of social media invites many...... new questions such as: How can we analyze social media? Can we use traditional audience research methods and apply them to online content? Which new research strategies have been developed? Which ethical research issues and controversies do we have to pay attention to? This book focuses on research...... strategies and methods for analyzing social media and will be of interest to researchers and practitioners using social media, as well as those wanting to keep up to date with the subject....

  17. Methods for Analyzing Social Media

    DEFF Research Database (Denmark)

    Jensen, Jakob Linaa; [Ukendt], editors

    2013-01-01

    Social media is becoming increasingly attractive for users. It is a fast way to communicate ideas and a key source of information. It is therefore one of the most influential mediums of communication of our time and an important area for audience research. The growth of social media invites many...... new questions such as: How can we analyze social media? Can we use traditional audience research methods and apply them to online content? Which new research strategies have been developed? Which ethical research issues and controversies do we have to pay attention to? This book focuses on research...... strategies and methods for analyzing social media and will be of interest to researchers and practitioners using social media, as well as those wanting to keep up to date with the subject....

  18. Analyzing the Facebook Friendship Graph

    OpenAIRE

    Catanese, Salvatore; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo

    2010-01-01

    Online Social Networks (OSN) during last years acquired a huge and increasing popularity as one of the most important emerging Web phenomena, deeply modifying the behavior of users and contributing to build a solid substrate of connections and relationships among people using the Web. In this preliminary work paper, our purpose is to analyze Facebook, considering a significant sample of data reflecting relationships among subscribed users. Our goal is to extract, from this platform, relevant ...

  19. Analyzing viewpoint diversity in twitter

    OpenAIRE

    2013-01-01

    Information diversity has a long tradition in human history. Recently there have been claims that diversity is diminishing in information available in social networks. On the other hand, some studies suggest that diversity is actually quite high in social networks such as Twitter. However these studies only focus on the concept of source diversity and they only focus on American users. In this paper we analyze different dimensions of diversity. We also provide an experimental design in which ...

  20. Pulse radiolysis apparatus for monitoring at 2000 Å

    DEFF Research Database (Denmark)

    Christensen, H.C.; Nilsson, G.; Pagsberg, Palle Bjørn

    1969-01-01

    A pulse radiolysis apparatus with photometric monitoring has been built around an 11 MeV, 250 mA peak current, linac that delivers single 0.25 to 4 μsec pulses. The novel features of the apparatus include (1) a 450 W xenon lamp as the analyzing light source which in pulsed operation had a 25 times...... increased luminance; (2) a fast electronic switch that cut out the signal due to the Cerenkov radiation; (3) a secondary emission chamber that allowed the simultaneous measurement of the current and the direction of the pulsed electron beam; and (4) a system for remote controlled change of liquid samples...... stored in glass syringes. Reliable measurements of optical transmission could be made starting 0.2 μsec after the electron pulse at wavelengths down to 2000 Å on transient species having products of yield and absorptivity G×ε>500 mole (100 eV)-1.liter-1.cm-1...

  1. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  2. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  3. Remote Laser Diffraction PSD Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified "off-the-shelf" classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a "hot cell" (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  4. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  5. Analyzing ion distributions around DNA.

    Science.gov (United States)

    Lavery, Richard; Maddocks, John H; Pasi, Marco; Zakrzewska, Krystyna

    2014-07-01

    We present a new method for analyzing ion, or molecule, distributions around helical nucleic acids and illustrate the approach by analyzing data derived from molecular dynamics simulations. The analysis is based on the use of curvilinear helicoidal coordinates and leads to highly localized ion densities compared to those obtained by simply superposing molecular dynamics snapshots in Cartesian space. The results identify highly populated and sequence-dependent regions where ions strongly interact with the nucleic and are coupled to its conformational fluctuations. The data from this approach is presented as ion populations or ion densities (in units of molarity) and can be analyzed in radial, angular and longitudinal coordinates using 1D or 2D graphics. It is also possible to regenerate 3D densities in Cartesian space. This approach makes it easy to understand and compare ion distributions and also allows the calculation of average ion populations in any desired zone surrounding a nucleic acid without requiring references to its constituent atoms. The method is illustrated using microsecond molecular dynamics simulations for two different DNA oligomers in the presence of 0.15 M potassium chloride. We discuss the results in terms of convergence, sequence-specific ion binding and coupling with DNA conformation.

  6. A THERMAL PULSE SHAPER MECHANISM.

    Science.gov (United States)

    A shaped pulse of intense thermal radiation, corresponding to the pulses from nuclear weapons, is obtained by the output of a QM carbon arc. A flywheel driven by a DC motor actuated a venetian blind shutter placed between a mirror and the target to control the flux. The combination produced reasonably good simulation and reproduction of the generalized field pulse.

  7. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach.

    Science.gov (United States)

    Cheung, Mike W-L; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists-and probably the most crucial one-is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  8. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Directory of Open Access Journals (Sweden)

    Mike W.-L. Cheung

    2016-05-01

    Full Text Available Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists – and probably the most crucial one – is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  9. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Science.gov (United States)

    Cheung, Mike W.-L.; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists—and probably the most crucial one—is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study. PMID:27242639

  10. Noisy homoclinic pulse dynamics

    Science.gov (United States)

    Eaves, T. S.; Balmforth, Neil J.

    2016-04-01

    The effect of stochastic perturbations on nearly homoclinic pulse trains is considered for three model systems: a Duffing oscillator, the Lorenz-like Shimizu-Morioka model, and a co-dimension-three normal form. Using the Duffing model as an example, it is demonstrated that the main effect of noise does not originate from the neighbourhood of the fixed point, as is commonly assumed, but due to the perturbation of the trajectory outside that region. Singular perturbation theory is used to quantify this noise effect and is applied to construct maps of pulse spacing for the Shimizu-Morioka and normal form models. The dynamics of these stochastic maps is then explored to examine how noise influences the sequence of bifurcations that take place adjacent to homoclinic connections in Lorenz-like and Shilnikov-type flows.

  11. Computationally intelligent pulsed photoacoustics

    Science.gov (United States)

    Lukić, Mladena; Ćojbašić, Žarko; Rabasović, Mihailo D.; Markushev, Dragan D.

    2014-12-01

    In this paper, the application of computational intelligence in pulsed photoacoustics is discussed. Feedforward multilayer perception networks are applied for real-time simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases. Networks are trained and tested with theoretical data adjusted for a given experimental set-up. Genetic optimization has been used for calculation of the same parameters, fitting the photoacoustic signals with a different number of generations. Observed benefits from the application of computational intelligence in pulsed photoacoustics and advantages over previously developed methods are discussed, such as real-time operation, high precision and the possibility of finding solutions in a wide range of parameters, similar to in experimental conditions. In addition, the applicability for practical uses, such as the real-time in situ measurements of atmospheric pollutants, along with possible further developments of obtained results, is argued.

  12. Micro pulse laser radar

    Science.gov (United States)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  13. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  14. Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-03-15

    Taking advantage of a new technique, we have monitored the relative variations of time duration and mode size as a function of the pulse energy for 30-ps-long Nd:YAG laser pulses. In particular, by carrying out a statistical analysis, we have observed that the pulse time duration is an increasing function of the pulse energy, according to the theoretical modeling of passively mode-locked lasers. The measurements can be easily extended to the femtosecond regime.

  15. The Aqueduct Global Flood Analyzer

    Science.gov (United States)

    Iceland, Charles

    2015-04-01

    As population growth and economic growth take place, and as climate change accelerates, many regions across the globe are finding themselves increasingly vulnerable to flooding. A recent OECD study of the exposure of the world's large port cities to coastal flooding found that 40 million people were exposed to a 1 in 100 year coastal flood event in 2005, and the total value of exposed assets was about US 3,000 billion, or 5% of global GDP. By the 2070s, those numbers were estimated to increase to 150 million people and US 35,000 billion, or roughly 9% of projected global GDP. Impoverished people in developing countries are particularly at risk because they often live in flood-prone areas and lack the resources to respond. WRI and its Dutch partners - Deltares, IVM-VU University Amsterdam, Utrecht University, and PBL Netherlands Environmental Assessment Agency - are in the initial stages of developing a robust set of river flood and coastal storm surge risk measures that show the extent of flooding under a variety of scenarios (both current and future), together with the projected human and economic impacts of these flood scenarios. These flood risk data and information will be accessible via an online, easy-to-use Aqueduct Global Flood Analyzer. We will also investigate the viability, benefits, and costs of a wide array of flood risk reduction measures that could be implemented in a variety of geographic and socio-economic settings. Together, the activities we propose have the potential for saving hundreds of thousands of lives and strengthening the resiliency and security of many millions more, especially those who are most vulnerable. Mr. Iceland will present Version 1.0 of the Aqueduct Global Flood Analyzer and provide a preview of additional elements of the Analyzer to be released in the coming years.

  16. Twitter's visual pulse

    OpenAIRE

    Hare, Jonathon; Samangooei, Sina; Dupplaw, David; Lewis, Paul H.

    2013-01-01

    Millions of images are tweeted every day, yet very little research has looked at the non-textual aspect of social media communication. In this work we have developed a system to analyse streams of image data. In particular we explore trends in similar, related, evolving or even duplicated visual artefacts in the mass of tweeted image data — in short, we explore the visual pulse of Twitter.

  17. Pulse Portraiture: Pulsar timing

    Science.gov (United States)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  18. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  19. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  20. Ptychographic ultrafast pulse reconstruction

    CERN Document Server

    Spangenberg, D; Brügmann, M H; Feurer, T

    2014-01-01

    We demonstrate a new ultrafast pulse reconstruction modality which is somewhat reminiscent of frequency resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second order correlation scheme it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

  1. PULSE Pilot Certification Results

    Directory of Open Access Journals (Sweden)

    Pamela Pape-Lindstrom

    2015-08-01

    Full Text Available The pilot certification process is an ambitious, nationwide endeavor designed to motivate important changes in life sciences education that are in line with the recommendations of the 2011 Vision and Change Report: A Call to Action (American Association for the Advancement of Science [AAAS], 2011.  It is the goal of the certification process to acknowledge departments that have progressed towards full implementation of the tenets of Vision and Change and to motivate departments that have not begun to adopt the recommendations to consider doing so.  More than 70 life science departments applied to be part of the pilot certification process, funded by a National Science Foundation grant, and eight were selected based on initial evidence of transformed and innovative educational practices.  The programs chosen represent a wide variety of schools, including two-year colleges, liberal-arts institutions, regional comprehensive colleges, research universities and minority serving institutions.  Outcomes from this pilot were released June 1, 2015 (www.pulsecommunity.org, with all eight programs being recognized as having progressed along a continuum of change.  Five levels of achievement were defined as PULSE Pilot Progression Levels.  Of the eight departments in the pilot, one achieved “PULSE Progression Level III: Accomplished”.  Six departments achieved “PULSE Progression Level II: Developing” and one pilot department achieved “PULSE Progression Level I: Beginning”.  All of the schools have made significant movement towards the recommendations of Vision and Change relative to a traditional life sciences curriculum.  Overall, the response from the eight pilot schools has been positive. 

  2. Fuel analyzer; Analisador de combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Cozzolino, Roberval [RS Motors, Indaiatuba, SP (Brazil)

    2008-07-01

    The current technology 'COMBUSTIMETRO' aims to examine the fuel through performance of the engine, as the role of the fuel is to produce energy for the combustion engine in the form of which is directly proportional to the quality and type of fuel. The 'COMBUSTIMETRO' has an engine that always keeps the same entry of air, fuel and fixed point of ignition. His operation is monitored by sensors (Sonda Lambda, RPM and Gases Analyzer) connected to a processor that performs calculations and records the information, generate reports and graphs. (author)

  3. Method for analyzing microbial communities

    Science.gov (United States)

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  4. Pulse train amplification and regeneration based on semiconductor quantum dots waveguide

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides.......We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides....

  5. Analysis on the characteristics of pulsed laser proximity fuze's echo

    Science.gov (United States)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  6. Short pulse generation and high speed communication system

    Science.gov (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  7. Simulation of nanosecond square pulse fiber laser based on nonlinear amplifying loop mirror

    Institute of Scientific and Technical Information of China (English)

    Guoliang Chen; Chun Gu; Lixin Xu; Huan Zheng; Hai Ming

    2011-01-01

    A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear Schrodinger equation. The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM, and the nanosecond square pulse is generated by the pulse shaping effect. The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately. The generated square pulses have flat top and no internal structure.%@@ A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror(NALM)is numerically analyzed by the nonlinear Schr6dinger equation.The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM,and the nanosecond square pulse is generated by the pulse shaping effect.The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately.The generated square pulses have flat top and no internal structure.

  8. Influential factors for pressure pulse waveform in healthy young adults.

    Science.gov (United States)

    Du, Yi; Wang, Ling; Li, Shuyu; Zhi, Guang; Li, Deyu; Zhang, Chi

    2015-01-01

    The effects of gender and other contributory factors on pulse waveform are still under arguments. In view of different results caused by few considerations of possible influential factors and general agreement of gender relating to pulse waveform, this study aims to address the confounding factors interfering with the association between gender and pulse waveform characteristics. A novel method was proposed to noninvasively detect pressure pulse wave and assess the morphology of pulse wave. Forty healthy young subjects were included in the present research. Height, weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured manually and body mass index (BMI), pulse blood pressure (PP) and heart rate (HR) were calculated automatically. Student's t test was used to analyze the gender difference and analysis of variance (ANOVA) to examine the effects of intrinsic factors. Univariate regression analysis was performed to assess the main factors on the waveform characteristics. Waveform features were found significantly different between genders. However this study indicates that the main factors for time-related and amplitude-related parameters are HR and SBP respectively. In conclusion, the impact of HR and SBP on pulse waveform features should not be underestimated, especially when analyzing the gender difference.

  9. Influence of Input Pulse Durations on Properties of Er3+/Yb3+ Co-doped DCFA

    Institute of Scientific and Technical Information of China (English)

    ZHAN Sheng-bao; ZHAO Shang-hong; SHI Lei; XU Jie; ZHAO Xiao-ming

    2006-01-01

    Based on propagation-rate equations,the influence of different input pulse durations on the properties of Er3+/Yb3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multi-channel input pulses are amplified,the shorter the input pulse duration is,the smaller the power sags of output pulse will be. At low repetition rate,upper gain values(Gupper) of gain swing are almost the same for different input pulse durations,which tend to the small signal gain,but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At high repetition rate,lower gain value(Glower) approaches to upper gain value(Gupper).

  10. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  11. VOSA: A VO SED Analyzer

    Science.gov (United States)

    Rodrigo, C.; Bayo, A.; Solano, E.

    2017-03-01

    VOSA (VO Sed Analyzer, http://svo2.cab.inta-csic.es/theory/vosa) is a public web-tool developed by the Spanish Virtual Observatory (http://svo.cab.inta-csic.es/) and designed to help users to (1) build Spectral Energy Distributions (SEDs) combining private photometric measurements with data available in VO services, (2) obtain relevant properties of these objects (distance, extinction, etc) from VO catalogs, (3) analyze them comparing observed photometry with synthetic photometry from different collections of theoretical models or observational templates, using different techniques (chi-square minimization, Bayesian analysis) to estimate physical parameters of the observed objects (teff, logg, metallicity, stellar radius/distance ratio, infrared excess, etc), and use these results to (4) estimate masses and ages via interpolation of collections of isochrones and evolutionary tracks from the VO. In particular, VOSA offers the advantage of deriving physical parameters using all the available photometric information instead of a restricted subset of colors. The results can be downloaded in different formats or sent to other VO tools using SAMP. We have upgraded VOSA to provide access to Gaia photometry and give a homogeneous estimation of the physical parameters of thousands of objects at a time. This upgrade has required the implementation of a new computation paradigm, including a distributed environment, the capability of submitting and processing jobs in an asynchronous way, the use of parallelized computing to speed up processes (˜ ten times faster) and a new design of the web interface.

  12. Thermal and evolved gas analyzer

    Science.gov (United States)

    Williams, M. S.; Boynton, W. V.; James, R. L.; Verts, W. T.; Bailey, S. H.; Hamara, D. K.

    1998-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument will perform calorimetry and evolved gas analysis on soil samples collected from the Martian surface. TEGA is one of three instruments, along with a robotic arm, that form the Mars Volatile and Climate Survey (MVACS) payload. The other instruments are a stereo surface imager, built by Peter Smith of the University of Arizona and a meteorological station, built by JPL. The MVACS lander will investigate a Martian landing site at approximately 70 deg south latitude. Launch will take place from Kennedy Space Center in January, 1999. The TEGA project started in February, 1996. In the intervening 24 months, a flight instrument concept has been designed, prototyped, built as an engineering model and flight model, and tested. The instrument performs laboratory-quality differential-scanning calorimetry (DSC) over the temperature range of Mars ambient to 1400K. Low-temperature volatiles (water and carbon dioxide ices) and the carbonates will be analyzed in this temperature range. Carbonates melt and evolve carbon dioxide at temperatures above 600 C. Evolved oxygen (down to a concentration of 1 ppm) is detected, and C02 and water vapor and the isotopic variations of C02 and water vapor are detected and their concentrations measured. The isotopic composition provides important tests of the theory of solar system formation.

  13. Research on the Transient Characteristics of Microgrid with Pulsed Load

    Directory of Open Access Journals (Sweden)

    Jianke Li

    2015-01-01

    Full Text Available Unlike traditional load, pulsed load typically features small average power and large peak power. In this paper, the mathematic models of microgrid consisting of synchronous generator and pulsed load are established. Average Magnitude Difference Compensate Function (AMDCF is proposed to calculate the frequency of synchronous generator, and, based on AMDCF, relative deviation rate (RDR which characterizes the impact of pulsed load on the AC side of grid is firstly defined and this paper describes calculation process in detail. Insulated Gate Bipolar Transistor (IGBT is used as DC switch to control the on/off state of resistive load for simulating pulsed load, the period and duty-cycle of the pulsed load are simulated by setting the gate signal of IGBT, and the peak power of the pulsed load is simulated by setting the resistance. The system dynamic characteristics under pulsed load are analyzed in detail, and the influence of duty-cycle, period, peak power, and filter capacitance of the pulsed load on system dynamic indicators is studied and validated experimentally.

  14. Temporal coherence characterization of supercontinuum pulse trains using Michelson's interferometer.

    Science.gov (United States)

    Dutta, Rahul; Turunen, Jari; Genty, Goëry; Friberg, Ari T

    2016-04-20

    Temporal coherence properties of supercontinuum pulse trains generated in nonlinear fibers are analyzed within the framework of the second-order coherence theory of nonstationary light. Time-resolved Michelson's interference patterns are simulated, from which the full two-time mutual coherence function can (at least in principle) be determined experimentally. Standard time-integrated Michelson's interferograms are also simulated and shown to provide a rough estimate for the coherence time of the quasi-stationary contribution. A simple but illustrative analytical model representing supercontinuum pulse trains is presented, and numerically simulated realizations of such pulse trains are considered.

  15. The Electron Trajectory in a Relativistic Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    He Feng; Yu Wei; Lu Peixiang; Xu Han; Shen Baifei; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron,the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude,spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.

  16. Microscopic Faraday rotation measurement system using pulsed magnetic fields.

    Science.gov (United States)

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.

  17. Petawatt pulsed-power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  18. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  19. Computerization of a PARC174A polarographic analyzer

    Science.gov (United States)

    Liao, Shu-Ling; Olson, Carter L.

    1993-07-01

    A PARC174A polarographic analyzer has been transformed into a comprehensive microcomputer controlled electroanalytical system by interfacing it with an IBM PC equipped with a Tecmar LabMaster data acquisition subsystem. Techniques implemented include square wave voltammetry, chronoamperometry, cyclic voltammetry, differential pulse, normal pulse, and sampled dc polarography, and stripping voltammetry which can be used with either linear sweep, differential pulse, or square-wave techniques. The PARC174A functions only as a potentiostat and current to voltage converter. All the potential waveforms are generated by the D/A converter of the LabMaster and the current data are sampled by the A/D converter. The software developed should be easily adaptable to most potentiostats with minor modification. Because no extra circuitry is desired to complicate the system, a small-step staircase waveform is used to approximate the linear dc ramp in cyclic voltammetry, differential pulse, and sampled dc techniques. The discrepancy in results obtained using linear dc ramp and small-step staircase waveforms was carefully examined and proven to be negligible. All the techniques implemented have been shown to give theoretically predicted results. The results are also found essentially the same as those obtained using a conventional PARC174A. This computer controlled system makes available the use of square wave voltammetry, which was otherwise not available on the original machine. Experimental data showed that 4.76×10-8 M Cd2+ could be quantitatively analyzed by square wave voltammetry when a dropping mercury electrode was used.

  20. Pulse Distributing Manifold; Pulse Distributing Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Schutting, Eberhard [Technische Univ. Graz (Austria); Sams, Theodor [AVL List GmbH, Graz (Austria); Glensvig, Michael [Forschungsgesellschaft mbH, Graz (AT). Kompetenzzentrum ' ' Das virtuelle Fahrzeug' ' (VIF)

    2011-07-01

    The Pulse Distributing Manifold is a new charge exchange method for turbocharged diesel engines with exhaust gas recirculation (EGR). The method is characterized in that the EGR mass flow is not diverted from the exhaust gas mass flow continuously, but over time broken into sub-streams. The temporal interruption is achieved by two phase-shifted outlet valves which are connected via separate manifolds only with the turbocharger or only with the EGR path. The time points of valve opening are chosen such that the turbocharger and the aftertreatment process of exhaust gas is perfused by high-energy exhaust gas of the blowdown phase while cooler and less energy-rich exhaust gas of the exhaust period is used for the exhaust gas recirculation. This increases the enthalpy for the turbocharger and the temperature for the exhaust gas treatment, while the cooling efficiency at the EGR cooler is reduced. The elimination of the continuous EGR valve has a positive effect on pumping losses. The principle functioning and the potential of this system could be demonstrated by means of a concept study using one-dimensional simulations. Without disadvantages in fuel consumption for the considered commercial vehicle engine, a reduction the EGR cooler performance by 15 % and an increase in exhaust temperature of 35 K could be achieved. The presented charge exchange method was developed, evaluated and patented within the scope of the research program 'K2-mobility' of the project partners AVL (Mainz, Federal Republic of Germany) and University of Technology Graz (Austria). The research project 'K2-Mobility' is supported by the competence center 'The virtual vehicle' Forschungsgesellschaft mbH (Graz, Austria).

  1. Urban Pulse: Capturing the Rhythm of Cities.

    Science.gov (United States)

    Miranda, Fabio; Doraiswamy, Harish; Lage, Marcos; Zhao, Kai; Goncalves, Bruno; Wilson, Luc; Hsieh, Mondrian; Silva, Claudio T

    2017-01-01

    Cities are inherently dynamic. Interesting patterns of behavior typically manifest at several key areas of a city over multiple temporal resolutions. Studying these patterns can greatly help a variety of experts ranging from city planners and architects to human behavioral experts. Recent technological innovations have enabled the collection of enormous amounts of data that can help in these studies. However, techniques using these data sets typically focus on understanding the data in the context of the city, thus failing to capture the dynamic aspects of the city. The goal of this work is to instead understand the city in the context of multiple urban data sets. To do so, we define the concept of an "urban pulse" which captures the spatio-temporal activity in a city across multiple temporal resolutions. The prominent pulses in a city are obtained using the topology of the data sets, and are characterized as a set of beats. The beats are then used to analyze and compare different pulses. We also design a visual exploration framework that allows users to explore the pulses within and across multiple cities under different conditions. Finally, we present three case studies carried out by experts from two different domains that demonstrate the utility of our framework.

  2. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  3. Coaxial charged particle energy analyzer

    Science.gov (United States)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  4. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  5. Advantages of solitonic shape pulses for full-optical wireless communication links

    Institute of Scientific and Technical Information of China (English)

    José María Garrido Balsells; Antonio Jurado-Navas; Miguel Castillo-Vázquez; Ana Belén Moreno-Garrido; Antonio Puerta-Notario

    2012-01-01

    We propose the use of a power pulse shape of the widely known optical soliton,corresponding to the hyperbolic secant square function,for both conventional atmospheric optical communication systems and,especially,for new full-optical wireless communications.We analyze the performance of the proposed pulse in terms of peak-to-average optical power ratio (PAOPR) and bit error rate (BER).During the analysis,we compare the proposed pulse shape against conventional rectangular and Gaussian pulse shapes with reduced duty cycle.Results show the noticeable superiority of the proposed pulse for atmospheric optical links.

  6. Experimental research of pulsed chirp effect on the small-scale self-focusing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The chirped optical pulses undergoing self-focusing and splitting into multiple filamentation passing through a Kerr medium-carbon disulfide (CS2) are studied experimentally and numerically. At the particular spatial position, modulation growth takes place from the experimental result. The process of modulation growth with different pulsed chirp is analyzed. It is found that with the pulsed chirp in-creasing (equal to the pulse width increasing), modulation growth of chirped opti-cal pulses is delayed and the average input power also increases. The simulation results are in agreement with the experimental results.

  7. Inter-carrier Interference Mitigation in OFDM System Using a New Pulse Shaping Approach

    Directory of Open Access Journals (Sweden)

    Nor Adibah Ibrahim

    2014-12-01

    Full Text Available In this paper, we suggest a new pulse shaping method namely scale alpha for orthogonal frequency-division multiplexing (OFDM system. The proposed pulse shape is designed and simulated using Matlab software. Results and discussions are made to analyze the performance of the new pulse shape, particularly regarding two parameters that are inter-carrier interference (ICI power reduction, and eye diagrams. It is shown that the new pulse is better in ICI power reduction performance than Franks, raised cosine, and double-jump pulses.

  8. Polarization extinction ratio and polarization dependent intensity noise in long-pulse supercontinuum generation (Conference Presentation)

    DEFF Research Database (Denmark)

    Chin, Catherine; Engelsholm, Rasmus Dybbro; Moselund, Peter Morten

    2017-01-01

    the experimental conditions. Subsequently, a single-shot pulse-to-pulse polarization dependent relative intensity noise (PD-RIN) was measured and the noise characteristics were analyzed using long-tailed and rogue wave statistics. To do this, we used a range of 10 nm narrow bandpass filters (BPF) between 550 nm...... to 2200 nm, and fast photo detectors, to record 800 consecutive pulses. Peaks from these pulses are first extracted, then distribution of their pulse height histogram (PHH) is constructed. Analysis using higher-order moments about the mean (variance, skewness and kurtosis) showed that: (1) around the pump...

  9. Propagation of time-truncated Airy-type pulses in media with quadratic and cubic dispersion

    CERN Document Server

    Hernández, José Angel Borda; Shaarawi, Amr; Besieris, Ioannis M

    2015-01-01

    In this paper, we describe analytically the propagation of Airy-type pulses truncated by a finite-time aperture when second and third order dispersion effects are considered. The mathematical method presented here, based on the superposition of exponentially truncated Airy pulses, is very effective, allowing us to avoid the use of time-consuming numerical simulations. We analyze the behavior of the time truncated Ideal-Airy pulse and also the interesting case of a time truncated Airy pulse with a "defect" in its initial profile, which reveals the self-healing property of this kind of pulse solution.

  10. Charge Analyzer Responsive Local Oscillations

    Science.gov (United States)

    Krause, Linda Habash; Thornton, Gary

    2015-01-01

    The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local

  11. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  12. Analyzing Agricultural Agglomeration in China

    Directory of Open Access Journals (Sweden)

    Erling Li

    2017-02-01

    Full Text Available There has been little scholarly research on Chinese agriculture’s geographic pattern of agglomeration and its evolutionary mechanisms, which are essential to sustainable development in China. By calculating the barycenter coordinates, the Gini coefficient, spatial autocorrelation and specialization indices for 11 crops during 1981–2012, we analyze the evolutionary pattern and mechanisms of agricultural agglomeration. We argue that the degree of spatial concentration of Chinese planting has been gradually increasing and that regional specialization and diversification have progressively been strengthened. Furthermore, Chinese crop production is moving from the eastern provinces to the central and western provinces. This is in contrast to Chinese manufacturing growth which has continued to be concentrated in the coastal and southeastern regions. In Northeast China, the Sanjiang and Songnen plains have become agricultural clustering regions, and the earlier domination of aquaculture and rice production in Southeast China has gradually decreased. In summary, this paper provides a political economy framework for understanding the regionalization of Chinese agriculture, focusing on the interaction among the objectives, decisionmaking behavior, path dependencies and spatial effects.

  13. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  14. Analyzing and modeling heterogeneous behavior

    Science.gov (United States)

    Lin, Zhiting; Wu, Xiaoqing; He, Dongyue; Zhu, Qiang; Ni, Jixiang

    2016-05-01

    Recently, it was pointed out that the non-Poisson statistics with heavy tail existed in many scenarios of human behaviors. But most of these studies claimed that power-law characterized diverse aspects of human mobility patterns. In this paper, we suggest that human behavior may not be driven by identical mechanisms and can be modeled as a Semi-Markov Modulated Process. To verify our suggestion and model, we analyzed a total of 1,619,934 records of library visitations (including undergraduate and graduate students). It is found that the distribution of visitation intervals is well fitted with three sections of lines instead of the traditional power law distribution in log-log scale. The results confirm that some human behaviors cannot be simply expressed as power law or any other simple functions. At the same time, we divided the data into groups and extracted period bursty events. Through careful analysis in different groups, we drew a conclusion that aggregate behavior might be composed of heterogeneous behaviors, and even the behaviors of the same type tended to be different in different period. The aggregate behavior is supposed to be formed by "heterogeneous groups". We performed a series of experiments. Simulation results showed that we just needed to set up two states Semi-Markov Modulated Process to construct proper representation of heterogeneous behavior.

  15. Pulse regime in formation of fractal fibers

    Science.gov (United States)

    Smirnov, B. M.

    2016-11-01

    The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10-3-10-4 for transient metals under consideration. A typical energy flux ( 106 W/cm2), a typical surface temperature ( 3000 K), and a typical pulse duration ( 1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.

  16. Green Light Pulse Oximeter

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  17. Pulsed differential pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.

    1985-06-01

    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  18. Pulse Field Gel Electrophoresis.

    Science.gov (United States)

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  19. A Pulsed Sphere Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Dermott E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-30

    Here I attempt to explain what physically happens when we pulse an object with neutrons, specifically what we expect the time dependent behavior of the neutron population to look like. Emphasis is on the time dependent emission of both prompt and delayed neutrons. I also describe how the TART Monte Carlo transport code models this situation; see the appendix for a complete description of the model used by TART. I will also show that, as we expect, MCNP and MERCURY, produce similar results using the same delayed neutron model (again, see the appendix).

  20. Objects in Films: analyzing signs

    Directory of Open Access Journals (Sweden)

    GAMBARATO, Renira Rampazzo

    2009-12-01

    Full Text Available The focus of this essay is the analysis of daily objects as signs in films. Objects from everyday life acquire several functions in films: they can be solely used as scene objects or to support a particular film style. Other objects are specially chosen to translate a character’s interior state of mind or the filmmaker’s aesthetical or ethical commitment to narrative concepts. In order to understand such functions and commitments, we developed a methodology for film analysis which focuses on the objects. Object interpretation, as the starting point of film analysis, is not a new approach. For instance, French film critic André Bazin proposed that use of object interpretation in the 1950s. Similarly, German film theorist Siegfried Kracauer stated it in the 1960s. However, there is currently no existing analytical model to use when engaging in object interpretation in film. This methodology searches for the most representative objects in films which involves both quantitative and qualitative analysis; we consider the number of times each object appears in a film (quantitative analysis as well as the context of their appearance, i.e. the type of shot used and how that creates either a larger or smaller relevance and/or expressiveness (qualitative analysis. In addition to the criteria of relevance and expressiveness, we also analyze the functionality of an object by exploring details and specifying the role various objects play in films. This research was developed at Concordia University, Montreal, Canada and was supported by the Foreign Affairs and International Trade, Canada (DFAIT.

  1. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Kan WU; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  2. COMPUTER BASED HEART PULSES MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Ali N. Hamoodi

    2013-05-01

    Full Text Available In this work the measurement and displays of blood oxygen saturation and pulse rate are investigated practically using computer.The analysis involves the variation in blood oxygen saturation ratio and pulse rate. The results obtained are compared with kontron pulse oximeter 7840 device. The value obtained for the same person pulse rate is approximately equal to that obtained by the konton pulse oximeter 7840 device. The sensor used in this work is the finger clip.The advantages of using computer over kontron pulse oximeter 7840 device is that the data of the patient can be saved in the computer for many years and also it can be display at any time so that the doctor get file contains all data for each patient. 

  3. Angular momentum of sound pulses.

    Science.gov (United States)

    Lekner, John

    2006-07-05

    Three-dimensionally localized acoustic pulses in an isotropic fluid medium necessarily have transverse components of momentum density. Those with an azimuthal component of momentum density can carry angular momentum. The component of total pulse angular momentum along the direction of the total momentum is an invariant (constant in time and independent of choice of origin). The pulse energy, momentum and angular momentum are evaluated analytically for a family of localized solutions of the wave equation. In the limit where the pulses have many oscillations within their spatial extent ([Formula: see text], where k is the wavenumber and a determines the size of a pulse), the energy, momentum and angular momentum are consistent with a multiphonon representation of the pulse, each phonon having energy [Formula: see text], momentum [Formula: see text] and angular momentum [Formula: see text] (with integer m).

  4. Coal analysis using the pulsed neutron generator

    Institute of Scientific and Technical Information of China (English)

    JING Shi-Wei; CHI Yan-Tao; ZHAO Xin-Hui; LIU Lin-Mao; GU De-Shan; QIAO Shuang; SANG Hai-Feng; ZHANG Yong-Xiang; ZHANG Zhong-Hua; CAO Xi-Zheng; TIAN Yu-Bing

    2003-01-01

    A prototype of elemental analyzer for coal has been developed by using a PFTNA (pulse fast thermalneutron analysis) system. The PFTNA technology is based on the reactions such as (n, γ), (n, n'γ), (n, Pγ), etc. byexamining the characteristic gamma rays emitted. In our prototype a pulsed neutron generator provides 14 MeV pulseneutrons, which contribute to the separation of spectrum Ⅱ (the sum of capture and activation spectrum) fiom spec-trum Ⅰ (the sum of inelastic, capture and activation spectrum), and thus to the measurement of C and O contents incoal. Data management is completed by computer program using the least-square regression method. The experimentin Changshan Power Plant for 3 months showed that the precision of calorific value, whole water, volatile content andash content is 0.5 k J/kg, 1.0 wt%, 2.0 wt% and 1.5 wt%, respectively.

  5. Pulsed thrust measurements using electromagnetic calibration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tang Haibin; Shi Chenbo; Zhang Xin' ai; Zhang Zun; Cheng Jiao [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.

  6. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  7. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  8. Assembly delay line pulse generators

    CERN Document Server

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  9. Multi pulse control of entanglement

    CERN Document Server

    Uchiyama, C; Uchiyama, Chikako; Aihara, Masaki

    2004-01-01

    We study the effectiveness of multi pulse control to suppress the degradation of entanglement. Based on a linearly interacting spin-boson model, we show that the multi pulse application recovers the decay of concurrence when an entangled pair of spins interacts with a reservoir that has the non-Markovian nature. We present the effectiveness of multi pulse control for both the common bath case and the individual bath case.

  10. Analysis of Pulse Modulated Control Systems (Ⅲ) Stability of Systems with Pulse Frequency Modulation and Systems with Combined Pulse Frequency and Pulse Width Modulation

    OpenAIRE

    OI,Shigemitsu

    1993-01-01

    Sufficient conditions for finite pulse stability of interconnected systems with combined pulse frequency and pulse width modulation are developed in this paper using a direct method. The stability criteria established provide upper bounds on the number of pulses emitted by each modulator. The results are also applicable to those systems which contain a finite number of pulse frequency modulators and a finite number of combined pulse frequency and pulse width modulators

  11. Double pulse laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changbum [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)], E-mail: chbkim@postech.ac.kr; Kim, Jin-Cheol B. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Kukhee [National Fusion Reserch Center, Daejeon 305-333 (Korea, Republic of); Ko, In Soo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Suk, Hyyong [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2007-10-22

    Two-dimensional simulation studies are performed for modified laser wakefield acceleration. After one laser pulse, another identical laser pulse is sent to the plasma to amplify the wake wave resonantly. The simulation results show that the number of injected electrons is bigger than that of the single pulse case and the beam energy is higher as well. In addition, increase of the transverse amplitude is noticed in the wake wave after the second laser pulse. This shows that the transverse motion of the wake wave enhances the wave breaking for strong injection and acceleration of electron beams.

  12. Pulse oximetry in severe anaemia

    DEFF Research Database (Denmark)

    Ramsing, T; Rosenberg, J

    1992-01-01

    Measurement of arterial oxygen saturation by pulse oximetry was performed in two patients with acute and chronic anaemia (haemoglobin concentrations: 2.9 mmol/l (4.7 g/dl) and 1.9 mmol/l (3.0 g/dl), respectively) using a Radiometer OXI and a Nellcor N-200 pulse oximeter. The two oximeters read...... alternating different values in the two patients. In conclusion, pulse oximeters are able to give a value for oxygen saturation even at extreme anaemia, and when a high value is given, it possibly reflects arterial oxygen saturation. The value of pulse oximetry in severe anaemia is discussed....

  13. Clutter discrimination algorithm simulation in pulse laser radar imaging

    Science.gov (United States)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  14. Theoretical Studies of the Output Pulse with Variation of the Pumping Pulse for RF Excited CO2 Pulsed Waveguide Laser

    Institute of Scientific and Technical Information of China (English)

    A Rauf; ZHOU Wei; XIN Jian-guo

    2006-01-01

    The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.

  15. Technology of Pulse Power Capacitors

    Science.gov (United States)

    Qin, Shanshan

    Polymer film of pulse discharge capacitors operated at high repetition rate dissipates substantial power. The thermal conductivity of biaxially oriented polypropylene (BOPP) is measured as a function of metallization resistivity. The thermal conductivity in the plane of the film is about twice that of bulk polypropylene. Thermal design is optimized based on the measurement for large capacitors with multiple windings in a container. High discharge speed results in high current density at the wire arc sprayed end connections which tend to deteriorate gradually, resulting in capacitor failure during operation. To assure the end connection quality before assembly, a test procedure and apparatus for end connection integrity was developed based on monitoring the partial discharge pattern from end connection during discharge. The mechanism of clearing is analyzed which shows arc extinguishes due to the increased arc length and reduced energy so that capacitor can function normally after breakdown. In the case of a clearing discharge, the power dissipation appears to increase with time, although this is not a feature of previous models. Submicrosecond discharge requires minimizing inductance which can be achieved by optimizing the winding structure so that submicrosecond discharge becomes practical. An analysis of the inductance of multisection, very high voltage capacitors is carried out, which identifies low inductance structures for this type of capacitor.

  16. All-optical control of unipolar pulse generation in spatially extended arrays of optical oscillators with nonlinear field coupling

    CERN Document Server

    Pakhomov, A V; Babushkin, I V; Arkhipov, M V; Tolmachev, Yu A; Rosanov, N N

    2016-01-01

    We study the optical response of a resonant medium possessing the nonlinear coupling to external field under excitation by few-cycle pump pulses. A theoretical approach is developed, allowing to analyze unipolar half-cycle pulse generation in such a geometry. Our approach is applicable for the arbitrary coupling functions as well as arbitrarily curved pump pulse wavefronts and defines a general framework to produce unipolar pulses of desired form.

  17. Matched Pulse Propagation in a Three-Level System

    CERN Document Server

    Park, Q H

    1997-01-01

    The Bãcklund transformation for the three-level Maxwell-Bloch equation is presented in the matrix potential formalism. By applying the Bãcklund transformation to a constant electric field background, we obtain a general solution for matched pulses (a pair of solitary waves) which can emit or absorb a light velocity solitary pulse but otherwise propagate with their shapes invariant. In the special case, this solution describes a steady state pulse without emission or absorption, and becomes the matched pulse solution recently obtained by Hioe and Grobe. A nonlinear superposition rule is derived from the solitons as well as nonabelian breathers. Various new features of these solutions are addressed. In particular, we analyze in detail the scattering of "invertons", a specific pair of different wavelength solitons one of which moving with the velocity of light. Unlike the usual case of soliton scattering, the broader inverton changes its sign through the scattering. Surprisingly, the light velocity inverton re...

  18. The third type DC flow in pulse tube cryocooler

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yuan; GU Chao; CAI HuiKun

    2009-01-01

    New phenomena discovered in the experimental research of the ultra-high frequency pulse tube cryo cooler were presented.The cause of the new phenomena was analyzed and the third type DC flow was discovered in the pulse tube cryocooler.The third type DC flow not only deteriorated cooling capacity but also led to temperature instability of the pulse tube cryocooler.From the fluid network theory and the simple regenerator model,the root of the third type DC flow was concisely investigated in theory.The asymmetric resistance of oscillating flow in pulse tube cryocooler was the key mechanism of the third type DC flow.Some suppression methods were briefly discussed.

  19. Transform of Lightning Electromagnetic Pulses Based on Laplace Wavelet

    Directory of Open Access Journals (Sweden)

    Qin Li

    2013-09-01

    Full Text Available In this study, the fine structures of lightning electromagnetic pulse associated with 19 preliminary breakdown pulses, 37 stepped leaders, 8 dart leaders, 73 first and 52 subsequent return strokes were analyzed by using Laplace wavelet. The main characteristics of field waveforms such as, the correlation coefficient, the time of arrival and the dominant frequency of the initial peak field, the energy and the frequency of the power spectrum peak are presented. The instantaneous initial peak field pulse can be precisely located by the value of the correlation coefficient. The dominant frequencies of the initial peak field of PB pulses and leaders range from 100 kHz to 1 MHz, and that of the first and subsequent return strokes below 100 and 50 kHz, respectively. The statistical results show that the Laplace wavelet is an effective tool and can be used to determine time and frequency of the lightning events with greater accuracy.  

  20. Pulsed laser ablation of solids basics, theory and applications

    CERN Document Server

    Stafe, Mihai; Puscas, Niculae N

    2014-01-01

    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  1. The third type DC flow in pulse tube cryocooler

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    New phenomena discovered in the experimental research of the ultra-high frequency pulse tube cryocooler were presented.The cause of the new phenomena was analyzed and the third type DC flow was discovered in the pulse tube cryocooler.The third type DC flow not only deteriorated cooling capacity but also led to temperature instability of the pulse tube cryocooler.From the fluid network theory and the simple regenerator model,the root of the third type DC flow was concisely investigated in theory. The asymmetric resistance of oscillating flow in pulse tube cryocooler was the key mechanism of the third type DC flow.Some suppression methods were briefly discussed.

  2. Pulse variation of the optical emission of Crab pulsar

    CERN Document Server

    Karpov, S; Biryukov, A; Plokhotnichenko, V; Debur, V; Shearer, A

    2007-01-01

    The stability of the optical pulse of the Crab pulsar is analyzed based on the 1 $\\mu$s resolution observations with the Russian 6-meter and William Hershel telescopes equipped with different photon-counting detectors. The search for the variations of the pulse shape along with its arrival time stability is performed. Upper limits on the possible short time scale free precession of the pulsar are placed. The evidence of pulse time of arrival (TOA) variations on 1.5-2 hours time scale is presented, along with evidence of small light curve (shape and separation of main and secondary peaks) changes between data sets, on time scale of years. Also, the fine structure of the main pulse is studied.

  3. Transient of power pulse and its sequence in power electronics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Various failures and destructions occur in the applications of the power electronic converter. The real practice shows that these failures are connected with the con-centration of the transient power pulse. In allusion to the physical characteristics of power electronic converters,this paper proposed that the power pulse and its se-quence are the basis for power electronics in the perspective of electromagnetic energy. The authors analyzed the transient processes in the power semiconductors,electric conduction loops and controller system and illustrated the power pulse phenomena in high voltage and high power inverters. This investigation on the power pulse sequence is very meaningful for the failure analysis and device pro-tection and has become an important topic in power electronics.

  4. Transient of power pulse and its sequence in power electronics

    Institute of Scientific and Technical Information of China (English)

    ZHAO ZhengMing; BAI Hua; YUAN LiQiang

    2007-01-01

    Various failures and destructions occur in the applications of the power electronic converter, The real practice shows that these failures are connected with the concentration of the transient power pulse. In allusion to the physical characteristics of power electronic converters, this paper proposed that the power pulse and its sequence are the basis for power electronics in the perspective of electromagnetic energy. The authors analyzed the transient processes in the power semiconductors,electric conduction loops and controller system and illustrated the power pulse phenomena in high voltage and high power inverters. This investigation on the power pulse sequence is very meaningful for the failure analysis and device protection and has become an important topic in power electronics.

  5. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  6. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  7. Nanofabrication with Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    Kabashin AV

    2010-01-01

    Full Text Available Abstract An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3, is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  8. Nanosecond Pulse Technique

    Science.gov (United States)

    1989-03-17

    tunnel diodes, to ferrites, etc.) and to the need for the review of the methods of formation and converting the pulses, to a considerable degree...4n3l) 0 1 + 4n 21)2 + (4n2l) (.84) _ 4 nf tl 5 (I - 4n12/) 2 - (4nil)’ (1.85) " ( - 2o) l - 4’n2% 2 I3 (I + 4n =2/)2 + ( 41a2 )’ -arg + 4ni,21. + j4na,tJ...recirculator is borrowed from the article of Yu. I. Neymark, Yu. K. Maklakov and L. P. Yelkins [105]. ENDFOOTNOTE. DOC = 88076720 PAGE d a) t l I t S6) t�t

  9. Nanofabrication with pulsed lasers.

    Science.gov (United States)

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  10. Pulsed plasma electron sourcesa)

    Science.gov (United States)

    Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.

    2009-05-01

    There is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E ≤105 V/cm and duration ≤10-5 s. In this review, several types of plasma electron sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) plasma sources. The operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources the plasma parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the plasma and generated electron beam were characterized.

  11. Micro pulse lidar

    Science.gov (United States)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  12. Capacitor discharge pulse analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  13. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Shin, Yung C. [Center for Laser-Based Manufacturing, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-09-15

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse. The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.

  14. Template Reproduction of GRB Pulse Light Curves

    Science.gov (United States)

    Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.

    2014-01-01

    A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.

  15. Generation of parallel transmission sub-pulses of spatial distribution based on polarizing splitting prism

    Science.gov (United States)

    Yang, Haifeng; Yang, Xiaoping; Sun, Xuna; Liu, Jun; Yang, Yong

    2016-09-01

    Parallel processing is the forefront of femtosecond laser micro-nano processing. The key to parallel processing is obtaining multichannel parallel femtosecond laser beams. A method of spatial parallel pulse splitting based on birefringence properties of polarizing splitting prism is proposed for obtaining multichannel parallel ultra-short pulse trains. The generated sub-pulses have the characteristics of equal energy and high similarity. More than that, the compact structure of the polarizing splitting prism makes it easier to be implemented. The accurate relationship between the space interval of pulse sequences and the structural angle, dimension and the distance between the two prisms is mathematically derived. The realizable array form of sub-pulse sequences is theoretically analyzed. The feasibility of the proposed method of femtosecond laser parallel processing is analyzed by software simulation and numerical calculation. The results will provide a new research direction for application of ultrashort pulse in parallel processing.

  16. Subsiding OOB Emission and ICI Power Using iPOWER Pulse in OFDM Systems

    Directory of Open Access Journals (Sweden)

    KAMAL, S.

    2016-02-01

    Full Text Available A novel family of Nyquist-I pulses called iPOWER is proposed with a new design parameter that provides an extra degree of freedom for a certain roll-off factor. The proposed pulse is examined and compared with other existing pulses in terms of out-of-band (OOB power, intercarrier interference (ICI power, signal-to-interference ratio (SIR power, and bit-error-rate (BER in orthogonal frequency division multiplexing (OFDM systems. The BER was analyzed in the presence of carrier frequency offset (CFO, which introduces ICI in OFDM-based systems. Eye diagram tool is also used to visually analyze the performance of the proposed pulse. Simulation results show that the iPOWER pulse performs better in terms of OOB power, ICI power, SIR power, and improving BER in comparison to other existing pulses in OFDM-based systems.

  17. Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon.

    Science.gov (United States)

    Tal, Idan; Large, Edward W; Rabinovitch, Eshed; Wei, Yi; Schroeder, Charles E; Poeppel, David; Zion Golumbic, Elana

    2017-06-28

    Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals' speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception.SIGNIFICANCE STATEMENT Humans perceive music as having a regular pulse marking equally spaced points in time, within which musical notes are temporally organized. Neural resonance theory (NRT) provides a theoretical model explaining how an internal periodic representation of a pulse may emerge through nonlinear coupling between oscillating neural systems. After testing key falsifiable predictions of NRT using MEG recordings, we

  18. Research agenda shrimp pulse fishery

    NARCIS (Netherlands)

    Marlen, van B.; Rasenberg, M.M.M.; Verschueren, B.; Polet, H.

    2015-01-01

    In the recent decennia, many developments have taken place to improve the selectivity of the shrimp fishing gears. Recently, the development of a pulse gear for catching shrimps has taken up again as an opportunity to decrease discards, inspired by developments in the flatfish pulse fishery.

  19. Pulse oximetry for perioperative monitoring

    DEFF Research Database (Denmark)

    Pedersen, Tom; Møller, Ann Merete; Hovhannisyan, Karen

    2009-01-01

    Pulse oximetry is extensively used in the perioperative period and might improve patient outcomes by enabling an early diagnosis and, consequently, correction of perioperative events that might cause postoperative complications or even death. Only a few randomized clinical trials of pulse oximetry...

  20. A Single-Pulse Integrator

    DEFF Research Database (Denmark)

    Miller, Arne

    1974-01-01

    A single-pulse integrator is described. It gives a relative measure of the integral of the output signal from a coil monitor on the Risø 10 MeV linear accelerator, and displays the value on a digital voltmeter. The reproduccibility is found to be better than ±1% for an accelerated pulse charge...

  1. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  2. Dexamethasone pulse therapy in pemphigus

    NARCIS (Netherlands)

    Toth, GG; van de Meer, JB; Jonkman, MF

    2002-01-01

    Pulse therapy with high-dose glucocorticoids was introduced 20 years ago as a treatment modality for autoimmune disease and transplant rejection. The most popular dermatological indication for pulse therapy is severe pemphigus. We reviewed the sequelae of 14 patients with pemphigus who were treated

  3. Pulse oximetry for perioperative monitoring

    DEFF Research Database (Denmark)

    Pedersen, Tom; Nicholson, Amanda; Hovhannisyan, Karen

    2014-01-01

    . Results indicated that hypoxaemia was reduced in the pulse oximetry group, both in the operating theatre and in the recovery room. During observation in the recovery room, the incidence of hypoxaemia in the pulse oximetry group was 1.5 to three times less. Postoperative cognitive function was independent...... postoperative complications or even death. Only a few randomized clinical trials of pulse oximetry during anaesthesia and in the recovery room have been performed that describe perioperative hypoxaemic events, postoperative cardiopulmonary complications and cognitive dysfunction. OBJECTIVES: To study the use...... checked the reference lists of trials and review articles. The original search was performed in January 2005, and a previous update was performed in May 2009. SELECTION CRITERIA: We included all controlled trials that randomly assigned participants to pulse oximetry or no pulse oximetry during...

  4. Neurostimulation using subnanosecond electric pulses

    Science.gov (United States)

    Xiao, Shu; Pakhomov, Andrei; Guo, Fei; Polisetty, Swetha; Schoenbach, Karl H.

    2013-02-01

    We have for the first time recorded action potentials in rat hippocampus neurons when they were stimulated by subnanosecond electric pulses. The preliminary results show that applying a series of pulses allowed the accumulation of depolarization before activating the voltage gated channels. The depolarization only occurred when the electric pulses were applied. It is unclear whether the depolarization is caused by the charge accumulation across the membrane or the cation influx due to the membrane permeabilization. We have also conducted an electromagnetic simulation of delivering subnanosecond pulses to tissues using an impulse radiating antenna. The results show that the pulses can be confined in the deep region in the brain but the amplitude is reduced significantly due to the attenuation of the tissues. A partially lossy dielectric lens may be used to reverse the decreasing trend of the electric field.

  5. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann

    2014-01-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  6. Performance of a solenoid-driven pulsed molecular-beam source

    OpenAIRE

    Abad, Luis; Bermejo, Dionisio; Herrero, Víctor J.; Santos, J.; Tanarro, Isabel

    1995-01-01

    The characteristics of a commonly used pulsed valve for the production of free jets and molecular beams are analyzed in detail. Special attention is paid to the formation of gas pulses providing a quasisteady flow during a certain time interval within the pulse duration, and to the estimation of a scaling parameter (effective diameter) for the description of the flow field. The adequacy of this effective diameter is checked by performing time-of-flight measurements on molecular beams of Ne, N...

  7. Effects of spectral linewidth of ultrashort pulses on the spa-tiotemporal distribution of diffraction fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The spatiotemporal characteristics of electromagnetic pulses with ultrabroad spectral bandwidth in the far field are analyzed by using classical scalar diffraction theory. The effects of the ratio of the frequency width to the central frequency on the diffraction spatial distribution are discussed. It is concluded that the diffraction spatial dis-tribution of the pulsed radiation gets narrower than a mono-chromatic wave when the frequency width of the pulse is comparable to or larger than its central frequency.

  8. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  9. Urban Pulse: Capturing the Rhythm of Cities

    CERN Document Server

    Miranda, Fabio; Lage, Marcos; Zhao, Kai; Gonçalves, Bruno; Wilson, Luc; Hsieh, Mondrian; Silva, Cláudio T

    2016-01-01

    Cities are inherently dynamic. Interesting patterns of behavior typically manifest at several key areas of a city over multiple temporal resolutions. Studying these patterns can greatly help a variety of experts ranging from city planners and architects to human behavioral experts. Recent technological innovations have enabled the collection of enormous amounts of data that can help in these studies. However, techniques using these data sets typically focus on understanding the data in the context of the city, thus failing to capture the dynamic aspects of the city. The goal of this work is to instead understand the city in the context of multiple urban data sets. To do so, we define the concept of an "urban pulse" which captures the spatio-temporal activity in a city across multiple temporal resolutions. The prominent pulses in a city are obtained using the topology of the data sets, and are characterized as a set of beats. The beats are then used to analyze and compare different pulses. We also design a vis...

  10. Wetland restoration, flood pulsing, and disturbance dynamics

    Science.gov (United States)

    Middleton, Beth A.

    1999-01-01

    While it is generally accepted that flood pulsing and disturbance dynamics are critical to wetland viability, there is as yet no consensus among those responsible for wetland restoration about how best to plan for those phenomena or even whether it is really necessary to do so at all. In this groundbreaking book, Dr. Beth Middleton draws upon the latest research from around the world to build a strong case for making flood pulsing and disturbance dynamics integral to the wetland restoration planning process.While the initial chapters of the book are devoted to laying the conceptual foundations, most of the coverage is concerned with demonstrating the practical implications for wetland restoration and management of the latest ecological theory and research. It includes a fascinating case history section in which Dr. Middleton explores the restoration models used in five major North American, European, Australian, African, and Asian wetland projects, and analyzes their relative success from the perspective of flood pulsing and disturbance dynamics planning.Wetland Restoration also features a wealth of practical information useful to all those involved in wetland restoration and management, including: * A compendium of water level tolerances, seed germination, seedling recruitment, adult survival rates, and other key traits of wetland plant species * A bibliography of 1,200 articles and monographs covering all aspects of wetland restoration * A comprehensive directory of wetland restoration ftp sites worldwide * An extensive glossary of essential terms

  11. Development of pulsed neutron uranium logging instrument

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-guang, E-mail: wangxg@upc.edu.cn [School of Geosciences, China University of Petroleum, Qingdao 266580 (China); Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Liu, Dan [China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Feng [School of Geosciences, China University of Petroleum, Qingdao 266580 (China)

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  12. Ablation of carbide materials with femtosecond pulses

    Science.gov (United States)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Sentis, Marc; Marine, Wladimir

    2003-01-01

    The response of cemented tungsten carbide and of titanium carbonitride was investigated with respect to damage and ablation properties, under interaction with ultrashort laser pulses. These carbide materials present high microhardness and are of significant interest for tribological applications. The experiments were carried out in air with a commercial Ti:sapphire laser at energy densities on the target up to 6.5 J/cm 2. The irradiated target surfaces were analyzed with optical, SEM and AFM techniques and the damage and ablation threshold values were determined using the measured spot diameters and the calculated incident energy density distributions.

  13. HPRF pulse Doppler stepped frequency radar

    Institute of Scientific and Technical Information of China (English)

    LONG Teng; REN LiXiang

    2009-01-01

    Stepped frequency radar Is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and high resolution ranging within a single dwell in a high pulse repetition frequency (HPRF) mode. This paper analyzes in detail the design principle of the HPRF stepped frequency radar system, the solution to its ambiguity issue, as well as its signal processing method. Both theoretical analysis and simulation results demonstrate that the proposed radar scheme can work independently to solve the problem of motion compensation, and is therefore highly applicable to many new types of radar.

  14. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  15. Pulse source requirements for OTDM systems

    DEFF Research Database (Denmark)

    Clausen, Anders; Poulsen, Henrik Nørskov; Oxenløwe, Leif Katsuo

    2003-01-01

    A simulation model for investigating the impact of incoherent crosstalk due to pulse tail overlapping is proposed. Requirements to pulse width and pulse tail extinction ratio introducing a maximum of 1 dB penalty is extracted....

  16. Pulse mode operation of Love wave devices for biosensing applications.

    Science.gov (United States)

    Newton, M I; McHale, G; Martin, F; Gizeli, E; Melzak, K A

    2001-12-01

    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed.

  17. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H; Hou, Lianping; Kelly, Anthony E

    2017-02-01

    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures.

  18. Bomb pulse biology

    Energy Technology Data Exchange (ETDEWEB)

    Falso, Miranda J. Sarachine [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2013-01-15

    The past decade has seen an explosion in use of the {sup 14}C bomb pulse to do fundamental cell biology. Studies in the 1960s used decay counting to measure tissue turnover when the atmospheric {sup 14}C/C concentration was changing rapidly. Today bulk tissue measurements are of marginal interest since most of the carbon in the tissue resides in proteins, lipids and carbohydrates that turn over rapidly. Specific cell types with specialized functions are the focus of cell turnover investigations. Tissue samples need to be fresh or frozen. Fixed or preserved samples contain petroleum-derived carbon that has not been successfully removed. Cell or nuclear surface markers are used to sort specific cell types, typically by fluorescence-activated cell sorting (FACS). Specific biomolecules need to be isolated with high purity and accelerator mass spectrometry (AMS) measurements must accommodate samples that generally contain less than 40 {mu}g of carbon. Furthermore, all separations must not add carbon to the sample. Independent means such as UV absorbance must be used to confirm molecule purity. Approaches for separating specific proteins and DNA and combating contamination of undesired molecules are described.

  19. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  20. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  1. Causality effects on accelerating light pulses

    National Research Council Canada - National Science Library

    Kaminer, Ido; Lumer, Yaakov; Segev, Mordechai; Christodoulides, Demetrios N

    2011-01-01

    .... We explore the effects of causality, and find that, whereas decelerating pulses can asymptotically reach zero group velocity, pulses that accelerate towards infinite group velocity inevitably break...

  2. Assessment of Measurement Error when Using the Laser Spectrum Analyzers

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2015-01-01

    Full Text Available The article dwells on assessment of measurement errors when using the laser spectrum analyzers. It presents the analysis results to show that it is possible to carry out a spectral analysis of both amplitudes and phases of frequency components of signals and to analyze a changing phase of frequency components of radio signals using interferential methods of measurements. It is found that the interferometers with Mach-Zehnder arrangement are most widely used for measurement of signal phase. A possibility to increase resolution when using the combined method as compared to the other considered methods is shown since with its application spatial integration is performed over one coordinate while time integration is done over the other coordinate that is reached by the orthogonal arrangement of modulators relative each other. The article defines a drawback of this method. It is complicatedness and low-speed because of integrator that disables measurement of spectral components of a radio pulse if its width is less than a temporary aperture. There is a proposal to create an advanced option of the spectrum analyzer in which phase is determined through the signal processing. The article presents resolution when using such a spectrum analyzer. It also reviews the possible options for creating devices to measure the phase components of a spectrum depending on the methods applied to measure a phase. The analysis has shown that for phase measurement a time-pulse method is the most perspective. It is found that the known circuits of digital phase-meters using this method cannot be directly used in spectrum analyzers as they are designed for measurement of the phase only of one signal frequency. In this regard a number of circuits were developed to measure the amplitude and phase of frequency components of the radio signal. It is shown that the perspective option of creating a spectrum analyzer is device in which the phase is determined through the signal

  3. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  4. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Science.gov (United States)

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  5. Measurement of turbulence spectra using scanning pulsed wind lidars

    NARCIS (Netherlands)

    Sathe, A.; Mann, J.

    2012-01-01

    Turbulent velocity spectra, as measured by a scanning pulsed wind lidar (WindCube), are analyzed. The relationship between ordinary velocity spectra and lidar derived spectra is mathematically very complex, and deployment of the three-dimensional spectral velocity tensor is necessary. The resulting

  6. Analysis of confocal microscopy under ultrashort light-pulse illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M.; Rudolph, W. (Univ. of New Mexico, Albuquerque (United States))

    1993-02-01

    The resolution of confocal laser scanning microscopes is analyzed if they are used in measurements that are to combine high spatial and high temporal resoltuion. A generalized Fourier-optical treatment is developed in which the system characteristics contain all necessary information regarding the optical arrangement and the illuminating light pulses. Coherent and incoherent imaging are considered in detail. 10 refs., 8 figs.

  7. Pulse-to-pulse Diagnostics at High Reprate

    Science.gov (United States)

    Green, Bertram; Kovalev, Sergey; Golz, Torsten; Stojanovich, Nikola; Fisher, Alan; Kampfrath, Tobias; Gensch, Michael

    2016-03-01

    Femtosecond level diagnostic and control of sub-picosecond electron bunches is an important topic in modern accelerator research. At the same time new linear electron accelerators based on quasi-CW SRF technology will be the drivers of many future 4th Generation lightsources such as X-ray free electron lasers. A high duty cycle, high stability and online pulse to pulse diagnostic at these new accelerators are crucial ingredients to the success of these large scale facilities. A novel THz based online monitor concept is presented that has the potential to give access to pulse to pulse information on bunch form, arrival time and energy at high repetition rate and down to sub pC charges. We furthermore show experimentally that pulse to pulse arrival time measurements can be used to perform pump-probe experiments with a temporal resolution in the few-fs regime and an exceptional dynamic range. Our scheme has been tested at the superradiant test facility TELBE, but can be readily transferred to other SRF accelerator driven photon sources, such as X-FELs.

  8. Pulsed light and pulsed electric field for foods and eggs.

    Science.gov (United States)

    Dunn, J

    1996-09-01

    Two new technologies for use in the food industry are described. The first method discussed uses intense pulse of light. This pulsed light (PureBright) process uses short duration flashes of broad spectrum "white" light to kill all exposed microorganisms, including vegetative bacteria, microbial and fungal spores, viruses, and protozoan oocysts. Each pulse, or flash, of light lasts only a few hundred millionths of a second (i.e., a few hundred microseconds). The intensity of each flash of light is about 20,000 times the intensity of sunlight at the earth's surface. The flashes are typically applied at a rate of about one to tens of flashes per second. For most applications, a few flashes applied in a fraction of a second provide an effective treatment. High microbial kill can be achieved, for example, on the surfaces of packaging materials, on packaging and processing equipment, foods, and medical devices as well as on many other surfaces. In addition, some bulk materials such as water and air that allow penetration of the light can be sterilized. The results of tests to measure the effects of pulsed light on Salmonella enteritiditis on eggs are presented. The second method discussed uses multiple, short duration, high intensity electric field pulses to kill vegetative microorganisms in pumpable products. This pulsed electric field (or CoolPure) process can be applied at modest temperatures at which no appreciable thermal damage occurs and the original taste, color, texture, and functionality of products can be retained.

  9. Improved pulse laser ranging algorithm based on high speed sampling

    Science.gov (United States)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  10. Impact of replacement of conventional Recloser with PulseCloser

    Directory of Open Access Journals (Sweden)

    Olgert Metko

    2011-04-01

    Full Text Available Conventional recloser stresses the circuit with current fault every time they reclose into a fault. After clearing a fault, a conventional recloser simply recloses the interrupters to continuously test the presence of the fault. If the fault is still there, the interrupters are tripped again. Then, after a time delay, the interrupters are reclosed. During reclosing operation of Automatic Recloser, including the faster recloser one, powerful transient processes occurs and significant amount of energy is feeding the fault, resulting in system-damaging and voltage sags. Replacing conventional recloser with PulseCloser one minimizes these effects and creates the possibility to use multiple reclosing even when traditional autoreclosing can not be allowed.PulseCloser Technology drastically reduces overcurrent stress on the system. Once the PulseCloser interrupts a fault, it sends the impulses to intelligently tests for current fault before reclosing. The relative let-through energy of a pulseclosing operation is typically less than 2% of a conventional reclosing operation. Pulseclosing is superior to conventional reclosing. It greatly reduces stress on system components as well as voltage sags experienced by customers’ upstream fault.This paper analyzes transient processes during simulation of operation of traditional recloser and PulseCloser type. Simulations are performed using ATP software. The simulations show the remarkable difference in current versus time during fault testing in the transmission line equipped with conventional recloser and PulseCloser. The analysis justifies the replacement of Conventional Recloser with PulseCloser one.

  11. Treatment of Persistent Facial Postinflammatory Hyperpigmentation With Novel Pulse-in-Pulse Mode Intense Pulsed Light.

    Science.gov (United States)

    Park, Ji-Hye; Kim, Jung-In; Kim, Won-Serk

    2016-02-01

    Postinflammatory hyperpigmentation (PIH) is an acquired hypermelanosis induced by various causes including inflammatory dermatoses, injury, or cosmetic procedures, such as lasers or chemical peels, and it tends to affect dark-skinned people with greater frequency and severity. There are a variety of treatment options for PIH, including topical agents, chemical peels, laser, and light therapy. However, the results are not up to expectation. The purpose of this study was to examine the clinical efficacy and safety of novel pulse-in-pulse mode intense pulsed light (IPL) for the treatment of persistent facial PIH in Korean patients. Twenty-five Korean female patients (Fitzpatrick skin types III-V) with persistent facial PIH were enrolled in the study. The patients were treated with novel pulse-in-pulse mode IPL for 4 sessions at 1-week interval and 4 sessions at 2-week intervals. Treatment efficacy and patient satisfaction were evaluated using photographs and questionnaires. After 2 months of all treatments, 23 patients (92%) had more than 50% improvement and 22 patients (88%) were satisfied with the treatments. No adverse effects or aggravations were reported. The pulse-in-pulse mode IPL treatment is effective and safe for persistent facial PIH in dark-skinned patients.

  12. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  13. Intense pulsed neutron source

    Science.gov (United States)

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and 'in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  14. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  15. Rapidly pulsed helium droplet source

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  16. Low-noise pulse conditioner

    Science.gov (United States)

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  17. Pulse tube refrigerator; Parusukan reitoki

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Yoshikazu [University of Tsukuba, Tsukuba (Japan); Shiraishi, Masao [Hiroshima University, Hiroshima (Japan)

    1999-06-05

    In the cryogenic field, high temperature superconductivity and research and development of the peripheral technology are popular. Refrigerating machine development of the very low temperature is also one of the results. Research and development are mainly advanced as a refrigerating machine of the center for the aerospace plane installation. There is special and small very low temperature refrigerating machine called 'the pulse tube refrigerating machine' of which the practical application is also recently being attempted for the semiconductor cooling using high temperature superconductivity. At present, the basic research of elucidation of refrigeration phenomenon of pulse tube refrigerating machine and development of high-performance pulse tube refrigerating machine is carried out by experiment in the Ministry of International Trade and Industry Mechanical Engineering Lab., Agency of Industrial Sci. and Technology and numerical simulation in Chiyoda Corp. In this report, the pulse tube refrigerating machine is introduced, and the application in the chemical engineering field is considered. (NEDO)

  18. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    . In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....... condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention...

  19. The Nature of Quantum States Created by One Photon Absorption: Pulsed Coherent vs. Pulsed Incoherent Light

    CERN Document Server

    Han, Alex C; Brumer, Paul

    2012-01-01

    We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light, and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatio-temporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be qualitatively different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed in studies using ultrashort coherent pulses are not relevant to naturally occurring solar-induced processes such as photosynthesis and vision.

  20. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  1. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  2. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  3. Artistic Representation with Pulsed Holography

    Science.gov (United States)

    Ishii, S.

    2013-02-01

    This thesis describes artistic representation through pulsed holography. One of the prevalent practical problems in making holograms is object movement. Any movement of the object or film, including movement caused by acoustic vibration, has the same fatal results. One way of reducing the chance of movement is by ensuring that the exposure is very quick; using a pulsed laser can fulfill this objective. The attractiveness of using pulsed laser is based on the variety of materials or objects that can be recorded (e.g., liquid material or instantaneous scene of a moving object). One of the most interesting points about pulsed holograms is that some reconstructed images present us with completely different views of the real world. For example, the holographic image of liquid material does not appear fluid; it looks like a piece of hard glass that would produce a sharp sound upon tapping. In everyday life, we are unfamiliar with such an instantaneous scene. On the other hand, soft-textured materials such as a feather or wool differ from liquids when observed through holography. Using a pulsed hologram, we can sense the soft touch of the object or material with the help of realistic three-dimensional (3-D) images. The images allow us to realize the sense of touch in a way that resembles touching real objects. I had the opportunity to use a pulsed ruby laser soon after I started to work in the field of holography in 1979. Since then, I have made pulsed holograms of activities, including pouring water, breaking eggs, blowing soap bubbles, and scattering feathers and popcorn. I have also created holographic art with materials and objects, such as silk fiber, fabric, balloons, glass, flowers, and even the human body. Whenever I create art, I like to present the spectator with a new experience in perception. Therefore, I would like to introduce my experimental artwork through those pulsed holograms.

  4. High Voltage Pulse Testing Survey.

    Science.gov (United States)

    1985-10-01

    Cryogenic 23 E. Liquids 26 F. Solids 28 1. Polyethylene 28 2. Cross-Linked Polyethylene ( XLPE ) 29 3. Polyimide and Polyvenylchloride (PVC) 31 VI Benefits 35 A...Strength of XLPE Cables 29 vii * 4" I PROGRAM OBJECTIVES The Pulse Test Survey summarizes government, industry, and technical reports on high voltage pulse...system of silicone oil on a XLPE (cross-linked polyethylene) spacer tends to lower the impulse breakdown by approximately 10 percent. The negative impulse

  5. Millijoule pulse energy picosecond fiber chirped-pulse amplification system

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Xiaohong Hu; Yishan Wang; Wei Zhang; Wei Zhao

    2011-01-01

    @@ The efficient generation of a 1.17-mJ laser pul8e with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally.A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulse8 with hundreds of picosecond widths.Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier, All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR).The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.%The efficient generation of a 1.17-mJ laser pulse with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally. A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulses with hundreds of picosecond widths. Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier. All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR). The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.

  6. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes.

  7. Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence

    Science.gov (United States)

    Chen, Guoying

    2007-09-01

    A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.

  8. Cardiac Function Evaluation Analyzing Spectral Components due to the Consumption of Energy Drinks

    Directory of Open Access Journals (Sweden)

    Md. Bashir Uddin

    2014-05-01

    Full Text Available The aim of this study is to investigate the effect of energy drinks consumption on cardiac function of human being by analyzing the spectral components of pulse and ECG of several healthy people. Using pulse transducer connected with MP36 (Biopac, USA data acquisition unit, pulse recordings were performed. With electrode lead set connected to the same MP36 data acquisition unit, ECG recordings were also performed. At before and after the consumption of energy drinks available in Bangladesh, pulse and ECG recordings as well as analysis were performed with Biopac software. After having energy drinks, the spectral components such as power of spectral density and amplitude of fast Fourier transform of pulse signal decreased about 47.5 and 37%, respectively. In case of ECG signal, the spectral components such as power of spectral density and amplitude of fast Fourier transform increased about 17 and 7.5% within a short interval about 0-20 min, then effective decrements about 10 and 18.5%, respectively started for long duration. Analyzing spectral parameters, the findings highlight the adverse impacts on cardiac function which may cause cardiac abnormality as well as severe cardiac disease due to the regular consumption of energy drinks.

  9. Rapid Response Sensor for Analyzing Special Nuclear Material

    Science.gov (United States)

    Mitra, S. S.; Doron, O.; Chen, A. X.; Antolak, A. J.

    Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. The key challenge is isolating these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, but this approach should should be applicable for virtually all forms of SNM

  10. Generation and Stability Analysis of Self Similar Pulses Through Dispersion Tailored Passive Microstructured Optical Fibers in Mid Infrared Regime

    CERN Document Server

    Biswas, Piyali; Biswas, Abhijit; Ghosh, Somnath

    2015-01-01

    We report a numerical study on generation and stability of a parabolic pulse during its propagation through a highly nonlinear specialty optical fiber. Here, we have generated a parabolic pulse at 2.1 $\\mu$m wavelength from a Gaussian input pulse with 1.9 ps FWHM and 75 W peak power after travelling through only 20 cm length of a chalcogenide glass based microstructured optical fiber (MOF). The stability of such a parabolic pulse has been analyzed by introducing a variable loss profile within the loss window of the MOF. Moreover, three different dispersion regimes of propagation have been considered to achieve most stable propagation of the pulse.

  11. Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse

    Science.gov (United States)

    Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang

    2017-09-01

    Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.

  12. Square pulse linear transformer driver

    Directory of Open Access Journals (Sweden)

    A. A. Kim

    2012-04-01

    Full Text Available The linear transformer driver (LTD technological approach can result in relatively compact devices that can deliver fast, high current, and high-voltage pulses straight out of the LTD cavity without any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The usual LTD architecture [A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Vizir, S. N Volkov, F. Bayol, A. N. Bastrikov, V. G. Durakov, S. V. Frolov, V. M. Alexeenko, D. H. McDaniel, W. E. Fowler, K. LeCheen, C. Olson, W. A. Stygar, K. W. Struve, J. Porter, and R. M. Gilgenbach, Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski, R. A. Sharpe, D. H. McDaniel, C. L. Olson, J. L. Porter, K. W. Struve, W. A. Stygar, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] provides sine shaped output pulses that may not be well suited for some applications like z-pinch drivers, flash radiography, high power microwaves, etc. A more suitable power pulse would have a flat or trapezoidal (rising or falling top. In this paper, we present the design and first test results of an LTD cavity that generates such a type of output pulse by including within its circular array a number of third harmonic bricks in addition to the main bricks. A voltage adder made out of a square pulse cavity linear array will produce the same shape output pulses provided that the timing of each cavity is synchronized with the propagation of the electromagnetic pulse.

  13. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY...TOP 01-2-620A 9 July 2015 G-1 APPENDIX G. ABBREVIATIONS. AFEMP Advanced Fast Electromagnetic ... Electromagnetic Pulse A burst of electromagnetic radiation from a nuclear explosion or a suddenly fluctuating magnetic field. The resulting electric and

  14. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    CERN Document Server

    Peer, J

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced potentials are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  15. Gigahertz planar photoconducting antenna activated by picosecond optical pulses.

    Science.gov (United States)

    Liu, D W; Thaxter, J B; Bliss, D F

    1995-07-15

    We have generated 1-20-GHz microwave pulses by illuminating an Fe-compensated InP wafer with 50-ps optical pulses at normal incidence. The process of the generation of microwave radiation was monitored and analyzed directly through a 40-GHz sampling oscilloscope with precision. The saturation properties, the waveform evolution, and the optical coupling efficiency of the gigahertz photoconducting antenna are discussed. The flexibility, compactness, and high-resolution features offered by this technique merit new applications for radar communication as well as for other microwave detecting devices.

  16. The mechanism for SEU simulation by pulsed laser

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianguo; HAN Jianwei

    2004-01-01

    To simulate single event effect (SEE) by pulsed laser is a new approach in ground-based simulation of SEE in recent years. In this paper the way in which picosecond pulsed laser interacts with semiconductor and the mechanism of SEE inducement are analyzed. Additionally, associated calculations are made in the case of Nd:YAG and Ti:Sapphire lasers generally used in experiments and silicon device, with comparisons made between the two lasers. In the meantime, the fundamental principle for determining laser parameters and their typical ranges of values are provided according to the results.

  17. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: alexander.kendl@uibk.ac.a [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)

    2010-06-28

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  18. Analysis on anomalous conductivity and heat pulse propagation in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroki; Itoh, Sanae [Kyushu Univ., Fukuoka (Japan)

    1995-04-01

    Heat pulse propagation is analyzed for different models of electron heat conduction coefficient {chi}{sub e}. Cases in which initial temperature perturbation is induced by (1) electron cyclotron heating (ECH) or (2) sawtooth are studied. Five models are adopted which have various dependences on temperature or temperature gradient. A model in which {chi}{sub e} has a temperature-gradient dependence explains the discrepancy that the values derived from heat pulse propagation deviate from those obtained from the stationary power balance in experiments. In this case the deviation is found to have appreciable radial dependence. (author).

  19. Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing.

    Science.gov (United States)

    Yin, Y C; French, D; Jovanovic, I

    2010-08-16

    It is well-known that the process of optical parametric amplification (OPA) can be sensitive to the phases of the incident waves. In OPA realized by three-wave mixing, injection of all three waves into the same mode with appropriate phase relationship results in amplification of the signal phase, with an associated deamplification of the signal energy. Prospects for the use of this technique in the temporal domain for shaping ultrashort laser pulses are analyzed using a numerical model. Several representative pulse shaping capabilities of this technique are identified, which can significantly augment the performance of common passive pulse shaping methods operating in the Fourier domain. It is found that the use of phase-sensitive OPA shows a potential for significant compression of approximately 100 fs pulses, steepening of the rise time of ultrashort pulses, and production of pulse doublets and pulse trains. It is also shown that the group velocity mismatch can assist the shaping process. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems.

  20. Design and performance of a pulse transformer based on Fe-based nanocrystalline core.

    Science.gov (United States)

    Yi, Liu; Xibo, Feng; Lin, Fuchang

    2011-08-01

    A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.

  1. Intense ultrashort terahertz pulses: generation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Matthias C [Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, 22607 Hamburg (Germany); Fueloep, Jozsef Andras, E-mail: matthias.c.hoffmann@mpsd.cfel.de, E-mail: fulop@fizika.ttk.pte.hu [Department of Experimental Physics, University of Pecs, Ifjusag u. 6, 7624 Pecs (Hungary)

    2011-03-02

    Ultrashort terahertz pulses derived from femtosecond table-top sources have become a valuable tool for time-resolved spectroscopy during the last two decades. Until recently, the pulse energies and field strengths of these pulses have been generally too low to allow for the use as pump pulses or the study of nonlinear effects in the terahertz range. In this review article we will describe methods of generation of intense single cycle terahertz pulses with emphasis on optical rectification using the tilted-pulse-front pumping technique. We will also discuss some applications of these intense pulses in the emerging field of nonlinear terahertz spectroscopy. (topical review)

  2. Spatiotemporal dynamics of Gaussian laser pulse in a multi ions plasma

    Science.gov (United States)

    Jafari Milani, M. R.

    2016-08-01

    Spatiotemporal evolutions of Gaussian laser pulse propagating through a plasma with multiple charged ions are studied, taking into account the ponderomotive nonlinearity. Coupled differential equations for beam width and pulse length parameters are established and numerically solved using paraxial ray approximation. In one-dimensional geometry, effects of laser and plasma parameters such as laser intensity, plasma density, and temperature on the longitudinal pulse compression and the laser intensity distribution are analyzed for plasmas with singly and doubly charged ions. The results demonstrate that self-compression occurs in a laser intensity range with a turning point intensity in which the self-compression process has its strongest extent. The results also show that the multiply ionized ions have different effect on the pulse compression above and below turning point intensity. Finally, three-dimensional geometry is used to analyze the simultaneous evolution of both self-focusing and self-compression of Gaussian laser pulse in such plasmas.

  3. Pulse compression and prepulse suppression apparatus

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.

    1993-11-09

    A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).

  4. Consecutive Bright Pulses in the Vela Pulsar

    CERN Document Server

    Palfreyman, Jim L; Dickey, John M; Young, Timothy G; Hotan, Claire E; 10.1088/2041-8205/735/1/L17

    2011-01-01

    We report on the discovery of consecutive bright radio pulses from the Vela pulsar, a new phenomenon that may lead to a greater understanding of the pulsar emission mechanism. This results from a total of 345 hr worth of observations of the Vela pulsar using the University of Tasmania's 26 m radio telescope to study the frequency and statistics of abnormally bright pulses and sub-pulses. The bright pulses show a tendency to appear consecutively. The observations found two groups of six consecutive bright pulses and many groups of two to five bright pulses in a row. The strong radio emission process that produces the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses in sequence far exceed what would be expected if individual bright pulses were independent random events. Consecutive bright pulses must be generated by an emission process that is long lived relative to the rotation period of the neutron star.

  5. Mass-Analyzed Threshold Ionization of LaO2

    Science.gov (United States)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Sergiy; Yang, Dong-Sheng

    2010-06-01

    Lanthanum oxide, LaO2, is produced in a pulsed laser-vaporization metal-cluster source and studied by mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectrum, the adiabatic ionization energy of LaO2 is determined to be 40134 (5) Cm-1 or 4.976 (6) eV, and La+-O stretching and O-La+-O bending frequencies are measured as 656 and 120 Cm-1. The measured ionization energy is about 3.0 eV lower than the value predicted by recent high-level ab initio calculations. In this talk, we will discuss the discrepancy between the experiment and theory and the electronic transition observed in our experiment. T. K. Todorova, I. Infante, L. Gagliardi, and J. M. Dyke, J. Phys. Chem. A 112, 7825 (2008).

  6. Laser ablation of CsI analyzed by delayed extraction

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Lima, F.; Collado, V.M.; Ponciano, C.R.; Farenzena, L.S.; Pedrero, E.; Silveira, E.F. da

    2003-07-15

    Secondary ion emission from polycrystalline CsI irradiated by pulsed-UV laser (337 nm) is analyzed by time-of-flight (TOF) mass spectrometry. Measurements were performed for different laser intensities and for several delayed extraction times (0-200 ns). The TOF peak shape is characterized by a Gaussian-like structure (fast component), followed by a tail (slow component) that is more pronounced when the extraction field is delayed. A thermal-sputtering uni-dimensional model is employed to describe the solid surface and plasma temperatures as a function of time. Heat diffusion, vapor photo-ionization, radiative emission and plume expansion are considered. Within the approximations used, the model predicts reasonable drift velocities of the plume ({approx}1.4 km s{sup -1}) but very high plasma temperatures ({approx}10{sup 5} K). The width of the TOF peak fast component allows determination of the plume temperature during its expansion.

  7. Portable Programmable Multifunction Body Fluids Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Liquid Logic proposes to develop a very capable analyzer based on its digital microfluidic technology. Such an analyzer would be:  Capable of both...

  8. High-voltage, short-risetime pulse generator based on a ferrite pulse sharpener

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, N.; Thornton, E.

    1988-11-01

    A high-voltage, short-risetime pulse generator is described. The generator consists of a Marx bank, which produces an initial high-voltage pulse, and a ferrite pulse sharpener that reduces the risetime of the pulse. The generator delivers 70-kV, 350-ps risetime pulses into a 50-..cap omega.. load.

  9. The coherent artifact in modern pulse measurements

    CERN Document Server

    Ratner, Justin; Wong, Tsz Chun; Bartels, Randy; Trebino, Rick

    2012-01-01

    We simulate multi-shot intensity-and-phase measurements of unstable ultrashort-pulse trains using frequency-resolved-optical-gating (FROG) and spectral phase interferometry for direct electric-field reconstruction (SPIDER). Both techniques fail to reveal the pulse structure. FROG yields the average pulse duration and suggests the instability by exhibiting disagreement between measured and retrieved traces. SPIDER under-estimates the average pulse duration but retrieves the correct average pulse spectral phase. An analytical calculation confirms this behavior.

  10. Linear Ion Trap for the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald

    2014-05-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.

  11. Wide Range SET Pulse Measurement

    Science.gov (United States)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  12. The pulsing CPSD method for subcritical assemblies with pulsed sources

    CERN Document Server

    Ballester, D; Ballester, Daniel; Munoz-Cobo, Jose L.

    2005-01-01

    Stochastic neutron transport theory is applied to the derivation of the two-neutron-detectors cross power spectral density for subcritical assemblies when external pulsed sources are used. A general relationship between the two-detector probability generating functions of the kernel and the source is obtained considering the contribution to detectors statistics of both the pulsed source and the intrinsic neutron source. An expansion in alpha-eigenvalues is derived for the final solution, which permits to take into account the effect of higher harmonics in subcritical systems. Further, expressions corresponding to the fundamental mode approximation are compared with recent results from experiments performed under the MUSE-4 European research project.

  13. High field rf superconductivity: to pulse or not to pulse

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, I.E.

    1984-10-01

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.

  14. Development of pulsed positron beam line with compact pulsing system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Masaki, E-mail: maekawa.masaki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, Atsuo [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-01-01

    We have developed a pulsed slow positron beam with a pulse width of less than 200 ps and a period of 25 ns. The beam apparatus is composed of a Munich-type pre-buncher, a chopper and a buncher. Instead of the conventional RF cavity, a simple double-cylinder electrode is used for the buncher. The beam will be used for positron lifetime measurements. The time resolution of the whole system including lifetime measurement circuits is 250 ps, which is adequate for studying semiconductors and metals.

  15. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville

    2014-12-01

    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  16. Analysis of random laser scattering pulse signals with lognormal distribution

    Institute of Scientific and Technical Information of China (English)

    Yan Zhen-Gang; Bian Bao-Min; Wang Shou-Yu; Lin Ying-Lu; Wang Chun-Yong; Li Zhen-Hua

    2013-01-01

    The statistical distribution of natural phenomena is of great significance in studying the laws of nature.In order to study the statistical characteristics of a random pulse signal,a random process model is proposed theoretically for better studying of the random law of measured results.Moreover,a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air,standard particles,and background noise.Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison.In addition,the statistical laws of three typical objects and the relations between them are discussed in detail.The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.

  17. Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses.

    Science.gov (United States)

    Ganeev, R A; Chakravarty, U; Naik, P A; Srivastava, H; Mukherjee, C; Tiwari, M K; Nandedkar, R V; Gupta, P D

    2007-03-10

    A study of silver, chromium, stainless-steel, and indium thin films prepared by subnanosecond laser deposition in vacuum is reported. We compare the laser ablation in vacuum at the weak- and tight-focusing conditions of a Ti:sapphire laser beam and analyze the nanoparticles synthesized in the latter case using absorption spectroscopy, x-ray fluorescence, atomic force microscopy, and scanning electron microscopy. Our results show that the nanoparticle formation can be accomplished using long laser pulses under tight-focusing conditions.

  18. Analyzing Electroencephalogram Signal Using EEG Lab

    Directory of Open Access Journals (Sweden)

    Mukesh BHARDWAJ

    2009-01-01

    Full Text Available The EEG is composed of electrical potentials arising from several sources. Each source (including separate neural clusters, blink artifact or pulse artifact forms a unique topography onto the scalp – ‘scalp map‘. Scalp map may be 2-D or 3-D.These maps are mixed according to the principle of linear superposition. Independent component analysis (ICA attempts to reverse the superposition by separating the EEG into mutually independent scalp maps, or components. MATLAB toolbox and graphic user interface, EEGLAB is used for processing EEG data of any number of channels. Wavelet toolbox has been used for 2-D signal analysis.

  19. Pulsed discharge production Ar* metastables

    Science.gov (United States)

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.

    2016-03-01

    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  20. Zeptosecond $\\gamma$-ray pulses

    CERN Document Server

    Klaiber, Michael; Keitel, Christoph H

    2007-01-01

    High-order harmonic generation (HHG) in the relativistic regime is employed to obtain zeptosecond pulses of $\\gamma$-rays. The harmonics are generated from atomic systems in counterpropagating strong attosecond laser pulse trains of linear polarization. In this setup recollisions of the ionized electrons can be achieved in the highly relativistic regime via a reversal of the commonly deteriorating drift and without instability of the electron dynamics such as in a standing laser wave. As a result, coherent attosecond $\\gamma$-rays in the 10 MeV energy range as well as coherent zeptosecond $\\gamma$-ray pulses of MeV photon energy for time-resolved nuclear spectroscopy become feasible.

  1. Displacement response analysis of base-isolated buildings subjected to near-fault ground motions with velocity pulse

    Science.gov (United States)

    He, Qiumei; Li, Xiaojun; Yang, Yu; Liu, Aiwen; Li, Yaqi

    2016-04-01

    In order to study the influence of the velocity pulse to seismic displacement response of base-isolated buildings and the differences of the influent of the two types of near-fault ground motions with velocity pulse to seismic response of base-isolated buildings, the seismic responses are analyzed by three dimensional finite element models for three base-isolated buildings, 4 stories, 9 stories and 14 stories. In this study, comparative analyses were done for the seismic displacement responses of the base-isolated structures under 6 near-fault ground motion records with velocity pulse and no velocity pulse, in which, 6 artificial ground motion time histories with same elastic response spectrum as the 6 near-fault ground motion records are used as the ground motion with no velocity pulse. This study indicates that under the ground motions with velocity pulse the seismic displacement response of base-isolated buildings is significantly increased than the ground motions with no velocity pulse. To the median-low base-isolated buildings, the impact of forward directivity pulses is bigger than fling-step pulses. To the high base-isolated buildings, the impact of fling-step pulses is bigger than forward directivity pulses. The fling-step pulses lead to large displacement response in the lower stories. This work has been supported by the National Natural Science Foundation of China (Grant No.51408560)

  2. Design and application of pulse information acquisition and analysis system with dynamic recognition in traditional Chinese medicine.

    Science.gov (United States)

    Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong

    2014-09-01

    To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.

  3. Proof-of-principle pilot study of oropharyngeal air-pulse application in individuals with dysphagia after hemispheric stroke.

    Science.gov (United States)

    Theurer, Julie A; Johnston, Jennifer L; Fisher, James; Darling, Sherry; Stevens, Rebecca C; Taves, Donald; Teasell, Robert; Hachinski, Vladimir; Martin, Ruth E

    2013-06-01

    To test the hypothesis that oropharyngeal air-pulse application is associated with increased swallowing rates in individuals with dysphagia secondary to stroke. Case control. Stroke rehabilitation hospital or home setting. Convenience sample of individuals (N=8) with new-onset dysphagia after stroke. Air-pulse trains were applied to the oropharynx of 8 subjects who presented with dysphagia after hemispheric stroke. Resting swallowing rates were determined for 5 experimental conditions: baseline without air-pulse mouthpiece, baseline with mouthpiece in situ, unilateral right oropharyngeal air-pulse, unilateral left oropharyngeal air-pulse, and bilateral oropharyngeal air-pulse application. Individual swallowing responses were analyzed using a 2-SD band method. Swallowing rate (swallows/min). Swallowing rates associated with bilateral air-pulse application were greater than baseline in 4 of the 8 subjects. The 4 subjects who demonstrated this response to air-pulse application had greater baseline swallowing rates than did subjects whose swallowing rates were not altered in association with air-pulse application. Oropharyngeal air-pulse trains can be applied in individuals with swallowing impairment. Air-pulse application is associated with increased resting swallowing rates in some individuals with dysphagia secondary to hemispheric stroke. Further research should extend this proof-of-principle study by examining the efficacy of oropharyngeal air-pulse application in terms of improved swallowing and related outcomes in dysphagic stroke through a large randomized trial. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    Science.gov (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  5. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Berg-Sørensen, Kirstine

    2013-01-01

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 polystyrene bead, the laser pulse......-bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  6. A versatile computer-controlled pulsed nuclear quadrupole resonance spectrometer

    Science.gov (United States)

    Fisher, Gregory; MacNamara, Ernesto; Santini, Robert E.; Raftery, Daniel

    1999-12-01

    A new, pulsed nuclear quadrupole resonance (NQR) spectrometer capable of performing a variety of pulsed and swept experiments is described. The spectrometer features phase locked, superheterodyne detection using a commercial spectrum analyzer and a fully automatic, computer-controlled tuning and matching network. The tuning and matching network employs stepper motors which turn high power air gap capacitors in a "moving grid" optimization strategy to minimize the reflected power from a directional coupler. In the duplexer circuit, digitally controlled relays are used to switch different lengths of coax cable appropriate for the different radio frequencies. A home-built pulse programmer card controls the timing of radio frequency pulses sent to the probe, while data acquisition and control software is written in Microsoft Quick Basic. Spin-echo acquisition experiments are typically used to acquire the data, although a variety of pulse sequences can be employed. Scan times range from one to several hours depending upon the step resolution and the spectral range required for each experiment. Pure NQR spectra of NaNO2 and 3-aminopyridine are discussed.

  7. Development of 600 kV triple resonance pulse transformer.

    Science.gov (United States)

    Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou

    2015-06-01

    In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.

  8. Liquid micro pulsed plasma thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2015-06-01

    Full Text Available A new type of pulsed plasma thruster (PPT for small satellite propulsion is investigated, of which the most innovative aspect is the use of a non-volatile liquid propellant. The thruster is based on an open capillary design. The thruster achieved a thrust-to-power ratio above 45 μN/W, which constitutes a 5-fold improvement over the water-propelled pulsed plasma thruster, and which is also slightly above the performance of a similarly sized PPT with a solid propellant.

  9. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  10. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  11. Terahertz pulsed imaging study of dental caries

    Science.gov (United States)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  12. Neuromuscular disruption with ultrashort electrical pulses

    Science.gov (United States)

    Pakhomov, Andrei; Kolb, Juergen F.; Joshi, Ravindra P.; Schoenbach, Karl H.; Dayton, Thomas; Comeaux, James; Ashmore, John; Beason, Charles

    2006-05-01

    Experimental studies on single cells have shown that application of pulsed voltages, with submicrosecond pulse duration and an electric field on the order of 10 kV/cm, causes sudden alterations in the intracellular free calcium concentration, followed by immobilization of the cell. In order to examine electrical stimulation and incapacitation with such ultrashort pulses, experiments on anesthetized rats have been performed. The effect of single, 450 nanosecond monopolar pulses have been compared with that of single pulses with multi-microsecond duration (TASER pulses). Two conditions were explored: 1. the ability to elicit a muscle twitch, and, 2. the ability to suppress voluntary movement by using nanosecond pulses. The second condition is relevant for neuromuscular incapacitation. The preliminary results indicate that for stimulation microsecond pulses are advantageous over nanosecond pulses, whereas for incapacitation, the opposite seems to apply. The stimulation effects seem to scale with electrical charge, whereas the disruption effects don't follow a simple scaling law. The increase in intensity (time of incapacitation) for a given pulse duration, is increasing with electrical energy, but is more efficient for nanosecond than for microsecond pulses. This indicates different cellular mechanisms for incapacitation, most likely subcellular processes, which have been shown to become increasingly important when the pulse duration is shortened into the nanosecond range. If further studies can confirm these initial results, consequences of reduced pulse duration are a reduction in weight and volume of the pulse delivery system, and likely, because of the lower required energy for neuromuscular incapacitation, reduced safety risks.

  13. Control of high power pulse extracted from the maximally compressed pulse in a nonlinear optical fiber

    CERN Document Server

    Yang, Guangye; Jia, Suotang; Mihalache, Dumitru

    2013-01-01

    We address the possibility to control high power pulses extracted from the maximally compressed pulse in a nonlinear optical fiber by adjusting the initial excitation parameters. The numerical results show that the power, location and splitting order number of the maximally compressed pulse and the transmission features of high power pulses extracted from the maximally compressed pulse can be manipulated through adjusting the modulation amplitude, width, and phase of the initial Gaussian-type perturbation pulse on a continuous wave background.

  14. Pulse Delay and Speed-up of Ultra Fast Pulses in an Absorbing Quantum Well Medium

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Poel, Mike van der; Yvind, Kresten;

    2008-01-01

    Slow down and speed-up of 180 fs pulses in an absorbing semiconductor beyond the exisitng models is observed. Cascading gainand absorbing sections give us significant temporal pulse shifting at almost constant output pulse energy.......Slow down and speed-up of 180 fs pulses in an absorbing semiconductor beyond the exisitng models is observed. Cascading gainand absorbing sections give us significant temporal pulse shifting at almost constant output pulse energy....

  15. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  16. 35 Volt, 180 Ampere Pulse Generator with Droop Control for Pulsing Xenon Arcs

    DEFF Research Database (Denmark)

    Hviid, T.; Nielsen, S. O.

    1972-01-01

    The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light.......The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light....

  17. Principle study on the signal connection at transabdominal fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2016-09-01

    Full Text Available Transabdominal fetal pulse oximetry is an approach to measure oxygen saturation of the unborn child non-invasively. The principle of pulse oximetry is applied to the abdomen of a pregnant woman, such that the measured signal includes both, the maternal and the fetal pulse curve. One of the major challenges is to extract the shape of the fetal pulse curve from the mixed signal for computation of the oxygen saturation. In this paper we analyze the principle kind of connection of the fetal and maternal pulse curves in the measured signal. A time varying finite element model is used to rebuild the basic measurement environment, including a bulk tissue and two independently pulsing arteries to model the fetal and maternal blood circuit. The distribution of the light fluence rate in the model is computed by applying diffusion equation. From the detectors we extracted the time dependent fluence rate and analyzed the signal regarding its components. The frequency spectra of the signals show peaks at the fetal and maternal basic frequencies. Additional signal components are visible in the spectra, indicating multiplicative coupling of the fetal and maternal pulse curves. We conclude that the underlying signal model of algorithms for robust extraction of the shape of the fetal pulse curve, have to consider additive and multiplicative signal coupling.

  18. Electrical spectrum & network analyzers a practical approach

    CERN Document Server

    Helfrick, Albert D

    1991-01-01

    This book presents fundamentals and the latest techniques of electrical spectrum analysis. It focuses on instruments and techniques used on spectrum and network analysis, rather than theory. The book covers the use of spectrum analyzers, tracking generators, and network analyzers. Filled with practical examples, the book presents techniques that are widely used in signal processing and communications applications, yet are difficult to find in most literature.Key Features* Presents numerous practical examples, including actual spectrum analyzer circuits* Instruction on how to us

  19. Formation and stability analysis of parabolic pulses through specialty microstructured optical fibers at 2.1 μm

    Science.gov (United States)

    Biswas, P.; Adhikary, P.; Biswas, A.; Ghosh, S. N.

    2016-10-01

    We report a numerical study on formation and stability of parabolic pulses during their propagation through highly nonlinear specialty optical fibers. Here, we have formed a parabolic pulse at wavelength of 2.1 μm from a Gaussian input pulse with 1.9 ps FWHM and 75 W peak power after traveling through only 20 cm length from the input end of a 1 m long chalcogenide glass based microstructured optical fiber (MOF). Dependence on input pulse shapes towards most efficient conversion into self-similar states is reported. The stability in terms of any deviation from dissipative self-similar nature of such pulses has been analyzed by introducing a variable longitudinal loss profile within the spectral loss window of the MOF, and detailed pulse shapes are captured. Moreover, three different dispersion regimes of propagation have been considered to study the suitability to support most stable propagation of the pulse.

  20. Rotational swashplate pulse continuously variable transmission based on helical gear axial meshing transmission

    Science.gov (United States)

    Sun, Jiandong; Fu, Wenyu; Lei, Hong; Tian, E.; Liu, Ziping

    2012-11-01

    The current research on pulse continuously variable transmission(CVT) is mainly focused on reducing the pulse degree and making pulse degrees a constant value. Current research mainly confined to find out new design parameters by using the method of optimization, and reduce the pulse degree of pulse CVT and its range of variation. But the fact is that the reduction of the pulse degree is not significant. This article presents a new structure of mechanical pulse CVT—the rotational swashplate pulse CVT with driven by helical gear axial meshing. This transmission is simple and compact in structure and low in pulsatile rate (it adopts 6 guide rods), and the pulsatile degree is irrelevant to the transmission ratio. Theoretically, pulsatile rate could be reduced to zero if appropriate curved surface of the swashplate is used. Compared with the connecting rod pulse CVT, the present structure uses helical gear mechanism as transmission part and it avoids unbalanced inertial force in the former model. This paper analyzes the principle of driving of this transmission, presents its mechanical structure, and discusses its motion characteristics. Experimental prototype of this type of CVT has been manufactured. Tests for the transmission efficiency(when the rotational speed of the output shaft is the maximum) and the angular velocity of the output shaft have been carried out, and data have been analyzed. The experimental results show that the speed of the output shaft for the experimental prototype is slightly lower than the theoretical value, and the transmission efficiency of the experimental prototype is about 70%. The pulse degree of the CVT discussed in this paper is less than the existing pulse CVT of other types, and it is irrelevant to the transmission ratio of the CVT. The research provides the new idea to the CVT study.

  1. Generation of pulsed ion beams by an inductive storage pulsed power generator

    Science.gov (United States)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  2. ADAM: Analyzer for Dialectal Arabic Morphology

    Directory of Open Access Journals (Sweden)

    Wael Salloum

    2014-12-01

    Full Text Available While Modern Standard Arabic (MSA has many resources, Arabic Dialects, the primarily spoken local varieties of Arabic, are quite impoverished in this regard. In this article, we present ADAM (Analyzer for Dialectal Arabic Morphology. ADAM is a poor man’s solution to quickly develop morphological analyzers for dialectal Arabic. ADAM has roughly half the out-of-vocabulary rate of a state-of-the-art MSA analyzer and is comparable in its recall performance to an Egyptian dialectal morphological analyzer that took years and expensive resources to build.

  3. Designing of Acousto-optic Spectrum Analyzer

    Institute of Scientific and Technical Information of China (English)

    WANG Dan-zhi; SHAO Ding-rong; LI Shu-jian

    2004-01-01

    The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency error of 0.58MHz,detecting responsivity of 90 dBm and bandwidth of 50 Mhz.

  4. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    Science.gov (United States)

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  5. Research on pulse edge extraction by using nonlinear optical fiber-loop mirror

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-jun; QIU Kun; JI Si-wei

    2012-01-01

    The output characteristics of nonlinear optical fiber-loop mirror are analyzed in detail when the pump pulses with the same wavelength are input in the both directions for recovering the clock component of the signal spectrum.It is found that the double output pulses are produced in the transmission port of the nonlinear optical fiber-loop mirror.The output pulse peaks are located in time domain at the rising and falling edges of the pump pulses.It is demonstrated that the rising and falling edges of the pump pulse can be directly extracted by this method.Through numerical simulation,the effects of the relative delay of pump pulses and the dispersion of fiber on the characteristics of output pulses are studied.By spectrum analysis,it is found that the spectrum of output pulse sequence includes the clock components of the pump pulse sequence,and a new idea is provided for all-optical clock extraction.

  6. Modeling of Pulsed Transformer with Nanocrystalline Cores

    Directory of Open Access Journals (Sweden)

    Amir Baktash

    2014-07-01

    Full Text Available Recently tape wound cores, due to their excellent properties, are widely used in transformers for pulsed or high frequency applications. The spiral structure of these cores affects the flux distribution inside the core and causes complication of the magnetic analysis and consequently the circuit analysis. In this paper, a model based on reluctance networks method is used to analyze the magnetic flux in toroidal wound cores and losses calculation. A Preisach based hysteresis model is included in the model to consider the nonlinear characteristic of the core. Magnetic losses are calculated by having the flux density in different points of the core and using the hysteresis model. A transformer for using in a series resonant converter is modeled and implemented. The modeling results are compared with experimental measurements and FEM results to evaluate the validity of the model. Comparisons show the accuracy of the model besides its simplicity and fast convergence.

  7. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  8. Cylindrically Polarized Nondiffracting Optical Pulses

    CERN Document Server

    Ornigotti, Marco; Szameit, Alexander

    2016-01-01

    We extend the concept of radially and azimuthally polarized optical beams to the polychromatic domain by introducing cylindrically polarized nondiffracting optical pulses. In particular, we discuss in detail the case of cylindrically polarized X-waves, both in the paraxial and nonparaxial regime. The explicit expressions for the electric and magnetic fields of cylindrically polarized X-waves is also reported.

  9. Nonparametric estimation of ultrasound pulses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Leeman, Sidney

    1994-01-01

    An algorithm for nonparametric estimation of 1D ultrasound pulses in echo sequences from human tissues is derived. The technique is a variation of the homomorphic filtering technique using the real cepstrum, and the underlying basis of the method is explained. The algorithm exploits a priori...

  10. Wave equations for pulse propagation

    Science.gov (United States)

    Shore, B. W.

    1987-06-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.

  11. All about Heart Rate (Pulse)

    Science.gov (United States)

    ... get a picture of your health. Learn more: Blood Pressure Vs. Heart Rate Target Heart Rate Arrhythmias (abnormal heart rhythms) This ... Healthy 6 What are the Symptoms of High Blood Pressure? 7 All About Heart Rate (Pulse) 8 Warning Signs of a Heart Attack ...

  12. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  13. Ptychographic reconstruction of attosecond pulses

    CERN Document Server

    Lucchini, M; Ludwig, A; Gallmann, L; Keller, U; Feurer, T

    2015-01-01

    We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.

  14. CSR Pulsed Switching Power Supplies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, CSR power supply system made a great progress. Three prototypes were designed for CSR quadruple and correct magnet. Three different companies provided the three prototypes, but the same circuit-chopper were employed. The simplified diagram is showed in Fig.1. All pulsed switching power supply prototypes were tested successfully before the end of 2001.

  15. Photon echo under excitation of a medium by pulses consisting of an arbitrary number of oscillations

    Science.gov (United States)

    Znamenskii, N. V.; Sazonov, S. V.

    2008-03-01

    Echo responses of a three-level medium formed by the λ-scheme of quantum transitions under exposure to optical pulses consisting of an arbitrary number of oscillations have been studied theoretically. The cases of pulses consisting of few optical oscillations (for which the concept of an envelope cannot be used) and combinations of such pulses and quasi-monochromatic resonance signals have been considered. The approach used can be reduced to the renormalization of dipole moments of allowed quantum transitions through their multiplication by coefficients depending on the shape and duration of pump pulses and having absolute values in the range from zero (for nonresonance pulses) to unity (for resonance quasi-monochromatic pulses and broadband pulses consisting of few oscillations, whose spectrum covers the quantum transitions). A general equation has been proposed for the pulse area. In the limit of a large number of oscillations, it transforms into the well-known definition of the area of a quasi-monochromatic signal. The characteristics of primary and longlived photon echoes have been analyzed in detail. It has been shown that, when a medium is exposed to only pulses consisting of a few oscillations, three echo responses of both types can be principally generated at each frequency of the λ-scheme. Introduction of quasi-monochromatic pulses in pump pulse series decreases the number of echoes, and their qualitative character has a non-commutative property with respect to pulse permutation in a series. The extension of the proposed approach to more complex schemes of quantum transitions with the large number of quantum levels faces no principal difficulties.

  16. Analyzing metabolomics-based challenge tests

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; Duynhoven, van J.P.M.; Wopereis, S.; Ommen, van B.; Hendriks, M.M.W.B.; Smilde, A.K.

    2015-01-01

    Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the biolog

  17. Performance evaluation of PL-11 platelet analyzer

    Institute of Scientific and Technical Information of China (English)

    张有涛

    2013-01-01

    Objective To evaluate and report the performance of PL-11 platelet analyzer. Methods Intravenous blood sam-ples anticoagulated with EDTA-K2 and sodium citrate were tested by the PL-11 platelet analyzer to evaluate the intra-assay and interassay coefficient of variation(CV),

  18. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    OpenAIRE

    Jialong Wu; Deqiang Zhou; Jun Wang

    2014-01-01

    Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed ed...

  19. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  20. Temporal resolution beyond the average pulse duration in shaped noisy-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Meyer, Kristina; Müller, Niklas; Liu, Zuoye; Pfeifer, Thomas

    2016-12-20

    In time-resolved spectroscopy, it is a widespread belief that the temporal resolution is determined by the laser pulse duration. Recently, it was observed and shown that partially coherent laser pulses as they are provided by free-electron-laser (FEL) sources offer an alternative route to reach a temporal resolution below the average pulse duration. Here, we demonstrate the generation of partially coherent light in the laboratory like we observe it at FELs. We present the successful implementation of such statistically fluctuating pulses by using the pulse-shaping technique. These pulses exhibit an average pulse duration about 10 times larger than their bandwidth limit. The shaped pulses are then applied to transient-absorption measurements in the dye IR144. Despite the noisy characteristics of the laser pulses, features in the measured absorption spectra occurring on time scales much faster than the average pulse duration are resolved, thus proving the universality of the described noisy-pulse concept.

  1. Cryosurgery with pulsed electric fields.

    Science.gov (United States)

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  2. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  3. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  4. Wave equations for pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.

    1987-06-24

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  5. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  6. The transient behavior of Peltier junctions pulsed with supercooling

    Science.gov (United States)

    Mao, J. N.; Chen, H. X.; Jia, H.; Qian, X. L.

    2012-07-01

    There exists the transient thermoelectric supercooling effect that can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the Joule heating effect and Fourier heat conduction effect arriving at the cold junction, in which a transient cold spike can be produced by superimposing an additional shaped current pulse of a large magnitude on the original steady-state optimum value. Most previous work on the transient supercooling mainly focused on the minimum supercooling temperature achievable and separately analyzed the beneficial or detrimental effects on the transient supercooling performance, which was not clarified quantitatively to what extent the interactional effects were on the enhancement of the transient supercooling performance. In this work, we systematically investigate a numerical solution involving time-dependent imposed voltage pulse and time-dependent thermal boundary conditions on the transient supercooling behavior as well as the response of characteristic time and cold-junction temperature distribution to the pulse operation parameters during the periods of pulse start-up, pulse-on time, and pulse-off time, which is served as a theoretical basis for exploiting the coupling interaction of the thermoelectric effects on the heat diffusion from or to the cold junction interrelated with the amount of the availably electrical conversion in the short time scale. Additionally, the advantage of certain pulse forms over others is described. The results indicate that Peltier supercooling capacity shows a decreasing monotonic trend in proportion to the total amount of electrical conversion, and the maximum coefficient of performance for cooling state is about 0.5 to be achieved at steady state. Taking advantage of the temporary Peltier effect focused electrical conversion as the additional cooling for a period long enough against the earlier arrival of the excessively Joule heating dominated heat accumulation is the key parameter

  7. Developing classification indices for Chinese pulse diagnosis

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    Aim: To develop classification criteria for Chinese pulse diagnosis and to objectify the ancient diagnostic technique. Methods: Chinese pulse curves are treated as wave signals. Multidimensional variable analysis is performed to provide the best curve fit between the recorded Chinese pulse waveforms and the collective Gamma density functions. Results: Chinese pulses can be recognized quantitatively by the newly-developed four classification indices, that is, the wave length, the relative phase difference, the rate parameter, and the peak ratio. The new quantitative classification not only reduces the dependency of pulse diagnosis on Chinese physician's experience, but also is able to interpret pathological wrist-pulse waveforms more precisely. Conclusions: Traditionally, Chinese physicians use fingertips to feel the wrist-pulses of patients in order to determine their health conditions. The qualitative theory of the Chinese pulse diagnosis is based on the experience of Chinese physicians for thousands of year...

  8. Dispersion compensation in chirped pulse amplification systems

    Science.gov (United States)

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  9. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  10. Exact Solutions to Short Pulse Equation

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; ZHENG Ming-Hua; LIU Shi-Kuo

    2009-01-01

    In this paper, dependent and independent variable transformations are introduced to solve the short pulse equation. It is shown that different kinds of solutions can be obtained to the short pulse equation.

  11. Digital Communication Using Chaotic Pulse Generators

    CERN Document Server

    Rulkov, N F; Tsimring, L S; Volkovskii, A R; Abarbanel, Henry D I; Larson, L; Yao, K

    1999-01-01

    Utilization of chaotic signals for covert communications remains a very promising practical application. Multiple studies indicated that the major shortcoming of recently proposed chaos-based communication schemes is their susceptibility to noise and distortions in communication channels. In this talk we discuss a new approach to communication with chaotic signals, which demonstrates good performance in the presence of channel distortions. This communication scheme is based upon chaotic signals in the form of pulse trains where intervals between the pulses are determined by chaotic dynamics of a pulse generator. The pulse train with chaotic interpulse intervals is used as a carrier. Binary information is modulated onto this carrier by the pulse position modulation method, such that each pulse is either left unchanged or delayed by a certain time, depending on whether ``0'' or ``1'' is transmitted. By synchronizing the receiver to the chaotic pulse train we can anticipate the timing of pulses corresponding to ...

  12. Linear transformer driver for pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  13. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  14. Exawatt-Zettawatt Pulse Generation and Applications

    OpenAIRE

    Mourou, G. A.; Fisch, N. J.; Malkin, V. M.; Toroker, Z.; Khazanov, E. A.; Sergeev, A. M.; TAJIMA, T.

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could...

  15. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  16. High-power picosecond laser pulse recirculation.

    Science.gov (United States)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  17. Nonlinear optics with stationary pulses of light

    OpenAIRE

    Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.

    2004-01-01

    We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...

  18. Analyzing machine noise for real time maintenance

    Science.gov (United States)

    Yamato, Yoji; Fukumoto, Yoshifumi; Kumazaki, Hiroki

    2017-02-01

    Recently, IoT technologies have been progressed and applications of maintenance area are expected. However, IoT maintenance applications are not spread in Japan yet because of one-off solution of sensing and analyzing for each case, high cost to collect sensing data and insufficient maintenance automation. This paper proposes a maintenance platform which analyzes sound data in edges, analyzes only anomaly data in cloud and orders maintenance automatically to resolve existing technology problems. We also implement a sample application and compare related work.

  19. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  20. ANALYZING OF MULTICOMPONENT UNDERSAMPLED SIGNALS BY HAF

    Institute of Scientific and Technical Information of China (English)

    Tao Ran; Shan Tao; Zhou Siyong; Wang Yue

    2001-01-01

    The phenomenon of frequency ambiguity may appear in radar or communication systems. S. Barbarossa(1991) had unwrapped the frequency ambiguity of single component undersampled signals by Wigner-Ville distribution(WVD). But there has no any effective algorithm to analyze multicomponent undersampled signals by now. A new algorithm to analyze multicomponent undersampled signals by high-order ambiguity function (HAF) is proposed hera HAF analyzes polynomial phase signals by the method of phase rank reduction, its advantage is that it does not have boundary effect and is not sensitive to the cross-items of multicomponent signals.The simulation results prove the effectiveness of HAF algorithm.

  1. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  2. Multielectron dissociative ionization of methane and formaldehyde molecules with optimally tailored intense femtosecond laser pulses

    Science.gov (United States)

    Irani, E.; Anvari, A.; Sadighi-Bonabi, R.; Monfared, M.

    2017-10-01

    The multielectron dissociative ionization of CH4 and CH2O molecules has been investigated using optimum convolution of different dual tailored short laser pulses. Based on three dimensional molecular dynamics simulations and TDDFT approach, the dissociation probability is enhanced by designing the dual chirped-chirped laser pulses and chirped-ordinary laser pulses for formaldehyde molecule. However, it is interesting to notice that the sensitivity of enhanced dissociation probability into different tailored laser pulses is not significant for methane molecule. In this presented modifications, time variation of bond length, velocity, time dependent electron localization function and evolution of the efficient occupation states are presented to analyze the time evolution of molecular dynamics. This work is proved to be a potential way to reduce the controlling costs with a currently available pulse shaping technology.

  3. Pulse shape distortion in a 2-stage all-fiber Er-doped amplifier

    Science.gov (United States)

    Michalska, M.; Mamajek, M.

    2013-07-01

    The issue of temporal pulse distortion occurring during amplification process in a 2-stage, fiber amplifier, operating in the eye-safe spectral region, is discussed. The amplifier was built in a Master Oscillator Power Amplifier (MOPA) configuration and seeded by a distributed feedback (DFB) laser providing nanosecond pulses at a repetition rate of 20 kHz. It operated at a wavelength of 1549.13 nm and generated over 200 mW of output power with a slope efficiency of up to 28%. The comparison between the calculated and measured results on saturation-induced pulse shape deformation, for ~300-ns pulses, is presented. The analyzed pulse shapes embraced rectangle, Gaussian, triangle and "M" letter.

  4. Optimization of the Tilted-Pulse-Front Terahertz Excitation Setup Containing Telescope

    Science.gov (United States)

    Tokodi, Levente; Hebling, J.; Pálfalvi, L.

    2016-09-01

    Optimization of the telescopic tilted-pulse-front terahertz excitation setup with respect to the imaging errors is given. A guideline is presented in the form of simple analytical formulae describing the optimal geometrical configuration of the telescopic setup. Pump pulse distortions and terahertz wave-front distortions are analyzed by ray tracing calculations supposing near-infrared pump pulses with 200 fs transform limited pulse length. The detrimental effects of imaging errors in a tilted-pulse-front terahertz source can be significantly reduced by using telescopic imaging instead of one-lens. It is also shown, that in the case of the one-lens setup significant, and in the case of the telescopic setup, less significant reduction of the imaging errors can be achieved by using achromat lens(es) instead of singlet one(s). Calculation results show that the telescopic setup consisting of two achromat lenses is the most promising choice among the practically relevant schemes.

  5. Flattop pulse generation based on the combined action of active mode locking and nonlinear polarization rotation.

    Science.gov (United States)

    Fang, Xiaohui; Wai, P K A; Lu, Chao; Chen, Jinhua

    2014-02-10

    A pulse-width-tunable 10 GHz flattop pulse (FTP) train is generated based on the combined action of active mode locking and nonlinear polarization rotation pulse shaping. Although the setup was previously used for other applications, the mechanism of FTP generation based on it is first analyzed and confirmed in the experiment. An FTP with pulse width tunable from 12 to 20 ps by changing polarization controllers is generated within the wavelength tuning range of 20 nm. The generated pulse reveals good stability, with the side mode suppression ratio of 65 dB, timing jitter of 92 fs, and amplitude fluctuation of 0.36%.

  6. Pulsed radio frequency interference effects on data communications via satellite transponder

    Science.gov (United States)

    Weinberg, A.; Hong, Y.

    1979-01-01

    Power-limited communication links may be susceptible to significant degradation if intentional or unintentional pulsed high level radio frequency interference (RFI) is present. Pulsed RFI is, in fact, of current interest to NASA in studies relating to its Tracking and Data Relay Satellite System (TDRSS). The present paper examines the impact of pulsed RFI on the error probability performance of a power-limited satellite communication link: the assumed modulation scheme is PN coded binary PSK. The composite effects of thermal noise, pulsed CW and pulsed Gaussian noise are analyzed, where RFI arrivals are assumed to follow Poisson statistics. Under the assumption that the satellite repeater is ideal and that integrate and dump filtering is employed at the ground receiver, an exact error probability expression and associated approximations are derived. Computed results are generated using an arbitrarily specified RFI model.

  7. Pulse Sequences for Efficient Multi-Cycle Terahertz Generation in Periodically Poled Lithium Niobate

    CERN Document Server

    Ravi, Koustuban; Kärtner, Franz X

    2016-01-01

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled periodically poled lithium niobate is proposed. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of Mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser-induced damage at Joule-level pumping by 1$\\mu$m lasers to enable multi-cycle terahertz sources with pulse energies >> 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. Unprecedented studies of the ph...

  8. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel.

    Science.gov (United States)

    Dmitrieva, O; Choi, P; Gerstl, S S A; Ponge, D; Raabe, D

    2011-05-01

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Giant pulses of the Crab Nebula pulsar as an indicator of a strong electromagnetic wave

    Science.gov (United States)

    Popov, M. V.; Rudnitskii, A. G.; Soglasnov, V. A.

    2017-03-01

    The spectra and visibility functions of giant pulses of the Crab Nebula pulsar derived from VLBI observations carried out through the "RadioAstron" project in 2015 are analyzed. Parameters of the scattering of the pulses in the interstellar medium are measured, namely, the scattering time and decorrelation bandwidth. A comparative analysis of the shapes of the spectra and visibility functions of giant pulses obtained in real observations and via modeling of their scattering is carried out. The results suggest the presence of short bursts ( dt leading to the generation of additional radiation perpendicular to the direction of propagation of the giant pulses. This radiation may be associated with anomalous components of the mean pulse profile observed at frequencies above 4 GHz.

  10. Optimization of Short-Pulse GPR Transmit Antenna

    Institute of Scientific and Technical Information of China (English)

    LI Tai-quan; TIAN Mao; XU Ji-sheng

    2004-01-01

    By analyzing the current distribution of Bow-Tie antenna used in short-pulse ground penetrating radar, the methods of antenna load and driving are presented in this paper to reduce strength of reflective wave both at antenna end and excitation point. The numerical simulation results show the strength of reflective wave is smaller than -55 dB comparing with the driving wave when the methods are adopted.

  11. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  12. Pulse crop diseases in the Pacific Northwest

    Science.gov (United States)

    The United Nations declared that 2016 is the International Year of Pulses (IYP). This UN declaration of IYP will certainly increase awareness of pulses and likely position pulses as a primary source of protein and other essential nutrients for human diets. The US Pacific Northwest region (Idaho, Or...

  13. REFLECTANCE PULSE OXIMETRY IN FETAL LAMBS

    NARCIS (Netherlands)

    DASSEL, AC; GRAAFF, R; AARNOUDSE, JG; ELSTRODT, JM; HEIDA, P; KOELINK, MH; DEMUL, FF; GREVE, J

    1992-01-01

    Transmission pulse oximetry is used for monitoring in many clinical settings. However, for fetal monitoring during labor and in situations with poor peripheral perfusion, transmission pulse oximetry cannot be used. Therefore, we developed a reflectance pulse oximeter, which uses the relative intensi

  14. Hg-Arc Lamp, Pulse Excitation.

    Science.gov (United States)

    1986-09-01

    References 1. "Pulsed Mercury Capillary Lamps .,"P. Dal Pozzo, R. Polloni, and 0. Svelto , J. Appi. Phys. 6, 342 (1975). * 2. "Pulsed High-Pressure Mercury...Capillary Lamps .. ,P. Dal Pozzo, R. Polloni, * and 0. Svelto , J. Appi. Phys. 6, 381 (1975). 3. "Characteristics of the Radiation Pulses of Very-High

  15. A self-consistent Maltsev pulse model

    Science.gov (United States)

    Buneman, O.

    1985-04-01

    A self-consistent model for an electron pulse propagating through a plasma is presented. In this model, the charge imbalance between plasma ions, plasma electrons and pulse electrons creates the travelling potential well in which the pulse electrons are trapped.

  16. High speed, high current pulsed driver circuit

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  17. Nonspreading Light Pulses in Photonic Crystals

    OpenAIRE

    Staliunas, K.; Serrat, C.; Herrero, R; Cojocaru, C.; Trull, J.

    2005-01-01

    We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find the family of nonspreading pulses, propagating invariantly in the vicinity of the zero diffraction point of photonic crystals.

  18. Double pulse Thomson scattering system at RTP

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator fo

  19. <3> OMEGA pulse-forming network

    CERN Multimedia

    1974-01-01

    Adjustement of the 3 W pulse-forming network of the SPS beam dumping system. When charged at 60 kV, this PFN gives 10 kA, 25 ms current pulses, with oscillations, superimposed on the pulse flat top, of an amplitude of +/- 1 Ka.

  20. Perceptions of European stakeholders of pulse fishing

    NARCIS (Netherlands)

    Kraan, M.L.; Trapman, B.K.; Rasenberg, M.M.M.

    2015-01-01

    This research project examines the concerns and questions of European stakeholders about pulse fishing, in order to assess to what extent the knowledge agenda on pulse fishing covers these issues. To get a first impression of the concerns about pulse fishing, and to get an idea of the stakeholders t

  1. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  2. Irradiation of the amorphous carbon films by picosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcinauskas, L., E-mail: liutauras.marcinauskas@ktu.lt [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Grigonis, A. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Račiukaitis, G.; Gedvilas, M. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius (Lithuania); Vinciūnaitė, V. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2015-10-30

    The effect of a picosecond laser irradiation on structure modification of diamond-like carbon (DLC) and graphite-like carbon (GLC) films was analyzed in this work. The DLC films were irradiated by Nd:YVO{sub 4} laser operating at the 532 nm wavelength with the picosecond (10 ps) pulse duration at the fluence in the range of (0.08–0.76) J/cm{sup 2}. The GLC films were irradiated only at the fluence of 0.76 J/cm{sup 2}. The different pulse number (1, 10, and 100) was used for irradiation the films. The micro-Raman spectroscopy measurements indicated that the laser irradiation led to rearrangement of the sp{sup 3} C–C bonds to the sp{sup 2} C=C bonds in the DLC films. The formation of silicon carbide (SiC) was found in the irradiated spot after 10 and 100 pulses. Modifications in the structure of the DLC film took place even in the areas with low intensity of the Gaussian beam wings (heat affected areas). The increase in the oxygen concentration up to ten times was detected in the heat affected areas after 100 pulses. Opposite to that, the laser irradiation decreased the oxygen concentration and smoothened the surface microrelief of the GLC films. The bonding type remained unchanged in the GLC films even after irradiation with 100 pulses per spot. - Highlights: • The picosecond laser irradiation led to the rearrangement of sp{sup 3} C-C to the sp{sup 2} C = C bonds in the diamond-like carbon film. • The ps-laser irradiation of the DLC films stipulates appearance of the aromatic carbon structures. • The bonding type of the graphite-like carbon films remained unchanged even after ps laser irradiation with 100 pulses.

  3. Isolated sub-10 attosecond pulse generation by a 6-fs driving pulse and a 5-fs subharmonic controlling pulse

    Directory of Open Access Journals (Sweden)

    Yunhui Wang

    2012-06-01

    Full Text Available We theoretically study high-order harmonic generation by quantum path control in a special two-color laser field, which is synthesized by a 6 fs/800 nm fundamental pulse and a weaker 5 fs/1600 nm subharmonic controlling pulse. Single quantum path is selected without optimizing any carrier phase, which not only broadens the harmonic bandwidth to 400 eV, but also enhances the harmonic conversion efficiency in comparison with the short-plus-long scheme, which is based on 5 fs/800 nm driving pulse and 6 fs/1600 nm control pulse. An isolated 8-attosecond pulse is produced with currently available ultrafast laser sources.

  4. On-Demand Urine Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this program (through Phase III) is to develop an analyzer that can be integrated into International Space Station (ISS) toilets to measure key...

  5. A method for analyzing strategic product launch

    OpenAIRE

    XIAO Junji

    2007-01-01

    This paper proposes a method to analyze how the manufacturers make product launch decisions in a multi-product oligopoly market, and how the heterogeneity in their products affects the manufacturers' decisions on model launch and withdrawal.

  6. Analyzing and Interpreting Research in Health Education ...

    African Journals Online (AJOL)

    While qualitative research is used when little or nothing is known about the subject, ... and/or grounded theoretical approaches that are analyzable by comparison, ... While qualitative research is interpreted by inductive reasoning, quantitative ...

  7. Low Gravity Drug Stability Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this proposed program (through Phase III) is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation....

  8. Low Gravity Drug Stability Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed program through Phase III is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation. It will be...

  9. Ultrasensitive Atmospheric Analyzer for Miniature UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I effort, Los Gatos Research (LGR) proposes to develop a highly-accurate, lightweight, low-power gas analyzer for quantification of water vapor...

  10. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  11. Network analysis using organizational risk analyzer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tool system of the organizational risk analyzer (ORA) to study the network of East Turkistan terrorists is selected. The model of the relationships among its personnel, knowledge, resources and task entities is represented by the meta-matrix in ORA, with which to analyze the risks and vulnerabilities of organizational structure quantitatively, and obtain the last vulnerabilities and risks of the organization. Case study in this system shows that it should be a shortcut to destroy effectively the network...

  12. Analyzing storage media of digital camera

    OpenAIRE

    Chow, KP; Tse, KWH; Law, FYW; Ieong, RSC; Kwan, MYK; Tse, H.; Lai, PKY

    2009-01-01

    Digital photography has become popular in recent years. Photographs have become common tools for people to record every tiny parts of their daily life. By analyzing the storage media of a digital camera, crime investigators may extract a lot of useful information to reconstruct the events. In this work, we will discuss a few approaches in analyzing these kinds of storage media of digital cameras. A hypothetical crime case will be used as case study for demonstration of concepts. © 2009 IEEE.

  13. The Information Flow Analyzing Based on CPC

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhang; LI Hui

    2005-01-01

    The information flow chart within product life cycle is given out based on collaborative production commerce (CPC) thoughts. In this chart, the separated information systems are integrated by means of enterprise knowledge assets that are promoted by CPC from production knowledge. The information flow in R&D process is analyzed in the environment of virtual R&D group and distributed PDM. In addition, the information flow throughout the manufacturing and marketing process is analyzed in CPC environment.

  14. QUBIT DATA STRUCTURES FOR ANALYZING COMPUTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vladimir Hahanov

    2014-11-01

    Full Text Available Qubit models and methods for improving the performance of software and hardware for analyzing digital devices through increasing the dimension of the data structures and memory are proposed. The basic concepts, terminology and definitions necessary for the implementation of quantum computing when analyzing virtual computers are introduced. The investigation results concerning design and modeling computer systems in a cyberspace based on the use of two-component structure are presented.

  15. Analyte comparisons between 2 clinical chemistry analyzers.

    OpenAIRE

    Sutton, A; Dawson, H; Hoff, B; Grift, E; Shoukri, M

    1999-01-01

    The purpose of this study was to assess agreement between a wet reagent and a dry reagent analyzer. Thirteen analytes (albumin, globulin, alkaline phosphatase, alanine aminotransferase, amylase, urea nitrogen, calcium, cholesterol, creatinine, glucose, potassium, total bilirubin, and total protein) for both canine and feline serum were evaluated. Concordance correlations, linear regression, and plots of difference against mean were used to analyze the data. Concordance correlations were excel...

  16. Spectrum analysis of rectangular pulse in the atmospheric turbulence propagation

    Science.gov (United States)

    Liu, Yi; Ni, Xiaolong; Jiang, Huilin; Wang, Junran; Liu, Zhi

    2016-11-01

    Atmospheric turbulence has a great influence on the performance of the atmospheric laser communication system reducing the signal to noise ratio (SNR) and increasing the bit error rate (BER). However, there is rarely study on the effect of atmospheric turbulence on the power spectrum of the rectangular pulse. In this paper, a spectral analyzing method is used to analyze the influence of atmospheric turbulence on the signal. An experiment of laser beam propagation characteristic is carried out on a 6km horizontal atmospheric link, the wavelength is 808 nm. The signal is 100MHz rectangular pulse. The waveform of the rectangular pulse is collected by the oscilloscope, and the power spectral density of the signal is calculated and analyzed by the method of periodogram. Experimental results show that the response and noise characteristics of the laser and photoelectric detector have a great influence on the signal power spectrum distribution which can increase the noise component in the 10^6 Hz frequency range. After the atmospheric turbulence propagation, the signal power decreases in the whole frequency range. However, as the existence of atmospheric turbulence, the signal power increases in the atmospheric turbulence characteristic frequency (tens to hundreds of Hz). The noise power increases in the high frequency range (10^7 10^8 Hz).

  17. Temporal and lateral electron pulse compression by a compact spherical electrostatic capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: kgrzelakowski@op.pl [OPTICON Nanotechnology, Muchoborska 18, PL54-424 Wrocław (Poland); Tromp, Rudolf M. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2013-07-15

    A novel solution for high intensity electron pulse compression in both space and time is proposed in this paper. Based on the unique properties of the central-force electrostatic field of a spherical electrostatic capacitor, the newly developed α-Spherical Deflector Analyzer (α-SDA) with 2π total deflection is utilized for the practical realization of femtosecond electron pulse compression. The mirror symmetry of the system at π deflection causes not only the cancellation of the geometrical and chromatic aberrations at 2π, but also leads to aberration-free time reversal of the electron pulse in the exit plane. As a consequence, the time-divergent electrons at the input are transformed to a time-convergent pulse at the output. In the symmetric case with the first time compression exactly at π, the shortest electron pulse behind the α-SDA analyzer is a mirror symmetric to the original electron pulse at the photocathode. It results in extremely short final electron pulses that are limited only by the duration of the laser pulse, the emittance of the electron bunch, and by imperfections of the real system. - Highlights: • We propose a new method for spatial and temporal compression of ultrafast electron pulses. • Compact in-line construction is based on the idea of the spherical electrostatic capacitor (α-SDA). • It is free of chromatic, geometrical and temporal aberrations after 2π deflection. • Contrary to other methods it enables time reversal of the pulse with static electric fields only. • Spatial and temporal focus can be independently fine-adjusted at the target position.

  18. A Method for Distinguishing Attosecond Single Pulse from Attosecond Pulse Train

    Institute of Scientific and Technical Information of China (English)

    HUO Yi-Ping; ZENG Zhi-Nan; LI Ru-Xin; XU Zhi-Zhan

    2004-01-01

    @@ The driving laser field assisted attosecond soft-extreme-ultraviolet (XUV) photo-ionization was used successfully to measure the duration of the attosecond pulse based on the cross-correlation method. However, this method in principle cannot distinguish a single attosecond pulse from the attosecond pulse train. We propose a technique for directly distinguishing attosecond single pulse from attosecond pulse train based on the photo-ionization of atoms by attosecond XUV pulse in the presence of a two-colour strong laser pulse.

  19. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  20. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    Science.gov (United States)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P.; Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K.

    2012-02-01

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 μs duration. The duration of the electron beam has been varied from 30 ns to 2 μs with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  1. Unsplit bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  2. Pulsed Power Driven Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  3. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  4. Pulsed DEMO design assessment studies

    CERN Document Server

    Todd, T N

    2013-01-01

    Now that ITER is under construction, interest is increasing in the specification and design of the successor machine, a Demonstration Power Plant (DEMO), which in Europe is coordinated by the EFDA Power Plant Physics and Technology programme. This paper summarises the work carried out for EFDA in 2011-2012 on design issues pertinent to a pulsed version of DEMO, intended to be implemented with little or no extrapolation of technology available today. The work was carried out by the Euratom Fusion Associations CCFE, CEA, CRPP, ENEA and KIT, and in addition to a review of recent relevant literature addressed systems code analyses (pulse length vs. size), erosion of plasma facing components, thermomechanical fatigue in the blanket and first wall, a range of energy storage issues, and fatigue life improvements in Nb3Sn CICC superconductors.

  5. Optimal filter bandwidth for pulse oximetry

    Science.gov (United States)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  6. Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation

    Directory of Open Access Journals (Sweden)

    B. Shank

    2014-11-01

    Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  7. Nonlinear Optimal Filter Technique For Analyzing Energy Depositions In TES Sensors Driven Into Saturation

    CERN Document Server

    Shank, B; Cabrera, B; Kreikebaum, J M; Moffatt, R; Redl, P; Young, B A; Brink, P L; Cherry, M; Tomada, A

    2014-01-01

    We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  8. Ultrashort-pulse laser calligraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weijia; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, SO17 1BJ (United Kingdom); Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2008-10-27

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  9. Ultrashort-pulse laser calligraphy

    Science.gov (United States)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  10. a Portable Pulsed Neutron Generator

    Science.gov (United States)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  11. Complicated Laser Pulse Generation With Pulse Stacking for D-D ICF

    Institute of Scientific and Technical Information of China (English)

    GAO; Zhi-xing; WANG; Lei-jian; LU; Ze; ZHANG; Hai-feng

    2012-01-01

    <正>For direct drive fusion, a pre-distorted pulse with the complicated temporal shape is necessary. It is generally accepted that the pulse for shock ignition should begin with a low energy pre-pulse spike (picket) followed by a long (about 10 ns) low intensity foot pulse, which ramps up to an intermediate pedestal (compression pulse) and ends with a short high intensity spike.

  12. Efficient High-Energy Pulse-Train Generation Using a 2 n-Pulse Michelson Interferometer.

    Science.gov (United States)

    Siders, C W; Siders, J L; Taylor, A J; Park, S G; Weiner, A M

    1998-08-01

    We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100% for a polarization-multiplexed train and 50% for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2(n)-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses.

  13. Method for Generating a Compressed Optical Pulse

    DEFF Research Database (Denmark)

    2015-01-01

    There is presented a method of for generating a compressed optical pulse (112) comprising emitting from a wavelength tunable microcavity laser system (102), comprising an optical cavity (104) with a mechanically adjustable cavity length (L), a primary optical pulse (111) having a primary temporal...... width (Tl) while adjusting the optical cavity length (L) so that said primary optical pulse comprises temporally separated photons of different wavelengths, and transmitting said pulse through a dispersive medium (114), so as to generate a compressed optical pulse (112) with a secondary temporal width...

  14. Optimal pseudorandom pulse position modulation ladar waveforms.

    Science.gov (United States)

    Fluckiger, David U; Boland, Brian F; Marcus, Eran

    2015-03-20

    An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.

  15. Progress in time transfer by laser pulses

    Science.gov (United States)

    Li, Xin; Yang, Fu-Min

    2004-03-01

    Time transfer by laser pulses is based on the propagation of light pulses between satellite and ground clocks or between remote clocks on earth. It will realize the synchronization of these clocks with high accuracy and stability. Several experiments of the time transfer by laser pulses had been successfully carried out in some countries. These experiments validate the feasibility of the synchronization of clocks by laser pulses. The paper describes the results of these experiments. The time comparison by laser pulses between atomic clocks on aircraft and ground ones in the United States, and the LASSO and T2L2 projects in France are introduced in detail.

  16. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  17. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  18. Analyzing visual signals as visual scenes.

    Science.gov (United States)

    Allen, William L; Higham, James P

    2013-07-01

    The study of visual signal design is gaining momentum as techniques for studying signals become more sophisticated and more freely available. In this paper we discuss methods for analyzing the color and form of visual signals, for integrating signal components into visual scenes, and for producing visual signal stimuli for use in psychophysical experiments. Our recommended methods aim to be rigorous, detailed, quantitative, objective, and where possible based on the perceptual representation of the intended signal receiver(s). As methods for analyzing signal color and luminance have been outlined in previous publications we focus on analyzing form information by discussing how statistical shape analysis (SSA) methods can be used to analyze signal shape, and spatial filtering to analyze repetitive patterns. We also suggest the use of vector-based approaches for integrating multiple signal components. In our opinion elliptical Fourier analysis (EFA) is the most promising technique for shape quantification but we await the results of empirical comparison of techniques and the development of new shape analysis methods based on the cognitive and perceptual representations of receivers. Our manuscript should serve as an introductory guide to those interested in measuring visual signals, and while our examples focus on primate signals, the methods are applicable to quantifying visual signals in most taxa.

  19. Extraction of pulse repetition intervals from sperm whale click trains for ocean acoustic data mining.

    Science.gov (United States)

    Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel

    2013-02-01

    The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.

  20. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  1. Electron-Positron Pair Production in Structured Pulses of Electric Fields

    CERN Document Server

    Kohlfürst, Christian

    2012-01-01

    The non-perturbative electron-positron pair production in time-dependent electric fields is investigated. The quantum kinetic formalism is employed in order to calculate the electron density for various field configurations. The corresponding set of first order, ordinary differential equations is analyzed and numerically solved. The focus of this study lies on the dynamically assisted Schwinger effect in pulsed electric fields with at least two different time scales. Furthermore, interference effects arising in setups with multiple pulses are examined and first results for an optimization of the particle number yield by pulse-shaping are given.

  2. Experimental study on the single event latchup simulated by a pulse laser

    Institute of Scientific and Technical Information of China (English)

    Yang Shiyu; Cao Zhou; Li Danming; Xue Yuxiong; Tian Kai

    2009-01-01

    This paper introduces major characteristics of the single event latchup (SEL) in CMOS devices. We accomplish SEL tests for CPU and SRAM devices through the simulation by a pulse laser. The laser simulation results give the energy threshold for samples to undergo SEL. SEL current pulses are measured for CMOS devices in the latchup state, the sensitive areas in the devices are acquired, the major traits, causing large scale circuits to undergo SEL, are summarized, and the test equivalence between a pulse laser and ions is also analyzed.

  3. Genetic optimization of attosecond pulse generation in light-field synthesizers

    CERN Document Server

    Balogh, E; Tosa, V; Goulielmakis, E; Varjú, K; Dombi, P

    2014-01-01

    We demonstrate control over attosecond pulse generation and shaping by numerically optimizing the synthesis of few-cycle to sub-cycle driver waveforms. The optical waveform synthesis takes place in an ultrabroad spectral band covering the ultraviolet-infrared domain. These optimized driver waves are used for ultrashort single and double attosecond pulse production (with tunable separation) revealing the potentials of the light wave synthesizer device demonstrated by Wirth et al. [Science 334, 195 (2011)]. The results are also analyzed with respect to attosecond pulse propagation phenomena.

  4. Effects of Beam Size and Pulse Duration on the Laser Drilling Process

    CERN Document Server

    Afrin, Nazia; Chen, J K; Zhang, Yuwen

    2016-01-01

    A two-dimensional axisymmetric transient laser drilling model is used to analyze the effects of laser beam diameter and laser pulse duration on the laser drilling process. The model includes conduction and convection heat transfer, melting, solidification and vaporization, as well as material removal resulting from the vaporization and melt ejection. The validated model is applied to study the effects of laser beam size and pulse duration on the geometry of the drilled hole. It is found that the ablation effect decrease with the increasing beam diameter due to the effect of increased vaporization rate, and deeper hole is observed for the larger pulse width due to the higher thermal ablation efficiency.

  5. Temporal transformation of periodic incoherent ultrashort light pulses by chirped fiber gratings.

    Science.gov (United States)

    Zalvidea, Dobryna; Duchowicz, Ricardo; Sicre, Enrique E

    2004-05-20

    The analogy between free-space propagation of optical beams and light-pulse reflection from linearly chirped fiber gratings is used to analyze the Lau effect in the temporal domain. The coherence conditions that are satisfied in the spatial domain for obtaining, at certain fixed locations, periodic fringes patterns are reformulated for guided light propagation. In this analogy, spatial periodic irradiance distributions are transformed in periodic sequences of light pulses. An optical setup is proposed to produce sharp pulse trains, with minimal distortion effects, that have repetition frequencies that are different from those associated with the input periodic optical signal. Some numerical results are given to illustrate this approach.

  6. Stimulated Raman scattering of light absorbing media excited by ultrashort laser pulses

    Science.gov (United States)

    Marchevskiy, F. N.; Strizhevskiy, V. L.; Feshchenko, V. P.

    1985-01-01

    The fluctuation-dissipation theory of spontaneous and stimulated vibration Raman scattering is worked out taking into account the dissipation losses at frequencies of laser pump and scattering radiation. General expressions are found, which describe the absolute intensities and shape, energy and duration of scattered pulses in terms of the parameters of the medium and the the input laser pulses. The general regularities are analyzed in detail. Conditions are found for the realization of spontaneous or stimulated Raman scattering and its dependence on absorption, pulse duration and other parameters of the problem.

  7. Three-dimensional numerical simulation of the basic pulse tube refrigerator

    Institute of Scientific and Technical Information of China (English)

    Wenjing DING; Liang GONG; Yaling HE; Wenquan TAO

    2008-01-01

    A three-dimensional physical and numerical model of the basic pulse tube refrigerator (PTR) was developed. The compressible and oscillating fluid flow and heat transfer phenomenon in the pulse tube were numerically investigated using a self-developed code. Some cross-section average parameter variations such as velocity, temperature and pressure wave during one cycle were revealed. The variations of velocity and temperature distributions in the pulse tube were also analyzed in detail for further understanding of the working process and refrigeration mechanism of PTRs.

  8. Effect of PMD-induced Pulse Broadening on Sensitivity and Frequency Spectrum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The PMD-induced pulse broadening may cause the degradation of receiver sensitivity and has negative effects on the power spectrum of received signals. The expressions of PMD-induced pulse broadening effects on receiver sensitivity are derived based on the concept of mean square pulse width. The effects of PMD on the spectrum of received power are analyzed in detail. Finally, the scheme is discussed with which the power of a certain frequency component is extracted as a feedback control signal in a PMD compensation system.

  9. Nutritional and health benefits of pulses.

    Science.gov (United States)

    Mudryj, Adriana N; Yu, Nancy; Aukema, Harold M

    2014-11-01

    Pulses (beans, peas, and lentils) have been consumed for at least 10 000 years and are among the most extensively used foods in the world. A wide variety of pulses can be grown globally, making them important both economically as well as nutritionally. Pulses provide protein and fibre, as well as a significant source of vitamins and minerals, such as iron, zinc, folate, and magnesium, and consuming half a cup of beans or peas per day can enhance diet quality by increasing intakes of these nutrients. In addition, the phytochemicals, saponins, and tannins found in pulses possess antioxidant and anti-carcinogenic effects, indicating that pulses may have significant anti-cancer effects. Pulse consumption also improves serum lipid profiles and positively affects several other cardiovascular disease risk factors, such as blood pressure, platelet activity, and inflammation. Pulses are high in fibre and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels. Emerging research examining the effect of pulse components on HIV and consumption patterns with aging populations indicates that pulses may have further effects on health. In conclusion, including pulses in the diet is a healthy way to meet dietary recommendations and is associated with reduced risk of several chronic diseases. Long-term randomized controlled trials are needed to demonstrate the direct effects of pulses on these diseases.

  10. The Pulse Line Ion Accelerator Concept

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  11. Pulse detonation engines and components thereof

    Science.gov (United States)

    Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)

    2009-01-01

    A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.

  12. Plasma response to transient high voltage pulses

    Indian Academy of Sciences (India)

    S Kar; S Mukherjee

    2013-07-01

    This review reports on plasma response to transient high voltage pulses in a low pressure unmagnetized plasma. Mainly, the experiments are reviewed, when a disc electrode (metallic and dielectric) is biased pulsed negative or positive. The main aim is to review the electron loss in plasmas and particle balance during the negative pulse electrode biasing, when the applied pulse width is less than the ion plasma period. Though the applied pulse width is less than the ion plasma period, ion rarefaction waves are excited. The solitary electron holes are reviewed for positive pulsed bias to the electrode. Also the excitation of waves (solitary electron and ion holes) is reviewed for a metallic electrode covered by a dielectric material. The wave excitation during and after the pulse withdrawal, excitation and propagation characteristics of various electrostatic plasma waves are reviewed here.

  13. Phytochemicals for health, the role of pulses.

    Science.gov (United States)

    Rochfort, Simone; Panozzo, Joe

    2007-10-03

    Pulses are the seeds of legumes that are used for human consumption and include peas, beans, lentils, chickpeas, and fava beans. Pulses are an important source of macronutrients, containing almost twice the amount of protein compared to cereal grains. In addition to being a source of macronutrients and minerals, pulses also contain plant secondary metabolites that are increasingly being recognised for their potential benefits for human health. The best-studied legume is the soybean, traditionally regarded as an oilseed crop rather than a pulse. The potential health benefits of soy, particularly with respect to isoflavone content, have been the subject of much research and the focus of several reviews. By comparison, less is known about pulses. This review investigates the health potential of pulses, examining the bioactivity of pulse isoflavones, phytosterols, resistant starch, bioactive carbohydrates, alkaloids and saponins. The evidence for health properties is considered, as is the effect of processing and cooking on these potentially beneficial phytochemicals.

  14. Slow light pulse propagation in dispersive media

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei

    2009-01-01

    -difference-time-domain Maxwell-Bloch simulations and compared to analytic results. For long pulses the group index (transmission) for the combined system is significantly enhanced (reduced) relative to slow light based on purely material or waveguide dispersion. Shorter pulses are strongly distorted and depending on parameters......We present a theoretical and numerical analysis of pulse propagation in a semiconductor photonic crystal waveguide with embedded quantum dots in a regime where the pulse is subjected to both waveguide and material dispersion. The group index and the transmission are investigated by finite...... broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All...

  15. Theoretical analysis and numerical solution of laser pulse transformation for satellite laser ranging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The processes of the pulse transformation in satellite laser ranging (SLR) are analyzed,the analytical expressions of the transformation are deduced,and the effects of the transformation on Center-of-Mass corrections of satellite and ranging precision are discussed.The numerical solution of the transformation and its effects are also given.The results reveal the rules of pulse transformation affected by different kinds of factors.These are significant for designing the SLR system with millimeter accuracy.

  16. Damage assessment of long-range rocket system by electromagnetic pulse weapon

    Science.gov (United States)

    Cao, Lingyu; Liu, Guoqing; Li, Jinming

    2017-08-01

    This paper analyzes the damage mechanism and characteristics of electromagnetic pulse weapon, establishes the index system of survivability of long-range rocket launcher system, and uses AHP method to establish the combat effectiveness model of long-range rocket missile system. According to the damage mechanism and characteristics of electromagnetic pulse weapon, the damage effect of the remote rocket system is established by using the exponential method to realize the damage efficiency of the remote rocket system.

  17. Multidiagnostic analysis of ultrafast laser ablation of metals with pulse pair

    OpenAIRE

    LUNNEY, JAMES

    2010-01-01

    PUBLISHED Copper targets are irradiated in the ablation regime by pairs of equal, time-delayed collinear laser pulses separated on a timescale going from 2 ps to 2 ns. The ablation plume is characterized by ion probe diagnostic, fast imaging, and temporally and spatially resolved optical emission spectroscopy. The variation in the ablation efficiency with the delay between the pulses is analyzed by measuring the ablation crater profile with a contact profilometer. The second ...

  18. SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.

  19. A resource-efficient adaptive Fourier analyzer

    Science.gov (United States)

    Hajdu, C. F.; Zamantzas, C.; Dabóczi, T.

    2016-10-01

    We present a resource-efficient frequency adaptation method to complement the Fourier analyzer proposed by Péceli. The novel frequency adaptation scheme is based on the adaptive Fourier analyzer suggested by Nagy. The frequency adaptation method was elaborated with a view to realizing a detector connectivity check on an FPGA in a new beam loss monitoring (BLM) system, currently being developed for beam setup and machine protection of the particle accelerators at the European Organisation for Nuclear Research (CERN). The paper summarizes the Fourier analyzer to the extent relevant to this work and the basic principle of the related frequency adaptation methods. It then outlines the suggested new scheme, presents practical considerations for implementing it and underpins it with an example and the corresponding operational experience.

  20. Beam profile analyzer for CO2 lasers

    Directory of Open Access Journals (Sweden)

    Rubén López

    2015-12-01

    Full Text Available The development of an optoelectronic system to analyze the beam intensity profile of CO2 lasers is presented herein. The device collects the beam profile with a LiTaO3 pyroelectric detector and uses a sampling technique based on the acquisition of horizontal sections at different levels. The digital signal processing includes subroutines that drop down two dimensional and three dimensional beam profile displays to determine the laser beam parameters of optical power, peak pixel location, centroid location and width of the laser beam, with algorithms based on the ISO 11146 standard. With the systematic calibration of the analyzer was obtained in the measurement of power an error under 5%, for a 20–200 W range and an error under 1.6% for spatial measurements of a TEM00 laser. By design, the analyzer can be used during the laser process.