WorldWideScience

Sample records for pulsating reverse detonation

  1. Pulsating reverse detonation models of Type Ia supernovae. I: Detonation ignition

    CERN Document Server

    Bravo, Eduardo

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf. Although several scenarios have been proposed and explored by means of one, two, and three-dimensional simulations, the key point still is the understanding of the conditions under which a stable detonation can form in a destabilized white dwarf. One of the possibilities that have been invoked is that an inefficient deflagration leads to the pulsation of a Chandrasekhar-mass white dwarf, followed by formation of an accretion shock around a carbon-oxygen rich core. The accretion shock confines the core and transforms kinetic energy from the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work we explore the robustness of the detonation ignition for different PRD models characterized by the amount of mass burned during the deflagration phase, M_defl. The ev...

  2. Pulsating reverse detonation models of Type Ia supernovae. I. Detonation ignition

    OpenAIRE

    Bravo Guil, Eduardo; García Senz, Domingo

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf. Although several scenarios have been proposed and explored by means of one, two, and three-dimensional simulations, the key point still is the understanding of the conditions under which a stable detonation can form in a destabilized white dwarf. One of the possibilities that have been invoked is that an inefficient deflagration leads to the pulsation of a Chandr...

  3. Beyond the bubble catastrophe of type Ia supernovae: Pulsating reverse detonation models

    OpenAIRE

    Bravo Guil, Eduardo; García Senz, Domingo

    2006-01-01

    We describe a mechanism by which a failed deflagration of a Chandrasekhar-mass carbon-oxygen white dwarf can turn into a successful thermonuclear supernova explosion, without invoking an ad hoc high-density deflagration-detonation transition. Following a pulsating phase, an accretion shock develops above a core of 1 M_sun composed of carbon and oxygen, inducing a converging detonation. A three-dimensional simulation of the explosion produced a kinetic energy of 1.05E51 ergs and 0.70 M_sun of ...

  4. Beyond the bubble catastrophe of Type Ia supernovae: Pulsating Reverse Detonation models

    CERN Document Server

    Bravo, E; Bravo, Eduardo; Garcia-Senz, Domingo

    2006-01-01

    We describe a mechanism by which a failed deflagration of a Chandrasekhar-mass carbon-oxygen white dwarf can turn into a successful thermonuclear supernova explosion, without invoking an ad hoc high-density deflagration-detonation transition. Following a pulsating phase, an accretion shock develops above a core of 1 M_sun composed of carbon and oxygen, inducing a converging detonation. A three-dimensional simulation of the explosion produced a kinetic energy of 1.05E51 ergs and 0.70 M_sun of 56Ni, ejecting scarcely 0.01 M_sun of C-O moving at low velocities. The mechanism works under quite general conditions and is flexible enough to account for the diversity of normal Type Ia supernovae. In given conditions the detonation might not occur, which would reflect in peculiar signatures in the gamma and UV-wavelengths

  5. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  6. The Detonation Mechanism of the Pulsationally Assisted Gravitationally Confined Detonation Model of Type Ia Supernovae

    Science.gov (United States)

    Jordan, G. C., IV; Graziani, C.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Weide, K.; Reid, L. B.; Norris, J.; Hudson, R.; Lamb, D. Q.

    2012-11-01

    We describe the detonation mechanism composing the "pulsationally assisted" gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and 56Ni yields conform better to observational values than is the case for the "classical" GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  7. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wenhu [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Wang, Cheng [Beijing Institute of Technology, Beijing 100081 (China); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-15

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  8. The Detonation Mechanism of the Pulsationally-Assisted Gravitationally-Confined Detonation Model of Type Ia Supernovae

    CERN Document Server

    Jordan, G C; Fisher, R T; Townsley, D M; Meakin, C; Weide, K; Reid, L B; Norris, J; Hudson, R; Lamb, D Q

    2012-01-01

    We describe the detonation mechanism comprising the "Pulsationally Assisted" Gravitationally Confined Detonation (GCD) model of Type Ia supernovae (SNe Ia). This model is analogous to the previous GCD model reported in Jordan (2008); however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final energy releases and nickel-56 yields conform better to observational values than is the case for the "classical" GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initia...

  9. Relations of pulsatility index and particle residence time to the wall-shear-stress properties in pulsating flows with reverse flow phase

    CERN Document Server

    Kersh, Dikla

    2013-01-01

    Pulsating flows with a \\emph{total reverse flow} phase are ubiquitous in physiological systems in normal and pathological conditions. Irregularity of hemodynamic parameters in such flows is correlated with the appearance and development of several arterial pathologies. We study the relations between flow waveform parameters and the wall shear stress (WSS) related quantities such as mean, root-mean-square, gradient of WSS and the oscillating shear index. The phase-averaged velocity profiles measured by the digital particle image velocimetry are used to estimate WSS utilizing the Womersley pulsating flow model. In addition to the Reynolds and Womersley numbers, another dimensionless parameter, pulsating index (PI) which is the ratio of forward flow rate to the reverse flow rate is required. PI is essential for the complete description of the flow patterns with the total flow reversal. We demonstrate significant effects on the WSS quantities due to the pulsating frequency and PI. Furthermore, the particle reside...

  10. Detonation control

    Science.gov (United States)

    Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2016-10-25

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  11. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  12. Hybrid Pulsators -- Pulsating Stars with Multiple Identities

    CERN Document Server

    Zhou, A -Y

    2015-01-01

    We have carried out a statistic survey on the pulsating variable stars with multiple identities. These stars were identified to exhibit two types of pulsation or multiple light variability types in the literature, and are usually called hybrid pulsators. We extracted the hybrid information based on the Simbad database. Actually, all the variables with multiple identities are retrieved. The survey covers various pulsating stars across the Hertzsprung-Russell diagram. We aim at giving a clue in selecting interesting targets for further observation. Hybrid pulsators are excellent targets for asteroseismology. An important implication of such stars is their potential in advancing the theories of both stellar evolution and pulsation. By presenting the statistics, we address the open questions and prospects regarding current status of hybrid pulsation studies.

  13. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan

    2015-10-08

    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine. The first and second inlets can be aligned along a common axis. The inlets can be connected to nozzles and a separator can be positioned between the nozzles and along the common axis.

  14. Nano-scale spinning detonation in condensed phase energetic materials

    Science.gov (United States)

    Zhakhovsky, Vasily; Budzevich, Mikalai; Landerville, Aaron; White, Carter; Oleynik, Ivan

    2013-06-01

    Single- and multi-headed spinning detonation waves are observed in molecular dynamics simulations of a condensed phase detonation of an energetic material (EM) confined in round tubes of different radii. The EM is modeled using a modified AB Reactive Empirical Bond Order potential. The thermochemistry and reactive equation of state are varied by adjusting the barrier height for the exothermic reaction AB +B --> A +BB. This allows us to study the evolution of the detonation-wave structure as a function of physico-chemical properties of the AB explosive. The detonation wave is found to exhibit a pulsating planar front in a tube of 8 nm radius, which later collapses due to the development of longitudinal perturbations. Upon increase of the tube's radius to 16 nm, the detonation wave structure is stabilized through the development of a single-headed spinning detonation. The spinning detonation displays a four-wave configuration, including incident, oblique, transverse, and contact shock waves. The contact shock generated by a contact discontinuity is observed for the first time in our MD simulations. A multi-headed turbulent-like detonation structure develops within tubes of larger radii, and exhibit features similar to those observed in gases.

  15. Qualitative modeling of the dynamics of detonations with losses

    KAUST Repository

    Faria, Luiz

    2015-01-01

    We consider a simplified model for the dynamics of one-dimensional detonations with generic losses. It consists of a single partial differential equation that reproduces, at a qualitative level, the essential properties of unsteady detonation waves, including pulsating and chaotic solutions. In particular, we investigate the effects of shock curvature and friction losses on detonation dynamics. To calculate steady-state solutions, a novel approach to solving the detonation eigenvalue problem is introduced that avoids the well-known numerical difficulties associated with the presence of a sonic point. By using unsteady numerical simulations of the simplified model, we also explore the nonlinear stability of steady-state or quasi-steady solutions. © 2014 The Combustion Institute.

  16. Confined Detonations and Pulse Detonation Engines

    Science.gov (United States)

    2003-01-01

    Naval Ordnance Test Station. NAVWEPS Report 7655. China Lake, CA. 7. Helman, D., R. P. Shreeve, and S. Eidelman. 1986. Detonation pulse engine. AIAA...chemical presensitisation on the initiation of the detonation wave. Acta Physicochimica URSS 7:589-96. 22. Fernandez, R., J. W. Slater, and D.E. Paxson

  17. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  18. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  19. Detonation command and control

    Science.gov (United States)

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  20. Detonation command and control

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2016-05-31

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  1. Numerical investigation on evolution of cylindrical cellular detonation

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai

    2008-01-01

    Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

  2. Nonlinear pulsation masses

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1990-01-01

    The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.

  3. Detonation safety of blasting caps

    Institute of Scientific and Technical Information of China (English)

    谢兴华; 彭小圣

    2002-01-01

    By means of researching into sympathetic detonation of blasting detonators in air, the regular patterns are concluded from blasting detonators interaction with the shock loading. The aerial distribution of initiating ability of detonators looks like a butterfly. The initiating ability mainly consists of shock wave, explosive gases and fliers. But fundamental questions remain. When does shock wave take the leading role? When and how does the explosive gases or the fliers take function? For those questions, there is less quantitative research. Through the theoretic deduction of the overpressure, the energy calculation of fliers and the experiment of sympathetic detonation of detonators, we can learn the sympathetic detonation distances of several kinds of detonators and make an inquiry into the lateral initiating regulations of detonators. So, we can provide the base data for the research into no sympathetic detonation of herd blasting detonators and then control the detonation between them. Then we can make full use of detonators and reduce the frequency of accidents caused by detonators.

  4. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  5. Environmentally Benign Stab Detonators

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A

    2005-12-21

    Many energetic systems can be activated via mechanical means. Percussion primers in small caliber ammunition and stab detonators used in medium caliber ammunition are just two examples. Current medium caliber (20-60mm) munitions are detonated through the use of impact sensitive stab detonators. Stab detonators are very sensitive and must be small, as to meet weight and size limitations. A mix of energetic powders, sensitive to mechanical stimulus, is typically used to ignite such devices. Stab detonators are mechanically activated by forcing a firing pin through the closure disc of the device and into the stab initiating mix. Rapid heating caused by mechanically driven compression and friction of the mixture results in its ignition. The rapid decomposition of these materials generates a pressure/temperature pulse that is sufficient to initiate a transfer charge, which has enough output energy to detonate the main charge. This general type of ignition mix is used in a large variety of primers, igniters, and detonators.[1] Common primer mixes, such as NOL-130, are made up of lead styphnate (basic) 40%, lead azide (dextrinated) 20%, barium nitrate 20%, antimony sulfide 15%, and tetrazene 5%.[1] These materials pose acute and chronic toxicity hazards during mixing of the composition and later in the item life cycle after the item has been field functioned. There is an established need to replace these mixes on toxicity, health, and environmental hazard grounds. This effort attempts to demonstrate that environmentally acceptable energetic solgel coated flash metal multilayer nanocomposites can be used to replace current impact initiated devices (IIDs), which have hazardous and toxic components. Successful completion of this project will result in IIDs that include innocuous compounds, have sufficient output energy for initiation, meet current military specifications, are small, cost competitive, and perform as well as or better than current devices. We expect flash

  6. Detonation Jet Engine. Part 2--Construction Features

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  7. Pulsation driving and convection

    Science.gov (United States)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  8. Asteroseismology of Pulsating Stars

    Indian Academy of Sciences (India)

    Santosh Joshi; Yogesh C. Joshi

    2015-03-01

    The success of helioseismology is due to its capability of measuring -mode oscillations in the Sun. This allows us to extract information on the internal structure and rotation of the Sun from the surface to the core. Similarly, asteroseismology is the study of the internal structure of the stars as derived from stellar oscillations. In this review we highlight the progress in the observational asteroseismology, including some basic theoretical aspects. In particular, we discuss our contributions to asteroseismology through the study of chemically peculiar stars under the 'Nainital-Cape Survey' project being conducted at ARIES, Nainital, since 1999. This survey aims to detect new rapidly-pulsating Ap (roAp) stars in the northern hemisphere. We also discuss the contribution of ARIES towards the asteroseismic study of the compact pulsating variables. We comment on the future prospects of our project in the light of the new optical 3.6-m telescope to be installed at Devasthal (ARIES). Finally, we present a preliminary optical design of the high-speed imaging photometers for this telescope.

  9. Environmentally Benign Stab Detonators

    Science.gov (United States)

    2006-07-11

    a mixture of lead azide, lead styphnate , barium nitrate, antimony sulfides, and tetracene) mJ millijoule (10–3 J) FINAL REPORT PP...initiating mix (NOL-130) and transfer charge of current stab detonators contain hazardous materials such as lead azide, lead styphnate , and barium nitrate...tetracene) and heavy metal constituents (e.g., lead styphnate , lead azide, barium nitrate, and antimony sulfides) present in the NOL-130 initiating

  10. ABOUT THE DETONATION ENGINE

    Directory of Open Access Journals (Sweden)

    Bulat Pavel Viktorovich

    2014-01-01

    Full Text Available The research objects of this study are new principles of gas turbine and rocket engines working process organization, based on the oscillatory motion of shock and detonation waves. Purpose is to identify the state of level technology, describe the subject area, state the direction of research and formulate the main problems hindering the implementation of wave technology into mass production. The results presented in the study can be recommended for developers of aircraft engines, power and technological turbo-machinery.

  11. Detonation Properties of Bromonitromethane

    Science.gov (United States)

    Davis, Lloyd L.; Sheffield, Stephen A.; Engelke, Ray

    1999-06-01

    Bromonitromethane (CH_2BrNO_2)(BrNM) is chemically similar to nitromethane (NM), with one hydrogen atom replaced by bromine. It is a liquid explosive with an initial density of 2.009 g/cm^3. We have shown its sensitivity to shock to be similar to neat NM. However, its performance (CJ pressure) appears to be about twice that of NM. The sound speed of BrNM was measured to be 1.16 km/s and was used in the Universal Liquid Hugoniot (R. W. Woolfolk, M. Cowperthwaite and R. Shaw, Thermochimica Acta, 5), 409 (1983). to predict the unreacted Hugoniot. Shock Hugoniot measurements were shown to be consistent with this prediction. In addition, we report the BrNM detonation velocity, failure diameter in brass, and diameter effect curve. Detonation wave profiles obtained using VISAR to record the interface particle velocity between the detonating BrNM and a polymethyl methacrylate (PMMA) window have also been measured. There are interesting features in these measurements that may provide information about the reactions occurring in the BrNM and/or the effect of the confinement.

  12. On the use of hot-wire anemometry in pulsating flows. A comment on 'A critical review on advanced velocity measurement techniques in pulsating flows'

    OpenAIRE

    Berson, Arganthaël; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2010-01-01

    International audience; In their recent topical review, Nabavi and Siddiqui (Meas. Sci. Technol. 2010 21 042002) recommended the use of hot-wire anemometry for velocity measurements in pulsating flows, especially at high frequency. This recommendation is misleading. The procedures invoked by these authors are valid only for small-amplitude fluctuations, which are of little interest for pulsating flows. When large-amplitude velocity changes occur without flow reversal, new procedures for the c...

  13. Mode selection in pulsating stars

    CERN Document Server

    Smolec, R

    2013-01-01

    In this review we focus on non-linear phenomena in pulsating stars the mode selection and amplitude limitation. Of many linearly excited modes only a fraction is detected in pulsating stars. Which of them and why (the problem of mode selection) and to what amplitude (the problem of amplitude limitation) are intrinsically non-linear and still unsolved problems. Tools for studying these problems are briefly discussed and our understanding of mode selection and amplitude limitation in selected groups of self-excited pulsators is presented. Focus is put on classical pulsators (Cepheids and RR Lyrae stars) and main sequence variables (delta Scuti and beta Cephei stars). Directions of future studies are briefly discussed.

  14. Semiconductor bridge (SCB) detonator

    Science.gov (United States)

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  15. Nanocarbon condensation in detonation

    Science.gov (United States)

    Bastea, Sorin

    2017-01-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827

  16. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  17. Pulsating Star Mystery Solved

    Science.gov (United States)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  18. [Bachelard and the mathematical pulsation].

    Science.gov (United States)

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation.

  19. Double-Front Detonation Waves

    Science.gov (United States)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  20. Investigations on multicycle spray detonations

    Institute of Scientific and Technical Information of China (English)

    LI Mu; YAN Chuanjun; ZHENG Longxi; WANG Zhiwu; QIU Hua

    2007-01-01

    Experimental investigations were carried out on a 50-I.D. Multicycle pulse detonation engine (PDE) model, and liquid fuel (gasoline) was used. The average of pressure peak, as measured by piezoelectricity pressure transducer, increased versus distance to thrust wall before fully-developed detonation came into being. According to the pressure history, the pressure in detonation tube would not rise abruptly until the flame front advanced a certain distance downstream the spark. Just at that moment, two compression waves spreading to opposite direction were formed. One was enforced by combustion and became detonation rapidly. The other was weakened because of obstacles and insufficiency of fuel. Two methods were used to determine the induction length of two-phase detonation wave through the pressure history. Ignition delay time was found to be longer than deflagration-to-detonation transition (DDT) time, and the sum of the two would change little as cycle frequency increased. So they could be the most important factors controlling two-phase PDE frequency. Filling process and blowdown process were also analyzed.

  1. Diminishing detonator effectiveness through electromagnetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Schill, Jr, Robert A.

    2016-09-20

    An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.

  2. Pulsational-Pair Instability Supernovae

    CERN Document Server

    Woosley, S E

    2016-01-01

    The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...

  3. Propagation and source of Pc5 frequency range pulsation at cusp latitude

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two induction magnetometers have been installed at Chinese Zhongshan Station and Australia Davis Station, Antarctica respectively. We adopt the cross-spectral analysis technique to analyze the data of the two induction magnetometers, in June, September, December 1996 and March 1997, and to investigate Pc5 frequency range pulsation (150 600 s) occurrence and propagation in cusp latitude. The results are summarized as follows: At Zhongshan-Davis Station, the magnetic pulsations in Pc5 frequency band can occurs over a wide time, but more frequently at pre local magnetic noon and pre local magnetic midnight. The Pc5 pulsations have no significant seasonal variation in the amplitude, occurrence and propagation. The amplitude has a small peak at pre local magnetic noon and large value sometimes at pre local magnetic midnight. In daytime, the Pc5 pulsations propagate westward in morning and eastward in afternoon, and reversal at local magnetic noon. In nighttime, the Pc5 pulsations propagate westward before 20:00 MLT and eastward after 20:00 MLT. Near dusk time, the Pc5 pulsations propagate irregularly. These characteristics indicate that the Pc5 pulsations have different source at different local magnetic time.

  4. Detonator assembly for oil well perforating gun

    Energy Technology Data Exchange (ETDEWEB)

    Regalbuto, J.A.

    1981-02-18

    A safe/arm detonator assembly for use with an oil well perforating gun assembly has 2 housing members isolated from well-bore fluid which are rotatable from a safe position wherein a detonator and a booster are held out of alignment, to an armed position wherein the detonator and booster are moved into alignment. The detonator assembly is further arranged to be installed in a well perforating gun assembly such that the gun assembly may be transported with the detonator assembly in the safe position, and rotated to the armed position at the well site without disassembling the gun assembly. A safety pin may protrude from one of the housing members across a cavity between the members to cover and protect the booster from accidental detonation when the detonator assembly is in the safe position. The detonator and booster cavities may be held aligned by a detent ball. 16 claims.

  5. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  6. Simulations of the Gravitationally Confined Detonation Model of Type Ia Supernovae for Multiple Ignition Points

    Science.gov (United States)

    Jordan, G. C.; Meakin, C. A.; Hearn, N.; Fisher, R. T.; Townsley, D. M.; Lamb, D. Q.; Truran, J. W.

    2009-04-01

    In this paper we present 3D simulations of the gravitationally confined detonation (GCD) model of Type Ia Supernovae with multiple ignition points as initial conditions. These simulations release more energy during the deflagration (subsonic nuclear combustion) phase than previous GCD simulations initiated with a single ignition point. Due to the increased amount of fuel consumed during the deflagration, the star undergoes a more energetic pulsation which at the time of detonation increases the amount of low-density, intermediate-mass-producing material and decreases the amount of high-density, NSE-producing material. This results in the production of approximately 0.7 M⊙ of 56Ni in the explosion, an amount that observations indicate is produced in Type Ia supernovae having typical luminosities.

  7. Pulsating laminar pipe flows with sinusoidal mass flux variations

    Science.gov (United States)

    Ünsal, B.; Ray, S.; Durst, F.; Ertunç, Ö.

    2005-11-01

    Combined analytical and experimental investigation of sinusoidal mass flow-controlled, pulsating, laminar and fully developed pipe flow was carried out. The experimental investigation employed a mass flow control unit built at LSTM-Erlangen for the present investigation. For the analytical investigation, the equations describing such flows were normalized to allow for a general solution, depending only on the normalized amplitude mA* of the mass flow pulsation and the normalized frequency F. The analytical and experimental results are presented in this normalized way and it is shown that good agreement between the results of the authors is obtained. A diagram is presented for the condition of flow reversal in terms of the dimensionless frequency F and the mass flow rate amplitude mA*.

  8. Four new subdwarf B pulsators

    Science.gov (United States)

    Østensen, R.; Heber, U.; Silvotti, R.; Solheim, J.-E.; Dreizler, S.; Edelmann, H.

    2001-11-01

    We report the detection of short period oscillations in the sdB stars HS 0039+4302, HS 0444+0408, HS 1824+5745 and HS 2151+0857 from time-series photometry made at the Nordic Optical Telescope (NOT) of a sample of 55 candidates. Hence these four hot subdwarfs are new members of the EC 14026 class of pulsating sdB stars. HS 0039+4302 is a multi-mode pulsator with at least four distinct periods in the range between 182 and 234 s, and amplitudes up to 8 mma. HS 0444+0408 shows one dominant pulsation at 137 s (A ~ 12 mma) and a second weaker pulsation at 170 s (A ~ 3 mma). For HS 1824+5745 we find a single period of 139 s with an amplitude of about 5 mma. HS 2151+0857 shows four periods in the range 129-151 s with amplitudes between 2 and 5 mma. Our NLTE model atmosphere analysis of the time-averaged optical spectra place all stars well within the theoretical sdBV instability strip. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. }\\fnmsep\\thanks{ Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the European Southern Observatory, Chile (ESO No. 66.D-0031).

  9. Why do hot subdwarf stars pulsate?

    CERN Document Server

    Geier, S

    2015-01-01

    Hot subdwarf B stars (sdBs) are the stripped cores of red giants located at the bluest extension of the horizontal branch. Several different kinds of pulsators are found among those stars. The mechanism that drives those pulsations is well known and the theoretically predicted instability regions for both the short-period p-mode and the long-period g-mode pulsators match the observed distributions fairly well. However, it remains unclear why only a fraction of the sdB stars pulsate, while stars with otherwise very similar parameters do not show pulsations. From an observers perspective I review possible candidates for the missing parameter that makes sdB stars pulsate or not.

  10. Head pulsations in a centrifugal pump

    Science.gov (United States)

    Boiko, V. S.; Sotnyk, M. I.; Moskalenko, V. V.

    2017-08-01

    This article investigated the factors, which affect to the character of the head pulsations of a centrifugal pump. We investigated the dependence of the shape and depth of these pulsations from the operation mode of the pump. Was determined, that the head pulsations at the outlet of the impeller (pulsations on the blade passing frequency) cause head pulsations at the outlet of the pump, that have the same frequency, but differ in shape and depth. These pulsations depend on the design features of the flow-through part of the pump (from the ratio of hydraulic losses on the friction and losses on the vortex formation). A feature of the researches that were conducted is also the using of not only hydraulic but also electric modeling methods. It allows determining the values of the components of hydraulic losses.

  11. Pulse detonation engines and components thereof

    Science.gov (United States)

    Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)

    2009-01-01

    A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.

  12. Environmentally Benign Stab Detonators

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A E

    2006-07-07

    The coupling of energetic metallic multilayers (a.k.a. flash metal) with energetic sol-gel synthesis and processing is an entirely new approach to forming energetic devices for several DoD and DOE needs. They are also practical and commercially viable manufacturing techniques. Improved occupational safety and health, performance, reliability, reproducibility, and environmentally acceptable processing can be achieved using these methodologies and materials. The development and fielding of this technology will enhance mission readiness and reduce the costs, environmental risks and the necessity of resolving environmental concerns related to maintaining military readiness while simultaneously enhancing safety and health. Without sacrificing current performance, we will formulate new impact initiated device (IID) compositions to replace materials from the current composition that pose significant environmental, health, and safety problems associated with functions such as synthesis, material receipt, storage, handling, processing into the composition, reaction products from testing, and safe disposal. To do this, we will advance the use of nanocomposite preparation via the use of multilayer flash metal and sol-gel technologies and apply it to new small IIDs. This work will also serve to demonstrate that these technologies and resultant materials are relevant and practical to a variety of energetic needs of DoD and DOE. The goal will be to produce an IID whose composition is acceptable by OSHA, EPA, the Clean Air Act, Clean Water Act, Resource Recovery Act, etc. standards, without sacrificing current performance. The development of environmentally benign stab detonators and igniters will result in the removal of hazardous and toxic components associated with their manufacturing, handling, and use. This will lead to improved worker safety during manufacturing as well as reduced exposure of Service personnel during their storage and or use in operations. The

  13. Turbulent deflagrations, autoignitions, and detonations

    KAUST Repository

    Bradley, Derek

    2012-09-01

    Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.

  14. Sensitized Liquid Hydrazine Detonation Studies

    Science.gov (United States)

    Rathgeber, K. A.; Keddy, C. P.; Bunker, R. L.

    1999-01-01

    Vapor-phase hydrazine (N2H4) is known to be very sensitive to detonation while liquid hydrazine is very insensitive to detonation, theoretically requiring extremely high pressures to induce initiation. A review of literature on solid and liquid explosives shows that when pure explosive substances are infiltrated with gas cavities, voids, and/or different phase contaminants, the energy or shock pressure necessary to induce detonation can decrease by an order of magnitude. Tests were conducted with liquid hydrazine in a modified card-gap configuration. Sensitization was attempted by bubbling helium gas through and/or suspending ceramic microspheres in the liquid. The hydrazine was subjected to the shock pressure from a 2 lb (0.9 kg) Composition C-4 explosive charge. The hydrazine was contained in a 4 in. (10.2 cm) diameter stainless steel cylinder with a 122 in(sup 3) (2 L) volume and sealed with a polyethylene cap. Blast pressures from the events were recorded by 63 high speed pressure transducers located on three radial legs extending from 4 to 115 ft (1.2 to 35.1 in) from ground zero. Comparison of the neat hydrazine and water baseline tests with the "sensitized" hydrazine tests indicates the liquid hydrazine did not detonate under these conditions.

  15. Latitude-independent Pc5 Geomagnetic Pulsations Associated With Field Line Resonance

    Science.gov (United States)

    Sung, S.; Kim, K.; Lee, D.; Cattell, C. A.; Andre, M.; Khotyaintsev, Y. V.

    2004-12-01

    The latitude-independent Pc5 pulsations with a spectral peak at ˜2.8 mHz were observed with IMAGE and SAMNET magnetometer array in the morning sector (0700-1000 local time) on April 29 (Day 119), 2001. The spectral amplitude had a local peak at ˜67° geomagnetic latitude, where a sudden phase change of ˜180° appeared. A vortical equivalent ionospheric current structure centered at latitude between 67° and 71° was observed during the Pc5 pulsations and the rotational sense of the current vortex was reversed for one cycle of the pulsation. During the interval of the enhancement of the Pc5 pulsations, the POLAR spacecraft in the morning side crossed near the magnetic shell (L ˜ 8) corresponding to the latitude where the spectral amplitude was maximum, and observed ˜2.8 mHz pulsations in the radial electric field and compressional magnetic field components. Since the toroidal mode Alfvén waves in the magnetosphere are characterized by an electric field perturbation in the radial direction, the simultaneous presence of the pulsations in both components indicates that a field line resonance (FLR) was driven by compressional Pc5 pulsations. Using solar wind data, we conformed that the compressional Pc5 pulsations at POLAR occurred during an interval of enhanced solar wind dynamic pressure. From the analysis of the ground magnetometer data and POLAR data, we suggest that latitude independent ground magnetic perturbations are caused by the vortical equivalent current generated by FLR-associated field-aligned currents.

  16. Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine

    Science.gov (United States)

    2008-03-01

    Detonation Engine The core of the PDE used in this research is a General Motors (GM) Quad 4 engine head with dual overhead camshafts . The head...manifold injection lines labeled The conventional poppet style valves are mechanically actuated by their respective camshafts which are in turn driven by...the angular position of the camshaft which is then used by the control computer to determine valve position and subsequent firing times. Depending

  17. First Kepler results on compact pulsators - I. Survey target selection and the first pulsators

    Science.gov (United States)

    Østensen, R. H.; Silvotti, R.; Charpinet, S.; Oreiro, R.; Handler, G.; Green, E. M.; Bloemen, S.; Heber, U.; Gänsicke, B. T.; Marsh, T. R.; Kurtz, D. W.; Telting, J. H.; Reed, M. D.; Kawaler, S. D.; Aerts, C.; Rodríguez-López, C.; Vučković, M.; Ottosen, T. A.; Liimets, T.; Quint, A. C.; Van Grootel, V.; Randall, S. K.; Gilliland, R. L.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Borucki, W. J.; Koch, D.; Quintana, E. V.

    2010-12-01

    We present results from the first two quarters of a survey to search for pulsations in compact stellar objects with the Kepler spacecraft. The survey sample and the various methods applied in its compilation are described, and spectroscopic observations are presented to separate the objects into accurate classes. From the Kepler photometry we clearly identify nine compact pulsators and a number of interesting binary stars. Of the pulsators, one shows the strong, rapid pulsations typical of a V361 Hya-type sdB variable (sdBV); seven show long-period pulsation characteristics of V1093 Her-type sdBVs; and one shows low-amplitude pulsations with both short and long periods. We derive effective temperatures and surface gravities for all the subdwarf B stars in the sample and demonstrate that below the boundary region where hybrid sdB pulsators are found, all our targets are pulsating. For the stars hotter than this boundary temperature a low fraction of strong pulsators (region, and several of the V1093 Her pulsators show low-amplitude modes in the short-period region, indicating that hybrid behaviour may be common in these stars, also outside the boundary temperature region where hybrid pulsators have hitherto been found.

  18. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  19. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  20. A summary of hydrogen-air detonation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, C.M.; Knystautas, R.; Lee, J.H.

    1989-05-01

    Dynamic detonation parameters are reviewed for hydrogen-air-diluent detonations and deflagration-to-detonation transitions (DDT). These parameters include the characteristic chemical length scale, such as the detonation cell width, associated with the three-dimensional cellular structure of detonation waves, critical transmission conditions of confined detonations into unconfined environments, critical initiation energy for unconfined detonations, detonability limits, and critical conditions for DDT. The detonation cell width, which depends on hydrogen and diluent concentrations, pressure, and temperature, is an important parameter in the prediction of critical geometry-dependent conditions for the transmission of confined detonations into unconfined environments and the critical energies for the direct initiation of unconfined detonations. Detonability limits depend on both initial and boundary conditions and the limit has been defined as the onset of single head spin. Four flame propagation regimes have been identified and the criterion for DDT in a smooth tube is discussed. 108 refs., 28 figs., 5 tabs.

  1. Nonradial Pulsations in ɛ Persei

    Science.gov (United States)

    Saio, Hideyuki; Kambe, Eiji; Lee, Umin

    2000-11-01

    We consider the question of whether all the modes detected in the line profile variations of ɛ Persei are consistent with nonradial pulsations excited by the kappa mechanism at the opacity Z-bump. We have computed massive (12.5-14 Msolar) main-sequence models, adjusting the parameters such that the evolutionary tracks pass around the approximate position of ɛ Per on the H-R diagram. A linear nonadiabatic, nonradial pulsation analysis is applied to these models. The periods in the frame corotating with the stellar surface for the observed 2.3-4.5 hr modes are found to be consistent with the Z-bump kappa mechanism. We have found, however, that the longest-period mode (8.48 hr in the observer's frame) cannot be explained by the kappa mechanism. We have examined the effect of rotation on the stability of oscillations and found that the stabilizing effect is weak, so that only a few of the shortest-period modes are stabilized for the rotation speed of ɛ Per. No significant difference is found between prograde and retrograde modes in the stability. It is a puzzle why no retrograde mode has been detected in ɛ Per, which should equally be excited by the kappa mechanism. We also discuss the observed and theoretical line profile variations of ɛ Per in the Appendix.

  2. Blood Pulsation Intensity Video Mapping

    CERN Document Server

    Borges, Pedro Henrique de M

    2016-01-01

    In this study, we make non-invasive, remote, passive measurements of the heart beat frequency and determine the map of blood pulsation intensity in a region of interest (ROI) of skin. The ROI used was the forearm of a volunteer. The method employs a regular video camera and visible light, and the video acquisition takes less than 1 minute. The mean cardiac frequency found in our volunteer was within 1 bpm of the ground-truth value simultaneously obtained via earlobe plethysmography. Using the signals extracted from the video images, we have determined an intensity map for the blood pulsation at the surface of the skin. In this paper we present the experimental and data processing details of the work and well as limitations of the technique. ----------------------------------------- Neste estudo medimos a frequ\\^encia card\\'iaca de forma n\\~ao invasiva, remota e passiva e determinamos o mapa da atividade de pulsa\\c{c}\\~ao sangu\\'inea numa regi\\~ao de interesse (ROI) da pele. A ROI utilizada foi o antebra\\c{c}o...

  3. Pulsating star research from Antarctica

    Science.gov (United States)

    Chadid, Merieme

    2017-09-01

    This invited talk discusses the pulsating star research from the heart of Antarctica and the scientific polar challenges in the extreme environment of Antarctica, and how the new polar technology could cope with unresolved stellar pulsation enigmas and evolutionary properties challenges towards an understanding of the mysteries of the Universe. PAIX, the first robotic photometer Antarctica program, has been successfully launched during the polar night 2007. This ongoing program gives a new insight to cope with unresolved stellar enigmas and stellar oscillation challenges with a great opportunity to benefit from an access to the best astronomical site on Earth, Dome C. PAIX achieves astrophysical measurement time-series of stellar fields, challenging photometry from space. A continuous and an uninterrupted series of multi-color photometric observations has been collected each polar night - 150 days - without regular interruption, Earth's rotation effect. PAIX shows the first light curve from Antarctica and first step for the astronomy in Antarctica giving new insights in remote polar observing runs and robotic instruments towards a new technology.

  4. Occurrence and average behavior of pulsating aurora

    Science.gov (United States)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  5. A Planet Found by Pulsations

    Science.gov (United States)

    Kohler, Susanna

    2016-10-01

    Searching for planets around very hot stars is much more challenging than looking around cool stars. For this reason, the recent discovery of a planet around a main-sequence A star is an important find both because of its unique position near the stars habitable zone, and because of the way in which the planet was discovered.Challenges in VariabilityIn the past three decades, weve discovered thousands of exoplanets yet most of them have been found around cool stars (like M dwarfs) or moderate stars (like G stars like our Sun). Very few of the planets that weve found orbit hot stars; in fact, weve only discovered ~20 planets orbiting the very hot, main-sequence A stars.The instability strip, indicated on an H-R diagram. Stellar classification types are listed across the bottom of the diagram. Many main-sequence A stars reside in the instability strip. [Rursus]Why is this? We dont expect that main-sequence A stars host fewer planets than cooler stars. Instead, its primarily because the two main techniques that we use to find planets namely, transits and radial velocity cant be used as effectively on the main-sequence A stars that are most likely to host planets, because the luminosities of these stars are often variable.These stars can lie on whats known as the classical instability strip in the Herzsprung-Russell diagram. Such variable stars pulsate due to changes in the ionization state of atoms deep in their interiors, which causes the stars to puff up and then collapse back inward. For variable main-sequence A stars, the periods for these pulsations can be several to several tens of times per day.These very pulsations that make transits and radial-velocity measurements so difficult, however, can potentially be used to detect planets in a different way. Led by Simon Murphy (University of Sydney, Australia and Aarhus University, Denmark), a team of scientists has recently detected the first planet ever to be discovered around a main-sequence A star from the timing

  6. Radioactive Fallout from Terrorist Nuclear Detonations

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R E

    2007-05-03

    Responding correctly during the first hour after a terrorist nuclear detonation is the key to reducing casualties from a low-yield surface burst, and a correct response requires an understanding of the rapidly changing dose rate from fallout. This report provides an empirical formula for dose rate as a function of time and location that can guide the response to an unexpected nuclear detonation. At least one post-detonation radiation measurement is required if the yield and other characteristics of the detonation are unknown.

  7. Laser diode initiated detonators for space applications

    Science.gov (United States)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  8. Deflagrations and Detonations in Thermonuclear Supernovae

    CERN Document Server

    Gamezo, V N; Oran, E S; Gamezo, Vadim N.; Khokhlov, Alexei M.; Oran, Elaine S.

    2004-01-01

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast to the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

  9. A Kinetic Approach to Propagation and Stability of Detonation Waves

    Science.gov (United States)

    Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.

    2008-12-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.

  10. Piezoelectric actuator for pulsating jets

    Science.gov (United States)

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel

    2000-08-01

    Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.

  11. Pulsations in close binaries: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Maceroni C.

    2015-01-01

    Full Text Available CoRoT and Kepler provided a precious by-product: a number of eclipsing binaries containing variable stars and, among these, non-radial pulsators. This providential occurrence allows combining independent information from two different phenomena whose synergy yields scientific results well beyond those from the single sources. In particular, the analysis of pulsations in eclipsing binary components throws light on the internal structure of the pulsating star, on the system evolution, and on the role of tidal forces in exciting the oscillations. The case study of the Kepler target KIC 3858884 is illustrative of the difficulties of analysis and of the achievements in this rapidly developing field.

  12. Pulsative hematoma: A penile fracture complication

    Directory of Open Access Journals (Sweden)

    Nale Đorđe

    2007-01-01

    Full Text Available Background. Fracture of the penis is a direct blunt trauma of the erect or semi-erect penis. It can be treated by conservative or surgical means. Retrospective analyses of conservative penile fracture treatment reveal frequent immediate and later complications. Case report. We presented a 41- year-old patient with pulsative hematoma caused by an unusual fracture of the penis. Fracture had appeared 40 days before the admittance during a sexual intercourse. The patient was treated surgically. Conclusion. Pulsative hematoma (pulsative diverticulum is a very rare, early complication of a conservatively treated penile fracture. Surgical treatment has an advantage over surgical one, which was confirmed by our case report.

  13. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  14. VELOCITY OF DETONATION OF LOW DENSITY

    Directory of Open Access Journals (Sweden)

    Vinko Škrlec

    2012-12-01

    Full Text Available Blasting operations in built-up areas, at short distances from structures, impose new requirements on blasting techniques and properties of explosives in order to mitigate seismic effect of blasting. Explosives for civil uses are mixtures of different chemical composition of explosive and/or non-explosive substances. Chemical and physical properties, along with means of initiation, environment and the terms of application define detonation and blasting parameters of a particular type of the explosive for civil uses. Velocity of detonation is one of the most important measurable characteristics of detonation parameters which indirectly provide information about the liberated energy, quality of explosives and applicability for certain purposes. The level of shock effect of detonated charge on the rock, and therefore the level of seismic effect in the area, depends on the velocity of detonation. Since the velocity of detonation is proportional to the density of an explosive, the described research is carried out in order to determine the borderline density of the mixture of an emulsion explosive with expanded polystyrene while achieving stable detonation, and to determine the dependency between the velocity of detonation and the density of mixture (the paper is published in Croatian.

  15. Exploratory study on new pulse detonation engines

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The worldwide progress in studies on pulse detonation engines (PDE) is briefly reviewed and some results of our exploratory study on PDE are presented. Analysis of thermodynamic cycle is made and the specific impulse formula is improved. A proof-of-principle experiment of a two-phase PDE is successfully carried out, using poor-detonable liquid C8H16/air mixture with a low-energy system (total spark energy of 50 mJ) and a newly developed one-step detonation initiation method. The measured detonation wave pressure ratio is very close to that of C-J detonation. The effects of length, diameter and detonation frequency on PDE performance are experimentally investigated. For liquid hydrocarbon fuel/air mixture, the PDE operation is successfully realized with an engine length of 1000 mm and detonation frequency up to 36 Hz, which has made an important step toward practical PDE. The developed code can be used for simulating PDE operation processes including deflagration to detonation transition (DDT) phenomenon. The numerical results are in good agreement with the experimental ones.

  16. 14 CFR 33.47 - Detonation test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Detonation test. 33.47 Section 33.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.47 Detonation test. Each...

  17. Pulse detonation assembly and hybrid engine

    Science.gov (United States)

    Rasheed, Adam (Inventor); Dean, Anthony John (Inventor); Vandervort, Christian Lee (Inventor)

    2010-01-01

    A pulse detonation (PD) assembly includes a number of PD chambers adapted to expel respective detonation product streams and a number of barriers disposed between respective pairs of PD chambers. The barriers define, at least in part, a number of sectors that contain at least one PD chamber. A hybrid engine includes a number of PD chambers and barriers. The hybrid engine further includes a turbine assembly having at least one turbine stage, being in flow communication with the PD chambers and being configured to be at least partially driven by the detonation product streams. A segmented hybrid engine includes a number of PD chambers and segments configured to receive and direct the detonation product streams from respective PD chambers. The segmented hybrid engine further includes a turbine assembly configured to be at least partially driven by the detonation product streams.

  18. Self-pulsation in Raman fiber amplifiers

    OpenAIRE

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.

  19. Stellar pulsation and rotation in NGC 6811

    Science.gov (United States)

    Rodríguez, E.; Ocando, S.; López-González, M. J.; Martín-Ruiz, S.

    2017-03-01

    We present the results of the frequency analysis for a selected sample of pulsating δ Sct- and γ Dor-type stars in the field of the open cluster NGC 6811, which have been observed in short-cadence (SC) mode by the Kepler satellite. In all cases, the resulting frequency spectra are very complex, especially when the dominant pulsation is that of the δ Sct type, that is, short-period pulsations corresponding to excited pressure (p) modes. In all cases, the δ Sct stars are shown to be essentially δ Sct/ γ Dor hybrid pulsators. However, the opposite seems not to be true. We also find that the δ Sct-type peaks commonly are not stable in amplitude. Many of the main peaks significantly change their amplitudes over relatively short time scales. For a large percentage of pulsators in our sample we also find that the variability shown in the light curves is not produced by a single cause, but a combination of various sources: δ Sct- and γ Dor-type pulsations together with rotational modulation produced by starspots in the surfaces of these stars. This is an indication of stellar activity in the surfaces of these relatively hot stars of spectral type A(-F). Sometimes, activity dominates the luminosity variations in various pulsating stars in our sample. Eclipsing binarity is also detected in a few cases. Flares are also detected in one of the δ Sct-type pulsators. This is an indication of unusual strong activity for this kind of hot stars.

  20. Statistical study of dayside pulsating aurora

    Science.gov (United States)

    Kanmae, T.; Kadokura, A.; Ogawa, Y.; Ebihara, Y.; Motoba, T.; Gerrard, A. J.; Weatherwax, A. T.

    2015-12-01

    Pulsating aurora normally occurs after a substorm breakup in the midnight sector, often observed to persist through the morning sector and beyond. Indeed, it has also been observed on the dayside; however, the characteristics of the dayside pulsating aurora are poorly known. A handful of observational studies have been reported, but the results are somewhat disputable because most of the studies had non-uniform sampling of the dark dayside region. Furthermore, the previous studies used photometer data, with which the spatial characteristics of the pulsating aurora cannot be examined. To determine both temporal and spatial characteristics of the pulsating aurora, we have studied three years of all-sky image data obtained at the South Pole station. Because of its unique geographical location, the station has 24 hours of darkness during the austral winter from April to August, providing an ideal platform for studying dayside aurora. In a preliminary survey of the data, we have identified the pulsating auroras in 198 days out of 365 days of observations. The magnetic local time (MLT) distribution of the occurrence peaks between 9:00 and 11:00, but shows no or little dependence on the geomagnetic activity. In many events, pulsating patches initially appear as east-west aligned arc segments and later in the afternoon sector develop into large, diffuse patches, which occasionally fill a large part of the field of view. Using the long-term data, we will statistically examine both temporal (occurrence rate, duration and pulsation period) and spatial (sizes and shapes) characteristics of the dayside pulsating aurora.

  1. A motion picture presentation of magnetic pulsations

    Science.gov (United States)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  2. Initiation of the Detonation in the Gravitationally Confined Detonation Model of Type Ia Supernovae

    Science.gov (United States)

    Seitenzahl, Ivo R.; Meakin, Casey A.; Lamb, Don Q.; Truran, James W.

    2009-07-01

    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and

  3. Impact sensitivity and the maximum heat of detonation.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2015-10-01

    We demonstrate that a large heat of detonation is undesirable from the standpoint of the impact sensitivity of an explosive and also unnecessary from the standpoints of its detonation velocity and detonation pressure. High values of the latter properties can be achieved even with a moderate heat of detonation, and this in turn enhances the likelihood of relatively low sensitivity.

  4. Study of detonation wave contours in EFP warhead

    Directory of Open Access Journals (Sweden)

    Xu-dong Zu

    2016-04-01

    The results show that the planar detonation wave do better than the conical detonation and the spherical detonation wave in increasing the length–diameter ratio of explosively-formed projectiles (EFP and keep the nose of EFP integrated. The detonation wave can increase the length–diameter ratio of EFP when the wave shaper has the suitable thickness.

  5. Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model

    Science.gov (United States)

    Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.

    2015-06-01

    A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.

  6. Comparative analysis of alternative fuels in detonation combustion

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    Detonation combustion prominently exhibits high thermodynamic efficiency which leads to better performance. As compared to the conventionally used isobaric heat addition in a Brayton cycle combustor, detonation uses a novel isochoric Humphrey cycle which utilises shocks and detonation waves to provide pressure-rise combustion. Such unsteady combustion has already been explored in wave rotor, pulse detonation engine and rotating detonation engine configurations as alternative technologies for ...

  7. Numerical Simulation of Aluminum Dust Detonations with Different Product Phases

    Science.gov (United States)

    Teng, H. H.; Jiang, Z. L.

    Detonation waves are waves of supersonic combustion induced by strong coupling shock and heat release. Detonation research has attracted much attention in recent years owing to its potential applications in hypersonic propulsion. Aluminum (Al) particle detonation is a type of dust detonation, and its research is important in the prevention of industrial explosions. Al dust detonations for flake and spherical particles have been studied , which is found to be very sensitive to the specific area[1].

  8. Critical Initiation Conditions for Gaseous Diverging Spherical Detonations

    OpenAIRE

    Desbordes, D.

    1995-01-01

    The diverging spherical detonation wave in gaseous explosives is obtained either with a point source of explosion of energy E or through the transmission of a plane detonation from a cylindrical tube of diameter d into a large volume. The mechanism of detonation initiation in both cases is based on the shock to detonation transition. The experimental critical conditions lead to an initiation criterion for detonation resulting from the competition between the expansion behind the leading shock...

  9. VLW equation of state of detonation products

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the virial theory, we proposed VLW equation of state of detonation products (VLW EOS). Its basic theory and applications were described. The distinct features of the VLW EOS were:First, the detonation performance of the new high energy density materials could be predicted more reliably. Second, it had extensive application. The detonation parameters of both the condensed high energy density materials and the gaseous fuel air explosives could be calculated. Moreover, combustion performance of propellants could also be precisely calculated. The calculation results were satisfactory.

  10. Stability of ZND detonations for Majda's model

    CERN Document Server

    Jung, Soyeun

    2012-01-01

    We evaluate by direct calculation the Lopatinski determinant for ZND detonations in Majda's model for reacting flow, and show that on the nonstable (nonnegative real part) complex half-plane it has a single zero at the origin of multiplicity one, implying stability. Together with results of Zumbrun on the inviscid limit, this recovers the result of RoqueJoffre-Vila that viscous detonations of Majda's model also are stable for sufficiently small viscosity, for any fixed detonation strength, heat release, and rate of reaction.

  11. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan

    2008-01-01

    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  12. Objective detection of retinal vessel pulsation.

    Directory of Open Access Journals (Sweden)

    William H Morgan

    Full Text Available PURPOSE: Retinal venous pulsation detection is a subjective sign, which varies in elevated intracranial pressure, venous obstruction and glaucoma. To date no method can objectively measure and identify pulsating regions. METHOD: Using high resolution video-recordings of the optic disk and retina we measured fluctuating light absorption by haemoglobin during pulsation. Pulsation amplitude was calculated from all regions of the retinal image video-frames in a raster pattern. Segmented retinal images were formed by objectively selecting regions with amplitudes above a range of threshold values. These were compared to two observers manually drawing an outline of the pulsating areas while viewing video-clips in order to generate receiver operator characteristics. RESULTS: 216,515 image segments were analysed from 26 eyes in 18 research participants. Using data from each eye, the median area under the receiver operator curve (AU-ROC was 0.95. With all data analysed together the AU-ROC was 0.89. We defined the ideal threshold amplitude for detection of any pulsating segment being that with maximal sensitivity and specificity. This was 5 units (95% confidence interval 4.3 to 6.0 compared to 12 units before any regions were missed. A multivariate model demonstrated that ideal threshold amplitude increased with increased variation in video-sequence illumination (p = 0.0119, but between the two observers (p = 0.0919 or other variables. CONCLUSION: This technique demonstrates accurate identification of retinal vessel pulsating regions with no areas identified manually being missed with the objective technique. The amplitude values are derived objectively and may be a significant advance upon subjective ophthalmodynamometric threshold techniques.

  13. White Dwarf Pulsational Constraints on Stellar Evolution

    Science.gov (United States)

    Dunlap, Bart H.; Clemens, J. Christopher; O'Brien, Patrick C.; Hermes, J. J.; Fuchs, Joshua T.

    2017-01-01

    The complex processes that convert a protostellar cloud into a carbon/oxygen-core white dwarf star are distilled and modeled in state of the art stellar evolution codes. Many of these processes are well-constrained, but several are uncertain or must be parameterized in the models because a complete treatment would be computationally prohibitive—turbulent motions such as convective overshoot cannot, for example, be modeled in 1D. Various free parameters in the models must therefore be calibrated. We will discuss how white dwarf pulsations can inform such calibrations. The results of all prior evolution are cemented into the interiors of white dwarf stars and, so, hidden from view. However, during certain phases of their cooling, pulsations translate the star's evolutionary history into observable surface phenomena. Because the periods of a pulsating white dwarf star depend on an internal structure assembled as it evolved to its final state, white dwarf pulsation periods can be viewed as observable endpoints of stellar evolution. For example, the thickness of the helium layer in a white dwarf directly affects its pulsations; the observed periods are, therefore, a function of the number of thermal pulses during which the star converts helium into core material on the asymptotic giant branch. Because they are also a function of several other significant evolutionary processes, several pulsation modes are necessary to tease all of these apart. Unfortunately, white dwarf pulsators typically do not display enough oscillation modes to constrain stellar evolution. To avoid this limitation, we consider the pulsations of the entire collection of hot pulsating hydrogen-atmosphere white dwarf stars (DAVs). Though any one star may not have sufficient information to place interesting constraints on its evolutionary history, taken together, the stars show a pattern of modes that allows us to test evolutionary models. For an example set of published evolutionary models, we show a

  14. Long Period Variables: questioning the pulsation paradigm

    CERN Document Server

    Berlioz-Arthaud, Paul

    2016-01-01

    Long period variables, among them Miras, are thought to be pulsating. Under this approach the whole star inflates and deflates along a period that can vary from 100 to 900 days; that pulsation is assumed to produce shock waves on the outer layers of the star that propagate into the atmosphere and could account for the increase in luminosity and the presence of emission lines in the spectra of these stars. However, this paradigm can seriously be questioned from a theoretical point of view. First, in order to maintain a radial pulsation, the spherical symmetry of the star must be preserved: how can it be reconciled with the large convective cells present in these stars? or when close companions are detected? Secondly, how different radial and non-radial pulsation modes of a sphere could be all damped except one radial mode? These problems have no solution and significantly weigh on the pulsation paradigm. Acknowledging this inconsistency, we show that a close companion around these stars could account for the s...

  15. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  16. Deflagration to Detonation Transition in Thermonuclear Supernovae

    CERN Document Server

    Khokhlov, A M; Wheeler, J C

    1996-01-01

    We derive the criteria for deflagration to detonation transition (DDT) in a Type Ia supernova. The theory is based on the two major assumptions: (i) detonation is triggered via the Zeldovich gradient mechanism inside a region of mixed fuel and products, (ii) the mixed region is produced by a turbulent mixing of fuel and products either inside an active deflagration front or during the global expansion and subsequent contraction of an exploding white dwarf. We determine the critical size of the mixed region required to initiate a detonation in a degenerate carbon-oxygen mixture. This critical length is much larger than the width of the reaction front of a Chapman-Jouguet detonation. However, at densities greater than simeq 5 x 10^6 g cm^-3, it is much smaller than the size of a white dwarf. We derive the critical turbulent intensity required to create the mixed region inside an active deflagration front in which a detonation can form. We conclude that the density rho_tr at which a detonation can form in a carb...

  17. Effect of Resolution on Propagating Detonation Wave

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  18. Connections between whistlers and pulsation activity

    Directory of Open Access Journals (Sweden)

    J. Verö

    Full Text Available Simultaneous whistler records of one station and geomagnetic pulsation (Pc3 records at three stations were compared. In a previous study correlation was found between occurrence and L value of propagation/excitation for the two phenomena. The recently investigated simultaneous records have shown that the correlation is better on longer time scales (days than on shorter ones (minutes, but the L values of the propagation of whistlers/excitation of pulsations are correlated, i.e. if whistlers propagate in higher latitude ducts, pulsations have periods longer than in the case when whistlers propagate in lower latitude ducts.

    Key words: Electromagnetics (wave propagation - Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities

  19. Pulsating star research and the Gaia revolution

    Directory of Open Access Journals (Sweden)

    Eyer Laurent

    2017-01-01

    Full Text Available In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  20. Pulsating star research and the Gaia revolution

    Science.gov (United States)

    Eyer, Laurent; Clementini, Gisella; Guy, Leanne P.; Rimoldini, Lorenzo; Glass, Florian; Audard, Marc; Holl, Berry; Charnas, Jonathan; Cuypers, Jan; Ridder, Joris De; Evans, Dafydd W.; de Fombelle, Gregory Jevardat; Lanzafame, Alessandro; Lecoeur-Taibi, Isabelle; Mowlavi, Nami; Nienartowicz, Krzysztof; Riello, Marco; Ripepi, Vincenzo; Sarro, Luis; Süveges, Maria

    2017-09-01

    In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  1. Benefit of pulsation in soft corals.

    Science.gov (United States)

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-05-28

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral-water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral's photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral's resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis-respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.

  2. Pulsating White Dwarfs in Globular Clusters

    Science.gov (United States)

    Kanaan, A.; Zabot, A.; Fraga, L.

    2012-09-01

    We present our current efforts to detect pulsating white dwarfs in globular clusters and analyze the future of this area when the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT) and the Thirty-Meter Telescope (TMT) all become operational. Today we are able to detect pulsating white dwarfs in M 4, NGC 6397 and NGC 6752. When ELT comes on line we should be able to improve the quality of data for the nearby clusters and push the limit to at least 3 magnitudes further, up to NGC 6626, increasing the number of observable clusters from 3 to 20.

  3. Detonating Cord for Flux Compression Generation using Electrical Detonator No. 33

    Directory of Open Access Journals (Sweden)

    P B. Wagh

    2011-01-01

    Full Text Available The paper highlights the use of electrical detonators for magnetic flux compression generator applications which requires synchronisation of two events with precise time delay of tens of ms and jitter within a few ms. These requirements are generally achieved by exploding bridge wire type detonators which are difficult to develop and are not commercially available. A technique has been developed using commercially available electrical detonator no. 33 to synchronise between peak of seed current in stator coil and detonation of explosive charge in armature. In present experiments, electrical signal generated by self-shorting pin due to bursting of electrical detonator has been used to trigger the capacitor discharge and the detonating cord of known length has been used to incorporate predetermined delay to synchronise the events. It has been demonstrated that using electrical detonator and known length of detonating cord, the two events can be synchronised with predetermined delay between 31 and 251 ms with variation of ± 0.5ms. The technique developed is suitable for defence applications like generation of high power microwaves using explosive driven magnetic flux compression generators.Defence Science Journal, 2011, 61(1, pp.19-24, DOI:http://dx.doi.org/10.14429/dsj.61.30

  4. Detonability of H/sub 2/-air-diluent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.

    1987-06-01

    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H/sub 2/-air mixtures, undiluted and diluted with CO/sub 2/ and H/sub 2/O for a range of H/sub 2/ concentration, initial temperature and pressure. The results show that the addition of either CO/sub 2/ or H/sub 2/O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure.

  5. Gaseous detonation synthesis and characterization of nano-oxide

    Science.gov (United States)

    Yan, Honghao; Wu, Linsong; Li, Xiaojie; Wang, Xiaohong

    2015-07-01

    Gaseous detonation is a new method of heating the precursor of nanomaterials into gas, and integrating it with combustible gas as mixture to be detonated for the synthesis of nanomaterials. In this paper, the mixed gas of oxygen and hydrogen is used as the source for detonation, to synthesize nano TiO2, nano SiO2 and nano SnO2 through gaseous detonation method, characterization and analysis of the products, it was found that the products from gaseous detonation method were of high purity, good dispersion, smaller particle size and even distribution. It also shows that for the synthesis of nano-oxides, gaseous detonation is universal.

  6. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  7. Review on Recent Advances in Pulse Detonation Engines

    Directory of Open Access Journals (Sweden)

    K. M. Pandey

    2016-01-01

    Full Text Available Pulse detonation engines (PDEs are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapid burning of fuel-air mixture, which is a thousand times faster than deflagration mode of combustion process. PDE utilizes repetitive detonation wave to produce propulsion thrust. In the present paper, detailed review of various experimental studies and computational analysis addressing the detonation mode of combustion in pulse detonation engines are discussed. The effect of different parameters on the improvement of propulsion performance of pulse detonation engine has been presented in detail in this research paper. It is observed that the design of detonation wave flow path in detonation tube, ejectors at exit section of detonation tube, and operating parameters such as Mach numbers are mainly responsible for improving the propulsion performance of PDE. In the present review work, further scope of research in this area has also been suggested.

  8. Detonation nanodiamonds for doping Kevlar.

    Science.gov (United States)

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  9. Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements.

    Science.gov (United States)

    Lee, Eun Gyung; Lee, Larry; Möhlmann, Carsten; Flemmer, Michael M; Kashon, Michael; Harper, Martin

    2014-01-01

    Pulsations generated by personal sampling pumps modulate the airflow through the sampling trains, thereby varying sampling efficiencies, and possibly invalidating collection or monitoring. The purpose of this study was to characterize pulsations generated by personal sampling pumps relative to a nominal flow rate at the inlet of different respirable cyclones. Experiments were conducted using a factorial combination of 13 widely used sampling pumps (11 medium and 2 high volumetric flow rate pumps having a diaphragm mechanism) and 7 cyclones [10-mm nylon also known as Dorr-Oliver (DO), Higgins-Dewell (HD), GS-1, GS-3, Aluminum, GK2.69, and FSP-10]. A hot-wire anemometer probe cemented to the inlet of each cyclone type was used to obtain pulsation readings. The three medium flow rate pump models showing the highest, a midrange, and the lowest pulsations and two high flow rate pump models for each cyclone type were tested with dust-loaded filters (0.05, 0.21, and 1.25mg) to determine the effects of filter loading on pulsations. The effects of different tubing materials and lengths on pulsations were also investigated. The fundamental frequency range was 22-110 Hz and the magnitude of pulsation as a proportion of the mean flow rate ranged from 4.4 to 73.1%. Most pump/cyclone combinations generated pulse magnitudes ≥10% (48 out of 59 combinations), while pulse shapes varied considerably. Pulsation magnitudes were not considerably different for the clean and dust-loaded filters for the DO, HD, and Aluminum cyclones, but no consistent pattern was observed for the other cyclone types. Tubing material had less effect on pulsations than tubing length; when the tubing length was 183cm, pronounced damping was observed for a pump with high pulsation (>60%) for all tested tubing materials except for the Tygon Inert tubing. The findings in this study prompted a further study to determine the possibility of shifts in cyclone sampling efficiency due to sampling pump pulsations

  10. X-ray Pulsation Searches with NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  11. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  12. Double detonation drivers for a shock tube/tunnel

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hong; FENG; Heng; YU; Hongru

    2004-01-01

    Recent progress on detonation drivers is reviewed. Performances of the forward detonation driver and backward detonation driver have been observed. To eliminate occurrence of a Taylor wave following the detonation wave in the primary driver and to improve the performance of the detonation driver, an additional backward detonation driver was proposed to attach to the end of the forward detonation driver.When the ratio of the initial pressures between the additional and the primary drivers becomes larger than or equal to a critical value, the Taylor wave will disappear, and thus a homogeneous driving gas with high pressure and high temperature can be generated.Furthermore, an over-driving detonation wave will be also obtained, which can increase the driving capability.

  13. Research on the Low Detonation Velocity Explosives Containing Nitroesters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some explosive mixtures detonating at low velocity were experimentally investigated. Detonation velocity and critical diameter were measured for mixtures,being different in composition and density. An attempt of physical and chemical interpretation of results obtained is also included.

  14. A Pulsation Mechanism for GW Virginis Variables

    Science.gov (United States)

    Cox, Arthur N.

    2003-03-01

    The mechanism that produces pulsations in the hottest pre-white dwarfs has been uncertain since the early work indicated that helium is a poison that smooths opacity bumps in the opacity-temperature plane caused by the ionizations of the large observed amounts of carbon and oxygen. Very little helium seemed to be needed to prevent the kappa effect pulsation driving, but helium amounts of almost half of the mass in the surface composition are observed in the pulsating PG 1159-035 stars called the GW Virginis variables. Rather little change in the C and O surface abundances is observed from the hottest (RX J2117.1+3412 at 170,000 K) to the coolest (PG 0122+200 at 80,000 K) GW Vir variables. Actually the shortest observed periods (300-400 s) of these variables are generally predicted to be unstable in all models, but the longest observed periods (up to 1000 s) are difficult to excite. Three recent investigations differ in their conclusions, with two finding that helium and even a slight amount of hydrogen does not prevent the kappa effect of C and O ionizations. A more detailed study reported here confirms the poisoning effect of helium. However, the ionization K- and L-edge opacity of the original iron, whose global abundance is unaffected by all previous evolution, especially if enhanced by radiation absorption levitation, can give different, previously unexplored, opacity driving that can explain the observed pulsations. But even this iron ionization driving can be somewhat poisoned by bump smoothing if the C and O abundances are large. Nonvariable GW Vir stars in the observed instability strip could be the result of small composition variations in the pulsation driving layers.

  15. Initiation of the detonation in the gravitationally confined detonation model of Type Ia supernovae

    CERN Document Server

    Seitenzahl, Ivo R; Lamb, Don Q; Truran, James W

    2009-01-01

    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from a flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from 1D simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave pre-conditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can o...

  16. Digital filter technology and its application to geomagnetic pulsations in Antarctica

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Digital filter technology is an important method in study of geomagnetic pulsations in Antarctica. The signals received by pulsation magnetometer on the ground include various types of magnetic pulsations. Some types of pulsations or some frequency hands of pulsations can be extracted from the signals by means of digital filter technology because types of pulsations are defined according to their frequency range. In this paper usual digital filter technology is provided for study of magnetic pulsations in Antarctica and some examples are introduced.

  17. Linear elastic response of tubes to internal detonation loading

    NARCIS (Netherlands)

    Beltman, W.M.; Shepherd, J.E.

    2002-01-01

    This paper deals with the structural response of a tube to an internal gaseous detonation. An internal detonation produces a pressure load that propagates down the tube. Because the speed of the gaseous detonation can be comparable to the flexural wave group speed, excitation of flexural waves in th

  18. Stream of Reaction Products behind the Detonation Wave Front

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Embedded copper foils in a high explosive charge allow to see the stream of the reaction products behind the detonation front. With three individual firings in front of FXR it can be shown that the reaction products behind the detonation front are immediately going in the direction of the detonation front. But then the rarefaction fans are influencing strongly the further displacements.

  19. 30 CFR 75.1311 - Transporting explosives and detonators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transporting explosives and detonators. 75.1311... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1311 Transporting explosives and detonators. (a) When explosives and detonators are to be transported underground...

  20. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  1. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  2. Type Ia Supernova Explosion: Gravitationally Confined Detonation

    CERN Document Server

    Plewa, T; Lamb, D

    2004-01-01

    We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The proposed scenario follows from relaxing the assumption of symmetry in the model and involves a detonation created in an unconfined environment. The explosion begins with an essentially central ignition of stellar material initiating a deflagration. This deflagration results in the formation of a buoyantly-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout forms a strong pressure wave that laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface. The flow conditions at that moment support a detonation that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion fol...

  3. Detonation Properties of Ammonium Dinitramide (ADN)

    Science.gov (United States)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.

    1999-06-01

    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  4. Detonation Performance Testing of LX-19

    Science.gov (United States)

    Vincent, Samuel; Aslam, Tariq; Jackson, Scott

    2015-06-01

    CL-20 was developed at the Naval Surface Weapons Center at China Lake, CA in the mid 80's. Being less sensitive than PETN, but considerably more powerful than HMX, it is the highest energy and density compound known among organic chemicals. LX-19 was developed at LLNL in the early 90's. It is a high-energy plastic bonded explosive, composed of 95.8 wt% CL-20 and 4.2 wt% Estane binder, and is similar to LX-14 (composed of HMX and Estane), but with greater sensitivity characteristics with use of the more energetic CL-20 explosive. We report detonation performance results for unconfined cylindrical rate sticks of LX-19. The experimental diameter effects are shown, along with detonation front shapes, and reaction zone profiles for different test diameters. This data is critical for calibration to Detonation Shock Dynamics (DSD). LA-UR-15-20672.

  5. Multistage reaction pathways in detonating RDX

    Science.gov (United States)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-01-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine cystal. Rapid production of N2 and H2O within ˜10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen- rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N2 and H2O productions.

  6. Detonations and deflagrations in cosmological phase transitions

    CERN Document Server

    Megevand, Ariel

    2009-01-01

    We study the steady state motion of bubble walls in cosmological phase transitions. Taking into account the boundary and continuity conditions for the fluid variables, we calculate numerically the wall velocity as a function of the nucleation temperature, the latent heat, and a friction parameter. We determine regions in the space of these parameters in which detonations and/or deflagrations are allowed. In order to apply the results to a physical case, we calculate these quantities in a specific model, which consists of an extension of the Standard Model with singlet scalar fields. We also obtain analytic approximations for deflagrations and detonations.

  7. Detonation onset following shock wave focusing

    Science.gov (United States)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  8. The Principal Aspects of Application of Detonation in Propulsion Systems

    Directory of Open Access Journals (Sweden)

    A. A. Vasil'ev

    2013-01-01

    Full Text Available The basic problems of application of detonation process in propulsion systems with impulse and continuous burning of combustible mixture are discussed. The results on propagation of detonation waves in supersonic flow are analyzed relatively to air-breathing engine. The experimental results are presented showing the basic possibility of creation of an engine with exterior detonation burning. The base results on optimization of initiation in impulse detonation engine are explained at the expense of spatial and temporal redistribution of an energy, entered into a mixture. The method and technique for construction of highly effective accelerators for deflagration to detonation transition are discussed also.

  9. Detonation performance of high-dense BTF charges

    Science.gov (United States)

    Dolgoborodov, A.; Brazhnikov, M.; Makhov, M.; Gubin, S.; Maklashova, I.

    2014-05-01

    New experimental data on detonation wave parameters and explosive performance for benzotrifuroxan are presented. Optical pyrometry was applied in order to measure the temperature and pressure of BTF detonation products. Chapman-Jouguet temperature was obtained as 3990 - 4170 K (charge densities 1.82 - 1.84 g/cc). The heat of explosion and the acceleration ability were measured also. It is also considered the hypothesis of formation of nanodiamond particles in detonation products directly behind the detonation front and influence of these processes on the temperature-time history in detonation products.

  10. Study of the Detonation Phase in the Gravitationally Confined Detonation Model of Type Ia Supernovae

    CERN Document Server

    Meakin, Casey A; Townsley, Dean; Jordan, George C; Truran, James; Lamb, Don

    2008-01-01

    We study the gravitationally confined detonation (GCD) model of Type Ia supernovae through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single point, off-center flame ignition in carbon-oxygen white dwarfs. The simulations are unique in terms of the degree to which non-idealized physics is used to treat the reactive flow, including weak reaction rates and a time dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high density core of the white dwarf; and an efficient method for nucleosynthesis post-processing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance strat...

  11. Stellar Pulsations in Beyond Horndeski Gravity Theories

    CERN Document Server

    Sakstein, Jeremy; Koyama, Kazuya

    2016-01-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  12. Flow induced pulsations in pipe systems

    Science.gov (United States)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  13. Stellar pulsations in beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  14. Pulsating White Dwarf Stars and Precision Asteroseismology

    CERN Document Server

    Winget, D E

    2008-01-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  15. Pulsating White Dwarf Stars and Precision Asteroseismology

    Science.gov (United States)

    Winget, D. E.; Kepler, S. O.

    2008-09-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  16. Pulsating Radio Sources near the Crab Nebula.

    Science.gov (United States)

    Staelin, D H; Reifenstein, E C

    1968-12-27

    Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

  17. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-03-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  18. Formation of transverse waves in oblique detonations

    NARCIS (Netherlands)

    Verreault, J.; Higgins, A.J.; Stowe, R.A.

    2013-01-01

    The structure of oblique detonation waves stabilized on a hypersonic wedge in mixtures characterized by a large activation energy is investigated via steady method of characteristics (MoC) calculations and unsteady computational flowfield simulations. The steady MoC solutions show that, after the tr

  19. Detonation propagation in a high loss configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH

    2009-01-01

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  20. Detonation characteristics of ammonium nitrate products

    NARCIS (Netherlands)

    Kersten, R.J.A.; Hengel, E.I.V. van den; Steen, A.C. van der

    2006-01-01

    The detonation properties of ammonium nitrate (AN) products depend on many factors and are therefore, despite the large amount of information on this topic, difficult to assess. In order to further improve the understanding of the safety properties of AN, the European Fertilizer Manufacturers Associ

  1. Formation of transverse waves in oblique detonations

    NARCIS (Netherlands)

    Verreault, J.; Higgins, A.J.; Stowe, R.A.

    2013-01-01

    The structure of oblique detonation waves stabilized on a hypersonic wedge in mixtures characterized by a large activation energy is investigated via steady method of characteristics (MoC) calculations and unsteady computational flowfield simulations. The steady MoC solutions show that, after the tr

  2. Discovery of five new massive pulsating white dwarf stars

    Science.gov (United States)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  3. The Onset of Chaos in Pulsating Variable Stars

    CERN Document Server

    Turner, David G; Percy, J R; Abdel-Latif, Mohamed Abdel-Sabour

    2011-01-01

    Random changes in pulsation period occur in cool pulsating Mira variables, Type A, B, and C semiregular variables, RV Tauri variables, and in most classical Cepheids. The physical processes responsible for such fluctuations are uncertain, but presumably originate in temporal modifications of the envelope convection in such stars. Such fluctuations are seemingly random over a few pulsation cycles of the stars, but are dominated by the regularity of the primary pulsation over the long term. The magnitude of stochasticity in pulsating stars appears to be linked directly to their dimensions, although not in simple fashion. It is relatively larger in M supergiants, for example, than in short-period Cepheids, but is common enough that it can be detected in visual observations for many types of pulsating stars. Although chaos was discovered in such stars 80 years ago, detection of its general presence in the group has only been possible in recent studies.

  4. SuperWASP observations of pulsating Am stars

    CERN Document Server

    Smalley, B; Smith, A M S; Fossati, L; Anderson, D R; Barros, S C C; Butters, O W; Cameron, A Collier; Christian, D J; Enoch, B; Faedi, F; Haswell, C A; Hellier, C; Holmes, S; Horne, K; Kane, S R; Lister, T A; Maxted, P F L; Norton, A J; Parley, N; Pollacco, D; Simpson, E K; Skillen, I; Southworth, J; Street, R A; West, R G; Wheatley, P J; Wood, P L

    2011-01-01

    We have studied over 1600 Am stars at a photometric precision of 1 mmag with SuperWASP photometric data. Contrary to previous belief, we find that around 200 Am stars are pulsating delta Sct and gamma Dor stars, with low amplitudes that have been missed in previous, less extensive studies. While the amplitudes are generally low, the presence of pulsation in Am stars places a strong constraint on atmospheric convection, and may require the pulsation to be laminar. While some pulsating Am stars have been previously found to be delta Sct stars, the vast majority of Am stars known to pulsate are presented in this paper. They will form the basis of future statistical studies of pulsation in the presence of atomic diffusion.

  5. A search for low-metallicity pulsating B stars

    Science.gov (United States)

    Engelbrecht, Chris; Kgoadi, Refilwe; Frescura, Fabio

    2017-09-01

    We report on some recent results from a long-term UBVI survey of various fields in the Large Magellanic Cloud (LMC), which is aimed at identifying and classifying pulsating B stars in the selected LMC fields. Difference Imaging Analysis shows a clear advantage over conventional PSF fitting. Tentative indications have been found of a varying incidence of pulsation amplitudes (and, by inference, of metal content of the pulsators) across the LMC bar.

  6. Numerical study of nonequilibrium plasma assisted detonation initiation in detonation tube

    Science.gov (United States)

    Zhou, Siyin; Wang, Fang; Che, Xueke; Nie, Wansheng

    2016-12-01

    Nonequilibrium plasma has shown great merits in ignition and combustion nowadays, which should be especially useful for hypersonic propulsion. A coaxial electrodes configuration was established to investigate the effect of alternating current (AC) dielectric barrier discharge nonequilibrium plasma on the detonation initiation process in a hydrogen-oxygen mixture. A discharge simulation-combustion simulation loosely coupled method was used to simulate plasma assisted detonation initiation. First, the dielectric barrier discharge in the hydrogen-oxygen mixture driven by an AC voltage was simulated, which takes 17 kinds of particles (including positively charged particles, negatively charged particles, and neutral particles) and 47 reactions into account. The temporal and spatial characteristics of the discharge products were obtained. Then, the discharge products were incorporated into the combustion model of a detonation combustor as the initial conditions for the later detonation initiation simulation. Results showed that the number density distributions of plasma species are different in space and time, and develop highly nonuniformly from high voltage electrode to grounded electrode at certain times. All the active species reach their highest concentration at approximately 0.6T (T denotes a discharge cycle). Compared with the no plasma case, the differences of flowfield shape mainly appear in the early stage of the deflagration to detonation transition process. None of the sub-processes (including the very slow combustion, deflagration, over-driven detonation, detonation decay, and propagation of a self-sustained stable detonation wave) have been removed by the plasma. After the formation of a C-J detonation wave, the whole flowfield remains unchanged. With the help of plasma, the deflagration to detonation transition (DDT) time and distance are reduced by about 11.6% and 12.9%, respectively, which should be attributed to the active particles effect of

  7. On the pulsation and evolutionary properties of helium burning radially pulsating variables

    Science.gov (United States)

    Bono, G.; Pietrinferni, A.; Marconi, M.; Braga, V. F.; Fiorentino, G.; Stetson, P. B.; Buonanno, R.; Castellani, M.; Dall'Ora, M.; Fabrizio, M.; Ferraro, I.; Giuffrida, G.; Iannicola, G.; Marengo, M.; Magurno, D.; Martinez-Vazquez, C. E.; Matsunaga, N.; Monelli, M.; Neeley, J.; Rastello, S.; Salaris, M.; Short, L.; Stellingwerf, R. F.

    2016-05-01

    We discuss pulsation and evolutionary properties of low- (RR Lyrae, Type II Cepheids) and intermediate-mass (Anomalous Cepheids) radial variables. We focus our attention on the topology of the instability strip and the distribution of the quoted variables in the Hertzsprung-Russell diagram. We discuss their evolutionary status and the dependence on the metallicity. Moreover, we address the diagnostics (period derivative, difference in luminosity, stellar mass) that can provide solid constraints on their progenitors and on the role that binarity and environment have in shaping their current pulsation characteristics. Finally, we briefly outline their use as standard candles.

  8. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    Science.gov (United States)

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  9. Model of non-ideal detonation of condensed high explosives

    Science.gov (United States)

    Smirnov, E. B.; Kostitsin, O. V.; Koval, A. V.; Akhlyustin, I. A.

    2016-11-01

    The Zeldovich-Neumann-Doering theory of ideal detonation allows one to describe adequately the detonation of charges with near-critical diameter. For smaller diameters, detonation velocity can differ significantly from an ideal value expected based on equilibrium chemical thermodynamics. This difference is quite evident when using non-ideal explosives; in certain cases, this value can be up to one third of ideal detonation velocity. Numerical simulation of these systems is a very labor-consuming process because one needs to compute the states inside the chemical reaction zone, as well as to obtain data on the equation of state of high-explosive detonation products mixture and on the velocity of chemical reaction; however, these characteristics are poorly studied today. For practical purposes, one can use the detonation shock dynamics model based on interrelation between local velocity of the front and its local curvature. This interrelation depends on both the equation of state of explosion products, and the reaction velocity; but the explicit definition of these characteristics is not needed. In this paper, experimental results are analyzed. They demonstrate interrelation between the local curvature of detonation front and the detonation velocity. Equation of detonation front shape is found. This equation allows us to predict detonation velocity and shape of detonation wave front in arbitrary geometry by integrating ordinary differential equation for the front shape with a boundary condition at the charge edge. The results confirm that the model of detonation shock dynamics can be used to describe detonation processes in non-ideal explosives.

  10. Thermal degradation of two liquid fuels and detonation tests for pulse detonation engine studies

    Science.gov (United States)

    Rocourt, X.; Gillard, P.; Sochet, I.; Piton, D.; Prigent, A.

    2007-02-01

    The use of liquid fuels such as kerosene is of interest for the pulse detonation engine (PDE). Within this context, the aim of this work, which is a preliminary study, was to show the feasibility to initiate a detonation in air with liquid-fuel pyrolysis products, using energies and dimensions of test facility similars to those of PDEs. Therefore, two liquids fuels have been compared, JP10, which is a synthesis fuel generally used in the field of missile applications, and decane, which is one of the major components of standard kerosenes (F-34, Jet A1, ...). The thermal degradation of these fuels was studied with two pyrolysis processes, a batch reactor and a flow reactor. The temperatures varied from 600°C to 1,000°C and residence times for the batch reactor and the flow reactor were, respectively, between 10 30 s and 0.1 2 s. Subsequently, the detonability of synthetic gaseous mixtures, which was a schematisation of the decomposition state after the pyrolysis process, has been studied. The detonability study, regarding nitrogen dilution and equivalence ratio, was investigated in a 50 mm-diameter, 2.5 m-long detonation tube. These dimensions are compatible with applications in the aircraft industry and, more particularly, in PDEs. Therefore, JP10 and decane were compared to choose the best candidate for liquid-fuel PDE studies.

  11. Multidimensional modelling of classical pulsating stars

    CERN Document Server

    Muthsam, Herbert J

    2016-01-01

    After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.

  12. High-Precision Spectroscopy of Pulsating Stars

    CERN Document Server

    Aerts, C; Desmet, M; Carrier, F; Zima, W; Briquet, M; De Ridder, J

    2007-01-01

    We review methodologies currently available to interprete time series of high-resolution high-S/N spectroscopic data of pulsating stars in terms of the kind of (non-radial) modes that are excited. We illustrate the drastic improvement of the detection treshold of line-profile variability thanks to the advancement of the instrumentation over the past two decades. This has led to the opportunity to interprete line-profile variations with amplitudes of order m/s, which is a factor 1000 lower than the earliest line-profile time series studies allowed for.

  13. RZ Cassiopeia: Eclipsing Binary with Pulsating Component

    CERN Document Server

    Golovin, A

    2007-01-01

    We report time-resolved VR-band CCD photometry of the eclipsing binary RZ Cas obtained with 38-cm Cassegrain telescope at the Crimean Astrophysical Observatory during July 2004 - October 2005. Obtained lightcurves clearly demonstrates rapid pulsations with the period about 22 minutes. Periodogram analysis of such oscillations also is reported. On the 12, January, 2005 we observed rapid variability with higher amplitude (~0.^m 1) that, perhaps, may be interpreted as high-mass-transfer-rate event and inhomogeneity of accretion stream. Follow-up observations (both, photometric and spectroscopic) of RZ Cas are strictly desirable for more detailed study of such event.

  14. Pulsations, interpulsations, and sea-floor spreading.

    Science.gov (United States)

    Pessagno, E. A., Jr.

    1973-01-01

    It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.

  15. Influence of Turbulent Fluctuations on Detonation Propagation

    CERN Document Server

    Maxwell, Brian McN; Lau-Chapdelaine, Sebastien S M; Falle, Sam A E G; Sharpe, Gary J; Radulescu, Matei I

    2016-01-01

    The present study addresses the reaction zone structure and burning mechanism of unstable detonations. Experiments investigated mainly two-dimensional methane-oxygen cellular detonations in a thin channel geometry. The sufficiently high temporal resolution permitted to determine the PDF of the shock distribution, a power-law with an exponent of -3, and the burning rate of unreacted pockets from their edges - through surface turbulent flames with a speed approximately 3-7 times larger than the laminar one at the local conditions. Numerical simulations were performed using a novel Large Eddy Simulation method where the reactions due to both auto-ignition and turbulent transport and treated exactly at the sub-grid scale in a reaction-diffusion formulation. The model is an extension of Kerstein & Menon's Linear Eddy Model for Large Eddy Simulation to treat flows with shock waves and rapid gasdynamic transients. The two-dimensional simulations recovered well the amplification of the laminar flame speed owing t...

  16. Heat of detonation, the cylinder test, and performance munitions

    Energy Technology Data Exchange (ETDEWEB)

    Akst, I.B.

    1989-01-01

    Heats of detonation of CHNO explosives correlate well with copper cylinder test expansion data. The detonation products/calorimetry data can be used to estimate performance in the cylinder test, in munitions, and for new molecules or mixtures of explosives before these are made. Confidence in the accuracy of the performance estimates is presently limited by large deviations of a few materials from the regression predictions; but these same deviations, as in the insensitive explosive DINGU and the low carbon systems, appear to be sources of information useful for detonation and explosives research. The performance correlations are functions more of the detonation products and thermochemical energy than they are of the familiar parameters of detonation pressure and velocity, and the predictions are closer to a regression line on average than are those provided by CJ calculations. The prediction computations are simple but the measurements (detonation calorimetry/products and cylinder experiments) are not. 17 refs., 5 tabs.

  17. Insensitive detonator apparatus for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  18. First Kepler results on compact pulsators - VII. Pulsating subdwarf B stars detected in the second half of the survey phase

    Science.gov (United States)

    Baran, A. S.; Kawaler, S. D.; Reed, M. D.; Quint, A. C.; O'Toole, S. J.; Østensen, R. H.; Telting, J. H.; Silvotti, R.; Charpinet, S.; Christensen-Dalsgaard, J.; Still, M.; Hall, J. R.; Uddin, K.

    2011-07-01

    We present five new pulsating subdwarf B (sdB) stars discovered by the Kepler spacecraft during the asteroseismology survey phase. We perform time series analysis on the nearly continuous month-long Kepler data sets of these five objects; these data sets provide nearly alias-free time series photometry at unprecedented precision. Following an iterative pre-whitening process, we derive the pulsational frequency spectra of these stars, separating out artefacts of known instrumental origin. We find that these new pulsating sdB stars are multiperiodic long-period pulsators of the V1093 Her type, with the number of periodicities ranging from eight (KIC 8302197) to 53 (KIC 11558725). The frequencies and amplitudes are typical of g-mode pulsators of this type. We do not find any evidence for binarity in the five stars from their observed pulsation frequencies. As these are g-mode pulsators, we briefly looked for period spacings for mode identification and found average spacings of about 260 and 145 s. This may indicate l= 1 and 2 patterns. Some modes may show evidence of rotational splitting. These discoveries complete the list of compact pulsators found in the survey phase. Of the 13 compact pulsators, only one star was identified as a short-period (p-mode) V361 Hya pulsator, while all other new pulsators turned out to be V1093 Her class objects. Among the latter objects, two of them seemed to be pure V1093 Her while the others show additional low-amplitude peaks in the p-mode frequency range, suggesting their hybrid nature. Authenticity of these peaks will be tested with longer runs currently under analysis.

  19. The Cepheid mass discrepancy and pulsation-driven mass loss

    NARCIS (Netherlands)

    Neilson, H.R.; Cantiello, M.; Langer, N.

    2011-01-01

    Context. A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10−20%. Aims. We study the role of pulsation-driven mass loss

  20. Review and prospect of research on hydraulic pulsation attenuator

    Science.gov (United States)

    Shan, Chang-ji; Zhao, Qi-jun; Dai, Ting-ting; Bian, Yi-duo; Cai, Yan

    2017-09-01

    The pressure pulsation attenuator is able to decrease the fluid fluctuation of the hydraulic pump effectively, so it is widely used in construction machinery. This paper reviews the history and progresses of the research on the pressure pulsation attenuator in China and overseas, summarizes its two types: H-type rigid structure and built-in flexible material, meanwhile, discusses its future research area.

  1. A Novel Oblique Detonation Structure and Its Stability

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; ZHAO Wei; JIANG Zong-Lin

    2007-01-01

    Oblique detonation structures induced by the wedge in the supersonic combustible gas mixtures are simulated numerically. The results show that the stationary oblique detonation structures are influenced by the gas flow Mach number, and a novel critical oblique detonation structure, which is characterized by a more complicated wave system, appears in the low Mach number cases. By introducing the inflow disturbance, its nonstationary evolution process is illustrated and its stability is verified.

  2. Transient heat transfer properties in a pulse detonation combustor

    OpenAIRE

    Fontenot, Dion G.

    2011-01-01

    Approved for public release; distribution is unlimited. The heat transfer along the axis of a pulse detonation combustor has been characterized for various frequencies and fill fractions at 2.5 atmospheres of pressure for chamber refresh conditions. In a pulse detonation combustor, a supersonic detonation wave is the method for transforming chemical energy into mechanical energy and the wave propagates much faster than the subsonic flames in devices such as rockets and ramjets. The flow...

  3. Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation

    Science.gov (United States)

    2015-03-01

    specific heat capacity, that would result in a 24% loss in energy for ionization. Second, the water and aqueous NaCl were added prior to detonation . This...Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation THESIS Kaz I. Teope, Captain, USAF AFIT-ENY-MS-15-M-224 DEPARTMENT OF THE... DETONATION THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force

  4. Generation of High Pressure and Temperature by Converging Detonation Waves

    Directory of Open Access Journals (Sweden)

    V. P. Singh

    1987-07-01

    Full Text Available Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  5. Generation of High Pressure and Temperature by Converging Detonation Waves

    OpenAIRE

    Singh, V. P.; Shukla, S K

    1987-01-01

    Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  6. Generation of high pressure and temperature by converging detonation waves

    Science.gov (United States)

    Singh, V. P.; Shukla, S. K.

    1987-07-01

    Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  7. Development of millisecond and internal delayed electric detonators in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, D.

    1986-01-01

    The stages of developing millisecond and internal delayed detonators are discussed. The problems of their practical introduction in Hungary as well as the economic background of their production are outlined. The present situation, i.e. production possibilities, application of different detonator types as well as the expected progress in the field of detonator production and use in mines endangered by fire-damp are dealt with.

  8. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  9. A gasdynamic gun driven by gaseous detonation

    Science.gov (United States)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  10. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    Directory of Open Access Journals (Sweden)

    J. Bitterly

    1999-06-01

    Full Text Available Geomagnetic field measurements at two Antarctic stations are compared during two weeks in the local summer (January 1-15, 1992. Low frequency (0.6-6 mHz pulsations are observed at each station near local magnetic noon. The same wave packets appear in some cases also at the other station, although with a significant attenuation, more clearly in the morning sector; the waves show a near noon reversal of the polarization sense from counter-clockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively.

  11. Molecular-dynamics investigation of the desensitization of detonable material

    Science.gov (United States)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  12. Experimental study of the detonation of technical grade ammonium nitrate

    Science.gov (United States)

    Presles, Henri-Noël; Vidal, Pierre; Khasainov, Boris

    2009-11-01

    The detonation of technical grade ammonium nitrate at the density ρ=0.666 g/cm confined in PVC and steel tubes was experimentally studied. The results show that the detonation is self-sustained and steady in steel tubes with diameter as small as 12 mm. Critical detonation diameter lies between 8 and 12 mm in 2 mm thick steel tubes and between 55 and 81 mm in PVC tubes. These values testify a strong detonation sensitivity of this product. To cite this article: H.-N. Presles et al., C. R. Mecanique 337 (2009).

  13. Response Surface Optimization of Lead Azide for Explosive Detonators

    National Research Council Canada - National Science Library

    McCulloh, Ian; Massie, Darrell; Cordaro, Emily

    2006-01-01

    The Armament Research, Development and Engineering Center, Picatinny (ARDEC) has been tasked with developing a new chemical process to produce lead azide, the key explosive ingredient in detonators...

  14. Detonability of white dwarf plasma: turbulence models at low densities

    Science.gov (United States)

    Fenn, D.; Plewa, T.

    2017-06-01

    We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performed to date. The resolution required to resolve kernels is 0.1 km. Our results indicate a high probability of detonations in such well-resolved simulations of carbon-oxygen white dwarf mergers. These simulations will likely produce detonations in systems of lower total mass, thus broadening the population of white dwarf binaries capable of producing Type Ia supernovae. Consequently, we expect a downward revision of the lower limit of the total merger mass that is capable of producing a prompt detonation. We review application of the new detonation mechanism to various explosion scenarios of single, Chandrasekhar-mass white dwarfs.

  15. A library of prompt detonation reaction zone data

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P. C., LLNL

    1998-06-01

    Tables are given listing literature data that allows calculation of sonic reaction zones at or near steady-state for promptly detonating explosive cylinders. The data covers homogeneous, heterogeneous, composite, inorganic and binary explosives and allows comparison across the entire explosive field. Table 1 lists detonation front curvatures. Table 2 lists Size Effect data, i.e. the change of detonation velocity with cylinder radius. Table 3 lists failure radii and detonation velocities. Table 4 lists explosive compositions. A total of 51 references dating back into the 1950`s are given. Calculated reaction zones, radii of curvature and growth rate coefficients are listed.

  16. Estimating heats of detonation and detonation velocities of aromatic energetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad Hossein [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P. O. Box 83145/115 (Iran)

    2008-12-15

    A new method is introduced to predict reliable estimation of heats of detonation of aromatic energetic compounds. At first step, this procedure assumes that the heat of detonation of an explosive compound of composition C{sub a}H{sub b}N{sub c}O{sub d} can be approximated as the difference between the heat of formation of all H{sub 2}O-CO{sub 2} arbitrary (H{sub 2}O, CO{sub 2}, N{sub 2}) detonation products and that of the explosive, divided by the formula weight of the explosive. Overestimated results based on (H{sub 2}O-CO{sub 2} arbitrary) can be corrected in the next step. Predicted heats of detonation of pure energetic compounds with the product H{sub 2}O in the liquid state for 31 aromatic energetic compounds have a root mean square (rms) deviation of 2.08 and 0.34 kJ g{sup -1} from experiment for (H{sub 2}O-CO{sub 2} arbitrary) and new method, respectively. The new method also gives good results as compared to the second sets of decomposition products, which consider H{sub 2},N{sub 2}, H{sub 2}O,CO, and CO{sub 2} as major gaseous products. It is shown here how the predicted heats of detonation by the new method can be used to obtain reliable estimation of detonation velocity over a wide range of loading densities. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  17. Secular Evolution in Mira Variable Pulsations

    CERN Document Server

    Templeton, M R; Willson, L A

    2005-01-01

    Stellar evolution theory predicts that asymptotic giant branch stars undergo a series of short thermal pulses that significantly change their luminosity and mass on timescales of hundreds to thousands of years. Secular changes in these stars resulting from thermal pulses can be detected as measurable changes in period if the star is undergoing Mira pulsations. The American Association of Variable Star Observers (AAVSO) International Database currently contains visual data for over 1500 Mira variables. Light curves for these stars span nearly a century in some cases, making it possible to study the secular evolution of the pulsation behavior on these timescales. In this paper, we present the results of our study of period change in 547 Mira variables using data from the AAVSO. We find non-zero rates of period change, dlnP/dt, at the 2-sigma significance level in 57 of the 547 stars, at the 3-sigma level in 21 stars, and at the level of 6-sigma or greater in eight of the 547. The latter eight stars have been pr...

  18. Impulsively started, steady and pulsated annular inflows

    Science.gov (United States)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John

    2017-04-01

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  19. Pulsating variable stars and large spectroscopic surveys

    Science.gov (United States)

    De Cat, Peter

    2017-09-01

    In the past decade, the research of pulsating variable stars has taken a giant leap forward thanks to the photometric measurements provided by space missions like Most, CoRoT, Kepler/K2, and Brite. These missions have provided quasi uninterrupted photometric time-series with an ultra-high quality and a total length that is not achievable from Earth. However, many of the success stories could not have been told without ground-based spectroscopic follow-up observations. Indeed, spectroscopy has some important assets as it can provide (more) accurate information about stellar parameters (like the effective temperature, surface gravity, metallicity, and abundances that are mandatory parameters for an in-depth asteroseismic study), the radial velocity (that is important for the detection of binaries and for the confirmation of cluster membership, if applicable), and the projected rotational velocity (that allows the study of the effects of rotation on pulsations). Fortunately, several large spectroscopic surveys are (becoming) available that can be used for these purposes. For some of these surveys, sub-projects have been initiated with the specific goal to complement space-based photometry. In this review, several spectroscopic surveys are introduced and compared with each other. We show that a large amount of spectroscopic data is (becoming) available for a large variety of objects.

  20. Computational model of miniature pulsating heat pipes.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  1. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  2. The pulsation spectrum of VX Hydrae

    CERN Document Server

    Templeton, M R; Dvorak, S; Poklar, R; Butterworth, N; Gerner, H

    2009-01-01

    We present the results of a two-year, multisite observing campaign investigating the high-amplitude delta Scuti star VX Hydrae during the 2006 and 2007 observing seasons. The final data set consists of nearly 8500 V-band observations spanning HJD 2453763.6 to 2454212.7 (2006 January 28 to 2007 April 22). Separate analyses of the two individual seasons of data yield 25 confidently-detected frequencies common to both data sets, of which two are pulsation modes, and the remaining 23 are Fourier harmonics or beat frequencies of these two modes. The 2006 data set had five additional frequencies with amplitudes less than 1.5 mmag, and the 2007 data had one additional frequency. Analysis of the full 2006-2007 data set yields 22 of the 25 frequencies found in the individual seasons of data. There are no significant peaks in the spectrum other than these between 0 and 60 c/d. The frequencies of the two main pulsation modes derived from the 2006 and 2007 observing seasons individually do not differ at the level of 3-si...

  3. The Pulsation Spectrum of VX Hydrae

    Science.gov (United States)

    Templeton, M. R.; Samolyk, G.; Dvorak, S.; Poklar, R.; Butterworth, N.; Gerner, H.

    2009-10-01

    We present the results of a two-year, multisite observing campaign investigating the high-amplitude δ Scuti star VX Hydrae during the 2006 and 2007 observing seasons. The final data set consists of nearly 8500 V-band observations spanning HJD 2453763.6 to 2454212.7 (2006 January 28 to 2007 April 22). Separate analyses of the two individual seasons of data yield 25 confidently detected frequencies common to both data sets, of which two are pulsation modes, and the remaining 23 are Fourier harmonics or beat frequencies of these two modes. The 2006 data set had five additional frequencies with amplitudes less than 1.5 mmag, and the 2007 data had one additional frequency. Analysis of the full 2006–2007 data set yields 22 of the 25 frequencies found in the individual seasons of data. There are no significant peaks in the spectrum other than these between 0 and 60 cycles day-1. The frequencies of the two main pulsation modes derived from the 2006 and 2007 observing seasons individually do not differ at the level of 3σ, and thus we find no conclusive evidence for period change over the span of these observations. However, the amplitude of changed significantly between the two seasons, while the amplitude of remained constant; amplitudes of the Fourier harmonics and beat frequencies of f1 also changed. Similar behavior was seen in the 1950s, and it is clear that VX Hydrae undergoes significant amplitude changes over time.

  4. Determination of discharge during pulsating flow

    Science.gov (United States)

    Thompson, T.H.

    1968-01-01

    Pulsating flow in an open channel is a manifestation of unstable-flow conditions in which a series of translatory waves of perceptible magnitude develops and moves rapidly downstream. Pulsating flow is a matter of concern in the design and operation of steep-gradient channels. If it should occur at high stages in a channel designed for stable flow, the capacity of the channel may be inadequate at a discharge that is much smaller than that for which the channel was designed. If the overriding translatory wave carries an appreciable part of the total flow, conventional stream-gaging procedures cannot be used to determine the discharge; neither the conventional instrumentation nor conventional methodology is adequate. A method of determining the discharge during pulsating flow was tested in the Santa Anita Wash flood control channel in Arcadia, Calif., April 16, 1965. Observations of the dimensions and velocities of translatory waves were made during a period of controlled reservoir releases of about 100, 200, and 300 cfs (cubic feet per second). The method of computing discharge was based on (1) computation of the discharge in the overriding waves and (2) computation of the discharge in the shallow-depth, or overrun, part of the flow. Satisfactory results were obtained by this method. However, the procedure used-separating the flow into two components and then treating the shallow-depth component as though it were steady--has no theoretical basis. It is simply an expedient for use until laboratory investigation can provide a satisfactory analytical solution to the problem of computing discharge during pulsating flow. Sixteen months prior to the test in Santa Anita Wash, a robot camera had been designed .and programmed to obtain the data needed to compute discharge by the method described above. The photographic equipment had been installed in Haines Creek flood control channel in Los Angeles, Calif., but it had not been completely tested because of the infrequency of

  5. Effects of pulsation rate and viscosity on pulsation-induced taste enhancement: new insights into texture-taste interactions.

    Science.gov (United States)

    Burseg, Kerstin Martha Mensien; Camacho, Sara; Bult, Johannes Hendrikus Franciscus

    2011-05-25

    Oral stimulation with high-tastant concentrations that are alternared with low-tastant concentrations or water rinses (pulsatile stimulation) results in taste intensity ratings that are higher than continuous stimulation with the same average tastant concentration. This study tested the combined effects of taste pulsation rate and viscosity on pulsation-induced taste enhancement in apple juice. According to a tastant-kinetics hypothesis, less pulsation-induced taste enhancement is expected at enhanced pulsation rates in the high-viscous proximal stimulus compared to lower viscous stimuli. High-concentration sucrose apple juice pulses and low-concentration sucrose apple juice intervals were alternated at different pulsation periods (pulse + interval in seconds) every 2.5 s (period length = 5 s) or every 1.25 s (period length = 2.5 s). Pulsed stimuli were presented at two viscosity levels by the addition of pectin (0 and 10 g/L). Sweetness intensities of pulsed stimuli were compared to a continuous reference of the same net but nonalternating sucrose concentration. Sweetness ratings were higher for pulsatile stimuli than for continuous stimuli. In low-viscous stimuli, enhancement depended on the pulsation period and peaked at 5 s periods. In high-viscous stimuli, the same enhancement was observed for both pulsation periods. These results contradict a tastant-kinetics hypothesis of viscosity-induced taste suppression because impaired tastant kinetics by viscosity would predict the opposite: lower pulsation-induced taste enhancement for viscous stimuli, especially at higher pulsation rates. Instead, these observations favor an explanation based on perceptual texture-taste interactions, which predict the observed independence between viscosity and pulsation rate.

  6. Discrete approximations of detonation flows with structured detonation reaction zones by discontinuous front models: A program burn algorithm based on detonation shock dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B. [Los Alamos National Lab., NM (United States); Jackson, T.L. [Univ. of Illinois, Urbana, IL (United States). Center for Simulation of Advanced Rockets; Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Theoretical and Applied Mechanics

    1999-02-02

    In the design of explosive systems the generic problem that one must consider is the propagation of a well-developed detonation wave sweeping through an explosive charge with a complex shape. At a given instant of time the lead detonation shock is a surface that occupies a region of the explosive and has a dimension that is characteristic of the explosive device, typically on the scale of meters. The detonation shock is powered by a detonation reaction zone, sitting immediately behind the shock, which is on the scale of 1 millimeter or less. Thus, the ratio of the reaction zone thickness to the device dimension is of the order of 1/1,000 or less. This scale disparity can lead to great difficulties in computing three-dimensional detonation dynamics. An attack on the dilemma for the computation of detonation systems has lead to the invention of sub-scale models for a propagating detonation front that they refer to herein as program burn models. The program burn model seeks not to resolve the fine scale of the reaction zone in the sense of a DNS simulation. The goal of a program burn simulation is to resolve the hydrodynamics in the inert product gases on a grid much coarser than that required to resolve a physical reaction zone. The authors first show that traditional program burn algorithms for detonation hydrocodes used for explosive design are inconsistent and yield incorrect shock dynamic behavior. To overcome these inconsistencies, they are developing a new class of program burn models based on detonation shock dynamic (DSD) theory. It is hoped that this new class will yield a consistent and robust algorithm which reflects the correct shock dynamic behavior.

  7. Pulsating hydraulic fracturing technology in low permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    Wang Wenchao; Li Xianzhong; Lin Baiquan; Zhai Cheng

    2015-01-01

    Based on the difficult situation of gas drainage in a single coal bed of high gas content and low perme-ability, we investigate the technology of pulsating hydraulic pressure relief, the process of crank plunger movement and the mechanism of pulsating pressure formation using theoretical research, mathematical modeling and field testing. We analyze the effect of pulsating pressure on the formation and growth of fractures in coal by using the pulsating hydraulic theory in hydraulics. The research results show that the amplitude of fluctuating pressure tends to increase in the case where the exit is blocked, caused by pulsating pressure reflection and frictional resistance superposition, and it contributes to the growth of fractures in coal. The crack initiation pressure of pulsating hydraulic fracturing is 8 MPa, which is half than that of normal hydraulic fracturing;the pulsating hydraulic fracturing influence radius reaches 8 m. The total amount of gas extraction is increased by 3.6 times, and reaches 50 L/min at the highest point. The extraction flow increases greatly, and is 4 times larger than that of drilling without fracturing and 1.2 times larger than that of normal hydraulic fracturing. The technology provides a technical measure for gas drainage of high gas content and low permeability in the single coal bed.

  8. Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae

    CERN Document Server

    Bulla, M; Kromer, M; Seitenzahl, I R; Fink, M; Ciaraldi-Schoolmann, F; Roepke, F K; Hillebrandt, W; Pakmor, R; Ruiter, A J; Taubenberger, S

    2016-01-01

    Calculations of synthetic spectropolarimetry are one means to test multi-dimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M$_{\\odot}$ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a two-dimensional double-detonation model and a three-dimensional delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels ($<$ 1 per cent) for both explosion models. Polarization in the continuum peaks at $\\sim$ 0.1$-$0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found ac...

  9. Investigation on Novel Methods to Increase Specific Thrust in Pulse Detonation Engines via Imploding Detonations

    Science.gov (United States)

    2009-12-01

    to-Detonation Transition, Specific Thrust 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS...hydrocarbon fuel-air mixtures such as acetylene -air, ethylene-air, propane-air and even JP10-air mixtures based on the required length of the induction zone

  10. Three dimensional hemispherical test development to evaluate detonation wave breakout

    Science.gov (United States)

    Francois, E. G.; Morris, J. S.; Lieber, M.

    2014-05-01

    The Onionskin test has been the standard test to evaluate detonation wave breakout over a hemispherical surface for decades. It has been an effective test used in a variety of applications to qualify main charge materials, evaluate different boosters, and compare different detonators. It is not without its shortfalls however. It only images a small portion of the explosive and requires very precise alignment and camera requirements to make sense of the results. Asymmetry in explosive behavior cannot be pinpointed or evaluated effectively. We have developed a new diagnostic using fiber optics covering the surface of the explosive to yield a 3D representation of the detonation wave behavior. Precise timing mapping of the detonation over the hemispherical surface is generated which can be converted to detonation wave breakout behavior using Huygens' wave reconstruction. This report will include the results of a recent suite of tests on PBX 9501, and discussion of how the test was developed for this explosive and contrasting previous work on PBX 9502. The results of these tests will describe the effects on detonation wave breakout symmetry when Sylgard 184 is placed between the detonator and booster. The effects on symmetry and timing when the Sylgard gap thickness is increased and the detonator is canted will be shown.

  11. Half-Cell Law of Regular Cellular Detonations

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-Lin; GAO Yun-Liang

    2008-01-01

    Numerical simulations illustrate the half-cell law of regular cellular detonations propagating in confined space,i.e., the number of cells always maintains an integral multiple of half cell. The cells adapt themselves larger or smaller to the size of the unconfined space by maintaining the cell scale larger or smaller than the original cells of detonation.

  12. Brief detonating characterization of lithanol; Caracterisation detonique succinte du lithanol

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, J.; Courchinoux, R.; Darnez, Ch. [CEA Cesta, Centre d`Etudes Scientifiques et Techniques d`Aquitaine, 33 - Le Barp (France)

    1996-12-31

    Lithanol is a stoichiometric composition of tri-hydrated lithium perchlorate and aluminium. The underwater detonation of this explosive leads to the formation of a gaseous bubble essentially made of water vapor. In this paper, a brief detonating characterization of lithanol is presented using plates projection and cylinder raising up experiments. (J.S.) 5 refs.

  13. Detonation Diffraction in a Multi-Step Channel

    Science.gov (United States)

    2010-12-01

    section during a detonation. Shadowgraph setup utilizes an Ion Laser Technology Model 55001 Argon Ion laser emitting 750 mW beam at 488 nm passing...Rarefaction fan penetrating propagating a toward detonation axis (From [8... Solenoid Switches (lower section) (From [23]). ........ 39  Figure 29.  Sample Labview control panel

  14. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fire, explosion, and detonation protection. 154.820 Section 154.820 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a...

  15. Sher 25: pulsating but apparently alone

    CERN Document Server

    Taylor, William D; Simón-Díaz, Sergio; Sana, Hugues; Langer, Norbert; Smith, Nathan; Smartt, Stephen J

    2014-01-01

    The blue supergiant Sher25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula, which shows similarities to the triple-ring structure seen around SN1987A. From optical spectroscopy over six consecutive nights, we detect periodic radial velocity variations in the stellar spectrum of Sher25 with a peak-to-peak amplitude of ~12 km/s on a timescale of about 6 days, confirming the tentative detec-tion of similar variations by Hendry et al. From consideration of the amplitude and timescale of the signal, coupled with observed line profile variations, we propose that the physical origin of these variations is related to pulsations in the stellar atmosphere, rejecting the previous hypothesis of a massive, short-period binary companion. The radial velocities of two other blue supergiants with similar bipolar nebulae, SBW1 and HD 168625, were also monitored over the course of six nights, but these did not display any significant radial velocity variations.

  16. Is $\\lambda$ Cep a pulsating star?

    CERN Document Server

    Uuh-Sonda, J M; Rauw, G

    2014-01-01

    It has been proposed that the variability seen in absorption lines of the O6Ief star $\\lambda$ Cep is periodical and due to non-radial pulsations (NRP). We have obtained new spectra during six campaigns lasting between five and nine nights. In some datasets we find recurrent spectral variations which move redward in the absorption line profile, consistent with perturbations on the stellar surface of a rotating star. However the periods found are not stable between datasets, at odds with the NRP hypothesis. Moreover, even when no redward trend is found in a full dataset of an observing campaign, it can be present in a subset, suggesting that the phenomenon is short-lived, of the order of a few days, and possibly linked to transient magnetic loops.

  17. Pc3 pulsations during variable IMF conditions

    Directory of Open Access Journals (Sweden)

    U. Villante

    Full Text Available Pc3 geomagnetic field fluctuations detected at low latitude (L'Aquila, Italy during the passage of a high velocity solar wind stream, characterized by variable interplanetary magnetic field conditions, are analyzed. Higher frequency resonant fluctuations and lower frequency phenomena are simultaneously observed; the intermittent appearance and the variable frequency of the longer period modes can be well interpreted in terms of the variable IMF elements; moreover their polarization characteristics are consistent with an origin related to external waves propagating in antisunward direction. A comparison with simultaneous observations performed at Terra Nova Bay (Antarctica provides additional evidence for a clear relationship between the IMF and Pc3 pulsations also at very high latitudes.

    Key words. Magnetospheric physics (MHD waves and instabilities; solar wind · magnetosphere interactions

  18. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  19. THE PULSATION MODE OF THE CEPHEID POLARIS

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. G. [Department of Astronomy and Physics, Saint Mary' s University, Halifax NS B3H 3C3 (Canada); Kovtyukh, V. V.; Usenko, I. A. [Astronomical Observatory, Odessa National University, and Isaac Newton Institute of Chile, Odessa Branch, T. G. Shevkenko Park, 65014 Odessa (Ukraine); Gorlova, N. I., E-mail: turner@ap.smu.ca [Institute of Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2013-01-01

    A previously derived photometric parallax of 10.10 {+-} 0.20 mas, d = 99 {+-} 2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of (M{sub V} ) = -3.07 {+-} 0.01 s.e., average effective temperature of (T{sub eff}) = 6025 {+-} 1 K s.e., and intrinsic color of ((B) - (V)){sub 0} = +0.56 {+-} 0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E{sub B-V} = 0.02 {+-} 0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.

  20. Ambiguity of mapping the relative phase of blood pulsations

    Science.gov (United States)

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A.; Giniatullin, Rashid; Kamshilin, Alexei A.

    2014-01-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation. PMID:25401026

  1. Ambiguity of mapping the relative phase of blood pulsations.

    Science.gov (United States)

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A; Giniatullin, Rashid; Kamshilin, Alexei A

    2014-09-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation.

  2. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  3. Effect of prill structure on detonation performance of ANFO

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, Terry R [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Zimmerly, Tony [EMRTC NMT

    2010-01-01

    While the effects of charge diameter, fuel mix ratio, and temperature on ANFO detonation performance are substantial, the effects of prill type are considerable as well as tailorable. Engineered AN prills provide a means to improve overall performance, primarily by changing the material microstructure through the addition of features designed to enhance hot spot action. To examine the effects of prill type (along with fuel mix ratio and charge diameter) on detonation performance, a series of precision, large-scale, ANFO front-curvature rate-stick tests was performed. Each shot used standard No. 2 diesel for the fuel oil and was essentially unconfined with cardboard confinement. Detonation velocities and front curvatures were measured while actively maintaining consistent shot temperatures. Based on the experimental results, DSD calibrations were performed to model the detonation performance over a range of conditions, and the overall effects of prill microstructure were examined and correlated with detonation performance.

  4. Measuring In-Situ Mdf Velocity Of Detonation

    Science.gov (United States)

    Horine, Frank M.; James, Jr., Forrest B.

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  5. A note on the detonation of TNT

    Directory of Open Access Journals (Sweden)

    M. P. Murgai

    1953-01-01

    Full Text Available Whenever a non-reactive shock passes .through a system which is capable of undergoing an exothermic reaction, the high temperature and pressure in the shock front may start the chemical reaction, and it is possible that the heat evolved, under suitable conditions, map support the wave, and a self sustained stable shock propagate through the system. This shock wave maintained by the heat of the reaction constitutes a stable detonation wave. The equations of conservation of mass, momentum and energy, across the wave give the well known Rankine Huginiot equation. The formulation of an equation of state leaves the conditions behind the pure shook wave undetermined

  6. Progress of continuously rotating detonation engines

    Institute of Scientific and Technical Information of China (English)

    Zhou Rui; Wu Dan; Wang Jianping

    2016-01-01

    Continuously rotating detonation engine (CRDE) is a focus for concern in the field of aerospace propulsion. It has several advantages, including one-initiation, high thermal efficiency and simple structure. Due to these characteristics, it is expected to bring revolutionary advance-ments to aviation and aerospace propulsion systems and now has drawn much attention throughout the world. In this paper, an overview of the development of CRDE is given from several aspects:basic concepts, applications, experimental studies, numerical simulations, and so on. Representative results and outstanding contributions are summarized and the unresolved issues for further engi-neering applications of CRDE are provided.

  7. Progress of continuously rotating detonation engines

    Directory of Open Access Journals (Sweden)

    Zhou Rui

    2016-02-01

    Full Text Available Continuously rotating detonation engine (CRDE is a focus for concern in the field of aerospace propulsion. It has several advantages, including one-initiation, high thermal efficiency and simple structure. Due to these characteristics, it is expected to bring revolutionary advancements to aviation and aerospace propulsion systems and now has drawn much attention throughout the world. In this paper, an overview of the development of CRDE is given from several aspects: basic concepts, applications, experimental studies, numerical simulations, and so on. Representative results and outstanding contributions are summarized and the unresolved issues for further engineering applications of CRDE are provided.

  8. Semiautomatic MDF deburring tool. [Mild detonating fuse

    Energy Technology Data Exchange (ETDEWEB)

    Simonton, W.L.

    1976-03-31

    A device for semiautomatically deburring the ends of lengths of MDF (mild detonating fuse) was developed by the Automation Development group at Mound Laboratory. The device performs the deburring function by cutting a 0.002 in. x 0.002 in. chamfer on the MDF with small rotating blades. This air-operated, semiautomatic device provides improvement over the manual method of removing burrs by reduction in time and operator strain. A time study is underway to determine the time saved which is expected to be about 75 percent.

  9. Shock-to-Detonation Transition simulations

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-14

    Shock-to-detonation transition (SDT) experiments with embedded velocity gauges provide data that can be used for both calibration and validation of high explosive (HE) burn models. Typically, a series of experiments is performed for each HE in which the initial shock pressure is varied. Here we describe a methodology for automating a series of SDT simulations and comparing numerical tracer particle velocities with the experimental gauge data. Illustrative examples are shown for PBX 9502 using the HE models implemented in the xRage ASC code at LANL.

  10. Evaluation of detonation energy from EXPLO5 computer code results

    Energy Technology Data Exchange (ETDEWEB)

    Suceska, M. [Brodarski Institute, Zagreb (Croatia). Marine Research and Special Technologies

    1999-10-01

    The detonation energies of several high explosives are evaluated from the results of chemical-equilibrium computer code named EXPLO5. Two methods of the evaluation of detonation energy are applied: (a) Direct evaluation from the internal energy of detonation products at the CJ point and the energy of shock compression of the detonation products, i.e. by equating the detonation energy and the heat of detonation, and (b) evaluation from the expansion isentrope of detonation products, applying the JWL model. These energies are compared to the energies computed from cylinder test derived JWL coefficients. It is found out that the detonation energies obtained directly from the energy of detonation products at the CJ point are uniformly to high (0.9445{+-}0.577 kJ/cm{sup 3}) while the detonation energies evaluated from the expansion isentrope, are in a considerable agreement (0.2072{+-}0.396 kJ/cm{sup 3}) with the energies calculated from cylinder test derived JWL coefficients. (orig.) [German] Die Detonationsenergien verschiedener Hochleistungssprengstoffe werden bewertet aus den Ergebnissen des Computer Codes fuer chemische Gleichgewichte genannt EXPLO5. Zwei Methoden wurden angewendet: (a) Direkte Bewertung aus der inneren Energie der Detonationsprodukte am CJ-Punkt und aus der Energie der Stosskompression der Detonationsprodukte, d.h. durch Gleichsetzung von Detonationsenergie und Detonationswaerme, (b) Auswertung durch die Expansions-Isentrope der Detonationsprodukte unter Anwendung des JWL-Modells. Diese Energien werden verglichen mit den berechneten Energien mit aus dem Zylindertest abgeleiteten JWL-Koeffizienten. Es wird gefunden, dass die Detonationsenergien, die direkt aus der Energie der Detonationsprodukte beim CJ-Punkt erhalten wurden, einheitlich zu hoch sind (0,9445{+-}0,577 kJ/cm{sup 3}), waehrend die aus der Expansions-Isentrope erhaltenen in guter Uebereinstimmung sind (0,2072{+-}0,396 kJ/cm{sup 3}) mit den berechneten Energien mit aus dem Zylindertest

  11. Report of geomagnetic pulsation indices for space weather applications

    Science.gov (United States)

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  12. Search of Secondary Pulsation Modes: Globular cluster (NGC 6496)

    CERN Document Server

    Joshi, Gireesh C

    2016-01-01

    The Fourier-discrete-peridogram are used to identify pulsation modes in variables. We have found two pulsation modes in V1 and V2 among 13 new variables as described by Abbas et al.. The five variables V9 to V13 are not shown close to periodic values by analysis of the frequency distribution of multi-band data and also create difficulty to describe their varied nature. The multi-band periodic values of V1 and V6 are matched with known literature values. The scattering of the varied nature of secondary pulsation modes is eliminated by moving average methodology. The phase curve of secondary mode is found to be more smooth compared to a prominent mode of pulsation.

  13. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    Science.gov (United States)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  14. Stochastic Processes in Yellow and Red Pulsating Variables

    CERN Document Server

    Turner, David G; Colivas, T; Berdnikov, Leonid N; Abdel-Latif, Mohamed Abdel-Sabour

    2009-01-01

    Random changes in pulsation period are well established in cool pulsating stars, in particular the red giant variables: Miras, semi-regulars of types A and B, and RV Tau variables. Such effects are also observed in a handful of Cepheids, the SX Phe variable XX Cyg, and, most recently, the red supergiant variable, BC Cyg, a type C semi-regular. The nature of such fluctuations is seemingly random over a few pulsation cycles of the stars, yet the regularity of the primary pulsation mechanism dominates over the long term. The degree of stochasticity is linked to the dimensions of the stars, the randomness parameter 'e' appearing to correlate closely with mean stellar radius through the period 'P', with an average value of e/P = 0.0136+-0.0005. The physical processes responsible for such fluctuations are uncertain, but presumably originate in temporal modifications of envelope convection in such stars.

  15. LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    ZOU Li-yong; LIU Nan-sheng; LU Xi-yun

    2004-01-01

    Pulsating turbulent open channel flow has been investigated by the use of Large Eddy Simulation (LES) technique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulent SGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equations are numerically solved by a fractional-step method. The objective of this study is to deal with the behavior of the pulsating turbulent open channel flow and to examine the reliability of the LES approach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Reτ ) is chosen as 180 based on the friction velocity and the channel depth. The frequency of the driving pressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statistical turbulence quantities as well as the flow structures are analyzed.

  16. Return of Pulsations in SDSS 0745+4538

    Science.gov (United States)

    Mukadam, Anjum S.; Townsley, D. M.; Szkody, P.; Gänsicke, B. T.; Winget, D. E.; Hermes, J. J.; Howell, Steve B.; Teske, J.; Patterson, Joseph; Kemp, Jonathan; Armstrong, Eve

    2010-11-01

    Nonradial pulsations had ceased in the accreting white dwarf SDSS J074531.92+453829.6 subsequent to its October 2006 outburst. We recently acquired optical high-speed time-series photometry on this cataclysmic variable more than three years after its outburst to find that pulsations have now returned to the primary white dwarf. Moreover, the observed pulsation periods agree with pre-outburst periods within the uncertainties of 1-2 s. This discovery is both remarkable and significant because it indicates that the outburst did not affect the interior stellar structure, which dictates the observed pulsation frequencies. Using this discovery in addition to an HST ultra-violet temperature measurement obtained one year after outburst, we have also been able to constrain the matter accreted during the 2006 outburst.

  17. Micro-Channel Embedded Pulsating Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  18. Detonations in white dwarf dynamical interactions

    CERN Document Server

    Aznar-Siguán, Gabriela; Lorén-Aguilar, Pablo; José, Jordi; Isern, Jordi

    2013-01-01

    In old, dense stellar systems collisions of white dwarfs are a rather frequent phenomenon. Here we present the results of a comprehensive set of Smoothed Particle Hydrodynamics simulations of close encounters of white dwarfs aimed to explore the outcome of the interaction and the nature of the final remnants for different initial conditions. Depending on the initial conditions and the white dwarf masses, three different outcomes are possible. Specifically, the outcome of the interaction can be either a direct or a lateral collision or the interaction can result in the formation of an eccentric binary system. In those cases in which a collision occurs, the infalling material is compressed and heated such that the physical conditions for a detonation may be reached during the most violent phases of the merger. While we find that detonations occur in a significant number of our simulations, in some of them the temperature increase in the shocked region rapidly lifts degeneracy, leading to the quenching of the bu...

  19. Thermonuclear detonations ensuing white dwarf mergers

    CERN Document Server

    Dan, Marius; Brüggen, Marcus; Ramirez-Ruiz, Enrico; Rosswog, Stephan

    2015-01-01

    The merger of two white dwarfs (WDs) has for many years not been considered as the favoured model for the progenitor system of type Ia supernovae (SNe Ia). But recent years have seen a change of opinion as a number of studies, both observational and theoretical, have concluded that they should contribute significantly to the observed type Ia supernova rate. In this paper, we study the ignition and propagation of detonation through post-merger remnants and we follow the resulting nucleosynthesis up to the point where a homologous expansion is reached. In our study we cover the entire range of WD masses and compositions. For the emergence of a detonation we study several setups, guided by both merger remnants from our own simulations and by results taken from the literature. We carefully compare the nucleosynthetic yields of successful explosions with SN Ia observations. Only three of our models are consistent with all the imposed constraints and potentially lead to a standard type Ia event. The first one, a $0...

  20. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  1. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  2. Nonradial Pulsations in Classical Cepheids of the Magellanic Clouds

    CERN Document Server

    Moskalik, P; Moskalik, Pawel; Mizerski, Zbigniew Kolaczkowski & Tomasz

    2003-01-01

    We have performed systematic frequency analysis of the LMC Cepheids observed by OGLE project. Several new types of pulsation behaviour are identified, including triple-mode and amplitude-modulated double-mode pulsations. In ~10% of the first overtone Cepheids we find low amplitude secondary periodicities corresponding to nonradial modes. This is the first evidence for excitation of nonradial oscillations in Classical Cepheid variables.

  3. 3D Convection-pulsation Simulations with the HERACLES Code

    Science.gov (United States)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  4. Self-Pulsating Semiconductor Lasers Theory and Experiment

    CERN Document Server

    Mirasso, C R; Hernández-García, E; Lenstra, D; Lynch, S; Landais, P; Phelan, P; O'Gorman, J; San Miguel, M; Elsasser, W

    1999-01-01

    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.

  5. First Kepler results on compact pulsators - II. KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    DEFF Research Database (Denmark)

    Kawaler, Stephen; Reed, M.D.; Quint, A.C.;

    2010-01-01

    We present the discovery of non-radial pulsations in a hot subdwarf B star based on 30.5 d of nearly continuous time series photometry using the Kepler spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes...

  6. Investigation on the propagation process of rotating detonation wave

    Science.gov (United States)

    Deng, Li; Ma, Hu; Xu, Can; Zhou, Changsheng; Liu, Xiao

    2017-10-01

    Effects of mass flow rate and equivalence ratio on the wave speed performance and instantaneous pressure characteristics of rotating detonation wave are investigated using hydrogen and air mixtures. The interaction between air and fuel manifolds and combustion chamber is also identified. The results show that the rotating detonation waves are able to adapt themselves to the changes of equivalence ratio during the run, the rotating detonation waves decayed gradually and then quenched after the shutdown of reactants supply. The wave speed performance is closely related to the mass flow rate and the pressure ratio of the fuel to air manifolds at different equivalence ratios. The blockage ratio of the air manifold increases with the increasing of the wave speed due to high-pressure detonation products, while increasing of the equivalence ratios will reduce the blockage ratio of the hydrogen manifold. Higher equivalence ratio can enhance the stabilization of the rotating detonation wave and lower equivalence ratio will lead to the large fluctuations of the lap time and instantaneous pressure magnitude. The overpressure of rotating detonation wave is determined by the combination of mass flow rate and equivalence ratio, which increases with the increasing of mass flow rate in the equivalence ratio ranges that the rotating detonation wave propagates stably. The secondary spike in the instantaneous pressure and ionization signals indicates that a shocked mixing zone exists near the fuel injection holes and the reflection of shock in the mixing zone induces the reaction.

  7. Optimum performance of explosives in a quasistatic detonation cycle

    Science.gov (United States)

    Baker, Ernest L.; Stiel, Leonard I.

    2017-01-01

    Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum useful work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmospheric pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT, RDX, and aluminized compositions, maximum work effects were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. Detonation to the C-J point is found to result in the maximum net work in all cases.

  8. Development of a chemical microthruster based on pulsed detonation

    Science.gov (United States)

    Wu, Ming-Hsun; Lu, Tsung-Hsun

    2012-10-01

    The development of a microthruster based on gaseous pulsed detonation is presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is first experimentally investigated in a microchannel with 1 mm × 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce the time and distance required for the reaction wave to run up to detonation in a smooth channel. High-speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. The validated concepts are implemented for the development of an integrated pulsed detonation microthruster. The microthruster was fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes were embedded in the ceramic microthruster. The channel and via holes were fabricated using laser cutting techniques. Ion probe measurements showed that the reaction wave propagated at velocities larger than 2000 m s-1 before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 200 Hz.

  9. Effect of fuel stratification on detonation wave propagation

    Science.gov (United States)

    Masselot, Damien; Fievet, Romain; Raman, Venkat

    2016-11-01

    Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.

  10. Oblique detonation waves stabilized in rectangular-cross-section bent tubes

    OpenAIRE

    2011-01-01

    Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The obliq...

  11. Detonation Propagation in 180°Ribs of an Insensitive High Energy Explosive

    Institute of Scientific and Technical Information of China (English)

    S. N. Lubyatinsky; A. Yu. Garmashev; V. G. Israelyan; O. V. Kostitsin; B. G. Loboiko; V. A. Pashentsev; V. A. Sibilev; E. B. Smirnov; V. P. Filin

    2004-01-01

    @@ Steady detonation regimes, such as the detonation of explosive rate sticks, are of particular interest in studies of explosive reaction kinetics. If this is the case the detonation front shape as well as the fields of particle velocity, pressure etc. are steady in the system of coordinates linked to the detonation front. This facilitates the analysis of the experimental data obtained to verify or calibrate various detonation models.

  12. Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae

    Science.gov (United States)

    Bulla, M.; Sim, S. A.; Kromer, M.; Seitenzahl, I. R.; Fink, M.; Ciaraldi-Schoolmann, F.; Röpke, F. K.; Hillebrandt, W.; Pakmor, R.; Ruiter, A. J.; Taubenberger, S.

    2016-10-01

    Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ˜0.1-0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.

  13. Geometry-specific scaling of detonation parameters from front curvature

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Scott I [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

    2011-01-20

    It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

  14. Detonation of the aluminized explosives with sodium azide

    Energy Technology Data Exchange (ETDEWEB)

    Maranda, A.; Nowaczewski, J.; Trzcinski, W. [Military University of Technology Kaliskiego, Warsaw (Poland)

    1996-12-31

    The velocity of detonation in the aluminized explosives containing sodium azide was measured. he experimental results were compared with those of calculation. Two different explosive components were used in the tests: RDX and ammonium nitrate. The contents of constituents of explosive mixture varied within a wide range. The X-ray analysis of the solid detonation products was also made. The results enable us to predict a behaviour of sodium azide and aluminium during detonation process of the explosive tested and to verify the possibility of reaction between aluminium and nitrogen during that process. (authors) 12 refs.

  15. Deflagration to Detonation Transition Behavior of Aluminized HMX

    Science.gov (United States)

    1979-06-04

    NSWC TR 79-119 tLN DEFLAG RATION TO DETONATION TRANSITION BEHAVIOR OF ALUMINIZED HMX BY DONNA PRICE A. R. CLAIRMONT, JR 0 RESEARCH AND TECHNOLOGY...Detonation of Solid Explosives," J. Chem. Soc., 4154, 1960. 3Bernecker, R. R. and Price , D., "Studies in the Transition from Deflagration to Detonation in...Laboratory TR 74-186. 4 NSWC TR 79-119 tube with heavy end closures. The column length of the 0.35 g of 25/75 B/ KNO3 ignitor is 6.3 mm; the length of

  16. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    DEFF Research Database (Denmark)

    Reed, M.D.; Kawaler, Stephen D.; Østensen, Roy H.

    2010-01-01

    1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p......We present the discovery of non-radial pulsations in five hot subdwarf B (sdB) stars based on 27 d of nearly continuous time series photometry using the Kepler spacecraft. We find that every sdB star cooler than ≈27 500 K that Kepler has observed (seven so far) is a long-period pulsator of the V......-modes with periods of 2-5 min and in addition, these stars exhibit periodicities between both classes from 15 to 45 min. We detect the coolest and longest-period V1093 Her-type pulsator to date, KIC010670103 (Teff≈ 20 900 K, Pmax≈ 4.5 h) as well as a suspected hybrid pulsator, KIC002697388, which is extremely cool...

  17. SABRE observations of Pi2 pulsations: case studies

    Science.gov (United States)

    Bradshaw, E. G.; Lester, M.

    1997-01-01

    The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed Acknowledgements. The authors are grateful to Prof. D. J. Southwood

  18. Detonation re-initiation mechanism following the Mach reflection of a quenched detonation

    CERN Document Server

    Bhattacharjee, Rohit; Maines, Geoffrey; Maley, Logan; Radulescu, Matei Ioan

    2012-01-01

    This experimental study addresses the re-initiation mechanism of detonation waves following the Mach reflection of a shock-flame complex. The detonation diffraction around a cylinder is used to reproducibly generate the shock-flame complex of interest. The experiments are performed in methane-oxygen. We use a novel experimental technique of coupling a two-in-line-spark flash system with a double-frame camera in order to obtain microsecond time resolution permitting accurate schlieren velocimetry. The first series of experiments compares the non-reactive sequence of shock reflections with the reflection over a rough wall under identical conditions. It was found that the hot reaction products generated along the rough wall are entrained by the wall jet into a large vortex structure behind the Mach stem. The second series of experiments performed in more sensitive mixtures addressed the sequence of events leading to the detonation establishment along the Mach and transverse waves. Following ignition and jet entr...

  19. Radio Pulsating Structures with Coronal Loop Contraction

    Science.gov (United States)

    Kallunki, J.; Pohjolainen, S.

    2012-10-01

    We present a multi-wavelength study of a solar eruption event on 20 July 2004, comprising observations in Hα, EUV, soft X-rays, and in radio waves with a wide frequency range. The analyzed data show both oscillatory patterns and shock wave signatures during the impulsive phase of the flare. At the same time, large-scale EUV loops located above the active region were observed to contract. Quasi-periodic pulsations with ˜ 10 and ˜ 15 s oscillation periods were detected both in microwave - millimeter waves and in decimeter - meter waves. Our calculations show that MHD oscillations in the large EUV loops - but not likely in the largest contracting loops - could have produced the observed periodicity in radio emission, by triggering periodic magnetic reconnection and accelerating particles. As the plasma emission in decimeter - meter waves traces the accelerated particle beams and the microwave emission shows a typical gyrosynchrotron flux spectrum (emission created by trapped electrons within the flare loop), we find that the particles responsible for the two different types of emission could have been accelerated in the same process. Radio imaging of the pulsed decimetric - metric emission and the shock-generated radio type II burst in the same wavelength range suggest a rather complex scenario for the emission processes and locations. The observed locations cannot be explained by the standard model of flare loops with an erupting plasmoid located above them, driving a shock wave at the CME front.

  20. The evolved pulsating CEMP star HD112869

    CERN Document Server

    Začs, L; Grankina, A; Deveikis, V; Kaminskyi, B; Pavlenko, Y; Musaev, F

    2015-01-01

    Radial velocity measurements, $BVR_C$ photometry, and high-resolution spectroscopy in the wavelength region from blue to near infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD112869 with unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 km $s^{-1}$ and a dominating period of about 115 days. The light, color and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD112869 appears to be less metal-poor than reported before, [Fe/H] = -2.3 $\\pm$0.2 dex. Carbon to oxygen and carbon isotope ratios are found to be extremely high, C/O $\\simeq$ 12.6 and $^{12}C/^{13}C \\gtrsim$ 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundan...

  1. Coagulation of carbon clusters in detonation front

    Science.gov (United States)

    Kupershtokh, A. L.; Ershov, A. P.; Medvedev, D. A.

    1996-05-01

    During the detonation synthesis, diamonds of ˜3 nm in size are produced from the excess carbon released in explosion. Coagulation occurs generally well below the melting temperature. Molecular dynamic simulations within the framework of simple Lennard-Jones model showed important features of interacting carbon clusters: 1) Coagulation is exothermic, and small clusters merge as liquid drops. Clusters larger than ˜3 nm unite keeping their shape, but surface atoms are in quasimolten state and can migrate between two grains. This "wetting" is rather slow. For small clusters there exist considerable temperature fluctuations due to interaction with the thermal bath. 2) Coagulation is accompanied by strong tensions. Both positive and negative pressure phases during the collision can reach ˜30 GPa. This can explain why the region of good diamond yield lies on P-T plane much higher than the graphite-diamond transition line.

  2. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  3. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz M.

    2015-11-03

    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations.

  4. Jaguar Analyses of Experimental Detonation Values for Aluminized Explosives

    Science.gov (United States)

    Stiel, Leonard I.; Baker, Ernest L.; Capellos, Christos

    2004-07-01

    Comparisons of JAGUAR C-J velocities with experimental detonation values for a number of explosives indicate that only slight, if any, aluminum reaction occurs at the detonation front even if small or sub-micron particles are utilized. For sub-micron particles, it is important to account for the presence of aluminum oxide in the explosive formulation. The agreement with the calculated JAGUAR values for zero aluminum reaction is within 2% for most experimental detonation velocities considered. Comparisons of experimental cylinder velocities by JAGUAR analytical procedures indicate that with small aluminum particles substantial aluminum reaction occurs at low values of the radial expansion, even though little reaction is observed at the detonation front.

  5. Chapman-Jouguet deflagrations and their transition to detonation

    CERN Document Server

    Saif, Mohamed; Pekalski, Andrzej; Levin, Marc; Radulescu, Matei I

    2015-01-01

    We study experimentally fast flames and their transition to detonation in mixtures of methane, ethane, ethylene, acetylene, and propane mixtures with oxygen. Following the interaction of a detonation wave with a column of cylinders of varying blockage ratio, the experiments demonstrate that the fast flames established are Chapman-Jouguet deflagrations, in excellent agreement with the self-similar model of Radulescu et al. (2015). The experiments indicate that these Chapman-Jouguet deflagrations dynamically restructure and amplify into fewer stronger modes until the eventual transition to detonation. The transition length to a self-sustained detonation was found to correlate very well with the mixtures' sensitivity to temperature fluctuations, reflected by the $\\chi$ parameter introduced by Radulescu, which is the product of the non-dimensional activation energy $E_a/RT$ and the ratio of chemical induction to reaction time $t_i/t_r$. Correlation of the measured DDT lengths determined that the relevant characte...

  6. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    Science.gov (United States)

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process.

  7. Set-valued solutions for non-ideal detonation

    CERN Document Server

    Semenko, Roman; Kasimov, Aslan; Ermolaev, Boris

    2013-01-01

    The existence and structure of steady gaseous detonation propagating in a packed bed of solid inert particles are analyzed in the one-dimensional approximation by taking into consideration frictional and heat losses between the gas and the particles. A new formulation of the governing equations is introduced that eliminates the well-known difficulties with numerical integration across the sonic singularity in the reactive Euler equations. The new algorithm allows us to determine that the detonation solutions as the loss factors are varied have a set-valued nature at low detonation velocities when the sonic constraint disappears from the solutions. These set-valued solutions correspond to a continuous spectrum of the eigenvalue problem that determines the velocity of the detonation.

  8. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  9. On a stabilization mechanism for low-velocity detonations

    KAUST Repository

    Sow, Aliou

    2017-03-08

    We use numerical simulations of the reactive Lula equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko el al.

  10. Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)

    Science.gov (United States)

    2010-09-28

    Detonation Rocket-Induced MHD Ejector (PDRIME) concept, energy could be extracted from the high speed portion of the system, e.g., through an MHD...but with some challenges associated with achieving these gains, suggesting further analysis and optimization are required. 15. SUBJECT TERMS 16...mentation, such as in the Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) concept, energy could be extracted from the high speed por- tion of the system

  11. Heartbeat Stars and the Ringing of Tidal Pulsations

    Directory of Open Access Journals (Sweden)

    Hambleton Kelly

    2015-01-01

    Full Text Available With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccentric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. A subset of these objects (~20% show prominent tidally induced pulsations: pulsations forced by the binary orbit. We now have a fully functional code that models binary star features (using PHOEBE and stellar pulsations simultaneously, enabling a complete and accurate heartbeat star model to be determined. In this paper we show the results of our new code, which uses emcee, a variant of mcmc, to generate a full set of stellar parameters. We further highlight the interesting features of KIC 8164262, including its tidally induced pulsations and resonantly locked pulsations.

  12. Learning from Pulsating Stars: Progress over the Last Century (Abstract)

    Science.gov (United States)

    Smith, H.

    2016-12-01

    (Abstract only) Scarcely more than a century has elapsed since it began to be widely accepted that pulsation plays an important role in the variability of stars. During that century pulsating stars have been used as tools to explore a variety of astrophysical questions, including the determination of distances to other galaxies, the testing of timescales of evolution through the HR diagram, and the identification of the ages and star formation histories of stellar populations. Among the significant early milestones along this investigative path are Henrietta Leavitt's discovery of a relation between the periods and luminosities of Cepheids, Harlow Shapley's proposal that all Cepheids are pulsating stars, and Arthur Stanley Eddington's use of the observed period change of d Cephei to constrain its power source. Today our explorations of pulsating stars are bolstered by long observational histories of brighter variables, surveys involving unprecedentedly large numbers of stars, and improved theoretical analyses. This talk will review aspects of the history and our current understanding of pulsating stars, paying particular attention to RR Lyrae, d Scuti, and Cepheid variables. Observations by AAVSO members have provided insight into several questions regarding the behavior of these stars.

  13. Photometric Survey to Search for Field sdO Pulsators

    CERN Document Server

    Johnson, Christopher B; Wallace, S; O'Malley, C J; Amaya, H; Biddle, L; Fontaine, G

    2013-01-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011), of four rapidly pulsating sdO stars in the globular cluster Omega Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in Omega Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the Omega Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  14. Theoretical rates of pulsation period change in the Galactic Cepheids

    CERN Document Server

    Fadeyev, Yuri A

    2014-01-01

    Theoretical estimates of the rates of radial pulsation period change in Galactic Cepheids with initial masses 5.5M_\\odot <= Mzams <= 13M_\\odot, chemical composition X=0.7, Z=0.02 and periods 1.5 day <= P <= 100 day are obtained from consistent stellar evolution and nonlinear stellar pulsation computations. Pulsational instability was investigated for three crossings of the instability strip by the evolutionary track in the HR diagram. The first crossing occurs at the post-main sequence helium core gravitational contraction stage which proceeds in the Kelvin--Helmholtz timescale whereas the second and the third crossings take place at the evolutionary stage of thermonuclear core helium burning. During each crossing of the instability strip the period of radial pulsations is a quadratic function of the stellar evolution time. Theoretical rates of the pulsation period change agree with observations but the scatter of observational estimates of dP/dt noticeably exceeds the width of the band (\\delta\\lo...

  15. Finding non-eclipsing binaries through pulsational phase modulation

    Science.gov (United States)

    Murphy, Simon J.; Bedding, Timothy R.; Shibahashi, Hiromoto; Kurtz, Donald W.; Kjeldsen, Hans

    2015-09-01

    We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire four-year light curves to accurately measure the frequencies of the strongest pulsation modes, then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the parameters of the orbit, including the period, eccentricity, angle of ascending node and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy. We show examples with delta Scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightforward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone. This contribution is based largely upon the work by Murphy et al. [1], describing the phase-modulation method in detail.

  16. On the polarization properties of magnetar giant flare pulsating tails

    CERN Document Server

    Yang, Yuan-Pei

    2015-01-01

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of $\\sim100\\,\\rm{s}$, an isotropic energy of $\\sim 10^{44}\\,\\rm{erg}$, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed field line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating tail observations. In this paper, assuming that the trapped fireball is from a closed field line region in the magnetosphere, we calculate the atmosphere structure of the optically-thick trapped fireball and the polarization properties ...

  17. Numerical simulation of Mach reflection of cellular detonations

    Science.gov (United States)

    Li, J.; Lee, J. H. S.

    2016-09-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  18. Detonation behavior of emulsion explosives sensitized with polymeric microballoons

    Science.gov (United States)

    Mendes, Ricardo; Ribeiro, José; Plaksin, Igor; Campos, José

    2013-06-01

    The differences between the detonation behavior of ammonium nitrate based emulsion explosive sensitized with polymeric or with glass microballoons is presented and discussed. Expancel® are hollow polymeric microballoons that contain a hydrocarbon gas. The mean particle size of those particles is 30 μm and their wall thickness is about 0.1 μm. The detonation velocity and the failure diameter of the emulsion explosive sensitized with different amounts of these particles were measured, in cylindrical charges, by ionization pins and optical fibers. The detonation velocity of emulsion explosives shows a non-monotonic evolution with the density with the maximum being reached far below the maximum density. The detonation fails when the density approaches the one of the matrix. The failure diameter increases with increasing density. For low densities the detonation velocity is almost independent of the charge diameter and it is close to the values predict by BKW EoS. The effect of the nature and size of the microballoons on the detonation front curvature and failure diameter was also determined.

  19. Non ideal detonation of emulsion explosives mixed with metal particles

    Science.gov (United States)

    Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.

    2011-06-01

    The detonation of ammonium nitrate based compositions like emulsion explosives (EX) mixed with metal particles has been investigated experimentally. Aluminium powder with a mean particle size of 10 μm was used, and the mass concentration of aluminum on the explosive charge was ranged from 0 to 30%. The values of the detonation velocity, the pressure attenuation - P(x) - of detonation front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressure-times histories have been evaluated using the multi fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allow a quasi continuous evaluation of the detonation wave run propagation and the assessment to spatial resolved measurements of the shock wave induced in the PMMA barrier which in turns allows a detailed characterization of the detonation reaction zone structure. Results of that characterization process are presented and discussed for aluminized and non aluminized EX. Moreover, the effect of the mass concentration of the sensitizing agent (hollow glass micro-balloons) on the non monotonic detonation velocity variation, for EX, will be discussed.

  20. A small-scale experiment using microwave interferometry to investigate detonation and shock-to-detonation transition in pressed TATB

    Science.gov (United States)

    Renslow, Peter John

    A small-scale characterization test utilizing microwave interferometry was developed to dynamically measure detonation and run to detonation distance in explosives. The technique was demonstrated by conducting two experimental series on the well-characterized explosive triaminotrinitrobenzene (TATB). In the first experiment series, the detonation velocity was observed at varying porosity. The velocity during TATB detonation matched well with predictions made using CHEETAH and an empirical relation from the Los Alamos National Laboratory (LANL). The microwave interferometer also captured unsteady propagation of the reaction when a low density charge was near the failure diameter. In the second experiment series, Pop-plots were produced using data obtained from shock initiation of the TATB through a polymethyl methacrylate (PMMA) attenuator. The results compared well to wedge test data from LANL despite the microwave interferometer test being of substantially smaller scale. The results showed the test method is attractive for rapid characterization of new and improvised explosive materials.

  1. Finding the Instability Strip for Accreting Pulsating White Dwarfs from HST and Optical Observations

    CERN Document Server

    Szkody, Paula; Gansicke, Boris T; Henden, Arne; Templeton, Matthew; Holtzman, Jon; Montgomery, Michael H; Howell, Steve B; Nitta, Atsuko; Sion, Edward M; Schwartz, Richard D; Dillon, William

    2010-01-01

    Time-resolved low resolution Hubble Space Telescope ultraviolet spectra together with ground-based optical photometry and spectra are used to constrain the temperatures and pulsation properties of six cataclysmic variables containing pulsating white dwarfs. Combining our temperature determinations for the five pulsating white dwarfs that are several years past outburst with past results on six other systems shows that the instability strip for accreting pulsating white dwarfs ranges from 10,500-15,000K, a wider range than evident for ZZ Ceti pulsators. Analysis of the UV/optical pulsation properties reveals some puzzling aspects. While half the systems show high pulsation amplitudes in the UV compared to their optical counterparts, others show UV/optical amplitude ratios that are less than one or no pulsations at either wavelength region.

  2. Search for pulsations in the LMXB EXO 0748-676

    Institute of Scientific and Technical Information of China (English)

    Chetana Jain; Biswajit Paul

    2011-01-01

    We present here results from our search for X-ray pulsations of the neutron star in the low mass X-ray binary EXO 0748-676 at a frequency near the burstoscillation frequency of 44.7 Hz.Using the observations made with the Proportional Counter Array onboard the Rossi X-ray Timing Explorer, we did not find any pulsations in the frequency band of 44.4 Hz to 45.0 Hz and obtained a 3σ upper limit of 0.47% on the pulsed fraction for any possible underlying pulsation in this frequency band.We also discuss the importance of EXO 0748-676 as a promising source for the detection of Gravitational Waves.

  3. Prediction of gas pulsation of an industrial compressor

    Institute of Scientific and Technical Information of China (English)

    Heuicheol; Kim; Mi-Gyung; Cho; Jaehong; Park; Cheolho; Bai; Jaesool; Shim

    2013-01-01

    The measurement and prediction of gas pulsations are performed along the discharge pipeline of a reciprocating compressor for a refrigerator. A regression based experimental model of the one-dimensional acoustic field is developed. First, the conventional method for gas pulsation measurement and prediction, which separates the incident and reflected wave of acoustic waves traveling in the frequency domain, is discussed. Then, regression based on our proposed simple model, which is able to predict gas pulsation compared to the conventional method, is introduced for the analysis of a reciprocating compressor(The conventional method requires the value of sound speed in the piping line for the reciprocating compressor). A numerical prediction is made for the regression method. Three power spectrum values along the discharge pipeline are used for analysis, and two values are used for verification. Our results are in a good agreement with the conventional method.

  4. Period Changes and Evolution in Pulsating Variable Stars

    Science.gov (United States)

    Neilson, H. R.; Percy, J. R.; Smith, H. A.

    2016-12-01

    We review ways in which observations of the changing periods of pulsating variable stars can be used to detect and directly measure their evolution. We briefly describe the two main techniques of analysis-(O-C) analysis and wavelet analysis - and results for pulsating variable star types which are reasonably periodic: type I and II Cepheids, RR Lyrae stars, beta Cephei stars, and Mira stars. We comment briefly on delta Scuti stars and pulsating white dwarfs. For some of these variable star types, observations agree approximately with the predictions of evolutionary models, but there still exist significant areas of disagreement that challenge future models of stellar evolution. There may be a need, for instance, to include processes such as rotation, mass loss, and magnetic fields. There may also be non-evolutionary processes which are contributing to the period changes.

  5. Period Changes and Evolution in Pulsating Variable Stars

    CERN Document Server

    Neilson, Hilding R; Smith, Horace A

    2016-01-01

    We review ways in which observations of the changing periods of pulsating variable stars can be used to detect and directly measure their evolution. We briefly describe the two main techniques of analysis -- (O-C) analysis and wavelet analysis -- and results for pulsating variable star types which are reasonably periodic: type I and II Cepheids, RR Lyrae stars, beta Cephei stars, and Mira stars. We comment briefly on delta Scuti stars and pulsating white dwarfs. For some of these variable star types, observations agree approximately with the predictions of evolutionary models, but there still exist significant areas of disagreement that challenge future models of stellar evolution. There may be a need, for instance, to include processes such as rotation, mass loss, and magnetic fields. There may also be non-evolutionary processes which are contributing to the period changes.

  6. Stellar Pulsations, Impact of New Instrumentation and New Insights

    CERN Document Server

    Garrido, R; Balona, L; Christensen-Dalsgaard, J; 20th Stellar Pulsation Conference Series

    2013-01-01

    Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

  7. Nonlinear simulations of the convection-pulsation coupling

    CERN Document Server

    Gastine, T

    2011-01-01

    In cold Cepheids close to the red edge of the classical instability strip, a strong coupling between the stellar pulsations and the surface convective motions occurs. This coupling is by now poorly described by 1-D models of convection, the so-called "time-dependent convection models" (TDC). The intrinsic weakness of such models comes from the large number of unconstrained free parameters entering in the description of turbulent convection. A way to overcome these limits is to compute two-dimensional direct simulations (DNS), in which all the nonlinearities are correctly solved. Two-dimensional DNS of the convection-pulsation coupling are presented here. In an appropriate parameter regime, convective motions can actually quench the radial pulsations of the star, as suspected in Cepheids close to the red edge of the instability strip. These nonlinear simulations can also be used to determine the limits and the relevance of the TDC models.

  8. On the pulsation modes and masses of RGB OSARGs

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available OSARG (OGLE Small Amplitude Red Giants variables are RGB or AGB stars that show multi-periodic light variations with periods of about 10-100 days. Comparing linear nonadiabatic pulsation periods and period ratios with observed ones, we determined pulsation modes and masses of the RGB OSARG variables in the LMC. We found that pulsations of OSARGs involve radial 1st to 3rd overtones, p4 of l = 1, and p2 of l = 2 modes. The range of mass isfound to be 0.9-1.4M⊙ for RGB OSARGs and their mass-luminosity relation is logL/L⊙ = 0.79 M/M⊙ + 2.2.

  9. New DA white dwarf evolutionary models and their pulsational properties

    CERN Document Server

    Corsico, A H; Benvenuto, O G; Serenelli, A M

    2001-01-01

    In this letter we investigate the pulsational properties of ZZ Ceti stars on the basis of new white dwarf evolutionary models calculated in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. Emphasis is placed on the trapping properties of such models. By means of adiabatic, non-radial pulsation calculations, we find, as a result of time dependent diffusion, a much weaker mode trapping effect, particularly for the high-period regime of the pulsation g-spectrum. This result is valid at least for models with massive hydrogen-rich envelopes. Thus, mode trapping would not be an effective mechanism to explain the fact that all the high periods expected from standard models of stratified white dwarfs are not observed in the ZZ Ceti stars.

  10. Finding the First Cosmic Explosions. III. Pair-Pulsational Supernovae

    CERN Document Server

    Whalen, Daniel J; Even, Wesley; Woosley, S E; Heger, Alexander; Stiavelli, Massimo; Fryer, Chris L

    2013-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pair-pulsation supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M$_{\\odot}$ pair-pulsation explosion done with the Los Alamos radiation hydrodynamics code RAGE. We find that collisions between consecutive pair pulsations are visible in the near infrared out to z $\\sim$ 15 - 20 and can probe the earliest stellar populations at cosmic dawn.

  11. Outbursts in Two New Cool Pulsating DA White Dwarfs

    Science.gov (United States)

    Bell, Keaton J.; Hermes, J. J.; Montgomery, M. H.; Gentile Fusillo, N. P.; Raddi, R.; Gänsicke, B. T.; Winget, D. E.; Dennihy, E.; Gianninas, A.; Tremblay, P.-E.; Chote, P.; Winget, K. I.

    2016-10-01

    The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with {T}{eff} = 10,780 ± 140 K and {log} g = 7.94 ± 0.08, shows outbursts recurring on average every 5.0 days, increasing the overall flux by up to 15%. EPIC 229227292, with {T}{eff} = 11,190 ± 170 K and {log} g = 8.02 ± 0.05, has outbursts that recur roughly every 2.4 days with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.

  12. Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE).

    Science.gov (United States)

    Trzciński, Waldemar A; Cudziło, Stanisław; Chyłek, Zbigniew; Szymańczyk, Leszek

    2008-09-15

    1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) is an explosive of current interest. In our work, an advanced study of detonation characteristics of this explosive was performed. DADNE was prepared and recrystallized on a laboratory scale. Some sensitivity and detonation properties of DADNE were determined. The detonation performance was established by measurements of the detonation wave velocity, detonation pressure and calorimetric heat of explosion as well as the accelerating ability. The JWL (Jones-Wilkins-Lee) isentrope and the constant-gamma isentrope for the detonation products of DADNE were also found.

  13. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  14. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  15. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios...

  16. The pulsations of the Sun and the stars

    CERN Document Server

    Rozelot, Jean-Pierre

    2011-01-01

    This volume of lecture notes brings together the knowledge on pulsations of the Sun and the stars, with a particular emphasis on recent observations and modelling, and on the influence of pulsations of other physical processes. The book begins with an extensive introduction to helioseismology. The solar cycle and gravity modes are discussed before the focus is widened from helioseismology to asteroseismology which is detailed in a series of specific chapters. Based on courses given at a graduate school, these tutorial lecture notes will be of interest and useful to a rather broad audience of scientists and students.

  17. Flame fronts in Supernovae Ia and their pulsational stability

    CERN Document Server

    Glazyrin, S I; Dolgov, A D

    2013-01-01

    The structure of the deflagration burning front in type Ia supernovae is considered. The parameters of the flame are obtained: its normal velocity and thickness. The results are in good agreement with previous work of different authors. After that the question of pulsational instability of the flame subject to plane perturbations is considered. The flame can be unstable if hydrodynamics can be ignored, e.g. in solid-body propellants. However, with account of hydrodynamics we find that the flame in type Ia supernovae is pulsationally stable with realistic parameters of reactions and thermal conduction.

  18. Latitude distribution of nonradial pulsations in rapidly rotating B stars

    Science.gov (United States)

    Jankov, S.; Mathias, P.; Domiciano de Souza, A., Jr.; Uytterhoeven, K.; Aerts, C.

    2004-05-01

    We present a method for the analysis of latitude distribution associated with temperature and/or velocity perturbations of the stellar surface due to non-radial pulsation (NRP) modes in rapidly rotating B stars. The technique is applied together with Fourier Doppler Imaging (FDI) to high resolution and high signal-to-noise ratio spectroscopic observations of ɛ Per. The main advantage of this approach is that it decomposed complex multi-periodic line profile variations into single components, allowing the detailed analysis of each mode seperately. We study the 10.6-d-1 frequency that is particularly important for modal analysis of non-radial pulsations in the star.

  19. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  20. Search for Optical Pulsations in PSR J0337+1715

    CERN Document Server

    Strader, M J; Meeker, S R; Szypryt, P; Walter, A B; van Eyken, J C; Ulbricht, G; Stoughton, C; Bumble, B; Kaplan, D L; Mazin, B A

    2016-01-01

    We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS) at the 200" Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11000 angstroms, and we can limit pulsed emission in g-band to be fainter than 25 mag.

  1. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part I. Research of detonation engines

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-01-01

    Full Text Available We consider current problems of improving propulsion systems of highly supersonic air-space vehicles. In the first part, we review historic developments and list the landmark scientific papers. Classification of detonation engines is presented with detailed consideration of rotation detonation engines and continuous detonation engines. Experimental results on detonation, which are of particular importance for the design of detonation engines, are discussed. The second part of the paper provides an overview of the development in detonation theory, mathematical modelling, and numerical simulation. We focus on the interference of shock waves with formation of triple points, regular and irregular reflection of shock waves, existence of multiple solutions and the resulting appearance of hysteresis. The relevance and importance of triple shock wave configurations for the development of new types of air intakes and detonation jet engines is demonstrated.

  2. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  3. First Kepler results on compact pulsators - V. Slowly pulsating subdwarf B stars in short-period binaries

    DEFF Research Database (Denmark)

    Kawaler, Stephen D.; Reed, Michael D.; Østensen, Roy H.

    2010-01-01

    The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for non-radial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical...... of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear...... evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings...

  4. Reducing the Consequences of a Nuclear Detonation.

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, B R

    2007-11-09

    The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

  5. Detonation Type Ram Accelerator: A Computational Investigation

    Directory of Open Access Journals (Sweden)

    Sunil Bhat

    2000-01-01

    Full Text Available An analytical model explaining the functional characteristics of detonation type ram accelerator is presented. Major flow processes, namely, (i supersonic flow over the cone of the projectile, (ii initiation ofconical shock wave and its reflection from the tube wall, (iii supersonic combustion, and (iv expansion wave and its reflection are modelled. Taylor-Maccoll approach is adopted for modellingthe flow over the cone of the projectile. Shock reflection is treated in accordance with wave angle theorytor flows over the wedge. Prandtl-Mayer analysis is used to model the expansion wave and its reflection.Steady one-dimensional flow with heat transfer along with Rayleigh line equation for perfect gases isused to model supersonic combustion. A computer code is developed to compute the thrust producedby combustion of gases. Ballistic parameters like thrust-pressure ratio and ballistic efficiency of the accelerator are evaluated and their maximum values are 0.032 and 0.068, respectively. The code indicates possibility ofachieving high velocity of 7 km/s on utilising gaseous mixture of 2H2+O2 in the operation.Velocity range suitable for operation of the accelerator lies between 3.8 - 7.0 km/s. Maximum thrust valueis 33721 N which corresponds to the projectile velocity of 5 km/s.

  6. Detonation Structure Under Chain Branching Kinetics

    Science.gov (United States)

    Liang, Z.; Bauwens, L.

    2006-07-01

    Hydrogen-oxygen chemistry is characterized by a chain branching mechanism that yields three explosion limits. While a detailed kinetic scheme appropriate for hydrogen-oxygen should produce correct results, in many circumstances, a simpler yet reasonably realistic model will be warranted. In particular, it is easier to develop a clear understanding of the reaction zone structure using a simpler model, that includes only the key mechanisms. To that effect, we consider a four-step chain branching scheme that exhibits an explosion behavior with three limits, which behaves at least qualitatively like hydrogen chemistry. We focus in particular on the structure of the initiation and chain branching zones, using a combination between numerical simulation and analysis. Numerical simulations using this chemical model show distinctive keystone figures in the flow field, close to observations in hydrogen-oxygen detonation experiments. The structure of the chain branching zone is resolved using a perturbation analysis, which clarifies the differences between explosion and no-explosion regions and allows for an evaluation of the induction length in the steady wave. The analysis assumes both high activation energy and a slow initiation. Three cases are identified, respectively, with pressure and temperature located within the explosion region, close to the explosion limit and within the no-explosion region. The induction length is shorter and the reaction rate is faster by several orders of magnitude in the explosion region.

  7. Numerical simulation of detonation failure in nitromethane

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M E; Nunziato, J W

    1981-01-01

    Detonation failure in the homogeneous liquid explosive nitromethane has been observed experimentally in a wide variety of confining geometries. However, numerical simulation of these failure situations with a wave propagation code has been essentially non-existent due to the large differences between the critical diameter and the length of the reaction zone - characteristic dimensions which differ by about two orders of magnitude. This inability to spatially resolve both the reaction zone and geometries of significant size has led us to propose a new numerical technique, based on the stability criterion for rate-type material models, in which only temporal resolution of the reaction zone is required. Using an improved model for nitromethane, we have carried out a series of two-dimensional calculations which illustrate the utility of the present approach in predicting a wide range of experimental observations. Of particular computational significance is the removal of the difficulty requiring spatial resolution of the reaction zone, so that problems of practical size can be analyzed with existing computer capabilities.

  8. Color camera pyrometry for high explosive detonations

    Science.gov (United States)

    Densmore, John; Biss, Matthew; Homan, Barrie; McNesby, Kevin

    2011-06-01

    Temperature measurements of high-explosive and combustion processes are difficult because of the speed and environment of the events. We have characterized and calibrated a digital high-speed color camera that may be used as an optical pyrometer to overcome these challenges. The camera provides both high temporal and spatial resolution. The color filter array of the sensor uses three color filters to measure the spectral distribution of the imaged light. A two-color ratio method is used to calculate a temperature using the color filter array raw image data and a gray-body assumption. If the raw image data is not available, temperatures may be calculated from processed images or movies depending on proper analysis of the digital color imaging pipeline. We analyze three transformations within the pipeline (demosaicing, white balance, and gamma-correction) to determine their effect on the calculated temperature. Using this technique with a Vision Research Phantom color camera, we have measured the temperature of exploded C-4 charges. The surface temperature of the resulting fireball rapidly increases after detonation and then decayed to a constant value of approximately 1980 K. Processed images indicates that the temperature remains constant until the light intensity decreased below the background value.

  9. Rad Resilient City: a preparedness checklist to save lives following a nuclear detonation.

    Science.gov (United States)

    Schoch-Spana, Monica

    2013-11-01

    The Rad Resilient City Checklist is a local planning tool that can help save tens of thousands of lives following a nuclear detonation. If prevention of nuclear terrorism fails, then reducing exposure to radioactive fallout is the intervention that can save the most lives following a nuclear detonation. Yet, most Americans are not familiar with correct safety measures against fallout, and many believe that nothing can be done to reduce the suffering and death inflicted by a nuclear attack. Moreover, cities have no checklist on how to prepare the emergency management infrastructure and the larger population for this hazard, despite hundreds of pages of useful guidance from the federal government and radiation professional organizations. The Rad Resilient City Checklist reverses this situation by converting the latest federal guidance and technical reports into clear, actionable steps for communities to take to protect their residents from exposure to radioactive fallout. The checklist reflects the shared judgment of the Nuclear Resilience Expert Advisory Group, a national panel led by the Center for Biosecurity and comprised of government decision makers, scientific experts, emergency responders, and leaders from business, volunteer, and community sectors.

  10. Reflected Detonation Waves: Comparing Theory to Pressure and Heat Flux Measurements

    Science.gov (United States)

    Damazo, J.; Shepherd, J. E.

    Gaseous detonations are of concern to engineers designing piping systems for chemical and nuclear processing facilities. Recently, engineers have also begun to explore the possibility of harnessing the impulse created by detonations for thrust.

  11. Analysis of Steel-With-Composite Material Substitution in Military Vehicle Hull Floors Subjected to Shallow-Buried Landmine-Detonation Loads

    Science.gov (United States)

    2014-01-01

    attenuated) shock-induced soil response within this zone is dominated by reversible /elastic deformation of the soil. It is generally believed that the...vehicles/structures; in the work of Bergeron et al. (2002), an instrumented ballistic pendulum was utilized to investigate mine detonation-induced...2002), “ Pendulum techniques to measure land mine blast loading”, paper presented at the Seventh International MABS Symposium, Las Vegas, NV, June 10

  12. Dynamics of detonations with a constant mean flow divergence

    CERN Document Server

    Borzou, Bijan

    2016-01-01

    The present work addresses the question of whether mean field macroscopic models are suitable to describe the dynamics of real cellular detonations. This question is posed in the framework of detonations with stream-tube area divergence that is kept constant, as to generate attenuated detonations in quasi-steady state. An exponential horn geometry is used, in order to keep the source term due to geometrical divergence constant in the governing equations of mean flow, and hence permit to establish steady travelling waves with constant losses. The experiments were conducted in two mixtures 2C$_2$H$_2$+5O$_2$+21Ar, characterized by a relatively weak instability, and C$_3$H$_8$+5O$_2$, characterized by a much more unstable cellular structure. The experiments demonstrated that such quasi-steady state detonations can be realized. The experiments permitted a unique detonation speed - divergence scaling laws to be developed. Quantitative comparisons were made with steady wave predictions based on the underlying chemi...

  13. Helium in Double-Detonation Models of Type Ia Supernovae

    CERN Document Server

    Boyle, Aoife; Hachinger, Stephan; Kerzendorf, Wolfgang

    2016-01-01

    The double-detonation explosion model has been considered a candidate for explaining astrophysical transients with a wide range of luminosities. In this model, a carbon-oxygen white dwarf star explodes following detonation of a surface layer of helium. One potential signature of this explosion mechanism is the presence of unburned helium in the outer ejecta, left over from the surface helium layer. In this paper we present simple approximations to estimate the optical depths of important He I lines in the ejecta of double-detonation models. We use these approximations to compute synthetic spectra, including the He I lines, for double-detonation models obtained from hydrodynamical explosion simulations. Specifically, we focus on photospheric-phase predictions for the near-infrared 10830 \\AA~and 2 $\\mu$m lines of He I. We first consider a double detonation model with a luminosity corresponding roughly to normal SNe Ia. This model has a post-explosion unburned He mass of 0.03 $M_{\\odot}$ and our calculations sug...

  14. Non ideal detonation of emulsion explosives mixed with metal particles

    Science.gov (United States)

    Mendes, Ricardo; Ribeiro, José B.; Plaksin, I.; Campos, Jose

    2012-03-01

    The detonation of ammonium nitrate based compositions like emulsion explosives mixed with metal particles was experimentally investigated. Aluminum powder with a mean particle size of 6 μm was used, and the mass concentration of aluminum on the explosive charge ranged from 0 to 30% wt. The values of the detonation velocity, the pressure attenuation - P(x) - of the shock front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressuretimes histories have been evaluated using the multi-fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allows a quasicontinuous evaluation of the detonation wave run propagation and the assessment of spatial resolved measurements of the shock wave induced in the PMMA barrier. Results of that characterization process are presented and discussed for aluminized and non-aluminized emulsion explosives. The experimental results have shown that the detonation velocity decreases monotonically with the increase of aluminum content. Nevertheless the peak of detonation pressure profiles presents a non-monotonic behavior increasing its value up to an Al content of 20% wt, after which it starts to decrease.

  15. Detonation tube impulse in sub-atmospheric environments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Shepherd, Joseph E. (California Institute of Technology, Pasadena, CA)

    2005-04-01

    The thrust from a multi-cycle, pulse detonation engine operating at practical flight altitudes will vary with the surrounding environment pressure. We have carried out the first experimental study using a detonation tube hung in a ballistic pendulum arrangement within a large pressure vessel in order to determine the effect that the environment has on the single-cycle impulse. The air pressure inside the vessel surrounding the detonation tube varied between 100 and 1.4 kPa while the initial pressure of the stoichiometric ethylene-oxygen mixture inside the tube varied between 100 and 30 kPa. The original impulse model (Wintenberger et al., Journal of Propulsion and Power, Vol. 19, No. 1, 2002) was modified to predict the observed increase in impulse and blow down time as the environment pressure decreased below one atmosphere. Comparisons between the impulse from detonation tubes and ideal, steady flow rockets indicate incomplete expansion of the detonation tube exhaust, resulting in a 37% difference in impulse at a pressure ratio (ratio of pressure behind the Taylor wave to the environment pressure) of 100.

  16. Investigations on detonation shock dynamics and related topics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    1993-11-01

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  17. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  18. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    Science.gov (United States)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  19. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.;

    2015-01-01

    that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long lifetime film capacitors instead of electrolytic capacitors to improve the reliability of the PV system...

  20. The triple-mode pulsating variable V823 Cassiopeiae

    Science.gov (United States)

    Jurcsik, J.; Szeidl, B.; Váradi, M.; Henden, A.; Hurta, Zs.; Lakatos, B.; Posztobányi, K.; Klagyivik, P.; Sódor, Á.

    2006-01-01

    Using extended multicolour CCD photometry of the triple-mode radial pulsator V823 Cas we studied the properties of the coupling frequencies invoked by nonlinear processes. Our results support that a resonance connection affects the mode coupling behaviour. The P1/P0 period ratio of V823 Cas has an “out of range” value if compared with the period ratios of the known double mode pulsators, while the P2/P1 period ratio is normal. The periods and period ratios cannot be consistently interpreted without conflict with pulsation and/or evolution models. We describe this failure with the suggestion that at present, the periods of V823 Cas are in a transient, resonance affected state, thus do not reflect the true parameters of the object. The anomalous period change behaviour of the fundamental and second overtone modes supports this idea. We have also raised the possibility that a f0 +f2 = 2f1 resonance may act in triple mode pulsators.

  1. EXOTIME: searching for planets around pulsating subdwarf B stars

    CERN Document Server

    Schuh, Sonja; Lutz, Ronny; Loeptien, Bjoern; Green, Elizabeth M; Ostensen, Roy H; Leccia, Silvio; Kim, Seung-Lee; Fontaine, Gilles; Charpinet, Stephane; Francoeur, Myriam; Randall, Suzanna; Rodriguez-Lopez, Cristina; van Grootel, Valerie; Odell, Andrew P; Paparo, Margit; Bognar, Zsofia; Papics, Peter; Nagel, Thorsten; Beeck, Benjamin; Hundertmark, Markus; Stahn, Thorsten; Dreizler, Stefan; Hessman, Frederic V; Dall'Ora, Massimo; Mancini, Dario; Cortecchia, Fausto; Benatti, Serena; Claudi, Riccardo; Janulis, Rimvydas; 10.1007/s10509-010-0356-4

    2010-01-01

    In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time-scales of several years with two immediate observational goals: 1) determine Pdot of the pulsational periods P 2) search for signatures of substellar companions in O-C residuals due to periodic light travel time variations, which would be tracking the central star's companion-induced wobble around the center of mass. These sets of data should therefore at the same time: on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the Pdot (comparison with "local" evolutionary models), and on the othe...

  2. M dwarf search for pulsations within Kepler GO program

    CERN Document Server

    Rodríguez-López, C; MacDonald, J; Amado, P J; Carosso, A

    2014-01-01

    We present the analysis of four M dwarf stars -plus one M giant that seeped past our selection criteria- observed in Cycle 3 of Kepler Guest Observer program (GO3) in a search for intrinsic pulsations. Stellar oscillations in M dwarfs were theoretically predicted by Rodr\\'iguez-L\\'opez et al. (2012) to be in the range ~20-40 min and ~4-8 h, depending on the age and the excitation mechanism. We requested Kepler short cadence observations to have an adequate sampling of the oscillations. The targets were chosen on the basis of detectable rotation in the initial Kepler results, biasing towards youth.The analysis reveals no oscillations attributable to pulsations at a detection limit of several parts per million, showing that either the driving mechanisms are not efficient in developing the oscillations to observable amplitudes, or that if pulsations are driven, the amplitudes are very low. The size of the sample, and the possibility that the instability strip is not pure, allowing the coexistence of pulsators an...

  3. Experimental and numerical study of pulsating transversal jets

    Science.gov (United States)

    Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.

    2015-06-01

    Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.

  4. Solar Microwave and Geomagnetic Field Pulsations as Space Weather Factors

    Science.gov (United States)

    Snegirev, S. D.; Fridman, V. M.; Sheiner, O. A.

    The procedure of short-term prediction of main solar flares was created on the basis of temporal behavior of long-period microwave pulsations [Kobrin et al., 1997]. At the same time it was shown that before these flares one could observe long-period (T > 20 min) pulsations of geomagnetic field [Kobrin et al, 1985]. The resemblance between microwave and geomagnetic pulsations (duration and temporal behaviour) allows us to propose the common nature of these variations: the reflection of solar energy accumulation and instabilities in solar centers of activity. To be an important factor of Space Weather above mentioned pulsations can be useful for constructing the procedures to predict the near Earth's conditions. This work was supported by the Russian Foundation for Fundamental Research and Russian Federal Programm "Astronomy" (grant N 1.5.5.5). Kobrin M.M, Malygin V.I., Snegirev S.D. Plan. Space Sci., 33, N11, p. 1251 (1985). Kobrin M.M., Pakhomov V.V., Snegirev S.D., Fridman V.M., Sheiner O.A. Proc. Workshop `STPW-96', Tokyo: RCW, p. 200 (1997).

  5. Pressure pulsations in reciprocating pump piping systems Part 1: Modelling

    CERN Document Server

    Shu, Jian-Jun; Edge, Kevin A

    2014-01-01

    A distributed parameter model of pipeline transmission line behaviour is presented, based on a Galerkin method incorporating frequency-dependent friction. This is readily interfaced to an existing model of the pumping dynamics of a plunger pump to allow time-domain simulations of pipeline pressure pulsations in both suction and delivery lines. A new model for the pump inlet manifold is also proposed.

  6. The triple-mode pulsating variable V823 Cas

    CERN Document Server

    Jurcsik, J; Varadi, M; Henden, A; Hurta, Z; Lakatos, B; Posztobanyi, K; Klagyivik, P; Sodor, A; Hurta, Zs.

    2005-01-01

    Based on extended multicolour CCD photometry of the triple-mode radial pulsator V823 Cas we studied the properties of the coupling frequencies invoked by nonlinear processes. Our results support that a resonance connection as suggested by Antonello & Aikawa (1998) affects the mode coupling behaviour. The P1/P0 period ratio of V823 Cas has an "out of range" value if compared with the period ratios of the known double mode pulsators, while the P2/P1 period ratio is normal. The periods and period ratios cannot be consistently interpret without conflict with pulsation and/or evolution models. We attempt to interpret this failure by the suggestion that at present, the periods of V823 Cas are in a transient, resonance affected state, thus do not reflect the true parameters of the object. The anomalous period change behaviour of the fundamental and second overtone modes supports this idea. We have also raised the possibility that a f0 + f2 = 2f1 resonance may act in triple mode pulsators.

  7. First Kepler results on compact pulsators VI. Targets in the final half of the survey phase

    DEFF Research Database (Denmark)

    H. Østensen, R.; Silvotti, R.; Charpinet, S.;

    2011-01-01

    We present results from the final six months of a survey to search for pulsations in white dwarfs and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sd....... No V361 Hya type of short-period pulsating sdB stars were found in this half, leaving us with a total of one single multiperiodic V361 Hya and 13 V1093 Her pulsators for the full survey. Except for the sdB pulsators, no other clearly pulsating hot subdwarfs or white dwarfs were found, although a few...

  8. Emission Spectroscopy of the Interior of Optically Dense Post-Detonation Fireballs

    Science.gov (United States)

    2013-03-01

    TP-2013-011 Emission Spectroscopy of the Interior of Optically Dense Post-Detonation Fireballs Distribution A: Approved for public release...Detonation Fireballs 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) W.K. Lewis1, C.G. Rumchik2, M.J...detonation fireballs that form as under- oxidized detonation products burn in the surrounding air are optically dense and the corresponding emission

  9. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    Science.gov (United States)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  10. ON THE POLARIZATION PROPERTIES OF MAGNETAR GIANT FLARE PULSATING TAILS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2015-12-10

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ∼100 s, an isotropic energy of ∼10{sup 44} erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron–positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1–30 keV band, and Π ≃ 10% in the 30–100 keV band, if the line of sight is perpendicular to the magnetic axis.

  11. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper-motor exp......Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...... pulsations is statistically significant in terms of the time-averaged flow boiling heat transfer coefficient. The cycle time range from 1 s to 9 s for the pulsations. The results show that the effect of fluid flow pulsations is statistically significant, disregarding the lowest heat flux measurements...

  12. Indirect imaging of nonradial pulsations in a rapidly oscillating Ap star

    CERN Document Server

    Kochukhov, O P

    2004-01-01

    Many types of stars show periodic variations of radius and brightness, which are commonly referred to as `stellar pulsations'. Observed pulsational characteristics are determined by fundamental stellar parameters. Consequently, investigations of stellar pulsations provide a unique opportunity to verify and refine our understanding of the evolution and internal structure of stars. However, a key boundary condition for this analysis -- precise information about the geometry of pulsations in the outer stellar envelopes -- has been notoriously difficult to secure. Here we demonstrate that it is possible to solve this problem by constructing an `image' of the pulsation velocity field from time series observations of stellar spectra. This technique is applied to study the geometry of nonradial pulsations in a prototype magnetic oscillating (roAp) star HR 3831. Our velocity map directly demonstrates an alignment of pulsations with the axis of the global magnetic field and reveals a significant magnetically induced d...

  13. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas-particles layer

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    Conceptual approach of detonation wave direct initiation by external radiative heating of microparticles locally suspended in flammable gaseous mixture is proposed. Combustion waves and detonation initiation mechanisms in the congestion regions of microparticles heated by radiation are studied numerically. Necessary criteria on geometrical scales of gas-particles layer and spatial uniformity of particles distribution for successful detonation initiation are formulated.

  14. Reproducibility Distinguishability and Correlation of Fireball and Shockwave Dynamics in Explosive Munitions Detonations

    Science.gov (United States)

    2006-03-01

    plots, heat of detonation (which follows the same correlation as the specific afterburn energy) initial mass in the lower plots. As all quantities...fireball area increases with the third power of the heat of detonation , neglecting the outliers...third power of the heat of detonation , neglecting the outliers. In all cases, correlation is higher than when C-4 was included

  15. Effect of detonation nanodiamonds on phagocyte activity.

    Science.gov (United States)

    Karpukhin, Alexey V; Avkhacheva, Nadezhda V; Yakovlev, Ruslan Yu; Kulakova, Inna I; Yashin, Valeriy A; Lisichkin, Georgiy V; Safronova, Valentina G

    2011-07-01

    Detonation ND (nanodiamond) holds much promise for biological studies and medical applications. Properties like size of particles, inclination for modification of their surface and unambiguous biocompatibility are crucial. Of prime importance is interaction between ND and immune cells, which supervise foreign intrusion into an organism and eliminate it. Neutrophils are more reactive in inflammatory response implementing cytotoxical arsenal including ROS (reactive oxygen species). The aim of the work was to estimate the ability of two ND samples (produced by Diamond Center and PlasmaChem) to keep the vitality of neutrophils from the inflammatory site. The ability of cells to generate ROS in the presence of ND particles is considered as indicating their biocompatibility. IR spectra and size of particles in the samples were characterized. Acid modification of ND was carried out to get the luminescent form. In the biological aspect, ND demonstrated up or down action, depending on the concentration, time and conditions of activation of cells. Weak action of ND in whole blood was obtained possibly owing to the ND adsorbed plasma proteins, which mask active functional groups to interact with the cell membrane. ND did not influence the viability of isolated inflammatory neutrophils in low and moderate concentrations and suppressed it in high concentrations (≥1 g/l). Addition of ND to the cell suspension initiated concentration-dependent reaction to produce ROS similar to respiratory burst. ND up-regulated response to bacterial formylpeptide, but up- and down-modified (low or high concentrations, accordingly) response to such bacterial agents as OZ (opsonized zymosan), which neutrophils swallow up by oxygen-dependent phagocytosis. Localization of the particles on the cell surface as into the cells was identified by monitoring the intrinsic fluorescence of oxidized ND. The various mechanisms that could account for penetration of ND particles into the cell are discussed

  16. Mathematical modeling of detonation initiation via flow cumulation effects

    Science.gov (United States)

    Semenov, I.; Utkin, P.; Akhmedyanov, I.

    2016-07-01

    The paper concerns two problems connected with the idea of gaseous detonation initiation via flow cumulation effects and convergence of relatively weak shock waves (SW). The first one is the three-dimensional (3D) numerical investigation of shock-to-detonation transition (SDT) in methane-air mixture in a tube with parabolic contraction followed by the tube section of narrow diameter and conical expansion. The second problem is the numerical study of the start-up of the model small-scale hydrogen electrochemical pulse detonation engine with the use of electrical discharge generating the toroidal SW. The investigation is performed by means of numerical simulation with the use of modern high-performance computing systems.

  17. Parametric Study of High Frequency Pulse Detonation Tubes

    Science.gov (United States)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  18. Ferrite core coupled slapper detonator apparatus and method

    Science.gov (United States)

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  19. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  20. Influence of Accelerated Aging on Detonation Performance of Explosives

    Institute of Scientific and Technical Information of China (English)

    GAO Da-yuan; HUA Cheng; WANG Xiang; HAN Yong

    2010-01-01

    To understand the aging effects on detonation performances of explosives, an accelerated aging mechanism and effect of explosives were analyzed. Based on the thermo-gravimetric (TG) curves of explosives under the heat rate of 5, 10 and 20 K·min-1, the thermal decomposition activation energy, pre-exponential factor, mechanism function and kinetic equation of the explosives were calculated by Ozawa's equation and decomposition extents. Then, according to the derived kinetic equation, the density, composition and heat of formation of GI-1, PBX-1 and PBX-2 explosive in different decompo-sition extents were calculated at accelerated aging temperatures of 70 ℃ and 75 ℃, respectively. Furthermore, the detona-tion parameters of GI-1, PBX-1 and PBX-2 explosives were found out by means of VLWR code. The results show that after accelerated aging, the density are decrease, the detonation velocity and pressure are all decreased slightly.

  1. The analysis of thermal stability of detonation nanodiamond

    Science.gov (United States)

    Efremov, V. P.; Zakatilova, E. I.

    2016-11-01

    The detonation nanodiamond is a new perspective material. Ammunition recycling with use of high explosives and obtaining nanodiamond as the result of the detonation synthesis have given a new motivation for searching of their application areas. In this work nanodiamond powder has been investigated by the method of synchronous thermal analysis. Experiments have been carried out at atmospheric pressure in the environment of argon. Nanodiamond powder has been heated in the closed corundum crucible at the temperature range of 30-1500 °C. The heating rates were varied from 2 K/min to 20 K/min. After the heat treatment, the samples have been studied by the x-ray diffraction and the electron microscopy. As one of the results of this work, it has been found that the detonation nanodiamond has not started the transition into graphite at the temperature below 800 °C.

  2. Detonation wave driven by condensation of supersaturated carbon vapor.

    Science.gov (United States)

    Emelianov, A; Eremin, A; Fortov, V; Jander, H; Makeich, A; Wagner, H Gg

    2009-03-01

    An experimental observation of a detonation wave driven by the energy of condensation of supersaturated carbon vapor is reported. The carbon vapor was formed by the thermal decay of unstable carbon suboxide C3O2 behind shock waves in mixtures containing 10-30% C3O2 in Ar. In the mixture 10% C3O2+Ar the insufficient heat release resulted in a regime of overdriven detonation. In the mixture 20% C3O2+Ar measured values of the pressure and wave velocity coincident with calculated Chapman-Jouguet parameters were attained. In the richest mixture 30% C3O2+Ar an excess heat release caused the slowing down of the condensation rate and the regime of underdriven detonation was observed.

  3. Gasdynamic characteristics of toroidal shock and detonation wave converging

    Institute of Scientific and Technical Information of China (English)

    TENG; Honghui; JIANG; Zonglin

    2005-01-01

    The modified CCW relation is applied to analyzing the shock, detonation wave converging and the role of chemical reactions in the process. Results indicate that the shock wave is strengthened faster than the detonation wave in the converging at the same initial Mach number. Euler equations implemented with a detailed chemical reaction model are solved to simulate toroidal shock and detonation wave converging. Gasdynamic characteristics of the converging are investigated, including wave interaction patterns, observable discrepancies and physical phenomena behind them. By comparing wave diffractions, converging processes and pressure evolutions in the focusing area, the different effects of chemical reactions on diffracting and converging processes are discussed and the analytic conclusion is demonstrated through the observation of numerical simulations.

  4. Velocity of detonation (VOD measurement techniques - practical approach

    Directory of Open Access Journals (Sweden)

    Aruna Dhanraj Tete

    2013-06-01

    Full Text Available Velocity of Detonation (VOD is an important measure characteristics parameter of explosive material. The performance of explosive invariably depends on the velocity of detonation. The power/ strength of explosive to cause fragmentation of the solid structure determine the efficiency of the Blast performed. It is an established fact that measuring velocity of detonation gives a good indication of the strength and hence the performance of the explosive. In this survey various VOD measurement techniques such as electric, nonelectric and fibre optic have been discussed. To aid the discussion some commercially available VOD meter comparison are also presented. After review of the existing units available commercially and study of their respective merits and demerits, feature of an ideal system is proposed. 

  5. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  6. The equation of state of predominant detonation products

    Science.gov (United States)

    Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Fried, Laurence

    2009-06-01

    The equation of state of detonation products, when incorporated into an experimentally grounded thermochemical reaction algorithm can be used to predict the performance of explosives. Here we report laser based Impulsive Stimulated Light Scattering measurements of the speed of sound from a variety of polar and nonpolar detonation product supercritical fluids and mixtures. The speed of sound data are used to improve the exponential-six potentials employed within the Cheetah thermochemical code. We will discuss the improvements made to Cheetah in terms of predictions vs. measured performance data for common polymer blended explosives. Accurately computing the chemistry that occurs from reacted binder materials is one important step forward in our efforts.

  7. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    Science.gov (United States)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with

  8. Curved detonation fronts in solid explosives: Collisions and boundary interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B. [Los Alamos National Lab., NM (United States); Aslam, T.D.; Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). TAM Dept.

    1995-09-01

    Detonation Shock Dynamics (DSD) can be used to model the effects that shock curvature, {kappa}, has oil detonation speed, D{sub n}({kappa}). At the edges of the explosive, D{sub n}({kappa}) is supplemented with boundary conditions. By direct numerical simulation (DNS). The authors study how the reaction zone interacts with the edge. DSD theory has been integrated with the level-set method of Osher and Sethian and the Los Alamos DNS code Mesa to create a powerful tool for simulating complex explosive containing systems.

  9. Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

    CERN Document Server

    Niemeyer, J C

    1999-01-01

    The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typical gradient scale for temperature fluctuations is shown to be the laminar flame width or smaller, rather than the factor of thousand more required for a DDT. Furthermore, thermonuclear flames cannot be fully quenched in regions much larger than the laminar flame width as a consequence of their simple ``chemistry''. Possible alternative explosion scenarios are briefly discussed.

  10. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  11. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and Riometer absorption

    Science.gov (United States)

    Belakhovsky, V. B.; Pilipenko, V. A.; Samsonov, S. N.; Lorentsen, D.

    2016-01-01

    Simultaneous morning Pc5 pulsations ( f ~ 3-5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.

  12. The Initiation and Propagation of Helium Detonations in White Dwarf Envelopes

    CERN Document Server

    Shen, Ken J

    2014-01-01

    Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear ".Ia" supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate ...

  13. Long-period irregular pulsations under the conditions of a quiet magnetosphere

    Science.gov (United States)

    Kurazhkovskaya, N. A.; Klain, B. I.; Lavrov, I. P.

    2016-05-01

    Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0-6.0 mHz ( ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity ( Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011-2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρ V 2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10-20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency ( f) is linearly related to the IMF Bz variation rate (Δ Bz/Δ t). It was shown that the dependence of f on Δ Bz/Δ t is controlled by the α = arctan( By/ Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.

  14. Using embedded fibers to measure explosive detonation velocities

    Energy Technology Data Exchange (ETDEWEB)

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  15. Detonation equation of state at LLNL, 1995. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P.C.; Wu, B.; Haselman, L.C. Jr.

    1996-02-01

    JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuous oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.

  16. NOx Emissions from a Rotating Detonation-wave Engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2016-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.

  17. Transplutonium elements processed from rock debris of underground detonations

    Science.gov (United States)

    Bloomquist, C. A. A.; Harvey, H. W.; Hoh, J. C.; Horwitz, E. P.

    1969-01-01

    Six-step chemical processing method extracts minute quantities of transplutonium elements found in rock debris following a nuclear detonation. The process consists of dissolution of rock, feed preparation, liquid-liquid extraction, final purification of transplutonium elements and plutonium, and separation of the transplutonium elements.

  18. Indirect detonation initiation using acoustic timescale thermal power deposition

    CERN Document Server

    Regele, Jonathan D; Vezolainen, Alexei; Vasilyev, Oleg V

    2012-01-01

    A fluid dynamics video is presented that demonstrates an indirect detonation initiation process. In this process, a transient power deposition adds heat to a spatially resolved volume of fluid in an amount of time that is similar to the acoustic timescale of the fluid volume. A highly resolved two-dimensional simulation shows the events that unfold after the heat is added.

  19. Cellular Structure and Oscillating Behavior of PBX Detonations

    Science.gov (United States)

    Plaksin, Igor; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Ferreira, Claudia; Fernandes, Eduardo

    2015-06-01

    Efforts are aimed on experimental study of reaction localization/instabilities manifested in detonation reaction zone (DRZ) of PBXs at micro-, meso- and macro-scale. At micro- and meso-scale levels, leading role of kinetic nonequilibrium in reaction localizations onset was established in experiments with single beta-HMX crystals-in-binder subjected to 20 GPa-shock and PBX detonation. Reaction localizations and further ejecta formation were spatially resolved by 96-channel optical analyzer at simultaneous recording reaction light and stress field around crystal. Spatially resolved measurements reveal fundamental role of shear-strain in triggering initiation chemistry. At macro-scale level, formation of the cell-structures and oscillating detonation regimes revealed in HMX- and RDX-based PBXs at wide variation of grain-sizes, wt. % filler/binder, residual micro-voids and binder nature. Emphasizes placed on effect of DRZ-induced radiation upon oscillating regimes of detonation front motion. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  20. Deflagration-to-detonation transition in granular HMX

    Science.gov (United States)

    Campbell, A. W.

    1980-01-01

    Granular HMX of three degrees of fineness was packed into heavy-walled steel tubes closed at both ends. Ignition was obtained at one end using an intimate mixture of finely divided titanium and boron as an igniter that produced heat with little gas. The distance to detonation was determined by examination of the resulting tube fragments. By inserting tightly-fitted neoprene diaphragms periodically into the HMX column, it was shown that the role of convective combustion was limited to the initial stage of the deflagration to detonation (DDT) process. Experiments in which various combinations of two of the three types of HMX were loaded into the same tube showed that heating by adiabatic shear of explosive grains was an essential factor in the final buildup to detonation. A description of the DDT process is developed in which conductive burning is followed in turn by convective burning, bed collapse with plug formation, onset of accelerated burning at the front of the plug through heating by intercrystalline friction and adiabatic shear, and intense shock formation resulting in high-order detonation.

  1. Detonation and combustion of explosives: A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Dobratz, B. [comp.

    1998-08-01

    This bibliography consists of citations pertinent to the subjects of combustion and detonation of energetic materials, especially, but not exclusively, of secondary solid high explosives. These references were selected from abstracting sources, conference proceedings, reviews, and also individual works. The entries are arranged alphabetically by first author and numbered sequentially. A keyword index is appended.

  2. Experimental Investigation on Performance of Pulse Detonation Rocket Engine Model

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; FAN Wei; YAN Chuan-jun; HU Cheng-qi; YE Bin

    2007-01-01

    The PDRE test model used in these experiments utilized kerosene as the fuel, oxygen as oxidizer, and nitrogen as purge gas. The solenoid valves were employed to control intermittent supplies of kerosene, oxygen and purge gas. PDRE test model was 50 mm in inner diameter by 1.2 m long. The DDT (defiagration to detonation transition) enhancement device Shchelkin spiral was used in the test model.The effects of detonation frequency on its time-averaged thrust and specific impulse were experimentally investigated. The obtained results showes that the time-averaged thrust of PDRE test model was approximately proportional to the detonation frequency. For the detonation frequency 20 Hz, the time-averaged thrust was around 107 N, and the specific impulse was around 125 s. The nozzle experiments were conducted using PDRE test model with three traditional nozzles. The experimental results obtained demonstrated that all of those nozzles could augment the thrust and specific impulse. Among those three nozzles, the convergent nozzle had the largest increased augmentation, which was approximately 18%, under the specific condition of the experiment.

  3. Detonation of CHO working substances in a laser jet engine

    Science.gov (United States)

    Ageichik, A. A.; Repina, E. V.; Rezunkov, Yu. A.; Safronov, A. L.

    2009-03-01

    Laser-induced ablation of materials (including polymers and a variety of polycrystalline substances with a CHO chemical composition) is studied theoretically and experimentally. Based on experimental data, a parametric physicochemical model of detonation of these materials is put forward with the aim to estimate the efficiency of laser thrust formation in jet engines.

  4. A thermochemically derived global reaction mechanism for detonation application

    Science.gov (United States)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  5. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  6. On the optical pulsations from the Geminga pulsar

    CERN Document Server

    Gil, J; Melikidze, G I; Gil, Janusz; Khechinashvili, David; Melikidze, George

    2000-01-01

    We present a model for generation mechanisms of the optical pulsations recently detected from the Geminga pulsar. We argue that this is just a synchrotron radiation emitted along open magnetic field lines at altitudes of a few light cylinder radii (which requires that Geminga is an almost aligned rotator), where charged particles acquire non-zero pitch-angles as a result of the cyclotron absorption of radio waves in the magnetized pair plasma. This explains self-consistently both the lack of apparent radio emission, at least at frequencies higher than about 100 MHz, and the optical pulsations from the Geminga pulsar. From our model it follows that the synchrotron radiation is a maximum in the infrared band, which suggests that Geminga should also be a source of a pulsed infrared emission.

  7. Experimental investigation on a pulsating heat pipe with hydrogen

    Science.gov (United States)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  8. The First Six Outbursting Cool DA White Dwarf Pulsators

    CERN Document Server

    Bell, Keaton J; Montgomery, M H; Winget, D E; Fusillo, N P Gentile; Raddi, R; Gänsicke, B T

    2016-01-01

    Extensive observations from the Kepler spacecraft have recently revealed a new outburst phenomenon operating in cool pulsating DA (hydrogen atmosphere) white dwarfs (DAVs). With the introduction of two new outbursting DAVs from K2 Fields 7 (EPIC 229228364) and 8 (EPIC 220453225) in these proceedings, we presently know of six total members of this class of object. We present the observational commonalities of the outbursting DAVs: (1) outbursts that increase the mean stellar flux by up to 15%, last many hours, and recur irregularly on timescales of days; (2) effective temperatures that locate them near the cool edge of the DAV instability strip; and (3) rich pulsation spectra with modes that are observed to wander in amplitude/frequency.

  9. Experimental research on heat transfer of pulsating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Jia; Yan Li

    2008-01-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper,and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  10. Quantitative results of stellar evolution and pulsation theories.

    Science.gov (United States)

    Fricke, K.; Stobie, R. S.; Strittmatter, P. A.

    1971-01-01

    The discrepancy between the masses of Cepheid variables deduced from evolution theory and pulsation theory is examined. The effect of input physics on evolutionary tracks is first discussed; in particular, changes in the opacity are considered. The sensitivity of pulsation masses to opacity changes and to the ascribed values of luminosity and effective temperature are then analyzed. The Cepheid mass discrepancy is discussed in the light of the results already obtained. Other astronomical evidence, including the mass-luminosity relation for main sequence stars, the solar neutrino flux, and cluster ages are also considered in an attempt to determine the most likely source of error in the event that substantial mass loss has not occurred.

  11. Pulsations and outbursts in Be stars: Small differences - big impacts

    CERN Document Server

    Baade, D; Pigulski, A; Carciofi, A; Handler, G; Kuschnig, R; Martayan, Ch; Mehner, A; Moffat, A F J; Pablo, H; Popowicz, A; Rucinski, S M; Wade, G A; Weiss, W W; Zwintz, K

    2016-01-01

    New high-cadence observations with BRITE covering many months confirm that coupled pairs of nonradial pulsation modes are widespread among early-type Be stars. With the difference frequency between the parental variations they may form a roughly sinusoidal variability or the amplitude may cyclicly vary. A first - amplified - beat pattern is also found. In all three cases the amplitudes of difference frequencies can exceed the amplitude sum of the base frequencies, and modulations of the star-to-circumstellar-disk mass-transfer rate may be associated with these slow variations. This suggests more strongly than any earlier observations that significant dissipation of pulsational energy in the atmosphere may be a cause of mass ejections from Be stars. A unifying interpretative concept is presented.

  12. Study of the Thermal Pulsation of AGB Stars

    CERN Document Server

    Halabi, Ghina M

    2014-01-01

    A systematic investigation on the third dredge up in a 3M$_{\\odot}$, solar metallicity AGB star will be presented. The model evolves from the main sequence up to the Asymptotic Giant Branch (AGB). Intermediate mass stars are important because they contribute significantly via the slow neutron capture nucleosynthesis. The aim of this work is to gain insight on the behaviour of the AGB star during thermal pulsation. This investigation is based on an extended numerical simulation of the evolutionary phases and full, consistent AGB model calculations. In particular, the convective structure during pulsation will be studied, giving particular emphasis to the analysis of the stability of the Schwarzschild boundary that will eventually determine the occurrence of Third Dredge Up (hereafter referred to as TDUP). We provide a brief description of our updated evolutionary code and focus primarily on the obtaining the TDUP after 14 thermal pulses. We elaborate on the non-standard treatment of convection known as "oversh...

  13. Quasi-periodic pulsations in partially occulted flares

    Science.gov (United States)

    Szaforz, Zaneta; Tomczak, Michal

    The model of oscillating magnetic traps (OMT) suggests that the cusp-like magnetic structures located in an upper part of flare loops are responsible for quasi-periodic pulsations (QPP) observed sometimes in hard X-rays (HXR). Electrons within these oscillating traps are efficiently accelerated and confined, therefore the traps should be recognize as loop-top HXR sources. However, these sources are difficult for reconstruction in the presence of the stronger footpoint HXR sources. To overcome this problem, we analyzed partially occulted flares, observed by Yohkoh, from the survey of Tomczak (2009). We will present the correlation between the diameter of the loop-top HXR source and the period of pulsations. We will present also some interesting examples of observations, for which changes in QPPs coincide with the changes in appearance of loop-top sources.

  14. Modelling hybrid Beta Cephei/SPB pulsations: Gamma Pegasi

    CERN Document Server

    Zdravkov, T

    2009-01-01

    Recent photometric and spectroscopic observations of the hybrid variable Gamma Pegasi (Handler et al. 2009, Handler 2009) revealed 6 frequencies of the SPB type and 8 of the Beta Cep type pulsations. Standard seismic models, which have been constructed with OPAL (Iglesias & Rogers 1996) and OP (Seaton 2005) opacities by fitting three frequencies (those of the radial fundamental and two dipole modes), do not reproduce the frequency range of observed pulsations and do not fit the observed individual frequencies with a satisfactory accuracy. We argue that better fitting can be achieved with opacity enhancements, over the OP data, by about 20-50 percent around the opacity bumps produced by excited ions of the iron-group elements at temperatures of about 200 000 K (Z bump) and 2 million K (Deep Opacity Bump).

  15. Decreasing of pulsation intensity levels in X-ray receivers

    CERN Document Server

    Dvoryankin, V F; Kudryashov, A A; Petrov, A G

    2002-01-01

    The low frequency filter is applied in the multichannel receiver on the basis of the GaAs epitaxial structures for decreasing the pulsations level at the signals amplifier outlet. The optimal band of the filter is determined by the transition processes by the detector scanning in the roentgen beams. The X-ray source of radiation with the medium-frequency feeding generator is used for verifying the quality of the obtained X-ray image

  16. A size limit for uniformly pulsating sources of electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dewdney, A.K.

    1979-01-01

    An extremal model for a uniformly pulsating source of electromagnetic radiation is developed, and a formula is obtained which relates the source variation to diameter, pulse width, and period. An upper limit on source diameter is derived from this formula, applied to three pulsars, and compared with standard estimates of their diameters. The use of the limit formula is shown to be no less justified, in general, than the size estimate based on the product of variation period and the speed of light.

  17. Effect of orientation on heat transfer in pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. M.

    2010-10-01

    Full Text Available The paper presents the results of experimental research of orientation effect on heat transfer characteristics of a pulsating heat pipe (PHP. It is shown that transport of either mass or heat depends on PHP orientation against it`s axis. As a consequence of comparing experimental data with other authors’ results it was concluded that PHP thermal resistance depends not only on orientation but on some other determinal factors such as device construction and thermophysical properties of heat carrier.

  18. Research of heat exchange rate of the pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  19. Diffusion and pulsations in slowly rotating B stars

    CERN Document Server

    Turcotte, S

    2005-01-01

    Diffusion in cool B stars of the main sequence has been shown to strongly affect opacities and convection in cool B stars of the main sequence. We show here that diffusion in B stars maintains or enhances the excitation of pulsations in these stars. This result conflicts with observations as cool B stars that show evidence of diffusion, the HgMn stars, are stable to the current detection level. We discuss possible implications of this discrepancy for the models.

  20. Effects of Uniform and Differential Rotation on Stellar Pulsations

    OpenAIRE

    Lovekin, C. C.; Deupree, R. G.; Clement, M.J.

    2008-01-01

    We have investigated the effects of uniform rotation and a specific model for differential rotation on the pulsation frequencies of 10 \\Msun\\ stellar models. Uniform rotation decreases the frequencies for all modes. Differential rotation does not appear to have a significant effect on the frequencies, except for the most extreme differentially rotating models. In all cases, the large and small separations show the effects of rotation at lower velocities than do the individual frequencies. Unf...

  1. Self-pulsation threshold of Raman amplified Brillouin fiber cavities.

    Science.gov (United States)

    Ott, J R; Pedersen, M E V; Rottwitt, K

    2009-08-31

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined.

  2. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten

    2009-01-01

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...... for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined....

  3. Asteroseismology of hybrid $\\delta$ Scuti--$\\gamma$ Doradus pulsating stars

    CERN Document Server

    Arias, J P Sánchez; Althaus, L G

    2016-01-01

    Hybrid $\\delta$ Scuti-$\\gamma$ Doradus pulsating stars show acoustic ($p$) oscillation modes typical of $\\delta$ Scuti variable stars, and gravity ($g$) pulsation modes characteristic of $\\gamma$ Doradus variable stars simultaneously excited. Observations from space missions like MOST, CoRoT, and \\emph{Kepler} have revealed a large number of hybrid $\\delta$ Scuti-$\\gamma$ Doradus pulsators, thus paving the way for a exciting new channel for asteroseismic studies. We perform a detailed asteroseismological modeling of five hybrid $\\delta$ Scuti-$\\gamma$ Doradus stars. We employ a grid-based modeling approach to sound the internal structure of the target stars by employing a huge grid of stellar models from the zero-age main sequence to the terminal-age main sequence, varying parameters like stellar mass, effective temperature, metallicity and core overshooting. We compute their adiabatic radial ($\\ell= 0$) and non-radial ($\\ell= 1, 2, 3$) $p$ and $g$ mode periods. We employ two model-fitting procedures to searc...

  4. THE PULSATION MODE AND DISTANCE OF THE CEPHEID FF AQUILAE

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. G. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada); Kovtyukh, V. V. [Astronomical Observatory, Odessa National University, and Isaac Newton Institute of Chile, Odessa Branch, T. G. Shevkenko Park, 65014 Odessa (Ukraine); Luck, R. E. [Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States); Berdnikov, L. N., E-mail: turner@ap.smu.ca, E-mail: val@deneb1.odessa.ua, E-mail: rel2@case.edu, E-mail: leonid.berdnikov@gmail.com [Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Moscow 119992 (Russian Federation)

    2013-07-20

    The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47 day s-Cepheid FF Aql. Line ratios in high dispersion spectra of the variable yield values of (M{sub V} ) = -3.40 {+-} 0.02 s.e. ({+-}0.04 s.d.), average effective temperature T{sub eff} = 6195 {+-} 24 K, and intrinsic color ((B) - (V)){sub 0} = +0.506 {+-} 0.007, corresponding to a reddening of E{sub B-V} = 0.25 {+-} 0.01, or E{sub B-V}(B0) = 0.26 {+-} 0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small-amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413 {+-} 14 pc is estimated from the Cepheid's angular diameter in conjunction with a mean radius of (R) = 39.0 {+-} 0.7 R{sub Sun} inferred from its luminosity and effective temperature. The dust extinction toward FF Aql is described by a ratio of total-to-selective extinction of R{sub V} = A{sub V} /E(B - V) = 3.16 {+-} 0.34 according to the star's apparent distance modulus.

  5. Development of a balloon volume sensor for pulsating balloon catheters.

    Science.gov (United States)

    Nolan, Timothy D C; Hattler, Brack G; Federspiel, William J

    2004-01-01

    Helium pulsed balloons are integral components of several cardiovascular devices, including intraaortic balloon pumps (IABP) and a novel intravenous respiratory support catheter. Effective use of these devices clinically requires full inflation and deflation of the balloon, and improper operating conditions that lead to balloon under-inflation can potentially reduce respiratory or cardiac support provided to the patient. The goal of the present study was to extend basic spirographic techniques to develop a system to dynamically measure balloon volumes suitable for use in rapidly pulsating balloon catheters. The dynamic balloon volume sensor system (DBVSS) developed here used hot wire anemometry to measure helium flow in the drive line from console to catheter and integrated the flow to determine the volume delivered in each balloon pulsation. An important component of the DBVSS was an algorithm to automatically detect and adjust flow signals and measured balloon volumes in the presence of gas composition changes that arise from helium leaks occurring in these systems. The DBVSS was capable of measuring balloon volumes within 5-10% of actual balloon volumes over a broad range of operating conditions relevant to IABP and the respiratory support catheter. This includes variations in helium concentration from 70-100%, pulsation frequencies from 120-480 beats per minute, and simulated clinical conditions of reduced balloon filling caused by constricted vessels, increased driveline, or catheter resistance.

  6. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    CERN Document Server

    Córsico, Alejandro H; Bertolami, Marcelo M Miller; Kepler, S O; García-Berro, Enrique

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compat...

  7. Studies of the Long Secondary Periods in Pulsating Red Giants

    Science.gov (United States)

    Percy, J. R.; Deibert, E.

    2016-12-01

    We have used systematic, sustained visual observations from the AAVSO International Database and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the excited pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a time scale of roughly 20-30 LSPs. There is no obvious difference between the carbon (C) stars and the normal oxygen (M) stars. Previous multicolor observations showed that the LSP color variations are similar to those of the pulsation period, and of the LSPs in the Magellanic Clouds, and not like those of eclipsing stars. We note that the LSPs are similar to the estimated rotation periods of the stars, though the latter have large uncertainties. This suggests that the LSP phenomenon may be a form of modulated rotational variability.

  8. Mass-spring model of a self-pulsating drop.

    Science.gov (United States)

    Antoine, Charles; Pimienta, Véronique

    2013-12-03

    Self-pulsating sessile drops are a striking example of the richness of far-from-equilibrium liquid/liquid systems. The complex dynamics of such systems is still not fully understood, and simple models are required to grasp the mechanisms at stake. In this article, we present a simple mass-spring mechanical model of the highly regular drop pulsations observed in Pimienta, V.; Brost, M.; Kovalchuk, N.; Bresch, S.; Steinbock, O. Complex shapes and dynamics of dissolving drops of dichloromethane. Angew. Chem., Int. Ed. 2011, 50, 10728-10731. We introduce an effective time-dependent spreading coefficient that sums up all of the forces (due to evaporation, solubilization, surfactant transfer, coffee ring effect, solutal and thermal Marangoni flows, drop elasticity, etc.) that pull or push the edge of a dichloromethane liquid lens, and we show how to account for the periodic rim breakup. The model is examined and compared against experimental observations. The spreading parts of the pulsations are very rapid and cannot be explained by a constant positive spreading coefficient or superspreading.

  9. Pulsations powered by hydrogen shell burning in white dwarfs

    CERN Document Server

    Camisassa, María E; Althaus, Leandro G; Shibahashi, Hiromoto

    2016-01-01

    In the absence of a third dredge-up episode during the asymptotic giant branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial $g$-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant branch evolution of their progenitor stars. We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations, and analyze their pulsation stability for the models in the range of effective temperatures $T_{\\rm eff} \\sim 15\\,000\\,-\\, 8\\,000$ K. We demonstrate that, for white dwarf models with masses $M_{\\star} \\lesssim 0.71\\,\\rm M_{\\sun}$ and effective temperatures $8\\,500 \\lesssim T_{\\rm eff} \\lesssim 11\\,600$ K that evolved...

  10. The combustion-deflagration-detonation transition: experimental study and modeling; Transition combustion-deflagration-detonation: etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, D.; Belmas, R. [CEA Le Ripault, 37 - Tours (France)

    1996-12-31

    The results of specific thermal tests performed on a pressed octogene-based explosive compound allow to identify the physical mechanisms which govern the combustion-deflagration-detonation transition process in this compound. A simple and efficient modeling of these phenomena is proposed. (J.S.)

  11. KIC 3858884: a hybrid {\\delta} Sct pulsator in a highly eccentric eclipsing binary

    CERN Document Server

    Maceroni, C; da Silva, R; Montalbán, J; Lee, C -U; Ak, H; Deshpande, R; Yakut, K; Debosscher, J; Guo, Z; Kim, S -L; Lee, J W; Southworth, J

    2014-01-01

    The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary status of the components, and ii) to study the effects of tidal forces on pulsations. KIC 3858884 is a bright Kepler target whose light curve shows deep eclipses, complex pulsation patterns with pulsation frequencies typical of {\\delta} Sct, and a highly eccentric orbit. We present the result of the analysis of Kepler photometry and of high resolution phaseresolved spectroscopy. Spectroscopy yielded both the radial velocity curves and, after spectral disentangling, the primary component effective temperature and metallicity, and line-of-sight projected rotational velocities. The Kepler light curve was analyzed with an iterative procedure devised to disentangle eclipses from pulsations which takes into account the visibility of the pulsating star during eclipses. The search for the best set of binary parameters was performed com...

  12. Continuous versus pulsating flow boiling. Experimental comparison, visualization, and statistical analysis

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2017-01-01

    are reduced from transient measurements immediately downstream of the expansion valves at low vapor qualities. The results show that the pulsations improve the time-averaged heat transfer coefficient by 3.2% on average at low cycle time (1 to 2 s), whereas the pulsations may reduce the time-averaged heat......This experimental study investigates an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The hypothesis is that pulsations increase the flow boiling heat transfer by means of better bulk fluid mixing, increased wall wetting, and flow-regime destabilization....... The fluid pulsations are introduced by a flow modulating expansion device and are compared with continuous flow by a stepper-motor expansion valve in terms of time-averaged heat transfer coefficient. The cycle time ranges from 1 to 9 s for the pulsations. The time-averaged heat transfer coefficients...

  13. Continuous vs. pulsating flow boiling. Part 1: Experimental comparison and visualization

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    are reduced from transient measurements immediately downstream of the expansion valves at low vapor qualities. The results show that the pulsations improve the time-averaged heat transfer coefficient by 3.2 % on average at low cycle time (1 s to 2) s, whereas the pulsations may reduce the time-averaged heat......This experimental study investigates an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The hypothesis is that pulsations increase the flow boiling heat transfer by means of better bulk fluid mixing, increased wall wetting and flow-regime destabilization....... The fluid pulsations are introduced by a flow modulating expansion device and are compared with continuous flow by a stepper-motor expansion valve in terms of time-averaged heat transfer coefficient. The cycle time ranges from 1 s to 9 s for the pulsations. The time-averaged heat transfer coefficients...

  14. A Study on the Influence of Commutation Time on Torque Pulsating in BLDCM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choel Ju; Kang, Byoung Hee; Mok, Hyoung Su; Choe, Gyu-Ha [Konkuk University, Seoul(Korea)

    2001-01-01

    A BLDC motor has a serious drawback that torque pulsation is generated in every commutation period though it has many advantages compared to the conventional DC Motor. In this paper, the influence of commutation time on torque pulsation is studied. Generally in calculating the torque of BLDC motor, it is assumed that the decaying phase back EMF is constant, but the torque model considering decaying phase back EMF is introduced here. Through it, the torque in commutation period has torque pulsation component caused by commutation itself and it cannot be removed perfectly even if there is no current and pulsation. To reduce the torque pulsation, a new method is proposed, which controls a point of commutation and the optimal point of commutation is found. Simulation shows proposed method reduces the torque pulsation considerately. (author). 5 refs., 8 figs., 2 tabs.

  15. GW Librae: A unique laboratory for pulsations in an accreting white dwarf

    CERN Document Server

    Toloza, O; Hermes, J J; Townsley, D M; Schreiber, M R; Szkody, P; Pala, A; Beuermann, K; Bildsten, L; Breedt, E; Cook, M; Godon, P; Henden, A A; Hubeny, I; Knigge, C; Long, K S; Marsh, T R; de Martino, D; Mukadam, A S; Myers, G; Nelson, P; Oksanen, A; Patterson, J; Sion, E M; Zorotovic, M

    2016-01-01

    Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of HST ultraviolet spectroscopy taken in 2002, 2010 and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in May~2013, we obtained new HST/COS ultraviolet observations that displayed unexpected behaviour: besides showing variability at ~275s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhi...

  16. Reverse logistics

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); S.D.P. Flapper; R. Dekker (Rommert)

    2002-01-01

    textabstractThis paper gives an overview of scientific literature that describes and discusses cases of reverse logistics activities in practice. Over sixty case studies are considered. Based on these studies we are able to indicate critical factors for the practice of reverse logistics. In addi

  17. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    Science.gov (United States)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  18. A remark concerning Chandrasekhar's derivation of the pulsation equation for relativistic stars

    Energy Technology Data Exchange (ETDEWEB)

    Knutsen, Henning; Pedersen, Janne [Stavanger University, 4036 Stavanger (Norway)

    2007-01-15

    It is shown that Chandrasekhar gives some misleading comments concerning his method to derive the pulsation equation for relativistic stars. Strictly following his procedure and approximations, we find that this equation should contain an extra term which destroys the beauty and simplicity of the pulsation equation. However, using a better approximation, we find that just this extra term cancels, and the nice original version of the pulsation equation is correct after all.

  19. First Satellite Imaging of Auroral Pulsations by the Fast Auroral Imager on e-POP

    Science.gov (United States)

    Lui, A.; Cogger, L.; Howarth, A. D.; Yau, A. W.

    2015-12-01

    We report the first satellite imaging of auroral pulsations by the Fast Auroral Imager (FAI) onboard the Enhanced Polar Outflow Probe (e-POP) satellite. The near-infrared camera of FAI is capable of providing up to two auroral images per second, ideal for investigation of pulsating auroras. The auroral pulsations were observed within the auroral bulge formed during a substorm interval on 2014 February 19. This first satellite view of these pulsations from FAI reveals that (1) several pulsating auroral channels (PACs) occur within the auroral bulge, (2) periods of the intensity pulsations span over one decade within the auroral bulge, and (3) there is no apparent trend of longer pulsation periods associated with higher latitudes for these PACs. Although PACs resemble in some respect stable pulsating auroras reported previously but they have several important differences in characteristics.PACs are not embedded in or emerging from omega bands or torches and are located at significant distances from the equatorward boundary of the auroral oval, unlike the characteristics of stable pulsating auroras.

  20. Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars

    CERN Document Server

    Percy, John R

    2016-01-01

    We have used AAVSO visual and photoelectric V data, and the AAVSO time-series package VSTAR and the Lomb-Scargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs). and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectric photometry program, and the AAVSO LPV (long period variable) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP amplitudes increase from near zero to about 0.1 at pulsation periods of about 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 on average. The ratios of LSP to pulsation period cluster around 5 and 10, presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close...

  1. New magnetic field measurements of beta Cephei stars and Slowly Pulsating B stars

    CERN Document Server

    Hubrig, S; De Cat, P; Schöller, M; Morel, T; Ilyin, I

    2009-01-01

    We present the results of the continuation of our magnetic survey with FORS1 at the VLT of a sample of B-type stars consisting of confirmed or candidate beta Cephei stars and Slowly Pulsating B stars. Roughly one third of the studied beta Cephei stars have detected magnetic fields. The fraction of magnetic Slowly Pulsating B and candidate Slowly Pulsating B stars is found to be higher, up to 50%. We find that the domains of magnetic and non-magnetic pulsating stars in the H-R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence.

  2. White Dwarf Period Tables I. Pulsators with hydrogen-dominated atmospheres

    Science.gov (United States)

    Bognar, Zs.; Sodor, A.

    2016-09-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  3. White Dwarf Period Tables - I. Pulsators with hydrogen-dominated atmospheres

    CERN Document Server

    Bognár, Zs

    2016-01-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  4. Asteroseismology and forced oscillations of HD 209295, the first member of two classes of pulsating star

    CERN Document Server

    Handler, G; Shobbrook, R R; Koen, C; Bruch, A; Romero-Colmenero, E; Pamyatnykh, A A; Willems, B; Eyer, L; James, D J; Maas, T; Crause, L A

    2001-01-01

    We report the discovery of both intermediate-order gravity mode and low-order pressure mode pulsation in the same star, HD 209295. It is therefore both a gamma Doradus and a delta Scuti star, which makes it the first confirmed member of two classes of pulsating star. This object is located in a close binary system with an unknown, but likely degenerate companion in an eccentric orbit, and some of the gamma Doradus pulsation frequencies are exact integer multiples of the orbital frequency. We suggest that these pulsations are tidally excited. HD 209295 may be the progenitor of an intermediate-mass X-Ray binary.

  5. On the periodic variations of secondary cosmic rays and the geomagnetic Pc4 pulsations in BMAr

    Directory of Open Access Journals (Sweden)

    I. M. Martin

    Full Text Available In a set of balloon flights in the Brazilian magnetic anomaly region (BMAr short time periodic variations were observed, i.e. pulsation, of secondary charged and neutral particle fluxes, X- and -ray fluxes with amplitudes of about 2–4%. The pulsations are accompanied by the geomagnetic Pc4 pulsations and have similar periodicity. The phenomenon was observed over various local times and in quiet and disturbed magnetospheric conditions. One of the explanations of this effect, i.e. periodic variation of local cut-off rigidity, and following pulsations of primary and secondary cosmic ray intensity is suggested.

  6. Development of a Gas-Fed Pulse Detonation Research Engine

    Science.gov (United States)

    Litchford, Ron J.; Hutt, John (Technical Monitor)

    2001-01-01

    In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time

  7. Set-valued solutions for non-ideal detonation

    KAUST Repository

    Semenko, Roman

    2015-12-11

    The existence and structure of a steady-state gaseous detonation propagating in a packed bed of solid inert particles are analyzed in the one-dimensional approximation by taking into consideration frictional and heat losses between the gas and the particles. A new formulation of the governing equations is introduced that eliminates the difficulties with numerical integration across the sonic singularity in the reactive Euler equations. With the new algorithm, we find that when the sonic point disappears from the flow, there exists a one-parameter family of solutions parameterized by either pressure or temperature at the end of the reaction zone. These solutions (termed “set-valued” here) correspond to a continuous spectrum of the eigenvalue problem that determines the detonation velocity as a function of a loss factor.

  8. Study of a model equation in detonation theory: multidimensional effects

    CERN Document Server

    Faria, Luiz M; Rosales, Rodolfo R

    2015-01-01

    We extend the reactive Burgers equation presented in Kasimov et al. Phys. Rev. Lett., 110 (2013) and Faria et al. SIAM J. Appl. Maths, 74 (2014), to include multidimensional effects. Furthermore, we explain how the model can be rationally justified following the ideas of the asymptotic theory developed in Faria et al. JFM (2015). The proposed model is a forced version of the unsteady small disturbance transonic flow equations. We show that for physically reasonable choices of forcing functions, traveling wave solutions akin to detonation waves exist. It is demonstrated that multidimensional effects play an important role in the stability and dynamics of the traveling waves. Numerical simulations indicate that solutions of the model tend to form multi-dimensional patterns analogous to cells in gaseous detonations.

  9. Study of a Model Equation in Detonation Theory

    KAUST Repository

    Faria, Luiz

    2014-04-24

    Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut+ 1/2 (u2-uu (0-, t))x=f (x, u (0-, t)), x > 0, t < 0. It describes a detonation shock at x = 0 with the reaction zone in x > 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. © 2014 Society for Industrial and Applied Mathematics.

  10. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  11. Far Field Modeling Methods For Characterizing Surface Detonations

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed particle samples collected during experiments that were designed to replicate tests of nuclear weapons components that involve detonation of high explosives (HE). SRNL collected the particle samples in the HE debris cloud using innovative rocket propelled samplers. SRNL used scanning electronic microscopy to determine the elemental constituents of the particles and their size distributions. Depleted uranium composed about 7% of the particle contents. SRNL used the particle size distributions and elemental composition to perform transport calculations that indicate in many terrains and atmospheric conditions the uranium bearing particles will be transported long distances downwind. This research established that HE tests specific to nuclear proliferation should be detectable at long downwind distances by sampling airborne particles created by the test detonations.

  12. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  13. Detonation initiation developing from the Richtmyer-Meshkov instability

    Institute of Scientific and Technical Information of China (English)

    H.H.Teng; Z.L.Jiang; Z.M.Hu

    2007-01-01

    Detonation initiation resulting from theRichtmyer-Meshkov instability is investigated numericallyin the configuration of the shock/spark-induced-deflagrationinteraction in a combustive gas mixture. Two-dimensionalmulti-species Navier-Stokes equations implemented with thedetailed chemical reaction model are solved with thedispersion-controlled dissipative scheme. Numerical resultsshow that the spark can create a blast wave and ignite defla-grations. Then, the deflagration waves are enhanced due tothe Richtmyer-Meshkov instability, which provides detona-tion initiations with local environment conditions. Byexamining the deflagration fronts, two kinds of the initiationmechanisms are identified. One is referred to as the deflagra-tion front acceleration with the help of the weak shock wave,occurring on the convex surfaces, and the other is the hotspot explosion deriving from the deflagration front focusing,occurring on the concave surfaces.

  14. Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles

    Science.gov (United States)

    Paxson, Daniel E.; Schauer, Frederick; Hopper, David

    2012-01-01

    A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.

  15. Engineering models of deflagration-to-detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B.; Son, S.F.

    1995-07-01

    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  16. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  17. Effect of chemical reactivity on the detonation initiation in shock accelerated flow in a confined space

    Institute of Scientific and Technical Information of China (English)

    Yue-Jin Zhu; Gang Dong; Yi-Xin Liu; Bao-Chun Fan; Hua Jiang

    2013-01-01

    The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations,with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave.It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemical reactivity of the mixture.When the chemical reactivity enhances,the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations.Moreover,the detonation initiation would occur earlier in a mixture of more enhanced reactivity.The results reveal that the detonations arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism.

  18. Multi-Dimensional Double Detonation of Sub-Chandrasekhar Mass White Dwarfs

    CERN Document Server

    Moll, Rainer

    2013-01-01

    Using 2D and 3D simulation, we study the "robustness" of the double detonation scenario for Type Ia supernovae, in which a detonation in the helium shell of a carbon-oxygen white dwarf induces a secondary detonation in the underlying core. We find that a helium detonation cannot easily descend into the core unless it commences (artificially) well above the hottest layer calculated for the helium shell in current presupernova models. Compressional waves induced by the sliding helium detonation, however, robustly generate hot spots which trigger a detonation in the core. Our simulations show that this is true even for non-axisymmetric initial conditions. If the helium is ignited at multiple points, the internal waves can pass through one another or be reflected, but this added complexity does not defeat the generation of the hot spot. The ignition of very low-mass helium shells depends on whether a thermonuclear runaway can simultaneously commence in a sufficiently large region.

  19. Multi-frame visualization for detonation wave diffraction

    Science.gov (United States)

    Nagura, Y.; Kasahara, J.; Matsuo, A.

    2016-09-01

    When a detonation wave emerges from a tube into unconfined space filled with a gas mixture, detonation wave diffraction occurs due to abrupt changes in the cross-sectional area. In the present study, we focused on the local explosion in reinitiation and propagation of a transverse detonation wave by performing comprehensive and direct observation with high time resolution visualization in a two-dimensional rectangular channel. Using the visualization methods of shadowgraph and multi-frame, short-time, open-shutter photography, we determined where the wall reflection point is generated, and also determined where the bright point is originated by the local explosion, and investigated the effects of the deviation angle and initial pressure of the gas mixture. We found that the reinitiation of detonation had two modes that were determined by the deviation angle of the channel. If the deviation angle was less than or equal to 30°, the local explosion of reinitiation might occur in the vicinity of the channel wall, and if the deviation angle was greater than or equal to 60°, the local explosion might originate on the upper side of the tube exit. With a deviation angle greater than 60°, the position of the wall reflection point depended on the cell width, so the radial distance of the wall reflection point from the apex of the tube exit was about 12 times the cell width. Similarly, the bright point (local explosion point) was located a distance of about 11 times the cell width from the apex of the tube exit, with a circumferential angle of 48°.

  20. Set-valued solutions for non-ideal detonation

    OpenAIRE

    Semenko, Roman; Faria, Luiz; Kasimov, Aslan; Ermolaev, Boris

    2013-01-01

    The existence and structure of steady gaseous detonation propagating in a packed bed of solid inert particles are analyzed in the one-dimensional approximation by taking into consideration frictional and heat losses between the gas and the particles. A new formulation of the governing equations is introduced that eliminates the well-known difficulties with numerical integration across the sonic singularity in the reactive Euler equations. The new algorithm allows us to determine that the deto...

  1. Three Dimensional Analysis of Induced Detonation of Cased Explosive

    Science.gov (United States)

    2014-10-16

    armour (RHA) steel were investigated through the LS-DYNA. The investigation focused on shock to detonation simulations of Composition B, with the...Cook Constitutive Material Model (RHA-Steel) The encasing structure was made from Rolled Homogenous Armour (RHA) steel. The face of the steel was...steel. Rolling also elongates the grain structure in the steel to form long lines, which enables the stress under which the steel was placed to flow

  2. Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations

    Science.gov (United States)

    2017-03-01

    emission. During the Hiroshima and Nagasaki bombings, the prompt radiation contributed from 40%-70% of the free-in-air dose depending on distance from...intermediate- and low -yield thermonuclear weapons for initial radiation shielding calculations No Gritzner, et al. 1976 (EM-1, Low , Henre...Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations DISTRIBUTION A. Approved for public release; distribution is

  3. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    Directory of Open Access Journals (Sweden)

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  4. DARK STARS: IMPROVED MODELS AND FIRST PULSATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Rindler-Daller, T.; Freese, K. [Department of Physics and Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Montgomery, M. H.; Winget, D. E. [Department of Astronomy, McDonald Observatory and Texas Cosmology Center, University of Texas, Austin, TX 78712 (United States); Paxton, B. [Kavli Insitute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-02-01

    We use the stellar evolution code MESA to study dark stars (DSs). DSs, which are powered by dark matter (DM) self-annihilation rather than by nuclear fusion, may be the first stars to form in the universe. We compute stellar models for accreting DSs with masses up to 10{sup 6} M {sub ☉}. The heating due to DM annihilation is self-consistently included, assuming extended adiabatic contraction of DM within the minihalos in which DSs form. We find remarkably good overall agreement with previous models, which assumed polytropic interiors. There are some differences in the details, with positive implications for observability. We found that, in the mass range of 10{sup 4}-10{sup 5} M {sub ☉}, our DSs are hotter by a factor of 1.5 than those in Freese et al., are smaller in radius by a factor of 0.6, denser by a factor of three to four, and more luminous by a factor of two. Our models also confirm previous results, according to which supermassive DSs are very well approximated by (n = 3)-polytropes. We also perform a first study of DS pulsations. Our DS models have pulsation modes with timescales ranging from less than a day to more than two years in their rest frames, at z ∼ 15, depending on DM particle mass and overtone number. Such pulsations may someday be used to identify bright, cool objects uniquely as DSs; if properly calibrated, they might, in principle, also supply novel standard candles for cosmological studies.

  5. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    Science.gov (United States)

    Ciccarelli, G.; Cross, M.

    2016-09-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  6. Radiation Injury After a Nuclear Detonation: Medical Consequences and the Need for Scarce Resources Allocation

    OpenAIRE

    DiCarlo, Andrea L.; Maher, Carmen; Hick, John L.; Hanfling, Dan; Dainiak, Nicholas; Chao, Nelson; Bader, Judith L.; Coleman, C. Norman; Weinstock, David M.

    2011-01-01

    A 10-kiloton (kT) nuclear detonation within a US city could expose hundreds of thousands of people to radiation. The Scarce Resources for a Nuclear Detonation Project was undertaken to guide community planning and response in the aftermath of a nuclear detonation, when demand will greatly exceed available resources. This article reviews the pertinent literature on radiation injuries from human exposures and animal models to provide a foundation for the triage and management approaches outline...

  7. The role of multidimensional instabilities in direct initiation of gaseous detonations in free space

    KAUST Repository

    Shen, Hua

    2017-01-20

    We numerically investigate the direct initiation of detonations driven by the propagation of a blast wave into a unconfined gaseous combustible mixture to study the role played by multidimensional instabilities in direct initiation of stable and unstable detonations. To this end, we first model the dynamics of unsteady propagation of detonation using the one-dimensional compressible Euler equations with a one-step chemical reaction model and cylindrical geometrical source terms. Subsequently, we use two-dimensional compressible Euler equations with just the chemical reaction source term to directly model cylindrical detonations. The one-dimensional results suggest that there are three regimes in the direct initiation for stable detonations, that the critical energy for mildly unstable detonations is not unique, and that highly unstable detonations are not self-sustainable. These phenomena agree well with one-dimensional theories and computations available in the literature. However, our two-dimensional results indicate that one-dimensional approaches are valid only for stable detonations. In mildly and highly unstable detonations, one-dimensional approaches break down because they cannot take the effects and interactions of multidimensional instabilities into account. In fact, instabilities generated in multidimensional settings yield the formation of strong transverse waves that, on one hand, increase the risk of failure of the detonation and, on the other hand, lead to the initiation of local over-driven detonations that enhance the overall self-sustainability of the global process. The competition between these two possible outcomes plays an important role in the direct initiation of detonations.

  8. Volumetric initiation of gaseous detonation by radiant heating of suspended microparticles

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2016-02-01

    The concept of detonation wave initiation in the local volume of a fuel-gas mixture containing suspended chemically neutral microparticles heated by radiant energy from an external source is proposed. Mechanisms of initiation of the combustion and detonation waves in a region of accumulation of the radiation- heated microparticles have been studied by numerical simulation methods. Criteria that determine geometric dimensions of a region of the two-phase medium, which are necessary for the initiation of detonation waves, are formulated.

  9. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    Science.gov (United States)

    2014-08-18

    constant volume, through a detonation , or some combination. While a deflagration (flame) through constant volume combustion can provide rapid heat release...significantly disrupted, and the detonation was able to ignite and burn most of the fuel within the cavity. This led to decreased heat release in regime IV...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D

  10. Direct initiation of gaseous detonation via radiative heating of microparticles volumetrically suspended in the gas

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2015-11-01

    We propose a new conceptual approach for direct detonation initiation in the gaseous mixtures seeded with micro particles via the radiative heating from the external energy source. The basic mechanisms of energy absorption, ignition and detonation formation are analyzed numerically on the example of hydrogen-oxygen mixture. Obtained data is very promising and allows us to formulate conditions for the source power to ignite detonation in certain system geometry.

  11. Classification of Battlespace Detonations from Temporally Resolved Multi-Band Imagery and Mid-Infrared Spectra

    Science.gov (United States)

    2005-03-01

    called the heat of detonation and includes only the combustion of the explosive reactants, not the heat associated with the secondary afterburn. This...32:24] 2. Basic Phenomenology As mentioned earlier, the heat of detonation ∆H is the heat (or energy) generated during the reaction and is...232, −++++= eTdTcTbTaTC ip , (5) where the coefficients a through e are defined in Table 2, the heat of detonation becomes an integral

  12. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures

    Science.gov (United States)

    2015-06-01

    EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR MIXTURES...protection in the United States. AFIT-ENY-MS-15-J-045 EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR...DISTRIBUTION UNLIMITED. AFIT-ENY-MS-15-J-045 EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR MIXTURES

  13. Shock and Detonation Physics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  14. Equations of state of detonation products: ammonia and methane

    Science.gov (United States)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  15. Projected Response of Typical Detonators to Electrostatic Discharge (ESD) Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J

    2002-12-20

    The purpose of this discussion is to indicate the threshold values for low-order detonator response by using first principles applied to pin-to-pin configurations and associated limits in pin-to-case scenarios. In addition an attempt to define the electrical environment by first principles is shown to be inadequate and indicates the need to define the electrical insult by reasonable standards. A comparison of two accepted electrical models and a combination of the extreme reported levels from both standards are used to establish an extreme set of parameters for a safety assessment. A simplification of the critical electrical insult parameters is then shown and demonstrated to provide the initial screening protocol with easily defined electrical dimensions of action integral. Action integral and the conductive material properties are the basic parameters needed to define the solid, liquid, and gas phases of the material used for detonator bridge wires. The resulting material phases are directly related to detonator response thresholds. The discussion concludes by showing the ability of ESD insults to arc from pin-to-case, the limited knowledge of the associated arc initiation process, and the modeling need for a reasonable arc resistance in pin-to-case scenarios.

  16. Energy Loss in Pulse Detonation Engine due to Fuel Viscosity

    Directory of Open Access Journals (Sweden)

    Weipeng Hu

    2014-01-01

    Full Text Available Fluid viscosity is a significant factor resulting in the energy loss in most fluid dynamical systems. To analyze the energy loss in the pulse detonation engine (PDE due to the viscosity of the fuel, the energy loss in the Burgers model excited by periodic impulses is investigated based on the generalized multisymplectic method in this paper. Firstly, the single detonation energy is simplified as an impulse; thus the complex detonation process is simplified. And then, the symmetry of the Burgers model excited by periodic impulses is studied in the generalized multisymplectic framework and the energy loss expression is obtained. Finally, the energy loss in the Burgers model is investigated numerically. The results in this paper can be used to explain the difference between the theoretical performance and the experimental performance of the PDE partly. In addition, the analytical approach of this paper can be extended to the analysis of the energy loss in other fluid dynamic systems due to the fluid viscosity.

  17. Discovery of a new PG 1159 (GW Vir) pulsator

    Science.gov (United States)

    Kepler, S. O.; Fraga, Luciano; Winget, Don Earl; Bell, Keaton; Córsico, Alejandro H.; Werner, Klaus

    2014-08-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12 + 085232.18. Analysis of the spectrum by Werner et al. indicated Teff = 120 000 ± 10 000 K, log g = 7.0 ± 0.3, mass {M}=0.52 ± 0.02 M_{⊙}, C/He = 0.33 by number. We obtained time series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  18. Discovery of a new PG1159 (GW Vir) Pulsator

    CERN Document Server

    Kepler, S O; Winget, Don Earl; Bell, Keaton; Corsico, Alejandro H; Werner, Klaus

    2014-01-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12+085232.18. Analysis of the spectrum by Werner, Rauch and Kepler (2014) indicated Teff=120 000+/-10 000 K, log g=7.0+/-0.3, mass M=0.52+/-0.02 Msun, C/He=0.33 by number. We obtained time-series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  19. Modeling KIC10684673 and KIC12216817 as Single Pulsating Variables

    CERN Document Server

    Turner, Garrison

    2016-01-01

    The raw light curves of both KIC 10684673 and KIC 12216817 show variability. Both are listed in the Kepler Eclipsing Binary Catalog (hereafter KEBC), however both are flagged as uncertain in nature. In the present study we show their light curves can be modeled by considering each target as a single, multi-modal delta Scuti pulsator. While this does not exclude the possibility of eclipsing systems, we argue, while spectroscopy on the systems is still lacking, the delta Scuti model is a simpler explanation and therefore more probable.

  20. DYNAMIC STABILITY OF AXIALLY MOVING VISCOELASTIC BEAMS WITH PULSATING SPEED

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; CHEN Li-qun

    2005-01-01

    Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonstrated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.

  1. Application of a Schlieren diagnostic to the behavior of exploding bridge wire and laser detonators

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Michael J [Los Alamos National Laboratory; Clarke, Steven A [Los Alamos National Laboratory; Munger, Alan C [Los Alamos National Laboratory; Thomas, Keith A [Los Alamos National Laboratory

    2009-01-01

    Even though the exploding bridge wire (EBW) detonator has been in use for over 60 years, there are still discussions about the mechanism for achieving detonation. Los Alamos has been developing a high-power laser detonator to function in a manner similar to an EBW. Schlieren imaging techniques are applied to laser-driven detonator output in polydimethylsiloxane (POMS) samples to investigate the time-dependent geometry of the shock wave and to obtain instantaneous measurements of shock-front velocity. Velocity Hugoniot data are used to convert measured shock velocities to corresponding particle velocities, allowing instantaneous shock pressures to be obtained via Rankine-Hugoniot relations across the shock.

  2. Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine

    Science.gov (United States)

    Nordeen, C. A.; Schwer, D.; Schauer, F.; Hoke, J.; Barber, T.; Cetegen, B. M.

    2016-07-01

    Rotating detonation engines have the potential to achieve the high propulsive efficiencies of detonation cycles in a simple and effective annular geometry. A two-dimensional Euler simulation is modified to include mixing factors to simulate the imperfect mixing of injected reactant streams. Contrary to expectations, mixing is shown to have a minimal impact on performance. Oblique detonation waves are shown to increase local stream thermal efficiency, which compensates for other losses in the flow stream. The degree of reactant mixing is, however, a factor in controlling the stability and existence of rotating detonations.

  3. Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2011-01-01

    @@ One-dimensional detonation waves are simulated with the three-step chain branching reaction model, and the instability criterion is studied.The ratio of the induction zone length and the reaction zone length may be used to decide the instability, and the detonation becomes unstable with the high ratio.However, the ratio is not invariable with different heat release values.The critical ratio, corresponding to the transition from the stable detonation to the unstable detonation, has a negative correlation with the heat release.An empirical relation of the Chapman-Jouguet Mach number and the length ratio is proposed as the instability criterion.

  4. Effect of Void Size on the Detonation Pressure of Emulsion Explosives

    Science.gov (United States)

    Hirosaki, Yoshikazu; Murata, Kenji; Kato, Yukio; Itoh, Shigeru

    2002-07-01

    To study the effect of void size, detonation pressure as well as detonation velocity was measured using PVDF pressure gauge for the emulsion explosives sensitized with plastic balloons of five different size ranging from 0.05mm to 2.42mm. The experimental results were compared with the detonation pressure and velocity calculated using KHT code. The experimental results showed that the detonation pressure and velocity were strongly affected by void size, and that the fraction of ammonium nitrate reacted in the reaction zone was strongly dependent on void size.

  5. Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments

    Science.gov (United States)

    Tarver, Craig M.

    2017-01-01

    Two experimental studies in which faster HMX detonation waves produced oblique detonation waves in adjoining slower detonating TATB charges were modeled using the Ignition and Growth (I&G) reactive flow detonation model parameters for PBX 9501 (95% HMX / 2.5% Estane / 2.5% BDNPA/F) and PBX 9502 (95% TATB / 5% Kel-F binder). Matignon et al. used X1 explosive (96% HMX / 4% binder) to drive an oblique detonation wave into an attached charge of T2 explosive (97% TATB / 3% binder). The flow angles were measured in the T2 shock initiation region and in steady T2 detonation. Anderson et al. used detonating PBX 9501 slabs of various thicknesses ranging from 0.56 mm to 2.5 mm to create oblique detonation waves in 8 mm thick slabs of PBX 9502. Several diagnostics were employed to: photograph the waves; measure detonation velocities and flow angles; and determine the output of the PBX 9501 slabs, the PBX 9502 slabs, and the "initiation regions" using LiF windows and PDV probes.

  6. Dynamics of the formation of the condensed phase particles at detonation of high explosives

    CERN Document Server

    Evdokov, O V; Kulipanov, G N; Luckjanchikov, L A; Lyakhov, N Z; Mishnev, S I; Sharafutdinov, M R; Sheromov, M A; Ten, K A; Titov, V M; Tolochko, B P; Zubkov, P I

    2001-01-01

    The article presents the results of the experimental study SAXS on condensed carbon particles that appear at the detonation of a high explosive. It was shown that the SAXS signal rises for 1.5-4 mu s after the detonation front passing. The SAXS signal in trotyl and its alloys with hexogen starts just after the compression of the material in the detonation wave. In octogen, hexogen and PETN, the SAXS signal appears in 0.5 mu s and is much smaller than the signal at the detonation of trotyl and its alloys with hexogen.

  7. A two dimensional theory for two phase detonation of liquid films.

    Science.gov (United States)

    Rao, C. S. R.; Sichel, M.; Nicholls, J. A.

    1972-01-01

    A theory for the propagation of detonations through tubes coated with a thin fuel film is developed. Vaporization is assumed as the rate limiting process dominating the detonation structure. Inclusion of the boundary layer displacement effect resulted in better agreement between computed and measured propagation speed, pressure ratio, and reaction zone length than was obtained in an earlier theory in which this effect was neglected. New film detonation data is presented covering a wide range of fuel air ratios. A general Chapman-Jouguet condition is formulated for film detonations, and use of the plane of complete film vaporization as the Chapman-Jouguet plane is justified in the case of thin films.

  8. Pulsation Solution to the Equation of Earth's Gravitational Field (Main Outcome)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.

  9. Observation of quasi-periodic pulsations in the solar flare SF 900610

    DEFF Research Database (Denmark)

    Terekhov, O.V.; Shevchenko, A.V.; Kuz'min, A.G.;

    2002-01-01

    A quasi-periodic component was found at the maximum of the X-ray light curve for the June 10, 1990 solar flare detected by the Granat observatory. The pulsation period was 143.2 +/- 0.8 s. The intensity of the pulsing component is not constant; the maximum amplitude of the pulsations is similar t...

  10. Ultracam Photometry of Pulsating Subdwarf B Stars rf B Binaries in the Edinburgh-Cape Survey

    NARCIS (Netherlands)

    Jeffery, C.S.; Aerts, C.C.; Dhillon, V.S.; Marsh, T.R.; Morales-Rueda, L.; Maxted, P.F.L.; Kilkenny, D.; O'Donoghue, D.

    2006-01-01

    High-speed multicolor photometry with ultracam promises to revolutionize the study of pulsating subdwarf B stars. As well as providing high S/N light curves with excellent temporal resolution, color amplitude ratios may be used to discriminate between different pulsation modes. In this paper we revi

  11. Shock-to-detonation transition in solid heterogeneous explosives; La transition choc-detonation dans les explosifs solides heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Belmas, R.

    2003-07-01

    This paper is an overview of the studies performed during the last decades on the shock-to-detonation transition process in heterogeneous explosives. We present the experimental and theoretical approaches mentioned in the literature and/or developed at CEA/DAM. The aim is to identify which main mechanisms govern this transition process and to evaluate the relevance of the available modeling tools. (author)

  12. Pulsation versus metallicism in Am stars as revealed by LAMOST and WASP

    CERN Document Server

    Smalley, B; Holdsworth, D L; Kurtz, D W; Murphy, S J; De Cat, P; Anderson, D R; Catanzaro, G; Cameron, A Collier; Hellier, C; Maxted, P F L; Norton, A J; Pollacco, D; Ripepi, V; West, R G; Wheatley, P J

    2016-01-01

    We present the results of a study of a large sample of A and Am stars with spectral types from LAMOST and light curves from WASP. We find that, unlike normal A stars, $\\delta$ Sct pulsations in Am stars are mostly confined to the effective temperature range 6900 $<$ $T_{\\rm eff}$ $<$ 7600 K. We find evidence that the incidence of pulsations in Am stars decreases with increasing metallicism (degree of chemical peculiarity). The maximum amplitude of the pulsations in Am stars does not appear to vary significantly with metallicism. The amplitude distributions of the principal pulsation frequencies for both A and Am stars appear very similar and agree with results obtained from Kepler photometry. We present evidence that suggests turbulent pressure is the main driving mechanism in pulsating Am stars, rather than the $\\kappa$-mechanism, which is expected to be suppressed by gravitational settling in these stars.

  13. The technology of heat transfer enhancement in channels by means of flow pulsations

    Directory of Open Access Journals (Sweden)

    Tsynaeva Anna

    2016-01-01

    Full Text Available The rate and efficiency of curing of concrete can boost when used intense heat. The work is dedicated to the development and research of technologies of intensification of heat transfer in channels by pulsations. The study was conducted by means of numerical methods based on mass and momentum conservation equations (Navier-Stokes with software Code Saturne. Verification of implemented methods and software was performed. The research of heat transfer enhancement for semicircle-shaped channel exposed to low-frequency pulsations was performed. The pulsation frequency of the flow during the study was in a range of 0…10 Hz. A significant (up to 4 times increase of turbulent kinetic energy with implementing pulsations was detected. Flow pulsations with frequency of 10 Hz results in 1.21 times increase of heat transfer coefficient.

  14. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.

  15. High frequency A-type pulsators discovered using SuperWASP

    CERN Document Server

    Holdsworth, Daniel L; Gillon, M; Clubb, K I; Southworth, J; Maxted, P F L; Anderson, D R; Barros, S C C; Cameron, A Collier; Delrez, L; Faedi, F; Haswell, C A; Hellier, C; Horne, K; Jehin, E; Norton, A J; Pollacco, D; Skillen, I; Smith, A M S; West, R G; Wheatley, P J

    2014-01-01

    We present the results of a survey using the WASP archive to search for high frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes greater than 0.5 millimagnitude. We identify over 350 stars which pulsate with periods less than 30 min. Spectroscopic follow-up of selected targets has enabled us to confirm 10 new rapidly oscillating Ap stars, 13 pulsating Am stars and the fastest known $\\delta$ Scuti star. We also observe stars which show pulsations in both the high-frequency domain and in the low-frequency $\\delta$ Scuti range. This work shows the power of the WASP photometric survey to find variable stars with amplitudes well below the nominal photometric precision per observation.

  16. On the effect of water film on flow-induced pulsations in closed side branches in tandem configuration

    NARCIS (Netherlands)

    Sanna, F.; Golliard, J.; Belfroid, S.P.C.

    2015-01-01

    Previous studies demonstrate that the presence of liquid strongly influences the pressure pulsation amplitudes of flow induced pulsations. In particular, in case of annular flow (thin liquid film on the walls) the pulsations can be eliminated. The present study aims at evaluating the contribution of

  17. CoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data

    CERN Document Server

    Degroote, P; Ollivier, M; Miglio, A; Debosscher, J; Cuypers, J; Briquet, M; Montalban, J; Thoul, A; Noels, A; De Cat, P; Balaguer-Nuñez, L; Maceroni, C; Ribas, I; Auvergne, M; Baglin, A; Deleuil, M; Weiss, W; Jorda, L; Baudin, F; Samadi, R

    2009-01-01

    We search for new variable B-type pulsators in the CoRoT data assembled primarily for planet detection, as part of CoRoT's Additional Programme. We aim to explore the properties of newly discovered B-type pulsators from the uninterrupted CoRoT space-based photometry and to compare them with known members of the Beta Cep and slowly pulsating B star (SPB) classes. We developed automated data analysis tools that include algorithms for jump correction, light-curve detrending, frequency detection, frequency combination search, and for frequency and period spacing searches. Besides numerous new, classical, slowly pulsating B stars, we find evidence for a new class of low-amplitude B-type pulsators between the SPB and Delta Sct instability strips, with a very broad range of frequencies and low amplitudes, as well as several slowly pulsating B stars with residual excess power at frequencies typically a factor three above their expected g-mode frequencies. The frequency data we obtained for numerous new B-type pulsato...

  18. Empirical Determination of Convection in Pulsating White Dwarfs

    Science.gov (United States)

    Provencal, Judith L.; Hermes, J. J.; Montgomery, M.; Reed, Mike; Shipman, Harry; Fraga, Luciano

    2013-02-01

    We propose high speed photometric observations of WD J1518+0658 with SOAR and the KPNO 2m as important components of a coordinated international campaign designed to survey the properties of convection in white dwarf atmospheres. Convection remains the largest source of theoretical uncertainty in our understanding of stellar physics. Asteroseismology has proven a powerful tool to attack this problem. White dwarf pulsations appear as local surface temperature variations. The extreme temperature sensitivity of convection leads to local variations in the convection zone's depth. This in turn modulates the local energy flux, producing nonsinusoidal light curves. The observed nonlinearities provide a self-consistent observational test of convection in white dwarf atmospheres. WD J1518+0658 is a member of the newly discovered class of extremely low mass white dwarf pulsators (ELMVs). ELMVs offer the opportunity to extend our investigation to unexplored regions of lower effective temperatures and surface gravities, where conditions are closer to those found in main sequence stars. High precision light curves from SOAR, combined with frequency, amplitude, and phase information provided by the KPNO 2m and the entire WET run, will allow us to recover WD J1518+0658's convective thermal response timescale.

  19. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Fraga, Luciano [Southern Observatory for Astrophysical Research, Casilla 603, La Serena (Chile); Hermes, J. J.; Winget, D. E.; Castanheira, Barbara [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712-1083 (United States); Corsico, A. H.; Romero, A. D.; Althaus, Leandro [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Kleinman, S. J.; Nitta, A. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Koester, D. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Kiel, D-24098 Kiel (Germany); Kuelebi, Baybars [Institut de Ciencies de L' Espai, Universitat Autonoma de Barcelon and Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, E-08034 Barcelona (Spain); Jordan, Stefan [Astronomisches Rechen-Institut, ZAH, Moenchhofstr. 12-14, D-69120 Heidelberg (Germany); Kanaan, Antonio, E-mail: kepler@if.ufrgs.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M{sub *} = 0.88 {+-} 0.02 M{sub Sun} and T{sub eff} = 12, 100 {+-} 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  20. Pulsational instability of complex charge-fluctuating magnetized turbulent astroclouds

    Science.gov (United States)

    Karmakar, Pralay Kumar; Haloi, Archana

    2017-09-01

    We develop a theoretic model to study the linear stability behaviour of pulsational (gravito-electrostatic) mode in a self-gravitating, magnetized, collisional, turbulent and unbounded dust molecular cloud (DMC). The analytic model consists of lighter electrons and ions; and massive charged dust grains with partial ionization over the geometrically infinite extension. The semi-empirically obtained Larson logatropic equation of state, correlating all the thermo-turbo-magnetic pressures concurrently, is included afresh to model the constituent fluid turbulence pressures arising because of multiple randomized aperiodic flow scales of space and time. A linear normal mode analysis over the slightly perturbed composite cloud, relative to the defined homogeneous hydrostatic equilibrium, results in a unique mathematical construct of generalized polynomial (octic) dispersion relation with different coefficients sensitively dependent upon the diversified equilibrium cloud parameters. The main features of the modified pulsational mode dynamics are numerically explored over a commodious window of parametric values. It is shown and established that the grain mass introduces a dispersive stabilizing effect to the mode (with enhancement in phase speed), and vice-versa. A spatiotemporal illustrative tapestry is also portrayed for further confirmation of the dispersive mode with sporadic properties. The tentative application of our findings in different space and astrophysical circumstances is briefly outlined.

  1. Studies of the Long Secondary Periods in Pulsating Red Giants

    CERN Document Server

    Percy, John R

    2016-01-01

    We have used systematic, sustained visual observations from the AAVSO International Database, and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a timescale of roughly 20-30 LSPs. There is no obvious difference between the behavior of the carbon (C) stars and the normal oxygen (M) stars. Previous multicolo...

  2. Computer modeling of capillary flow with superimposed pulsations

    Science.gov (United States)

    Yaganova, A. E.; Marfin, E. A.

    2016-11-01

    Increasing efficiency of methods of oil production can be achieved by the influence of elastic vibrations. It is a well-known fact that shift viscosity of oil changes under the effect of elastic vibrations. This change depends on properties of the oil and exposure mode. Existing approaches to the research of the way wave exposure impacts on viscosity are based on measuring it after the processing. This article concerns development of methods to measure viscosity of liquid right during its exposure to elastic vibrations. The suggested approach is based on combining numerical and natural experiments. We investigated the pulsating flow of viscid liquid in a capillary numerically in this article. We received allocations of fields of average velocity and pressure in a capillary. It is demonstrated that imposed pulsations in a capillary do not impact on hydrodynamics of the flow. We offered the scheme of an experimental installation for a research of the impact that wave exposure has on the viscosity of liquids. The installation is based on a capillary viscometer.

  3. A spectroscopic study of the hybrid pulsator Gamma Pegasi

    CERN Document Server

    Pandey, C P; Briquet, M; Jayakumar, K; Bisht, S; Sanwal, B B

    2011-01-01

    The recent detection of both pressure and high-order gravity modes in the classical B-type pulsator Gamma Pegasi offers promising prospects for probing its internal structure through seismic studies. To aid further modelling of this star, we present the results of a detailed NLTE abundance analysis based on a large number of time-resolved, high-quality spectra. A chemical composition typical of nearby B-type stars is found. The hybrid nature of this star is consistent with its location in the overlapping region of the instability strips for beta Cephei and slowly pulsating B stars computed using OP opacity tables, although OPAL calculations may also be compatible with the observations once the uncertainties in the stellar parameters and the current limitations of the stability calculations are taken into account. The two known frequencies f1 = 6.58974 and f2 = 0.68241 c/d are detected in the spectroscopic time series. A mode identification is attempted for the low-frequency signal, which can be associated to ...

  4. Pulsation models for the roAp star HD 134214

    CERN Document Server

    Saio, H; Weiss, W W; Matthews, J M; Ryabchikova, T

    2011-01-01

    Precise time-series photometry with the MOST satellite has led to identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp) star HD 134214. We have fitted the observed frequencies with theoretical frequencies of axisymmetric modes in a grid of stellar models with dipole magnetic fields. We find that, among models with a standard composition of $(X,Z) = (0.70,0.02)$ and with suppressed convection, eigenfrequencies of a $1.65\\,{\\rm M}_\\odot$ model with $\\log T_{\\rm eff} = 3.858$ and a polar magnetic field strength of 4.1kG agree best with the observed frequencies. We identify the observed pulsation frequency with the largest amplitude as a deformed dipole ($\\ell = 1$) mode, and the four next-largest-amplitude frequencies as deformed $\\ell = 2$ modes. These modes have a radial quasi-node in the outermost atmospheric layers ($\\tau \\sim 10^{-3}$). Although the model frequencies agree roughly with observed ones, they are all above the acoustic cut-off frequency for the model atmosphere and hen...

  5. Axions and the pulsation periods of variable white dwarfs revisited

    CERN Document Server

    Isern, J; Althaus, L G; Córsico, A H

    2010-01-01

    Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity function of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the lu...

  6. Pulsations of rapidly rotating stars: I. The ACOR numerical code

    CERN Document Server

    Ouazzani, Rhita-Maria; Reese, Daniel

    2012-01-01

    Very high precision seismic space missions such as CoRoT and Kepler provide the means of testing the modeling of transport processes in stellar interiors. For some stars, such as solar-like and red giant stars, a rotational splitting is measured. However, in order to fully exploit these splittings and constrain the rotation profile, one needs to be able to calculate them accurately. For some other stars, such as $\\delta$ Scuti and Be stars, for instance, the observed pulsation spectra are modified by rotation to such an extent that a perturbative treatment of the effects of rotation is no longer valid. We present here a new two-dimensional non-perturbative code, called ACOR (\\textit{Adiabatic Code of Oscillation including Rotation}) which allows us to compute adiabatic non-radial pulsations of rotating stars, without making any assumptions on the sphericity of the star, the fluid properties (i.e. baroclinicity) or the rotation profile. The 2D non-perturbative calculations fully take into account the centrifug...

  7. $\\gamma$ Doradus Pulsations in the Eclipsing Binary Star KIC 6048106

    CERN Document Server

    Lee, Jae Woo

    2016-01-01

    We present the ${\\it Kepler}$ photometry of KIC 6048106 exhibiting O'Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.9 deg, and a large temperature difference of 2,534 K. To examine in detail both spot variations and pulsations, we separately analyzed the {\\it Kepler} time-series data at the interval of an orbital period by an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes of a magnetic cool spot on the secondary component with time. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed {\\it Kepler} data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ($f_2$--$f_6$ and $f_{10}$) can be identified as high-order (17 $\\le n \\le$ 25) low-d...

  8. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    CERN Document Server

    Guo, Zhao; Fuller, Jim

    2016-01-01

    KIC 3230227 is a short period ($P\\approx 7.0$ days) eclipsing binary with a very eccentric orbit ($e=0.6$). From combined analysis of radial velocities and {\\it Kepler} light curves, this system is found to be composed of two A-type stars, with masses of $M_1=1.84\\pm 0.18M_{\\odot}$, $M_2=1.73\\pm 0.17M_{\\odot}$ and radii of $R_1=2.01\\pm 0.09R_{\\odot}$, $R_2=1.68\\pm 0.08 R_{\\odot}$ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than ten pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for $l=2, m=-2$ prograde modes.

  9. Pressure pulsation in roller pumps: a validated lumped parameter model.

    Science.gov (United States)

    Moscato, Francesco; Colacino, Francesco M; Arabia, Maurizio; Danieli, Guido A

    2008-11-01

    During open-heart surgery roller pumps are often used to keep the circulation of blood through the patient body. They present numerous key features, but they suffer from several limitations: (a) they normally deliver uncontrolled pulsatile inlet and outlet pressure; (b) blood damage appears to be more than that encountered with centrifugal pumps. A lumped parameter mathematical model of a roller pump (Sarns 7000, Terumo CVS, Ann Arbor, MI, USA) was developed to dynamically simulate pressures at the pump inlet and outlet in order to clarify the uncontrolled pulsation mechanism. Inlet and outlet pressures obtained by the mathematical model have been compared with those measured in various operating conditions: different rollers' rotating speed, different tube occlusion rates, and different clamping degree at the pump inlet and outlet. Model results agree with measured pressure waveforms, whose oscillations are generated by the tube compression/release mechanism during the rollers' engaging and disengaging phases. Average Euclidean Error (AEE) was 20mmHg and 33mmHg for inlet and outlet pressure estimates, respectively. The normalized AEE never exceeded 0.16. The developed model can be exploited for designing roller pumps with improved performances aimed at reducing the undesired pressure pulsation.

  10. Spectrophotometry of pulsating stars at Oukaimeden Observatory in Morocco

    Science.gov (United States)

    Benhida, Abdelmjid; sefyani, Fouad; de France, Thibault; Elashab, Sana; Zohra Belharcha, fatim; Gillet, Denis; Mathias, phillipe; Daassou, Ahmed; Lazrek, Mohamed; Benkhaldoun, Zouhair

    2015-08-01

    Location of modern observatories requires high sky quality: good weather, isolated site to avoid any pollution, high altitude for a better transparency and to reduce temperature gradients, the main source of atmospheric turbulence. With an altitude of 2750m, the region of Oukaimeden in Morocco (longitude: 7°52'052" West, latitude: 3°112032" North) meets most of these criteriaWith its 10'' and 14'' dedicated telescopes operating in remote control modes that combines high precision photometry and high resolution spectroscopy (spectrograph Eshell of R~12000 resolution over a wide spectral range), the universitary observatory of Oukaimeden (code J43) aims to develop new thematics in addition to present science. In particular, through this instrumentation, we aim to develop the field of pulsating stars, especially the atmospheric dynamics of high amplitude pulsators such as RR Lyrae and RV Tauri star, in order to establish new models of the mechanical and thermal behaviour of their atmospheres (shock waves, relaxation time, energy loss...).In this work we will first describe our measuring instruments, and then analyze spectra and photometric curves of RR Lyrae star obtained during the maximum of the Blazhko effect.

  11. Characterization of ultra low frequency (ULF pulsations and the investigation of their possible source

    Directory of Open Access Journals (Sweden)

    S. H. Mthembu

    2009-08-01

    Full Text Available In this paper we present the results from the observation of ultra low frequency (ULF pulsations in the Doppler velocity data from SuperDARN HF radar located at Goose Bay (61.94° N, 23.02° E, geomagnetic. Fourier spectral techniques were used to determine the spectral content of the data and the results show Pc 5 ULF pulsations (with a frequency range of 1 to 4 mHz where the magnetic field lines were oscillating at discrete frequencies of about 1.3 and 1.9 mHz. These pulsations are classified as field lines resonance (FLR since the 1.9 mHz component exhibited an enhancement in amplitude with an associated phase change of approximately 180° across a resonance latitude of 71.3°. The spatial and temporal structure of the ULF pulsations was examined by investigating their instantaneous amplitude which was calculated as the amplitude of the analytic signal. The results presented a full field of view which exhibit pulsations activity simultaneously from all beams. This representation shows that the peak amplitude of the 1.9 mHz component was observed over the longitudinal range of 13°. The temporal structure of the pulsations was investigated from the evolution of the 1.9 mHz component and the results showed that the ULF pulsations had a duration of about 1 h. Wavelet analysis was used to investigate solar wind as a probable source of the observed ULF pulsations. The time delay compared well with the solar wind travel time estimates and the results suggest a possible link between the solar wind and the observed pulsations. The sudden change in dynamic pressure also proved to be a possible source of the observed ULF pulsations.

  12. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Wagshul, M.; Smith, S.; Wagshul, M.; McAllister, J.P.; Rashid, S.; Li, J.; Egnor, M.R.; Walker, M.L.; Yu, M.; Smith, S.D.; Zhang, G.; Chen, J.J.; Beneveniste, H.

    2009-03-01

    In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular volume and aqueductal pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 {+-} 83.21 {mu}l vs. 15.52 {+-} 2.00 {mu}l; pulsations: 114.51 nl {+-} 106.29 vs. 0.72 {+-} 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-field MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation.

  13. Reversible Computing

    Science.gov (United States)

    1980-02-01

    will have been introduced. 9. Reversible celular autemata We shall assume the reader to have some familiarity with the concept of cel- lular...10003 Mr. Kin B. Thcmpson 1 copy Technical Director Information Systems Divisia.i Naval Research Laboratory (OP-91T) Technical Information Division

  14. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.;

    2011-01-01

    model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 μHz, which we model as the large separation. The star is an α2 CVn...... to these values that reproduces the rotational variations of the two obliquely pulsating modes with different pulsation axes. The star shows overabundances of the rare earth elements, but these are not as extreme as most other roAp stars. The spectrum is variable with rotation, indicating surface abundance...

  15. Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air

    Science.gov (United States)

    2011-06-01

    speeds but eventually transition to supersonic detonation waves in a process known as deflagration to detonation transition (DDT). The residual hot...To obtain the Hugoniot curve, Eqs. 13, 14, and 15 are combined with the following ideal gas relations (Eqs. 16 through 18) and the caloric

  16. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Science.gov (United States)

    2010-07-01

    ... magazines. 75.1312 Section 75.1312 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5...

  17. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a magazine for use in a working section or other area where blasting is to be performed shall— (1) Not...

  18. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame arresters, and flame screens. 154.822 Section 154.822 Navigation and Navigable Waters COAST GUARD... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a)...

  19. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    Science.gov (United States)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  20. Detonation chemistry: an investigation of fluorine as an oxidizing moiety in explosives

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, R.R.; Ornellas, D.L.; Helm, F.H.; Coon, C.L.; Finger, M.

    1982-07-07

    We have investigated the use of fluorine in the form of the difluoramino (NF/sub 2/) group as an oxidizing moiety. Bis- and tris-difluoramino perfluorobutane, previously unknown, were especially synthesized for this study. We performed detonation calorimetry to determine the exact detonation product composition and the heat of detonation of a series of NF/sub 2/ compounds and mixtures. We then performed cylinder tests to determine their detonation performance. Similar tests on NO/sub 2/ compounds were used for comparison. For reasons of toxicity and safety, we designed and built remote mixing and loading apparati for certain of the materials. Materials were chosen to highlight certain of the detonation products. Hydrogen fluoride was found to be a favorable detonation product compared with H/sub 2/O; CO/sub 2/ outperforms CF/sub 4/ at all cylinder expansion ratios; and Al/sub 2/O/sub 3/ was a favorable detonation product compared to AlF/sub 3/. The most important result is better understanding of the mechanism of reaction of small-particle aluminum in a detonation.

  1. The detonation parameters of high energy density explosive predicted with a new revised VLW EOS

    Energy Technology Data Exchange (ETDEWEB)

    Xinping, L.; Xiaohua, J. [Southwest Institut of Chemical Mat. Chengdu Sichuan (China); Xiong, W. [Xian Modern Chemistry Research Institute (China)

    1996-12-31

    Some new target explosive compounds whose detonation performance significantly exceeds that of HMX have been predicted with the new revised VLM equation of state, which includes up to the sixth viral term. The two different hypotheses have been used in the calculation; solid carbon exists in detonation products as graphite or as diamond. (authors) 10 refs.

  2. Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air

    Science.gov (United States)

    2012-03-22

    Jay Rutledge (Member) Date v AFIT/GAE/ENY/12-M36 Abstract Rotating detonation engines (RDEs) have the potential for greater...like to thank John Hoke, Andrew Naples, Jim Suchoki, Brian Sell, and Chris Stevens for sharing their knowledge of rotating detonation engines and

  3. Peculiar variations of white dwarf pulsation frequencies and maestro

    Science.gov (United States)

    Dalessio, James Ruland

    In Part I we report on variations of the normal mode frequencies of the pulsating DB white dwarfs EC 20058-5234 and KIC 8626021 and the pulsating DA white dwarf GD 66. The observations of EC 20058-5234 and KIC 8626021 were motivated by the possibility of measuring the plasmon neutrino production rate of a white dwarf, while the observations of GD 66 were part of a white dwarf pulsation timing based planet search. We announce the discovery of periodic and quasi-periodic variations of multiple normal mode frequencies that cannot be due to the presence of planetary companions. We note the possible signature of a planetary companion to EC 20058-5234 and show that GD 66 cannot have a planet in a several AU orbit down to half a Jupiter mass. We also announce the discovery of secular variations of the normal mode frequencies of all three stars that are inconsistent with cooling alone. Importantly, the rates of period change of several modes of KIC 8626021 are consistent with evolutionary cooling, but are not yet statistically significant. These modes offer the best possibility of measuring the neutrino production rate in a white dwarf. We also observe periodic and secular variations in the frequency of a combination mode that exactly matches the variations predicted by the parent modes, strong observational evidence that combination modes are created by the convection zone and are not normal modes. Periodic variations in the amplitudes of many of these modes is also noted. We hypothesize that these frequency variations are caused by complex variations of the magnetic field strength and geometry, analogous to behavior observed in the Sun. In Part II we describe the MAESTRO software framework and the MAESTRO REDUCE algorithm. MAESTRO is a collection of astronomy specific MatLab software developed by the Whole Earth Telescope. REDUCE is an an algorithm that can extract the brightness of stars on a set of CCD images with minimal configuration and human interaction. The key to

  4. Soft X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  5. An Explosives Products Thermodynamic Equation of State Appropriate for Material Acceleration and Overdriven Detonation: Theoretical Background and Formulation

    Science.gov (United States)

    1991-07-01

    9 i 1 Normally, the equation of state parameters are chosen so that E. has the value E. = p0AH, where AH is the heat of detonation . This is consistent...Initial Specific Volume a Gruneisen Parameter 7 Adiabatic Gamnma C Sound Speed D) Detonation Velocity U mMass Velocity A 1l Heat of Detonation B ;., R xi

  6. Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media

    Institute of Scientific and Technical Information of China (English)

    DONG He-Fei; HONG Tao; ZHANG De-Liang

    2011-01-01

    We extend the conservation-element and solution-element method to simulate a two-phase detonation model in porous media. The accuracy of the method is validated by calculating an inert compaction problem. The main characteristics of piston-driven detonation phenomena, including the compaction wave, the onset of combustion,and the transition to detonation, could be predicted successfully.

  7. A numerical study of two- and three-dimensional detonation dynamics of pulse detonation engine by the CE/SE method

    Institute of Scientific and Technical Information of China (English)

    Chunsheng Weng; Jay P. Gore

    2005-01-01

    In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved in two steps. The detailed analysis of computational results of a PDE with a single detonation tube and a PDE with five detonation tubes are given in this paper. Complex wave systems are observed inside and outside a PDE. For a PDE with 5 detonation tubes, there is a big bow shock produced from a number of little shocks near the open ends of tubes. A lot of vortexes interact with shocks and a large expansion wave propagates forward and backward with respect to the PDE in a semi-oval shape.

  8. Plasma-assisted ignition and deflagration-to-detonation transition.

    Science.gov (United States)

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  9. Retinal venous pulsation: Expanding our understanding and use of this enigmatic phenomenon.

    Science.gov (United States)

    Morgan, William H; Hazelton, Martin L; Yu, Dao-Yi

    2016-11-01

    Retinal vein pulsation was first noted soon after the invention of the ophthalmoscope 170 years ago and was seen to change with cerebrospinal fluid pressure (CSFP) variation in the 1920s. The classical explanation for vein pulsation was that the cardiac cycle induced systolic peak in intraocular pressure (IOP) tended to intermittently collapse the retinal vein close to its exit in the central optic disk, causing pulsation to be counter-phase to IOP. Recently, improved ophthalmodynamometry and video recording techniques have allowed us to explore the fundamentals of retinal vein pulsation. This demonstrates that retinal venous collapse is in phase with both IOP and CSFP diastole, indicating the dependence upon CSFP pulse. We describe in some detail the mathematical and physical models of Starling resistors and how their results can be applied to understand the physiology of retinal vein pulsation. We discuss various techniques for measuring retinal venous pulsation, including a novel modified photo-plethysmographic technique developed in our laboratory. With these techniques, non-invasive measurement of CSFP is beginning to look feasible. Venous pulsation properties also have significant prognostic value in predicting long-term outcomes for both glaucoma and central retinal vein occlusion, as well as utility in other retinal vasculopathies and orbital disease. We demonstrate the potential use of modified photo-plethysmographic images in assessing these various disorders. A revised understanding of retinal vein pulse wave transmission along with improved measurement techniques may generate useful clinical tools for assessing these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares

    CERN Document Server

    Kuznetsov, S A; Morgachev, A S; Struminsky, A B

    2016-01-01

    We present systematic analysis of spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phase are accompanied by a series of more than three peaks (pulsations) of HXR emission detected in the RHESSI 50-100 keV channel with 4-second cadence. 29 such flares observed from February 2002 to June 2015 with time differences between successive peaks of 8-270 s are studied. The main observational result is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent displacements from pulsation to pulsation. The flares can be subdivided into two groups depending on character of dynamics of HXR sources. The group-1 consists of 16 flares (55%) with systematic dynamics of HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has simple extended trace on the photosphere. The group-2 consists of 13 flares (45%) with more chaotic displacements of HXR sources with respe...

  11. GW Librae: a unique laboratory for pulsations in an accreting white dwarf

    Science.gov (United States)

    Toloza, O.; Gänsicke, B. T.; Hermes, J. J.; Townsley, D. M.; Schreiber, M. R.; Szkody, P.; Pala, A.; Beuermann, K.; Bildsten, L.; Breedt, E.; Cook, M.; Godon, P.; Henden, A. A.; Hubeny, I.; Knigge, C.; Long, K. S.; Marsh, T. R.; de Martino, D.; Mukadam, A. S.; Myers, G.; Nelson, P.; Oksanen, A.; Patterson, J.; Sion, E. M.; Zorotovic, M.

    2016-07-01

    Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of Hubble Space Telescope (HST) ultraviolet spectroscopy taken in 2002, 2010, and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in 2013 May, we obtained new HST/Cosmic Origin Spectrograph ultraviolet observations that displayed unexpected behaviour: besides showing variability at ≃275 s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on an ≃4.4 h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to ≃30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star.

  12. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases.

  13. Deflagration-to-detonation transition in gases in tubes with cavities

    Science.gov (United States)

    Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.

    2010-12-01

    The existence of a supersonic second combustion mode — detonation — discovered by Mallard and Le Chatelier and by Berthélot and Vieille in 1881 posed the question of mechanisms for transition from one mode to the other. In the period 1959-1969, experiments by Salamandra, Soloukhin, Oppenheim, and their coworkers provided insights into this complex phenomenon. Since then, among all the phenomena related to combustion processes, deflagration-to-detonation transition is, undoubtedly, the most intriguing one. Deflagration-to-detonation transition (DDT) in gases is connected with gas and vapor explosion safety issues. Knowing mechanisms of detonation onset control is of major importance for creating effective mitigation measures addressing two major goals: to prevent DDT in the case of mixture ignition, or to arrest the detonation wave in the case where it has been initiated. A new impetus to the increase in interest in deflagration-to-detonation transition processes was given by the recent development of pulse detonation devices. The probable application of these principles to creation of a new generation of engines put the problem of effectiveness of pulse detonating devices at the top of current research needs. The effectiveness of the pulse detonation cycle turned out to be the key factor characterizing the Pulse Detonation Engine (PDE), whose operation modes were shown to be closely related to periodical onset and degeneration of a detonation wave. Those unsteady-state regimes should be self-sustained to guarantee a reliable operation of devices using the detonation mode of burning fuels as a constitutive part of their working cycle. Thus deflagration-to-detonation transition processes are of major importance for the issue. Minimizing the predetonation length and ensuring stability of the onset of detonation enable one to increase the effectiveness of a PDE. The DDT turned out to be the key factor characterizing the PDE operating cycle. Thus, the problem of

  14. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    Science.gov (United States)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-09-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  15. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.

    Science.gov (United States)

    Keshavarz, Mohammad Hossein

    2009-07-30

    This paper describes a simple method for prediction of detonation velocity of ideal and non-ideal explosives. A non-ideal aluminized and nitrated explosive can have Chapman-Jouguet detonation velocity significantly different from that expected from existing thermodynamic computer codes for equilibrium and steady-state calculations. Detonation velocity of explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from values of a, b, c, d, e and a specific structural parameter without using any assumed detonation products, heat of formation and experimental data. Predicted detonation velocities by this procedure for ideal and non-ideal explosives show good agreement with respect to experimental values as compared to computed results of BKWR and BKWS equations of state.

  16. Theoretical studies on the structures and detonation properties of nitramine explosives containing benzene ring.

    Science.gov (United States)

    Zhao, GuoZheng; Lu, Ming

    2012-06-01

    The nitramine compounds containing benzene ring were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (ρ), heat of formation (HOF), energy gap (ΔE(LUMO-HOMO)), charge on the nitro group (-Q(NO2)), detonation velocity (D) and detonation pressure (P), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. It is found that there are good linear relationships between density, heat of formation, detonation velocity, detonation pressure and the number of nitro group. The simulation results reveal that molecule G performs similarly to famous explosive HMX, and molecule H outperforms HMX. According to the quantitative standard of energetics as an HEDC (high energy density compound), molecule H essentially satisfies this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

  17. Numerical investigation on detonation cell evolution in a channel with area-changing cross section

    Institute of Scientific and Technical Information of China (English)

    DENG; Bo

    2007-01-01

    The two-dimensional cellular detonation propagating in a channel with area- changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.  ……

  18. Research on design and firing performance of Si-based detonator

    Institute of Scientific and Technical Information of China (English)

    Rui-zhen XIE; Xiao-ming REN; Lan LIU; Yan XUE; Dong-xiao FU; Rui ZHANG

    2014-01-01

    For the chip integration of MEMS (micro-electromechanical system) safety and arming device, a miniature detonator needs to be developed to reduce the weight and volume of explosive train. A Si-based micro-detonator is designed and fabricated, which meets the requirement of MEMS safety and arming device. The firing sensitivity of micro-detonator is tested according to GJB/z377A-94 sensitivity test methods:Langlie. The function time of micro-detonator is measured using wire probe and photoelectric transducer. The result shows the average firing voltage is 6.4 V when the discharge capacitance of firing electro-circuit is 33 mF. And the average function time is 5.48 ms. The firing energy actually utilized by Si-based micro-detonator is explored.

  19. Numerical investigation on detonation cell evolution in a channel with area-changing cross section

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The two-dimensional cellular detonation propagating in a channel with area- changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.

  20. INCREASING MEASUREMENT ACCURACY IN ELECTRO-OPTICAL METHOD FOR MEASURING VELOCITY OF DETONATION

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2014-12-01

    Full Text Available In addition to other detonation parameters detonation velocity is a value that provides indirect information on the strength i.e. brisance of an explosive and explosive performance. In addition to that, detonation velocity is a value which can be measured in a relatively simpler and more precise manner, by developed and accessible methods when compared to other detonation parameters Due to its simple use, compact instruments and satisfactory accuracy, electro-optical method of detonation velocity measurement is widely used. The paper describes the electro-optical measurement method and points out the factors that affect its accuracy. The accuracy of measurement is increased and measurement uncertainty is reduced by the measurement result analysis with the application of different measurement setups.

  1. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  2. Deflagration-to-Detonation Transition in Unconfined Media

    Science.gov (United States)

    Poludnenko, Alexei; Gardiner, Thomas; Oran, Elaine

    2011-11-01

    Deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems on Earth to astrophysical thermonuclear supernovae explosions. In recent years, substantial progress has been made in elucidating the nature of this process in confined systems with walls, obstacles, etc. It remains unclear, however, whether a subsonic turbulent flame in an unconfined environment can undergo a DDT. We present simulations of premixed flames in stoichiometric H2-air and CH4-air mixtures interacting with high-intensity turbulence. These calculations demonstrate the DDT in unconfined systems unassisted by shocks or obstacles. We discuss the mechanism of this process and its implications.

  3. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    Science.gov (United States)

    2008-04-07

    to a voltage of 37 kV. A high-voltage pulse was formed on the electrode when the feeding line had been grounded by the thyratron (5). The pulse...width – 1–3 µs, rise time – ∼100 ns. The rise time was determined by thyratron switching time. The energy input in this case was limited by the energy...Kapila, A. K., Schwendeman, D. W., Quirk, J. J., and Hawa, T., “Mech- anisms of Detonation Formation due to a Temperature Gradient,” Com- bustion Theory and Modelling , Vol. 6, No. 4, 2002, pp. 553–594. 74

  4. Effects of hypothetical improvised nuclear detonation on the electrical infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil [Virginia Tech, Blacksburg, VA (United States). Network Dynamics and Simulation Science Lab.

    2013-07-01

    We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.

  5. Pulsating instability and self-acceleration of fast turbulent flames

    CERN Document Server

    Poludnenko, A Y

    2015-01-01

    (Abridged) A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully-resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damk\\"ohler numbers Da = 0.1-6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. 1) Turbulent flame speed develops pulsations with the observed peak-to-peak amplitude > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. 2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when the flame s...

  6. Dynamic response of nuclear fuel assembly excited by pressure pulsations

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2012-12-01

    Full Text Available The paper deals with dynamic load calculation of the hexagonal type nuclear fuel assembly caused by spatial motion of the support plates in the reactor core. The support plate motion is excited by pressure pulsations generated by main circulation pumps in the coolant loops of the primary circuit of the nuclear power plant. Slightly different pumps revolutions generate the beat vibrations which causes an amplification of fuel assembly component dynamic deformations and fuel rods coating abrasion. The cyclic and central symmetry of the fuel assembly makes it possible the system decomposition into six identical revolved fuel rod segments which are linked with central tube and skeleton by several spacer grids in horizontal planes.The modal synthesis method with condensation of the fuel rod segments is used for calculation of the normal and friction forces transmitted between fuel rods and spacer grids cells.

  7. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  8. Asteroseismology of pulsating DA white dwarfs with fully evolutionary models

    Directory of Open Access Journals (Sweden)

    Althaus L.G.

    2013-03-01

    Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.

  9. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    CERN Document Server

    Yang, Xin-She; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.

  10. Making a Be star: the role of rotation and pulsations

    CERN Document Server

    Neiner, C

    2013-01-01

    The Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.

  11. Making a Be star: the role of rotation and pulsations

    Science.gov (United States)

    Neiner, Coralie; Mathis, Stéphane

    2014-02-01

    The Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.

  12. Pulsating jet-like structures in magnetized plasma

    Science.gov (United States)

    Goncharov, V. P.; Pavlov, V. I.

    2016-08-01

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as "radio pulsars." The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  13. Non-radial Pulsations in the Open Cluster NGC 3766

    CERN Document Server

    Roettenbacher, Rachael M; McSwain, M Virginia

    2009-01-01

    Non-radial pulsations (NRPs) are a proposed mechanism for the formation of decretion disks around Be stars and are important tools to study the internal structure of stars. NGC 3766 has an unusually large fraction of transient Be stars, so it is an excellent location to study the formation mechanism of Be star disks. High resolution spectroscopy can reveal line profile variations from NRPs, allowing measurements of both the degree, l, and azimuthal order, m. However, spectroscopic studies require large amounts of time with large telescopes to achieve the necessary high S/N and time domain coverage. On the other hand, multi-color photometry can be performed more easily with small telescopes to measure l only. Here, we present representative light curves of Be stars and non-emitting B stars in NGC 3766 from the CTIO 0.9m telescope in an effort to study NRPs in this cluster.

  14. A 'one in a million' case of pulsating thoracoabdominal mass.

    LENUS (Irish Health Repository)

    Tan, Lay Ong

    2012-11-01

    Ectopia cordis is a rare congenital malformation in which the heart is located partially or totally outside the thoracic cavity. It comprises 0.1% of congenital heart diseases. The authors present a case of a male baby born at term by emergency caesarean section due to prolonged fetal bradycardia, who was noted to have a large pulsating mass in the thoracoabdominal area. In view of lower thoracolumbar abdominal defect, ectopic placement of the umbilicus, deficiency of the diaphragmatic pericardium, deficiency of anterior diaphragm and intracardiac abnormalities, a diagnosis of ectopia cordis-Pentalogy of Cantrell was made. He was transferred to a tertiary centre and required oxygen supplement initially. He was sent home after 1 week, on propanolol, with weekly oxygen saturation checks. He is awaiting further surgical intervention pending the required weight gain.

  15. An application of Bayesian inference for solar-like pulsators

    Science.gov (United States)

    Benomar, O.

    2008-12-01

    As the amount of data collected by space-borne asteroseismic instruments (such as CoRoT and Kepler) increases drastically, it will be useful to have automated processes to extract a maximum of information from these data. The use of a Bayesian approach could be very help- ful for this goal. Only a few attempts have been made in this way (e.g. Brewer et al. 2007). We propose to use Markov Chain Monte Carlo simulations (MCMC) with Metropolis-Hasting (MH) based algorithms to infer the main stellar oscillation parameters from the power spec- trum, in the case of solar-like pulsators. Given a number of modes to be fitted, the algorithm is able to give the best set of parameters (frequency, linewidth, amplitude, rotational split- ting) corresponding to a chosen input model. We illustrate this algorithm with one of the first CoRoT targets: HD 49933.

  16. Cerebrospinal fluid flow. Pt. 3; Pathological cerebrospinal fluid pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Schroth, G. (Dept. of Neuradiology, Tuebingen Univ. (Germany)); Klose, U. (Dept. of Neuradiology, Tuebingen Univ. (Germany))

    1992-12-01

    Cardiac- and respiration-related movements of the cerebrospinal fluid (CSF) were investigated by MRI in 71 patients. In most patients with arteriosclerotic occlusive vascular disease CSF pulsations are normal. Decreased pulsatile flow is detectable in those with arteriovenous malformations, intracranial air and following lumbar puncture and withdrawal of CSF. Increased pulsatile flow in the cerebral aqueduct was found in 2 patients with large aneurysms, idiopathic communicating syringomyelia and in most cases of normal pressure hydrocephalus (NPH). CSF flow in the cervical spinal canal is, however, reduced or normal in NPH, indicating reduction of the unfolding ability of the surface of the brain and/or inhibition of rapid CSF movements in the subrachnoid space over its convexity. (orig.)

  17. Dependences between kinetics of the human eye pupil and blood pulsation

    Science.gov (United States)

    Szmigiel, Marta A.; Kasprzak, Henryk; Klysik, Anna

    2016-09-01

    The study presents measurement and numerical analysis of time variability of the eye pupil geometry and its position, as well as their correlations with blood pulsation. The image of the eye pupil was recorded by use of the fast CCD camera with 200 fps rates. Blood pulsation was synchronously recorded by use of pulse transducer with the sampling frequency of 200 Hz. Each single image from a sequence was numerically processed. Contour of the eye pupil was approximated, and its selected geometrical parameters as well as center positions were calculated. Spectral and coherence analysis of time variability of calculated pupil parameters and blood pulsation were determined.

  18. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  19. Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations

    Science.gov (United States)

    Rouser, Kurt P.

    There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.

  20. Relationship of spontaneous retinal vein pulsation with ocular circulatory cycle.

    Directory of Open Access Journals (Sweden)

    Mijin Kim

    Full Text Available PURPOSE: To determine the timing of spontaneous venous pulsation (SVP relative to the ocular circulatory cycle by using the movie tool of confocal scanning laser ophthalmoloscope. METHODS: A video recording of the fundus was obtained using a confocal scanning laser ophthalmoscope (Spectralis HRA, Heidelberg Engineering, Heidelberg, Germany at 8 frames/s in 47 eyes (15 glaucoma patients and 32 glaucoma suspects with visible pulsation of both the central retinal artery (CRA and vein (CRV. The timing of the maximum and minimum diameters of the CRA (CRA(max and CRAmin, respectively and CRV (CRV(max and CRV(min, respectively was identified during four pulse cycles. The interval between CRV(min and CRA(min, and between CRV(max and CRA(max was expressed as the number of frames and as a percentage of the ocular circulatory cycle. RESULTS: The ocular circulatory cycle (from one CRA(max to the next lasted 7.7 ± 1.0 frames (958.8 ± 127.2 ms, mean ± SD, with a mean pulse rate of 62.6 beats/min. The diameter of the CRA was increased for 2.4 ± 0.5 frames (301.9 ± 58.8 ms and decreased for 5.3 ± 0.9 frames (656.9 ± 113.5 ms. CRV(max occurred 1.0 ± 0.2 frames after CRA(max (equivalent to 13.0% of the ocular circulatory cycle, while CRV(min occurred 1.1 ± 0.4 frames after CRA(min (equivalent to 14.6% of the ocular circulatory cycle. CONCLUSIONS: During SVP, the diameter of the CRV began to decrease at early diastole, and the reduction persisted until early systole. This finding supports that CRV collapse occurs during ocular diastole.