WorldWideScience

Sample records for pulsatile flow

  1. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  2. 21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow generator is an electrically and pneumatically operated device used to create pulsatile blood flow. The...

  3. AN OVERVIEW ON PULSATILE FLOW DYNAMICS

    OpenAIRE

    Çarpinlioğlu, Melda Özdinç

    2015-01-01

    Pulsatile flow dynamics in reference to the relevant experimental research on the manner between the time periods of 1997- 2015 is presented in this paper. The flow field under discussion is generated through a rigid circular cross-sectional pipe as an axial slightly- compressible and sinusoidal one in a controlled range of the oscillation parameters. Laminar and turbulent flow regimes are considered with a particular emphasis devoted to the transitional characteristics of laminar pulsatile f...

  4. Pulsatile pipe flow transition: Flow waveform effects

    Science.gov (United States)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  5. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Investigation of the pulsatile pipe flow

    Czech Academy of Sciences Publication Activity Database

    Adamec, J.; Nožička, J.; Kořenář, Josef

    2000-01-01

    Roč. 18, č. 2 (2000), s. 17-22 ISSN 0392-8764 Institutional research plan: CEZ:AV0Z2060917 Keywords : pulsatile flow * laminar-turbulent transition * reynolds normal stress Subject RIV: BK - Fluid Dynamics

  7. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  8. Pulsatile flow in ventricular catheters for hydrocephalus

    Science.gov (United States)

    Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.

    2017-05-01

    The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  9. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  10. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  11. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    International Nuclear Information System (INIS)

    Waahlin, Anders

    2012-01-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  12. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, Anders

    2012-07-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  13. Augmentative effect of pulsatility on the wall shear stress in tube flow.

    Science.gov (United States)

    Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K

    1999-08-01

    Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.

  14. Effect of Acute Resistance Exercise on Carotid Artery Stiffness and Cerebral Blood Flow Pulsatility

    Directory of Open Access Journals (Sweden)

    Wesley K Lefferts

    2014-03-01

    Full Text Available Arterial stiffness is associated with cerebral flow pulsatility. Arterial stiffness increases following acute resistance exercise (RE. Whether this acute RE-induced vascular stiffening affects cerebral pulsatility remains unknown. Purpose: To investigate the effects of acute RE on common carotid artery (CCA stiffness and cerebral blood flow velocity (CBFv pulsatility. Methods: Eighteen healthy men (22 ± 1 yr; 23.7 ± 0.5 kg∙m-2 underwent acute RE (5 sets, 5-RM bench press, 5 sets 10-RM bicep curls with 90 s rest intervals or a time control condition (seated rest in a randomized order. CCA stiffness (β-stiffness, Elastic Modulus (Ep and hemodynamics (pulsatility index, forward wave intensity and reflected wave intensity were assessed using a combination of Doppler ultrasound, wave intensity analysis and applanation tonometry at baseline and 3 times post-RE. CBFv pulsatility index was measured with transcranial Doppler at the middle cerebral artery (MCA. Results: CCA β-stiffness, Ep and CCA pulse pressure significantly increased post-RE and remained elevated throughout post-testing (p 0.05. There were significant increases in forward wave intensity post-RE (p0.05. Conclusion: Although acute RE increases CCA stiffness and pressure pulsatility, it may not affect CCA or MCA flow pulsatility. Increases in pressure pulsatility may be due to increased forward wave intensity and not pressure from wave reflections.

  15. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  16. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  17. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  18. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    Science.gov (United States)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  19. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    Science.gov (United States)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  20. Experimental Investigation of Pulsatile Flow in Circular Tubes

    Czech Academy of Sciences Publication Activity Database

    Adamec, J.; Nožička, J.; Hanus, D.; Kořenář, Josef

    2001-01-01

    Roč. 17, č. 5 (2001), s. 1133-1136 ISSN 0748-4658 Institutional research plan: CEZ:AV0Z2060917 Keywords : pulsatile flow * laminar-turbulent transition * reynolds normal stress Subject RIV: BK - Fluid Dynamics Impact factor: 0.418, year: 2001

  1. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  2. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  3. Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study

    Science.gov (United States)

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-01-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257

  4. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    Science.gov (United States)

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  5. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    Science.gov (United States)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  6. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    International Nuclear Information System (INIS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik

    2011-01-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  7. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  8. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  9. Precise position control of a helical magnetic robot in pulsatile flow using the rotating frequency of the external magnetic field

    Directory of Open Access Journals (Sweden)

    Jongyul Kim

    2017-05-01

    Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.

  10. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  11. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    Science.gov (United States)

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  12. Arduino control of a pulsatile flow rig.

    Science.gov (United States)

    Drost, S; de Kruif, B J; Newport, D

    2018-01-01

    This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Experimental study on quantitative evaluation of slow pulsatile flow of CSF with cine MRI

    International Nuclear Information System (INIS)

    Matsuda, Masao

    1991-01-01

    The present study was designed to evaluate the slow pulsatile flow of cerebrospinal fluid (CSF) quantitatively with cine MRI in phantom experiment for the clinical application. The flow phantom was constructed from a plastic tube with a narrow channel to represent the central aqueduct. The phantom was filled with water to represent the CSF. The second tube filled with stationary water was positioned beside the flow phantom and acted as a control for no-flow signal strength. The ratio of signal intensity in regions of interest for the flow phantom and the control was measured. Not only the actual velocity curve of the flowing water through the phantom but also the temporal profile of signal intensity showed two main peaks with other small peaks in one cycle. This suggested a close relationship between signal intensity of cine MRI and flow velocity. A significant correlation between the signal intensity ratio and the velocity was obtained on cine MRI pulse sequences. Cine MRI was thus found to have the ability to give quantitative information about slow pulsatile flow. The most suitable pulse sequence was fast imaging with steady state free precession pulse sequence at the flip angle between 50 and 90 degrees. This preliminary study suggests that the slow pulsatile flow of CSF passing along the aqueduct can be visualized and measured. Thus, the sequence proposed has a potential for the investigation of normal and disturbed CSF circulation and the mapping of the flow pattern in different pathological conditions. (N.K.)

  14. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation

  15. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    Leaback of Pulsatile Flow of Particle Fluid Suspension Model of Blood Under Periodic Body Acceleration. ... The variation in body acceleration amplitude though affects the velocity profile in the capillary tubes, it has no effect on the leakback in the tubes. Leakback is mainly determined by the balance of the viscous drag and ...

  16. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    Science.gov (United States)

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  17. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    Science.gov (United States)

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  18. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    Science.gov (United States)

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, Pwave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, Pwave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, Pwave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, Pwave

  19. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.

    Science.gov (United States)

    Xu, Liang; Yang, Ming; Ye, Lin; Dong, Zhaopeng

    2015-01-01

    Hemocompatibility is highly affected by the flow field in Left Ventricular Assistant Devices (LVAD). An asymmetric inflow and outflow channel arrangement with a 45° intersection angle with respect to the blood chamber is proposed to approximate the vascular structure of the aorta and left atrium on the left ventricle. The structure is expected to develop uninterruptible vortex flow state which is similar to the flow state in human left ventricle. The Computational Fluid Dynamics (CFD) asymmetric model is simulated using ANSYS workbench. To validate the velocity field calculated by CFD, a Particle Image Velocimetry (PIV) experiment is conducted. The CFD results show that the proposed blood chamber could generate a shifting vortex flow that would be redirected to the aorta during ejection to form a persistent recirculating flow state, which is similar to the echocardiographic flow state in left ventricle. Both the PIV and the CFD results show the development of a persistent vortex during the pulsatile period. Comparison of the qualitative flow pattern and quantitative probed velocity histories in a pulsatile period shows a good agreement between the CFD and PIV data. The goal of developing persistent quasi intra-ventricle vortex flow state in LVAD is realized.

  20. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  1. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  2. Observation of the CSF pulsatile flow in the aqueduct using cine MRI with presaturation bolus tracking, 3

    International Nuclear Information System (INIS)

    Nakajima, Satoshi

    1992-01-01

    The to-and-fro motion patterns of the CSF flow in the aqueduct in ten normal adults, ten patients with secondary normal-pressure hydrocephalus (NPH), and fourteen patients with idiopathic ventriculomegaly were analyzed using cine MRI with presaturation bolus tracking. The to-and-fro motion patterns of the CSF flow in the aqueduct were thus classified into four types according to their maximum velocity and the relative time duration of their flow in the rostral and caudal directions. The correlation between the clinical symptoms, the CT findings, the RI-cisternography findings, the results of the ICP monitorings, and the CSF pulsatile-flow patterns were then analyzed. In secondary NPH disclosing frequent B waves on ICP monitoring, the maximum velocity of the CSF flow in the aqueduct was over 15 mm/sec, and the duration of the CSF flow was longer in the caudal direction than in the rostral direction. Furthermore, the faster the maximum velocity of the CSF flow, the larger the ventricular size on CT and the more severe the CSF malabsorption on cisternography. In idiopathic ventriculomegaly, only two cases demonstrated the same CSF flow pattern as was shown in secondary NPH; the other cases demonstrated other CSF flow patterns, which were considered to indicate hydrocephalus ex vacuo or arrested hydrocephalus. The CSF pulsatile-flow pattern was assumed to change according to the degree of the CSF circulatory disorder, its compensatory process, and the plasticity of the brain. The investigation of the CSF pulsatile flow gives important information for the evaluation of various hydrocephalic conditions. (author)

  3. A pulsatile flow model for in vitro quantitative evaluation of prosthetic valve regurgitation

    Directory of Open Access Journals (Sweden)

    S. Giuliatti

    2000-03-01

    Full Text Available A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.

  4. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  5. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  6. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility.

    Science.gov (United States)

    Ng, Boon C; Kleinheyer, Matthias; Smith, Peter A; Timms, Daniel; Cohn, William E; Lim, Einly

    2018-01-01

    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9-15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states.

  7. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    Science.gov (United States)

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  8. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-09-15

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  9. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    International Nuclear Information System (INIS)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.

    2009-01-01

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  10. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system

    NARCIS (Netherlands)

    Bozkurt, S.; van de Vosse, F.N.; Rutten, M.C.M.

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase

  11. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    Science.gov (United States)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  12. On heat transfer to pulsatile flow of a two-phase fluid

    Directory of Open Access Journals (Sweden)

    S. P. Chakraborty

    2005-09-01

    Full Text Available The problem of heat transfer to pulsatile flow of a two-phase fluid-particle system contained in a channel bounded by two infinitely long rigid impervious parallel walls has been studied in this paper. The solutions for the steady and the fluctuating temperature distributions are obtained. The rates of heat transfer at the walls are also calculated. The results are discussed numerically with graphical presentations. It is shown that the presence of the particles not only diminishes the steady and unsteady temperature fields but also decreases the reversal of heat flux at the hotter wall irrespective of the influences of other flow parameters.

  13. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    International Nuclear Information System (INIS)

    Shit, G.C.; Majee, Sreeparna

    2015-01-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field

  14. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  15. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    Science.gov (United States)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  16. The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting

    Directory of Open Access Journals (Sweden)

    Kang Woog Lee

    2018-01-01

    Full Text Available Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines regarding a small-sized artificial vessel in the field of tissue engineering.

  17. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect.

    Science.gov (United States)

    Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H

    2017-01-01

    Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.

  18. Pulmonary O2 transfer during pulsatile and non-pulsatile perfusion.

    Science.gov (United States)

    Hauge, A; Nicolaysen, G

    1980-07-01

    The importance of the perfusion pattern for the oxygen transfer has been examined in isolated rabbit lungs perfused with plasma at constant volume inflow. The lungs were ventilated with constant tidal volume and constant end-expiratory pressure. Following a standardized rise in FIO2 the rate of rise in pulmonary venous PO2 (delta PO2/delta t) was measured during alternately pulsatile and non-pulsatile perfusion in normal lungs and in lungs made edematous by elevation of left atrial pressure. In normal lungs there was no difference in delta PO2/delta t when the two modes of perfusion were compared. In edematous lungs delta PO/delta t was statistically higher during pulsatile perfusion, indicating a beneficial effect of flow- and pressure pulsations, e.g. a better distribution of V/Q ratios throughout the lungs. In a separate series of expts. the advancement of a high O2 front through the airways was measured, and the two perfusion patterns compared. Since no difference was found, we suggest that the phenomenon of "cardiogenic gas mixing" in the airways in vivo is a result of a direct action of the heart on the lungs rather than arterial pulsations.

  19. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  20. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.

    Science.gov (United States)

    Le, Trung B; Borazjani, Iman; Sotiropoulos, Fotis

    2010-11-01

    High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.

  1. Assessment of turbulence models for pulsatile flow inside a heart pump.

    Science.gov (United States)

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2016-02-01

    Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with

  2. Observation of the CSF pulsatile flow on MRI, (2)

    International Nuclear Information System (INIS)

    Ohara, Shigeki; Nagai, Hajime; Suzuka, Tomonao; Matsumoto, Takashi; Banno, Tatsuo

    1988-01-01

    In a retrospective study of the MR images of 289 neurosurgical patients, a loss of the signal intensity (the signal-void phenomenon =SVP) of the cerebrospinal fluid in the mesencephalic aqueduct was observed in 77 patients. The CSF in the cranial cavity flows toward the spinal sac in a to-and-fro manner in response to the pulsations of the brain. Because the intracranial compliance is lower than the intraspinal compliance, the systolic expansions and diastolic reductions in the brain volume are buffered by the spinal cavity via this to-and-fro flow of CSF. The SVP reflects the CSF pulsatile flow forced out of the intracranial space into the intraspinal space by the brain's pulsations. Intracranial abnormalities can be divided into two categories according to the craniospinal compliance (CC): normal CC (communicating hydrocephalus) and decreased CC (supratentorial tumor). We may expect those conditions which increase compliance to increase the CSF flow and yield a more prominent SVP. Conversely, conditions which decrease compliance may be expected to decrease the flow and extinguish the SVP. Both the brain's pulsations and the compliance of the craniospinal cavity are closely related to the presence of the SVP in CSF, as revealed by MRI. The SVP in CSF may reflect the pressure-buffering capacity of the cranio-spinal cavity. If further investigation supports our hypothesis, it may be possible to estimate the intracranial pressure noninvasively. (author)

  3. MR imaging of pulsatile CSF movement in hydrocephalus communicans before and after CSF shunt implantation

    International Nuclear Information System (INIS)

    Goldmann, A.; Kunz, U.; Rotermund, F.; Friedrich, J.M.; Schnarkowski, P.

    1992-01-01

    16 patients with hydrocephalus communicans and 5 healthy volunteers were examined to demonstrate the pattern of the pulsatile CSF flow. After implantation of a CSF shunt system the same patients were examined again to show the influence of the shunt on the CSF pulsations. We used a flow-sensitised, cardiac-gated 2D FLASH sequence and analysed the phase and magnitude images. It could be shown that most patients (n=12) had a hyerdynamic pulsatile flow preoperatively. After shunt implantation the pulsatile CSF motion and the clinical symptoms were improved in 8 of these patients. MRI of pulsatile CSF flow movement seems to be a helpful noninvasive tool to estimate the prognosis of a shunt implantation in patients with hydrocephalus communicans. (orig.) [de

  4. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    OpenAIRE

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV...

  5. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-01-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R 2 = 0.982) and a mean absolute error (e) of 0.323 L min −1 , while for head, R 2 = 0.933 and e = 7.682 mmHg were obtained. R 2 = 0.849 and e = 0.584 L min −1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  6. Transition to turbulence in pulsatile flow through heart valves--a modified stability approach.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1994-11-01

    The presence of turbulence in the cardiovascular system is generally an indication of some type of abnormality. Most cardiologists agree that turbulence near a valve indicates either valvular stenosis or regurgitation, depending on the phase of its occurrence during the cardiac cycle. As no satisfying analytical solutions of the stability of turbulent pulsatile flow exist, accurate, unbiased flow stability criteria are needed for the identification of turbulence initiation. The traditional approach uses a stability diagram based upon the stability of a plane Stokes layer where alpha (the Womersley parameter) is defined by the fundamental heart rate. We suggest a modified approach that involves the decomposition of alpha into its frequency components, where alpha is derived from the preferred modes induced on the flow by interaction between flow pulsation and the valve. Transition to turbulence in pulsatile flow through heart values was investigated in a pulse duplicator system using three polymer aortic valve models representing a normal aortic valve, a 65 percent stenosed valve and a 90 percent severely stenosed valve, and two mitral valve models representing a normal mitral valve and a 65 percent stenosed valve. Valve characteristics were closely simulated as to mimic the conditions that alter flow stability and initiate turbulent flow conditions. Valvular velocity waveforms were measured by laser Doppler anemometry (LDA). Spectral analysis was performed on velocity signals at selected spatial and temporal points to produce the power density spectra, in which the preferred frequency modes were identified. The spectra obtained during the rapid closure stage of the valves were found to be governed by the stenosis geometry. A shift toward higher dominant frequencies was correlated with the severity of the stenosis. According to the modified approach, stability of the flow is represented by a cluster of points, each corresponding to a specific dominant mode apparent

  7. Superior vena cava syndrome after pulsatile bidirectional Glenn shunt procedure: Perioperative implications

    Directory of Open Access Journals (Sweden)

    Neema Praveen

    2009-01-01

    Full Text Available Bidirectional superior cavopulmonary shunt (bidirectional Glenn shunt is generally performed in many congenital cardiac anomalies where complete two ventricle circulations cannot be easily achieved. The advantages of BDG shunt are achieved by partially separating the pulmonary and systemic venous circuits, and include reduced ventricular preload and long-term preservation of myocardium. The benefits of additional pulsatile pulmonary blood flow include the potential growth of pulmonary arteries, possible improvement in arterial oxygen saturation, and possible prevention of development of pulmonary arteriovenous malformations. However, increase in the systemic venous pressure after BDG with additional pulsatile blood flow is known. We describe the peri-operative implications of severe flow reversal in the superior vena cava after pulsatile BDG shunt construction in a child who presented for surgical interruption of the main pulmonary artery.

  8. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    Science.gov (United States)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  9. A study of the pulsatile flow and its interaction with rectangular leaflets

    Science.gov (United States)

    Ledesma, Rene; Zenit, Roberto; Pulos, Guillermo

    2009-11-01

    To avoid the complexity and limited understanding of the 3D pulsatile flow field through heart valves, a cardiac-like flow circuit and a test channel were designed to study the behavior of bidimensional leaflets made of hyperelastic materials. We study a simple 2D arrangement to understand the basic physics of the flow-leaflet interaction. Creating a periodic pressure gradient, measurements of leaflet deflection were obtained for different flow conditions, geometries and materials. Using PIV and Phase Locking techniques, we have obtained the leaflet motion and the time-dependent flow velocity fields. The results show that two dimensionless parameters determine the performance of a simple bi-dimensional valve, in accordance with the flow conditions applied: π1=f(sw)^1/2(E/ρ)^1/2 and π2=V/(2slw), where f is the pulsation frequency, V is the stroke volume, s, w and l are the dimensions on the leaftlet and E and ρ are the elastic modulus and density of the material, respectively. Furthermore, we have identified the conditions for which the fluid stresses can be minimized. With these results we propose a new set of parameters to improve the performance of prosthetic heart valves and, in consequence, to reduce blood damage.

  10. On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging

    International Nuclear Information System (INIS)

    Greitz, D.; Franck, A.; Nordell, B.

    1993-01-01

    Cerebrospinal fluid (CSF) flow was studied in 24 healthy volunteers using gated MR phase imaging. The subarachnoid space (SAS) was divided into 5 compartments depending on the magnitude of the pulsatile CSF flows: a high velocity compartment in the area of the brain stem and spinal cord, 2 slow ones at the upper and lower extremes of the SAS, and finally 2 intermediate velocity compartments in between. The main pulsatile spinal flow channel had a meandering pattern. The extraventricular CSF-circulation can be explained by pulsatile CSF flow without the necessity of assuming existence of a net flow. A successive time offset during the cardiac cycle has been found in the fronto-occipital direction of the interplay between the arterial expansion, brain expansion, volume changes of the CSF spaces and of the veins. It is proposed to name this time offset the intracranial ''volume wave'' (VoW). (orig.)

  11. Tissue Doppler Imaging in the evaluation of abdominal aortic pulsatility: a useful tool for the neonatologist.

    Science.gov (United States)

    Valerio, Enrico; Grison, Alessandra; Capretta, Anna; Golin, Rosanna; Ferrarese, Paola; Bellettato, Massimo

    2017-03-01

    Sonographic cardiac evaluation of newborns with suspected aortic coarctation (AoC) should tend to demonstrate a good phasic and pulsatile flow and the absence of pressure gradient along a normally conformed aortic arch from the modified left parasternal and suprasternal echocardiographic views; these findings, however, may not necessarily rule out a more distal coarctation in the descending aorta. For this reason, the sonographic exam of newborns with suspected AoC should always include a Doppler evaluation of abdominal aortic blood flow from the subcostal view. Occasionally, however, a clearly pulsatile Doppler flow trace in abdominal aorta may be difficult to obtain due to the bad insonation angle existing between the probe and the vessel. In such suboptimal ultrasonic alignment situation, the use of Tissue Doppler Imaging instead of classic Doppler flow imaging may reveal a preserved aortic pulsatility by sampling the aortic wall motion induced by normal flow. We propose to take advantage of the TDI pattern as a surrogate of a normal pulsatile Doppler flow trace in abdominal aorta when the latter is difficult to obtain due to malalignment with the insonated vessel.

  12. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    Science.gov (United States)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  13. Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.

    Science.gov (United States)

    Zierenberg, Jennifer R.

    2005-11-01

    The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship

  14. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.

    Science.gov (United States)

    Yigit, Berk; Pekkan, Kerem

    2016-01-01

    In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non

  15. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    International Nuclear Information System (INIS)

    Radmanesh, Alireza; Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D.; Chatterjee, Arindam; Sharma, Aseem

    2015-01-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  16. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    Energy Technology Data Exchange (ETDEWEB)

    Radmanesh, Alireza [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States); Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D. [Washington University School of Medicine, Department of Neurosurgery, St Louis, MO (United States); Chatterjee, Arindam; Sharma, Aseem [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States)

    2015-04-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  17. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  18. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Geir Ringstad

    Full Text Available Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43. Pulse pressure gradients were also similar in patients and healthy controls (P = .26, and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97. Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

  19. Pulsatile versus steady infusions for hepatic artery chemotherapy

    International Nuclear Information System (INIS)

    Kim, E.E.; Haynie, T.P.; Wright, K.C.; Chaynsangavej, C.; Gianturco, C.; Lamki, L.; Wallace, S.

    1984-01-01

    Hepatic artery chemotherapy for unresectable liver tumors requires an even distribution of the drugs in the tumor or vascular bed. This cannot be determined angiographically because the drugs are infused at a much lower rate than the contrast media. It is easy, however, to determine the quality of the perfusion by injecting a small volume of Tc-99m MAA in one of the side ports while chemotherapeutic agent is being infused at the same rate. Usually this shows a uniform, satisfactory distribution of isotope. Occasionally, however, some areas fail to receive Tc-99m in spite of what appears to be a good position of the catheter tip. Since ''streaming'' of the infused drugs has been blamed for their uneven distribution, the authors decided to compare the usual steady flow infusions with infusions made pulsatile by the addition of a pulsing device (Gianturco Pump) attached to the infusion tubing. Eighty-three patients were studied with steady as well as pulsatile infusions. In 16 of these patients the perfusion pattern was definitely changed by the pulsatile infusion. In one patient the pulsatile mode resulted in an unwanted gastric perfusion. In 5 patients the distribution was improved in one hepatic lobe and in 10 patients it was improved in both lobes. These results show that hepatic artery perfusions can occasionally be improved by pulsing the infusate. However, pulsing can produce the unwanted perfusion of extra-hepatic areas

  20. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  1. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  2. Flow visualization of three-dimensionality inside the 12 cc Penn State pulsatile pediatric ventricular assist device.

    Science.gov (United States)

    Roszelle, Breigh N; Deutsch, Steven; Manning, Keefe B

    2010-02-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps.

  3. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    Science.gov (United States)

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.

    Science.gov (United States)

    Lozowy, Richard J; Kuhn, David C S; Ducas, Annie A; Boyd, April J

    2017-03-01

    Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.

  5. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    Science.gov (United States)

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    Science.gov (United States)

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  7. INFLUENCE OF PULSATILE FLOW ON THE BEHAVIOR OF HUMAN FIBROBLASTS ADHERED TO GLASS

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1993-01-01

    In the human body, cells contacting biomaterials surfaces are frequently exposed to pulsatile shear stresses, e.g. blood vessel prostheses. Most studies involving shear, however, try to achieve a steady, pulse-free shear stress in studying cell-biomaterial interactions. In this study, human

  8. Imaging in pulsatile tinnitus

    International Nuclear Information System (INIS)

    Madani, G.; Connor, S.E.J.

    2009-01-01

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful

  9. Imaging in pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Madani, G. [Radiology Department, St Mary' s Hospital, London (United Kingdom)], E-mail: gittamadani@yahoo.com; Connor, S E.J. [Neuroradiology Department, King' s College Hospital, London (United Kingdom)

    2009-03-15

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful.

  10. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    International Nuclear Information System (INIS)

    Lee, Kyung Soon; Woo, Bock Hi

    2001-01-01

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  11. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Soon; Woo, Bock Hi [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2001-06-15

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  12. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  13. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    International Nuclear Information System (INIS)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun

    2016-01-01

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  14. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    International Nuclear Information System (INIS)

    Nowe, V.; Wang, X.L.; Gielen, J.; Goethem, J.Van; Oezsarlak, Oe.; De Schepper, A.M.; Parizel, P.M.; Ridder, D. De; Heyning, P.H.Van de

    2004-01-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  15. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    Energy Technology Data Exchange (ETDEWEB)

    Nowe, V; Wang, X L; Gielen, J; Goethem, J Van; Oezsarlak, Oe; De Schepper, A M; Parizel, P M [University of Antwerp, Department of Radiology, Edegem (Belgium); Ridder, D De [University of Antwerp, Department of Neurosurgery, Edegem (Belgium); Heyning, P.H.Van de [University of Antwerp, Department of Otorhinolaryngology, Edegem (Belgium)

    2004-12-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  16. A durability study of a paracorporeal pulsatile electro-mechanical pneumatic biventricular assist device.

    Science.gov (United States)

    Choi, Hyuk; Lee, Heung-Man; Nam, Kyoung Won; Choi, Jaesoon; Lee, Jung-Joo; Kim, Ho Chul; Song, Seung Joon; Ahn, Chi Bum; Son, Ho Sung; Lim, Choon Hak; Son, Kuk Hui; Park, Yong Doo; Jeong, Gi Seok; Sun, Kyung

    2011-06-01

    In 2002, the paracorporeal pulsatile electro-mechanical pneumatic ventricular assist device (VAD) began to be developed by the Korea Artificial Organ Center at Korea University under a Health & Medical Technology Research and Development program which finished in 2008. In vitro durability testing was conducted on the paracorporeal pulsatile pneumatic VAD to determine device durability and to evaluate device failures. The 1- and 2-year reliability of the paracorporeal pulsatile pneumatic VAD was shown to be 91.2% and 54.9%, respectively, with an 80% confidence level. Failure modes were analyzed using fault tree analysis, with customized software continuously acquiring data during the test period. After this period, 21 in vivo animal tests were done, with 14 cases of left atrium to left ventricle (LV) inflow cannulation (36Fr)/outflow grafting to descending aorta, and seven cases of apex cannulation of LV to descending aorta (12 mm). The longest postoperative day (182 days) in Korea was recently recorded in in vivo animal testing (bovine, 90 kg, male, 3.5-4.0 L/min flow rate, and 55 bpm). © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system.

    Science.gov (United States)

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Thrombi made of lamb's blood were placed into a pulsatile flow system perfused with Hartmann's solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted.

  18. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.

    Science.gov (United States)

    Eide, Per K

    2008-11-01

    Data from intracranial pressure (ICP) recordings in patients with hydrocephalus were reviewed to determine whether intracranial pulsatility within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(LV)) may differ from that within the brain parenchyma (ICP(PAR)), and whether pulsatility may differ between noncommunicating ventricles. The authors retrieved data from recordings previously obtained in 7 patients with hydrocephalus (noncommunicating in 4 and communicating in 3) and shunt failure who received both an external ventricular drainage (EVD) and an ICP sensor as part of surveillance during intensive care. Simultaneous ICP(LV) and ICP(PAR) signals were available in 6 cases, and simultaneous signals from the lateral and fourth ventricles (ICP(LV) and ICP4V, respectively) were recorded in 1 case. The recordings with both signals were parsed into 6-second time windows. Pulsatility was characterized by the wave amplitude and rise time coefficient, and differences in pulsatility between the ICP(LV) and ICP(PAR) signals (6 cases) or ICP(LV) and ICP4V signals (1 case) were determined. There was uneven distribution of intracranial pulsatility in all 7 patients, shown as significantly elevated pulsatility (that is, higher wave amplitudes and rise time coefficients) within the ventricles (ICP(LV)) than within brain parenchyma (ICP(PAR)) in 6 patients, and significantly higher pulsatility in the fourth (ICP4V) than in the lateral (ICP(LV)) ventricles in 1 patient. Differences > or = 1 mm Hg in ICP wave amplitude were found in 0.5-100% (median 9.4%) of observations in the 7 patients (total number of 6-second time windows, 68,242). The present observations demonstrate uneven distribution of intracranial pulsatility in patients with hydrocephalus, higher pulse pressure amplitudes within the ventricular CSF (ICP(LV)) than within the brain parenchyma (ICP(PAR)). This may be one mechanism behind ventricular enlargement in hydrocephalus.

  19. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    Science.gov (United States)

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  20. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  2. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  3. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.

    Science.gov (United States)

    Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe

    2013-05-01

    The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work

  4. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  5. Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic individuals

    DEFF Research Database (Denmark)

    Rohrer, Stefan; Menge, Björn A; Grüber, Lena

    2012-01-01

    Postprandial hyperglucagonemia is frequently found in patients with diabetes. Recently, a loss of the inverse relationship between pulsatile insulin and glucagon secretion has been reported in patients with type 2 diabetes. The crosstalk between pulsatile islet hormone secretion in prediabetic...

  6. Cerebrospinal fluid flow. Pt. 3

    International Nuclear Information System (INIS)

    Schroth, G.; Klose, U.

    1992-01-01

    Cardiac- and respiration-related movements of the cerebrospinal fluid (CSF) were investigated by MRI in 71 patients. In most patients with arteriosclerotic occlusive vascular disease CSF pulsations are normal. Decreased pulsatile flow is detectable in those with arteriovenous malformations, intracranial air and following lumbar puncture and withdrawal of CSF. Increased pulsatile flow in the cerebral aqueduct was found in 2 patients with large aneurysms, idiopathic communicating syringomyelia and in most cases of normal pressure hydrocephalus (NPH). CSF flow in the cervical spinal canal is, however, reduced or normal in NPH, indicating reduction of the unfolding ability of the surface of the brain and/or inhibition of rapid CSF movements in the subrachnoid space over its convexity. (orig.)

  7. Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review.

    Science.gov (United States)

    Pandit, Vinay; Kumar, Ajay; Ashawat, Mahendra S; Verma, Chander P; Kumar, Pravin

    2017-01-01

    Pulsatile drug delivery system (PDDS) shows potential significance in the field of drug delivery to release the maximum amount of drug at a definite site and at specific time. PDDS are mainly time controlled delivery devices having a definite pause period for drug release, which is not affected by acidity, alkalinity, motility and enzymes present in the gastrointestinal tract. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. The review article, discuss the general concepts, marketed formulations and patents or any other recent advancement in pulsatile release technology. It also highlights on diseases requiring therapy by pulsatile release, various researches on herbal pulsatile formulations and quality control aspects of PDDS. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    Science.gov (United States)

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  9. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Menge, Björn A; Grüber, Lena; Jørgensen, Signe M

    2011-01-01

    In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known.......In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known....

  10. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  11. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  12. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    Science.gov (United States)

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  13. Kisspeptin and LH pulsatile temporal coupling in PCOS patients.

    Science.gov (United States)

    Katulski, Krzysztof; Podfigurna, Agnieszka; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Alessandro D

    2018-05-04

    To evaluate the temporal coupling between spontaneous kisspeptin and luteinizing hormone (LH) pulsatile releases in polycystic ovary syndrome (PCOS) patients. We examined 71 patients diagnosed with PCOS. A 2 h pulsatility study was performed to evaluate serum kisspeptin and LH pulse frequency and concentration, sampled every 10 min; baseline follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), cortisol, 17-hydroksy-progesterone (17OHP), testosterone (T), free testosterone index (FTI, and insulin levels were also measured. Detect and Specific Concordance (SC) algorithms were used to evaluate the temporal coupling associations between spontaneous episodic secretion of kisspeptin and LH. All PCOS patients demonstrated LH and kisspeptin pulsatile secretions. When the SC index was calculated across the sample of PCOS patients (n = 71), no temporal coupling was observed between kisspeptin and LH pulses. When PCOS patients were subdivided according to their menstrual cyclicity, oligomenorrheic patients demonstrated elevated kisspeptin pulse frequency. Additionally, the SC index reveled a temporal coupling between kisspeptin and LH secretory peaks only in eumenorrheic patients (n = 30, intermenstrual interval PCOS patients (intermenstrual interval > 45 days) did not demonstrate temporal coupling between kisspeptin and LH secretory peaks. The study of the endogenous kisspeptin and LH pulsatile release revealed the temporal coupling of kisspeptin with LH secretory pulses only in eumenorrheic. This data supports the hypothesis that neuroendocrine impairments in PCOS affect the coupling of kisspeptin with LH pulses and potentially worsen as the disease progresses, becoming unequivocally evident in oligomenorrheic PCOS patients.

  14. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  15. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    International Nuclear Information System (INIS)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-[3- 3 H]glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml -1 during continuous infusion and varied between 95 and 501 pg x ml -1 during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production

  16. Experience With a Long-term Pulsatile Ventricular Assist Device as a Bridge to Heart Transplant in Adults.

    Science.gov (United States)

    Gómez Bueno, Manuel; Segovia Cubero, Javier; Serrano Fiz, Santiago; Ugarte Basterrechea, Juan; Hernández Pérez, Francisco José; Goirigolzarri Artaza, Josebe; Castedo Mejuto, Evaristo; Burgos Lázaro, Raúl; García Montero, Carlos; Moñivas Palomero, Vanessa; Mingo Santos, Susana; González Román, Ana Isabel; Álvarez Avelló, José Manuel; Vidal Fernández, Mercedes; Forteza Gil, Alberto; Alonso-Pulpón, Luis

    2017-09-01

    Most long-term ventricular assist devices (VADs) that are currently implanted are intracorporeal continuous-flow devices. Their main limitations include their high cost and inability to provide biventricular support. The aim of this study was to describe the results of using paracorporeal pulsatile-flow VADs as a bridge to transplant (BTT) in adult patients. Retrospective analysis of the characteristics, complications, and outcomes of a single-center case series of consecutive patients treated with the EXCOR VAD as BTT between 2009 and 2015. During the study period, 25 VADs were implanted, 6 of them biventricular. Ventricular assist devices were indicated directly as a BTT in 12 patients and as a bridge to decision in 13 due to the presence of potentially reversible contraindications or chance of heart function recovery. Twenty patients (80%) were successfully bridged to heart transplant after a median of 112 days (range, 8-239). The main complications included infectious (52% of patients), neurological events (32%, half of them fatal), bleeding (28%), and VAD malfunction requiring component replacement (28%). Eighty percent of patients with the EXCOR VAD as BTT achieved the goal after an average of almost 4 months of support. The most frequent complications were infectious, and the most severe were neurological. In our enivonment, the use of these pulsatile-flow VAD as BTT is a feasible strategy that obtains similar outcomes to those of intracorporeal continuous-flow devices. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Cerebrovascular blood oxygenation level dependent pulsatility at baseline and following acute exercise among healthy adolescents.

    Science.gov (United States)

    Theyers, Athena E; Goldstein, Benjamin I; Metcalfe, Arron Ws; Robertson, Andrew D; MacIntosh, Bradley J

    2018-01-01

    Arterial stiffness is linked to cerebral small vessel damage and neurodegeneration, but barriers to accessing deep cerebrovascular anatomy limit our ability to assess the brain. This study describes an adaptation of a cardiac-related scrubbing method as a means of generating blood oxygenation level-dependent pulsatility maps based on the cardiac cycle. We examine BOLD pulsatility at rest, based on the non-parametric deviation from null metric, as well as changes following acute physiological stress from 20 min of moderate-intensity cycling in 45 healthy adolescents. We evaluate the influence of repetition time (TR) and echo time (TE) using simulated and multi-echo empirical data, respectively. There were tissue-specific and voxel-wise BOLD pulsatility decreases 20 min following exercise cessation. BOLD pulsatility detection was comparable over a range of TR and TE values when scan volumes were kept constant; however, short TRs (≤500 ms) and TEs (∼14 ms) acquisitions would yield the most efficient detection. Results suggest cardiac-related BOLD pulsatility may represent a robust and easily adopted method of mapping cerebrovascular pulsatility with voxel-wise resolution.

  18. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Hyacinthe, Jean-Noël; Van De Ville, Dimitri; Richiardi, Jonas

    2013-01-01

    Human bone blood flow, mean blood speed and the number of moving red blood cells were assessed (in arbitrary units), as a function of time, during one cardiac cycle. The measurements were obtained non-invasively on five volunteers by laser-Doppler flowmetry at large interoptode spacing. The investigated bones included: patella, clavicle, tibial diaphysis and tibial malleolus. As hypothesized, we found that in all bones the number of moving cells remains constant during cardiac cycles. Therefore, we concluded that the pulsatile nature of blood flow must be completely determined by the mean blood speed and not by changes in blood volume (vessels dilation). Based on these results, it is finally demonstrated using a mathematical model (derived from the radiative transport theory) that photoplethysmographic (PPG) pulsations observed by others in the literature, cannot be generated by oscillations in blood oxygen saturation, which is physiologically linked to blood speed. In fact, possible oxygen saturation changes during pulsations decrease the amplitude of PPG pulsations due to specific features of the PPG light source. It is shown that a variation in blood oxygen saturation of 3% may induce a negative change of ∼1% in the PPG signal. It is concluded that PPG pulsations are determined by periodic ‘positive’ changes of the reduced scattering coefficient of the tissue and/or the absorption coefficient at constant blood volume. No explicit experimental PPG measurements have been performed. As a by-product of this study, an estimation of the arterial pulse wave velocity obtained from the analysis of the blood flow pulsations give a value of 7.8 m s −1 (95% confidence interval of the sample mean distribution: [6.7, 9.5] m s −1 ), which is perfectly compatible with data in the literature. We hope that this note will contribute to a better understanding of PPG signals and to further develop the domain of the vascular physiology of human bone. (note)

  19. Effects of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in adults with and without hypertension.

    Science.gov (United States)

    Lefferts, Wesley K; DeBlois, Jacob P; Receno, Candace N; Barreira, Tiago V; Brutsaert, Tom D; Carhart, Robert L; Heffernan, Kevin S

    2018-04-19

    Stiffer central arteries, as seen in hypertension (HTN), foster transmission of pulsatile hemodynamics into fragile cerebral vessels. Aerobic exercise is recommended for adults with HTN, but its effects on arterial stiffness and pulsatility in this group are unclear. This study sought to investigate the effect of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in 30 adults with treated HTN and 30 age, sex, and BMI-matched adults without HTN (56 ± 6 years, BMI 28.2 ± 2.9 kg/m; 28 women). Patients underwent hemodynamic measures before/after 30-min cycling (≈55% peak oxygen consumption). Aortic stiffness was measured using carotid-femoral pulse wave velocity, and carotid artery stiffness was assessed with β-stiffness via ultrasound. Aortic/carotid pulse pressure (aortic via radial generalized transfer function) was measured by tonometry and calibrated to brachial mean pressure and diastolic pressure. Carotid/middle cerebral artery (MCA) blood velocity pulsatility indices were measured using Doppler. Carotid wave intensity analysis was used to derive forward wave intensity (W1). Exercise impacted hemodynamics similarly in HTN compared to no-HTN. Carotid-femoral pulse wave velocity, MCA pulsatility index, carotid pulsatility index, and W1 increased similarly after exercise in both groups (P < 0.05). Carotid pulse pressure and β-stiffness were unaltered after exercise. Postexercise changes in W1 were positively associated with carotid pulsatility index, which was further associated with MCA pulsatility index. These data suggest adults with treated HTN experience similar increases in aortic stiffness and cerebrovascular hemodynamic pulsatility during early recovery from acute aerobic exercise as their counterparts without HTN.

  20. [Effectiveness and safety of pulsatile GnRH pump therapy on female patients with IHH].

    Science.gov (United States)

    Liu, Zhaoxiang; Mao, Jiangfeng; Wu, Xueyan; Nie, Min; Huang, Bingkun; Xu, Hongli; Wang, Xi; Zheng, Junjie

    2015-11-10

    To investigate the therapeutic effect of pulsatile GnRH (gonadorelin) pump on female patients with idiopathic hypogonadotropic hypogonadism (IHH). In this retrospective study, five female IHH patients were recruited. Patients were treated with pulsatile gonadorelin (10 µg per 90 min) via a pump for at least 12 weeks. Serum gonadotropins and sex steroid levels were measured, and menses were recorded. After one-week treatment, luteinizing hormone (LH) level increased from (2.2 ± 2.0) U/L to (5.4 ± 2.5) U/L (P=0.028), follicle-stimulating hormone(FSH) level increased from (3.7 ± 2.7) U/L to(6.3 ± 1.0) U/L (P=0.162), and estradiol (E2) level increased from (58 ± 13) pmol/L to (260 ± 97) pmol/L (P=0.011). Menstrual bleeding was observed in 4 patients after starting treatment for 35-55 days and two natural pregnancies were reported. No menstrual bleeding was reported in another patient. The frequency of pulsatile GnRH had to be adjusted according to endogenous GnRH secretion during the follicular phase of normal women and regular menses were induced. Pulsatile GnRH is effective in treating female IHH. A constant frequency of pulsatile GnRH is suitable for most of IHH patients. However, for those who failed to produce regular menses, adjusting pulsatile frequency to imitate the physiological rhythm of GnRH may be an alternative option.

  1. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  2. Development of a gastroretentive pulsatile drug delivery platform.

    Science.gov (United States)

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  3. Increasing awareness with recognition of pulsatile tinnitus for nurse practitioners in the primary care setting: A case study.

    Science.gov (United States)

    Vecchiarelli, Kelly; Amar, Arun Paul; Emanuele, Donna

    2017-09-01

    Pulsatile tinnitus is a whooshing sound heard synchronous with the heartbeat. It is an uncommon symptom affecting fewer than 10% of patients with tinnitus. It often goes unrecognized in the primary care setting. Failure to recognize this symptom can result in a missed or delayed diagnosis of a potentially life-threatening condition known as a dural arteriovenous fistula. The purpose of this case study is to provide a structured approach to the identification of pulsatile tinnitus and provide management recommendations. A case study and review of pertinent literature. Pulsatile tinnitus usually has a vascular treatable cause. A comprehensive history and physical examination will alert the nurse practitioner (NP) when pulsatile tinnitus is present. Auscultation in specific areas of the head can detect audible or objective pulsatile tinnitus. Pulsatile tinnitus that is audible to the examiner is an urgent medical condition requiring immediate consultation and referral. Knowledge of pulsatile tinnitus and awareness of this often treatable condition directs the NP to perform a detailed assessment when patients present with tinnitus, directs appropriate referral for care and treatment, and can reduce the risk of delayed or missed diagnosis. ©2017 American Association of Nurse Practitioners.

  4. Pulsatile gonadotrophin releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; van der Veen, F.

    2004-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intravenous or subcutaneous route using a portable pump has been used successfully in

  5. Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration

    Science.gov (United States)

    Ponalagusamy, R.; Priyadharshini, S.

    2017-11-01

    The present study investigates the pulsatile flow of Casson nanofluid through an inclined and stenosed artery with tapering in the presence of magnetic field and periodic body acceleration. The iron oxide nanoparticles are allowed to flow along with it. The governing equations for the flow of Casson fluid when the artery is tapered slightly having mild stenosis are highly non-linear and the momentum equations for temperature and concentration are coupled and are solved using finite difference numerical schemes in order to find the solutions for velocity, temperature, concentration, wall shear stress, and resistance to blood flow. The aim of the present study is to analyze the effects of flow parameters on the flow of nanofluid through an inclined arterial stenosis with tapering. These effects are represented graphically and concluded that the wall shear stress profiles enhance with increase in yield stress, magnetic field, thermophoresis parameter and decreases with Brownian motion parameter, local temperature Grashof number, local nanoparticle Grashof number. The significance of the model is the existence of yield stress and it is examined that when the rheology of blood changes from Newtonian to Casson fluid, the percentage of decrease in the flow resistance is higher with respect to the increase in the parameters local temperature Grashof number, local nanoparticle Grashof number, Brownian motion parameter, and Prandtl number. It is pertinent to observe that increase in the Brownian motion parameter leads to increment in concentration and temperature profiles. It is observed that the concentration of nanoparticles decreases with increase in the value of thermophoresis parameter.

  6. Uric acid association with pulsatile and steady components of central and peripheral blood pressures.

    Science.gov (United States)

    Lepeytre, Fanny; Lavoie, Pierre-Luc; Troyanov, Stéphan; Madore, François; Agharazii, Mohsen; Goupil, Rémi

    2018-03-01

    Whether the cardiovascular risk attributed to elevated uric acid levels may be explained by changes in central and peripheral pulsatile and/or steady blood pressure (BP) components remains controversial. In a cross-sectional analysis of normotensive and untreated hypertensive participants of the CARTaGENE populational cohort, we examined the relationship between uric acid, and both pulsatile and steady components of peripheral and central BP, using sex-stratified linear regressions. Of the 20 004 participants, 10 161 individuals without antihypertensive or uric acid-lowering drugs had valid pulse wave analysis and serum uric acid levels. In multivariate analysis, pulsatile components of BP were not associated with uric acid levels, whereas steady components [mean BP (MBP), peripheral and central DBP] were all associated with higher levels of uric acid levels in women and men (all P uric acid levels but not for MBP-adjusted cSBP. Peripheral and cSBP, which are aggregate measures of pulsatile and steady BP, were also associated with uric acid levels in women (β = 0.063 and 0.072, respectively, both P uric acid levels. Serum uric acid levels appear to be associated with both central and peripheral steady but not pulsatile BP, regardless of sex.

  7. MR angiography of stenosis and aneurysm models in the pulsatile flow: variation with imaging parameters and concentration of contrast media

    International Nuclear Information System (INIS)

    Park, Kyung Joo; Park, Jae Hyung; Lee, Hak Jong; Won, Hyung Jin; Lee, Dong Hyuk; Min, Byung Goo; Chang, Kee Hyun

    1997-01-01

    The image quality of magnetic resonance angiography (MRA) varies according to the imaging techniques applied and the parameters affected by blood flow patterns, as well as by the shape of the blood vessels. This study was designed to assess the influence on signal intensity and its distribution of the geometry of these vessels, the imaging parameters, and the concentration of contrast media in MRA of stenosis and aneurysm models. MRA was performed in stenosis and aneurysm models made of glass tubes, using pulsatile flow with viscosity and flow profile similar to those of blood. Slice and maximum intensity projection (MIP) images were obtained using various imaging techniques and parameters;there was variation in repetition time, flip angle, imaging planes, and concentrations of contrast media. On slice images of three-dimensional (3D) time-of-flight (TOF) techniques, flow signal intensity was measured at five locations in the models, and contrast ratio was calculated as the difference between flow signal intensity (SI) and background signal intensity (SIb) divided by background signal intensity or (SI-SIb)/SIb. MIP images obtained by various techniques and using various parameters were also analyzed, with emphasis in the stenosis model on demonstrated degree of stenosis, severity of signal void and image distortion, and in the aneurysm model, on degree of visualization, distortion of contour and distribution of signals. In 3D TOF, the shortest TR (36 msec) and the largest FA (50 deg ) resulted in the highest contrast ratio, but larger flip angles did not effectively demonstrate the demonstration of the peripheral part of the aneurysm. Loss of signal was most prominent in images of the stenosis model obtained with parallel or oblique planes to the flow direction. The two-dimensional TOF technique also caused signal void in stenosis, but precisely demonstrated the aneurysm, with dense opacification of the peripheral part. The phase contrast technique showed some

  8. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    Energy Technology Data Exchange (ETDEWEB)

    Pekindil, Goekhan [Department of Radiology, Trakya University School of Medicine, 22030 Edirne (Turkey); Varol, Fuesun G. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Ali Yuece, M. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Yardim, Turgut [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey)

    1999-03-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period.

  9. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    International Nuclear Information System (INIS)

    Pekindil, Goekhan; Varol, Fuesun G.; Ali Yuece, M.; Yardim, Turgut

    1999-01-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period

  10. Pulsatile luteinising hormone releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; Vandekerckhove, P.; Lilford, R.; van der Veen, F.

    2000-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intra-venous or subcutaneous route using a portable pump has been used successfully in

  11. Closing in on the Mechanisms of Pulsatile Insulin Secretion.

    Science.gov (United States)

    Bertram, Richard; Satin, Leslie S; Sherman, Arthur S

    2018-03-01

    Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca 2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca 2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca 2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets. © 2018 by the American Diabetes Association.

  12. Reference Curve for the Mean Uterine Artery Pulsatility Index in Singleton Pregnancies.

    Science.gov (United States)

    Weichert, Alexander; Hagen, Andreas; Tchirikov, Michael; Fuchs, Ilka B; Henrich, Wolfgang; Entezami, Michael

    2017-05-01

    Doppler sonography of the uterine artery (UA) is done to monitor pregnancies, because the detected flow patterns are useful to draw inferences about possible disorders of trophoblast invasion. Increased resistance in the UA is associated with an increased risk of preeclampsia and/or intrauterine growth restriction (IUGR) and perinatal mortality. In the absence of standardized figures, the normal ranges of the various available reference curves sometimes differ quite substantially from one another. The causes for this are differences in the flow patterns of the UA depending on the position of the pulsed Doppler gates as well as branching of the UA. Because of the discrepancies between the different reference curves and the practical problems this poses for guideline recommendations, we thought it would be useful to create our own reference curves for Doppler measurements of the UA obtained from a singleton cohort under standardized conditions. This retrospective cohort study was carried out in the Department of Obstetrics of the Charité - Universitätsmedizin Berlin, the Department for Obstetrics and Prenatal Medicine of the University Hospital Halle (Saale) and the Center for Prenatal Diagnostics and Human Genetics Kurfürstendamm 199. Available datasets from the three study locations were identified and reference curves were generated using the LMS method. Measured values were correlated with age of gestation, and a cubic model and Box-Cox power transformation (L), the median (M) and the coefficient of variation (S) were used to smooth the curves. 103 720 Doppler examinations of the UA carried out in singleton pregnancies from the 11th week of gestation (10 + 1 GW) were analyzed. The mean pulsatility index (Mean PI) showed a continuous decline over the course of pregnancy, dropping to a plateau of around 0.84 between the 23rd and 27th GW, after which it decreased again. Age of gestation, placental position, position of pulsed Doppler gates and branching of

  13. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii?

    Science.gov (United States)

    Ho, Chester H; Johnson, Tova; Miklacic, Joan; Donskey, Curtis J

    2009-10-01

    Ho CH, Johnson T, Miklacic J, Donskey CJ. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii? To determine the extent of environmental contamination associated with low-pressure pulsatile lavage of stage III or IV pressure ulcers in patients with spinal cord injury (SCI) when routine infection control precautions are used for wounds colonized or infected with Acinetobacter baumannii. Prospective investigation in which pressure ulcer cultures and environmental cultures were obtained before and after low-pressure pulsatile lavage treatment, and before and after regular dressing changes. Environmental cultures included the patient's bedrail and settle plates placed 0.6, 1.5, and 2.4m from the wound to assess airborne spread of A. baumannii. SCI inpatient unit in a Department of Veterans Affairs Medical Center. Inpatients (N=15) with SCI receiving daily low-pressure pulsatile lavage treatment for stage III or IV pressure ulcers with standard dressing change, as well as regular dressing changes without low-pressure pulsatile lavage at other times of the day. Standard, regular dressing changes and dressing changes with low-pressure pulsatile lavage. Comparison of frequency of environmental contamination with A. baumannii associated with low-pressure pulsatile lavage versus regular dressing changes. Of the 15 SCI inpatients meeting inclusion criteria, 9 (60%) grew A. baumannii from their wounds. Of the 9 patients with wound cultures positive for A. baumannii, only 1 (11%) had environmental contamination with this organism after performance of low-pressure pulsatile lavage, and the same patient had environmental contamination after a standard dressing change. The antibiotic susceptibility patterns of the wound and environmental A. baumannii isolates were identical. Low-pressure pulsatile lavage using the infection control methods described is not associated with an increased

  14. Sigmoid Sinus Diverticulum, Dehiscence, and Venous Sinus Stenosis: Potential Causes of Pulsatile Tinnitus in Patients with Idiopathic Intracranial Hypertension?

    Science.gov (United States)

    Lansley, J A; Tucker, W; Eriksen, M R; Riordan-Eva, P; Connor, S E J

    2017-09-01

    Pulsatile tinnitus is experienced by most patients with idiopathic intracranial hypertension. The pathophysiology remains uncertain; however, transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence have been proposed as potential etiologies. We aimed to determine whether the prevalence of transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence was increased in patients with idiopathic intracranial hypertension and pulsatile tinnitus relative to those without pulsatile tinnitus and a control group. CT vascular studies of patients with idiopathic intracranial hypertension with pulsatile tinnitus ( n = 42), without pulsatile tinnitus ( n = 37), and controls ( n = 75) were independently reviewed for the presence of severe transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence according to published criteria. The prevalence of transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence in patients with idiopathic intracranial hypertension with pulsatile tinnitus was compared with that in the nonpulsatile tinnitus idiopathic intracranial hypertension group and the control group. Further comparisons included differing degrees of transverse sinus stenosis (50% and 75%), laterality of transverse sinus stenosis/sigmoid sinus diverticulum/dehiscence, and ipsilateral transverse sinus stenosis combined with sigmoid sinus diverticulum/dehiscence. Severe bilateral transverse sinus stenoses were more frequent in patients with idiopathic intracranial hypertension than in controls ( P tinnitus within the idiopathic intracranial hypertension group. Sigmoid sinus dehiscence (right- or left-sided) was also more common in patients with idiopathic intracranial hypertension compared with controls ( P = .01), but there was no significant association with pulsatile tinnitus within the idiopathic intracranial hypertension group. While our data corroborate previous studies demonstrating increased prevalence of sigmoid sinus diverticulum

  15. Imaging findings of pulsatile tinnitus caused by sigmoid sinus abnormalities

    International Nuclear Information System (INIS)

    Liang Xihong; Wang Zhenchang; Gong Shusheng; Xia Yin; Wang Zhengyu; Yang Bentao; Yan Fei; Li Jing; Xian Junfang; Chen Guangli

    2010-01-01

    Objective: To study a rare CT finding of pulsatile tinnitus (PT) caused by sigmoid sinus abnormalities. Methods: The imaging data of PT caused by sigmoid sinus abnormalities were analyzed retrospectively in 15 patients (15 female). The median age was 45 years (24 to 63 years). The duration of persistence pulsatile tinnitus was from 0.5 year to 36.0 years (median time, 2.0 years). The tinnitus was at left side in 5 patients and right side in 10 patients. Fifteen patients underwent HRCT of the temporal bone. Of them, 12 patients underwent cerebral CT angiography and CT venogram (CTA/CTV), and 9 patients underwent cerebral digital subtraction angiography (DSA). Nine patients underwent transmastoid reconstruction surgery of the sigmoid sinus. Of them, the tinnitus was at left side in 2 patients and right side in 7 patients. Paired rank sum test was used to compare the cross-sectional area of the sigmoid sinus of the tinnitus side and normal side.Results: On HRCT, foca bony coarse defect is shown in the anterior sigmoid wall in 11 patients and anterolateral sigmoid wall in 4 patients. On CTA/CTV, the sigmoid sinus focally protuded into the adjacent mastoid air cells and formed diverticulum in 10 patients. The pulsatile tinnitus disappeared immediately after transmastoid reconstruction surgery of the sigmoid sinus in all 9 patients. The cross-sectional area of the sigmoid sinus of the tinnitus side was 100.6 (41.5-96.2)mm 2 , it was 77.0 (92.1-122.4)mm 2 in the nonmal side (Z=2.158, P=0.031). Conclusion: Focal bony defect of the sigmoid wall with sigmoid sinus diverticula is one of the causes which lead to pulsatile tinnitus, which can be easily identified by imaging examination. (authors)

  16. Imaging findings of pulsatile tinnitus caused by sigmoid sinus abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Xihong, Liang; Zhenchang, Wang; Shusheng, Gong; Yin, Xia; Zhengyu, Wang; Bentao, Yang; Fei, Yan; Jing, Li; Junfang, Xian; Guangli, Chen [Department of Radiology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing (China)

    2010-04-15

    Objective: To study a rare CT finding of pulsatile tinnitus (PT) caused by sigmoid sinus abnormalities. Methods: The imaging data of PT caused by sigmoid sinus abnormalities were analyzed retrospectively in 15 patients (15 female). The median age was 45 years (24 to 63 years). The duration of persistence pulsatile tinnitus was from 0.5 year to 36.0 years (median time, 2.0 years). The tinnitus was at left side in 5 patients and right side in 10 patients. Fifteen patients underwent HRCT of the temporal bone. Of them, 12 patients underwent cerebral CT angiography and CT venogram (CTA/CTV), and 9 patients underwent cerebral digital subtraction angiography (DSA). Nine patients underwent transmastoid reconstruction surgery of the sigmoid sinus. Of them, the tinnitus was at left side in 2 patients and right side in 7 patients. Paired rank sum test was used to compare the cross-sectional area of the sigmoid sinus of the tinnitus side and normal side.Results: On HRCT, foca bony coarse defect is shown in the anterior sigmoid wall in 11 patients and anterolateral sigmoid wall in 4 patients. On CTA/CTV, the sigmoid sinus focally protuded into the adjacent mastoid air cells and formed diverticulum in 10 patients. The pulsatile tinnitus disappeared immediately after transmastoid reconstruction surgery of the sigmoid sinus in all 9 patients. The cross-sectional area of the sigmoid sinus of the tinnitus side was 100.6 (41.5-96.2)mm{sup 2}, it was 77.0 (92.1-122.4)mm{sup 2} in the nonmal side (Z=2.158, P=0.031). Conclusion: Focal bony defect of the sigmoid wall with sigmoid sinus diverticula is one of the causes which lead to pulsatile tinnitus, which can be easily identified by imaging examination. (authors)

  17. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  18. Pulsatile thyrotropin secretion in patients with Cushing's syndrome

    NARCIS (Netherlands)

    Adriaanse, R.; Brabant, G.; Endert, E.; Wiersinga, W. M.

    1994-01-01

    Pulsatile and circadian thyrotropin (TSH) secretion were studied in 16 healthy controls and in three patients with Cushing's syndrome who were studied twice (before and after treatment). Blood was sampled every 10 minutes over 24 hours for TSH (immunoradiometric assay [IRMA]). Mean 24-hour TSH in

  19. Clinical impact of quantitative left atrial vortex flow analysis in patients with atrial fibrillation: a comparison with invasive left atrial voltage mapping.

    Science.gov (United States)

    Lee, Jung Myung; Hong, Geu-Ru; Pak, Hui-Nam; Shim, Chi Young; Houle, Helene; Vannan, Mani A; Kim, Minji; Chung, Namsik

    2015-08-01

    Recently, left atrial (LA) vortex flow analysis using contrast transesophageal echocardiography (TEE) has been shown to be feasible and has demonstrated significant differences in vortex flow morphology and pulsatility between normal subjects and patients with atrial fibrillation (AF). However, the relationship between LA vortex flow and electrophysiological properties and the clinical significance of LA vortex flow are unknown. The aims of this study were (1) to compare LA vortex flow parameters with LA voltage and (2) to assess the predictive value of LA vortex flow parameters for the recurrence of AF after radiofrequency catheter ablation (RFCA). Thirty-nine patients with symptomatic non-valvular AF underwent contrast TEE before undergoing RFCA for AF. Quantitative LA vortex flow parameters were analyzed by Omega flow (Siemens Medical Solution, Mountain View, CA, USA). The morphology and pulsatility of LA vortex flow were compared with electrophysiologic parameters that were measured invasively. Hemodynamic, electrophysiological, and vortex flow parameters were compared between patients with and without early recurrence of AF after RFCA. Morphologic parameters, including LA vortex depth, length, width, and sphericity index were not associated with LA voltage or hemodynamic parameters. The relative strength (RS), which represents the pulsatility power of LA, was positively correlated with LA voltage (R = 0.53, p = 0.01) and LA appendage flow velocity (R = 0.73, p vortex flow analysis, especially RS, correlated well with LA voltage. Decreased pulsatility strength in the LA was associated with recurrent AF. LA vortex may have incremental value in predicting the recurrence of AF.

  20. Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model.

    Science.gov (United States)

    Chiaramonti, Alexander M; Robertson, Astor D; Nguyen, Thao P; Jaffe, David E; Hanna, E Lex; Holmes, Robert; Barfield, William R; Fourney, William L; Stains, Joseph P; Pellegrini, Vincent D

    2017-11-01

    Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then

  1. The pulsatility index and the resistive index in renal arteries. Associations with long-term progression in chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Talleruphuus, U

    1997-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurements of downstream renal artery resistance. PI and RI have been found to correlate with renal vascular resistance, filtration fraction and effective renal plasma flow in chronic renal failure. The aim...... of the present study was to evaluate the potential relationship between these indices and the rate of decline in renal function, as reflected by changes in different parameters of renal function in patients with chronic renal failure....

  2. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  3. Hypersensitivity reaction with intravenous GnRH after pulsatile subcutaneous GnRH treatment in male hypogonadotrophic hypogonadism.

    OpenAIRE

    Popović, V.; Milosević, Z.; Djukanović, R.; Micić, D.; Nesović, M.; Manojlović, D.; Djordjević, P.; Mićić, J.

    1988-01-01

    Chronic pulsatile subcutaneous administration of low doses of gonadotrophin releasing hormone (GnRH) is an effective therapy for men with hypogonadotrophic hypogonadism. Hypersensitivity reactions to GnRH are rare. We wish to report hypersensitivity reactions with intravenous GnRH after low dose subcutaneous pulsatile GnRH treatment in two men with hypogonadotrophic hypogonadism due to suprasellar disease.

  4. Pulsatility index variations using two different transit-time flowmeters in coronary artery bypass surgery.

    Science.gov (United States)

    Nordgaard, Håvard B; Vitale, Nicola; Astudillo, Rafael; Renzulli, Attilio; Romundstad, Pål; Haaverstad, Rune

    2010-05-01

    Transit-time flow measurement is widely accepted as an intra-operative assessment in coronary artery bypass grafting (CABG). However, the two most commonly applied flowmeters, manufactured by MediStim ASA and Transonic Inc., have different default filter settings of 20 and 10 Hz, respectively. This may cause different flow measurements, which will influence the reported results. The aim was to compare pulsatility index (PI) values recorded by the MediStim and Transonic flowmeters in two different clinical settings: (1) analysis of the flow patterns recorded simultaneously by both flowmeters in the same CABGs; and (2) evaluation of flow patterns under different levels of filter settings in the same grafts. Graft flow and PI were measured using the two different flowmeters simultaneously in 19 bypass grafts. Finally, eight grafts were assessed under different digital filter settings at 5, 10, 20, 30, 50 and 100 Hz. The Transonic flowmeter provided substantially lower PI as compared with the MediStim flowmeter. By increasing the filter setting in the flowmeter, PI increased considerably. The Transonic flowmeter displayed a lower PI than the MediStim, due to a lower filter setting. In the Transonic,flow signals are filtered at a lower level, rendering a 'smoother' pattern of flow curves. Because different filter settings determine different PIs, caution must be taken when flow values and flowmeters are compared. The type of flowmeter should be indicated whenever graft flow measurements and derived indexes are provided [corrected]. Copyright 2009 European Association for Cardio-Thoracic Surgery. All rights reserved.

  5. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.

    Directory of Open Access Journals (Sweden)

    Idit Avrahami

    Full Text Available Arterial wall shear stress (WSS parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q and heart rate (HR measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity-known as the pulsatility index (PI-which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV. The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%], oscillating shear index (OSI and the ratio of minimum to maximum shear stress rates (min/max, are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS.

  6. An experimental and numerical study of the flow and mass transfer in a model of the wearable artificial kidney dialyzer

    Directory of Open Access Journals (Sweden)

    Rosenfeld Moshe

    2010-05-01

    Full Text Available Abstract Background Published studies of the past decades have established that mass transfer across the dialyzer membrane is governed by diffusion, convection and osmosis. While the former is independent of the pressure in the liquids, the latter two are pressure dependent and are enhanced when the pressure difference across the membrane is increased. The goal of the present study is to examine the impact of pulsatile flow on the transport phenomena across the membrane of a high-flux dialyzer in a wearable artificial kidney (WAK with a novel single small battery-operated pulsatile pump that drives both the blood and dialysate in a counter-phased manner, maximizing the trans-membrane pressure. Methods Both in-vitro experimental and numerical tools are employed to compare the performance of the pulsatile WAK dialyzer with a traditional design of a single-channel roller blood pump together with a centrifugal pump that drives the dialysate flow. The numerical methods utilize the axisymmetric Navier-Stokes and mass transfer equations to model the flow in the fibers of the dialyzer. Results While diffusion is still the dominating transport regime, the WAK pump enhances substantially the trans-membrane pressure and thus increases mass convection that might be as high as 30% of the overall transfer. This increase is obtained due to the design of the pulsatile WAK pump that increases ultrafiltration by increasing the trans-membrane pressure. Conclusions The experimental and numerical results revealed that when pumping at similar flow rates, a small battery-operated pulsatile pump provides clearances of urea and creatinine similar as or better than a large heavy AC-powered roller pump.

  7. Influence of hormonal control on LH pulsatility and secretion in women with classical congenital adrenal hyperplasia.

    Science.gov (United States)

    Bachelot, Anne; Chakhtoura, Zeina; Plu-Bureau, Geneviève; Coudert, Mathieu; Coussieu, Christiane; Badachi, Yasmina; Dulon, Jérome; Charbit, Beny; Touraine, Philippe

    2012-10-01

    Women with classical congenital adrenal hyperplasia (CAH) exhibit reduced fertility due to several factors including anovulation. This has been attributed to a disturbed gonadotropic axis as in polycystic ovary syndrome (PCOS), but there is no precise evaluation. Our aim was to evaluate the gonadotropic axis and LH pulsatility patterns and to determine factor(s) that could account for the potential abnormality of LH pulsatility. Case/control study. Sixteen CAH women (11 with the salt-wasting form and five with the simple virilizing form), aged from 18 to 40 years, and 16 age-matched women, with regular menstrual cycles (28 ± 3 days), were included. LH pulse patterns over 6 h were determined in patients and controls. No differences were observed between patients and controls in terms of mean LH levels, LH pulse amplitude, or LH frequency. In CAH patients, LH pulsatility patterns were heterogeneous, leading us to perform a clustering analysis of LH data, resulting in a two-cluster partition. Patients in cluster 1 had similar LH pulsatility patterns to the controls. Patients in cluster 2 had: lower LH pulse amplitude and frequency and presented menstrual cycle disturbances more frequently; higher 17-OH progesterone, testosterone, progesterone, and androstenedione levels; and lower FSH levels. LH pulsatility may be normal in CAH women well controlled by hormonal treatment. Undertreatment is responsible for hypogonadotropic hypogonadism, with low LH pulse levels and frequency, but not PCOS. Suppression of progesterone and androgen concentrations during the follicular phase of the menstrual cycle should be a major objective in these patients.

  8. Computational model on pulsatile flow of blood through a tapered ...

    Indian Academy of Sciences (India)

    S PRIYADHARSHINI

    2017-11-02

    Nov 2, 2017 ... It is pertinent to note that the magnitudes of flow resistance are higher in the case of ... mathematical model on non-Newtonian flow of blood through a ..... The important predictions of the present investigation are enumerating the .... drug carriers for targeted drug delivery, reducing blood flow at the time of ...

  9. Association between the extent of sigmoid sinus dehiscence and an occurrence of pulsatile tinnitus: a retrospective imaging study

    International Nuclear Information System (INIS)

    Dong, C.; Zhao, P.; Liu, Z.; Xu, W.; Lv, H.; Pang, S.; Wang, Z.

    2016-01-01

    Aim: To assess the extent of sigmoid sinus dehiscence (SSD) on high-resolution computed tomography venography (HRCTV) or high-resolution computed tomography (HRCT) images in pulsatile tinnitus (PT) and non-PT groups to determine whether there is an association between the extent of SSD and occurrence of PT. Materials and methods: Twenty-eight SSD patients with ipsilateral PT and 28 age- and gender-matched SSD patients without PT who underwent HRCTV or HRCT were enrolled in this study and categorised into two groups: “PT group” and “non-PT group”. The extent of SSD in each group was calculated and compared. Results: The largest transverse diameter and largest vertical diameter of SSD in the PT group were 6.21±1.7 and 6.15±2.19 mm, respectively. The largest transverse diameter and largest vertical diameter of SSD in the non-PT group were 3.06±1.38 and 2.51±1.03 mm, respectively. The extent of SSD was statistically different between the two groups (p<0.001; p<0.001). Conclusions: As a cause of PT, SSD can also occur in individuals without PT symptoms. Preliminary findings suggest that there may be a potential correlation between the extent of SSD and an occurrence of PT. - Highlights: • We compared the extent of sigmoid sinus dehiscence in pulsatile tinnitus and non-pulsatile tinnitus groups. • The sigmoid sinus dehiscence in the pulsatile tinnitus patients was larger than those in non-pulsatile tinnitus patients. • There may be a potential correlation between the extent of sigmoid sinus dehiscence and an occurrence of pulsatile tinnitus.

  10. Qualitative analysis of intracranial CSF flow on cine-MR imaging, with special reference to signal ratio of CSF to fat tissue

    International Nuclear Information System (INIS)

    Kadowaki, Chikafusa; Hara, Mitsuhiro; Numoto, Mitsuo; Takeuchi, Kazuo; Saito, Isamu

    1993-01-01

    Cine magnetic resonance images (MR) dramatically demonstrate the pulsatile flow of cerebrospinal fluid (CSF) stimulated by the pulsatile motion of the brain following cardiac pulsation. Reduced signal intensity, frequently observed especially in the aqueduct of Sylvius, the third ventricle and the fourth ventricle, is believed to reflect the pulsatile motion of the CSF. Qualitative analysis of MR signal intensity of CSF on each cine frame is compared with CSF flow within the ventricles on real-time cine MR images. While the chronological changes in signal intensities of CSF within the ventricles show only marginal changes in signal intensity in the third ventricle related to downward flow of CSF passing through the foramen of Monro during the early stage of cardiac systole, these changes are thought to have no significant correlation with the CSF flow in the CSF pathway. The chronological changes in relative signal ratios, SR [signal intensities of CSF/signal intensities of fat] can show CSF flow and turbulence within the ventricles. Under normal conditions, within the third ventricle the SR decreases due to pulsatile CSF flow through the foramen of Monro during the early stage of cardiac systole, and decreases because of the flow of CSF from the anterior to the posterior part of the third ventricle, the downward flow of CSF through the aqueduct leads to a lower SR during cardiac diastole. These changes in the fourth ventricle are stimulated by the changes in SR in the third ventricle. The new method of analyzing chronological changes in the relative MR signal ratio of CSF to fat [SR] has the distinct advantage of providing an accurate evaluation of CSF dynamics, and it provides us with important diagnostic information leading to clarification of the pathophysiology of CSF dynamics. (author)

  11. A segmented K-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding

    DEFF Research Database (Denmark)

    Thomsen, C; Cortsen, M; Söndergaard, L

    1995-01-01

    for renal artery flow determination. The protocol uses 16 phase-encoding lines per heart beat during 16 heart cycles and gives a temporal velocity resolution of 160 msec. Comparison with a conventional ECG-triggered velocity mapping protocol was made in phantoms as well as in volunteers. In our study, both...... methods showed sufficient robustness toward complex flow in a phantom model. In comparison with the ECG technique, the segmentation technique reduced vessel blurring and pulsatility artifacts caused by respiratory motion, and average flow values obtained in vivo in the left renal artery agreed between......Two important prerequisites for MR velocity mapping of pulsatile motion are synchronization of the sequence execution to the time course of the flow pattern and robustness toward loss of signal in complex flow fields. Synchronization is normally accomplished by using either prospective ECG...

  12. Polycystic ovarian disease unmasked by pulsatile GnRH therapy in a subgroup of women with hypothalamic amenorrhea.

    Science.gov (United States)

    Mattle, Verena; Bilgyicildirim, Aysen; Hadziomerovic, Dijana; Ott, Helmut W; Zervomanolakis, Ioannis; Leyendecker, Gerhard; Wildt, Ludwig

    2008-02-01

    To present the observation in six out of 120 women treated with pulsatile GnRH for ovulation induction, who developed hyperandrogenemia and polycystic ovaries during treatment. Clinical observation. Department of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Austria. A total of 120 women initially diagnosed as suffering from primary or secondary hypothalamic amenorrhea were treated for ovulation induction with pulsatile administration of GnRH for up to 140 days. There was no indication of the presence of polycystic ovaries or hyperandrogenemia before therapy. Pulsatile GnRH therapy using the Zyklomat pump. Ovulatory menstrual cycles. Initially, all patients responded to pulsatile GnRH administration with ovulation and corpus luteum formation. During continuation of treatment, 6 patients developed an increase in LH and LH/FSH ratio as well as a progressive rise in serum T levels resulting in hyperandrogenemia. This was accompanied by the development of polycystic ovaries and cessation of follicular maturation. We conclude from these observations that restoration of normal GnRH stimulation of the pituitary gland can result in the development of hyperandrogenemia and polycystic ovaries, suggesting a pituitary or ovarian defect underlying the pathogenesis of this disorder.

  13. Investigation of pulsatile flowfield in healthy thoracic aorta models.

    Science.gov (United States)

    Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen

    2010-02-01

    Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the

  14. Obstructive Hydrocephalus Secondary to Enlarged Virchow-Robin Spaces: A Rare Cause of Pulsatile Tinnitus.

    Science.gov (United States)

    Donaldson, Christopher; Chatha, Gurkirat; Chandra, Ronil V; Goldschlager, Tony

    2017-05-01

    Obstructive hydrocephalus secondary to enlarged Virchow-Robin Spaces (VRS) is a rare entity, with only a few cases reported in the literature. Presenting symptoms vary widely from headaches to dizziness. We report a case of a 31-year-old man who presented with pulsatile tinnitus and magnetic resonance imaging showing obstructive hydrocephalus secondary to tumefactive VRS. After a cerebrospinal fluid diversion procedure in the form of an endoscopic third ventriculostomy, he had almost complete resolution of his symptoms. This is the first case of obstructive hydrocephalus secondary to enlarged VRS, presenting with pulsatile tinnitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Pulsatile dry cupping in chronic low back pain - a randomized three-armed controlled clinical trial.

    Science.gov (United States)

    Teut, M; Ullmann, A; Ortiz, M; Rotter, G; Binting, S; Cree, M; Lotz, F; Roll, S; Brinkhaus, B

    2018-04-02

    We aimed to investigate the effectiveness of two different forms of dry pulsatile cupping in patients with chronic low back pain (cLBP) compared to medication on demand only in a three-armed randomized trial. 110 cLBP patients were randomized to regular pulsatile cupping with 8 treatments plus paracetamol on demand (n = 37), minimal cupping with 8 treatments plus paracetamol on demand (n = 36) or the control group with paracetamol on demand only (n = 37). Primary outcome was the pain intensity on a visual analogue scale (VAS, 0-100 mm) after 4 weeks, secondary outcome parameter included VAS pain intensity after 12 weeks, back function as measured with the 'Funktionsfragebogen Hannover Rücken' (FFbH-R) and health related quality of life questionnaire Short form 36 (SF-36) after 4 and 12 weeks. The mean baseline-adjusted VAS after 4 weeks was 34.9 mm (95% CI: 28.7; 41.2) for pulsatile cupping, 40.4 (34.2; 46.7) for minimal cupping and 56.1 (49.8; 62.4) for control group, resulting in statistically significant differences between pulsatile cupping vs. control (21.2 (12.2; 30.1); p back function after 4 weeks, but not after 12 weeks (- 5.4 (- 11.7;0.8); p = 0.088), pulsatile cupping also showed better improvements on SF-36 physical component scale compared to control at 4 and 12 weeks (- 5.6 (- 9.3;-2.0); p = 0.003; - 6.1 (- 9.9;-2.4); p = 0.002). For back function and quality of life minimal cupping group was not statistically different to control after 4 and 12 weeks. Paracetamol intake did not differ between the groups (cupping vs. control (7.3 (- 0.4;15.0); p = 0.063); minimal cupping vs. control (6.3 (- 2.0;14.5); p = 0.133). Both forms of cupping were effective in cLBP without showing significant differences in direct comparison after four weeks, only pulsatile cupping showed effects compared to control after 12 weeks. The study was registered at ClinicalTrials.gov (identifier: NCT02090686 ).

  16. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    Science.gov (United States)

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  17. Does polycystic ovarian morphology influence the response to treatment with pulsatile GnRH in functional hypothalamic amenorrhea?

    Science.gov (United States)

    Dumont, Agathe; Dewailly, Didier; Plouvier, Pauline; Catteau-Jonard, Sophie; Robin, Geoffroy

    2016-04-29

    Pulsatile GnRH therapy is the gold standard treatment for ovulation induction in women having functional hypothalamic amenorrhea (FHA). The use of pulsatile GnRH therapy in FHA patients with polycystic ovarian morphology (PCOM), called "FHA-PCOM", has been little studied in the literature and results remain contradictory. The aim of this study was to compare the outcomes of pulsatile GnRH therapy for ovulation induction between FHA and "FHA-PCOM" patients in order to search for an eventual impact of PCOM. Retrospective study from August 2002 to June 2015, including 27 patients with FHA and 40 "FHA-PCOM" patients (85 and 104 initiated cycles, respectively) treated by pulsatile GnRH therapy for induction ovulation. The two groups were similar except for markers of PCOM (follicle number per ovary, serum Anti-Müllerian Hormone level and ovarian area), which were significantly higher in patients with "FHA-PCOM". There was no significant difference between the groups concerning the ovarian response: with equivalent doses of GnRH, both groups had similar ovulation (80.8 vs 77.7 %, NS) and excessive response rates (12.5 vs 10.6 %, NS). There was no significant difference in on-going pregnancy rates (26.9 vs 20 % per initiated cycle, NS), as well as in miscarriage, multiple pregnancy or biochemical pregnancy rates. Pulsatile GnRH seems to be a successful and safe method for ovulation induction in "FHA-PCOM" patients. If results were confirmed by prospective studies, GnRH therapy could therefore become a first-line treatment for this specific population, just as it is for women with FHA without PCOM.

  18. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    Science.gov (United States)

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  19. Induction of pulsatile secretion of leptin in horses following thyroidectomy.

    Science.gov (United States)

    Buff, Preston R; Messer, Nat T; Cogswell, Andria M; Wilson, David A; Johnson, Philip J; Keisler, Duane H; Ganjam, Venkataseshu K

    2007-02-01

    Endocrine characteristics of Quarter Horse-type mares were determined during a 68 h feed deprivation and again in the same mares following surgical thyroidectomy (THX). A crossover experimental design was implemented, in which mares received brome hay available ad libitum (FED) or were food deprived (RES) for 68 h. Blood samples were collected every 20 min for 48 h, beginning 20 h after the onset of food deprivation. Concentrations of triiodothyronine and thyroxine were undetectable post-THX. Plasma concentrations of thyrotropin were greater post-THX versus pre-THX (P<0 x 001). Plasma concentrations of leptin were greater in the THX FED group than in the THX RES group (P<0 x 01). The existence of leptin pulse secretion was found only in post-THX compared with the same horses pre-THX (P=0 x 02). We theorize that non-pulsatile secretion of leptin may have contributed to the survival of this species, as it evolved in the regions of seasonal availability of food. Lack of pulsatile secretion of leptin may contribute to the accumulation of energy stores by modulating leptin sensitivity.

  20. Numerical Prediction of Turbulent Oscillating Flow and Heat Transfer in Pipes with Various End Geometries. Ph.D. Thesis, Final Report

    Science.gov (United States)

    Oseid, Kirk Leroi

    1995-01-01

    Unsteady flow is present in man, machine and nature. The flow of blood in arteries and capillaries in the human body is pulsatile-composed of a mean flow superposed with an oscillating component. The tides that wash in and out of rivers, harbors and estuaries are unsteady flows with very long periods of oscillation. Many engineering devices employ pulsatile and oscillating flow. Pulsating flow is defined here as a periodic flow with a net displacement of fluid over each flow cycle. Oscillating flow is defined as a period flow with a zero mean over each cycle. The subject of this thesis is oscillating flow and heat transfer in pipes which make up the heater and cooler sections of the NASA Space Power Research Engine (SPRE) currently under development. This engine uses the Stirling cycle as the thermal energy converter in a power plant for future space applications. The information presented in this thesis will of course be applicable to the design of many types of machinery which employ oscillating flow and heat transfer.

  1. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation and Pharmacokinetics of Double-Compression-Coated Mini-Tablets.

    Science.gov (United States)

    Vemula, Sateesh Kumar

    2015-12-01

    A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.

  2. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents.

    Science.gov (United States)

    Hsiao, Hao-Ming; Yin, Ming-Ting

    2014-02-01

    Intravascular stenting has emerged as the primary treatment for vascular diseases and has received great attention from the medical community since its introduction two decades ago. The endovascular self-expanding stent is used to treat peripheral artery diseases; however, once implanted, these stents suffer from various cyclic motions caused by pulsatile blood pressure and daily activities. Due to this challenging environment, fatigue performance has become a critical issue for stent design. In this paper, a simple yet intriguing concept of stent design aimed at enhancing pulsatile fatigue life is investigated. The concept of this design is to shift the highly concentrated stresses/strains away from the crown and re-distribute them along the stress-free bar arm by tapering its strut width. Finite element models were developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the stent to various loading conditions. Results show that the fatigue safety factor jumped to 2.5-3.0 times that of the standard stent with constant strut width. This is astonishing considering that the stent profile and scaffolding were not compromised. The findings of this paper provide an excellent approach to the optimization of future stent design to greatly improve stent fatigue performance.

  3. Urethral anatomy and semen flow during ejaculation

    Science.gov (United States)

    Kelly, Diane

    2016-11-01

    Ejaculation is critical for reproductive success in many animals, but little is known about its hydrodynamics. In mammals, ejaculation pushes semen along the length of the penis through the urethra. Although the urethra also carries urine during micturition, the flow dynamics of micturition and ejaculation differ: semen is more viscous than urine, and the pressure that drives its flow is derived primarily from the rhythmic contractions of muscles at the base of the penis, which produce pulsatile rather than steady flow. In contrast, Johnston et al. (2014) describe a steady flow of semen through the crocodilian urethral groove during ejaculation. Anatomical differences of tissues associated with mammalian and crocodilian urethral structures may underlie these differences in flow behavior.

  4. Effects of iodinated contrast media on common carotid and brachial artery blood flow and wall shear stress

    International Nuclear Information System (INIS)

    Irace, C.; Tamburini, S.; Bertucci, B.; Franceschi, M.S. de; Gnasso, A.

    2006-01-01

    The aim of our study was to evaluate the effect of the intravenous contrast media iomeprol on wall shear stress, blood flow and vascular parameters in the common carotid and brachial artery. Thirty outpatients undergoing thoracic or abdominal spiral CT scans were studied. The internal diameter and flow velocity of the common carotid and brachial artery were evaluated by ultrasound, and blood viscosity was measured before and after low osmolality iomeprol (Iomeron 350) injection. The wall shear stress, blood flow and pulsatility index were calculated. To test the differences between groups, the Wilcoxon rank test and Mann Whitney U test were applied. Blood viscosity decreased slightly, but significantly after contrast media (4.6±0.7 vs. 4.5±0.7 mPa.s, P=0.02). Contrarily, blood flow and wall shear stress did not change in the common carotid artery, but significantly decreased in the brachial artery (0.9±0.4 vs. 0.6±0.3 ml/s, P<0.0001, and 41.5±13.9 vs. 35.3±11.0 dynes/cm2, P<0.002, respectively), whereas the pulsatility index significantly increased in the brachial artery (5.0±3.3 vs. 7.5±5.3, P<0.001). Iomeprol injection causes blood flow and wall shear stress reduction of the brachial artery; the rise in the pulsatility index suggests an increase in peripheral vascular resistance. Further investigation is needed to evaluate whether these modifications can be clinically relevant. (orig.)

  5. Spiral blood flows in an idealized 180-degree curved artery model

    Science.gov (United States)

    Bulusu, Kartik V.; Kulkarni, Varun; Plesniak, Michael W.

    2017-11-01

    Understanding of cardiovascular flows has been greatly advanced by the Magnetic Resonance Velocimetry (MRV) technique and its potential for three-dimensional velocity encoding in regions of anatomic interest. The MRV experiments were performed on a 180-degree curved artery model using a Newtonian blood analog fluid at the Richard M. Lucas Center at Stanford University employing a 3 Tesla General Electric (Discovery 750 MRI system) whole body scanner with an eight-channel cardiac coil. Analysis in two regions of the model-artery was performed for flow with Womersley number=4.2. In the entrance region (or straight-inlet pipe) the unsteady pressure drop per unit length, in-plane vorticity and wall shear stress for the pulsatile, carotid artery-based flow rate waveform were calculated. Along the 180-degree curved pipe (curvature ratio =1/7) the near-wall vorticity and the stretching of the particle paths in the vorticity field are visualized. The resultant flow behavior in the idealized curved artery model is associated with parameters such as Dean number and Womersley number. Additionally, using length scales corresponding to the axial and secondary flow we attempt to understand the mechanisms leading to the formation of various structures observed during the pulsatile flow cycle. Supported by GW Center for Biomimetics and Bioinspired Engineering (COBRE), MRV measurements in collaboration with Prof. John K. Eaton and, Dr. Chris Elkins at Stanford University.

  6. Tolerance to continuous intrathecal baclofen infusion can be reversed by pulsatile bolus infusion

    NARCIS (Netherlands)

    Heetla, H. W.; Staal, M. J.; van Laar, T.

    Study design: Pilot study. Objective: To study the effect of pulsatile bolus infusion of intrathecal baclofen (ITB) on daily ITB dose, in patients showing dose increases, probably due to tolerance. Setting: Department of neurology and neurosurgery, University Medical Center Groningen, the

  7. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-18

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  8. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  9. Neuroanatomical Alterations in Patients with Early Stage of Unilateral Pulsatile Tinnitus: A Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Yawen Liu

    2018-01-01

    Full Text Available During the past several years, the rapid development of neuroimaging techniques has contributed greatly in the noninvasive imaging studies of tinnitus. The aim of the present study was to explore the brain anatomical alterations in patients with right-sided unilateral pulsatile tinnitus (PT in the early stage of PT symptom using voxel-based morphometry (VBM analysis. Twenty-four patients with right-sided pulsatile tinnitus and 24 age- and gender-matched normal controls were recruited to this study. Structural image data preprocessing was performed using VBM8 toolbox. Tinnitus Handicap Inventory (THI score was acquired in the tinnitus group to assess the severity of tinnitus and tinnitus-related distress. Two-sample t-test and Pearson’s correlation analysis were used in statistical analysis. Patients with unilateral pulsatile tinnitus had significantly increased gray matter (GM volume in bilateral superior temporal gyrus compared with the normal controls. However, the left cerebellum posterior lobe, left frontal superior orbital lobe (gyrus rectus, right middle occipital gyrus (MOG, and bilateral putamen showed significantly decreased brain volumes. This was the first study which demonstrated the features of neuroanatomical changes in patients with unilateral PT during their early stages of the symptom.

  10. Ultrasonographic Examination of Some Vessels in Dogs and the Characteristics of Blood Flow in These Vessels

    Directory of Open Access Journals (Sweden)

    Figurová M.

    2017-12-01

    Full Text Available The examination by Doppler ultrasonography provides haemodynamic information about blood flow velocity in a respective vessel. It specifies high- and lowresistance flow patterns. The aim of our study was to record the flow in a. carotis communis, a. femoralis and aa. renales in 16 adult clinically healthy dogs of small and medium size; characterize the types of vessels and also determine the pulsatility index (PI and the resistive index (RI of these vessels. The a. femoralis is a high-resistance vessel with a pronounced three-peak waveform. The aa. renales gives a typical picture of a low-resistance flow pattern. The characteristics of a. carotis communis involves different images of its branches a. carotis interna and a. carotis externa. In the investigated groups we observed a medium degree of pulsatility (atypical highresistance flow pattern with an absence of reverse flow. The mean measured values of indices for a. carotis communis were: left side PI 1.824 and RI 0.742; right side PI 1.891 and RI 0.746, and for aa. renales: PI 1.366 ± 0.04 and RI 0.684 ± 0.05.

  11. Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow

    Science.gov (United States)

    Nagaoka, Ryo; Iwasaki, Ryosuke; Arakawa, Mototaka; Kobayashi, Kazuto; Yoshizawa, Shin; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2015-07-01

    We proposed an estimation method for a tissue stiffness from deformations induced by arterial pulsation, and named this proposed method intrinsic elastography (IE). In IE, assuming that the velocity of the deformation propagation in tissues is closely related to the stiffness, the propagation velocity (PV) was estimated by spatial compound ultrasound imaging with a high temporal resolution of 1 ms. However, the relationship between tissue stiffness and PV has not been revealed yet. In this study, the PV of the deformation induced by the pulsatile pump was measured by IE in three different poly(vinyl alcohol) (PVA) phantoms of different stiffnesses. The measured PV was compared with the shear wave velocity (SWV) measured by shear wave imaging (SWI). The measured PV has trends similar to the measured SWV. These results obtained by IE in a healthy male show the possibility that the mechanical properties of living tissues could be evaluated by IE.

  12. Endocrine dynamics during pulsatile GnRH administration in patients with hypothalamic amenorrhea and polycystic ovarian disease.

    Science.gov (United States)

    Rossmanith, W G; Wirth, U; Benz, R; Wolf, A S

    1989-01-01

    The LH secretory patterns and ovarian endocrine responses have been determined during pulsatile gonadotropin-releasing hormone (GnRH) administration for induction of ovulation in patients with hypothalamic amenorrhea (HA). However, until now these endocrine dynamics during GnRH therapy have not been thoroughly investigated in patients with polycystic ovarian disease (PCOD). Seven patients with HA and 4 patients with PCOD have therefore been studied to determine changes in LH pulsatile activity and in serum sex steroid levels in response to chronic intermittent GnRH stimulation. GnRH was administered intravenously (5-10 micrograms/90 minutes) by means of a portable infusion pump. Blood samples were obtained at 15-minute intervals for 4 hours on the day before the start of GnRH stimulation (control day) and on treatment days 5, 10 and 15. LH was determined in all samples and FSH, serum androgens and estrogens were measured in baseline samples by RIA. While 8 (62%) ovulations and 5 conceptions were observed in 13 treatment cycles in patients with HA, no ovulations were achieved during 9 treatment cycles in patients with PCOD. On the control day significantly (p less than 0.05) higher basal LH and testosterone (T) levels and significantly (p less than 0.05) lower FSH levels were found in the PCOD patients. The LH pulsatile profiles of the PCOD patients showed significantly (p less than 0.05) higher pulse amplitudes and areas under the curve (integrated responses). Pulsatile GnRH administration induced a significant (p less than 0.05) increase in LH pulse amplitudes in both HA and PCOD patients, and also increased (p less than 0.05) the integrated responses in patients with HA. During the GnRH stimulation, the LH interpulse intervals of both HA and PCOD patients were found to be similar to the frequency in which exogenous GnRH was administered. FSH levels rose continuously (p less than 0.001) during stimulation in patients with HA, but remained unchanged in patients

  13. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    Science.gov (United States)

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P correlation coefficient between the young, healthy group and the other two groups. A significant difference (P correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  14. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes.

    Science.gov (United States)

    De Chant, L J

    1999-10-01

    An approximate analytical model for the pulsatile flow of an ideal Bingham plastic fluid in both a rigid and a periodically displaced tube has been developed using regular perturbation methods. Relationships are derived for the velocity field and dimensionless flow rate. The solution compares adequately with available experimentally measured oscillatory non-Newtonian fluid flow data. These solutions provide useful analytical models supporting experimental and computation studies of arterial blood flow.

  15. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    International Nuclear Information System (INIS)

    Malik, Ritu; Misra, Amit; Tondwal, Shailesh; Venkatesh, K S

    2008-01-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  16. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    Science.gov (United States)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  17. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry.

    Directory of Open Access Journals (Sweden)

    Kweon-Ho Nam

    Full Text Available Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with

  18. Pulsatile secretion of thyrotropin during fasting: a decrease of thyrotropin pulse amplitude

    NARCIS (Netherlands)

    Romijn, J. A.; Adriaanse, R.; Brabant, G.; Prank, K.; Endert, E.; Wiersinga, W. M.

    1990-01-01

    The effect of fasting on circadian and pulsatile TSH secretion was investigated in eight healthy subjects (four men and four women in the follicular phase). Each subject was studied twice, once during 24 h with normal food intake and once during the last 24 h of a 60-h fast. Blood was sampled every

  19. Pulsatile Hyperglycaemia Induces Vascular Oxidative Stress and GLUT 1 Expression More Potently than Sustained Hyperglycaemia in Rats on High Fat Diet

    DEFF Research Database (Denmark)

    Rakipovski, Gunaj; Lykkesfeldt, Jens; Raun, Kirsten

    2016-01-01

    expression of glucose transporter 1 (GLUT1), gp-91(PHOX) and super oxide dismutase (SOD), while only the PLG group showed increased accumulation of oxidative stress and oxidised low density lipoprotein (oxLDL) in aorta. Conclusion Pulsatile hyperglycaemia induced relatively higher levels of oxidative stress......Introduction Pulsatile hyperglycaemia resulting in oxidative stress may play an important role in the development of macrovascular complications. We investigated the effects of sustained vs. pulsatile hyperglycaemia in insulin resistant rats on markers of oxidative stress, enzyme expression...... and glucose metabolism in liver and aorta. We hypothesized that liver's ability to regulate the glucose homeostasis under varying states of hyperglycaemia may indirectly affect oxidative stress status in aorta despite the amount of glucose challenged with. Methods Animals were infused with sustained high (SHG...

  20. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  1. Effects of continuous and pulsatile PTH treatments on rat bone marrow stromal cells

    International Nuclear Information System (INIS)

    Yang Chiming; Frei, Hanspeter; Burt, Helen M.; Rossi, Fabio

    2009-01-01

    Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.

  2. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    Science.gov (United States)

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  3. Sensitivity analysis of time-dependent laminar flows

    International Nuclear Information System (INIS)

    Hristova, H.; Etienne, S.; Pelletier, D.; Borggaard, J.

    2004-01-01

    This paper presents a general sensitivity equation method (SEM) for time dependent incompressible laminar flows. The SEM accounts for complex parameter dependence and is suitable for a wide range of problems. The formulation is verified on a problem with a closed form solution obtained by the method of manufactured solution. Systematic grid convergence studies confirm the theoretical rates of convergence in both space and time. The methodology is then applied to pulsatile flow around a square cylinder. Computations show that the flow starts with symmetrical vortex shedding followed by a transition to the traditional Von Karman street (alternate vortex shedding). Simulations show that the transition phase manifests itself earlier in the sensitivity fields than in the flow field itself. Sensitivities are then demonstrated for fast evaluation of nearby flows and uncertainty analysis. (author)

  4. Luteinizing hormone pulsatility in females following radiation therapy for central nervous system malignancies

    International Nuclear Information System (INIS)

    Brasacchio, R.A.; Constine, L.S.; Woolf, P.; Raubertas, R.F.; Veldhuis, J.D.; Muhs, A.G.

    1997-01-01

    Purpose: Females incidentally irradiated to the hypothalamic-pituitary axis (H/P-A) during radiation therapy (RT) for brain tumors may become oligoamenorrheic. We previously demonstrated that these women are hypoestrogenemic but frequently have near normal or only moderately decreased basal luteinizing hormone (LH) levels and maintain appropriate peak pituitary responses to exogenous gonadotropin releasing hormone (GnRH). We postulated that hypothalamic injury resulting in abnormal LH pulsatility could explain this complex of findings. This investigation intended to characterize this hypothalamic injury and test two potentially corrective pharmacologic interventions. Catecholamines (specifically dopamine) and opiates are known to suppress pituitary LH release through inhibition of the pituitary gonadotropes or of the GnRH neuronal terminals in the hypothalamus. Radiation-induced dysfunction of the catecholaminergic or opiate control mechanisms might translate into an increase in dopamine or opiate release or receptor responsiveness, which in turn would inhibit pulsatile gonadotropin secretion, leading to reduced LH pulsatility and to gonadal dysfunction. We therefore determined the pattern of LH release in normal controls and in patients, at baseline as well as after administration of the dopamine receptor antagonist metoclopramide (MCP), and the opiate-receptor antagonist naloxone (NAL). Methods: Patient eligibility criteria included RT to the H/P-A for a non-H/P-A CNS tumor, usually astrocytoma, with subsequent hypoestrogenemia and oligo-amenorrhea. Patients and normal volunteers were studied first under control conditions and then using MCP and NAL in a randomized cross-over manner at monthly intervals. Serum samples for LH determination were taken every 10 minutes for 12 hours during an overnight hospital stay. MCP (10 mg) was administered as an IV bolus every 4.5 hours, and NAL was administered as a continuous infusion (1.6 mg/hour). The following morning each

  5. [Ovulation induction by pulsatile GnRH therapy in 2014: literature review and synthesis of current practice].

    Science.gov (United States)

    Gronier, H; Peigné, M; Catteau-Jonard, S; Dewailly, D; Robin, G

    2014-10-01

    The hypogonadotropic hypogonadism is an easily treatable form of female infertility. The most common cause of hypogonadotropic hypogonadism is functional hypothalamic amenorrhea. The GnRH pump is a simple and effective treatment to restore fertility of patients with hypothalamic amenorrhea: cumulative pregnancy rate is estimated between 70 and 100% after 6 cycles, compared to a low rate of complications and multiple pregnancies. While only 2.8 cycles are on average required to achieve a pregnancy with a pump, this induction of ovulation stays underused in France. The objective of this paper is to propose a practical manual of pulsatile GnRH, in order to improve the accessibility of pulsatile GnRH for patients with hypogonadotropic hypogonadism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Ovulation induction with pulsatile gonadotropin-releasing hormone (GnRH) or gonadotropins in a case of hypothalamic amenorrhea and diabetes insipidus.

    Science.gov (United States)

    Georgopoulos, N A; Markou, K B; Pappas, A P; Protonatariou, A; Vagenakis, G A; Sykiotis, G P; Dimopoulos, P A; Tzingounis, V A

    2001-12-01

    Hypothalamic amenorrhea is a treatable cause of infertility. Our patient was presented with secondary amenorrhea and diabetes insipidus. Cortisol and prolactin responded normally to a combined insulin tolerance test (ITT) and thyrotropin-releasing hormone (TRH) challenge, while thyroid-stimulating hormone (TSH) response to TRH was diminished, and no response of growth hormone to ITT was detected. Both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels increased following gonadotropin-releasing hormone (GnRH) challenge. No response of LH to clomiphene citrate challenge was detected. Magnetic resonance imaging findings demonstrated a midline mass occupying the inferior hypothalamus, with posterior lobe not visible and thickened pituitary stalk. Ovulation induction was carried out first with combined human menopausal gonadotropins (hMG/LH/FSH) (150 IU/day) and afterwards with pulsatile GnRH (150 ng/kg/pulse). Ovulation was achieved with both pulsatile GnRH and combine gonadotropin therapy. Slightly better results were achieved with the pulsatile GnRH treatment.

  7. [Prognostic Doppler ultrasound examination of fetal arteries blood flow].

    Science.gov (United States)

    Sieroszewski, Piotr; Sabatowska, Małgorzata; Karowicz-Bilińska, Agata; Suzin, Jacek

    2002-08-01

    Early detection of fetal risk is one of the main issues in today obstetrics. Ultrasound diagnostics plays a significant role, as the introduction of Doppler imaging method in the evaluation of blood flow has enabled non-invasive assessment of uteroplacental circulation. Therefore, we have analysed foetal three arteries: umbilical artery, middle cerebral artery and renal artery after determining the normal range for the analysed parameters. 1. Comparison of the obtained blood flow indices (S/D, RI, PI) in the umbilical artery, middle cerebral artery and renal artery of foetuses from normal and complicated full-term pregnancies. 2. Determination of indices: umbilical-cerebral and renal-cerebral in normal and pathological pregnancy. 3. Evaluation of feasibility of the analysed flow parameters for the detection of intrauterine foetal hypoxia. We have examined 151 women, who were divided into control group--101 pregnant women with normal pregnancy and study group--50 pregnant women with complicated pregnancy. All pregnant women underwent ultrasound examination using the Hitachi EUB 515 C (Japan) scanner with 3.5 MHz convex probe, connected to the colour pulsed Doppler. The study consisted of the biometric measurements and evaluation of the spectrum of blood flow in the umbilical artery, middle cerebral artery and renal artery. We have determined following indices: a) systolic-diastolic ratio S/D, resistance index RI, pulsatility index PI, b) umbilical-cerebral ratio P/M. (PI ua/PI mca), renal--cerebral ratio N/M (PI ra/PI mca). Statistically significant difference was found between the study and control groups for all the flow indices assessed (S/D, RI, PI) for the middle cerebral artery, for the indices P/M and N/M. (p < 0.001) and pulsatility index in the renal artery (p < 0.01). Similar, although slightly smaller difference (p < 0.05) was seen for the values of flow parameters in the umbilical artery. 1) Evaluation of blood flow in the middle cerebral artery, and in

  8. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2012-01-01

    range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last

  9. Real time monitoring of pulsatile change in hemoglobin concentrations of cerebral tissue by a portable tissue oximeter with a 10-Hz sampling rate

    Science.gov (United States)

    Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki

    1998-01-01

    A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.

  10. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.

    Science.gov (United States)

    Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-01-01

    Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.

  11. Cirurgia de Glenn bidirecional: importância da manutenção de fluxo "pulsátil" na artéria pulmonar Bidirectional Glenn procedure: the importance of "pulsatile" flow in the pulmonary artery

    Directory of Open Access Journals (Sweden)

    Fernando Antônio Fantini

    1995-03-01

    In order to evaluate the effects of pulsatile flow in the pulmonary artery of patients undergoing bidirectional cavopulmonary shunts (BCS, we reviewed the data of 36 patients operated upon from October 1990 to July 1994. Age at operation ranged from 11 months to 14 years (mean 4.4 ± 3.4 years and diagnoses were as follows: tricuspid atresia (18, single ventricle (16, mitral atresia (1 and pulmonary atresia with intact ventricular septum (1. A total of 19 (52.8% patients had a prior palliative operation done. Cardiopulmonary bypass was used in every case, with mild hypothermia in 11 cases and profound hypothermia and circulatory arrest in the remaining. The surgical technique was an anastomosis between the superior vena cava and the ipsilateral pulmonary artery in an end-to-side fashion. The main pulmonary artery was ligated only if the mean pressure taken at the site of the anastomosis was higher than 15 mmHg but in 2 recent cases with a very high mean pulmonary pressure, the main pulmonary artery was banded, adjusting the pressure to the desirable levels. The overall hospital survival was 91.7% (33 patients. One patient required a systemic to pulmonary shunt due to persistent low arterial oxygen saturation, 7 days after the BCS. Twenty-eight patients were followed for a mean of 1.8 ± 1.2 years (3 months to 4.1 years and were divided in 2 groups: A-18 patients without pulsatile flow in the pulmonary artery, and B-10 patients with pulsatile flow. In Group B, the mean arterial saturation has ranged from 80% to 90% (mean 86 ± 3.8% and is significantly higher than in Group A (68 to 85%, mean, 77.6 ± 5.5 (p<0.001. Two patients of Group A are in NYHA functional class III, whereas all patients of Group B are in class I or II (p=0.05. There was one late death and one patient required a subsequent Fontan procedure, both of Group A. Thus, the presence of pulsatile flow in the pulmonary artery improved the arterial oxigen saturation and exercise tolerance in patients submitted to

  12. Accuracy and Sources of Error for an Angle Independent Volume Flow Estimator

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Hansen, Peter Møller

    2014-01-01

    This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors....... A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistu la are measured on B-mode images by rotating the scan plane 90 degrees. The major axis...

  13. Endosonographic and color doppler flow imaging alterations observed within irradiated rectal cancer

    International Nuclear Information System (INIS)

    Alexander, Archie A.; Palazzo, Juan P.; Ahmad, Neelofur R.; Liu, J.-B.; Forsberg, Flemming; Marks, John

    1996-01-01

    Purpose: To correlate the endosonographic and color Doppler flow imaging alterations observed in irradiated rectal cancers with the pathologic features of radiation response, and to evaluate the potential impact of altered blood flow on the integrity of the surgical anastamosis. Methods and Materials: Endosonography with color and pulsed wave Doppler was performed on 20 rectal cancer masses before and after high dose preoperative radiation (XRT). Pre- and post-XRT observations included comparing alterations in tumor size, sonographic echotexture, color Doppler flow, and pulsatility indices. Comparisons were made with pathologic findings in the irradiated specimens and with the incidence of anastomotic failure. Results: Compared to pre-XRT observations, irradiated rectal cancers decreased in size and became either mixed in echogenicity with less apparent color Doppler flow (16 of 20) or unchanged in color Doppler flow and echotexture (4 of 20). Those with less flow (16 of 20) were imaged later (mean = 90.2 ± 12.1 days) than those without change in color Doppler flow (mean = 21.7 ± 2.7 days). Pathologically, the group of four without change in color Doppler signal had features of acute inflammation which were not observed in 16 of 20 imaged later. Based on pulsatility index measurements, both high and low resistance vessels were detected and confirmed by immunohistochemical staining, and features of postradiation obliterative vasculitis were observed. Only one primary anastomosis in 14 patients with decreased flow failed. Conclusions: The sonographic and color Doppler flow imaging alterations observed within irradiated rectal cancer correlated with changes of postradiation obliterative vasculitis. The apparent diminished local blood flow within high and low resistance vessels post-XRT did not result in an increased incidence of anastomotic failures

  14. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  15. Cerebrovascular pulsatility in patients with sleep-disordered breathing.

    Science.gov (United States)

    Ramos, Alberto R; Cabral, Digna; Lee, David J; Sacco, Ralph L; Rundek, Tatjana

    2013-05-01

    The aim of our study is to determine the association between the pulsatility index (PI), a surrogate of cerebral small vessel disease and sleep-disordered breathing (SDB). We conducted a transcranial Doppler ultrasound (TCD) study of 19 consecutive patients free of stroke and cardiovascular disease, referred for the evaluation of SDB. TCD was performed by a certified technologist. Subsequent polysomnography was performed according to the practice parameters of the American Academy of Sleep Medicine. We evaluated the association between the apnea-hypopnea index (AHI), the oxygen nadir, the blood flow velocities, and the Gosling PI, for the middle cerebral artery. We performed Spearman's rank correlation and nonparametric regression to evaluate the relationship between AHI, oxygen levels, and the PI. Median age was 48 years (range 37-83), with 52 % male sex (n = 10), and median BMI of 29.9 (range 25-40.4). The median AHI was 16.4 (0.2-69). The median PI was 0.97 (0.72-1.89) cm/s. The PI correlated with the AHI (rho = 0.44; p = 0.004) and with age (rho = 0.57; p = 0.001). Nonparametric regression adjusting for age showed a positive association between the AHI and the PI (standardized estimate = 0.88; p = 0.002). There was no relation between the oxygen nadir and the PI. We observed increased PI in patients with SDB during wakefulness. The PI could potentially be an estimate of cerebral small vessel disease in patients with SDB and hence allow evaluating cerebral hemodynamics during wakefulness with a clinically relevant device.

  16. Partial thickness autologus calvarial bone orbitocranioplasty for a sphenorbital encephalocele presenting as pulsatile exophthalmos

    OpenAIRE

    Trivedi, Adarsh; Garg, Amrish Kumar; Hiran, Subodh

    2015-01-01

    Basal encephalocele accounts only 1.5% of all encephaloceles. But Sphenorbital encephalocele is the rarest cause of herniation of brain into orbit leading to pulsatile exphothalmos. Authors presenting a case of sphenorbital encephalocele in a 16 yrs old girl successsfully managed by orbitcranioplasty by partilal thickness autologus calvarial bone graft.

  17. Relationship between Aortic Compliance and Impact of Cerebral Blood Flow Fluctuation to Dynamic Orthostatic Challenge in Endurance Athletes.

    Science.gov (United States)

    Tomoto, Tsubasa; Imai, Tomoko; Ogoh, Shigehiko; Maeda, Seiji; Sugawara, Jun

    2018-01-01

    Aorta effectively buffers cardiac pulsatile fluctuation generated from the left ventricular (LV) which could be a mechanical force to high blood flow and low-resistance end-organs such as the brain. A dynamic orthostatic challenge may evoke substantial cardiac pulsatile fluctuation via the transient increases in venous return and stroke volume (SV). Particularly, this response may be greater in endurance-trained athletes (ET) who exhibit LV eccentric remodeling. The aim of this study was to determine the contribution of aortic compliance to the response of cerebral blood flow fluctuation to dynamic orthostatic challenge in ET and age-matched sedentary (SED) young healthy men. ET ( n = 10) and SED ( n = 10) underwent lower body negative pressure (LBNP) (-30 mmHg for 4 min) stimulation and release the pressure that initiates a rapid regain of limited venous return and consequent increase in SV. The recovery responses of central and middle cerebral arterial (MCA) hemodynamics from the release of LBNP (~15 s) were evaluated. SV (via Modeflow method) and pulsatile and systolic MCA (via transcranial Doppler) normalized by mean MCA velocity (MCAv) significantly increased after the cessation of LBNP in both groups. ET exhibited the higher ratio of SV to aortic pulse pressure (SV/ Ao PP), an index of aortic compliance, at the baseline compared with SED ( P < 0.01). Following the LBNP release, SV was significantly increased in SED by 14 ± 7% (mean ± SD) and more in ET by 30 ± 15%; nevertheless, normalized pulsatile, systolic, and diastolic MCAv remained constant in both groups. These results might be attributed to the concomitant with the increase in aortic compliance assessed by SV/ Ao PP. Importantly, the increase in SV/ Ao PP following the LBNP release was greater in ET than in SED ( P < 0.01), and significantly correlated with the baseline SV/ Ao PP ( r = 0.636, P < 0.01). These results suggest that the aortic compliance in the endurance athletes is able to

  18. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle.

    Science.gov (United States)

    Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk

    2012-04-01

    To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.

  19. Prospective, randomized comparison between pulsatile GnRH therapy and combined gonadotropin (FSH+LH) treatment for ovulation induction in women with hypothalamic amenorrhea and underlying polycystic ovary syndrome.

    Science.gov (United States)

    Dubourdieu, Sophie; Fréour, Thomas; Dessolle, Lionel; Barrière, Paul

    2013-05-01

    To compare the efficacy of pulsatile GnRH therapy versus combined gonadotropins for ovulation induction in women with both hypothalamic amenorrhoea and polycystic ovarian syndrome (HA/PCOS) according to their current hypothalamic status. This single-centre, prospective, randomized study was conducted in the Nantes University Hospital, France. Thirty consecutive patients were treated for ovulation induction with either pulsatile GnRH therapy or combined gonadotropins (rFSH+rLH). Frequency of adequate ovarian response (mono- or bi-follicular) and clinical pregnancy rate were then compared between both groups. Ovarian response was similar in both groups with comparable frequency of adequate ovarian response (73% vs 60%), but the clinical pregnancy rate was significantly higher in the pulsatile GnRH therapy group than in the combined gonadotropin group (46% vs 0%). HA/PCOS is a specific subgroup of infertile women. Pulsatile GnRH therapy is an effective and safe method of ovulation induction that can be used successfully in these patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Numerical simulation of MHD pulsatile flow of a biofluid in a channel

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-08-01

    Full Text Available The purpose of this paper is to numerically study the interaction of an external magnetic field with the flow of a biofluid through a Darcy-Forchhmeir porous channel, due to an oscillatory pressure gradient, in the presence of wall transpiration as well as chemical reaction considerations. We have noticed that if the Reynolds number of the wall transpiration flow is increased, the average (or maximum velocity of the main flow direction is raised. Similar effect has also been observed for the rheological parameter and the Darcy parameter, whereas an opposite trend has been noted for both the Forchheimer quadratic drag parameter and the magnetic parameter. Further, an increase in the Reynolds number results in straightening the concentration profile, thus making it an almost linear function of the dimensionless spatial variable.

  1. Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects

    International Nuclear Information System (INIS)

    Schmitz, O.; Arnfred, J.; Hother Nielsen, O.; Beck-Nielsen, H.; Oerskov, H.

    1986-01-01

    To test the hypothesis that insulin has a greater effect on glucose metabolism when given as pulsatile than as continuous infusion, a 354-min euglycaemic clamp study was carried out in 8 healthy subjects. At random order soluble insulin was given intravenously either at a constant rate of 0.45mU/kg · min or in identical amounts in pulses of 1 1 / 2 to 2 1 / 4 min followed by intervals of 10 1 / 2 to 9 3 / 4 min. Average serum insulin levels were similar during the two infusion protocols, but pulsatile administration induced oscillations ranging between 15 and 62 μU/ml. Glucose uptake expressed as metabolic clearance rate (MCR) for glucose was significantly increased during pulsatile insulin delivery as compared with continuous administration (270-294 min: 8.7±0.7 vs 6.8±0.9 ml/kg · min, P 3 H]glucose infusion technique was suppressed to insignificant values. Finally, the effect of insulin on endogenous insulin secretion and lipolysis as assessed by changes in serum C-peptide and serum FFA was uninfluenced by the infusion mode. In conclusion, insulin infusion resulting in physiological serum insulin levels enhances glucose uptake in peripheral tissues in healthy subjects to a higher degree when given in a pulsed pattern mimicking that of the normal endocrine pancreas than when given as a continuous infusion. (author)

  2. Aneurysm pulsatility after endovascular exclusion: an experimental study using human aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Hussein Amin Orra

    2008-01-01

    Full Text Available OBJECTIVE: To measure the pulsatility of human aneurysms before and after complete exclusion with an endograft. METHOD: Five aortic aneurysms obtained during necropsy were submitted to pulsatile perfusion before and after implantation of a bifurcated endograft. The specimens were contained in a closed chamber filled with saline solution. A vertical tube attached to the chamber was used to measure volume dislocation in each systole. Mural thrombus was kept intact, and the space around the device was filled with human blood. After each experiment, the aneurysm was opened to check for the correct positioning and attachment of the device. RESULTS: The level of the saline column oscillated during pulsation in each case, with respective amplitudes of 17, 16, 13, 7, and 25 cm before the endograft insertion. After the insertion, the amplitudes dropped to 13, 12, 9, 3.5, and 23 cm, respectively. The differences were not significant. During the post-experimental examination, all devices were found to be in position and well attached to the neck and iliacs. No endoleak was detected during perfusion or by visual inspection. CONCLUSION: Pulsation of an endograft is transmitted to the aneurysm wall even in the absence of endoleak, and should not be interpreted as procedural failure.

  3. A neurokinin 3 receptor-selective agonist accelerates pulsatile luteinizing hormone secretion in lactating cattle.

    Science.gov (United States)

    Nakamura, Sho; Wakabayashi, Yoshihiro; Yamamura, Takashi; Ohkura, Satoshi; Matsuyama, Shuichi

    2017-07-01

    Pulsatile gonadotropin-releasing hormone (GnRH) secretion, which is indispensable for follicular development, is suppressed in lactating dairy and beef cattle. Neurokinin B (NKB) neurons in the arcuate nucleus of the hypothalamus are considered to play an essential role in generating the pulsatile mode of GnRH/luteinizing hormone (LH) secretion. The present study aimed to clarify the role of NKB-neurokinin 3 receptor (NK3R) signaling in the pulsatile pattern of GnRH/gonadotropin secretion in postpartum lactating cattle. We examined the effects of the administration of an NK3R-selective agonist, senktide, on gonadotropin secretion in lactating cattle. The lactating cattle, at approximately 7 days postpartum, were intravenously infused with senktide (30 or 300 nmol/min) or vehicle for 24 h. The administration of 30 or 300 nmol/min senktide significantly increased LH pulse frequency compared to in the control group during 0-4 or 20-24 h after infusion, respectively. Moreover, LH and follicle-stimulating hormone levels were gradually increased by 300 nmol/min administration of senktide during the 0-4-h sampling period. Ultrasonography of the ovaries was performed to identify the first postpartum ovulation in senktide-administered lactating cattle. The interval from calving to first postpartum ovulation was significantly shorter in the 300 nmol/min senktide-administered group than in the control group. Taken together, these findings suggest that senktide infusion elicits an increase in LH pulse frequency that may stimulate follicular development and, in turn, induce the first postpartum ovulation in lactating cattle. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac.

    Science.gov (United States)

    Wang, Chih-Yu; Yang, Chih-Hui; Lin, Yung-Sheng; Chen, Chih-Hsin; Huang, Keng-Shiang

    2012-02-01

    A pulsatile ultrasound controlled drug release platform with diclofenac-loaded alginate microcapsules (fabricated with a home-made electrostatic device, 75% embedded rate) was established to evaluate anti-inflammation efficiency. Better anti-inflammation efficiency was found using the ultrasound system and the drug delivery can be adjusted based on the programmed ultrasound cycle. The results of the in vitro study show that an approx. 30% higher drug release rate was obtained by using continuous ultrasound irradiation (9-Watt, 180 min), and an approx. 16% higher drug release rate was obtained by using pulsatile ultrasound irradiation (9-Watt, 60 min) compared to without ultrasound activation. For the in vivo study, the anti-inflammatory test with carrageenan-induced rat's paw edema shows that diclofenac-loaded microcapsules followed by ultrasound irradiation (9-Watt, 60 min) contributed to an 81% inhibition rate, which was significantly higher than diclofenac only (approx. 60% higher). In addition, because of their heat conducting properties, gold nanoparticles encapsulated in the diclofenac-loaded microcapsules resulted in better drug release efficiency, but tended to depress the anti-inflammation effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome

    International Nuclear Information System (INIS)

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-01-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections. (orig.)

  6. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Raoul [University Medical Center Heidelberg, Department of Congenital Heart Disease and Pediatric Cardiology, Heidelberg (Germany); Neu, Marie [University Medical Center, Department of Pediatric Hematology/Oncology/Hemostaseology, Mainz (Germany); Hirtler, Daniel [University of Freiburg, Department of Congenital Heart Defects and Pediatric Cardiology, Heart Center, Freiburg im Breisgau (Germany); Gimpel, Charlotte [Center for Pediatrics, Medical Center - University of Freiburg, Department of General Pediatrics, Adolescent Medicine and Neonatology, Freiburg im Breisgau (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Geiger, Julia [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Children' s Hospital, Department of Radiology, Zuerich (Switzerland)

    2017-04-15

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections. (orig.)

  7. Is there any influence of breastfeeding on the cerebral blood flow? A review of 256 healthy newborns

    Directory of Open Access Journals (Sweden)

    Alexandra Maria Vieira Monteiro

    2012-10-01

    Full Text Available OBJECTIVE: To investigate whether breastfeeding influence the cerebral blood-flow velocity. MATERIALS AND METHODS: The present study included 256 healthy term neonates, all of them with appropriate weight for gestational age, 50.8% being female. Pulsatility index, resistance index and mean velocity were measured during breastfeeding or resting in the anterior cerebral artery, in the left middle cerebral artery, and in the right middle cerebral artery of the neonates between their first 10 and 48 hours of life. The data were analyzed by means of a paired t-test, Brieger's f-test for analysis of variance and linear regression, with p < 0.01 being accepted as statistically significant. RESULTS: Mean resistance index decreased as the mean velocity increased significantly during breastfeeding. Pulsatility index values decreased as much as the resistance index, but in the right middle cerebral artery it was not statistically significant. CONCLUSION: Breastfeeding influences the cerebral blood flow velocities.

  8. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo.

    Science.gov (United States)

    Servant, Ania; Methven, Laura; Williams, Rhodri P; Kostarelos, Kostas

    2013-06-01

    Drug release triggered by an external non-invasive stimulus is of great interest for the development of new drug delivery systems. The preparation of an electroresponsive multiwalled carbon nanotube/poly(methylacrylic acid) (MWNT/PMAA)-based hybrid material is reported. The hydrogel hybrids achieve a controlled drug release upon the ON/OFF application of an electric field, giving rise to in vitro and in vivo pulsatile release profiles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  10. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    KAUST Repository

    Qamar, Adnan

    2017-06-28

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological

  11. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    KAUST Repository

    Qamar, Adnan; Bull, Joseph L.

    2017-01-01

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological

  12. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study

    Science.gov (United States)

    Song, Zhiming; Gu, Kaiyun; Gao, Bin; Wan, Feng; Chang, Yu; Zeng, Yi

    2014-01-01

    Background The aim of this study was to determine the hemodynamic effects of various support modes of continuous flow left ventricular assist devices (CF-LVADs) on the cardiovascular system using a numerical cardiovascular system model. Material/Methods Three support modes were selected for controlling the CF-LVAD: constant flow mode, constant speed mode, and constant pressure head mode of CF-LVAD. The CF-LVAD is established between the left ventricular apex and the ascending aorta, and was incorporated into the numerical model. Various parameters were evaluated, including the blood assist index (BAI), the left ventricular external work (LVEW), the energy of blood flow (EBF), pulsatility index (PI), and surplus hemodynamic energy (SHE). Results The results show that the constant flow mode, when compared to the constant speed mode and the constant pressure head mode, increases LVEW by 31% and 14%, and EBF by 21% and 15%, respectively, indicating that this mode achieved the best ventricular unloading among the 3 support modes. As BAI is increased, PI and SHE are gradually decreased, whereas PI of the constant pressure head reaches the maximum value. Conclusions The study demonstrates that the continuous flow control mode of the CF-LVAD may achieve the highest ventricular unloading. In contrast, the constant rotational speed mode permits the optimal blood perfusion. Finally, the constant pressure head strategy, permitting optimal pulsatility, should optimize the vascular function. PMID:24793178

  13. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    Science.gov (United States)

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan

  14. A comparison of dobutamine and levosimendan on hepatic blood flow in patients with a low cardiac output state after cardiac surgery: a randomised controlled study.

    Science.gov (United States)

    Alvarez, J; Baluja, A; Selas, S; Otero, P; Rial, M; Veiras, S; Caruezo, V; Taboada, M; Rodriguez, I; Castroagudin, J; Tome, S; Rodriguez, A; Rodriguez, J

    2013-11-01

    Liver dysfunction due to a low cardiac output state after cardiac surgery is associated with a poor prognosis, but whether one inotrope is superior to another in improving hepatic perfusion remains uncertain. This study compared the systemic and hepatic haemodynamic effects of levosimendan to dobutamine in patients with a low cardiac output state (cardiac index flow (ml/min): 614.0±124.7, 585.9±144.8; pulsatility index: 2.02±0,28, 2.98±0.27 versus the levosimendan group: cardiac index: 3.02± 0.27, 2.98± 0.30; portal vein flow: 723.0± 143.5, 702.9±117.8; pulsatility index: 1.71±0.26, 1.73±0.27). The improvement in portal vein blood flow at 48 hours was significantly better after levosimendan than dobutamine (41% vs. 11% increment from baseline, Pflow through both the hepatic artery and portal venous system, whereas dobutamine can only improve the portal venous blood flow without vasodilating the hepatic artery.

  15. Hemodynamics of a functional centrifugal-flow total artificial heart with functional atrial contraction in goats.

    Science.gov (United States)

    Shiga, Takuya; Shiraishi, Yasuyuki; Sano, Kyosuke; Taira, Yasunori; Tsuboko, Yusuke; Yamada, Akihiro; Miura, Hidekazu; Katahira, Shintaro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2016-03-01

    Implantation of a total artificial heart (TAH) is one of the therapeutic options for the treatment of patients with end-stage biventricular heart failure. There is no report on the hemodynamics of the functional centrifugal-flow TAH with functional atrial contraction (fCFTAH). We evaluated the effects of pulsatile flow by atrial contraction in acute animal models. The goats received fCFTAH that we created from two centrifugal-flow ventricular assist devices. Some hemodynamic parameters maintained acceptable levels: heart rate 115.5 ± 26.3 bpm, aortic pressure 83.5 ± 10.1 mmHg, left atrial pressure 18.0 ± 5.9 mmHg, pulmonary pressure 28.5 ± 9.7 mmHg, right atrial pressure 13.6 ± 5.2 mmHg, pump flow 4.0 ± 1.1 L/min (left) 3.9 ± 1.1 L/min (right), and cardiac index 2.13 ± 0.14 L/min/m(2). fCFTAH with atrial contraction was able to maintain the TAH circulation by forming a pulsatile flow in acute animal experiments. Taking the left and right flow rate balance using the low internal pressure loss of the VAD pumps may be easier than by other pumps having considerable internal pressure loss. We showed that the remnant atrial contraction effected the flow rate change of the centrifugal pump, and the atrial contraction waves reflected the heart rate. These results indicate that remnant atria had the possibility to preserve autonomic function in fCFTAH. We may control fCFTAH by reflecting the autonomic function, which is estimated with the flow rate change of the centrifugal pump.

  16. Comparison of PIV with 4D-Flow in a physiological accurate flow phantom

    Science.gov (United States)

    Sansom, Kurt; Balu, Niranjan; Liu, Haining; Aliseda, Alberto; Yuan, Chun; Canton, Maria De Gador

    2016-11-01

    Validation of 4D MRI flow sequences with planar particle image velocimetry (PIV) is performed in a physiologically-accurate flow phantom. A patient-specific phantom of a carotid artery is connected to a pulsatile flow loop to simulate the 3D unsteady flow in the cardiovascular anatomy. Cardiac-cycle synchronized MRI provides time-resolved 3D blood velocity measurements in clinical tool that is promising but lacks a robust validation framework. PIV at three different Reynolds numbers (540, 680, and 815, chosen based on +/- 20 % of the average velocity from the patient-specific CCA waveform) and four different Womersley numbers (3.30, 3.68, 4.03, and 4.35, chosen to reflect a physiological range of heart rates) are compared to 4D-MRI measurements. An accuracy assessment of raw velocity measurements and a comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, and Lagrangian particle residence time, will be presented, with justification for their biomechanics relevance to the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new 4D-Flow MRI sequence and post processing techniques to provide a quantitative assessment with the benchmarked data. Department of Education GAANN Fellowship.

  17. [Evaluation and Optimization of Microvascular Arterial Anastomoses by Transit Time Flow Measurement].

    Science.gov (United States)

    Herberhold, S; Röttker, J; Bartmann, D; Solbach, A; Keiner, S; Welz, A; Bootz, F; Laffers, W

    2016-03-01

    INDRODUCTION: The regular application of transit time flow measurement in microvascular anastomoses during heart surgery has lead to improvements of the outcome of coronary artery bypass grafts. Our study was meant to discover whether this measurement method was also applicable for evaluation and optimization of microvascular arterial anastomoses of radial forearm flaps. In this prospective examination a combining ultrasound imaging and transit time flow measurement device (VeriQ, MediStim) was used during surgery to assess anastomotic quality of 15 radial forearm flaps. Pulsatility index (PI) and mean blood flow were measured immediately after opening the arterial anastomosis as well as 15 min afterwards. Furthermore, application time and description of handling were recorded seperately for every assessment. Mean blood flow immediately after opening the anastomosis and 15 min later were 3.9 and 3.4 ml/min resepectively showing no statistically significant difference (p=0.96). There was no significance in the increase of pulsatility index from 22.1 to 27.2 (p=0.09) during the same time range, either. Due to measurement results showing atypical pulse curves in 2 cases decision for surgical revision of the anastomoses was made. All forearm flaps showed good vascularisation during follow-up. Time for device set up, probe placement and measurements was about 20 min. Handling was described to be uncomplicated without exception. There were no noteworthy problems. Transit time flow measurement contributes to the improvement of anastomotic quality and therefore to the overall outcome of radial forearm flaps. The examined measurement method provides objective results and is useful for documentation purposes. © Georg Thieme Verlag KG Stuttgart · New York.

  18. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  19. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

    Energy Technology Data Exchange (ETDEWEB)

    Erath, Byron D.; Plesniak, Michael W. [Purdue University, School of Mechanical Engineering, Indiana (United States)

    2006-05-15

    Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40 represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior-posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20 , with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40 , the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40 divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production. (orig.)

  20. Numerical and experimental analysis of the transitional flow across a real stenosis.

    Science.gov (United States)

    Agujetas, R; Ferrera, C; Marcos, A C; Alejo, J P; Montanero, J M

    2017-08-01

    In this paper, we present a numerical study of the pulsatile transitional flow crossing a severe real stenosis located right in front of the bifurcation between the right subclavian and right common carotid arteries. The simulation allows one to determine relevant features of this subject-specific flow, such as the pressure waves in the right subclavian and right common carotid arteries. We explain the subclavian steal syndrome suffered by the patient in terms of the drastic pressure drop in the right subclavian artery. This pressure drop is caused by both the diverging part of the analyzed stenosis and the reverse flow in the bifurcation induced by another stenosis in the right internal carotid artery.

  1. Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index

    DEFF Research Database (Denmark)

    Sinding, Marianne Munk; Peters, David Alberg; Frøkjær, Jens Brøndum

    (MRI) variable T2* reflects the placental oxygenation and thereby placental function. Therefore, we aimed to evaluate the performance of placental T2* in the prediction of low birth weight using the uterine artery (UtA) pulsatility index (PI) as gold standard. Methods: The study population......CONTROL ID: 2516296 ABSTRACT FINAL ID: P22.05 TITLE: Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index AUTHORS (FIRST NAME, LAST NAME): Marianne Sinding1, David Peters2, Jens B. Frøkjær3, 4, Ole B. Christiansen1, 4, Astrid Petersen5...... had an EFW T2* was measured by MRI at 1.5T. A gradient recalled echo MRI sequence with readout at 16 echo times was used, and the placental T2* value was obtained by fitting the signal intensity as a function of the echo times...

  2. Measuring pulsatile forces on the human cranium.

    Science.gov (United States)

    Goldberg, Cory S; Antonyshyn, Oleh; Midha, Rajiv; Fialkov, Jeffrey A

    2005-01-01

    The cyclic stresses in the cranium caused by pulsation of the brain play an important role in the design of materials for cranioplasty, as well as craniofacial development. However, these stresses have never been quantified. In this study, the force in the epidural space against the cranium was measured intraoperatively in 10 patients using a miniature force probe. Heart and ventilatory rates computed from the force tracing correlated closely with the corresponding measured values in the patients, confirming that the forces measured were indeed a result of brain pulsation. The mean outward systolic normal and tangential stresses were 54.2 kilo-Pascals (kPa) and 345.4 kPa, respectively. The systolic shear stress was 199.8 kPa. Through mechanotransduction, these stresses play a role in cranial development. The calculated yield stress of a cranioplasty repair was 0.4 MPa, which is within one order of magnitude of the known strength of common calcium-phosphate cements. This indicates a possible relation of these pulsatile forces and occult failure of calcium-phosphate cement cranioplasties through material fatigue.

  3. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application.

    Science.gov (United States)

    Qamar, Adnan; Bull, Joseph L

    2017-08-01

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier-Stokes computations, coupled with convection-diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan-Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude ([Formula: see text]), and amplitude of cylinder oscillation ([Formula: see text]). Results are computed for [Formula: see text], Sc = 1000, Re = 5 and 10, [Formula: see text] and 0.7 and 0.25 [Formula: see text][Formula: see text][Formula: see text] 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in [Formula: see text] results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is

  4. Jointly Amplified Basal and Pulsatile Growth Hormone (GH) Secretion and Increased Process Irregularity in Women with Anorexia Nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Veldhuis, J D; Flyvbjerg, A

    1999-01-01

    Anorexia nervosa (AN) is associated with multiple endocrine alterations. In the majority of AN patients, basal and GHRH-stimulated serum GH levels are increased. The metabolic effects of GH are known to be related to its pulsatile secretory pattern. The present study was performed to examine GH...

  5. Force Trends and Pulsatility for Catheter Contact Identification in Intracardiac Electrograms during Arrhythmia Ablation.

    Science.gov (United States)

    Rivas-Lalaleo, David; Muñoz-Romero, Sergio; Huerta, Mónica; Erazo-Rodas, Mayra; Sánchez-Muñoz, Juan José; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2018-05-02

    The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends. These

  6. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings

    NARCIS (Netherlands)

    Schellekens, R.C.A.; Stellaard, F.; Mitrovic, D.; Stuurman, F.E.; Kosterink, J.G.W.; Frijlink, H.W.

    2008-01-01

    Conventional pH-responsive coatings used for oral drug delivery to the lower parts of the gastro-intestinal tract often show a poor performance. A new system for site-specific pulsatile delivery in the ileo-colonic regions is described. The system is based on the non-percolating incorporation of

  7. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    Science.gov (United States)

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Pulsatile luteinizing hormone secretion in patients with Addison's disease. Impact of glucocorticoid substitution

    DEFF Research Database (Denmark)

    Hangaard, J; Andersen, M; Grodum, E

    1998-01-01

    The physiological and pathophysiological role of cortisol in pulsatile LH release was investigated in 14 patients (5 men, 6 premenopausal women, and 3 postmenopausal women) with Addison's disease. The explicit effect of cortisol in relation to the effect of corticotropin-releasing factor (CRF......), ACTH, and opioids was ensured by hypo-, normo-, and hypercortisolism. Hypocortisolism was obtained by 24-h discontinuation of hydrocortisone (HC) followed by 23-h saline infusion. Eucortisolism was secured by infusion of HC (0.5 mg/kg) over 23 h. Stress-appropriate hypercortisolism was obtained...

  10. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    Energy Technology Data Exchange (ETDEWEB)

    Labbio, G Di; Keshavarz-Motamed, Z; Kadem, L, E-mail: lcfd@encs.concordia.ca [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M8 (Canada)

    2017-06-15

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation. (paper)

  11. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    Science.gov (United States)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  12. Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Directory of Open Access Journals (Sweden)

    Spiliopoulos Sotirios

    2012-11-01

    Full Text Available Abstract Background Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements. Clinical case We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft. Diagnosis The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements. Treatment Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.

  13. Um sistema de ventrículo pulmonar produzindo pressão pulsátil em único ventrículo: modelo experimental A pulmonary ventricle system producing pulsatile pressure in single ventricle: experimental model

    Directory of Open Access Journals (Sweden)

    Bilgein Emrecan

    2006-09-01

    systolic and diastolic pulmonary artery pressures were 15,6 ± 2.0 mmHg and 4.5 ± 1.5 mmHg. The mean of the left ventricular systolic pressure was mean 76.6 ± 4.4 mmHg. CONCLUSION: A ventricle producing pulsatile pressure is necessary for regulating the pulmonary artery flow with high central venous pressure and low non-pulsatile pulmonary pressure in the anomalies with functional single ventricles.

  14. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals

    International Nuclear Information System (INIS)

    Li, Q; Clifford, G D

    2012-01-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal. (paper)

  15. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.

    Science.gov (United States)

    Li, Q; Clifford, G D

    2012-09-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

  16. MR phase imaging and cerebrospinal fluid flow in the head and spine

    International Nuclear Information System (INIS)

    Levy, L.M.; Di Chiro, G.

    1990-01-01

    Motion of the cerebrospinal fluid (CSF) in and around the brain spinal cord was examined in healthy subjects and in a number of patients with abnormalities of the CSF circulation. The pulsatile motion of the CSF was determined by spin echo phase (velocity) imaging, sometimes in combination with gradient echo phase contrast cine. Differences in flow patterns across CSF spaces were observed: Flow reversal in the cerebellomedullary cistern and lumbar area relative to cervical CSF, and in the posterior versus the anterior subarachnoid space in the spinal canal. Flow communication was demonstrated in known communicating cysts or cavities. Differences in flow were also noted across spinal narrowing or block, and across the walls of a variety of cystic lesions in the brain and spinal cord. MR phase imaging of CSF flow provides pathophysiological information of potential clinical importance for the assessment of diseases affecting the CSF circulation. (orig.)

  17. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  18. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs

    Science.gov (United States)

    Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have previously shown that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in...

  19. Renal hemodynamics: the influence of the renal artery ostium flow diverter

    Science.gov (United States)

    Rossmann, Jenn Stroud; Albert, Scott; Balaban, Robert

    2013-11-01

    The recently identified renal artery ostium flow diverter may preferentially direct blood flow to the renal arteries, and may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter's position, the flow to the renal arteries may be increased or reduced. The results of simulations also show the diverter's effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.

  20. Flowing cerebrospinal fluid in normal and hydrocephalic states: Appearance on MR images

    International Nuclear Information System (INIS)

    Bradley, W.G.; Kortman, K.E.; Burgoyne, B.; Eng, D.

    1986-01-01

    The signal intensity of the cerebrospinal fluid (CSF) in the cerebral aqueduct and lateral ventricles on magnetic resonance (MR) images was evaluated in 16 healthy individuals and in 32 patients with various forms of hydrocephalus (20 with chronic normal pressure hydrocephalus [NPH], seven with acute communicating hydrocephalus, and five with hydrocephalus ex vacuo [atrophy]). The low signal intensity frequently observed in the cerebral aqueduct is believed to reflect the pulsatile motion of CSF, which is related to the cardiac cycle. While this aqueductal flow void phenomenon can be observed in healthy individuals, it is most pronounced in patients with chronic, communicating NPH; is less evident in patients with acute, communicating hydrocephalus and is least evident in patients with atrophy. Ventricular compliance is known to be essentially normal in atrophy, mildly decreased in acute, communicating hydrocephalus; and severely decreased in NPH. The degree of aqueductal signal loss is believed to reflect the velocity of the pulsatile CSF motion, which in turn depends on the relative ventricular compliance and surface area

  1. Instabilities in rapid directional solidification under weak flow

    Science.gov (United States)

    Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.

    2017-12-01

    We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .

  2. Chronotherapeutically Modulated Pulsatile System of Valsartan Nanocrystals-an In Vitro and In Vivo Evaluation.

    Science.gov (United States)

    Biswas, Nikhil; Kuotsu, Ketousetuo

    2017-02-01

    The objective was to improve the dissolution of valsartan by developing valsartan nanocrystals and design a pulsed release system for the chronotherapy of hypertension. Valsartan nanocrystals were prepared by sonication-anti-solvent precipitation method and lyophilized to obtain dry powder. Nanocrystals were directly compressed to minitablets and coated to achieve pulsatile valsartan release. Pharmacokinetic profiles of optimized and commercial formulations were compared in rabbit model. The mean particle size and PDI of the optimized nanocrystal batch V4 was reported as 211 nm and 0.117, respectively. DSC and PXRD analysis confirmed the crystalline nature of valsartan in nanocrystals. The dissolution extent of valsartan was markedly enhanced with both nanocrystals and minitablets as compared to pure valsartan irrespective of pH of the medium. Core minitablet V4F containing 5% w/w polyplasdone XL showed quickest release of valsartan, over 90% within 15 min. Coated formulation CV4F showed two spikes in release profile after successive lag times of 235 and 390 min. The pharmacokinetic study revealed that the bioavailability of optimized formulation (72.90%) was significantly higher than the commercial Diovan tablet (30.18%). The accelerated stability studies showed no significant changes in physicochemical properties, release behavior, and bioavialability of CV4F formulation. The formulation was successfully designed to achieve enhanced bioavailability and dual pulsatile release. Bedtime dosing will more efficiently control the circadian spikes of hypertension in the morning.

  3. Biological time series analysis using a context free language: applicability to pulsatile hormone data.

    Directory of Open Access Journals (Sweden)

    Dennis A Dean

    Full Text Available We present a novel approach for analyzing biological time-series data using a context-free language (CFL representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals.

  4. Measurement of pulsatile motion with millisecond resolution by MRI.

    Science.gov (United States)

    Souchon, Rémi; Gennisson, Jean-Luc; Tanter, Mickael; Salomir, Rares; Chapelon, Jean-Yves; Rouvière, Olivier

    2012-06-01

    We investigated a technique based on phase-contrast cine MRI combined with deconvolution of the phase shift waveforms to measure rapidly varying pulsatile motion waveforms. The technique does not require steady-state displacement during motion encoding. Simulations and experiments were performed in porcine liver samples in view of a specific application, namely the observation of transient displacements induced by acoustic radiation force. Simulations illustrate the advantages and shortcomings of the methods. For experimental validation, the waveforms were acquired with an ultrafast ultrasound scanner (Supersonic Imagine Aixplorer), and the rates of decay of the waveforms (relaxation time) were compared. With bipolar motion-encoding gradient of 8.4 ms, the method was able to measure displacement waveforms with a temporal resolution of 1 ms over a time course of 40 ms. Reasonable agreement was found between the rate of decay of the waveforms measured in ultrasound (2.8 ms) and in MRI (2.7-3.3 ms). Copyright © 2011 Wiley-Liss, Inc.

  5. The induction of ovulation by pulsatile administration of GnRH: an appropriate method in hypothalamic amenorrhea.

    Science.gov (United States)

    Christou, Fotini; Pitteloud, Nelly; Gomez, Fulgencio

    2017-08-01

    The induction of ovulation by the means of a pump which assures the pulsatile administration of GnRH is a well-known method that applies to women suffering from amenorrhea of hypothalamic origin. Although a simple and efficient method to establish fertility, it is underused. Twelve patients suffering from this condition, 1 Kallmann syndrome, 4 normosmic isolated hypogonadotropic hypogonadism, and 7 functional hypothalamic amenorrhea desiring pregnancy were treated. They underwent one or more cycles of pulsatile GnRH, at a frequency of 90 minutes, either by the intravenous or the subcutaneous route. An initial dose of 5 μg per pulse in the intravenous route was administered and of 15 μg per pulse in the subcutaneous route. The treatment was monitored by regular dosing of gonadotropins, estradiol and progesterone, and the development of follicles and ovulation was monitored by intra-vaginal ultrasonography. All the patients had documented ovulation, after a mean of 17 days on pump stimulation. Single ovulation occurred in 30 of 33 treatment cycles, irrespective of the route of administration. Ovulation resulted in 10 pregnancies over 7 patients (2 pregnancies in 3 of them), distributed in the 3 diagnostic categories. For comparison, a patient with PCOS treated similarly, disclosed premature LH surge without ovulation.

  6. Flow analysis of the ophthalmic artery

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kuniaki; Hashimoto, Masato; Bandoh, Michio; Odawara, Yoshihiro; Kamagata, Masaki; Shirase, Ryuji [Sapporo Medical Univ. (Japan). Hospital

    2003-02-01

    The purpose of this study was to analyze the hemodynamics of ophthalmic artery flow using phase contrast MR angiography (PC-MRA). A total of 14 eyes from 10 normal volunteers and a patient with normal tension glaucoma (NTG) were analyzed. The optimal conditions were time repetition (TR)/echo time (TE)/flip angle (FA)/nex=40 ms/minimum/90 deg/2, field of view (FOV)=6 cm, matrix size=256 x 256. The resistive index (RI) and pulsatillity index (PI) values were significantly raised in the patient with NTG when compared to the control group. We therefore believe that PC-MRA may be a useful clinical tool for the assessment of the mechanism of NTG. (author)

  7. Middle cerebral artery flow velocity waveforms in fetal hypoxaemia.

    Science.gov (United States)

    Vyas, S; Nicolaides, K H; Bower, S; Campbell, S

    1990-09-01

    In 81 small-for-gestational age fetuses (SGA) colour flow imaging was used to identify the fetal middle cerebral artery for subsequent pulsed Doppler studies. Impedence to flow (pulsatility index; PI) was significantly lower, and mean blood velocity was significantly higher, than the respective reference ranges with gestation. Fetal blood sampling by cordocentesis was performed in all SGA fetuses and a significant quadratic relation was found between fetal hypoxaemia and the degree of reduction in the PI of FVWs from the fetal middle cerebral artery. Thus, maximum reduction in PI is reached when the fetal PO2 is 2-4 SD below the normal mean for gestation. When the oxygen deficit is greater there is a tendency for the PI to rise, and this presumably reflects the development of brain oedema.

  8. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    Science.gov (United States)

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the

  9. Effect of ovarian endometrioma on uterine and ovarian blood flow in infertile women

    Directory of Open Access Journals (Sweden)

    El-Mazny A

    2016-11-01

    Full Text Available Akmal El-Mazny, Ahmed Kamel, Wafaa Ramadan, Sherine Gad-Allah, Suzy Abdelaziz, Ahmed M Hussein Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt Background: Angiogenesis has been found to be among the most important factors in the pathogenesis of endometriosis. The formation of new blood vessels is critical for the survival of newly implanted endometriotic foci. The use of 3-D power Doppler allows for the demonstration of the dynamic vascular changes that occur during the process of in vitro fertilization (IVF. We aimed to evaluate the effect of ovarian endometrioma on uterine and ovarian blood flow in infertile women. Materials and methods: In a case–control study at a university teaching hospital, 138 women with unilateral ovarian endometrioma scheduled for IVF were compared to 138 women with male-factor or unexplained infertility. In the mid-luteal (peri-implantation phase of the cycle, endometrial thickness, uterine and ovarian artery pulsatility index and resistance index, endometrial and ovarian volume, 3-D power Doppler vascularization index (VI, flow index (FI, and vascularization FI (VFI values were measured in both groups. Results: There were no significant differences (P>0.05 in endometrial thickness, uterine ovarian artery pulsatility index and resistance index, endometrial and ovarian volume, or VI, FI, and VFI between the two groups. Furthermore, the endometrial and ovarian Doppler indices were not influenced by endometrioma size. No significant differences were observed in the ovarian Doppler indices between endometrioma-containing ovaries and contralateral ovaries. Conclusion: Ovarian endometrioma is not associated with impaired endometrial and ovarian blood flows in infertile women scheduled for IVF, and it is not likely to affect endometrial receptivity or ovarian function through a vascular mechanism. Keywords: 3-D power Doppler, endometrioma, IVF, uterine and ovarian blood flow

  10. Pulsatile gonadotropin-releasing hormone therapy is associated with earlier spermatogenesis compared to combined gonadotropin therapy in patients with congenital hypogonadotropic hypogonadism

    Directory of Open Access Journals (Sweden)

    Jiang-Feng Mao

    2017-01-01

    Full Text Available Both pulsatile gonadotropin-releasing hormone (GnRH infusion and combined gonadotropin therapy (human chorionic gonadotropin and human menopausal gonadotropin [HCG/HMG] are effective to induce spermatogenesis in male patients with congenital hypogonadotropic hypogonadism (CHH. However, evidence is lacking as to which treatment strategy is better. This retrospective cohort study included 202 patients with CHH: twenty had received pulsatile GnRH and 182 had received HCG/HMG. Patients had received therapy for at least 12 months. The total follow-up time was 15.6 ± 5.0 months (range: 12-27 months for the GnRH group and 28.7 ± 13.0 months (range: 12-66 months for the HCG/HMG group. The median time to first sperm appearance was 6 months (95% confidence interval [CI]: 1.6-10.4 in the GnRH group versus 18 months (95% CI: 16.4-20.0 in the HCG/HMG group (P 1 × 10 6 ml−1 was 43.7% ± 20.4% (16 samples in the GnRH group versus 43.2% ± 18.1% (153 samples in the HCG/HMG group (P = 0.921. Notably, during follow-up, the GnRH group had lower serum testosterone levels than the HCG/HMG group (8.3 ± 4.6 vs 16.2 ± 8.2 nmol l−1 , P < 0.001. Our study found that pulsatile GnRH therapy was associated with earlier spermatogenesis and larger testicular size compared to combined gonadotropin therapy. Additional prospective randomized studies would be required to confirm these findings.

  11. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  12. Implantable batteryless device for on-demand and pulsatile insulin administration

    Science.gov (United States)

    Lee, Seung Ho; Lee, Young Bin; Kim, Byung Hwi; Lee, Cheol; Cho, Young Min; Kim, Se-Na; Park, Chun Gwon; Cho, Yong-Chan; Choy, Young Bin

    2017-04-01

    Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.

  13. 3-D flow characterization and shear stress in a stenosed carotid artery bifurcation model using stereoscopic PIV technique.

    Science.gov (United States)

    Kefayati, Sarah; Poepping, Tamie L

    2010-01-01

    The carotid artery bifurcation is a common site of atherosclerosis which is a major leading cause of ischemic stroke. The impact of stenosis in the atherosclerotic carotid artery is to disturb the flow pattern and produce regions with high shear rate, turbulence, and recirculation, which are key hemodynamic factors associated with plaque rupture, clot formation, and embolism. In order to characterize the disturbed flow in the stenosed carotid artery, stereoscopic PIV measurements were performed in a transparent model with 50% stenosis under pulsatile flow conditions. Simulated ECG gating of the flowrate waveform provides external triggering required for volumetric reconstruction of the complex flow patterns. Based on the three-component velocity data in the lumen region, volumetric shear-stress patterns were derived.

  14. Rapid MR measurements of contrast medium dilution kinetics (gadolinium-DTPA) in a flow phantom

    International Nuclear Information System (INIS)

    Boeck, J.C.; Sander, B.; Frank, J.; Schoerner, W.

    1991-01-01

    We studied first-pass MRI-contrast dilution to compute flow and volume of distribution in a realistic flow phantom. Pulsatile flow was provided by a one-chamber artificial heart. Physiological stroke volume, rate, pressure, and flow were adjustable. An elastic tube with dimensions similar to that of the human aorta was imaged at a rate of 2.4 Hz. After contrast injection, an initial increase in signal intensity was followed by a decrease. Signal-intensity-time plots demonstrated slightly skewed curves as expected from dispersion theory. After calibration at different gadolinium-DTPA concentrations, signal intensities were converted into true gadolinium concentrations, and flow was calculated from the concentration-time curves. Flow was varied between 2.5 and 10.0 l/min and a significant correlation was found between the MRI-estimate and true flow. Volume of distribution between injection and detection site was reliably estimated. This study demonstrates rapid 2-D imaging of a paramagnetic contrast bolus in a realistic flow phantom. Reliable estimates of flow and volume are obtained. (orig.) [de

  15. [Spermatogenesis of pulsatile gonadotropin-releasing hormone infusion versus gonadotropin therapy in male idiopathic hypogonadotropic hypogonadism].

    Science.gov (United States)

    Huang, Bingkun; Mao, Jiangfeng; Xu, Hongli; Wang, Xi; Liu, Zhaoxiang; Nie, Min; Wu, Xueyan

    2015-05-26

    To compare the efficacies of pulsatile gonadotropin-releasing hormone (GnRH) versus human chorionic gonadotropin/human menopausal gonadotropin (HCG/HMG) for spermatogenesis in male idiopathic hypogonadotropic hypogonadism (IHH). For this retrospective study, a total of 92 male IHH outpatients from May 2010 to October 2014 were recruited and categorized into GnRH (n = 40) and HCG/HMG (n = 52) groups. Each subject selected one specific therapy voluntarily. The gonadotropin levels were measured in the first week and monthly post-treatment in GnRH group. And serum total testosterone (TT), testicular volume (TV) and rate of spermatogenesis were observed monthly post-treatment in two groups. Spermatogenesis, TT and TV were compared between two groups. All IHH patients were treated for over 3 months. The median follow-up periods in GnRH and HCG/HMG groups was 8.2 (3.0-18.4) and 9.2 (3.0-18.6) months respectively (P = 0.413). In GnRH group, LH ((0.5 ± 0.6) vs (3.4 ± 2.4) U/L, P treatment. In GnRH group, at the end of follow-up, TT ((1.0 ± 1.0) vs (7.4 ± 5.2) nmol/L, P treatment time for initial sperm appearance than HCG/HMG group ((6.5 ± 3.1) vs (10.8 ± 3.7) months, P = 0.001). Pulsatile GnRH requires a shorter time for initiation of spermatogenesis than gonadotropin therapy in IHH male patients.

  16. CSF flow: Correlation between signal void and CSF velocity measured by gated velocity phase-encoded MR imaging

    International Nuclear Information System (INIS)

    Mark, A.S.; Feinberg, D.A.

    1986-01-01

    The direction of the cerebrospinal fluid (CSF) flow in the foramen of Monro (FOM) and aqueduct was determined in 15 normal volunteers (5 of whom had also been studied with gated spin-echo sequences) using a cardiac-gated Fourier transform velocity imaging technique (VMR). The VMR showed that the periodic pattern of flow void seen in the aqueduct and FOM on the gated spin-echo images was due to antegrade CSF flow from the lateral ventricles into the third ventricle and aqueduct during systole and retrograde flow from the aqueduct into the third ventricle and lateral ventricles during late diastole. These findings could not be explained if the CSF pulsations originated in the third ventricle, as had been previously proposed, and suggest the lateral ventricles play an important role in the pulsatile motion of CSF

  17. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy

    International Nuclear Information System (INIS)

    Farzam, Parisa; Zirak, Peyman; Durduran, Turgut; Binzoni, Tiziano

    2013-01-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion. (paper)

  18. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.

    Science.gov (United States)

    Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut

    2013-08-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.

  19. Changes in Bone Mineral Density and Metabolic Parameters after Pulsatile Gonadorelin Treatment in Young Men with Hypogonadotropic Hypogonadism

    Directory of Open Access Journals (Sweden)

    Chen-Xi Li

    2015-01-01

    Full Text Available To assess the prevalence of osteoporosis in young men with hypogonadotropic hypogonadism (HH and to investigate the changes of BMD and metabolic parameters, a total of 22 young male patients with HH and 20 healthy controls were enrolled in the study. BMD, biochemical, and hormonal parameters were measured in two groups. Osteoporosis was more prevalent in HH patients (45.45% than the control subjects (10.00% (P<0.001. The patients with HH had lower BMD in lumbar spine 2–4, femoral neck, and total hip (P<0.001, for all and higher fasting insulin (P=0.001, HOMA-IR (P=0.002, and SHBG (P<0.001 compared to the controls. After 6 months of pulsatile gonadorelin treatment, BMI (P=0.021 and BMD in lumbar spine 2–4, femoral neck, and total hip (P=0.002, P=0.003, and P=0.003, resp. increased dramatically and total cholesterol (P=0.034, fasting insulin (P=0.025, HOMA-IR (P=0.021, and SHBG (P=0.001 decreased significantly in HH patients. The study shows a higher prevalence of osteoporosis in young men with HH. Long-term pulsatile gonadorelin treatment indicates a positive effect on BMD and metabolic parameters of HH patients.

  20. Anti-Mullerian hormone levels do not predict response to pulsatile GnRH in women with hypothalamic amenorrhea.

    Science.gov (United States)

    Billington, Emma O; Corenblum, Bernard

    2016-09-01

    Pulsatile GnRH is used to induce ovulation in women with hypothalamic amenorrhea (HA), but tools to predict response are lacking. We assessed whether baseline AMH levels are associated with response to pulsatile GnRH in 16 women with HA. AMH levels were compared between non-responders and women who achieved follicular development or pregnancy. Median AMH for the cohort was 2.2 ng/mL. AMH levels were undetectable or low in four women, normal in nine and high in three. Follicular development was observed in 13 (81%) women (82% of cycles) and pregnancy achieved in 10 (63%) women (29% of cycles). All four women with low or undetectable AMH had follicular response and three achieved pregnancy. Of the 12 women with normal or high AMH, 10 had a follicular response and seven achieved pregnancy. Median AMH levels were comparable in those who achieved follicular development and those who did not (2.2 ng/mL versus 1.3 ng/mL, p = 0.78) and in those who became pregnant and those who did not (2.2 ng/mL versus 1.9 ng/mL, p = 0.52). In summary, low AMH does not preclude response to ovulation induction in women with HA, suggesting that ovarian potential may not be the primary determinant of AMH concentrations in this population.

  1. Leptin does not mediate short-term fasting-induced changes in growth hormone pulsatility but increases IGF-I in leptin deficiency states.

    Science.gov (United States)

    Chan, Jean L; Williams, Catherine J; Raciti, Patricia; Blakeman, Jennifer; Kelesidis, Theodore; Kelesidis, Iosif; Johnson, Michael L; Thorner, Michael O; Mantzoros, Christos S

    2008-07-01

    States of acute and chronic energy deficit are characterized by increased GH secretion and decreased IGF-I levels. The objective of the study was to determine whether changes in levels of leptin, a key mediator of the adaptation to starvation, regulate the GH-IGF system during energy deficit. We studied 14 healthy normal-weight men and women during three conditions: baseline fed and 72-h fasting (to induce hypoleptinemia) with administration of placebo or recombinant methionyl human leptin (r-metHuLeptin) (to reverse the fasting associated hypoleptinemia). We also studied eight normal-weight women with exercise-induced chronic energy deficit and hypothalamic amenorrhea at baseline and during 2-3 months of r-metHuLeptin treatment. GH pulsatility, IGF levels, IGF and GH binding protein (GHBP) levels were measured. During short-term energy deficit, measures of GH pulsatility and disorderliness and levels of IGF binding protein (IGFBP)-1 increased, whereas leptin, insulin, IGF-I (total and free), IGFBP-4, IGFBP-6, and GHBP decreased; r-metHuLeptin administration blunted the starvation-associated decrease of IGF-I. In chronic energy deficit, total and free IGF-I, IGFBP-6, and GHBP levels were lower, compared with euleptinemic controls; r-metHuLeptin administration had no major effect on GH pulsatility after 2 wk but increased total IGF-I levels and tended to increase free IGF-I and IGFBP-3 after 1 month. The GH/IGF system changes associated with energy deficit are largely independent of leptin deficiency. During acute energy deficit, r-metHuLeptin administration in replacement doses blunts the starvation-induced decrease of IGF-I, but during chronic energy deficit, r-metHuLeptin administration increases IGF-I and tends to increase free IGF-I and IGFBP-3.

  2. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1995-08-01

    Many problems and complications associated with heart valves are related to the dynamic behavior of the valve and the resultant unsteady flow patterns. An accurate depiction of the spatial and temporal velocity and rms distributions imparts better understanding of flow related valve complications, and may be used as a guideline in valve design. While the generalized correlation between increased turbulence level and the severity of the stenosis is well established, few studies addressed the issue of the intermittent nature of turbulence and its timing in the cardiac cycle, and almost none assessed the effect of a progressive stenosis on the flow characteristics through heart valves. In this experimental work we simulated the type of flow which is present in normal and stenosed valves and conducted a comprehensive investigation of valve hemodynamics, valvular turbulence and morphology under varying degrees of stenosis. The characteristics of valves and stenoses were simulated closely, to achieve the flow conditions that initiate turbulent flow conditions. Laser Doppler anemometry (LDA) measurements were carried out in a pulse duplicator system distal to trileaflet polyurethane prosthetic heart valves, installed at mitral and aortic positions. The effect of the degree of the stenosis was comparatively studied through the structure of the turbulent jets emerging from normal and stenotic heart valves. Maximum turbulence level was achieved during the decelerating phase and correlated to the severity of the stenosis, followed by relaminarization of the flow during the acceleration phase. The intermittent nature of the turbulence emphasized the importance of realizing the timing of the turbulence production and its spatial location for optimizing current valve designs. The plug flow through the normal aortic valve prosthesis was replaced by jet like behavior for a 65% stenosis, with the jet becoming narrower and stronger for a 90% stenosis. The morphology of the velocity

  3. Comparison between induction effect with pulsatile and continuous oxytocin administration on outcomes of pregnancy in the pregnant women referring to Tabriz 29 Bahman hospital in 2006

    Directory of Open Access Journals (Sweden)

    fahimeh Sehhati

    2008-04-01

    Full Text Available Abstract Background: Insufficient uterine activity or hypotonic uterine contraction is a common reason and the cause of abnormal labor progress that can be corrected with oxytocin. Realizing this fact that undue prolongation of labor may contribute to prenatal morbidity has resulted in using oxytocin infusion in different kinds of ineffective uterine contractions. Materials and methods: In this study, one hundred pregnant women in 29 Bahman hospital participated in a quasi-experimental research and were divided randomly into 2 groups of pulsatile induction as well as continuous induction and were compared in terms of pregnancy outcomes including progress of labor, hyperstimulation, mood of delivery, third stage duration, newborn’s Apgar score, and hyperbilirobinemia. Results: There were no significant differences between the two groups in progress of labor, hyperstimulation rate, newborn’s Apgar score, and hyperbilirobinemia (p>0.05 however, significant differences were observed in labor duration (p=0.022, mood of delivery (p=0.008, and dose of oxytocin (p<0.0005. Conclusion: According to the findings of this study, administration of oxytocin with the feedback pulsatile oxytocin system is easier and more physiologic to establish the effective uterine contraction and reduces duration of labor and cesarean section rate. Moreover, the average dose of oxytocin administered is significantly less in the pulsatile induction group.

  4. Interleukin 1α inhibits prostaglandin E2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    International Nuclear Information System (INIS)

    Rettori, V.; McCann, S.M.; Gimeno, M.F.; Karara, A.; Gonzalez, M.C.

    1991-01-01

    Interleukin 1α (IL-1α), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1α into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1α caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1α (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E 2 into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1α reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1α suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E 2 -mediated release of LHRH

  5. Symposium on Turbulent Shear Flows, 7th, Stanford University, CA, Aug. 21-23, 1989, Proceedings. Volumes 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Papers on turbulent shear flows are presented, covering topics such as the structure of pressure fluctuations, fossil two-dimensional turbulence in the ocean, turbulence production and eddy structure in wall turbulence, bypass transition in a heated boundary layer, a turbulent spot in plane Poiseuille flow, the evolution of an axisymmetric jet, plane mixing layer development, vortex models of a pseudoturbulent shear flow, numerical techniques for turbulence studies, Reynolds stress in the wall region of turbulent pipe flow, the turbulent structure of a momentumless wake, the near field of the transverse jet. Additional topics include a turbulent boundary layer disturbed by a cylinder, evolving mixing layers, flow analysis in a vortex flowmeter, ejections and bursts in pulsatile turbulent wall flow measurements, a flat plate oscillating in pitch, turbulent buoyant flows, isothermal lobed mixer flows, flow distortion on a turbulent scalar field, two phase flows. In addition, papers on the applications of turbulent shear flow studies are given, including air pollutant deposition, closures, oceanography, instrumentation, heat transfer, rotating flows, combustion, coherent structures, turbulence control, and scalar transport modeling

  6. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  7. Experimental and theoretical investigations of Lantana camara oil diffusion from polyacrylonitrile membrane for pulsatile drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek [Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008 (India); Balasubramanian, K., E-mail: meetkbs@gmail.com [Department of Materials Engineering, Defence Institute of Advance Technology (DIAT), Ministry of Defence, Girinagar, Pune 411025 (India)

    2014-08-01

    Porous composite membrane of polyacrylonitrile (PAN) and Lantana camara essential oil was synthesized by solvent casting method. Stability of oil in PAN solution was measured by XiGo nano tool indicating constant relaxation time of 1487 time/s. Pore size of few microns confirmed by electron microscopy was supported by atomic force microscopy indicating roughness factor of 0.9 nm. Contact angle of 2° inveterates superhydrophilicity of the composite membrane. Membrane showed excellent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 7–10 mm zone of inhibition. In vitro release of Lantana oil from the composite membrane was carried out in isotonic phosphate buffer solution (pH = 7.4). Lantana oil was released for 9 h, lag time of 3 h with constant 33% release confirmed PAN membranes as potential system for pulsatile drug delivery applications. Diffusion of E-caryophyllene (antibacterial component of oil) which was studied through molecular simulation using Material Studio software ensued diffusion coefficient value of 1.11 ∗ 10{sup −9} m{sup 2}/s. Biocompatibility of the composite membrane was assessed by mouse embryonic fibroblast cell line (NIH 3T3) through MTT assay indicating more than 91% viable cell even at 200 μg/mL concentration. Such membranes can be efficiently used in biomedical applications as antibacterial and antifungal agent. - Highlights: • Pulsatile release • Lantana oil–PAN composite membrane as antibacterial material • Enhanced bactericidal activity of the membrane.

  8. Coupled oscillations of flow along a perforated plate

    International Nuclear Information System (INIS)

    Celik, E.; Rockwell, D.

    2004-01-01

    Turbulent shear flow past a perforated plate bounded by a closed cavity can give rise to highly coherent oscillations, which have a wavelength of the order of the plate length. The present investigation focuses on the coupling between unsteady events on either side of the plate when the oscillations are self-sustaining. A cinema technique of high-image-density particle image velocimetry, which provides a space-time representation of the unsteadiness at a large number of locations over entire planes, is employed to characterize the distinctively different patterns of flow structure on the back (low-speed) side of the plate relative to those on the front (high-speed) side. Global cross-spectral analysis leads to patterns of spectral peaks and phase variations, along and across the plate. This approach, along with complementary types of image evaluation, delineates the physics of the oscillations, which include downstream propagating disturbances along either side of the plate and a coherent region of unsteadiness at its trailing-edge. On the backside of the plate, a sequence of upstream-oriented, pulsatile jets are formed, and the time-averaged flow pattern is a counterflow wall jet

  9. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    Science.gov (United States)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  10. EIT based pulsatile impedance monitoring during spontaneous breathing in cystic fibrosis.

    Science.gov (United States)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Gong, Bo; Müller-Lisse, Ullrich; Moeller, Knut

    2017-06-01

    Evaluating the lung function in patients with obstructive lung disease by electrical impedance tomography (EIT) usually requires breathing maneuvers containing deep inspirations and forced expirations. Since these maneuvers strongly depend on the patient's co-operation and health status, normal tidal breathing was investigated in an attempt to develop continuous maneuver-free measurements. Ventilation related and pulsatile impedance changes were systematically analyzed during normal tidal breathing in 12 cystic fibrosis (CF) patients and 12 lung-healthy controls (HL). Tidal breaths were subdivided into three inspiratory (In1, In2, In3) and three expiratory (Ex1, Ex2, Ex3) sections of the same amplitude of global impedance change. Maximal changes of the ventilation and the pulsatile impedance signal occurring during these sections were determined (▵I V and ▵I P ). Differences in ▵I V and ▵I P among sections were ascertained in relation to the first inspiratory section. In addition, ▵I V /▵I P was calculated for each section. Medians of changes in ▵I V were  <0.05% in all sections for both subject groups. Both groups showed a similar pattern of ▵I P changes during tidal breathing. Changes in ▵I P first decreased during inspiration (In2), then increased towards the end of inspiration (In3) and reached a maximum at the beginning of expiration (Ex1). During the last two sections of expiration (Ex2, Ex3) ▵I P changes decreased. The CF patients showed higher variations in ▵I P changes compared to the controls (CF:  -426.5%, HL:  -158.1%, coefficient of variation). Furthermore, ▵I V /▵I P significantly differed between expiratory sections for the CF patients (Ex1-Ex2, p  <  0.01; Ex1-Ex3, p  <  0.001; Ex2-Ex3, p  <  0.05), but not for the controls. No significant differences in ▵I V /▵I P between inspiratory sections were determined for both groups. Differences in ▵I P changes and in ▵I V /▵I P between

  11. 3D Flow reconstruction using ultrasound PIV

    Science.gov (United States)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  12. An analytical phantom for the evaluation of medical flow imaging algorithms

    International Nuclear Information System (INIS)

    Pashaei, A; Fatouraee, N

    2009-01-01

    Blood flow characteristics (e.g. velocity, pressure, shear stress, streamline and volumetric flow rate) are effective tools in diagnosis of cardiovascular diseases such as atherosclerotic plaque, aneurism and cardiac muscle failure. Noninvasive estimation of cardiovascular blood flow characteristics is mostly limited to the measurement of velocity components by medical imaging modalities. Once the velocity field is obtained from the images, other flow characteristics within the cardiovascular system can be determined using algorithms relating them to the velocity components. In this work, we propose an analytical flow phantom to evaluate these algorithms accurately. The Navier-Stokes equations are used to derive this flow phantom. The exact solution of these equations obtains analytical expression for the flow characteristics inside the domain. Features such as pulsatility, incompressibility and viscosity of flow are included in a three-dimensional domain. The velocity domain of the resulted system is presented as reference images. These images could be employed to evaluate the performance of different flow characteristic algorithms. In this study, we also present some applications of the obtained phantom. The calculation of pressure domain from velocity data, volumetric flow rate, wall shear stress and particle trace are the characteristics whose algorithms are evaluated here. We also present the application of this phantom in the analysis of noisy and low-resolution images. The presented phantom can be considered as a benchmark test to compare the accuracy of different flow characteristic algorithms.

  13. Prediction of coronary artery bypass graft flow

    International Nuclear Information System (INIS)

    Tamiya, Eiji; Hada, Yoshiyuki; Asano, Ken-ichi; Iio, Masahiro.

    1991-01-01

    To predict the coronary artery bypass graft (CABG) flow based on the time density curve (TDC) obtained from the digital subtraction aortograms (DSA), we developed a pulsatile CABG model (perfusion pressure 60,130 mmHg, pulse rate 53,126/min, cardiac output 3-7 l/min, diameter of the graft 2.1∼6.0 mm). After positioning the regions of interest (ROI), we injected contrast medium(5∼40 ml/sec, 5∼40 ml) into the outlet conduit. Concerning the TDCs, we calculated appearance time (Ta), peak densities (Dp), peak time (Tp), disappearance time (Td), integral of TDC, ΔTp (difference of Tp between two ROI) and ΔTa (difference of Ta between two ROI). Perfusion pressure, graft flow and output curve were similar to those of patients with CABG. Ta, Tp, Td, and ΔTp were affected by both the injection rate and the volume of the contrast medium; while Dp and the TDC integral were only affected by the latter parameter. Under the same conditions of contrast medium injection, the TDC depended strongly on graft flow, diameter of the graft, output and pulse rate. 21.6+0.92π·d 2 /4·Δ1/ΔTp·60 provided the most accurate estimation of CABG flow (r=0.865, p<0.01). We conclude that densitometric analysis of DSA may be useful in the prediction of CABG flow. (author)

  14. Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.

    Science.gov (United States)

    Morales, Hernán G; Bonnefous, Odile

    2015-02-26

    Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Abnormal arterial flows by a distributed model of the fetal circulation.

    Science.gov (United States)

    van den Wijngaard, Jeroen P H M; Westerhof, Berend E; Faber, Dirk J; Ramsay, Margaret M; Westerhof, Nico; van Gemert, Martin J C

    2006-11-01

    Modeling the propagation of blood pressure and flow along the fetoplacental arterial tree may improve interpretation of abnormal flow velocity waveforms in fetuses. The current models, however, either do not include a wide range of gestational ages or do not account for variation in anatomical, vascular, or rheological parameters. We developed a mathematical model of the pulsating fetoumbilical arterial circulation using Womersley's oscillatory flow theory and viscoelastic arterial wall properties. Arterial flow waves are calculated at different arterial locations from which the pulsatility index (PI) can be determined. We varied blood viscosity, placental and brain resistances, placental compliance, heart rate, stiffness of the arterial wall, and length of the umbilical arteries. The PI increases in the umbilical artery and decreases in the cerebral arteries, as a result of increasing placental resistance or decreasing brain resistance. Both changes in resistance decrease the flow through the placenta. An increased arterial stiffness increases the PIs in the entire fetoplacental circulation. Blood viscosity and peripheral bed compliance have limited influence on the flow profiles. Bradycardia and tachycardia increase and decrease the PI in all arteries, respectively. Umbilical arterial length has limited influence on the PI but affects the mean arterial pressure at the placental cord insertion. The model may improve the interpretation of arterial flow pulsations and thus may advance both the understanding of pathophysiological processes and clinical management.

  16. Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions

    Science.gov (United States)

    Mehdi, Faraz; Sheng, Jian

    2013-11-01

    The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.

  17. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    Science.gov (United States)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  18. Experiment of a centrifugal pump during changing speed operation

    International Nuclear Information System (INIS)

    Yuan, H J; Wu, Y L; Liu, S H; Shao, J

    2012-01-01

    In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.

  19. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  20. The pulsatility index and the resistive index in renal arteries in patients with hypertension and chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Ladefoged, S D

    1995-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurement of downstream renal artery resistance. Little information is available on their value in chronic renal failure and their correlation to parameters of renal function and haemodynamics. The aim...... was to compare PI and RI of renal arteries in healthy volunteers and in patients with hypertension and chronic renal failure, and furthermore to study the correlation of these indices to measurements of renal haemodynamics and function by standard methods in patients with renal failure and hypertension....

  1. Differential Effects of Continuous Exposure to the Investigational Metastin/Kisspeptin Analog TAK-683 on Pulsatile and Surge Mode Secretion of Luteinizing Hormone in Ovariectomized Goats

    Science.gov (United States)

    TANAKA, Tomomi; OHKURA, Satoshi; WAKABAYASHI, Yoshihiro; KUROIWA, Takenobu; NAGAI, Kiyosuke; ENDO, Natsumi; TANAKA, Akira; MATSUI, Hisanori; KUSAKA, Masami; OKAMURA, Hiroaki

    2013-01-01

    Abstract The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from –4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats. PMID:24047956

  2. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  3. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang [Capital Medical University, Department of Radiology, Beijing Friendship Hospital, Beijing (China); Niu, Yantao; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China)

    2016-01-15

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm{sup 2}), less so in PT patients (7.97 ± 5.17 mm{sup 2}). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  4. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    International Nuclear Information System (INIS)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang; Niu, Yantao; Xian, Junfang

    2016-01-01

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm 2 ), less so in PT patients (7.97 ± 5.17 mm 2 ). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  5. Analysis of pulsatile retinal movements by spectral-domain low-coherence interferometry: influence of age and glaucoma on the pulse wave.

    Directory of Open Access Journals (Sweden)

    Carolyne Dion

    Full Text Available Recent studies have shown that ocular hemodynamics and eye tissue biomechanical properties play an important role in the pathophysiology of glaucoma. Nevertheless, better, non-invasive methods to assess these characteristics in vivo are essential for a thorough understanding of degenerative mechanisms. Here, we propose to measure ocular tissue movements induced by cardiac pulsations and study the ocular pulse waveform as an indicator of tissue compliance. Using a novel, low-cost and non-invasive device based on spectral-domain low coherence interferometry (SD-LCI, we demonstrate the potential of this technique to differentiate ocular hemodynamic and biomechanical properties. We measured the axial movement of the retina driven by the pulsatile ocular blood flow in 11 young healthy individuals, 12 older healthy individuals and 15 older treated glaucoma patients using our custom-made SD-OCT apparatus. The cardiac pulse was simultaneously measured through the use of an oximeter to allow comparison. Spectral components up to the second harmonic were obtained and analyzed. For the different cohorts, we computed a few parameters that characterize the three groups of individuals by analyzing the movement of the retinal tissue at two locations, using this simple, low-cost interferometric device. Our pilot study indicates that spectral analysis of the fundus pulsation has potential for the study of ocular biomechanical and vascular properties, as well as for the study of ocular disease.

  6. Seasonal and pulsatile dynamics of thyrotropin and leptin in mares maintained under a constant energy balance.

    Science.gov (United States)

    Buff, P R; Messer, N T; Cogswell, A M; Johnson, P J; Keisler, D H; Ganjam, V K

    2007-11-01

    The objective of this study was to determine if seasonal and/or pulsatile variations occur in plasma concentrations of thyrotropin (TSH) and leptin in mares while maintaining a constant energy balance. Blood samples were collected every 20 min during a 24h period in winter and again in summer from six Quarter Horse type mares. Plasma concentrations of TSH, leptin, and T(4) were determined by radioimmunoassay. No differences were observed in body weight between winter (388.1+/-12.5 kg) and summer (406.2+/-12.5 kg; P=0.11). Plasma concentrations of TSH were greater in the summer (2.80+/-0.07 ng/ml) when compared to winter (0.97+/-0.07 ng/ml; P<0.001). Pulse frequency of TSH was not different between winter (6.17+/-0.78 pulses/24h) and summer (5.33+/-0.78 pulses/24h; P=0.49). Mean TSH pulse amplitude, pulse area, and area under the curve were all greater in summer compared to winter (3.11+/-0.10 ng/ml versus 1.20+/-0.10 ng/ml, 24.86+/-0.10 ng/ml min versus 13.46+/-1.90 ng/ml min, 3936+/-72.93 ng/ml versus 1284+/-72.93 ng/ml, respectively; P<0.01). Mean concentrations of leptin were greater in summer (2.48+/-0.17 ng/ml) compared to winter (0.65+/-0.17 ng/ml; P<0.001). Pulsatile secretion patterns of leptin were not observed in any horses during experimentation. Mean concentrations of T(4) were greater in winter (20.3+/-0.4 ng/ml) compared to summer (18.2+/-0.4 ng/ml; P<0.001). These seasonal differences between winter and summer provide evidence of possible seasonal regulation of TSH and leptin.

  7. Menstrual phase-related differences in the pulsatility index on the central retinal artery suggest an oestrogen vasodilatation effect that antagonizes with progesterone.

    Science.gov (United States)

    Viana, Luiz Carlos; Faria, Marcos; Pettersen, Heverton; Sampaio, Marcos; Geber, Selmo

    2011-03-01

    The actual effect of steroid hormones on cerebral microcirculation is still controversial. Therefore, the aim of our study was to investigate vascular flow variations in the central retinal artery that may exist during the ovulatory menstrual cycle. A total of 34 healthy women were included in this observational, longitudinal, and prospective study. All participants were submitted to dopplerfluxometric evaluation of the eyes in order to study the pulsatility index (PI) of the central retinal arteries, during four phases of the menstrual cycle: early follicular, mid follicular, periovulatory, and mid luteal phases. Subjects' ages ranged from 14 to 47 years old (mean: 29.7 ± 10.1) and PI did not differ among age groups. The PI of the central retinal artery was different among the four phases of the menstrual cycle. PI showed a significant decrease from early follicular phase (1.72) to mid follicular phase (1.57) (p = 0.037), and was similar during periovulatory phase (1.56) and significantly increased in mid luteal phase (1.70). After that it returned to the values observed in the early follicular phase. Our results suggest the existence of an oestrogen vasodilatation effect on the central retinal artery that is menstrual phase-related and antagonized by progesterone.

  8. Modern Diagnostic Techniques for the Assessment of Ocular Blood Flow in Myopia: Current State of Knowledge.

    Science.gov (United States)

    Grudzińska, Ewa; Modrzejewska, Monika

    2018-01-01

    Myopia is the most common refractive error and the subject of interest of various studies assessing ocular blood flow. Increasing refractive error and axial elongation of the eye result in the stretching and thinning of the scleral, choroid, and retinal tissues and the decrease in retinal vessel diameter, disturbing ocular blood flow. Local and systemic factors known to change ocular blood flow include glaucoma, medications and fluctuations in intraocular pressure, and metabolic parameters. Techniques and tools assessing ocular blood flow include, among others, laser Doppler flowmetry (LDF), retinal function imager (RFI), laser speckle contrast imaging (LSCI), magnetic resonance imaging (MRI), optical coherence tomography angiography (OCTA), pulsatile ocular blood flowmeter (POBF), fundus pulsation amplitude (FPA), colour Doppler imaging (CDI), and Doppler optical coherence tomography (DOCT). Many researchers consistently reported lower blood flow parameters in myopic eyes regardless of the used diagnostic method. It is unclear whether this is a primary change that causes secondary thinning of ocular tissues or quite the opposite; that is, the mechanical stretching of the eye wall reduces its thickness and causes a secondary lower demand of tissues for oxygen. This paper presents a review of studies assessing ocular blood flow in myopes.

  9. Low-dose prospectively electrocardiogram-gated axial dual-source CT angiography in patients with pulsatile bilateral bidirectional Glenn Shunt: an alternative noninvasive method for postoperative morphological estimation.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ji

    Full Text Available To explore the clinical value of low-dose prospectively electrocardiogram-gated axial dual-source CT angiography (low-dose PGA scanning, CTA in patients with pulsatile bilateral bidirectional Glenn shunt (bBDG as an alternative noninvasive method for postoperative morphological estimation.Twenty patients with pulsatile bBDG (mean age 4.2±1.6 years underwent both low-dose PGA scanning and conventional cardiac angiography (CCA for the morphological changes. The morphological evaluation included the anatomy of superior vena cava (SVC and pulmonary artery (PA, the anastomotic location, thrombosis, aorto-pulmonary collateral circulation, pulmonary arteriovenous malformations, etc. Objective and subjective image quality was assessed. Bland-Altman analysis and linear regression analyses were used to evaluate the correlation on measurements between CTA and CCA. Effective radiation dose of both modalities was calculated.The CT attenuation value of bilateral SVC and PA was higher than 300 HU. The average subjective image quality score was 4.05±0.69. The morphology of bilateral SVC and PA was displayed completely and intuitively by CTA images. There were 24 SVC above PA and 15 SVC beside PA. Thrombosis was found in 1 patient. Collateral vessels were detected in 13 patients. No pulmonary arteriovenous malformation was found in our study. A strong correlation (R2>0.8, P0.The mean effective dose of CTA and CCA was 0.50±0.17 mSv and 4.85±1.34 mSv respectively.CT angiography with a low-dose PGA scanning is an accurate and reliable noninvasive examination in the assessment of morphological changes in patients with pulsatile bBDG.

  10. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta.

    Science.gov (United States)

    Cartolano, Maria C; Amador, Molly H B; Tzaneva, Velislava; Milsom, William K; McDonald, M Danielle

    2017-12-01

    Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT 2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tissue engineering of heart valves: in vitro experiences.

    Science.gov (United States)

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  12. Low-Dose Pulsatile Interleukin-6 As a Treatment Option for Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Gautam Ghatnekar

    2017-05-01

    Full Text Available Diabetic peripheral neuropathy (DPN remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6 signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now understood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti-inflammatory responses in a context-dependent fashion. IL-6 released from muscle in response to exercise signals as a myokine and as such has a unique kinetic profile, whereby levels are transiently elevated up to 100-fold and return to baseline levels within 4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, and exercise has been shown to elicit numerous beneficial effects for the treatment of DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical literature related to the application of IL-6 as a treatment strategy for DPN. In addition, we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mechanistic understanding of how this treatment elicits a neuroprotective and/or regenerative response. Collectively, studies suggest that IL-6, when administered in a low-dose pulsatile strategy to mimic the body’s natural response to exercise, may prove to be an effective treatment for the protection and/or restoration of peripheral nerve function in DPN. This review highlights the studies supporting this assertion and

  13. Increased basal and pulsatile secretion of FSH and LH in young men with 47,XXY or 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Jensen, Rikke Bodin Beck; Carlsen, E.

    2008-01-01

    testicular failure due to supernumerary X chromosomes. DESIGN: Cross-sectional study. METHODS: In this study, 7 untreated patients with primary gonadal insufficiency due to SRY-positive 46,XX (n=4) and 46,XXY karyotypes (n=3) aged 18.8 years and 25 age-matched healthy controls participated. Reproductive...... basal, pulsatile, and total LH and FSH secretion were associated with significantly more LH peaks per 24 h in comparison with healthy controls. Thus, our data indicate that in patients with Klinefelter syndrome and XX male karyotypes the entire hypothalamic-pituitary-gonadal axis has undergone...

  14. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Science.gov (United States)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  15. The Use of a Combined Regimen of GnRH Agonist Plus a Low-Dose Oral Contraceptive Improves the Spontaneous Pulsatile LH Secretory Characteristics in Patients with Polycycstic Ovary Disease After Discontinuation of Treatment

    OpenAIRE

    Genazzani, Alessandro D.; Battaglia, Cesare; Gamba, Ombretta; Petraglia, Felice; Malavasi, Barbara; Genazzani, Andrea R.

    2000-01-01

    Purpose: The fertility rate in women with polycystic ovarydisease (PCOD) is influenced by the type of treatmentreceived. The present study evaluated the possiblecorrelation between treatment and pulsatile release ofgonadotropins.

  16. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Saxena, R; Yoganathan, A P

    1996-11-01

    During recent clinical trials the Medtronic Parallel bileaflet mechanical heart valve was found to have an unacceptable number of valves with thrombus formation when implanted in the mitral position. Thrombi were observed in the hinge region and also in the upstream portion of the valve housing in the vicinity of the hinge. It was hypothesized that the flow conditions inside the hinge may have contributed to the thrombus formation. In order to investigate the flow structures within the hinge, laser Doppler anemometry (LDA) measurements were conducted in both steady and pulsatile flow at approximately 70 predetermined sites within the hinge region of a 27 mm Medtronic Parallel mitral valve with transparent housing. The pulsatile flow velocity measurements were animated in time using a graphical software package to visualize the hinge flow field throughout the cardiac cycle. The LDA measurements revealed that mean forward flow velocities through the hinge region were on the order of 0.10-0.20 m/s. In the inflow channel, a large vortical structure was present during diastole. Upon valve closure, peak reverse velocity reached 3 m/s close to the housing wall in the inflow channel. This area also experienced high turbulent shear stresses (> 6000 dynes/cm2) during the leakage flow phase. A disturbed, vortical flow was again present in the inflow channel after valve closure, while slightly above the leaflet peg and relief the flow was essentially stagnant. The high turbulent stresses near the top of the inflow channel, combined with a persistent vortex, implicate the inflow channel of the hinge as a likely region of thrombus formation. This experimental investigation revealed zones of flow stagnation in the inflow region of the hinge throughout the cardiac cycle and elevated turbulent shear stress levels in the inflow region during the leakage flow phase. These fluid mechanic phenomena are most likely a direct result of the complex geometry of the hinge of this valve

  17. Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Sankar DS

    2009-01-01

    Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.

  18. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  19. Mean blood velocities and flow impedance in the fetal descending thoracic aortic and common carotid artery in normal pregnancy.

    Science.gov (United States)

    Bilardo, C M; Campbell, S; Nicolaides, K H

    1988-12-01

    A linear array pulsed Doppler duplex scanner was used to establish reference ranges for mean blood velocities and flow impedance (Pulsatility Index = PI) in the descending thoracic aorta and in the common carotid artery from 70 fetuses in normal pregnancies at 17-42 weeks' gestation. The aortic velocity increased with gestation up to 32 weeks, then remained constant until term, when it decreased. In contrast, the velocity in the common carotid artery increased throughout pregnancy. The PI in the aorta remained constant throughout pregnancy, while in the common carotid artery it fell steeply after 32 weeks. These results suggest that with advancing gestation there is a redistribution of the fetal circulation with decreased impedance to flow to the fetal brain, presumably to compensate for the progressive decrease in fetal blood PO2.

  20. ASSESSMENT OF FOETAL COMPROMISE BY DOPPLER ULTRASOUND INVESTIGATION OF THE FOETAL CIRCULATION

    Directory of Open Access Journals (Sweden)

    Bindu Philip

    2017-09-01

    /diastolic ratio (22%, 12 antenatal mothers had elevated uterine artery pulsatility index (24%, 15 antenatal mothers had elevated umbilical artery pulsatility index (30%, 10 antenatal mothers had elevated resistance index (20% and 25 antenatal mothers had elevated systolic/diastolic ratio (50%. 8 (16% foetus showed absence of end-diastolic flow in the umbilical artery flow velocity and 2 (4% had reversal of end-diastolic flow in the umbilical artery flow velocity with a total of 10 (20% foetuses having abnormal waveforms. There were 5 cases of intrauterine deaths, out of which 3 had absence of diastolic flow and 2 had reverse diastolic flow. Decreased pulsatility index of foetal middle cerebral artery was in 22 (44% foetus, normal pulsatility index of foetal middle cerebral artery was in 28 (56% foetuses. Elevated pulsatility index of descending thoracic aorta was in 26 (52% foetuses, normal pulsatility index of descending thoracic aorta was in 24 (48% of foetuses. Umbilical vein and ductus venous Doppler study showed that 20 (40% of the foetuses had presence of pulsatile flow in the umbilical vein flow velocity waveform and 30 (60% showed absence of pulsatile flow. There were 5 intrauterine deaths and 45 livebirths. Of the 45 livebirths, 10 neonates were admitted in ICU, 10 neonates had 5 mins. Apgar score of less than 7. 11 foetuses had at least one adverse perinatal outcome, remaining 14 foetuses had favourable conditions. CONCLUSION After changes in arteries, early changes in veins is observed, which results in poor perinatal outcomes with increased risk of foetal mortality. Hence, Doppler investigation of the foetal venous circulation play an important role in monitoring the redistributing growth retarded foetus and thereby may help to determine the optimal time for delivery.

  1. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid

    Science.gov (United States)

    Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2008-09-01

    We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.

  2. Treatment of cellulite with a bipolar radiofrequency, infrared heat, and pulsatile suction device: a pilot study.

    Science.gov (United States)

    Wanitphakdeedecha, Rungsima; Manuskiatti, Woraphong

    2006-12-01

    Very few therapeutic options have proven effective in the treatment of cellulite. To evaluate the effectiveness and adverse effects of a bipolar radiofrequency (RF), infrared (IR) heat and pulsatile suction device for the treatment of cellulite. Twelve subjects were treated with the RF-light-based device. All subjects were treated twice weekly for a total number of eight to nine treatments. Subjects were evaluated using standardized photographs, and measurements of body weight and circumference of treatment sites at baseline, immediately after the last treatment, and four weeks and one year after the last treatment. Clinical improvement scores of comparable photographs using a quartile grading scale (0 = 75% improvement) were judged independently by two non-treating dermatologists after the series of treatment. The average body weights at baseline, immediately after the last treatment, and four weeks and one year after the complete treatment were 56.30, 56.05, 56.23, and 56.53 kg, respectively. The average circumferential reductions of the abdomen and thigh at the last treatment visit were 5.17 +/- 1.04 cm (6.32%+/- 1.82%) and 3.50 +/- 2.16 cm (6.23 +/- 3.58%), respectively. At four weeks after the last treatment, the average circumferential reductions of the abdomen and thigh were sustained at 3.17 +/- 2.75 cm (4.04%+/- 3.69%) and 3.50 +/- 2.04 cm (6.26%+/- 3.52%), respectively. At one year follow-up visit, the average circumferential reductions of the abdomen and thigh were maintained at 3.83 +/- 0.76 cm (4.64%+/- 1.15%) and 3.13 +/- 3.54 (5.50%+/- 6.12%), respectively. Average clinical improvement scores of the abdomen and thigh after the series of treatments were 0.75 (corresponding to approximately 25% improvement), and 1.75 (corresponding to approximately 50% improvement), respectively. A bipolar RF, IR heat and pulsatile suction device provides a beneficial effect on reduction of abdomen and thigh circumference, and smoothening of the cellulite.

  3. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.

    Science.gov (United States)

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-04-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all PTurner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.

  4. Evaluation of factors influencing arterial Doppler waveforms in an in vitro flow phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    The aim of this study was to investigate factors that influence arterial Doppler waveforms in an in vitro phantom to provide a more accurate and comprehensive explanation of the Doppler signal. A flow model was created using a pulsatile artificial heart, rubber or polyethylene tubes, a water tank, and a glass tube. Spectral Doppler tracings were obtained in multiple combinations of compliance, resistance, and pulse rate. Peak systolic velocity, minimum diastolic velocity, resistive index (RI), pulsatility index, early systolic acceleration time, and acceleration index were measured. On the basis of these measurements, the influences of the variables on the Doppler waveforms were analyzed. With increasing distal resistance, the RI increased in a relatively linear relationship. With increasing proximal resistance, the RI decreased. The pulsus tardus and parvus phenomenon was observed with a small acceleration index in the model with a higher grade of stenosis. An increase in the distal resistance masked the pulsus tardus and parvus phenomenon by increasing the acceleration index. Although this phenomenon occurred independently of compliance, changes in the compliance of proximal or distal tubes caused significant changes in the Doppler waveform. There was a reverse relationship between the RI and the pulse rate. Resistance and compliance can alter the Doppler waveforms independently. The pulse rate is an extrinsic factor that also influences the RI. The compliance and distal resistance, as well as proximal resistance, influence the pulsus tardus and parvus phenomenon.

  5. Preliminary design of the internal geometry in a minimally invasive left ventricular assist device under pulsatile-flow conditions.

    Science.gov (United States)

    Smith, P Alex; Wang, Yaxin; Metcalfe, Ralph W; Sampaio, Luiz C; Timms, Daniel L; Cohn, William E; Frazier, O H

    2018-03-01

    A minimally invasive, partial-assist, intra-atrial blood pump has been proposed, which would unload the left ventricle with a flow path from the left atrium to the arterial system. Flow modulation is a common strategy for ensuring washout in the pump, but it can increase power consumption because it is typically achieved through motor-speed variation. However, if a pump's performance curve had the proper gradient, flow modulation could be realized passively. To achieve this goal, we propose a pump performance operating curve as an alternative to the more standard operating point. Mean-line theory was employed to generate an initial set of geometries that were then tested on a hydraulic test rig at ~20,000 r/min. Experimental results show that the intra-atrial blood pump performed below the operating region; however, it was determined that smaller hub diameter and longer chord length bring the performance of the intra-atrial blood pump device closer to the operating curve. We found that it is possible to shape the pump performance curve for specifically targeted gradients over the operating region through geometric variations inside the pump.

  6. Point-of-Care Ultrasonography to Assess Portal Vein Pulsatility and the Effect of Inhaled Milrinone and Epoprostenol in Severe Right Ventricular Failure: A Report of 2 Cases.

    Science.gov (United States)

    Tremblay, Jan-Alexis; Beaubien-Souligny, William; Elmi-Sarabi, Mahsa; Desjardins, Georges; Denault, André Y

    2017-10-15

    This article describes 2 patients with severe acute right ventricular failure causing circulatory shock. Portal vein pulsatility assessed by bedside ultrasonography suggested clinically relevant venous congestion. Management included cardiac preload reduction and combined inhalation of milrinone and epoprostenol to reduce right ventricular afterload. Portal vein ultrasonography may be useful in assessing right ventricular function in the acutely ill patient.

  7. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.

    Science.gov (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M

    2004-01-01

    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  8. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery.

    Science.gov (United States)

    Kong, Fande; Kheyfets, Vitaly; Finol, Ender; Cai, Xiao-Chuan

    2018-04-01

    Simulation of blood flows in the pulmonary artery provides some insight into certain diseases by examining the relationship between some continuum metrics, eg, the wall shear stress acting on the vascular endothelium, which responds to flow-induced mechanical forces by releasing vasodilators/constrictors. V. Kheyfets, in his previous work, studies numerically a patient-specific pulmonary circulation to show that decreasing wall shear stress is correlated with increasing pulmonary vascular impedance. In this paper, we develop a scalable parallel algorithm based on domain decomposition methods to investigate an unsteady model with patient-specific pulsatile waveforms as the inlet boundary condition. The unsteady model offers tremendously more information about the dynamic behavior of the flow field, but computationally speaking, the simulation is a lot more expensive since a problem which is similar to the steady-state problem has to be solved many times, and therefore, the traditional sequential approach is not suitable anymore. We show computationally that simulations using the proposed parallel approach with up to 10 000 processor cores can be obtained with much reduced compute time. This makes the technology potentially usable for the routine study of the dynamic behavior of blood flows in the pulmonary artery, in particular, the changes of the blood flows and the wall shear stress in the spatial and temporal dimensions. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Early signs that predict later haemodynamically significant patent ductus arteriosus.

    Science.gov (United States)

    Engür, Defne; Deveci, Murat; Türkmen, Münevver K

    2016-03-01

    Our aim was to determine the optimal cut-off values, sensitivity, specificity, and diagnostic power of 12 echocardiographic parameters on the second day of life to predict subsequent ductal patency. We evaluated preterm infants, born at ⩽32 weeks of gestation, starting on their second day of life, and they were evaluated every other day until ductal closure or until there were clinical signs of re-opening. We measured transductal diameter; pulmonary arterial diastolic flow; retrograde aortic diastolic flow; pulsatility index of the left pulmonary artery and descending aorta; left atrium and ventricle/aortic root ratio; left ventricular output; left ventricular flow velocity time integral; mitral early/late diastolic flow; and superior caval vein diameter and flow as well as performed receiver operating curve analysis. Transductal diameter (>1.5 mm); pulmonary arterial diastolic flow (>25.6 cm/second); presence of retrograde aortic diastolic flow; ductal diameter by body weight (>1.07 mm/kg); left pulmonary arterial pulsatility index (⩽0.71); and left ventricle to aortic root ratio (>2.2) displayed high sensitivity and specificity (p0.9). Parameters with moderate sensitivity and specificity were as follows: left atrial to aortic root ratio; left ventricular output; left ventricular flow velocity time integral; and mitral early/late diastolic flow ratio (p0.05) had low diagnostic value. Left pulmonary arterial pulsatility index, left ventricle/aortic root ratio, and ductal diameter by body weight are useful adjuncts offering a broader outlook for predicting ductal patency.

  10. Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application

    Science.gov (United States)

    Mondal, A.; Shit, G. C.

    2017-11-01

    In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.

  11. Correlation of experimental rCBF determinations in goats with flow measurements from a Doppler-modified carotid artery shunt

    International Nuclear Information System (INIS)

    Loftus, C.M.; Silvidi, J.A.; Becker, J.A.; Miller, B.V.; Bernstein, D.D.

    1989-01-01

    A carotid artery shunt system has been developed that continuously monitors blood flow rates by embedding a Doppler crystal in the shunt wall. The crystal ranges through a liquid lens that enables it to be placed without violation of the shunt lumen. Because the crystal is at a fixed angle (45 degrees) to the axis of blood flow and the diameter of the lumen remains constant, a linear relationship exists between flow rates and the Doppler velocity signal. This shunt system was previously tested in vitro using a pulsatile pump and was found to be accurate to within 4.7% of the actual flow rate. In the present study, animal (goat) experiments were performed consisting of simultaneous carotid shunt flow and bilateral rCBF measurements by the radiolabeled microsphere technique to determine in vivo the accuracy of this Doppler modified shunt and to ascertain the ability of shunt flow to increase in the face of acute contralateral carotid occlusion. Data from five animals show that in vivo shunt flow can be recorded to within 13% of control rCBF and that shunt flow increases nearly 50% under conditions of distal demand (contralateral carotid occlusion). This device may prove useful in laboratory studies of carotid shunt dynamics and in clinical practice to quickly detect correctable shunt flow abnormalities

  12. The Impact of Umbilical Blood Flow Regulation on Fetal Development Differs in Diabetic and Non-Diabetic Pregnancy

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-09-01

    Full Text Available Background/Aims: Diabetes is well-known to influence endothelial function. Endothelial function and blood flow regulation might be different in diabetic and non-diabetic pregnancy. However, the impact of umbilical blood flow regulation in gestational diabetes on fetal development is unknown so far. Methods: In a prospective birth cohort study, we analyzed the association of the umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio and fetal size measures (biparietal diameter, head circumference, abdominal circumference, femur length and birth weight in 519 non-gestational diabetes mellitus pregnancies (controls and 226 gestational diabetes mellitus pregnancies in middle (day 160.32 ±16.29 of gestation and late (day 268.12 ±13.04 of gestation pregnancy. Results: Multiple regression analysis considering confounding factors (gestational day of ultrasound examination, offspring sex, maternal body mess index before pregnancy, maternal age at delivery, maternal body weight at delivery and maternal hypertension showed that umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio were associated with fetal head circumference and femur length in middle gestational diabetes mellitus pregnancy but not in non-gestational diabetes mellitus pregnancy. Head circumference, biparietal diameter, abdominal circumference and femur length in mid gestation were smaller in fetus of gestational diabetes mellitus pregnancy versus non-gestational diabetes mellitus pregnancy. In contrast to non-gestational diabetes mellitus pregnancy in late gestation, umbilical artery Doppler indices in gestational diabetes mellitus pregnancy were not associated with ultrasound measures of fetal growth. Birth weight was slightly increased in gestational diabetes mellitus pregnancy as compared to non-gestational diabetes mellitus pregnancy. Conclusions: The impact of umbilical blood flow on fetal

  13. Evaluation of pulsatility index and diameter of the jugular vein and superficial body temperature as physiological indices of temperament in weaned beef calves: relationship with serum cortisol concentrations, rectal temp..

    Science.gov (United States)

    The relationship between temperament, pulsatility index and diameter of the jugular vein, and body temperature was assessed in Angus crossbred calves (262±24.9 days old). Temperament scores were used to classify calves as calm (n=31), intermediate (n=32), or temperamental (n=28). Blood samples were ...

  14. Endothelial cell capture of heparin-binding growth factors under flow.

    Directory of Open Access Journals (Sweden)

    Bing Zhao

    2010-10-01

    Full Text Available Circulation is an important delivery method for both natural and synthetic molecules, but microenvironment interactions, regulated by endothelial cells and critical to the molecule's fate, are difficult to interpret using traditional approaches. In this work, we analyzed and predicted growth factor capture under flow using computer modeling and a three-dimensional experimental approach that includes pertinent circulation characteristics such as pulsatile flow, competing binding interactions, and limited bioavailability. An understanding of the controlling features of this process was desired. The experimental module consisted of a bioreactor with synthetic endothelial-lined hollow fibers under flow. The physical design of the system was incorporated into the model parameters. The heparin-binding growth factor fibroblast growth factor-2 (FGF-2 was used for both the experiments and simulations. Our computational model was composed of three parts: (1 media flow equations, (2 mass transport equations and (3 cell surface reaction equations. The model is based on the flow and reactions within a single hollow fiber and was scaled linearly by the total number of fibers for comparison with experimental results. Our model predicted, and experiments confirmed, that removal of heparan sulfate (HS from the system would result in a dramatic loss of binding by heparin-binding proteins, but not by proteins that do not bind heparin. The model further predicted a significant loss of bound protein at flow rates only slightly higher than average capillary flow rates, corroborated experimentally, suggesting that the probability of capture in a single pass at high flow rates is extremely low. Several other key parameters were investigated with the coupling between receptors and proteoglycans shown to have a critical impact on successful capture. The combined system offers opportunities to examine circulation capture in a straightforward quantitative manner that

  15. Reference ranges for uterine artery pulsatility index during the menstrual cycle: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Luís Guedes-Martins

    Full Text Available Cyclic endometrial neoangiogenesis contributes to changes in local vascular patterns and is amenable to non-invasive assessment with Doppler sonography. We hypothesize that the uterine artery (UtA impedance, measured by its pulsatility index (PI, exhibits a regular pattern during the normal menstrual cycle. Therefore, the main study objective was to derive normative new day-cycle-based reference ranges for the UtA-PI during the entire cycle from days 1 to 34 according to the isolated time effect and potential confounders such as age and parity.From January 2009 to December 2012, a cross-sectional study of 1,821 healthy women undergoing routine gynaecological ultrasound was performed. The Doppler flow of the right and left UtA-PI was studied transvaginally by colour and pulsed Doppler imaging. The mean right and left values and the presence or absence of a bilateral protodiastolic notch were recorded. Reference intervals for the PI according to the cycle day were generated by classical linear regression.The majority of patients (97.5% presented unilateral or bilateral UtA notches. The crude 5th, 50th, and 95th reference percentile curves of the UtA-PI at 1-34 days of the normal menstrual cycle were derived. In all curves, a progressive significant decrease occurred during the first 13 days, followed by an increase and recovery in the UtA-PI. The adjusted 5th, 50th, and 95th reference percentile curves for the effects of age and parity were also obtained. These two conditions generated an approximately identical UtA-PI pattern during the cycle, except with small but significant reductions at the temporal extremes.The median, 5th, and the 95th percentiles of the UtA-PI decrease during the first third of the menstrual cycle and recover to their initial values during the last two thirds of the cycle. The rates of decrease and recovery depend significantly on age and parity.

  16. 4D flow mri post-processing strategies for neuropathologies

    Science.gov (United States)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  17. Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration

    Science.gov (United States)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2018-06-01

    In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.

  18. Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.

    Science.gov (United States)

    Datta, Anjali; Cheng, Joseph Y; Hargreaves, Brian A; Baron, Corey A; Nishimura, Dwight G

    2018-06-01

    To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    Science.gov (United States)

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  20. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    Science.gov (United States)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  1. Obesity, serum steroid levels, and pulsatile gonadotropin secretion in polycystic ovarian disease.

    Science.gov (United States)

    Laatikainen, T; Tulenheimo, A; Andersson, B; Kärkkäinen, J

    1983-04-01

    Serum binding capacity of sex-hormone binding globulin (SHBG-BC), steroid concentrations, and secretion patterns of LH and FSH were compared between groups of seven nonobese and seven obese patients with polycystic ovarian disease (PCOD). Obese patients with PCOD differed from those with normal weight in having very low SHBG-BC and elevated serum levels of free and albumin bound testosterone. Compared to healthy women in the follicular phase, both nonobese and obese patients with PCOD showed equally elevated serum levels of androstenedione, estrone, and albumin-bound and free estradiol. Pattern of gonadotropin secretion was studied from blood samples taken at 15 min intervals for 6 h. In 6 patients of both groups low pulses of FSH were found coincidently with pulses of LH. Serum level of LH showed a clear pulsatile pattern in all patients with PCOD, varying from 4.5 to 7.5 pulses per 6 h. The mean pulse rate in the groups of nonobese and obese patients with PCOD was similar, 5.9 pulses per 6 h. In the obese patients the mean LH levels were, however, less elevated and the pulse amplitudes were smaller than those in the nonobese patients. We suggest that this difference is due to high levels of biologically active testosterone in obese patients with PCOD.

  2. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  3. Evaluation of MR angiography and blood flow measurement in abdominal and peripheral arterial occlusive disease

    Energy Technology Data Exchange (ETDEWEB)

    Tabuchi, Kenji [Dokkyo Univ. School of Medicine, Mibu, Tochigi (Japan)

    2000-03-01

    To assess the characteristics of blood flow measurement with MR Angiography (MRA) to evaluate the status of vascular stenoses, two or three dimensional time-of-flight MRA and velocity-encoded cine MR were performed in the 230 segments of 35 patients, with abdominal and peripheral arterial occlusive diseases. In 11 of these 35 patients digital subtraction angiography was additionally underwent, and the stenotic findings was compared with MRA. There were 17 segments in which the velocity could not be measured, because the blood flow exceeded the upper limit of peak-encoded velocity (VENC) which was set at 120 cm/sec. Therefore, it is necessary to set the upper limit of VENC at higher than 120 cm/sec. There were 11 stenotic findings in DSA and 20 stenotic findings in MRA. Pulsatility Index (PI=(max velocity-min. velocity)/average velocity) were used for evaluating the blood flow waveform, and there were significant difference between the 11 stenotic findings of DSA and the others'. In summery, MRA was considered as useful examination to assess the degree of the vascular stenoses in abdominal and peripheral arterial occlusive disease. (author)

  4. Oscillatory flow in the human airways from the mouth through several bronchial generations

    International Nuclear Information System (INIS)

    Banko, Andrew J.; Coletti, Filippo; Elkins, Christopher J.; Eaton, John K.

    2016-01-01

    Highlights: • Oscillatory flow in the human airways is studied experimentally. • The realistic anatomy is obtained from the CT scan of a healthy adult. • Integral parameters are calculated to quantify streamwise and lateral dispersion. • Flow in real human anatomy is qualitatively different from idealized models. - Abstract: The time-varying flow is studied experimentally in an anatomically accurate model of the human airways from the mouth through several generations of bronchial branching. The airway geometry is obtained from the CT scan of a healthy adult male of normal height and build. The three-component, three-dimensional mean velocity field is obtained throughout the entire model using phase-locked Magnetic Resonance Velocimetry. A pulsatile pump drives a sinusoidal waveform (inhalation and exhalation) with frequency and stroke-length such that the mean trachea Reynolds number at peak inspiration is 4200 and the Womersley number is 7. Integral parameters are defined to quantify the degree of velocity profile non-uniformity (related to axial dispersion) and secondary flow strength (lateral dispersion). It is found that the extrathoracic airways significantly modify the tracheal flow and that the flow at the first bifurcation is highly asymmetric. The effect of flow oscillation is to produce time dependent flow features which are asymmetric with respect to the acceleration and deceleration periods surrounding peak inhalation and exhalation. This is most pronounced in regions of separation and on the secondary flow structure, which are sensitive to local attributes of the real anatomy. This is reflected in the integral parameters, which behave non-monotonically between successive bronchial generations. In general, the measured oscillatory flow in a realistic anatomy confirms many trends derived from idealized models but also possesses qualitatively different large scale flow structures as compared to idealized representations of the upper airways.

  5. Acoustic streaming in pulsating flows through porous media

    International Nuclear Information System (INIS)

    Valverde, J.M.; Dura'n-Olivencia, F.J.

    2014-01-01

    When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating

  6. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.

    Science.gov (United States)

    Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo

    2014-11-01

    Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Han [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Neuroradiology Division, Department of Radiology, Stanford University, CA, 94305 (United States); Zhao, Pengfei [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Liu, Zhaohui [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Li, Rui; Zhang, Ling; Wang, Peng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Yan, Fei [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Liu, Liheng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Wang, Guopeng; Zeng, Rong [Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Li, Ting [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Dong, Cheng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Gong, Shusheng, E-mail: gongss@ccmu.edu.cn [Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Wang, Zhenchang, E-mail: cjr.wzhch@vip.163.com [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China)

    2016-11-15

    Objective: Previous studies demonstrated altered regional neural activations in several brain areas in patients with pulsatile tinnitus (PT), especially indicating an important role of posterior cingulate cortex (PCC). However, few studies focused on the degree of functional connectivity (FC) of this area in PT patients. In this study, we will compare the FC of PCC in patients affected with this condition and normal controls by using resting-state functional magnetic resonance imaging (fMRI). Methods: Structural and functional MRI data were obtained from 36 unilateral PT patients with single etiology and 36 matched healthy controls. FC feature of the region of interest (PCC) were characterized using a seed-based correlation method with the voxels in the whole-brain. Results: Compared with healthy controls, patients showed significant decreased FC to the right middle temporal gyrus (MTG), right thalamus and bilateral insula. By contrast, PCC demonstrated increased functional connectivity between the precuneus, bilateral inferior parietal lobule and middle occipital gyrus. We also found correlations between the disease duration of PT and FC of PCC-right MTG (r = −0.616, p < 0.001). Conclusions: Unilateral PT patients could have abnormal FC to the PCC bilaterally in the brain. PCC, as a highly integrated brain area, is an example of nucleus that was involved in mediation between different neural networks. It might be a modulation core between visual network and auditory network. The decreased FC of MTG to PCC may indicate a down regulation of activity between PCC and auditory associated brain cortex. Decreased FC between limbic system (bilateral AI) and PCC may reflect the emotional message control in patient group. This study facilitated understanding of the underlying neuropathological process in patients with pulsatile tinnitus.

  8. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study

    International Nuclear Information System (INIS)

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2016-01-01

    Objective: Previous studies demonstrated altered regional neural activations in several brain areas in patients with pulsatile tinnitus (PT), especially indicating an important role of posterior cingulate cortex (PCC). However, few studies focused on the degree of functional connectivity (FC) of this area in PT patients. In this study, we will compare the FC of PCC in patients affected with this condition and normal controls by using resting-state functional magnetic resonance imaging (fMRI). Methods: Structural and functional MRI data were obtained from 36 unilateral PT patients with single etiology and 36 matched healthy controls. FC feature of the region of interest (PCC) were characterized using a seed-based correlation method with the voxels in the whole-brain. Results: Compared with healthy controls, patients showed significant decreased FC to the right middle temporal gyrus (MTG), right thalamus and bilateral insula. By contrast, PCC demonstrated increased functional connectivity between the precuneus, bilateral inferior parietal lobule and middle occipital gyrus. We also found correlations between the disease duration of PT and FC of PCC-right MTG (r = −0.616, p < 0.001). Conclusions: Unilateral PT patients could have abnormal FC to the PCC bilaterally in the brain. PCC, as a highly integrated brain area, is an example of nucleus that was involved in mediation between different neural networks. It might be a modulation core between visual network and auditory network. The decreased FC of MTG to PCC may indicate a down regulation of activity between PCC and auditory associated brain cortex. Decreased FC between limbic system (bilateral AI) and PCC may reflect the emotional message control in patient group. This study facilitated understanding of the underlying neuropathological process in patients with pulsatile tinnitus.

  9. Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery.

    Science.gov (United States)

    Anastasiou, A D; Spyrogianni, A S; Koskinas, K C; Giannoglou, G D; Paras, S V

    2012-03-01

    The scope of this work is to study the pulsatile flow of a blood mimicking fluid in a micro channel that simulates a bifurcated small artery, in which the Fahraeus-Lindqvist effect is insignificant. An aqueous glycerol solution with small amounts of xanthan gum was used for simulating viscoelastic properties of blood and in vivo flow conditions were reproduced. Local flow velocities were measured using micro Particle Image Velocimetry (μ-PIV). From the measured velocity distributions, the wall shear stress (WSS) and its variation during a pulse were estimated. The Reynolds numbers employed are relatively low, i.e. similar to those prevailing during blood flow in small arteries. Experiments both with a Newtonian and a non-Newtonian fluid (having asymptotic viscosity equal to the viscosity of the Newtonian one) proved that the common assumption that blood behaves as a Newtonian fluid is not valid for blood flow in small arteries. It was also shown that the outer wall of the bifurcation, which is exposed to a lower WSS, is more predisposed to atherosclerotic plaque formation. Moreover, this region in small vessels is shorter than the one in large arteries, as the developed secondary flow decays faster. Finally, the WSS values in small arteries were found to be lower than those in large ones. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  11. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure

    Directory of Open Access Journals (Sweden)

    Kim Taehong

    2007-03-01

    Full Text Available Abstract Background This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture. Methods The transient temperature profile in inflamed atherosclerotic plaques is calculated by solving an energy equation and the Navier-Stokes equations in 2D idealized arterial models of a bending artery and an arterial bifurcation. For obtaining the numerical solution, the commercial package COMSOL 3.2 was used. The calculations correspond to a parametric study where arterial type and size, as well as plaque geometry and composition, are varied. These calculations are used to analyze the contribution of different factors affecting arterial wall temperature measurements. The main factors considered are the metabolic heat production of inflammatory cells, atherosclerotic plaque length lp, inflammatory cell layer length lmp, and inflammatory cell layer thickness dmp. Results The calculations indicate that the best location to perform the temperature measurement is at the back region of the plaque (0.5 ≤ l/lp ≤ 0.7. The location of the maximum temperature, or hot spot, at the plaque surface can move during the cardiac cycle depending on the arterial geometry and is a direct result of the blood flow pattern. For the bending artery, the hot spot moves 0.6 millimeters along the longitudinal direction; for the arterial bifurcation, the hot spot is concentrated at a single location due to the flow recirculation observed at both ends of the plaque. Focusing on the

  12. The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth.

    Science.gov (United States)

    Salavati, N; Sovio, U; Mayo, R Plitman; Charnock-Jones, D S; Smith, G C S

    2016-02-01

    Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and arterial Doppler flow velocimetry have not previously been studied in relation to postnatal placental morphometry in detail. We conducted a prospective cohort study of nulliparous women in The Rosie Hospital, Cambridge (UK). We studied a group of 2120 women who had complete data on uterine and umbilical Doppler velocimetry and fetal biometry at 20, 28 and 36 weeks' gestational age, digital images of the placenta available, and delivered a liveborn infant at term. Associations were expressed as the difference in the standard deviation (SD) score of the gestational age adjusted ultrasound measurement (z-score) comparing the lowest and highest decile of the given placental morphometric measurement. The lowest decile of placental surface area was associated with 0.87 SD higher uterine artery Doppler mean pulsatility index (PI) at 20 weeks (95% CI: 0.68 to 1.07, P flow, respectively, and both are associated with fetal growth rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Phase-contrast cine MR imaging of normal aqueductal CSF flow. Effect of aging and relation to CSF void on modulus MR

    International Nuclear Information System (INIS)

    Barkhof, F.; Kouwenhoven, M.; Scheltens, P.; Sprenger, M.; Algra, P.; Valk, J.

    1994-01-01

    Cine phase-contrast MR imaging was used to study pulsatile CSF flow in the aqueduct in 11 young controls (mean age 30 years) and 9 old controls (mean age 69 years). A high-resolution gradient echo technique and an oblique imaging plane, perpendicular to the aqueduct, was used to avoid volume averaging. Phantom studies confirmed that the technique was accurate. Aqueductal velocity and flux in old controls was higher than in young controls, but the differences were not significant. For all controls together, the averaged peak velocity was 4.2 ± 1.5 cm/s in rostral and -7.8 ± 4.9 cm/s in caudal direction; for the flux it was 0.16 ± 0.10 cm 3 /s in rostral and -0.29 ± 0.19 cm 3 /s in caudal direction. Phase-contrast measurements were significantly related to flow-void on modulus MR images, but not with ventricular size or cortical atrophy. The present technique avoids underestimation of aqueductal flow, and therefore reveals higher aqueductal velocity and flux values than previous studies. Factors other than age or atrophy seem to determine aqueductal CSF flow. (orig.)

  14. Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery.

    Science.gov (United States)

    Shah, Sunny; Patel, Romik; Soniwala, Moinuddin; Chavda, Jayant

    2015-01-01

    The present work is aimed to develop and optimize pulsatile delivery during dissolution of an improved formulation of valsartan to coordinate the drug release with circadian rhythm. Preliminary studies suggested that β cyclodextrin could improve the solubility of valsartan and showed AL type solubility curve. A 1:1 stoichiometric ratio of valsartan to β cyclodextrin was revealed from phase solubility studies and Job's plot. The prepared complex showed significantly better dissolution efficiency (p valsartan β cyclodextrin complex was significantly higher (p valsartan β cyclodextrin complex were subsequently prepared and application of the Plackett-Burman screening design revealed that HPMC K4M and EC showed significant effect on lag time. A 3(2) full factorial design was used to measure the response of HPMC K4M and EC on lag time and time taken for 90% drug release (T90). The optimized batch prepared according to the levels obtained from the desirability function had a lag time of 6 h and consisted of HPMC K4M:ethylcellulose in a 1:1.5 ratio with 180 mg of coating and revealed a close agreement between observed and predicted value (R(2 )= 0.9694).

  15. Evaluation of the renal resistive index and pulsatility index in patients with pleural effusion by duplex Doppler ultrasonography.

    Science.gov (United States)

    Değirmenci, Nevbahar Akcar; Metintaş, Muzaffer; Atlanoglu, Sahinde; Yıldırım, Huseyin

    2013-01-01

    The aim of the study was to evaluate the renal resistive index (RI) and pulsatility index (PI) in patients with pleural effusion (PE). We studied the mean renal RI and PI in 50 patients with PE and 30 healthy volunteers by Doppler sonography. We grouped effusion as unilateral and bilateral. Statistical analysis was done by independent t test and correlation coefficient analysis. The mean RI/PI in healthy volunteers and in PE patients was 0.58/0.93 and 0.72/1.35, respectively. We observed a significantly higher RI and PI in patients when compared with healthy volunteers (all p effusion (0.74 or 1.55, respectively) (p > 0.05). Pleural effusion might result in increased renal impedance as seen in cirrhosis, which is a rather complicated pathophysiological process, without causing any morphological changes in kidneys.

  16. Mathematical Modeling of Ischemia-Reperfusion Injury and Postconditioning Therapy.

    Science.gov (United States)

    Fong, D; Cummings, L J

    2017-11-01

    Reperfusion (restoration of blood flow) after a period of ischemia (interruption of blood flow) can paradoxically place tissues at risk of further injury: so-called ischemia-reperfusion injury or IR injury. Recent studies have shown that postconditioning (intermittent periods of further ischemia applied during reperfusion) can reduce IR injury. We develop a mathematical model to describe the reperfusion and postconditioning process following an ischemic insult, treating the blood vessel as a two-dimensional channel, lined with a monolayer of endothelial cells that interact (respiration and mechanotransduction) with the blood flow. We investigate how postconditioning affects the total cell density within the endothelial layer, by varying the frequency of the pulsatile flow and the oxygen concentration at the inflow boundary. We find that, in the scenarios we consider, the pulsatile flow should be of high frequency to minimize cellular damage, while oxygen concentration at the inflow boundary should be held constant, or subject to only low-frequency variations, to maximize cell proliferation.

  17. Intra-aneurysmal flow disruption after implantation of the Medina® Embolization Device depends on aneurysm neck coverage.

    Science.gov (United States)

    Frölich, Andreas Maximilian; Nawka, Marie Teresa; Ernst, Marielle; Frischmuth, Isabell; Fiehler, Jens; Buhk, Jan-Hendrik

    2018-01-01

    Flow disruption achieved by braided intrasaccular implants is a novel treatment strategy for cerebrovascular aneurysms. We hypothesized that the degree of intra-aneurysmal flow disruption can be quantified in vitro and is influenced by device position across the aneurysm neck. We tested this hypothesis using the Medina® Embolization Device (MED). Ten different patient-specific elastic vascular models were manufactured. Models were connected to a pulsatile flow circuit, filled with a blood-mimicking fluid and treated by two operators using a single MED. Intra-aneurysmal flow velocity was measured using conventional and high-frequency digital subtraction angiography (HF-DSA) before and after each deployment. Aneurysm neck coverage by the implanted devices was assessed with flat detector computed tomography on a three-point Likert scale. A total of 80 individual MED deployments were performed by the two operators. The mean intra-aneurysmal flow velocity reduction after MED implantation was 33.6% (27.5-39.7%). No significant differences in neck coverage (p = 0.99) or flow disruption (p = 0.84) were observed between operators. The degree of flow disruption significantly correlated with neck coverage (ρ = 0.42, 95% CI: 0.21-0.59, p = 0.002) as well as with neck area (ρ = -0,35, 95% CI: -0.54 --0.13, p = 0.024). On multiple regression analysis, both neck coverage and total neck area were independent predictors of flow disruption. The degree of intra-aneurysmal flow disruption after MED implantation can be quantified in vitro and varies considerably between different aneurysms and different device configurations. Optimal device coverage across the aneurysm neck improves flow disruption and may thus contribute to aneurysm occlusion.

  18. Quantitative measurement of normal and hydrocephalic cerebrospinal fluid flow using phase contrast cine MR imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Asari, Shoji; Ohmoto, Takashi

    1993-01-01

    Measurements of the cerebrospinal fluid (CSF) flow using phase contrast cine magnetic resonance (MR) imaging were performed on a phantom, 12 normal subjects and 20 patients with normal pressure hydrocephalus (NPH). The phantom study demonstrated the applicability of phase contrast in quantitative measurement of the slow flow. The CSF flows of the normal subjects showed a consistent pattern with a to-and-fro movement of the flow in the anterior subarachnoid space at the C2/3 level, and they were dependent on the cardiac cycle in all subjects. However, the patients with NPH showed variable patterns of the CSF pulsatile flow and these patterns could be divided into four types according to velocity and amplitude. The amplitudes of each type were as follows: type 0 (n=1), 87.6 mm; type I (n=2), 58.2 mm (mean); type II (n=6), 48.0±5.0 mm (mean±SEM); and type III (n=11), 19.9±1.8 mm (mean±SEM). The decrease of the amplitudes correlated to a worsening of the clinical symptoms. After the shunting operation, the amplitude of to-and-fro movement of the CSF increased again in the patients with NPH who improved clinically. Some of the type III cases were reclassified type II, I and 0 and also one of the type II cases changed type I after the shunting operation. We conclude that the phase contrast cine MR imaging is a practically and clinically applicable technique for the quantitative measurement of the CSF flow. (author)

  19. Journal of the Nigerian Association of Mathematical Physics

    African Journals Online (AJOL)

    Unsteady Viscous Flow Past an Impulsively Started Porous Vertical Surface with ... On Ionization and Porosity in MHD Couette Flow of a Two-Component .... Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With Porous Media ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  20. Report on the results of the FY 1999 R and D of the medical welfare equipment technology and the development of an implantable total artificial heart system using a non-pulsatile pump. R and D of an implantable total artificial heart system using a non-pulsatile pump (R and D of the functional/cure artificial heart); Iryo fukushi kiki gijutsu no kenkyu kaihatsu tainai umekomigata jinko shinzo system 1999 nendo seika hokokusho. 5. Renzokuryu pump wo mochiita tainai umekomigata jinko shinzo system no kenkyu kaihatsu (kinoteki chiryoteki jinko shinzo no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The R and D of element technology were made on non-pulsatile pump, drive/controller, energy supply storage system, structural coating materials, etc., and the prescribed target was achieved. In the R and D of a total system, a blood-removing conduit with movability was designed to avoid the functional inlet obstruction, and the animal experiment was carried out. In the short-term chronic animal experiment on the implantation of a single bypass model using this artificial conduit and in the animal experiment for implantation of functional/cure artificial heart, it was confirmed that the operation was conducted easily, the flow rate of the blood of the artificial heart is extremely stable, and the blood-removing conduit functions favorably. In the R and D on Tele-TAH with the aim of future home medical treatment, it became possible to acquire via monitor the pump drive information and blood circulation state information on the animals tested in the breeding farm. The remote medical simulation was made. (NEDO)

  1. The Connected Steady State Model and the Interdependence of the CSF Proteome and CSF Flow Characteristics.

    Science.gov (United States)

    Metzger, Fabian; Mischek, Daniel; Stoffers, Frédéric

    2017-01-01

    Here we show that the hydrodynamic radii-dependent entry of blood proteins into cerebrospinal fluid (CSF) can best be modeled with a diffusional system of consecutive interdependent steady states between barrier-restricted molecular flux and bulk flow of CSF. The connected steady state model fits precisely to experimental results and provides the theoretical backbone to calculate the in-vivo hydrodynamic radii of blood-derived proteins as well as individual barrier characteristics. As the experimental reference set we used a previously published large-scale patient cohort of CSF to serum quotient ratios of immunoglobulins in relation to the respective albumin quotients. We related the inter-individual variances of these quotient relationships to the individual CSF flow time and barrier characteristics. We claim that this new concept allows the diagnosis of inflammatory processes with Reibergrams derived from population-based thresholds to be shifted to individualized judgment, thereby improving diagnostic sensitivity. We further use the source-dependent gradient patterns of proteins in CSF as intrinsic tracers for CSF flow characteristics. We assume that the rostrocaudal gradient of blood-derived proteins is a consequence of CSF bulk flow, whereas the slope of the gradient is a consequence of the unidirectional bulk flow and bidirectional pulsatile flow of CSF. Unlike blood-derived proteins, the influence of CSF flow characteristics on brain-derived proteins in CSF has been insufficiently discussed to date. By critically reviewing existing experimental data and by reassessing their conformity to CSF flow assumptions we conclude that the biomarker potential of brain-derived proteins in CSF can be improved by considering individual subproteomic dynamics of the CSF system.

  2. Flow effects due to valve and piston motion in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2015-01-01

    Highlights: • Flow regime identification depending on the valve lift during the exhaust stroke. • Analysis of the valve motion effect onto the flow development in the exhaust port. • Physical interpretation of commonly used discharge and flow coefficient formulations. • Illustration of flow effects in junction regions with pulsatile flow. - Abstract: Performance optimization regarding e.g. exhaust valve strategies in an internal combustion engine is often performed based on one-dimensional simulation investigation. Commonly, a discharge coefficient is used to describe the flow behavior in complex geometries, such as the exhaust port. This discharge coefficient for an exhaust port is obtained by laboratory experiments at fixed valve lifts, room temperatures, and low total pressure drops. The present study investigates the consequences of the valve and piston motion onto the energy losses and the discharge coefficient. Therefore, Large Eddy Simulations are performed in a realistic internal combustion geometry using three different modeling strategies, i.e. fixed valve lift and fixed piston, moving piston and fixed valve lift, and moving piston and moving valve, to estimate the energy losses. The differences in the flow field development with the different modeling approaches is delineated and the dynamic effects onto the primary quantities, e.g. discharge coefficient, are quantified. Considering the motion of piston and valves leads to negative total pressure losses during the exhaust cycle, which cannot be observed at fixed valve lifts. Additionally, the induced flow structures develop differently when valve motion is taken into consideration, which leads to a significant disparity of mass flow rates evolving through the two individual valve ports. However, accounting for piston motion and limited valve motion, leads to a minor discharge coefficient alteration of about one to two percent

  3. Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta.

    Science.gov (United States)

    Akutsu, Toshinosuke; Matsumoto, Akira

    2010-12-01

    The current design of the bileaflet valve, the leaflets of which open outside first, differs significantly from the natural valve whose leaflets open center first. This difference generates a completely different flow field in the bileaflet valve compared to that in the natural heart valve. In a previous study, it was demonstrated that the valve design greatly affects the aortic flow field as well as the circulatory flow inside sinuses of Valsalva, using saline solution as a working fluid. A limited discussion on the turbulence flow field that could be generated by the valve was provided. In this continuation of that study, therefore, a dynamic PIV study was conducted to analyze the influence of the heart valve design on the aortic flow field, and particularly on the turbulent profile. This study also aimed to determine the influence of the viscosity of the testing fluid. Three bileaflet prostheses-the St. Jude Medical (SJM), the On-X, and the MIRA valves-were tested under pulsatile flow conditions. Flow through the central orifice of the SJM valve was slower than that through the newer designs. The newer designs tend to show strong flow through all orifices. The On-X valve generates simple jet-type flow while the MIRA valve with circumferentially curved leaflets generates a strong but three-dimensionally diffuse flow, resulting in a more complex flow field downstream of the aortic valve with higher turbulence. A 180° orientation that is more popular clinically seems to provide a less diffuse flow than a 90° orientation. The effect of increasing the viscosity was found to be an increase in the flow velocity through the central orifice and a more organized flow field for all of the valves tested.

  4. Cerebral Pulsatility Index Is Elevated in Patients with Elevated Right Atrial Pressure.

    Science.gov (United States)

    Lahiri, Shouri; Schlick, Konrad H; Padrick, Matthew M; Rinsky, Brenda; Gonzalez, Nestor; Jones, Heather; Mayer, Stephan A; Lyden, Patrick D

    2018-01-01

    Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. We retrospectively reviewed 61 consecutive patients with subarachnoid hemorrhage. We calculated CPI from transcranial Doppler studies and correlated these with echocardiographic measures of right atrial pressure. CPIs were compared from patients with elevated and normal right atrial pressure. There was a significant difference between CPI obtained from all patients with elevated right atrial pressure compared to those with normal right atrial pressure (P right and left hemispheric CPI from patients with both elevated and normal right atrial pressure. Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations. Copyright © 2017 by the American Society of Neuroimaging.

  5. Can flavonoid-rich chocolate modulate arterial elasticity and pathological uterine artery Doppler blood flow in pregnant women? A pilot study.

    Science.gov (United States)

    von Wowern, Emma; Olofsson, Per

    2018-09-01

    Dark chocolate has shown beneficial effects on cardiovascular health and might also modulate hypertensive complications in pregnancy and uteroplacental blood flow. Increased uteroplacental resistance is associated with systemic arterial stiffness. We aimed to investigate the short-term effect of flavonoid-rich chocolate on arterial stiffness and Doppler blood flow velocimetry indexes in pregnant women with compromised uteroplacental blood flow. Doppler blood flow velocimetry and digital pulse wave analysis (DPA) were performed in 25 women pregnant in the second and third trimesters with uterine artery (UtA) score (UAS) 3-4, before and after 3 days of ingestion of chocolate with high flavonoid and antioxidant contents. UtA pulsatility index (PI), UtA diastolic notching, UAS (semiquantitative measure of PI and notching combined), and umbilical artery PI were calculated, and DPA variables representing central and peripheral maternal arteries were recorded. Mean UtA PI (p = .049) and UAS (p = .025) significantly decreased after chocolate consumption. There were no significant changes in UtA diastolic notching or any DPA indexes of arterial stiffness/vascular tone. Chocolate may have beneficial effects on the uteroplacental circulation, but in this pilot study, we could not demonstrate effects on arterial vascular tone as assessed by DPA.

  6. Doppler ultrasonographic measurement of short-term effects of valsalva maneuver on retrobulbar blood flow.

    Science.gov (United States)

    Kimyon, Sabit; Mete, Ahmet; Mete, Alper; Mete, Duçem

    2017-11-12

    To investigate the effects of Valsalva maneuver (VM) on retrobulbar blood flow parameters in healthy subjects. Participants without any ophthalmologic or systemic pathology were examined in supine position with color and pulsed Doppler imaging for blood flow measurement, via a paraocular approach, in the ophthalmic artery (OA), central retinal artery (CRA), central retinal vein (CRV), nasal posterior ciliary artery (NPCA), and temporal posterior ciliary artery (TPCA), 10 seconds after a 35- to 40-mm Hg expiratory pressure was reached. Peak systolic velocity (PSV), end-diastolic velocity (EDV), pulsatility index (PI), and resistivity index (RI) values were recorded for each artery. PSV and EDV values were recorded for CRV. There were significant differences between resting and VM values of PSV and EDV of CRA, RI of NPCA, and PI, RI, and EDV of TPCA. Resting CRA-EDV, CRV-PSV, and CRV-EDV were positively correlated whereas resting OA-PSV and CRA-PI, and OA-PSV, CRA-PSV, and CRA-EDV during VM, were negatively correlated with age. VM induces a short-term increase in CRA blood flow and a decrease in NPCA and TPCA RI. Additional studies with a longer Doppler recording during VM, in a larger population sample, are required to allow definitive interpretation. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 45:551-555, 2017. © 2017 Wiley Periodicals, Inc.

  7. Treatment of idiopathic hypogonadotropic hypogonadism in men with luteinizing hormone-releasing hormone: a comparison of treatment with daily injections and with the pulsatile infusion pump.

    Science.gov (United States)

    Shargil, A A

    1987-03-01

    Thirty husbands in childless couples, aged 24 to 35 years, were treated with luteinizing hormone-releasing hormone (LH-RH) for idiopathic hypogonadotropic hypogonadism (IHH) of peripubertal (incomplete) type. They were azoospermic or oligospermic, with less than 1.5 X 10(6)/ml nonmotile spermatozoa. The diagnosis of IHH was based on clinical and laboratory features and testicular biopsy specimen study and was further supported by results of stimulation tests and gonadotropin-releasing hormone (GnRH) test. Two treatment modalities were used: subcutaneous injections of 500 micrograms LH-RH twice daily; and perpetual subcutaneous injection, via portable infusion pump, of 25 ng/kg LH-RH, at 90-minute intervals. Two patients required a short second period of pulsatile treatment to cause a second pregnancy of their spouses. The pump proved to yield better results, compared with intermittent injections, in respect to endocrine responses, spermatogenesis, and fertility capacity. Normal levels of luteinizing hormone and follicle-stimulating hormone were reached in 2 to 3 weeks and normal testosterone levels in 8 to 10 weeks from the start of treatment. Sperm counts rose to greater than 60 X 10(6)/ml viable spermatozoa with less than 15% of abnormal forms in 3 to 5 months, and the wives conceived. Of a total of 18 deliveries of healthy infants, 12 offspring were identified genetically with their fathers. Four women were still pregnant at the conclusion of the study. The pump was well tolerated, without special operational problems to the patients. Pulsatile treatment is therefore recommended in the treatment of well-diagnosed and carefully selected cases of incomplete IHH.

  8. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    Science.gov (United States)

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

  9. Human Thiel-Embalmed Cadaveric Aortic Model with Perfusion for Endovascular Intervention Training and Medical Device Evaluation.

    Science.gov (United States)

    McLeod, Helen; Cox, Ben F; Robertson, James; Duncan, Robyn; Matthew, Shona; Bhat, Raj; Barclay, Avril; Anwar, J; Wilkinson, Tracey; Melzer, Andreas; Houston, J Graeme

    2017-09-01

    The purpose of this investigation was to evaluate human Thiel-embalmed cadavers with the addition of extracorporeal driven ante-grade pulsatile flow in the aorta as a model for simulation training in interventional techniques and endovascular device testing. Three human cadavers embalmed according to the method of Thiel were selected. Extracorporeal pulsatile ante-grade flow of 2.5 L per min was delivered directly into the aorta of the cadavers via a surgically placed connection. During perfusion, aortic pressure and temperature were recorded and optimized for physiologically similar parameters. Pre- and post-procedure CT imaging was conducted to plan and follow up thoracic and abdominal endovascular aortic repair as it would be in a clinical scenario. Thoracic endovascular aortic repair (TEVAR) and endovascular abdominal repair (EVAR) procedures were conducted in simulation of a clinical case, under fluoroscopic guidance with a multidisciplinary team present. The Thiel cadaveric aortic perfusion model provided pulsatile ante-grade flow, with pressure and temperature, sufficient to conduct a realistic simulation of TEVAR and EVAR procedures. Fluoroscopic imaging provided guidance during the intervention. Pre- and post-procedure CT imaging facilitated planning and follow-up evaluation of the procedure. The human Thiel-embalmed cadavers with the addition of extracorporeal flow within the aorta offer an anatomically appropriate, physiologically similar robust model to simulate aortic endovascular procedures, with potential applications in interventional radiology training and medical device testing as a pre-clinical model.

  10. Efficacy and safety of pulsatile gonadotropin-releasing hormone therapy among patients with idiopathic and functional hypothalamic amenorrhea: a systematic review of the literature and a meta-analysis.

    Science.gov (United States)

    Tranoulis, Anastasios; Laios, Alexandros; Pampanos, Andreas; Yannoukakos, Drakoulis; Loutradis, Dimitrios; Michala, Lina

    2018-04-01

    To systematically review and appraise the existing evidence in relation to the efficacy and safety of pulsatile gonadotropin-releasing hormone (pGnRH) for the treatment of women with hypothalamic amenorrhea (HA). Systematic review and meta-analysis. Not applicable. A total of 35 studies (three randomized and 32 observational) encompassing 1,002 women with HA. None. Primary outcomes: ovulation rate (OvR), pregnancy per ovulatory cycle rate (POR), and live birth per ovulatory cycle rate (LBOR). multiple gestation (MG), ovarian hyperstimulation syndrome (OHSS), and superficial thrombophlebitis (ST) rates. The summary measures were expressed as proportions and 95% confidence intervals (CI). Pulsatile GnRH treatment appears to achieve high OvRs. A trend toward high PORs and LBORs among women with HA is demonstrated. SC pGnRH achieves comparable OvR compared with IV pGnRH. The incidence of OHSS is low and of mild severity. Treatment with pGnRH is associated with low but slightly higher MG rates compared with the general population. IV administered pGnRH is rarely associated with ST. The high OvRs leading to a high rate of singleton pregnancies and the low likelihood of OHSS render the pGnRH treatment modality both effective and safe for the treatment of women with HA of either primary or secondary origin. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Mechanical circulatory support in pediatrics.

    Science.gov (United States)

    Steffen, Robert J; Miletic, Kyle G; Schraufnagel, Dean P; Vargo, Patrick R; Fukamachi, Kiyotaka; Stewart, Robert D; Moazami, Nader

    2016-05-01

    End-stage heart failure affects thousands of children yearly and mechanical circulatory support is used at many points in their care. Extracorporeal membrane oxygenation supports both the failing heart and lungs, which has led to its use as an adjunct to cardiopulmonary resuscitation as well as in post-operative cardiogenic shock. Continuous-flow ventricular assist devices (VAD) have replaced pulsatile-flow devices in adults and early studies have shown promising results in children. The Berlin paracorporeal pulsatile VAD recently gained U.S. Food and Drug Administration approval and remains the only VAD approved in pediatrics. Failing univentricular hearts and other congenitally corrected lesions are new areas for mechanical support. Finding novel uses, improving durability, and minimizing complications are areas of growth in pediatric mechanical circulatory support.

  12. A numerical analysis on the curved bileaflet Mechanical Heart Valve (MHV) : leaflet motion and blood flow in an elastic blood vessel

    International Nuclear Information System (INIS)

    Bang, Jin Seok; Kim, Chang Nyung; Choi, Choeng Ryul

    2005-01-01

    In blood flow passing through the Mechanical Heart Valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved

  13. Increased pulsatility index supports diagnosis of vascular parkinsonism versus idiopathic Parkinson's disease.

    Science.gov (United States)

    Caba, L M; Ferrairó, J I T; Torres, I M; Costa, J F V; Muñoz, R B; Martin, A L

    2017-12-29

    The diagnosis of vascular parkinsonism (VP) is based on a series of clinical criteria and neuroimaging findings. An increase in transcranial Doppler ultrasonography pulsatility index (PI) has been described as a frequent finding in patients with VP. We aimed to confirm this association and to determine the PI value with the highest sensitivity and specificity for diagnosis of VP. PI was determined in all patients admitted to Hospital Universitari i Politècnic La Fe due to parkinsonism between January 2012 and June 2016. We assessed the probability of having VP based on PI values in patients with a definite diagnosis of either VP or idiopathic Parkinson's disease (IPD). A ROC curve was created to determine the PI value with the highest sensitivity and specificity. We assessed a total of 146 patients with suspected parkinsonism; 54 (37%) were diagnosed with IPD and 15 (10%) with VP. Patients with VP were significantly older than those with IPD (mean age of 79 vs 68.5, P=.00144) and had a higher PI (median of 1.29 [IQR: 1.09-1.38] vs 0.96 [IQR: 0.89-1.16], P=.01328). In our sample, a PI of 1.09 conferred 84% sensitivity and 70% specificity. In our series, the PI was significantly higher in patients with VP than in those with IPD. We therefore support the use of transcranial Doppler ultrasonography for the initial assessment of elderly patients with akinetic-rigid syndrome. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Fiscal 2000 achievement report on the research and development of medical and welfare apparatus/technology. Totally implantable artificial heart for clinical use; 2000 nendo iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Rinsho oyo ni muketa tainai umekomigata jinko shinzo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In the development of control technologies for a pulsatile pump, studies proceeded with a view to using a mixed venous blood oxygen saturation sensor, an ultrasonic sensor, and an absolute pressure sensor. Efforts were started to downsize the hydraulic actuator and to enhance its efficiency. In the development of a non-pulsatile artificial heart, the GyroP1710 series of artificial heart systems of Japanese make was developed, which employed a curved inlet known to be highly compatible from the anatomical point of view. In the development of a total system, a pulsatile auxiliary artificial heart was given a chronic animal test which continued approximately three weeks, when it yielded a flow of approximately 4 liters/minute showing that it would be practical as an auxiliary heart. As for the non-pulsatile artificial heart, a cardiopulmonary bypass test was conducted, when the blood circulation behavior was normal and organ functions were sustained. The free hemoglobin level was 9.3mg/dl achieving the target value, and the test animal lived as long as 50 days. (NEDO)

  15. Shannon Entropy-Based Wavelet Transform Method for Autonomous Coherent Structure Identification in Fluid Flow Field Data

    Directory of Open Access Journals (Sweden)

    Kartik V. Bulusu

    2015-09-01

    Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.

  16. Vascular Ehlers-Danlos Syndrome Presenting as a Pulsatile Neck Mass: a Case Report and Review of Literature.

    Science.gov (United States)

    Maraj, Bharat; Harding-Theobald, Emily; Karaki, Fatima

    2018-04-26

    Ehlers-Danlos syndrome refers to a spectrum of connective tissue disorders typically caused by mutations in genes responsible for the synthesis of collagen. Patients with Ehlers-Danlos syndrome often exhibit hyperflexibility of joints, increased skin elasticity, and tissue fragility. Vascular Ehlers-Danlos (vEDS) is a subtype of Ehlers-Danlos syndrome with a predilection to involve blood vessels. As such, it often manifests as vascular aneurysms and vessel rupture leading to hemorrhage. There are few reports describing primary prevention of aneurysms in the setting of undiagnosed, suspected vEDS. We present a case of a 30-year-old woman who presents with a pulsatile neck mass found to have multiple arterial aneurysms on imaging, hyperflexibility, and characteristic facial features consistent with vEDS. As described in this case, management of a suspected connective tissue disorder is a multidisciplinary approach including vascular surgery, medical therapy, and genetic testing to confirm the diagnosis. We review literature regarding the care of patients with vascular Ehlers-Danlos as it might pertain to hospitalized patients.

  17. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.

    Science.gov (United States)

    Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P

    2014-02-06

    Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.

  18. Zumbido pulsátil: tratamento com clonazepan e propranolol Pulsatile tinnitus: treatment with clonazepam and propranolol

    Directory of Open Access Journals (Sweden)

    Sergio Albertino

    2005-02-01

    Full Text Available O zumbido pulsátil sincrônico com os batimentos cardíacos é pouco freqüente, sendo de etiologia tanto vascular arterial (malformações, fístulas artério-venosas ou venosa (anormalidades do bulbo jugular, tumor glômico jugular ou timpânico. A identificação precoce da etiologia é essencial para que a terapêutica adequada possa ser instituída. A angioressonância possibilita a identificação de alterações vasculares com maior precisão. Relatamos um caso onde, após o diagnóstico de uma alteração vascular arterial, foi instituído o tratamento com propranolol e clonazepam, com melhora da sintomatologia.Pulsatile tinnitus synchronous with heartbeat is rare and normally has vascular origin: arterial (malformation, arterial anatomical variation or venous (aberrant jugular bulb, glomus tumors, tympanic glomus tumor. Early etiology identification is essential for appropriate treatment to be established. Magnetic angioresonance makes the vascular identification possible and precise. We report a case of arterial anatomical variation in which the treatment was propranolol and clonazepam, showing tinnitus improvement.

  19. Cerebral Hemodynamics in the Elderly: A Transcranial Doppler Study in the Einstein Aging Study Cohort.

    Science.gov (United States)

    Yang, Dixon; Cabral, Digna; Gaspard, Emmanuel N; Lipton, Richard B; Rundek, Tatjana; Derby, Carol A

    2016-09-01

    We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.

  20. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Lv Han

    2014-01-01

    Full Text Available Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI technique. The present study used unilateral PT patients (n=42 and age-, sex-, and education-matched normal control subjects (n=42 to investigate the changes in structural and amplitude of low-frequency (ALFF of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients.

  1. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    Science.gov (United States)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the

  2. Flow of a Bingham fluid in a porous bed under the action of a magnetic field: Application to magneto-hemorheology

    Directory of Open Access Journals (Sweden)

    J.C. Misra

    2017-06-01

    Full Text Available The study deals with an investigation of the flow of a Bingham plastic fluid in a porous bed under the action of an external magnetic field. Porosity of the bed has been described by considering Brinkman model. Both steady and pulsatile motion of this non-Newtonian fluid have been analysed. The governing equations are solved numerically by developing a suitable finite difference scheme. As an application of the theory in the field of magneto-hemorheology, the said physical variables have been computed by considering the values of the involved parameters for blood flow in a pathological state, when the system is under the action of an external magnetic field. The pathological state corresponds to a situation, where the lumen of an arterial segment has turned into a porous structure due to formation of blood clots. Numerical estimates are obtained for the velocity profile and volumetric flow rate of blood, as well as for the shear stress, in the case of blood flow in a diseased artery, both the velocity and volumetric flow rate diminish, as the strength of the external magnetic field is enhanced. The study further shows that blood velocity is maximum in the plug (core region. It decreases monotonically as the particles of blood travel towards the wall. The study also bears the potential of providing numerical estimates for many industrial fluids that follow Bingham plastic model, when the values of different parameters are chosen appropriately.

  3. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.

    Science.gov (United States)

    Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao

    2017-12-01

    Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.

  4. Better and faster velocity pulsatility assessment in cerebral white matter perforating arteries with 7T quantitative flow MRI through improved slice profile, acquisition scheme, and postprocessing.

    Science.gov (United States)

    Geurts, Lennart; Biessels, Geert Jan; Luijten, Peter; Zwanenburg, Jaco

    2018-03-01

    A previously published cardiac-gated 2D Qflow protocol at 7 T in cerebral perforating arteries was optimized to reduce velocity underestimation and improve temporal resolution. First, the signal-to-noise ratio (SNR) gain of the velocity measurement (SNR v ) was tested for two signal averages versus one. Second, the decrease in velocity underestimation with a tilted optimized nonsaturating excitation (TONE) pulse was tested. Third, the decrease in pulsatility index (PI) underestimation through improved temporal resolution was tested. Test-retest agreement was measured for the resulting acquisition in older volunteers (mean age 63 years), and the results were compared with the other volunteers (mean age 26 years). Using two signal averages increased SNR v by only 12% (P = 0.04), probably due to motion of the subvoxel-size arteries. The TONE decreased velocity underestimation, thereby increasing the mean velocity from 0.52 to 0.67 cm/s (P < 0.001). The PI increased substantially with increasing temporal resolution. The test-retest agreement showed good coefficients of repeatability of 0.18 cm/s for velocity and 0.14 for PI. The measured velocity was lower in the older group: 0.42 versus 0.51 cm/s (P = 0.05). The optimized sequence yields better velocity and PI estimates in small vessels, has twice as good test-retest agreement, and has a suitable scan time for use in patients. Magn Reson Med 79:1473-1482, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for

  5. Continuous 24-hour intravenous infusion of recombinant human growth hormone (GH)-releasing hormone-(1-44)-amide augments pulsatile, entropic, and daily rhythmic GH secretion in postmenopausal women equally in the estrogen-withdrawn and estrogen-supplemented states.

    Science.gov (United States)

    Evans, W S; Anderson, S M; Hull, L T; Azimi, P P; Bowers, C Y; Veldhuis, J D

    2001-02-01

    How estrogen amplifies GH secretion in the human is not known. The present study tests the clinical hypothesis that estradiol modulates the stimulatory actions of a primary GH feedforward signal, GHRH. To this end, we investigated the ability of short-term (7- to 12-day) supplementation with oral estradiol vs. placebo to modulate basal, pulsatile, entropic, and 24-h rhythmic GH secretion driven by a continuous iv infusion of recombinant human GHRH-(1--44)-amide vs. saline in nine healthy postmenopausal women. Volunteers underwent concurrent blood sampling every 10 min for 24 h on four occasions in a prospectively randomized, single blind, within-subject cross-over design (placebo/saline, placebo/GHRH, estradiol/saline, estradiol/GHRH). Intensively sampled serum GH concentrations were quantitated by ultrasensitive chemiluminescence assay. Basal, pulsatile, entropic (feedback-sensitive), and 24-h rhythmic modes of GH secretion were appraised by deconvolution analysis, the approximate entropy (ApEn) statistic, and cosine regression, respectively. ANOVA revealed that continuous iv infusion of GHRH in the estrogen-withdrawn (control) milieu 1) amplified individual basal (P = 0.00011) and pulsatile (P < 10(-13)) GH secretion rates by 12- and 11-fold, respectively; 2) augmented GH secretory burst mass and amplitude each by 10-fold (P < 10(-11)), without altering GH secretory burst frequency, duration, or half-life; 3) increased the disorderliness (ApEn) of GH release patterns (P = 0.0000002); 4) elevated the mesor (cosine mean) and amplitude of the 24-h rhythm in serum GH concentrations by nearly 30-fold (both P < 10(-12)); 5) induced a phase advance in the clocktime of the GH zenith (P = 0.021); and 6) evoked a new 24-h rhythm in GH secretory burst mass with a maximum at 0018 h GH (P < 10(-3)), while damping the mesor of the 24-h rhythm in GH interpulse intervals (P < 0.025). Estradiol supplementation alone 1) increased the 24-h mean and integrated serum GH concentration

  6. Development of a system for measuring wall shear stress in blood vessels using magnetic resonance imaging and computational fluid dynamics

    International Nuclear Information System (INIS)

    Yoshida, Keita; Nagao, Taisuke; Okada, Kouji; Miyazaki, Shohei; Yang, Xiaomei; Yamazaki, Youichi; Murase, Kenya

    2008-01-01

    We developed a system for measuring the wall shear stress (WSS) in blood vessels using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). The time-dependent velocity at the center of the blood vessel was measured by phase-contrast MRI and was approximated by finite Fourier series, which was used for generating the velocity profile at the inlet for the boundary condition to the CFD method. To validate the CFD method, we compared the WSS obtained by the CFD method with the theoretical value in a straight cylinder with various radii for both steady and pulsatile flows. We also investigated the dependence of the WSS on the inlet velocity profile incorporated into the CFD method. For steady flow, there was a good agreement between the WSS obtained by the CFD method and the theoretical value. For pulsatile flow, there was a relatively good agreement between them when the radius of the cylinder was 2.5 mm and the inlet velocity profile was given by the Womersley solution for fully developed pulsatile flow in a straight circular cylinder. When the radius of the cylinder was 5 mm and/or the inlet velocity profile was assumed to be parabolic, large differences were observed between them, suggesting that the assumption of fully developed flow does not hold true in these cases. In human studies, the vortex due to the secondary blood flow in the carotid arterial sinus was clearly observed. The WSS in the bifurcation was the highest, while that in the carotid arterial sinus was the smallest. In conclusion, the system presented here appears to be useful for measuring the WSS in blood vessels and for analyzing the cause and/or extent of atherosclerosis, and our results suggest that the inlet velocity profile should be carefully considered. (author)

  7. Cine-magnetic resonance imaging evaluation of communication between middle cranial fossa arachnoid cysts and cisterns

    International Nuclear Information System (INIS)

    Eguchi, Takahiko; Nikaido, Yuji; Shiomi, Kazuaki; Fujimoto, Takatoshi; Otsuka, Hiroyuki; Takeuchi, Hiroshi; Taoka, Toshiaki.

    1996-01-01

    Cine-magnetic resonance (MR) imaging examinations were performed in 10 patients with middle cranial fossa arachnoid cysts to evaluate communication between the cysts and the normal cerebrospinal fluid (CSF) space. Eight of 10 patients were evaluated by time of flight cine-MR imaging, and two by phase contrast cine-MR imaging. Two patients underwent membranectomy of the cysts, and were evaluated both pre-and postoperatively. Computed tomography cisternography was used to confirm communication between the cysts and the surrounding cisterns. Pulsatile fluid motion within the cysts was present in all patients. However, marked fluid motion and jet flow between the cysts and the surrounding cisterns were only observed in communicating cysts. In the two patients who underwent membranectomy, postoperative examination found greater fluid motion and jet flow not previously present. Cine-MR imaging demonstration of marked pulsatile fluid motion accompanied by jet flow suggests that a cyst communicates with the normal CSF space. (author)

  8. Molecular versus particulate deposition markers for blood flow measurement in the musculo-skeletal system. 131Iodo-DesMethyl-Imipramine

    International Nuclear Information System (INIS)

    Tromborg, H.B.

    1998-01-01

    The aims of the experiments were to develop and validate a porcine isolated blood perfused myocutaneous flap and tibia model with preserved venous outflow. The stability of the models was tested and washout of microspheres and IDMI was measured. IDMI and microsphere based tissue blood flow measurements were compared after central intracardiac injection into the intact animal. Three experimental series were necessary to develop and validate the models. The organs were perfused with arterial blood by a pulsatile pump and submerged into a tissue bath. All outflow from the models were collected. One experiment was necessary to validate the rectus abdominis myocutaneous flap. In three experiments an isolated tibia with preserved venous outflow was developed and validated. Normal flow rate/perfusion pressure relations were reproduced after periods of supra-normal and sub-normal perfusion pressure in the two models. A response to endothelially mediated vasodilation with bradykinin was demonstrated after nine hours of artificial perfusion in the tibia model. IDMI did not influence the local hemodynamics during infusion, whereas microspheres elicited a transitory increase in the perfusion pressure after local injection. IDMI and microsphere based blood flow measurements and recirculation were compared in the in-situ musculo-skeletal tissue corresponding to the two models after central injection of the markers. Recirculation of IDMI was greater (8(1)%) than that of microspheres (2(0)%) after 18 minutes. Microspheres tended to measure higher blood flow values than IDMI at high flow rates and vice versa at low flow values. The 131 Iodo-DesMethyl-Imipramine (IDMI) method is not generally applicable as a deposition marker for blood flow measurement in the musculo-skeletal system. (EHS)

  9. Direct microvascular monitoring of a free autologous jejunal flap using microendoscopy: a case report

    Directory of Open Access Journals (Sweden)

    Hopper Colin

    2006-09-01

    Full Text Available Abstract Background Early identification of flap failure is an indispensable prerequisite for flap salvage. Although many technical developments of free flap monitoring have now reached clinical application, very few are considered to be reliable and non-invasive for early recognition of flap failure. Case presentation We used microendoscopic technique for microvascular monitoring of free autologous jejunal flap by the direct visualisation of the flow of erythrocytes through the capillary vasculature on both the mucosal and serosal surfaces. Blood flow was seen to be pulsatile, with individual erythrocytes visible in the capillaries. The best view was obtained when the scope was focussed directly on the capillary rather than the graft surface. The view of the unstained mucosal surface was bland apart from the fine capillary loops which were seen to fill with each pulsatile event. The microendoscopic examination of the serosal surface revealed much larger calibre vessels with obvious blood flow. Conclusion The microendoscopic monitoring technique is simple and safe with direct visualisation of blood flow. The technique may also be useful for the monitoring of other free bowel transplants.

  10. Development of a High-Order Navier-Stokes Solver Using Flux Reconstruction to Simulate Three-Dimensional Vortex Structures in a Curved Artery Model

    Science.gov (United States)

    Cox, Christopher

    Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the

  11. Sigmoid sinus diverticulum and pulsatile tinnitus - Analysis of CT scans from 15 cases

    International Nuclear Information System (INIS)

    Liu, Zhaohui; Wang, Zhenchang; Xian, Junfang; Wang, Yongzhe; Liang, Xihong; Chen, Chengfang; Gong, Shusheng; Ma, Xiaobo; Li, Yi

    2013-01-01

    Background: Although the imaging features of sigmoid sinus diverticulum induced pulsatile tinnitus (PT) have been presented in some extent, detailed imaging findings still have not been systematically evaluated and precise diagnostic radiographic criteria has not been established. Purpose: To examine the computed tomography (CT) characteristics of sigmoid sinus diverticulum accompanied with PT. Material and Methods: Fifteen PT patients with sigmoid sinus diverticula proven by surgery were recruited after consenting. CT images of 15 patients were obtained and analyzed, including features of diverticula, brain venous systems, integrity of the sigmoid plate, and the degree of temporal bone pneumatization. Results: Sigmoid sinus diverticulum was located on the same side of PT in 15 patients. Diverticula originated at the superior curve of the sigmoid sinus in 11 patients and the descending segment of the sigmoid sinus in four patients. Sigmoid sinus diverticula focally eroded into the adjacent mastoid air cells in 12 patients and mastoid cortex in three patients. Among eight patients with unilateral dominant brain venous systems, the diverticula were seen on the dominant side in seven patients and non-dominant side in one patient. In contrast, the other seven patients showed co-dominant brain venous systems, with three presenting diverticula on the right side and four on the left. More notably, dehiscent sigmoid plate on the PT side was demonstrated in all patients. In addition, temporal bone hyper-pneumatization was found in nine patients, good and moderate pneumatization in three patients, respectively. Conclusion: Dehiscent sigmoid plate and extensive temporal bone pneumatization are two important imaging characteristics of the PT induced by sigmoid sinus diverticulum

  12. Sigmoid sinus diverticulum and pulsatile tinnitus - Analysis of CT scans from 15 cases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaohui; Wang, Zhenchang; Xian, Junfang; Wang, Yongzhe; Liang, Xihong [Dept. of Radiology, Capital Medical Univ., Beijing Tongren Hospital, Beijing (China); Chen, Chengfang; Gong, Shusheng; Ma, Xiaobo; Li, Yi [Dept. of Otolaryngology Head and Neck Surgery, Capital Medical Univ., Beijing Tongren Hospital, Beijing (China)

    2013-09-15

    Background: Although the imaging features of sigmoid sinus diverticulum induced pulsatile tinnitus (PT) have been presented in some extent, detailed imaging findings still have not been systematically evaluated and precise diagnostic radiographic criteria has not been established. Purpose: To examine the computed tomography (CT) characteristics of sigmoid sinus diverticulum accompanied with PT. Material and Methods: Fifteen PT patients with sigmoid sinus diverticula proven by surgery were recruited after consenting. CT images of 15 patients were obtained and analyzed, including features of diverticula, brain venous systems, integrity of the sigmoid plate, and the degree of temporal bone pneumatization. Results: Sigmoid sinus diverticulum was located on the same side of PT in 15 patients. Diverticula originated at the superior curve of the sigmoid sinus in 11 patients and the descending segment of the sigmoid sinus in four patients. Sigmoid sinus diverticula focally eroded into the adjacent mastoid air cells in 12 patients and mastoid cortex in three patients. Among eight patients with unilateral dominant brain venous systems, the diverticula were seen on the dominant side in seven patients and non-dominant side in one patient. In contrast, the other seven patients showed co-dominant brain venous systems, with three presenting diverticula on the right side and four on the left. More notably, dehiscent sigmoid plate on the PT side was demonstrated in all patients. In addition, temporal bone hyper-pneumatization was found in nine patients, good and moderate pneumatization in three patients, respectively. Conclusion: Dehiscent sigmoid plate and extensive temporal bone pneumatization are two important imaging characteristics of the PT induced by sigmoid sinus diverticulum.

  13. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom

    Directory of Open Access Journals (Sweden)

    Fleur A. Camfferman

    2015-01-01

    Full Text Available Introduction. Preterm infants are born during critical stages of brain development, in which the adaptive capacity of the fetus to extra-uterine environment is limited. Inadequate brain perfusion has been directly linked to preterm brain damage. Advanced high-frequency ultrasound probes and processing algorithms allow visualization of microvessels and depiction of regional variation. To assess whether visualization and flow velocity estimates of preterm cerebral perfusion using Doppler techniques is accurate, we conducted an in vitro experiment using a microvessel flow phantom.Materials and Methods. An in-house developed flow phantom containing two microvessels (inner diameter 200 and 700 microns with attached syringe pumps, filled with blood-mimicking fluid, was used to generate non-pulsatile perfusion of variable flow. Measurements were performed using an Esaote MyLab70 scanner.Results. Microvessel mimicking catheters with velocities as low as 1cm/sec were adequately visualized with a linear ultrasound probe. With a convex probe velocities <2 cm/sec could not be depicted. Within settings, velocity and diameter measurements were highly reproducible (intra class correlation 0.997 (95% CI 0.996-0.998 and 0.914 (0.864-0.946. Overall, mean velocity was overestimated up to 3-fold, especially in high velocity ranges. Significant differences were seen in velocity measurements when using steer angle correction and in vessel diameter estimation (p<0.05.Conclusion. Visualization of microvessel size catheters mimicking small brain vessels is feasible. Reproducible velocity and diameter results can be obtained, although important overestimation of the values is observed. Before velocity estimates of microcirculation can find its use in clinical practice, calibration of the ultrasound machine for any specific Doppler purpose is essential. The ultimate goal is to develop a sonographic tool that can be used for objective study of regional perfusion in routine

  14. [Assessment of maternal cerebral blood flow in patients with preeclampsia].

    Science.gov (United States)

    Mandić, Vesna; Miković, Zeljko; Dukić, Milan; Vasiljević, Mladenko; Filimonović, Dejan; Bogavac, Mirjana

    2005-01-01

    Systemic vasoconstriction in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA) in severe preeclampsia due to: 1) severity of clinical symptoms, 2) the begining of eclamptic attack and 3) the application of anticonvulsive therapy. A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30), mild preeclampsia (n=33), and severe preeclampsia (n=29). We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi), resistance index (Ri), systolic/diastolic ratio (S/D), and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups. subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%); while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%). All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4), and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if ppreclampsia we found increased velocity values, Pi and Ri, especially in patients with signs of threatened eclampsia, suggesting that blood vessels changes are most prominent in severe preeclampsia. Cerebral blood flow meassurements can be used as a clinical test for the prediction of eclampsia. Magnesium-sulfate (MgSO4) has a signifficant role in prophylaxis and treatment of eclampsia, and, therefore, positive influence on reduction of cerebral ishemic lesions can be expected. We can conclude that changes of the cerebral blood flow can be evaluated by evaluating blood flow velocities in the medial cerebral artery. Velocities tend

  15. Pulsation-induced dilation of subendocardial and subepicardial arterioles: effect on vasodilator sensitivity

    NARCIS (Netherlands)

    Sorop, Oana; Spaan, Jos A. E.; VanBavel, Ed

    2002-01-01

    Coronary vessels are squeezed by the surrounding myocardium during systole, impeding blood flow specifically in the subendocardium. To study the myocardial compression effect, we applied pulsatile transvascular pressure to isolated, cannulated subendocardial (Endo) and subepicardial (Epi) resistance

  16. Bioavailability assessment of hydroxymethylglutaryl coenzyme A reductase inhibitor utilizing pulsatile drug delivery system: a pilot study.

    Science.gov (United States)

    Taha, Ehab I

    2016-09-01

    Chronotherapy or pulsatile drug delivery system could be achieved by increasing drug plasma concentration exactly at the time of disease incidence. Cholesterol synthesis shows a circadian rhythm being high at late night and early in the morning. Simvastatin (SIM) inhibits hydroxymethylglutaryl coenzyme A reductase, which is responsible for cholesterol synthesis. In this study, SIM lipid-based formulation filled in gelatin capsules and coated with aqueous Eudragit® S100 dispersion was prepared for chronotherapeutic treatment of hypercholesterolemia. The pharmacokinetic parameters of SIM capsules were studied in human volunteers after a single oral dose and compared with that of Zocor® tablets as a reference in a randomized cross-over study. Pharmacokinetic parameters such as AUC 0-∞ , C max , T max , t 1/2 and elimination rate constant were determined from plasma concentration-time profile for both formulations. The tested formulation had the ability to delay drug absorption and provide higher drug concentrations from 3 up to 10 h after oral administration compared to that of commercial tablets. The data in this study revealed that the prepared formulation could be effective in chronotherapeutic treatment of hypercholesterolemia. Moreover, the tested formulation was found to enhance SIM bioavailability by 29% over the reference tablets.

  17. The Two Populations of Kisspeptin Neurons Are Involved in the Ram-Induced LH Pulsatile Secretion and LH Surge in Anestrous Ewes.

    Science.gov (United States)

    Fabre-Nys, Claude; Cognié, Juliette; Dufourny, Laurence; Ghenim, Meriem; Martinet, Stephanie; Lasserre, Olivier; Lomet, Didier; Millar, Robert P; Ohkura, Satoshi; Suetomi, Yuta

    2017-11-01

    Exposure to a ram during spring stimulates luteinizing hormone (LH) secretion and can induce ovulation in sexually quiescent ewes ("ram effect"). Kisspeptin (Kiss) present in the arcuate nucleus (ARC) and the preoptic area (POA) is a potent stimulators of LH secretion. Our aim was to investigate whether Kiss neurons mediate the increase in LH secretion during the ram effect. With double immunofluorescent detection, we identified Kiss neurons (Kiss IR) activated (Fos IR) by exposure to a ram for 2 hours (M2) or 12 hours (M12) or to ewes for 2 hours (C). The density of cells Kiss + Fos IR and the proportion of Kiss IR cells that were also Fos IR cells were higher in M2 and M12 than in C in ARC (P populations of Kiss neurons are involved in the ram-induced pulsatile LH secretion and in the LH surge. Copyright © 2017 Endocrine Society.

  18. Impaired Central Pulsatile Hemodynamics in Children and Adolescents With Marfan Syndrome.

    Science.gov (United States)

    Grillo, Andrea; Salvi, Paolo; Marelli, Susan; Gao, Lan; Salvi, Lucia; Faini, Andrea; Trifirò, Giuliana; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2017-11-07

    Marfan syndrome is characterized by aortic root dilation, beginning in childhood. Data about aortic pulsatile hemodynamics and stiffness in pediatric age are currently lacking. In 51 young patients with Marfan syndrome (12.0±3.3 years), carotid tonometry was performed for the measurement of central pulse pressure, pulse pressure amplification, and aortic stiffness (carotid-femoral pulse wave velocity). Patients underwent an echocardiogram at baseline and at 1 year follow-up and a genetic evaluation. Pathogenetic fibrillin-1 mutations were classified between "dominant negative" and "haploinsufficient." The hemodynamic parameters of patients were compared with those of 80 sex, age, blood pressure, and heart-rate matched controls. Central pulse pressure was significantly higher (38.3±12.3 versus 33.6±7.8 mm Hg; P =0.009), and pulse pressure amplification was significantly reduced in Marfan than controls (17.9±15.3% versus 32.3±17.4%; P Marfan and controls (4.98±1.00 versus 4.75±0.67 m/s). In the Marfan group, central pulse pressure and pulse pressure amplification were independently associated with aortic diameter at the sinuses of Valsalva (respectively, β=0.371, P =0.010; β=-0.271, P =0.026). No significant difference in hemodynamic parameters was found according to fibrillin-1 genotype. Patients who increased aortic Z-scores at 1-year follow-up presented a higher central pulse pressure than the remaining (42.7±14.2 versus 32.3±5.9 mm Hg; P =0.004). Central pulse pressure and pulse pressure amplification were impaired in pediatric Marfan syndrome, and associated with aortic root diameters, whereas aortic pulse wave velocity was similar to that of a general pediatric population. An increased central pulse pressure was present among patients whose aortic dilatation worsened at 1-year follow-up. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Blood flow parameters of the superior mesenteric artery as an early predictor of intestinal dysmotility in preterm infants

    International Nuclear Information System (INIS)

    Robel-Tillig, Eva; Knuepfer, Matthias; Pulzer, Ferdinand; Vogtmann, Christoph

    2004-01-01

    Blood flow parameters in the superior mesenteric artery (SMA) change with vasoconstriction or vasodilatation of the intestinal vascular bed. In cases of severe growth retardation as a result of haemodynamic disturbances, the blood flow changes persist into postnatal life. To assess early changes of Doppler sonographic blood flow parameters in the SMA for prediction of later intestinal motility disturbances in preterm infants and tolerance of enteral feeding during the first week of life. Doppler sonographic blood flow parameters in the SMA were measured on the first day of life and the following 5 days in 478 neonates with a birth weight below 1,500 g. According to the Doppler results, the neonates were divided into two groups - those with pathological parameters and those with normal blood flow parameters. Correlations between blood flow parameters, the development of intestinal dysmotility and the tolerated amount of enteral feeding were calculated. Pathological blood flow parameters were observed in 148 neonates (group 1) and normal blood flow parameters in 330 neonates (group 2). Intestinal motility disturbance occurred in 125 neonates (83%) of group 1 and 47 neonates (15%) of group 2. Neonates in group 2 tolerated significantly more feed by the fifth day of life than neonates in group 1. Postnatal adaptation did not differ between the two groups, although the majority of neonates with intestinal dysmotility were small for gestational age. The predictive value of blood flow parameters for prediction of intestinal motility revealed high sensitivity and specificity by the first postnatal day, 2 or 3 days before development of clinical signs of intestinal dysmotility. There was a strong negative correlation between pathological pulsatility index on day 1 and the quantity of tolerated enteral feeding on day 5. Pathological blood flow parameters in the SMA can predict problems of intestinal motility and tolerance of enteral feeding. With the early detection of these

  20. Evaluation of the thyroid blood flow with Doppler ultrasonography in healthy school-aged children

    International Nuclear Information System (INIS)

    Yazici, Burhan; Simsek, Enver; Erdogmus, Besir; Bahcebasi, Talat; Aktas, Alev; Buyukkaya, Ramazan; Uzun, Hakan; Safak, Alp Alper

    2007-01-01

    Objective: To determine the relationship between thyroid blood flow and anthropometric measurements, pubertal stage, and thyroid and gonadotropic hormones. Materials and methods: We examined 123 healthy school-aged children prospectively (69 boys (56.1%) and 54 girls (43.9%), 7-17 years old). Their sex, age, body weight, height, body mass index (BMI), and pubertal stage were determined. Serum thyrotropin, free thyroxine, luteinizing hormone, and follicle stimulating hormone were measured in both genders, along with testosterone in boys and estradiol in girls. The peak systolic velocity (PSV), resistance index (RI), and pulsatility index (PI) of the superior thyroid artery were determined. The correlations between the Doppler parameters and these factors were investigated. Results: There were no differences in age, weight, height, BMI, thyroid volume, PSV, RI, or PI between boys and girls (P > 0.05). The PSV and PI showed strong correlations with age, height, weight, puberty stage, thyroid volume, and BMI. The RI showed a strong inverse correlation with age, height, weight, puberty stage, and thyroid volume and a weak inverse correlation with the BMI. Conclusion: Determination of the thyroid arterial flow in normal healthy children is important during a Doppler ultrasound (US) examination. Doppler US parameters and their percentiles should be described in healthy children from different age groups, and these percentiles will aid in interpreting Doppler US in children

  1. Evaluation of the thyroid blood flow with Doppler ultrasonography in healthy school-aged children

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Burhan [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey)], E-mail: dryazici@yahoo.com; Simsek, Enver [Department of Pediatrics, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Erdogmus, Besir [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey); Bahcebasi, Talat [Department of Public Health, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Aktas, Alev [Department of Pediatrics, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Buyukkaya, Ramazan [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey); Uzun, Hakan [Department of Pediatrics, Duzce University School of Medicine, Konuralp, Duzce (Turkey); Safak, Alp Alper [Department of Radiology, Duzce University School of Medicine, Konuralp, Duzce 81620 (Turkey)

    2007-08-15

    Objective: To determine the relationship between thyroid blood flow and anthropometric measurements, pubertal stage, and thyroid and gonadotropic hormones. Materials and methods: We examined 123 healthy school-aged children prospectively (69 boys (56.1%) and 54 girls (43.9%), 7-17 years old). Their sex, age, body weight, height, body mass index (BMI), and pubertal stage were determined. Serum thyrotropin, free thyroxine, luteinizing hormone, and follicle stimulating hormone were measured in both genders, along with testosterone in boys and estradiol in girls. The peak systolic velocity (PSV), resistance index (RI), and pulsatility index (PI) of the superior thyroid artery were determined. The correlations between the Doppler parameters and these factors were investigated. Results: There were no differences in age, weight, height, BMI, thyroid volume, PSV, RI, or PI between boys and girls (P > 0.05). The PSV and PI showed strong correlations with age, height, weight, puberty stage, thyroid volume, and BMI. The RI showed a strong inverse correlation with age, height, weight, puberty stage, and thyroid volume and a weak inverse correlation with the BMI. Conclusion: Determination of the thyroid arterial flow in normal healthy children is important during a Doppler ultrasound (US) examination. Doppler US parameters and their percentiles should be described in healthy children from different age groups, and these percentiles will aid in interpreting Doppler US in children.

  2. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone

    Directory of Open Access Journals (Sweden)

    Robert M. Rapoport

    2017-10-01

    Full Text Available Although endothelin (ET-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO. Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1 precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.

  3. Posture changes and subfoveal choroidal blood flow.

    Science.gov (United States)

    Longo, Antonio; Geiser, Martial H; Riva, Charles E

    2004-02-01

    To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

  4. Pulsatility Index of Blood Echogenicity of the Human Radial and Common Carotid Arteries: Relation with Age and Stroke

    International Nuclear Information System (INIS)

    Bok, Tae Hoon; Kong, Qi; Nam, Kweon Ho; Choi, Jay Chol; Paeng, Dong Guk

    2012-01-01

    In the present paper, the ultrasound blood images were measured at both the human radial artery(RA) and common carotid artery(CCA), depending on the age, and the pulsatility index of blood echogenicity(PIBE) was analyzed. In addition, the ultrasound blood images were measured at both RA and CCA of both the stroke patients and the control group, and PIBE was compared. PIBE of RA for the young group was similar with that for the old group (0.13±0.21 and 0.16±0.03). PIBE of CCA for the young group, however, was larger than that for the old group (0.70±0.21 and 0.32±0.01), and was more variable depending on the subject. Similarly, the fibrinogen concentrations of the patients (336±61 and 340±126 mg/dl) were more than that of the control group (264±38 and 43 mg/dl), for both RA and CCA. The results indicate the possibility of the ultrasonic test on the correlation between erythrocyte aggregation and stroke, and it is expected that the in-vivo EA measurement would be clinically useful.

  5. Development of an In Vitro PIV Setup for Preliminary Investigation of the Effects of Aortic Compliance on Flow Patterns and Hemodynamics.

    Science.gov (United States)

    Büsen, Martin; Arenz, Christian; Neidlin, Michael; Liao, Sam; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Sonntag, Simon J

    2017-09-01

    The aorta with its compliance plays a major role in hemodynamics as it saves a portion of ejected blood during systole which is then released in diastole. The aortic compliance decreases with increasing age, which is related to several cardiovascular imparities and diseases. Changes in flow patterns and pressure curves, due to varying aortic compliance, are difficult to investigate in vivo. As a result, the aim of the present work was to develop an in vitro setup enabling standardized investigations on the effect of compliance changes on flow patterns and pressure curves. Therefore an experimental setup with an anatomically correct silicone phantom of the aortic arch was developed, suitable for optical flow measurements under pulsatile inflow conditions. The setup was developed for precise adjustments of different compliances and optical flow measurements. Particle image velocimetry measurements were carried out downstream of the aortic valve in the center plane perpendicular to the valve with compliance adjusted between 0.62 × 10 -3 to 1.82 × 10 -3  mmHg -1 . Preliminary results of the in vitro investigations showed that decreases in compliance results in significant increases in pressure changes with respect to time (dp/dt) and altered pressure curves in the aortic arch. In terms of flow, an increased aortic stiffness lead to higher mean velocities and decreased vortex development in the aortic sinuses. As in vivo validation and translation remains difficult, the results have to be considered as preliminary in vitro insights into the mechanisms of (age-related) compliance changes.

  6. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  7. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Weston, M W; Jarret, C A; Saxena, R; Yoganathan, A P

    1996-11-01

    Fluid stresses occurring in retrograde flow fields during valve closure may play a significant role in thrombogenesis. The squeeze flow and regurgitant jets can cause damage to formed blood elements due to high levels of turbulent shear stress. The aim of this study was to characterize in detail the spatial structure and temporal behavior of the retrograde flow fields of the St. Jude Medical and Medtronic Parallel bileaflet mechanical heart valves. Three-component, coincident laser Doppler anemometry (LDA) velocity measurements were obtained facilitating the determination of the full Reynolds stress tensor and the principal stresses in the valve flow fields. The experiments were performed in the Georgia Tech aortic flow chamber under physiologic pulsatile flow conditions. Data were collected over several hundred cardiac cycles for subsequent phase window averaging and generation of mean velocity and turbulence statistics over 20 ms intervals. A region approximately 8 mm x 10 mm was mapped 1.0 mm upstream of one hinge of each valve with an incremental resolution of 0.13-0.25 mm. Animation of the data allowed the visualization of the flow fields and a quantitative display of mean velocity and turbulent stress values. In the St. Jude Medical squeeze flow, the peak turbulent shear stress was 800 dynes/cm2 and the peak reverse velocity was 0.60 m/s. In the Medtronic Parallel squeeze flow, the peak turbulent shear stress was 1,000 dynes/cm2 and the peak velocity 0.70 m/s. The leakage jet fields of the two valves were very different: in the case of the St. Jude Medical valve, turbulent shear stresses reached 1,800 dynes/cm2 and peak jet velocity was 0.80 m/s; in the case of the Medtronic Parallel valve, turbulent shear stresses reached 3,690 dynes/cm2 and the peak jet velocity was 1.9 m/s. The retrograde flow fields of these two bileaflet mechanical heart valves appear to be design-dependent. The elevated turbulent shear stresses generated by both valve designs may

  8. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations

    Science.gov (United States)

    Themelis, George; D'Arceuil, Helen; Diamond, Solomon G.; Thaker, Sonal; Huppert, Theodore J.; Boas, David A.

    2009-01-01

    We describe a near-infrared spectroscopy (NIRS) method to noninvasively measure relative changes in the pulsate components of cerebral blood flow (pCBF) and volume (pCBV) from the shape of heartbeat oscillations. We present a model that is used and data to show the feasibility of the method. We use a continuous-wave NIRS system to measure the arterial oscillations originating in the brains of piglets. Changes in the animals' CBF are induced by adding CO2 to the breathing gas. To study the influence of scalp on our measurements, comparative, invasive measurements are performed on one side of the head simultaneously with noninvasive measurements on the other side. We also did comparative measurements of CBF using a laser Doppler system to validate the results of our method. The results indicate that for sufficient source-detector separation, the signal contribution of the scalp is minimal and the measurements are representative of the cerebral hemodynamics. Moreover, good correlation between the results of the laser Doppler system and the NIRS system indicate that the presented method is capable of measuring relative changes in CBF. Preliminary results show the potential of this NIRS method to measure pCBF and pCBV relative changes in neonatal pigs. PMID:17343508

  9. Correlation between nuclear perfusion parameters and duplex US indices in the diagnosis of renal allograft rejection

    International Nuclear Information System (INIS)

    Kim, E.E.; Maklad, N.F.; Pjura, G.A.; Lowry, P.A.

    1986-01-01

    Fifty nuclear perfusion and duplex US studies in 30 patients who had received renal allografts were prospectively analyzed to evaluate their respective measures of blood flow as indicators of rejection. The nuclear study (Tc-99m DTPA) generated three parameters, and a real-time, pulsed Doppler sector scanner generated resistance and pulsatility indices. In nine cases with a greater than 70% resistance index and 1.4 pulsatility index on US, the US findings correlated well with changes in nuclear perfusion parameters, indication rejection. The authors conclude that the combination of decreasing nuclear perfusion parameters and positive US indices may obviate the need for biopsy in the diagnosis of allograft rejection

  10. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    Science.gov (United States)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  11. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link ...

  12. The use of a combined regimen of GnRH agonist plus a low-dose oral contraceptive improves the spontaneous pulsatile LH secretory characteristics in patients with polycycstic ovary disease after discontinuation of treatment.

    Science.gov (United States)

    Genazzani, A D; Battaglia, C; Gamba, O; Petraglia, F; Malavasi, B; Genazzani, A R

    2000-05-01

    The fertility rate in women with polycystic ovary disease (PCOD) is influenced by the type of treatment received. The present study evaluated the possible correlation between treatment and pulsatile release of gonadotropins. Spontaneous episodic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and hormonal parameters were monitored before and after 1, 3, and 6 months after treatments suspension. Twenty-four PCOD patients were randomly divided into two groups of 12 subjects. Group A was treated with gonadotropin-releasing hormone (GnRH)-analogue plus oral contraceptive (OC). Group B was treated only with OC. Both groups were treated for 6 months and followed up for 6 months. In all subjects the therapeutic regimens reduced the androgenic milieau and the gonadotropin plasma levels. Spontaneous pulsatile secretion of LH and FSH was significantly modified in both groups, but patients who received the combined regimen showed a significantly greater reduction of LH plasma levels and a significantly greater decrease of LH pulse amplitude throughout the 6 months after treatment suspension. Ferriman-Gallway score and ovarian volumes were significantly reduced in patients who received the combined treatment than in the OC-treated patients. These data support the evidence of a higher efficacy of the combination of GnRH-a + OC than OC alone in restoring a normal and adequate spontaneous episodic gonadotropin discharge and in decreasing Ferriman-Gallway score and ovarian volumes in patients with PCOD.

  13. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.

    Science.gov (United States)

    Cogswell, Petrice M; Siero, Jeroen C W; Lants, Sarah K; Waddle, Spencer; Davis, L Taylor; Gilbert, Guillaume; Hendrikse, Jeroen; Donahue, Manus J

    2018-03-31

    Flow suppression techniques have been developed for intracranial (IC) vessel wall imaging (VWI) and optimized using simulations; however, simulation results may not translate in vivo. To evaluate experimentally how IC vessel wall and lumen measurements change in identical subjects when evaluated using the most commonly available blood and cerebrospinal fluid (CSF) flow suppression modules and VWI sequences. Prospective. Healthy adults (n = 13; age = 37 ± 15 years) were enrolled. A 3.0T 3D T 1 /proton density (PD)-weighted turbo-spin-echo (TSE) acquisition with post-readout anti-driven equilibrium module, with and without Delay-Alternating-with-Nutation-for-Tailored-Excitation (DANTE) was applied. DANTE flip angle (8-12°) and TSE refocusing angle (sweep = 40-120° or 50-120°) were varied. Basilar artery and internal carotid artery (ICA) wall thicknesses, CSF signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio (SR) were assessed. Measurements were made by two readers (radiology resident and board-certified neuroradiologist). A Wilcoxon signed-rank test was applied with corrected two-sided P CSF suppression. Addition of the DANTE preparation reduced CSF SNR from 17.4 to 6.7, thereby providing significant (P CSF suppression. The DANTE preparation also resulted in a significant (P CSF CNR improvement (P = 0.87). There was a trend for a difference in blood SNR with vs. without DANTE (P = 0.05). The outer vessel wall diameter and wall thickness values were lower (P CSF suppression and CNR of the approaches evaluated. However, improvements are heterogeneous, likely owing to intersubject vessel pulsatility and CSF flow variations, which can lead to variable flow suppression efficacy in these velocity-dependent modules. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  14. A translating stage system for µ-PIV measurements surrounding the tip of a migrating semi-infinite bubble.

    Science.gov (United States)

    Smith, B J; Yamaguchi, E; Gaver, D P

    2010-01-01

    We have designed, fabricated and evaluated a novel translating stage system (TSS) that augments a conventional micro particle image velocimetry (µ-PIV) system. The TSS has been used to enhance the ability to measure flow fields surrounding the tip of a migrating semi-infinite bubble in a glass capillary tube under both steady and pulsatile reopening conditions. With conventional µ-PIV systems, observations near the bubble tip are challenging because the forward progress of the bubble rapidly sweeps the air-liquid interface across the microscopic field of view. The translating stage mechanically cancels the mean bubble tip velocity, keeping the interface within the microscope field of view and providing a tenfold increase in data collection efficiency compared to fixed-stage techniques. This dramatic improvement allows nearly continuous observation of the flow field over long propagation distances. A large (136-frame) ensemble-averaged velocity field recorded with the TSS near the tip of a steadily migrating bubble is shown to compare well with fixed-stage results under identical flow conditions. Use of the TSS allows the ensemble-averaged measurement of pulsatile bubble propagation flow fields, which would be practically impossible using conventional fixed-stage techniques. We demonstrate our ability to analyze these time-dependent two-phase flows using the ensemble-averaged flow field at four points in the oscillatory cycle.

  15. Changes in the 5-HT2A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    Directory of Open Access Journals (Sweden)

    Karsch Fred J

    2003-01-01

    Full Text Available Abstract Background We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm: (a refractoriness (low LH secretion or not (high LH secretion to short days in pineal-intact Ile-de-France ewes (RSD and (b endogenous circannual rhythm (ECR in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. Results In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P 3H-Ketanserin binding (a specific radioligand of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P Conclusions We conclude that these higher 5HT2A receptor gene expression and binding activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm.

  16. Effect of hypertensive disorders during pregnancy on neonatal outcomes and umbilical artery flow

    Directory of Open Access Journals (Sweden)

    Dong-mei ZHENG

    2013-09-01

    Full Text Available Objective To observe the effect of hypertensive disorders during pregnancy (HDP on neonatal outcomes and umbilical artery flow. Methods A prospective cohort study method was employed, and 60 pregnant women met the HDP diagnostic criteria (HDP group, aged 31.2±6.0 years, gestation time 251.0±9.0d, hospitalized from Sep. 2011 to May. 2012, and delivered live-born infants and 63 pregnant women with normal blood pressure and without medical or surgical ailments (control group, aged 30.2±2.8 years, gestation time 251.9±7.7d, hospitalized in the the same period, and had live birth were involved in present study. The indexes of umbilical artery blood flow were measured, the adverse neonatal outcomes (neonatal asphyxia, low birth weight babies and premature labor were recorded, and the correlation was analyzed between the adverse neonatal outcomes and the indexes of umbilical artery blood flow. Results The incidence of adverse neonatal outcomes (neonatal asphyxia, low birth weight newborns and premature labor was higher in HDP group (58.3%, 45.0% and 53.3%, respectively than in control group (6.3%, 3.2% and 3.2%, respectively, P<0.05. The results of umbilical artery blood flow indexes, including pulsatility index (PI, resistance index (RI and systolic/diastolic ratio (S/D in HDP group (0.897±0.176, 0.588±0.701 and 2.655±0.346, respectively were significantly higher than in control group (0.741±0.123, 0.525±0.650 and 2.120±0.364, respectively, P<0.05. The indexes of umbilical artery blood flow (PI, RI and S/D in newborns with adverse outcomes were significantly higher than in those newborn without adverse outcomes. Multivariate logistic regression revealed a positive correlation between RI and adverse neonatal outcomes. Conclusions The indexes of umbilical artery blood flow appear to be abnormal in pregnant women with HDP, and adverse neonatal conditions (neonatal asphyxia, low birth weight newborns and premature labor are prone to

  17. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months.

    Science.gov (United States)

    Greiner, Jack V

    2012-04-01

    To evaluate the effect of a single treatment with the LipiFlow(®) Thermal Pulsation System on signs of meibomian gland dysfunction (MGD) and dry eye symptoms over a 9-month period. Patients (n = 42 eyes, 21 subjects) diagnosed with MGD and dry eye symptoms were recruited for a non-significant risk, prospective, open-label, 1-month clinical trial. Patients received a single 12-minute treatment using the LipiFlow(®) Thermal Pulsation System on each eye. The LipiFlow(®) device applies heat to the conjunctival surfaces of the upper and lower inner eyelids while simultaneously applying pulsatile pressure to the outer eyelid surfaces to express the meibomian glands. Patient symptoms were evaluated using the Ocular Surface Disease Index (OSDI) and Standard Patient Evaluation for Eye Dryness (SPEED) dry eye questionnaires; tear break-up time was measured with the dry eye test (DET™); and meibomian gland function was evaluated using a standardized diagnostic expression technique. Data are presented for patient's pre-treatment (baseline) and at 1-month and 9-month post-treatment. Meibomian gland secretion scores improved significantly from baseline (4.4 ± 4.0) to 1-month post-treatment (11.3 ± 6.2; p dry eye disease, the LipiFlow(®) Thermal Pulsation System offers a technological advancement for the treatment of dry eye disease secondary to meibomian gland dysfunction. A single 12-minute LipiFlow(®) treatment results in up to 9 months of sustained improvement of meibomian gland function, tear break-up time and dry eye symptoms that are unparalleled with current dry eye treatments.

  18. Applications of Doppler in the first trimester

    International Nuclear Information System (INIS)

    Taylor, K.J.W.; Ramirez, B.; Grannum, P.

    1986-01-01

    Fifty patients have been studied by duplex Doppler US imaging in the first trimester. In normal gestations, luteal flow, characterized by a low pulsatility index (PI), can be seen in at least one ovary. Failure to detect luteal flow indicates a nonviable pregnancy. Six ectopic pregnancies demonstrated luteal flow and extrauterine heartbeat, detected by Doppler US. High PI values in the uterine artery are seen in the first trimester. Low PI values in the uterine arteries were found in patients with trophoblastic disease

  19. Monitoring of the Adult Patient on Venoarterial Extracorporeal Membrane Oxygenation

    Directory of Open Access Journals (Sweden)

    Mabel Chung

    2014-01-01

    Full Text Available Venoarterial extracorporeal membrane oxygenation (VA ECMO provides mechanical support to the patient with cardiac or cardiopulmonary failure. This paper reviews the physiology of VA ECMO including the determinants of ECMO flow and gas exchange. The efficacy of this therapy may be determined by assessing patient hemodynamics and device flow, overall gas exchange support, markers of adequate oxygen delivery, and pulsatility of the arterial blood pressure waveform.

  20. Comprasion of ovarian stromal blood flow measured by color Doppler ultrasonography in polycystic ovary syndrome patients and healthy women with ultrasonographic evidence of polycystic.

    Science.gov (United States)

    Ozdemir, Ozhan; Sari, Mustafa Erkan; Kalkan, Dilek; Koc, Esra Meltem; Ozdemir, Seyda; Atalay, Cemal Resat

    2015-04-01

    To compare ovarian stromal artery blood flows measured by Doppler ultrasonography of polycystic ovary syndrome (PCOS) patients and healthy women with polycystic ovarian image in ultrasonography. Forty-two patients diagnosed with PCOS according to the criteria of 2003 Rotterdam Concencus Conferance on PCOS and 38 healthy volunteers with polycystic ovarian image in ultrasonography were included in the study. Ovarian volumes and ovarian stromal artery blood flows were measured by 3-dimensional (3-D) ultrasonography and Doppler ultrasonography in all patients. In patients with PCOS, ovarian stromal artery pulsatility index (PI) and resistivity index (RI) were found significantly different from healthy women with polycystic ovarian image in ultrasonography (p ovarian volumes were found significantly higher in patients with PCOS (p ovarian volumes and ovarian stromal artery resistivity indices. Ovarian stromal artery Doppler examination could have an importance to explain the pathophysiology of PCOS, but there are few publications in the literature about PCOS and the details of ovarian stromal artery Doppler parameters in patients with polycystic ovarian image only. We conclude that Doppler ultrasonography findings of PCOS patients might be helpful in understanding the clinical follow-up and etiology of the disease.

  1. Relationship between general movements in neonates who were growth restricted in utero and prenatal Doppler flow patterns

    NARCIS (Netherlands)

    Tanis, J. C.; Schmitz, D. M.; Boelen, M. R.; Casarella, L.; Berg, van den Paul; Bilardo, C. M.; Bos, A. F.

    2016-01-01

    Objective To investigate whether Doppler pulsatility indices (PIs) of the fetal circulation in cases of fetal growth restriction (FGR) are associated with the general movements (GMs) of the neonate after birth. Methods This was a prospective observational cohort study including pregnancies with FGR

  2. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts

    Directory of Open Access Journals (Sweden)

    Poulikakos Dimos

    2007-09-01

    Full Text Available Abstract Purpose Coronary artery bypass graft (CABG surgery represents the standard treatment of advanced coronary artery disease. Two major types of anastomosis exist to connect the graft to the coronary artery, i.e., by using an end-to-side or a side-to-side anastomosis. There is still controversy because of the differences in the patency rates of the two types of anastomosis. The purpose of this paper is to non-invasively quantify hemodynamic parameters, such as mass flow and wall shear stress (WSS, in end-to-side and side-to-side anastomoses of patients with CABG using computational fluid dynamics (CFD. Methods One patient with saphenous CABG and end-to-side anastomosis and one patient with saphenous CABG and side-to-side anastomosis underwent 16-detector row computed tomography (CT. Geometric models of coronary arteries and bypasses were reconstructed for CFD analysis. Blood flow was considered pulsatile, laminar, incompressible and Newtonian. Peri-anastomotic mass flow and WSS were quantified and flow patterns visualized. Results CFD analysis based on in-vivo CT coronary angiography data was feasible in both patients. For both types of CABG, flow patterns were characterized by a retrograde flow into the native coronary artery. WSS variations were found in both anastomoses types, with highest WSS values at the heel and lowest WSS values at the floor of the end-to-side anastomosis. In contrast, the highest WSS values of the side-to-side anastomosis configuration were found in stenotic vessel segments and not in the close vicinity of the anastomosis. Flow stagnation zones were found in end-to-side but not in side-to-side anastomosis, the latter also demonstrating a smoother stream division throughout the cardiac cycle. Conclusion CFD analysis of venous CABG based on in-vivo CT datasets in patients was feasible producing qualitative and quantitative information on mass flow and WSS. Differences were found between the two types of anastomosis

  3. Control system for an artificial heart

    Science.gov (United States)

    Gebben, V. D.; Webb, J. A., Jr.

    1970-01-01

    Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.

  4. Hemodynamics alter arterial low-density lipoprotein metabolism

    International Nuclear Information System (INIS)

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

    1989-01-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

  5. Flow Velocities After Carotid Artery Stenting: Impact of Stent Design. A Fluid Dynamics Study in a Carotid Artery Model with Laser Doppler Anemometry

    International Nuclear Information System (INIS)

    Greil, Oliver; Kleinschmidt, Thomas; Weiss, Wolfgang; Wolf, Oliver; Heider, Peter; Schaffner, Silvio; Gianotti, Marc; Schmid, Thomas; Liepsch, Dieter; Berger, Hermann

    2005-01-01

    Purpose. To study the influence of a newly developed membrane stent design on flow patterns in a physiologic carotid artery model. Methods. Three different stents were positioned in silicone models of the carotid artery: a stainless steel stent (Wall-stent), a nitinol stent (SelfX), and a nitinol stent with a semipermeable membrane (MembraX). To increase the contact area of the membrane with the vessel wall, another MembranX model was modified at the outflow tract. The membrane consists of a biocompatible silicone-polyurethane copolymer (Elast-Eon) with a pore size of 100 μm. All stents were deployed across the bifurcation and the external carotid artery origin. Flow velocity measurements were performed with laser Doppler anemometry (LDA), using pulsatile flow conditions (Re = 220; flow 0.39 l/min; flow rate ratio ICA:ECA = 70:30) in hemodynamically relevant cross-sections. The hemodynamic changes were analyzed by comparing velocity fluctuations of corresponding flow profiles. Results. The flow rate ratio ICA:ECA shifted significantly from 70/30 to 73.9/26.1 in the MembraX and remained nearly unchanged in the SelfX and Wallstent. There were no changes in the flow patterns at the inflow proximal to the stents. In the stent no relevant changes were found in the SelfX. In the Wallstent the separation zone shifted from the orifice of the ICA to the distal end of the stent. Four millimeters distal to the SelfX and the Wallstent the flow profile returned to normal. In the MembraX an increase in the central slipstreams was found with creation of a flow separation distal to the stent. With a modification of the membrane this flow separation vanished. In the ECA flow disturbances were seen at the inner wall distal to the stent struts in the SelfX and the Wallstent. With the MembraX a calming of flow could be observed in the ECA with a slight loss of flow volume. Conclusions. Stent placement across the carotid artery bifurcation induces alterations of the physiologic flow

  6. A novel decision tree approach based on transcranial Doppler sonography to screen for blunt cervical vascular injuries.

    Science.gov (United States)

    Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha

    2013-06-01

    Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter

  7. Contact-Free Screening of Atrial Fibrillation by a Smartphone Using Facial Pulsatile Photoplethysmographic Signals.

    Science.gov (United States)

    Yan, Bryan P; Lai, William H S; Chan, Christy K Y; Chan, Stephen Chun-Hin; Chan, Lok-Hei; Lam, Ka-Ming; Lau, Ho-Wang; Ng, Chak-Ming; Tai, Lok-Yin; Yip, Kin-Wai; To, Olivia T L; Freedman, Ben; Poh, Yukkee C; Poh, Ming-Zher

    2018-04-05

    We aimed to evaluate a novel method of atrial fibrillation (AF) screening using an iPhone camera to detect and analyze photoplethysmographic signals from the face without physical contact by extracting subtle beat-to-beat variations of skin color that reflect the cardiac pulsatile signal. Patients admitted to the cardiology ward of the hospital for clinical reasons were recruited. Simultaneous facial and fingertip photoplethysmographic measurements were obtained from 217 hospital inpatients (mean age, 70.3±13.9 years; 71.4% men) facing the front camera and with an index finger covering the back camera of 2 independent iPhones before a 12-lead ECG was recorded. Backdrop and background light intensity was monitored during signal acquisition. Three successive 20-second (total, 60 seconds) recordings were acquired per patient and analyzed for heart rate regularity by Cardiio Rhythm (Cardiio Inc, Cambridge, MA) smartphone application. Pulse irregularity in ≥1 photoplethysmographic readings or 3 uninterpretable photoplethysmographic readings were considered a positive AF screening result. AF was present on 12-lead ECG in 34.6% (n=75/217) patients. The Cardiio Rhythm facial photoplethysmographic application demonstrated high sensitivity (95%; 95% confidence interval, 87%-98%) and specificity (96%; 95% confidence interval, 91%-98%) in discriminating AF from sinus rhythm compared with 12-lead ECG. The positive and negative predictive values were 92% (95% confidence interval, 84%-96%) and 97% (95% confidence interval, 93%-99%), respectively. Detection of a facial photoplethysmographic signal to determine pulse irregularity attributable to AF is feasible. The Cardiio Rhythm smartphone application showed high sensitivity and specificity, with low negative likelihood ratio for AF from facial photoplethysmographic signals. The convenience of a contact-free approach is attractive for community screening and has the potential to be useful for distant AF screening. © 2018 The

  8. Contribution of spiral artery blood flow changes assessed by transvaginal color Doppler sonography for predicting endometrial pathologies

    Directory of Open Access Journals (Sweden)

    Suna Kabil Kucur

    2013-01-01

    Full Text Available ive: To investigate the diagnostic value of blood flow measurements in spiral artery by transvaginal color Doppler sonography (CDS in predicting endometrial pathologies.Methods: Ninety-seven patients presenting with abnormal uterine bleeding and requiring endometrial assessment were included in this prospective observational study. Endometrial thickness, structure and echogenicity were recorded. Pulsatility index (PI and resistive index (RI of the spiral artery were measured by transvaginal CDS. Endometrial sampling was performed for all subjects. Sonographic and hystopathologic findings were compared.Results: The histopathological diagnoses were as follows; 39 cases (40.2% endometrial polyp, 9 cases (9.3% endometrial hyperplasia, 10 cases (10.3 submucous myoma, 7 cases (7.2% endometrium cancer, and 32 cases (33% nonspecific findings. The spiral artery PI in endometrium cancer group was highly significantly lower than other groups (p<0.01. The spiral artery RI was also significantly lower in the patients with malignant histology (p<0.05. Conclusion: Endometrial pathologies are associated significantly with endometrial spiral artery Doppler changes.Key words: Spiral artery, Doppler ultrasonography, endometrium

  9. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  10. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  11. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.

    Science.gov (United States)

    Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar

    2017-01-01

    Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and

  12. The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs.

    Science.gov (United States)

    Topper, Stephen R; Navitsky, Michael A; Medvitz, Richard B; Paterson, Eric G; Siedlecki, Christopher A; Slattery, Margaret J; Deutsch, Steven; Rosenberg, Gerson; Manning, Keefe B

    2014-03-01

    We compare the velocity and shear obtained from particle image velocimetry (PIV) and computational fluid dynamics (CFD) in a pulsatile ventricular assist device (VAD) to further test our thrombus predictive methodology using microscopy data from an explanted VAD. To mimic physiological conditions in vitro , a mock circulatory loop is used with a blood analog that matched blood's viscoelastic behavior at 40% hematocrit. Under normal physiologic pressures and for a heart rate of 75 bpm, PIV data is acquired and wall shear maps are produced. The resolution of the PIV shear rate calculations are tested using the CFD and found to be in the same range. A bovine study, using a model of the 50 cc Penn State V-2 VAD, for 30 days at a constant beat rate of 75 beats per minute (bpm) provides the microscopic data whereby after the 30 days, the device is explanted and the sac surface analyzed using scanning electron microscopy (SEM) and, after immunofluorescent labeling for platelets and fibrin, confocal microscopy. Areas are examined based on PIV measurements and CFD, with special attention to low shear regions where platelet and fibrin deposition are most likely to occur. Data collected within the outlet port in a direction normal to the front wall of the VAD shows that some regions experience wall shear rates less than 500 s -1 , which increases the likelihood of platelet and fibrin deposition. Despite only one animal study, correlations between PIV, CFD, and in vivo data show promise. Deposition probability is quantified by the thrombus susceptibility potential, a calculation to correlate low shear and time of shear with deposition.

  13. Association between maternal vascular murmur and the small-for-gestational-age fetus with abnormal umbilical artery Doppler flow

    DEFF Research Database (Denmark)

    Riknagel, Diana; Farlie, Richard; Hedegaard, Morten

    2017-01-01

    OBJECTIVE: To investigate the association between maternal vascular murmurs (MVMs) and fetal growth restriction (defined as small-for-gestational-age [SGA] fetus) and abnormal Doppler pulsatility index (PI) of the uterine and/or umbilical arteries. METHODS: A cross-sectional study of women aged 1...

  14. Evaluation of the Effects of Sildenafil Citrate (Viagra) on Vertebral Artery Blood Flow in Patients with Vertebro-Basilar Insufficiency

    International Nuclear Information System (INIS)

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Ogur, Erkin; Tekatas, Aslan

    2008-01-01

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 ± 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm 2 to 10.80 cm 2 at 45 minutes and 10.81 cm 2 at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs

  15. Evaluation of the effects of sildenafil citrate (viagra) on vertebral artery blood flow in patients with vertebro-basilar insufficiency.

    Science.gov (United States)

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Tekatas, Aslan; Ogur, Erkin

    2008-01-01

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 +/- 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm(2) to 10.80 cm(2) at 45 minutes and 10.81 cm(2) at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs.

  16. Evaluation of the Effects of Sildenafil Citrate (Viagra) on Vertebral Artery Blood Flow in Patients with Vertebro-Basilar Insufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Ogur, Erkin [Firat University School of Medicine, Elazig(Turkmenistan); Tekatas, Aslan [Elazig Government Hospital, Elazig (Turkmenistan)

    2008-12-15

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 +- 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm{sup 2} to 10.80 cm{sup 2} at 45 minutes and 10.81 cm{sup 2} at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs

  17. Screening for trisomy 21 based on maternal age, nuchal translucency measurement, first trimester biochemistry and quantitative and qualitative assessment of the flow in the DV - the assessment of efficacy.

    Science.gov (United States)

    Czuba, Bartosz; Zarotyński, Dariusz; Dubiel, Mariusz; Borowski, Dariusz; Węgrzyn, Piotr; Cnota, Wojciech; Reska-Nycz, Małgorzata; Mączka, Marek; Wielgoś, Mirosław; Sodowski, Krzysztof; Serafin, Dawid; Kubaty, Anna; Bręborowicz, Grzegorz H

    2017-01-01

    The aim of the study was to compare effects of addition of two methods of ductus venosus (DV) flow assessment: qualitative - the assessment of shape of the A-wave (positive or negative), and quantitative - based on the pulsatility index for veins (DVPI) to the basic screening for trisomy 21 at 11 to 13 + 6 weeks of pregnancy. The ultrasound examination was performed in 8230 fetuses in singleton pregnancies at 11- -13 + 6 wks, as a part of a routine screening for chromosomal defects. In DV A-wave was assessed and DVPI was calculated. After the scan blood sample was taken for first trimester biochemistry (BC). Risk for chromosomal defects was calculated and high-risk patients were offered an invasive test for karyotyping. Basic screening with following combination of markers: MA, NT and BC provided lowest detection rate (DR) 87.50% for FPR = 6.94%. After adding qualitative DV A-wave assessment DR increased to 88.75% for FPR = 5.65%. The best DR = 93.75% for FPR = 5.55% was achieved when quantitative DVPI was added. The application of the Receiver Operating Curves curve confirmed validity of the addition of DV flow assessment to the screening model. The highest diagnostic power of the test was achieved when DVPI was added, with the ROC AUC of 0.974. The assessment of DV flow performed at 11-13 + 6 weeks increases DR for trisomy 21 and reduces FPR. The screening model based on the quantitative DV flow analysis (DVPI) gives better results compared to the qualitative flow assessment.

  18. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu; Xu, Wei; Wang, Cong; Chau, Yeungyeung; Zeng, Xiping; Zhang, Xixiang; Shen, Rong; Wen, Weijia

    2014-01-01

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios

  19. Reference centiles for the middle cerebral artery and umbilical artery pulsatility index and cerebro-placental ratio from a low-risk population - a Generalised Additive Model for Location, Shape and Scale (GAMLSS) approach.

    Science.gov (United States)

    Flatley, Christopher; Kumar, Sailesh; Greer, Ristan M

    2018-02-06

    The primary aim of this study was to create reference ranges for the fetal Middle Cerebral artery Pulsatility Index (MCA PI), Umbilical Artery Pulsatility Index (UA PI) and the Cerebro-Placental Ratio (CPR) in a clearly defined low-risk cohort using the Generalised Additive Model for Location, Shape and Scale (GAMLSS) method. Prospectively collected cross-sectional biometry and Doppler data from low-risk women attending the Mater Mother's Hospital, Maternal and Fetal Medicine Department in Brisbane, Australia between January 2010 and April 2017 were used to derive gestation specific centiles for the MCA PI, UA PI and CPR. All ultrasound scans were performed between 18 + 0 and 41 + 6 weeks gestation with recorded data for the MCA PI and/or UA PI. The GAMLSS method was used for the calculation of gestational age-adjusted centiles. Distributions and additive terms were assessed and the final model was chosen on the basis of the Global Deviance, Akaike information criterion (AIC) and Schwartz bayesian criterion (SBC), along with the results of the model and residual diagnostics as well as visual assessment of the centiles themselves. Over the study period 6013 women met the inclusion criteria. The MCA PI was recorded in 4473 fetuses, the UA PI in 6008 fetuses and the CPR was able to be calculated in 4464 cases. The centiles for the MCA PI used a fractional polynomial additive term and Box-Cox t (BCT) distribution. Centiles for the UA PI used a cubic spline additive term with BCT distribution and the CPR used a fractional polynomial additive term and a BCT distribution. We have created gestational centile reference ranges for the MCA PI, UA PI and CPR from a large low-risk cohort that supports their applicability and generalisability.

  20. Assessing regional cerebral blood flow in depression using 320-slice computed tomography.

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    Full Text Available While there is evidence that the development and course of major depressive disorder (MDD symptomatology is associated with vascular disease, and that there are changes in energy utilization in the disorder, the extent to which cerebral blood flow is changed in this condition is not clear. This study utilized a novel imaging technique previously used in coronary and stroke patients, 320-slice Computed-Tomography (CT, to assess regional cerebral blood flow (rCBF in those with MDD and examine the pattern of regional cerebral perfusion. Thirty nine participants with depressive symptoms (Hamilton Depression Rating Scale 24 (HAMD24 score > 20, and Self-Rating Depression Scale (SDS score > 53 and 41 healthy volunteers were studied. For all subjects, 3 ml of venous blood was collected to assess hematological parameters. Transcranial Doppler (TCD ultrasound was utilized to measure parameters of cerebral artery rCBFV and analyse the Pulsatility Index (PI. 16 subjects (8 =  MDD; 8 =  healthy also had rCBF measured in different cerebral artery regions using 320-slice CT. Differences among groups were analyzed using ANOVA and Pearson's tests were employed in our statistical analyses. Compared with the control group, whole blood viscosity (including high\\middle\\low shear rateand hematocrit (HCT were significantly increased in the MDD group. PI values in different cerebral artery regions and parameters of rCBFV in the cerebral arteries were decreased in depressive participants, and there was a positive relationship between rCBFV and the corresponding vascular rCBF in both gray and white matter. rCBF of the left gray matter was lower than that of the right in MDD. Major depression is characterized by a wide range of CBF impairments and prominent changes in gray matter blood flow. 320-slice CT appears to be a valid and promising tool for measuring rCBF, and could thus be employed in psychiatric settings for biomarker and treatment response purposes.

  1. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    Science.gov (United States)

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Brain SPECT by intraarterial infusion of 99mTc-HMPAO for assessing the cerebral distribution of carotid artery infusions in patient with brain tumor

    International Nuclear Information System (INIS)

    Kosuda, Shigeru; Kusano, Shoichi; Aoki, Shigeki

    1993-01-01

    In order to assess the cerebral distribution of intracarotid chemotherapy, 17 postoperative patients with brain tumor underwent brain SPECT obtrained by intraarterial infusion of 18.5 MBq of 99m Tc-d,l,-hexamethylpropyleneamine oxime ( 99m Tc-HMPAO). Injection methods were continuous (5.0 ml/min) or pulsatile infusion with supra- or infraophthalmic catheterization. The findings obtained by brain SPECT were frequently different from those of angiography and/or DSA. In supraophthalmic catheterization with continuous infusion, only 2 of 10 studies (20%) had homogeneous distribution and 5 of them (50%) had maldistribution of 99m Tc-HMPAO which appears in association with laminar flow effect. The remaining 3 studies showed localized distribution (two: tumor localization, one: healthy brain localization). On the other hand, all of 5 studies with pulsatile infusion had homogeneous distribution of 99m Tc-HMPAO. In infraophthalmic catheterization, all but one of 5 studies had homogeneous distribution with continuous infusion. These results suggest that pulsatile infusion may be effective in eliminating maldistribution of 99m Tc-HMPAO in supraophthalmic catheterization. In conclusion, we are convinced that 99m Tc-HMPAO is a useful intraarterial agent for assessing cerebral distribution of intracarotid chemotherpay. (author)

  3. Effects of flexible ureteroscopy on renal blood flow: a prospective evaluation.

    Science.gov (United States)

    Sener, Tarik Emre; Tanidir, Yiloren; Bin Hamri, Saeed; Sever, Ibrahim Halil; Ozdemir, Burcu; Al-Humam, Abdulla; Traxer, Olivier

    2018-02-20

    This study aimed to investigate the effects of flexible ureteroscopy (F-URS) on renal blood flow using renal Doppler ultrasound (US). Patients undergoing F-URS were scheduled for Doppler US preoperatively and postoperatively. Peak systolic velocity (PSV), end-diastolic velocity (EDV), resistive index (RI) and pulsatility index (PI) were reported. Technical details, operation time, stone characteristics and complications were recorded. Patients were grouped as 9.5/11.5-Flex-X2, 10/12-Flex-X2, 10/12-Flex-XC, 12/14-Flex-X2 and 12/14-Flex-XC, with 28, six, three, seven and two patients in each group, respectively. Forty-six patients with a mean age of 41.24 years and stone volume of 1685 mm³ were enrolled. The PSV, EDV, PI and RI of renal arteries in all groups in preoperative and postoperative periods were similar. Arcuate artery measurements in all groups were also similar in preoperative and postoperative periods, without any significant difference except in two parameters: RI in the 9.5/11.5-Flex-X2 group and PSV in the 12/14-Flex-X2 group. The resistive index in the arcuate artery of the 9.5/11.5-Flex-X2 group was increased from 0.59 to 0.62 cm/sec postoperatively. The PSV in the arcuate artery of the 12/14-Flex-X2 group was decreased from 30.9 to 27.2 cm/sec. Three patients had urinary tract infections postoperatively and two had sepsis. This study suggests that compatible ureteroscope-ureteral access sheath combinations with a lumen difference of more than 1.5 Fr can provide safe outcomes in terms of renal blood flow. F-URS can safely be performed in terms of renal perfusion and complication rates with appropriate equipment and instruments.

  4. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Mavroidis, P [University of Texas Health Science Center, UTHSCSA, San Antonio, TX (United States); Lavdas, E; Kostopoulos, S; Ninos, C; Strikou, A; Glotsos, D; Vlachopoulou, A; Oikonomou, G [Technological Education Institute of Athens, Athens, Athens (Greece); Economopoulos, N [General University Hospital ATTIKON, Athens, Athens (Greece); Roka, V [Health Center of Farkadona, Trikala (Greece); Sakkas, G [Center for Research and Technology of Thessaly, Trikala (Greece); Tsagkalis, A; Batsikas, G [IASO Thessalias Hospital, Larissa (Greece); Statkahis, S [Cancer Therapy and Research Center, San Antonio, TX (United States); Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2014-06-01

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitative analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.

  5. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    International Nuclear Information System (INIS)

    Mavroidis, P; Lavdas, E; Kostopoulos, S; Ninos, C; Strikou, A; Glotsos, D; Vlachopoulou, A; Oikonomou, G; Economopoulos, N; Roka, V; Sakkas, G; Tsagkalis, A; Batsikas, G; Statkahis, S; Papanikolaou, N

    2014-01-01

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitative analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved

  6. CTA/V detection of bilateral sigmoid sinus dehiscence and suspected idiopathic intracranial hypertension in unilateral pulsatile tinnitus

    International Nuclear Information System (INIS)

    Xu, Shuaishuai; Xu, Jianrong; Ruan, Shidong; Liu, Shanfeng; Gong, Ruozhen

    2018-01-01

    This aimed to evaluate the prevalence and extent of bilateral sigmoid sinus dehiscence (SSD) and to explore the presence of idiopathic intracranial hypertension (IIH) in patients with unilateral pulsatile tinnitus (PT) with CTA/V. Sixty PT patients (52 females; 40.4 ± 11.6 years [20-72]) who underwent CTA/V and 30 non-PT patients (27 females; 38.4 ± 14.7 years [12-62]) were enrolled in this study. The primary outcome measure was the radiographic presence of SSD. The index of transverse sinus stenosis (ITSS) was obtained by multiplying the stenosis scale values for each transverse sinus, and once was ≥ 4, the presence of IIH was suspected. The prevalence and extent of SSD on symptomatic side (78%; maximum transverse diameter, MTD 0.49 ± 0.23; maximum vertical diameter, MVD 0.50 ± 0.26 cm) were significantly higher and larger than those on asymptomatic side (50%, P < 0.001; MTD 0.35 ± 0.18, P = 0.006; MVD 0.30 ± 0.15 cm, P < 0.001) in the study group and those (20%, P < 0.001; MTD 0.36 ± 0.18, P = 0.073; MVD 0.30 ± 0.22 cm, P < 0.048) in the control group. The presence of SSD showed significant correlation with both PT (logistic regression analysis, OR 4.167 [1.450-11.97]; P = 0.008) and suspected IIH (OR 16.25 [1.893-139.5]; P = 0.011). In PT patients, SSD has a significant correlation with PT and a potential correlation with IIH. (orig.)

  7. Induction of spermatogenesis and fertility in hypogonadotropic azoospermic men by intravenous pulsatile gonadotropin-releasing hormone (GnRH).

    Science.gov (United States)

    Blumenfeld, Z; Makler, A; Frisch, L; Brandes, J M

    1988-06-01

    Gonadotropin-releasing hormone (GnRH) has only recently become a helpful tool in the medication of hypogonadotropic hypogonadism (HH). Two azoospermic patients with HH who had previously been treated with hCG/hMG because of delayed puberty and each of whom had fathered a child after previous gonadotropin therapy were referred due to secondary failure of hCG/hMG treatment to induce spermatogenesis and fertility. A pulse study where blood was drawn every 15 minutes for LH, FSH and PRL RIAs was performed in each patient, and afterwards a bolus of i.v. GnRH was injected to assess gonadotropin responsiveness. A portable GnRH pump was connected to each patient so that it administered 5-20 micrograms of GnRH i.v. every 89 minutes. Spermatogenesis was first detected after 42 and 78 days respectively in the 2 treated HH men and 4 1/2 months from the start of treatment their wives became pregnant. No thrombophlebitis or other complications of the i.v. therapy occurred. In the case of the first patient, the semen was washed and concentrated and intra-uterine inseminations were carried out in an attempt to shorten the time needed to achieve fertility. The first pregnancy was successfully terminated at 38 weeks with the delivery of 2 heterozygotic normal male babies. The second pregnancy ended in spontaneous delivery of a healthy female. We conclude that i.v. pulsatile, intermittent GnRH administration is a safe, efficient and highly successful means of treating azoospermic men with HH.

  8. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 100 of 161 ... Vol 6, No 2 (2007), Computing power and sample size for hotelling ... Vol 10, No 1&2 (2011), Control design of a nonlinear controller to .... Vol 11, No 1-2 (2012), Forecasting In One-Dimensional And Generalized Integrated Autoregressive ... Vol 1, No 1 (2002), Leaback of Pulsatile Flow of Particle Fluid ...

  9. Fetal umbilical artery Doppler pulsatility index and childhood neurocognitive outcome at 12 years.

    Science.gov (United States)

    Mone, Fionnuala; McConnell, Barbara; Thompson, Andrew; Segurado, Ricardo; Hepper, Peter; Stewart, Moira C; Dornan, James C; Ong, Stephen; McAuliffe, Fionnuala M; Shields, Michael D

    2016-06-15

    To determine whether an elevated fetal umbilical artery Doppler (UAD) pulsatility index (PI) at 28 weeks' gestation, in the absence of fetal growth restriction (FGR) and prematurity, is associated with adverse neurocognitive outcome in children aged 12 years. Prospective cohort study, comparing children with a normal fetal UAD PI (<90th centile) (n=110) and those with an elevated PI (≥90th centile) (n=40). UAD was performed at 28, 32 and 34 weeks gestation. At 12 years of age, all children were assessed under standardised conditions at Queen's University, Belfast, UK to determine cognitive and behavioural outcomes using the British Ability Score-II and Achenbach Child Behavioural Checklist Parent Rated Version under standardised conditions. Regression analysis was performed, controlling for confounders such as gender, socioeconomic status and age at assessment. The mean age of follow-up was 12.4 years (±0.5 SD) with 44% of children male (n=63). When UAD was assessed at 28 weeks, the elevated fetal UAD group had lower scores in cognitive assessments of information processing and memory. Parameters included (1) recall of objects immediate verbal (p=0.002), (2) delayed verbal (p=0.008) and (3) recall of objects immediate spatial (p=0.0016). There were no significant differences between the Doppler groups at 32 or 34 weeks' gestation. An elevated UAD PI at 28 weeks' gestation in the absence of FGR or prematurity is associated with lower scores of declarative memory in children aged 12 years. A potential explanation for this is an element of placental insufficiency in the presence of the appropriately grown fetus, which affects the development of the fetal hippocampus and information processing and memory long-term. These findings, however, had no impact on overall academic ability, mental processing and reasoning or overall behavioural function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  10. Asymptotic analysis of blood flow in stented arteries: time dependency and direct simulations***

    Directory of Open Access Journals (Sweden)

    Pichon Gostaf Kirill

    2010-12-01

    Full Text Available This work aims to extend in two distinct directions results recently obtained in [10]. In a first step we focus on the possible extension of our results to the time dependent case. Whereas in the second part some preliminary numerical simulations aim to give orders of magnitudes in terms of numerical costs of direct 3D simulations. We consider, in the first part, the time dependent rough problem for a simplified heat equation in a straight channel that mimics the axial velocity under an oscillating pressure gradient. We derive first order approximations with respect to ϵ, the size of the roughness. In order to understand the problem and set up correct boundary layer approximations, we perform a time periodic fourier analysis and check that no frequency can interact with the roughness. We show rigorously on this toy problem that the boundary layers remain stationary in time (independent on the frequency number. Finally we perform numerical tests validating our theoretical approach. In the second part, we determine actual limits, when running three-dimensional blood flow simulations of the non-homogenized stented arteries. We solve the stationary Stokes equations for an artery containing a saccular aneurysm. Consecutive levels of uniform mesh refinement, serve to relate spatial resolution, problem scale, and required computation time. Test computations are presented for femoral side aneurysm, where a simplified ten-wire stent model was placed across the aneurysm throat. We advocate the proposed stent homogenization model, by concluding that an actual computation power is not sufficient to run accurate, direct simulations of a pulsatile flow in stented vessels.

  11. Anesthesia for gastrointestinal endoscopy in patients with left ventricular assist devices: Initial experience with 68 procedures

    Directory of Open Access Journals (Sweden)

    Basavana G Goudra

    2013-01-01

    Full Text Available Aims and Objectives: Continuous flow left ventricular assist devices (LVAD have emerged as a reliable treatment option for heart failure. Because of bleeding secondary to anticoagulation, these patients present frequently for gastrointestinal (GI endoscopy. The presently available literature on perioperative management of these patients is extremely limited and is primarily based upon theoretical principles. Materials and Methods: Perioperative records of patients with LVAD undergoing (GI endoscopy between 2008 and 2012 were reviewed. Patient, device and procedure specific information was analyzed. Results: A total of 105 LVADs were implanted, and 68 procedures were performed in 39 patients. The most common indication was GI bleed (48/68, with yearly risk of 8.57% per patient. A total of 63 procedures were performed under deep sedation, with five procedures requiring general anesthesia. Intra-procedure hypotension was managed by fluids and (or vasopressors/inotropes (phenylephrine, ephedrine or milrinone guided by plethysmographic waveform, non-invasive blood pressure (NIBP and LVADs pulsatility index (for HeartMate II/flow pulsatility (for HeartWare. No patient required invasive monitoring and both NIBP and pulse oximeter could be reliably used for monitoring (and guided management in all patients due to the presence of native heart′s pulsatile output. Conclusion: In the presence of residual heart function, with optimal device settings, non-invasive hemodynamic monitoring can be reliably used in these patients while undergoing GI endoscopy under general anesthesia or monitored anesthesia care. Transient hypotensive episodes respond well to fluids/vasopressors without the need of increasing device speed that can be detrimental.

  12. Effects of single low-temperature sauna bathing in patients with severe motor and intellectual disabilities.

    Science.gov (United States)

    Iiyama, Junichi; Matsushita, Kensuke; Tanaka, Nobuyuki; Kawahira, Kazumi

    2008-07-01

    We have previously reported that thermal vasodilation following warm-water bathing and low-temperature sauna bathing (LTSB) at 60 degrees C for 15 min improves the cardiac function in patients with congestive heart failure. Through a comparative before-and-after study, we studied the hemodynamic and clinical effects of single exposure to LTSB in cerebral palsy (CP) patients who usually suffer from chilled extremities and low cardiac output. The study population comprised 16 patients ranging between 19 and 53 years with severe motor and intellectual disabilities. Noninvasive methods were used to estimate the systemic and peripheral circulatory changes before and after LTSB. Using blood flow velocity analysis, the pulsatile and resistive indexes of the peripheral arteries of the patients' lower limbs were calculated. Following LTSB, the patients' deep body temperature increased significantly by 1 degrees C. Their heart rates increased and blood pressure decreased slightly. The total peripheral resistance decreased by 11%, and the cardiac output increased by 14%. There was significant improvement in the parameters that are indicative of the peripheral circulatory status, including the skin blood flow, blood flow velocity, pulsatile index, and resistive index. Numbness and chronic myalgia of the extremities decreased. There were no adverse side effects. Thus, it can be concluded that LTSB improves the peripheral circulation in CP patients.

  13. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Su-Youn Cho

    2017-04-01

    Full Text Available Although regular Taekwondo (TKD training has been reported to be effective for improving cognitive function in children, the mechanism underlying this improvement remains unclear. The purpose of the present study was to observe changes in neuroplasticity-related growth factors in the blood, assess cerebral blood flow velocity, and verify the resulting changes in children’s cognitive function after TKD training. Thirty healthy elementary school students were randomly assigned to control (n = 15 and TKD (n = 15 groups. The TKD training was conducted for 60 min at a rating of perceived exertion (RPE of 11–15, 5 times per week, for 16 weeks. Brain-derived neurotrophic factor (BDNF, vascular endothelial growth factor (VEGF, and insulin-like growth factor-1 (IGF-1 levels were measured by blood sampling before and after the training, and the cerebral blood flow velocities (peak systolic [MCAs], end diastolic [MCAd], mean cerebral blood flow velocities [MCAm], and pulsatility index [PI] of the middle cerebral artery (MCA were measured using Doppler ultrasonography. For cognitive function assessment, Stroop Color and Word Tests (Word, Color, and Color-Word were administered along with other measurements. The serum BDNF, VEGF, and IGF-1 levels and the Color-Word test scores among the sub-factors of the Stroop Color and Word Test scores were significantly higher in the TKD group after the intervention (p < 0.05. On the other hand, no statistically significant differences were found in any factors related to cerebral blood flow velocities, or in the Word test and Color test scores (p > 0.05. Thus, 16-week TKD training did not significantly affect cerebral blood flow velocities, but the training may have been effective in increasing children’s cognitive function by inducing an increase in the levels of neuroplasticity-related growth factors.

  14. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries.

    Science.gov (United States)

    Mahalingam, Arun; Gawandalkar, Udhav Ulhas; Kini, Girish; Buradi, Abdulrajak; Araki, Tadashi; Ikeda, Nobutaka; Nicolaides, Andrew; Laird, John R; Saba, Luca; Suri, Jasjit S

    2016-06-01

    Local hemodynamics plays an important role in atherogenesis and the progression of coronary atherosclerosis disease (CAD). The primary biological effect due to blood turbulence is the change in wall shear stress (WSS) on the endothelial cell membrane, while the local oscillatory nature of the blood flow affects the physiological changes in the coronary artery. In coronary arteries, the blood flow Reynolds number ranges from few tens to several hundreds and hence it is generally assumed to be laminar while calculating the WSS calculations. However, the pulsatile blood flow through coronary arteries under stenotic condition could result in transition from laminar to turbulent flow condition. In the present work, the onset of turbulent transition during pulsatile flow through coronary arteries for varying degree of stenosis (i.e., 0%, 30%, 50% and 70%) is quantitatively analyzed by calculating the turbulent parameters distal to the stenosis. Also, the effect of turbulence transition on hemodynamic parameters such as WSS and oscillatory shear index (OSI) for varying degree of stenosis is quantified. The validated transitional shear stress transport (SST) k-ω model used in the present investigation is the best suited Reynolds averaged Navier-Stokes turbulence model to capture the turbulent transition. The arterial wall is assumed to be rigid and the dynamic curvature effect due to myocardial contraction on the blood flow has been neglected. Our observations shows that for stenosis 50% and above, the WSSavg, WSSmax and OSI calculated using turbulence model deviates from laminar by more than 10% and the flow disturbances seems to significantly increase only after 70% stenosis. Our model shows reliability and completely validated. Blood flow through stenosed coronary arteries seems to be turbulent in nature for area stenosis above 70% and the transition to turbulent flow begins from 50% stenosis.

  15. The role of colour flow Doppler in the investigation of the salivary gland tumour

    International Nuclear Information System (INIS)

    Bradley, M.J.; Durham, L.H.; Lancer, J.M.

    2000-01-01

    AIMS: Ultrasound is a highly effective imaging technique to determine salivary gland tumours and may help to identify many benign lesions. The aim of this study is to evaluate whether colour Doppler is able to further differentiate the malignant tumour. METHODS: Fifty-six patients with salivary gland lesions were prospectively assessed using ultrasound imaging with colour flow and power Doppler. The peak systolic velocity (PSV) was measured and the pulsatility index (PI) and resistive index (RI) calculations were performed on the pulsed wave traces. The real time ultrasound morphology and the Doppler information were correlated with the histology. RESULTS: In 18 of the 56 patients, no internal colour flow or power Doppler changes could be detected. The real time ultrasound morphology diagnosed benign disease with sensitivity of 89.7% with specificity of 57.1%. The positive predictive value was 93.6%. There were no significant differences in the colour Doppler appearances in terms of vessel type or intratumour distribution which could separate benign from malignant conditions. However, there was statistical discrimination for PI and RI values (P = 0.0006, P = 0.0002, respectively). No malignant lesions were seen when the PI was less than 1.8 and RI was less than 0.8. The PSV was elevated in several cases (> 50 cm per s) but there was no statistical correlation with malignancy. CONCLUSION: The risk of malignancy increases by a third when the colour Doppler demonstrates increased intratumour vascular resistance (RI > 0.8 and PI > 1.8), with positive predictive value of 97.3% (sensitivity 75.5%, specificity 85.7%). Bradley, M.J. (2000). Clinical Radiology 55, 759-762

  16. Umbilical blood flow ultrasound characteristics of perioperative fetal intrauterine hypoxia and their relationship with maternal and fetal oxidative stress injury

    Directory of Open Access Journals (Sweden)

    Yu-Mei He

    2017-05-01

    Full Text Available Objective: To study the relationship between umbilical blood flow ultrasound characteristics of perioperative fetal intrauterine hypoxia and maternal as well as fetal oxidative stress injury. Methods: 108 puerperae giving birth in our hospital between May 2014 and October 2016 were selected and divided into normal pregnancy group with neonatal Apgar score >7 points and intrauterine hypoxia group with neonatal Apgar score ≤7 points, color Doppler diasonograph was used to determine umbilical blood flow ultrasound parameters, umbilical cord blood was collected to determine the levels of oxidative stress products, and the placenta was collected to determine the levels of oxidative stress products and related apoptosis molecules. Results: During 24–30 weeks, 31–36 weeks and 37–41 weeks of pregnancy, umbilical blood flow resistance index (RI, pulsatility index (PI and diastolic velocity/systolic velocity (S/D of intrauterine hypoxia group were significantly higher than those of normal pregnancy group (P<0.05; malondialdehyde (MDA, oxidized low-density lipoprotein (ox- LDL, 8-isoprostanes (8-iso, and heat shock protein 70 (HSP-70 levels in umbilical cord blood of intrauterine hypoxia group were significantly higher than those of normal pregnancy group (P<0.05, MDA, oxLDL, 8-ios, HSP-70, Fas, FasL and Bax levels in placenta tissue were significantly higher than those of normal pregnancy group (P<0.05, and Bcl-2 and XIAP levels were significantly lower than those of normal pregnancy group (P<0.05; RI, PI and S/ D were positively correlated with MDA, oxLDL, 8-ios and HSP-70 levels in umbilical cord blood and placenta tissue, positively correlated with Fas, FasL and Bax levels in placenta tissue, and negatively correlated with Bcl-2 and XIAP levels in placental tissue. Conclusions: The increased umbilical blood flow resistance and decreased flow volume of fetal intrauterine hypoxia are closely related to maternal, fetal and placental oxidative

  17. Doppler color flow analysis of the uterine arteries before and after intrauterine device insertion: a prospective study.

    Science.gov (United States)

    de Souza, Marco Aurélio Martins; Geber, Selmo

    2006-02-01

    An intrauterine device (IUD) is one of the most frequently used methods of birth control around the world. Although a relationship between its use and menstrual disorders has been well documented, only a few studies have tried to show whether there are any vascular modifications. The aim of our study was to evaluate the influence of an IUD on uterine artery blood flow using Doppler assessment. A total of 100 patients selected for IUD use were prospectively evaluated with Doppler analysis before and 30 days after insertion. The resistive index (RI) and pulsatility index (PI) were used to evaluate uterine artery vascular resistance. Patients were allocated in 2 groups according to whether they were (group 2) or were not (group 1) lactating. The PI and RI of the patients in groups 1 and 2 before and after IUD insertion were not statistically significantly different (P = .298 and .23). When we compared uterine artery blood flow indices before and after IUD insertion for groups 1 and 2 separately, we observed in group 1 that the mean +/- SD PI values were 2.45 +/- 0.62 and 2.55 +/- 0.55 (P = .38) and the RI values were 0.87 +/- 0.08 and 0.87 +/- 0.06 (P = .88) before and after IUD insertion, respectively. In group 2, the PI values were 2.31 +/- 0.55 and 2.37 +/- 0.69 (P = .68) and the RI values were 0.85 +/- 0.07 and 0.86 +/- 0.07 (P = .44) before and after IUD insertion. Finally, we used the mean blood flow indices of the uterine arteries of all patients to compare the effect of IUD insertion. Results were also not statistically significant when we compared PI and RI before and after IUD insertion. The presence of an IUD does not interfere with the vascular resistance of the uterine arteries that can be shown by Doppler flow assessments 1 month after insertion.

  18. Pregnancy-specific stress, fetoplacental haemodynamics, and neonatal outcomes in women with small for gestational age pregnancies: a secondary analysis of the multicentre Prospective Observational Trial to Optimise Paediatric Health in Intrauterine Growth Restriction.

    LENUS (Irish Health Repository)

    Levine, Terri A

    2017-06-21

    To examine associations between maternal pregnancy-specific stress and umbilical (UA PI) and middle cerebral artery pulsatility indices (MCA PI), cerebroplacental ratio, absent end diastolic flow (AEDF), birthweight, prematurity, neonatal intensive care unit admission and adverse obstetric outcomes in women with small for gestational age pregnancies. It was hypothesised that maternal pregnancy-specific stress would be associated with fetoplacental haemodynamics and neonatal outcomes.

  19. Association between idiopathic intracranial hypertension and sigmoid sinus dehiscence/diverticulum with pulsatile tinnitus: a retrospective imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhaohui, Liu; Qing, Li [Capital Medical University, Beijing Tongren Hospital, Department of Radiology, Beijing (China); Cheng, Dong; Xiao, Wang; Xiaoyi, Han; Pengfei, Zhao; Han, Lv; Zhenchang, Wang [Capital Medical University, Beijing Friendship Hospital, Department of Radiology, Beijing (China)

    2015-07-15

    The mechanism of occurrence of sigmoid sinus dehiscence/diverticulum (SSDD) in pulsatile tinnitus (PT) patients remains under debate. Its association with idiopathic intracranial hypertension (IIH) lacks evidence, which is important for therapeutic planning and improving the clinical outcome. This study aimed to evaluate the association between SSDD and IIH by comparing the prevalence of several established imaging features of IIH between PT patients with SSDD and healthy volunteers. Thirty-three unilateral PT patients with SSDD identified on CT images and 33 age- and sex-matched healthy volunteers underwent T1-weighted volumetric magnetic resonance imaging (MRI). The optic nerve, pituitary gland, transverse sinus, and ventricles were assessed. The prevalence of established IIH imaging features was compared between the two groups. Furthermore, the PT patients were divided into two subgroups: PT patients with dehiscence only and PT patients with diverticulum. The same statistical analysis was performed on each pathophysiologic entity respectively. The PT patients with SSDD showed a significantly higher prevalence of empty sella (P < 0.001), flattened posterior sclera (P = 0.001), vertical tortuosity of the optic nerve (P = 0.001), protrusion of the optic nerve (P = 0.006), transverse sinus stenosis (P = 0.011), and distension of the optic nerve sheath (P = 0.000). There were no significant differences between the PT and control groups in the maximum widths of the third and fourth ventricles and the lateral ventricle size. In contrast to controls, the imaging findings persisted in both of pathophysiologic entities, except for transverse sinus stenosis. Several IIH imaging features occur more frequently in PT patients with SSDD than in healthy individuals, which suggests a potential correlation between SSDD with PT and IIH. (orig.)

  20. Association between idiopathic intracranial hypertension and sigmoid sinus dehiscence/diverticulum with pulsatile tinnitus: a retrospective imaging study

    International Nuclear Information System (INIS)

    Zhaohui, Liu; Qing, Li; Cheng, Dong; Xiao, Wang; Xiaoyi, Han; Pengfei, Zhao; Han, Lv; Zhenchang, Wang

    2015-01-01

    The mechanism of occurrence of sigmoid sinus dehiscence/diverticulum (SSDD) in pulsatile tinnitus (PT) patients remains under debate. Its association with idiopathic intracranial hypertension (IIH) lacks evidence, which is important for therapeutic planning and improving the clinical outcome. This study aimed to evaluate the association between SSDD and IIH by comparing the prevalence of several established imaging features of IIH between PT patients with SSDD and healthy volunteers. Thirty-three unilateral PT patients with SSDD identified on CT images and 33 age- and sex-matched healthy volunteers underwent T1-weighted volumetric magnetic resonance imaging (MRI). The optic nerve, pituitary gland, transverse sinus, and ventricles were assessed. The prevalence of established IIH imaging features was compared between the two groups. Furthermore, the PT patients were divided into two subgroups: PT patients with dehiscence only and PT patients with diverticulum. The same statistical analysis was performed on each pathophysiologic entity respectively. The PT patients with SSDD showed a significantly higher prevalence of empty sella (P < 0.001), flattened posterior sclera (P = 0.001), vertical tortuosity of the optic nerve (P = 0.001), protrusion of the optic nerve (P = 0.006), transverse sinus stenosis (P = 0.011), and distension of the optic nerve sheath (P = 0.000). There were no significant differences between the PT and control groups in the maximum widths of the third and fourth ventricles and the lateral ventricle size. In contrast to controls, the imaging findings persisted in both of pathophysiologic entities, except for transverse sinus stenosis. Several IIH imaging features occur more frequently in PT patients with SSDD than in healthy individuals, which suggests a potential correlation between SSDD with PT and IIH. (orig.)

  1. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    Science.gov (United States)

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  2. Transcranial Doppler sonography in familial hemiplegic migraine

    International Nuclear Information System (INIS)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A.

    1991-01-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab

  3. Transcranial Doppler sonography in familial hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A. (Universita la Sapienza, Roma (Italy))

    1991-02-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab.

  4. Correlations of Neck/Shoulder Perfusion Characteristics and Pain Symptoms of the Female Office Workers with Sedentary Lifestyle.

    Science.gov (United States)

    Bau, Jian-Guo; Chia, Taipau; Wei, Shan-Hua; Li, Yung-Hui; Kuo, Fun-Chie

    2017-01-01

    Modern office workers are often impacted by chronic neck/shoulder pain. Most of the previous studies which investigated the relationship of the occupational factors and musculoskeletal symptoms had adopted questionnaire survey. In this study the microcirculatory characteristics and perceived symptoms in neck/shoulder region were compared among office workers with sedentary lifestyle. Thirty-seven female office workers were recruited in this study. Microcirculatory flow in neck/shoulder region characterized by the mean blood flow (MMBF value), pulsatile blood flow (PMBF value), and the PMBF/MMBF ratio (perfusion pulsatility, PP) were investigated using Laser Doppler Flowmetry (LDF). A Chinese version of the Standardized Nordic Musculoskeletal Questionnaire (NMQ) were also administered to collect the information of perceived neck/shoulder symptoms. Correlations between the perfusion characteristics and the individual/occupational factors were analyzed using the Spearman test. The difference of the MMBF values between the low-pain group (pain level≤2) and the high-pain group (pain level>2) were compared using the Mann-Whitney U test. There were 81% participants reported neck or shoulder pain symptoms. The duration of shoulder pain was significantly correlated with the workers' age and the duration of employment (psedentary lifestyle, was found to be more likely to evoke ischemia shoulder pain. Further studies are needed to assess current indicator, PP value, and the underlying mechanism of pain caused by sedentary lifestyle.

  5. PIV validation of blood-heart valve leaflet interaction modelling.

    Science.gov (United States)

    Kaminsky, R; Dumont, K; Weber, H; Schroll, M; Verdonck, P

    2007-07-01

    The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10 degrees of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with inhouse developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated.

  6. High-flavanol and high-theobromine versus low-flavanol and low-theobromine chocolate to improve uterine artery pulsatility index: a double blind randomized clinical trial.

    Science.gov (United States)

    Bujold, Emmanuel; Leblanc, Vicky; Lavoie-Lebel, Élise; Babar, Asma; Girard, Mario; Poungui, Lionel; Blanchet, Claudine; Marc, Isabelle; Lemieux, Simone; Belkacem, Abdous; Sidi, Elhadji Laouan; Dodin, Sylvie

    2017-09-01

    To evaluate the impact of high-flavanol and high-theobromine (HFHT) chocolate in women at risk of preeclampsia (PE). We conducted a single-center randomized controlled trial including women with singleton pregnancy between 11 and 14 weeks gestation who had bilateral abnormal uterine artery (UtA) waveforms (notching) and elevated pulsatility index (PI). Participants were randomized to either HFHT or low-flavanol and low-theobromine (LFLT) chocolate (30 grams daily for a total of 12 weeks). UtA PI, reported as multiple of medians (MoM) adjusted for gestational age, was assessed at baseline and 12 weeks after randomization. One hundred thirty-one women were randomized with mean gestational age of 12.4 ± 0.6 weeks and a mean UtA PI of 1.39 ± 0.31 MoM. UtA PI adjusted for gestational age significantly decreased from baseline to the second visit (12 weeks later) in the two groups (p chocolate, daily intake of HFHT chocolate was not associated with significant changes of UtA PI. Nevertheless, the improvement observed in both groups suggests that chocolate could improve placental function independently of flavanol and/or theobromine content.

  7. Patofisiologi Pintasan Jantung Paru

    Directory of Open Access Journals (Sweden)

    Doddy Tavianto

    2013-08-01

    Full Text Available physiologic changes introduced by cardiopulmonary bypass include an alteration in pulsatile, blood flow >pattern, exposure of blood to nonphysiologic surface, blood damage due to shear stress, hemodilution, and overload stress response. The increase of cardiopulmonary bypass safety depends on good knowledge and understanding on normal circulatory hemostatis changes. Circulation control during cardiopulmonary bypass was done by observing systemic blood flow, arterial pressure, venous pressure, and blood< flow distribution. Circulatory changes during cardiopulmonary bypass can happen on set of action, hipotermia periode, rewarming phase, during cardiopulmonary bypass with warm temperature, and also cardiopulmonary bypass can cause changes in microsirculation and adequacy of tissue perfusion.

  8. Superior semicircular canal dehiscence in relation to the superior petrosal sinus: a potential cause of pulsatile tinnitus

    International Nuclear Information System (INIS)

    Liu, Z.; Bi, W.; Li, J.; Li, Q.; Dong, C.; Zhao, P.; Lv, H.; Wang, Z.

    2015-01-01

    Aim: To examine the association between superior semicircular canal dehiscence (SSCD) and pulsatile tinnitus (PT). Materials and methods: Two SSCD groups included 408 unilateral persistent PT patients, and 511 controls undergoing head and neck dual-phase contrast-enhanced computed tomography (DP-CECT) for reasons other than PT. The prevalence of type I (no the superior petrosal sinus running through the dehiscence) and type II (superior semicircular canal dehiscence in relation to the superior petrosal sinus) SSCD was analysed using chi-square test. Results: SSCD was identified in 5.1% (21/408) of PT ears, significantly different from 2% (8/408) of non-PT ears and 0.7% (7/1022) of controls. There was no significant difference in SSCD prevalence between non-PT ears in the PT group and controls. In the PT group, 15/21 ears were type II SSCD; 6/21 ears were type I. Fifteen combined non-PT and control ears with SSCD included two type II and 13 type I SSCD. The prevalence of type II SSCD in PT ears was significantly higher than that of non-PT ears in both groups, and the prevalence of type I SSCD in PT ears was similar to that of non-PT ears in both groups. Conclusion: Compared with type I SSCD, there may be a causal relationship between type II SSCD and PT. -- Highlights: •The prevalence of type II SSCD in PT ears was significantly higher than that in non-PT ears in both the PT group and controls. •The prevalence of type I SSCD was similar among the PT ears and non-PT ears. •The superior petrosal sinus running through the dehiscence may be essential for SSCD to induce PT. •Venous phase CT images with bone window settings is the modality method to differentiate type II from type I SSCD

  9. Cardiac transplantation after bridged therapy with continuous flow left ventricular assist devices.

    Science.gov (United States)

    Deo, Salil V; Sung, Kiick; Daly, Richard C; Shah, Ishan K; Altarabsheh, Salah E; Stulak, John M; Joyce, Lyle D; Boilson, Barry A; Kushwaha, Sudhir S; Park, Soon J

    2014-03-01

    Cardiac transplantation is an effective surgical therapy for end-stage heart failure. Patients (pts) may need to be bridged with a continuous flow left ventricular assist device (CF-LVAD) while on the transplant list as logistic factors like organ availability are unknown. Cardiac transplantation post-LVAD can be a surgically challenging procedure and outcome in these pts is perceived to be poorer based on experience with earlier generation pulsatile flow pumps. Data from a single institution comparing these pts with those undergoing direct transplantation in the present era of continuous flow device therapy are limited. Evaluate results of cardiac transplantation in pts bridged with a CF-LVAD (BTx) and compare outcomes with pts undergoing direct transplantation (Tx) in a single institution. From June 2007 till January 2012, 106 pts underwent cardiac transplantation. Among these, 37 (35%) pts (51±11 years; 85% male) were bridged with a CF-LVAD (BTx), while 70 (65%) comprised the Tx group (53±12 years; 72% males). The median duration of LVAD support was 227 (153,327) days. During the period of LVAD support, 10/37 (27%) pts were upgraded to status 1A and all were successfully transplanted. Median hospital stay in the BTx (14 days) was slightly longer than the Tx group (12 days) but not statistically significant (p=0.21). In-hospital mortality in the BTx (5%) and Tx (1%) were comparable (p=0.25). Estimated late survival in the BTx cohort was 94±7, 90±10 and 83±16% at the end of one, two and three years, respectively which was comparable to 97±4%, 93±6% and 89±9% for the Tx group (p=0.50). Cardiac transplantation after LVAD implant can be performed with excellent results. Patients can be supported on the left ventricular assist device even for periods close to a year with good outcome after cardiac transplantation. Copyright © 2013 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand

  10. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New "Gold Standard"?

    Science.gov (United States)

    Capoccia, Massimo

    2016-12-12

    The impact of left ventricular assist devices (LVADs) for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs), based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs). The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial) and the HeartWare HVAD (centrifugal) rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal) is now emerging as the new promising device with encouraging preliminary results. There are now enough pumps on

  11. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”?

    Directory of Open Access Journals (Sweden)

    Massimo Capoccia

    2016-12-01

    Full Text Available The impact of left ventricular assist devices (LVADs for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs, based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs. The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial and the HeartWare HVAD (centrifugal rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal is now emerging as the new promising device with encouraging preliminary results. There are now

  12. First Report of 90-Day Support of Two Calves with a Continuous-Flow Total Artificial Heart

    Science.gov (United States)

    Karimov, Jamshid H.; Moazami, Nader; Kobayashi, Mariko; Sale, Shiva; Such, Kimberly; Byram, Nicole; Sunagawa, Gengo; Horvath, David; Gao, Shengqiang; Kuban, Barry; Golding, Leonard A.; Fukamachi, Kiyotaka

    2015-01-01

    Objective The Cleveland Clinic continuous-flow total artificial heart (CFTAH) is a compact, single-piece, valveless, pulsatile pump providing self-regulated hemodynamic output to left/right circulation. We evaluated chronic in vivo pump performance, physiologic and hemodynamic parameters, and biocompatibility of the CFTAH in a well-established calf model. Methods CFTAH pumps have been implanted in 17 calves total. Hemodynamics, pump performance, and device-related adverse events were evaluated during studies and at necropsy. Results In vivo experiments demonstrated good hemodynamic performance (pump flow, 7.3 ± 0.7 L/min; left atrial pressure [LAP], 16 ± 3 mm Hg; right atrial pressure [RAP], 17 ± 3 mm Hg; RAP-LAP difference, 1 ± 2 mm Hg; mean arterial pressure, 103 ± 7 mm Hg; arterial pulse pressure, 30 ± 11 mm Hg; pulmonary arterial pressure, 34 ± 5 mm Hg). The CFTAH has operated within design specifications and never failed. With ever-improving pump design, the implants have shown no chronic hemolysis. Three recent animals with the CFTAH recovered well, with no postoperative anticoagulation, during planned in vivo durations of 30, 90, and 90 days (last two were intended to be 90-day studies). All these longest-surviving cases showed good biocompatibility, with no thromboembolism in organs. Conclusions The current CFTAH has demonstrated reliable self-regulation of hemodynamic output and acceptable biocompatibility without anticoagulation throughout 90 days of chronic implantation in calves. Meeting these milestones is in accord with our strategy to achieve transfer of this unique technology to surgical practice, thus filling the urgent need for cardiac replacement devices as destination therapy. PMID:26173607

  13. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    Science.gov (United States)

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Changes in Hepatic Blood Flow and Liver Function during Closed Abdominal Hyperthermic Intraperitoneal Chemotherapy following Cytoreduction Surgery

    Directory of Open Access Journals (Sweden)

    Stéphanie Dupont

    2018-01-01

    Full Text Available Background. The increase in intra-abdominal pressure (IAP during closed abdominal hyperthermic intraperitoneal chemotherapy (HIPEC leads to major haemodynamic changes and potential organ dysfunction. We investigated these effects on hepatic blood flow (HBF and liver function in patients undergoing HIPEC following cytoreductive surgery and fluid management guided by dynamic preload indices. Methods. In this prospective observational clinical study including 15 consecutive patients, we evaluated HBF by transesophageal echocardiography and liver function by determination of the indocyanine green plasma disappearance rate (ICG-PDR. Friedman’s two-way analysis of variance by ranks and Wilcoxon signed-rank test were performed for statistical analysis. Results. During HIPEC, HBF was markedly reduced, resulting in the loss of any pulsatile Doppler flow signal in all but one patient. The ICG-PDR, expressed as median (interquartile 25–75, decreased from 23 (20–30 %/min to 18 (12.5–19 %/min (p<0.001. Despite a generous crystalloid infusion rate (27 (22–35 ml/kg/h, cardiac index decreased during the increased IAP period, inferior vena cava diameter decreased, stroke volume variation and pulse pressure variation increased, lung compliance dropped, and there was an augmentation in plateau pressure. All changes were significant (p<0.001 and reversed to baseline values post HIPEC. Conclusion. Despite optimizing intravenous fluids during closed abdominal HIPEC, we observed a marked decrease in HBF and liver function. Both effects were transient and limited to the period of HIPEC but could influence the choice between closed or open abdominal cavity procedure for HIPEC and should be considered in similar clinical situations of increased IAP.

  15. Comparison between pulsatile GnRH therapy and gonadotropins for ovulation induction in women with both functional hypothalamic amenorrhea and polycystic ovarian morphology.

    Science.gov (United States)

    Dumont, Agathe; Dewailly, Didier; Plouvier, Pauline; Catteau-Jonard, Sophie; Robin, Geoffroy

    2016-12-01

    Ovulation induction in patients having both functional hypothalamic amenorrhea (FHA) and polycystic ovarian morphology (PCOM) has been less studied in the literature. As results remain contradictory, no recommendations have yet been established. To compare pulsatile GnRH therapy versus gonadotropins for ovulation induction in "FHA-PCOM" patients and to determine if one treatment strikes as superior to the other. A 12-year retrospective study, comparing 55 "FHA-PCOM" patients, treated either with GnRH therapy (38 patients, 93 cycles) or with gonadotropins (17 patients, 53 cycles). Both groups were similar, defined by low serum LH and E2 levels, low BMI, excessive follicle number per ovary and/or high serum AMH level. Ovulation rates were significantly lower with gonadotropins (56.6% versus 78.6%, p = 0.005), with more cancellation and ovarian hyper-responses (14% versus 34% per initiated cycle, p < 0.005). Pregnancy rates were significantly higher with GnRH therapy, whether per initiated cycle (26.9% versus 7.6%, p = 0.005) or per patient (65.8% versus 23.5%, p = 0.007). In our study, GnRH therapy was more successful and safer than gonadotropins, for ovulation induction in "FHA-PCOM" patients. If results were confirmed by prospective studies, it could become a first-line treatment for this population, just as it is for FHA women without PCOM.

  16. Tomographic PIV behind a prosthetic heart valve

    Science.gov (United States)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  17. Different Bleeding Patterns with the Use of Levonorgestrel Intrauterine System: Are They Associated with Changes in Uterine Artery Blood Flow?

    Directory of Open Access Journals (Sweden)

    Carlo Bastianelli

    2014-01-01

    Full Text Available Objective. Evaluate if different bleeding patterns associated with the use of the levonorgestrel intrauterine system (LNG-IUS are associated with different uterine and endometrial vascularization patterns, as evidenced by ultrasound power Doppler analysis. Methodology. A longitudinal study, with each subject acting as its own control was conducted between January 2010 and December 2012. Healthy volunteers with a history of heavy but cyclic and regular menstrual cycles were enrolled in the study. Ultrasonographic examination was performed before and after six months of LNG-IUS placement: uterine volume, endometrial thickness, and subendometrial and myometrial Doppler blood flow patterns have been evaluated. Results. A total of 32 women were enrolled out of 186 initially screened. At six months of follow-up, all subjects showed a reduction in menstrual blood loss; for analysis, they were retrospectively divided into 3 groups: normal cycling women (Group I, amenorrheic women (Group II, and women with prolonged bleedings (Group III. Intergroup analysis documented a statistically significant difference in endometrial thickness among the three groups; in addition, mean pulsatility index (PI and resistance index (RI in the spiral arteries were significantly lower in Group I and Group III compared to Group II. This difference persisted also when comparing—within subjects of Group III—mean PI and RI mean values before and after insertion. Conclusions. The LNG-IUS not only altered endometrial thickness, but—in women with prolonged bleedings—also significantly changed uterine artery blood flow. Further studies are needed to confirm these results and enable gynecologists to properly counsel women, improving initial continuation rates.

  18. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    Science.gov (United States)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  19. Is abdominal wall contraction important for normal voiding in the female rat?

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2007-03-01

    Full Text Available Abstract Background Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats Methods A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI, voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. Results Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p Conclusion The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR for the physiologic voiding-associated EMG

  20. Concomitant inhibition of pulsatile luteinizing hormone (LH) and stimulation of prolactin release by prostacyclin (PGI2) in ovariectomized (OVX) conscious rats

    International Nuclear Information System (INIS)

    Ottlecz, A.; McCann, S.M.

    1988-01-01

    Prostacyclin (PGI 2 ) or its stable metabolite, 6-keto-PGF/sub 1 alpha/ in 2.5 μl 0.05 M phosphate buffer, was injected into the third ventricle (3 V) of ovariectomized (OVX), freely moving rats. Control animals received 2.5 μl of buffer. In the initial experiments a control blood sample was taken and then the PGI 2 was injected and frequent samples taken thereafter. With this protocol injection of 2 μg of PGI 2 produced a significant decrease in mean plasma LH only at 60 min after its injection, while the higher dose decreased plasma LH concentration at 30 and 60 min. In subsequent experiments, blood was removed from indwelling external jugular vein cannulae every 5-6 min during 2 hours and plasma LH and PRL levels were determined by radioimmunoassay. LH pulses were monitored and several parameters of LH pulsation were calculated during the hour before and after injection of phosphate buffer, PGI 2 or 6-keto-PGF/sub 1a/. Intraventricular injection of phosphate buffer failed to modify the characteristic pulsatile release of LH and did not alter plasma PRL levels. The amplitude of LH pulses was significantly reduced by PGI 2 and the inhibitory effect was dose-related. Even a dose of 1 μg produced a significant reduction in pulse height and the response was graded with maximal reduction occurring with the 5 μg dose which essentially abolished the LH pulses

  1. Fixed cord in spinal stenosis

    International Nuclear Information System (INIS)

    Levy, L.M.; Wang, H.; Francomano, C.; Hurko, O.; Carson, B.; Heffez, D.S.; DiChiro, G.; Bryan, R.N.

    1990-01-01

    This paper evaluates patients with cervical spinal canal compromise due to congenital anomalies (achondroplasia, Chiari malformation) and degenerative diseases using MR cord motion and cerebrospinal fluid (CSF) flow studies. Pulsatile longitudinal motion of the cervical cord was determined by means of cardiac-gated velocity phase contrast methods, including cine. Pathology included dwarfism (n = 15), Chiari malformation (n = 10), spondylosis (n = 10), and acute cord compression (n = 9). Symptomatic cases of congenital cervical stenosis had decreased cord motion, although CSF flow was not always significantly compromised. Postoperative cases demonstrated good cord and CSF motion, unless compression or obstruction was present

  2. Application of a magnetic fluid seal to rotary blood pumps

    International Nuclear Information System (INIS)

    Mitamura, Y; Arioka, S; Azegami, M; Sakota, D; Sekine, K

    2008-01-01

    A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps

  3. Analysis of renal blood flow and renal volume in normal fetuses and in fetuses with a solitary functioning kidney.

    Science.gov (United States)

    Hindryckx, An; Raaijmakers, Anke; Levtchenko, Elena; Allegaert, Karel; De Catte, Luc

    2017-12-01

    To evaluate renal blood flow and renal volume for the prediction of postnatal renal function in fetuses with solitary functioning kidney (SFK). Seventy-four SFK fetuses (unilateral renal agenesis [12], multicystic dysplastic kidney [36], and severe renal dysplasia [26]) were compared with 58 healthy fetuses. Peak systolic velocity (PSV), pulsatility index (PI), and resistance index (RI) of the renal artery (RA) were measured; 2D and 3D (VOCAL) volumes were calculated. Renal length and glomerular filtration rate (GFR) were obtained in SFK children (2 years). Compared with the control group, the PSV RA was significantly lower in nonfunctioning kidneys and significantly higher in SFK. Volume measurements indicated a significantly larger volume of SFK compared with healthy kidneys. All but 4 children had GFR above 70 mL/min/1.73 m 2 , and compensatory hypertrophy was present in 69% at 2 years. PSV RA and SFK volume correlated with postnatal renal hypertrophy. No correlation between prenatal and postnatal SFK volume and GFR at 2 years was demonstrated. Low PSV RA might have a predictive value for diagnosing a nonfunctioning kidney in fetuses with a SFK. We demonstrated a higher PSV RA and larger renal volume in the SFK compared with healthy kidneys. © 2017 John Wiley & Sons, Ltd.

  4. Convective Leakage Makes Heparin Locking of Central Venous Catheters Ineffective Within Seconds: Experimental Measurements in a Model Superior Vena Cava.

    Science.gov (United States)

    Barbour, Michael C; McGah, Patrick M; Ng, Chin H; Clark, Alicia M; Gow, Kenneth W; Aliseda, Alberto

    2015-01-01

    Central venous catheters (CVCs), placed in the superior vena cava (SVC) for hemodialysis or chemotherapy, are routinely filled while not in use with heparin, an anticoagulant, to maintain patency and prevent thrombus formation at the catheter tip. The heparin-locking procedure, however, places the patient at risk for systemic bleeding, as heparin is known to leak from the catheter into the blood stream. We provide evidence from detailed in vitro experiments that shows the driving mechanism behind heparin leakage to be convective-diffusive transport due to the pulsatile flow surrounding the catheter. This novel mechanism is supported by experimental planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements of flow velocity and heparin transport from a CVC placed inside a model SVC inside a pulsatile flow loop. The results predict an initial, fast (<10 s), convection-dominated phase that rapidly depletes the concentration of heparin in the near-tip region, the region of the catheter with side holes. This is followed by a slow, diffusion-limited phase inside the catheter lumen, where the concentration is still high, that is insufficient at replenishing the lost heparin concentration in the near-tip region. The results presented here, which are consistent with previous in vivo estimates of 24 hour leakage rates, predict that the concentration of heparin in the near-tip region is essentially zero for the majority of the interdialytic phase, rendering the heparin locking procedure ineffective.

  5. First report of 90-day support of 2 calves with a continuous-flow total artificial heart.

    Science.gov (United States)

    Karimov, Jamshid H; Moazami, Nader; Kobayashi, Mariko; Sale, Shiva; Such, Kimberly; Byram, Nicole; Sunagawa, Gengo; Horvath, David; Gao, Shengqiang; Kuban, Barry; Golding, Leonard A R; Fukamachi, Kiyotaka

    2015-09-01

    The Cleveland Clinic continuous-flow total artificial heart (CFTAH) is a compact, single-piece, valveless, pulsatile pump providing self-regulated hemodynamic output to left/right circulation. We evaluated chronic in vivo pump performance, physiologic and hemodynamic parameters, and biocompatibility of the CFTAH in a well-established calf model. CFTAH pumps have been implanted in 17 calves total. Hemodynamic parameters, pump performance, and device-related adverse events were evaluated during studies and at necropsy. In vivo experiments demonstrated good hemodynamic performance (pump flow, 7.3 ± 0.7 L/min; left atrial pressure, 16 ± 3 mm Hg; right atrial pressure, 17 ± 3 mm Hg; right atrial pressure-left atrial pressure difference, 1 ± 2 mm Hg; mean arterial pressure, 103 ± 7 mm Hg; arterial pulse pressure, 30 ± 11 mm Hg; and pulmonary arterial pressure, 34 ± 5 mm Hg). The CFTAH has operated within design specifications and never failed. With ever-improving pump design, the implants have shown no chronic hemolysis. Three animals with recent CFTAH implantation recovered well, with no postoperative anticoagulation, during planned in vivo durations of 30, 90, and 90 days (last 2 were intended to be 90-day studies). All these longest-surviving cases showed good biocompatibility, with no thromboembolism in organs. The current CFTAH has demonstrated reliable self-regulation of hemodynamic output and acceptable biocompatibility without anticoagulation throughout 90 days of chronic implantation in calves. Meeting these milestones is in accord with our strategy to achieve transfer of this unique technology to human surgical practice, thus filling the urgent need for cardiac replacement devices as destination therapy. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  6. Endothelial cell impact on smooth muscle cell properties: role of hemodynamic forces

    OpenAIRE

    Killeen, Maria T.

    2009-01-01

    The vascular endothelium is a dynamic cell monolayer located at the interface of the vessel wall and bloodstream, where it regulates the physiological effects of humoral and hemodynamic stimuli on vessel tone and remodelling. Hemodynamic forces are of particular interest and include shear stress, the frictional force generated by blood as it drags against the endothelium, and cyclic strain, transmural pressure due to the pulsatile nature of blood flow. Both forces can profoundly modulate vasc...

  7. Implantation of a HeartMate II left ventricular assist device via left thoracotomy.

    Science.gov (United States)

    Cho, Yang Hyun; Deo, Salil V; Schirger, John A; Pereira, Naveen L; Stulak, John M; Park, Soon J

    2012-11-01

    Left thoracotomy was used as an approach for the implantation of pulsatile ventricular assist devices. Avoiding the standard approach of median sternotomy is attractive in patients undergoing complicated redo cardiac surgery, especially with prior mediastinal radiation. We report a case of the use of left thoracotomy for the implantation of the HeartMate II axial-flow pump. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Does the Pulsatile Preservation Machine Have Any Impact in the Discard Rate of Kidneys From Older Donors After Brain Death?

    Science.gov (United States)

    Paredes-Zapata, D; Ruiz-Arranz, A; Rodriguez-Villar, C; Roque-Arda, R; Peri-Cusi, L; Saavedra-Escobar, S; Vizcaino-Elias, F; Garcia-Rodriguez, X; Bohils-Valle, M; Rodriguez-Peña, S; Quijada-Martorell, M; Gonzalez-Rodriguez, J-J; Oppenheimer-Salinas, F; Alcaraz-Asensio, A; Adalia-Bartolome, R

    2015-10-01

    Donors after brain death (DBD) older than 60 years have become 46.8% of our current activity, with higher risk of renal discard rate (RDR). Assessment of kidney suitability requires complementary strategies: macroscopic evaluation, kidney biopsy score (KBS), and renal hemodynamic evaluation with the Pulsatile Perfusion Machine (PPM). Descriptive, cross-sectional, comparative study of kidneys procured and RDR, comparing 3 time periods: 2000 to June 2004, when only KBS were used; July 2004 to 2008 (introduction of PPM and learning period); and 2009 to 2013 (experienced use of PPM). Transplantation criteria were KBS 70 mL/min. Between 2000 and 2013, a 59.2% reduction in DBD kidneys was observed. However, older kidneys had an increase from 33.5% to 46.8%. The RDR had increased, comparing the first to the third period from 25.4% to 38.3%. However, the RDR was lower when kidneys were evaluated with PPM than those evaluated only with KBS and preserved in cold storage (CS) (21.4% versus 43.7%). There was a significant difference in cold ischemia time, because CS kidney was grafted before PPM. During the third period, more kidneys with KBS ≥4 were assigned to PPM. Notwithstanding the decrease in DBD-procured kidneys and the increase in older kidneys during last period, the use of PPM allowed low DR compared with CS. A bias in the results of PPM could be generated when kidneys with higher KBS were excluded from PPM. The use of KBS only to decide acceptance could preclude the use of an additional tool to evaluate suitability. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A new construction technique for tissue-engineered heart valves using the self-assembly method.

    Science.gov (United States)

    Tremblay, Catherine; Ruel, Jean; Bourget, Jean-Michel; Laterreur, Véronique; Vallières, Karine; Tondreau, Maxime Y; Lacroix, Dan; Germain, Lucie; Auger, François A

    2014-11-01

    Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.

  10. Intracranial CSF flow on cine-MR. 2. Qualitative analysis in CSF dynamics by MR signal ratio of CSF to fat tissue in healthy subjects and patients with aqueduct stenosis

    International Nuclear Information System (INIS)

    Kadowaki, Chikafusa; Hara, Mitsuhiro; Takeuchi, Kazuo; Saito, Isamu

    1994-01-01

    Changes in MR signal intensities (SIs) of CSF and relative MR signal ratios (SRs) of intraventricular CSF to fat tissue were evaluated in 5 healthy adults on cine MR images during a cardiac cycle in a study of normal intracranial CSF dynamics. The altered patterns of MR SIs and SRs in 6 patients with aqueduct stenosis were compared with normal CSF flow patterns in a demonstration of CSF dynamics changes. MR SIs of CSF within the ventricles were measured on each cine image obtained by cardiac gated, multiframe, cine MR imaging. Chronological changes in MR SIs and SRs during a cardiac cycle were compared with the actual CSF flow visualized on real cine images. In normal CSF circulation, MR SIs of CSF within the ventricles were reduced quickly following an R-wave on ECG to 15% of the R-R interval, after which SIs fluctuated slightly. These changes in MR SIs of CSF could only be related to the pulsatile CSF flow through the foramen of Monro into the anterior part of the third ventricle during early cardiac systole. MR SRs of CSF to fat tissue fluctuated according to the actual CSF flow within the ventricles during a cardiac cycle. MR SRs in the third ventricle decreased to 20-30% of the R-R interval following the R-wave due to downward CSF flow during early cardiac systole, and decreased again from late cardiac systole to diastole due to caudal CSF flow in the third ventricle. In the fourth ventricle, MR SRs of CSF decreased to 60-80% of the R-R interval because of the CSF flow through the aqueduct during cardiac diastole. In patients with aqueduct stenosis, MR SRs of CSF within the ventricles fluctuated randomly, and the amplitude of MR SRs was also greater than in subjects with a patent aqueduct. These changes were identified as turbulence and stagnation due to obstruction in the CSF pathway. Analysis of chronological changes in MR signal ratios of CSF to fat is useful in demonstrating the pathophysiologic features of intracranial CSF dynamics. (author) 52 refs

  11. Doppler Ultrasound Detection of Preclinical Changes in Foot Arteries in Early Stage of Type 2 Diabetes

    International Nuclear Information System (INIS)

    Leoniuk, Jolanta; Łukasiewicz, Adam; Szorc, Małgorzata; Sackiewicz, Izabela; Janica, Jacek; Łebkowska, Urszula

    2014-01-01

    There are few reports regarding the changes within the vessels in the initial stage of type 2 diabetes. The aim of this study was to estimate the hemodynamic and morphological parameters in foot arteries in type 2 diabetes subjects and to compare these parameters to those obtained in a control group of healthy volunteers. Ultrasound B-mode, color Doppler and pulse wave Doppler imaging of foot arteries was conducted in 37 diabetic patients and 36 non-diabetic subjects to determine their morphological (total vascular diameter and flow lumen diameter) and functional parameters (spectral analysis). In diabetic patients, the overall vascular diameter and wall thickness were statistically significantly larger when compared to the control group in the right dorsalis pedis artery (P=0.01; P=0.001), left dorsalis pedis artery (P=0.007; P=0.006), right posterior tibial artery (P=0.005; P=0.0005), and left posterior tibial artery (P=0.007; P=0.0002). No significant differences were observed in both groups in flow lumen diameters and blood flow parameters (PSV, EDV, PI, RI). In the diabetic group, the level of HbA1c positively correlated with flow resistance index in the right dorsalis pedis artery (r=0.38; P=0.02), right posterior tibial artery (r=0.38; P=0.02) and left posterior tibial artery (r=0.42; P=0.009). The pulsatility index within the dorsalis pedis artery decreased with increased trophic skin changes (r=–0.431, P=0.009). In the diabetic group, overall artery diameters larger than and flow lumina comparable to the control group suggest vessel wall thickening occurring in the early stage of diabetes. Doppler flow parameters are comparable in both groups. In the diabetic group, the level of HbA1c positively correlated with flow resistance index and negative correlation was observed between the intensity of trophic skin changes and the pulsatility index

  12. Rectification of pulsatile stress on soft tissues: a mechanism for normal-pressure hydrocephalus

    Science.gov (United States)

    Jalikop, Shreyas; Hilgenfeldt, Sascha

    2011-11-01

    Hydrocephalus is a pathological condition of the brain that occurs when cerebrospinal fluid (CSF) accumulates excessively in the brain cavities, resulting in compression of the brain parenchyma. Counter-intuitively, normal-pressure hydrocephalus (NPH) does not show elevated pressure differences across the compressed parenchyma. We investigate the effects of nonlinear tissue mechanics and periodic driving in this system. The latter is due to the cardiac cycle, which provides significant intracranial pressure and volume flow rate fluctuations. Nonlinear rectification of the periodic driving within a model of fluid flow in poroelastic material can lead to compression or expansion of the parenchyma, and this effect does not rely on changes in the mean intracranial pressure. The rectification effects can occur gradually over several days, in agreement with clinical studies of NPH.

  13. An Integrated Simulation Tool for Modeling the Human Circulatory System

    Science.gov (United States)

    Asami, Ken'ichi; Kitamura, Tadashi

    This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.

  14. Bridge to recovery in two cases of dilated cardiomyopathy after long-term mechanical circulatory support

    OpenAIRE

    Pacholewicz, Jerzy; Zakliczy?ski, Micha?; Kowalik, Violetta; Nadziakiewicz, Pawe?; Kowalski, Oskar; Kalarus, Zbigniew; Zembala, Marian

    2014-01-01

    Ventricular assist devices (VADs) have become an established therapeutic option for patients with end-stage heart failure. Achieving the potential for recovery of native heart function using VADs is an established form of treatment in a selected group of patients with HF. We report two cases of VAD patients with different types of pump used for mechanical circulatory support, a continuous flow pump (Heart-Ware?) and a pulsatile pump (POLVAD MEV?), which allow regeneration of the native heart....

  15. Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    Directory of Open Access Journals (Sweden)

    Ettore Cassandro

    2015-01-01

    Full Text Available While pulsatile tinnitus (PT and dural arteriovenous fistula (DAVF are not rarely associated, the finding of a conductive hearing loss (CHL in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests.

  16. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  17. Lateralization effects on functional connectivity of the auditory network in patients with unilateral pulsatile tinnitus as detected by functional MRI.

    Science.gov (United States)

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Liu, Xuehuan; Ding, Heyu; Liu, Liheng; Wang, Guopeng; Xie, Jing; Zeng, Rong; Chen, Yuchen; Yang, Zhenghan; Gong, Shusheng; Wang, Zhenchang

    2018-02-02

    Unilateral pulsatile tinnitus (PT) was proved to be a kind of disease with brain functional abnormalities within and beyond the auditory network (AN). However, changes in patterns of the lateralization effects of PT are yet to be established. Relationship between the AN and other brain networks in PT patients is also a scientific question need to be answered. In this study, we recruited 23 left-sided, 23 right-sided PT (LSPT, RSPT) patients and 23 normal controls (NC). We combined applied independent component analysis and seed-based functional connectivity (FC) analysis to investigate alteration feature of the FC of the AN by using resting-state functional magnetic resonance imaging (rs-fMRI). Compared with NC, LSPT patients demonstrated disconnected FC within the AN on both sides. Disrupted network integrity between AN and several brain functional networks, including executive control network, self-perceptual network and the limbic network, was also demonstrated in LSPT patient group bilaterally. In contrast, compared with NC, RSPT demonstrated decreased FC within the AN on the left side, but significant increased FC within the AN on the right side (symptomatic side). Enhanced FC between AN and executive control network, self-perceptual network and limbic network was also found mainly on the right side in patients with RSPT. Positive FC between the auditory network and the limbic network may be a reason to explain why RSPT patients are willing to be in the clinic. Briefly, LSPT exhibit disrupted network integrity in brain functional networks. But RSPT is featured by enhanced FC within AN and between networks, especially on the right (symptomatic) side. Corroboration of featured FC helps to reveal the pathophysiological changing process of the brain in patients with PT, providing imaging-based biomarker to distinguish PT from other kind of tinnitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shariat, Masoud; Schantz, Daryl; Yoo, Shi-Joon; Wintersperger, Bernd J.; Seed, Mike; Alnafisi, Bahiyah; Chu, Leysia; MacGowan, Christopher K.; Amerom, Joshua van; Grosse-Wortmann, Lars

    2014-01-01

    systolic cine SSFP or MRA in both groups (p < 0.0001). Vessel diameters measured on systolic SSFP were significantly larger than measurements made on diastolic SSFP (p < 0.0001). There was no significant difference between vessel measurements on MRA and measurements on systolic cine SSFP (p = 0.44 for the TOF group and p = 0.79 for ARVC group). Measurements on the MRA datasets were significantly larger than those on diastolic SSFP images (p < 0.0001). Conclusion: Black blood, white blood and MRA sequences are all reproducible CMR methods for the assessment of arterial diameters in children and adolescents. Measurements from systolic phase SSFP images are comparable to those from contrast-enhanced MRA. Therefore, the administration of contrast medium is not necessary in every case. Cine SSFP images offer the additional advantage over the other methods in such that both the largest and the smallest diameter of the vessel during the cardiac cycle can be assessed using this technique. This is even more relevant in highly pulsatile circulations, such as patients with repaired TOF and significant pulmonary insufficiency

  19. Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shariat, Masoud, E-mail: masoudshariat@gmail.com [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Schantz, Daryl, E-mail: daryl.schantz@gmail.com [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Yoo, Shi-Joon, E-mail: shi-joon.yoo@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Wintersperger, Bernd J., E-mail: bernd.wintersperger@uhn.ca [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Seed, Mike, E-mail: mike.seed@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Cardiology, Hospital for Sick Children, Toronto, Ontario (Canada); Alnafisi, Bahiyah, E-mail: bahiyah.alnafisi@uhn.ca [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Chu, Leysia, E-mail: leysia_99@yahoo.com [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); MacGowan, Christopher K., E-mail: christopher.macgowan@sickkids.ca [Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Amerom, Joshua van, E-mail: Joshu.vanamerom@sickkids.ca [Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Grosse-Wortmann, Lars, E-mail: lars.grosse-wortmann@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Cardiology, Hospital for Sick Children, Toronto, Ontario (Canada)

    2014-02-15

    systolic cine SSFP or MRA in both groups (p < 0.0001). Vessel diameters measured on systolic SSFP were significantly larger than measurements made on diastolic SSFP (p < 0.0001). There was no significant difference between vessel measurements on MRA and measurements on systolic cine SSFP (p = 0.44 for the TOF group and p = 0.79 for ARVC group). Measurements on the MRA datasets were significantly larger than those on diastolic SSFP images (p < 0.0001). Conclusion: Black blood, white blood and MRA sequences are all reproducible CMR methods for the assessment of arterial diameters in children and adolescents. Measurements from systolic phase SSFP images are comparable to those from contrast-enhanced MRA. Therefore, the administration of contrast medium is not necessary in every case. Cine SSFP images offer the additional advantage over the other methods in such that both the largest and the smallest diameter of the vessel during the cardiac cycle can be assessed using this technique. This is even more relevant in highly pulsatile circulations, such as patients with repaired TOF and significant pulmonary insufficiency.

  20. New trends in combined use of gonadotropin-releasing hormone antagonists with gonadotropins or pulsatile gonadotropin-releasing hormone in ovulation induction and assisted reproductive technologies.

    Science.gov (United States)

    Gordon, K; Danforth, D R; Williams, R F; Hodgen, G D

    1992-10-01

    The use of gonadotropin-releasing hormone agonists as adjunctive therapy with gonadotropins for ovulation induction in in vitro fertilization and other assisted reproductive technologies has become common clinical practice. With the recent advent of potent gonadotropin-releasing hormone antagonists free from the marked histamine-release effects that stymied earlier compounds, an attractive alternative method may be available. We have established the feasibility of combining gonadotropin-releasing hormone antagonist-induced inhibition of endogenous gonadotropins with exogenous gonadotropin therapy for ovulation induction in a nonhuman primate model. Here, the principal benefits to be gained from using the gonadotropin-releasing hormone antagonist rather than the gonadotropin-releasing hormone agonist are the immediate inhibition of pituitary gonadotropin secretion without the "flare effect," which brings greater safety and convenience for patients and the medical team and saves time and money. We have also recently demonstrated the feasibility of combining gonadotropin-releasing hormone antagonist with pulsatile gonadotropin-releasing hormone therapy for the controlled restoration of gonadotropin secretion and gonadal steroidogenesis culminating in apparently normal (singleton) ovulatory cycles. This is feasible only with gonadotropin-releasing hormone antagonists because, unlike gonadotropin-releasing hormone agonists, they achieve control of the pituitary-ovarian axis without down regulation of the gonadotropin-releasing hormone receptor system. This capacity to override gonadotropin-releasing hormone antagonist-induced suppression of pituitary-ovarian function may allow new treatment modalities to be employed for women who suffer from chronic hyperandrogenemia with polycystic ovarian disease.

  1. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  2. The Effect of Hemodynamics on Cerebral Aneurysm Morphology

    Science.gov (United States)

    Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles

    2004-11-01

    One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.

  3. Topics in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....

  4. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    Science.gov (United States)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  5. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.

    Science.gov (United States)

    Shiko, G; Gladden, L F; Sederman, A J; Connolly, P C; Butler, J M

    2011-03-01

    We present a detailed study of hydrodynamics inside the flow-through dissolution apparatus when operated according to USP recommendations. The pulsatile flow inside the flow-through cell was measured quantitatively using magnetic resonance imaging (MRI) at a spatial resolution of 234 × 234 μm(2) and slice thickness of 1 mm. We report the experimental protocols developed for in situ MRI studies and the effect that the operating conditions and tablet orientation have on the hydrodynamics inside commercial flow cells. It was found that the flow field inside the dissolution cells was, at most operating conditions, heterogeneous, rather than fully developed laminar flow, and characterised by re-circulation and backward flow. A model tablet was shown to be contacted by a wide distribution of local velocities as a function of position and orientation in the flow cell. The use of 1 mm beads acted as a distributor of the flow but did not suffice to ensure a fully developed laminar flow profile. These results emphasise the necessity to understand the influence of test conditions on dissolution behaviour in defining robust flow-through dissolution methods. Copyright © 2010 Wiley-Liss, Inc.

  6. An agent-based model of leukocyte transendothelial migration during atherogenesis.

    Directory of Open Access Journals (Sweden)

    Rita Bhui

    2017-05-01

    Full Text Available A vast amount of work has been dedicated to the effects of hemodynamics and cytokines on leukocyte adhesion and trans-endothelial migration (TEM and subsequent accumulation of leukocyte-derived foam cells in the artery wall. However, a comprehensive mechanobiological model to capture these spatiotemporal events and predict the growth and remodeling of an atherosclerotic artery is still lacking. Here, we present a multiscale model of leukocyte TEM and plaque evolution in the left anterior descending (LAD coronary artery. The approach integrates cellular behaviors via agent-based modeling (ABM and hemodynamic effects via computational fluid dynamics (CFD. In this computational framework, the ABM implements the diffusion kinetics of key biological proteins, namely Low Density Lipoprotein (LDL, Tissue Necrosis Factor alpha (TNF-α, Interlukin-10 (IL-10 and Interlukin-1 beta (IL-1β, to predict chemotactic driven leukocyte migration into and within the artery wall. The ABM also considers wall shear stress (WSS dependent leukocyte TEM and compensatory arterial remodeling obeying Glagov's phenomenon. Interestingly, using fully developed steady blood flow does not result in a representative number of leukocyte TEM as compared to pulsatile flow, whereas passing WSS at peak systole of the pulsatile flow waveform does. Moreover, using the model, we have found leukocyte TEM increases monotonically with decreases in luminal volume. At critical plaque shapes the WSS changes rapidly resulting in sudden increases in leukocyte TEM suggesting lumen volumes that will give rise to rapid plaque growth rates if left untreated. Overall this multi-scale and multi-physics approach appropriately captures and integrates the spatiotemporal events occurring at the cellular level in order to predict leukocyte transmigration and plaque evolution.

  7. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Danilouchkine, M G; Mastik, F; Steen, A F W van der [Department of Biomedical Engineering, Erasmus Medical Center, Ee2302, PO Box 2040, 3000 CA, Rotterdam (Netherlands)], E-mail: m.danilouchkine@ErasmusMC.nl, E-mail: f.mastik@ErasmusMC.nl, E-mail: a.vandersteen@ErasmusMC.nl

    2009-03-21

    This paper describes a novel method for estimating tissue motion in two-dimensional intravascular ultrasound (IVUS) images of a coronary artery. It is based on the classical Lukas-Kanade (LK) algorithm for optical flow (OF). The OF vector field quantifies the amount of misalignment between two consecutive frames in a sequence of images. From the theoretical standpoint, two fundamental improvements are proposed in this paper. First, using a simplified representation of the vessel wall as a medium with randomly distributed scatterers, it was shown that the OF equation satisfies the integral brightness conservation law. Second, a scale-space embedding for the OF equation was derived under the assumption of spatial consistency in IVUS acquisitions. The spatial coherence is equivalent to a locally affine motion model. The latter effectively captures and appropriately describes a complex deformation pattern of the coronary vessel wall under the varying physiological conditions (i.e. pulsatile blood pressure). The accuracy of OF tracking was estimated on the tissue-mimicking phantoms subjected to the controlled amount of angular deviation. Moreover, the performance of the classical LK and proposed approach was compared using the simulated IVUS images with an atherosclerotic lesion. The experimental results showed robust and reliable performance of up to 5{sup 0} of rotation, which is within the plausible range of circumferential displacement of the coronary arteries. Subsequently, the algorithm was used to analyze vessel wall motion in 18 IVUS pullbacks from 16 patients. The in vivo experiments revealed that the motion of coronary arteries is primarily determined by the cardiac contraction.

  8. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hyperdynamic circulatory changes in liver cirrhosis: Comparative evaluation by doppler ultrasonography with normal subjects

    International Nuclear Information System (INIS)

    Im, Dae Wook; Baik, Soon Koo; Suh, Jung In; Kim, Jae Woo; Park, Yong Soon; Kim, Hyun Soo; Lee, Dong Ki; Kwon, Sang Ok

    2001-01-01

    To evaluate the cardiovascular and splanchnic hemodynamic changes in patients with liver cirrhosis and to compare with those of the normal controls using doppler ultrasonography. A total of 129 patients including 23 of Child-Pugh class A, 24 of class A, 24 of class B, 30 of class C, and 52 of the control group were included. Cardiac output (CO), systemic vascular resistance index (SVRI), and blood flow and pulsatility index (PI) of the superior mesenteric artery (SMA) were evaluated and compared among each groups. CO and SMA blood flow in the cirrhotic group were significantly higher than those in the control group, and the increase in CO and SMA blood flow showed a statistically significant correlation with the degree of liver dysfunction (p 2 =0.230). Hyperdynamic circulatory changes such as increases in CO and splanchnic blood flow were present in patients with liver cirrhosis. These changes may contribute to the development and maintenance of the portal hypertension due to an increase in portal blood flow an increase in portal blood flow.

  10. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  11. Effect of short-term scrotal hyperthermia on spermatological parameters, testicular blood flow and gonadal tissue in dogs.

    Science.gov (United States)

    Henning, H; Masal, C; Herr, A; Wolf, K; Urhausen, C; Beineke, A; Beyerbach, M; Kramer, S; Günzel-Apel, A-R

    2014-02-01

    The objective was to assess the effect of a short-term scrotal hyperthermia in dogs on quantitative and qualitative ejaculate parameters, testicular blood flow and testicular and epididymal histology. After a control period, the scrotum of seven normospermic adult beagle dogs was insulated with a self-made suspensory for 48 h. Nine weeks later, two animals were castrated, while in five animals, scrotal hyperthermia was repeated. Dogs were castrated either 10 or 40 days thereafter. In each phase of scrotal insulation, average scrotal surface temperature increased by 3.0°C. Semen was collected twice weekly throughout the experiment. Total sperm count did not change after the first hyperthermia, but it slightly decreased after the second (p sperm morphology and velocity parameters (CASA) rather indicated subtle physiological variations in sperm quality than effects of a local heat stress. Chromatin stability of ejaculated spermatozoa as indicated by SCSA remained constant throughout the experiment. Perfusion characteristics of the gonads, that is, systolic peak velocity, pulsatility and resistance index at the marginal location of the testicular artery, did not change due to hyperthermia (p > 0.05). Histological examination of excised testes and epididymides for apoptotic (TUNEL and activated caspase-3) and proliferating cells (Ki-67 antigen) indicated only marginal effects of scrotal insulation on tissue morphology. In conclusion, a mild short-term scrotal hyperthermia in dogs does not cause substantial changes in sperm quantity and quality. In contrast to other species, canine testes and epididymides may have a higher competence to compensate such thermal stress. © 2013 Blackwell Verlag GmbH.

  12. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  13. Rapid line scan MR angiography

    International Nuclear Information System (INIS)

    Frahm, J.; Merboldt, K.D.; Hanicke, W.; Bruhn, H.

    1987-01-01

    Direct MR angiography may be performed using line scan imaging techniques combined with presaturation of stationary spins. Thus, a single line scan echo yields a projection of vessels due to the signal from reflowing unsaturated spins. Reconstruction of an angiographic image is performed line by line at slightly incremented positions. In particular, line scan angiography is direct and fast without a sensitivity to artifacts even for high flow rates. Image resolution and field of view may be chosen without restrictions, and zoom images using enhanced gradients may be recorded without aliasing artifacts. The method is robust with respect to eddy currents and pulsatile flow. Line scan MR angiograms of phantoms, animals, and human volunteers have been recorded using 90 0 radio frequency pulses and gradient-recalled echoes

  14. Future Prospects for the Total Artificial Heart.

    Science.gov (United States)

    Sunagawa, Gengo; Horvath, David J; Karimov, Jamshid H; Moazami, Nader; Fukamachi, Kiyotaka

    2016-01-01

    A total artificial heart (TAH) is the sole remaining option for patients with biventricular failure who cannot be rescued by left ventricular assist devices (LVADs) alone. However, the pulsatile TAH in clinical use today has limitations: large pump size, unknown durability, required complex anticoagulation regimen, and association with significant postsurgical complications. That pump is noisy; its large pneumatic driving lines traverse the body, with bulky external components for its drivers. Continuous-flow pumps, which caused a paradigm shift in the LVAD field, have already contributed to the rapidly evolving development of TAHs. Novel continuous-flow TAHs are only in preclinical testing or developmental stages. We here review the current state of TAHs, with recommended requirements for the TAH of the future.

  15. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  16. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    Science.gov (United States)

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous

  17. Inversion of the radionuclide regurgitant index in right-sided valvular regurgitation

    Energy Technology Data Exchange (ETDEWEB)

    Novack, H.; Machac, J.; Horowitz, S.F.

    1985-11-01

    Estimation of left-sided valvular insufficiency has been obtained using the ratio of left- to right-ventricular stroke counts, i.e., the regurgitant index. The present study was designed to evaluate the usefulness of the regurgitant index in identifying patients with isolated right-sided valvular insufficiency. We identified 12 patients with tricuspid or pulmonic regurgitation by at least two of the following criteria: (1) pulsatile liver, (2) positive Carvallo's sign, and (3) pulsatile jugular-venous distension. In 9 of the 12 patients, the right-sided insufficiency was confirmed by catheterization or contrast echocardiography and flow-directed pulsed-echo Doppler. The regurgitant index in patients with right-sided insufficiency was 0.59 +- 0.23. This was significantly different from patients with left-sided insufficiency (3.09 +- 0.8) and from control subjects (1.49 +- 0.32). In 11 of the 12 patients with right-sided regurgitant lesions, the regurgitant index was less than 1.0. The hepatic expansion fraction, a possible correlate of an expansile liver, has previously been found to be both sensitive and specific for the detection of patients with right-sided regurgitation. We calculated the hepatic expansion fraction in 6 patients with tricuspid regurgitation (including 3 with pulsatile livers) and 5 controls using the method of Handler et al.. In the present study, the hepatic expansion fraction in tricuspid-insufficiency patients was 4.3% as compared to 4.1% in normals (P=NS). In summary, this study suggests that the regurgitant index may be a sensitive tool for the diagnosis of right-sided regurgitant lesions, while the hepatic expansion fraction does not appear to be useful for identifying tricuspid insufficiency.

  18. Inversion of the radionuclide regurgitant index in right-sided valvular regurgitation

    International Nuclear Information System (INIS)

    Novack, H.; Machac, J.; Horowitz, S.F.; Mount Sinai Medical Center, New York

    1985-01-01

    Estimation of left-sided valvular insufficiency has been obtained using the ratio of left- to right-ventricular stroke counts, i.e., the regurgitant index. The present study was designed to evaluate the usefulness of the regurgitant index in identifying patients with isolated right-sided valvular insufficiency. We identified 12 patients with tricuspid or pulmonic regurgitation by at least two of the following criteria: (1) pulsatile liver, (2) positive Carvallo's sign, and (3) pulsatile jugular-venous distension. In 9 of the 12 patients, the right-sided insufficiency was confirmed by catheterization or contrast echocardiography and flow-directed pulsed-echo Doppler. The regurgitant index in patients with right-sided insufficiency was 0.59+-0.23. This was significantly different from patients with left-sided insufficiency (3.09+-0.8; P<0.001) and from control subjects (1.49+-0.32; P<0.001). In 11 of the 12 patients with right-sided regurgitant lesions, the regurgitant index was less than 1.0. The hepatic expansion fraction, a possible correlate of an expansile liver, has previously been found to be both sensitive and specific for the detection of patients with right-sided regurgitation. We calculated the hepatic expansion fraction in 6 patients with tricuspid regurgitation (including 3 with pulsatile livers) and 5 controls using the method of Handler et al.. In the present study, the hepatic expansion fraction in tricuspid-insufficiency patients was 4.3% as compared to 4.1% in normals (P=NS). In summary, this study suggests that the regurgitant index may be a sensitive tool for the diagnosis of right-sided regurgitant lesions, while the hepatic expansion fraction does not appear to be useful for identifying tricuspid insufficiency. (orig.)

  19. The fluid transport in inkjet-printed liquid rivulets

    Science.gov (United States)

    Singler, Timothy; Liu, Liang; Sun, Xiaoze; Pei, Yunheng; Microfluidic; Interfacial Transport Lab Team

    2017-11-01

    Inkjet printing holds significant potential for the controlled deposition of solution-processed functional materials spanning applications from microelectronics to biomedical sciences. Although theoretical and experimental investigations addressing the stability criteria of the inkjet-printed liquid rivulets have been discussed in the literature, the associated transport phenomena have received little attention. This study focuses on the experimental investigation of printed rivulets, stable with respect to Rayleigh-Plateau, but exhibiting bulge instability. The morphological evolution and the depth-resolved flow field of the rivulets were assessed via high-speed imaging in conjunction with micro-PIV. We discuss in detail effects of repetitive wave motion induced by periodic drop impact at the leading edge and the associated pulsatile flow, as well as the persistent nonuniform mass distribution in the ridge region of the rivulet. The results provide an experimental foundation for more detailed theoretical modelling of printed rivulet flows.

  20. Implantable Cardioverter-Defibrillators in Patients With a Continuous-Flow Left Ventricular Assist Device: An Analysis of the INTERMACS Registry.

    Science.gov (United States)

    Clerkin, Kevin J; Topkara, Veli K; Demmer, Ryan T; Dizon, Jose M; Yuzefpolskaya, Melana; Fried, Justin A; Mai, Xingchen; Mancini, Donna M; Takeda, Koji; Takayama, Hiroo; Naka, Yoshifumi; Colombo, Paolo C; Garan, A Reshad

    2017-12-01

    This study sought to determine if the presence of implantable cardioverter-defibrillators (ICD) provided a mortality benefit during continuous-flow left ventricular assist device (LVAD) support. An ICD decreases mortality in selected patients with advanced heart failure and have been associated with reduced mortality in patients with pulsatile LVAD. However, it is unclear whether that benefit extends to patients with a contemporary continuous-flow LVAD. Propensity score matching was used to generate a cohort of patients with similar baseline characteristics. The primary outcome was freedom from death during LVAD support. Secondary endpoints included freedom from unexpected death, likelihood of transplantation and recovery, and adverse events. Among 16,384 eligible patients in the Interagency Registry for Mechanically Assisted Circulatory Support registry, 2,209 patients with an ICD and 2,209 patients without one had similar propensity scores and were included. The presence of an ICD was associated with an increased mortality risk (hazard ratio: 1.20; 95% confidence interval [CI]: 1.04 to 1.39; p = 0.013) and an increased risk of unexpected death during device support (HR: 1.33; 95% CI: 1.03 to 1.71; p = 0.03). Patients with an ICD were more likely to undergo transplantation (HR: 1.16; 95% CI: 0.99 to 1.35; p = 0.06) and less likely to have LVAD explant for recovery (HR: 0.53, 95% CI: 0.29 to 0.98; p = 0.04). Patients with an ICD had a higher rate of treated ventricular arrhythmias (rate ratio: 1.27; 95% CI: 1.10 to 1.48; p = 0.001) and rehospitalization (rate ratio: 1.08; 95% CI: 1.04 to 1.12; p < 0.0001), but rates of hemorrhagic stroke were similar (rate ratio: 1.01; 95% CI: 0.81 to 1.26; p = 0.98). Among patients with a continuous flow LVAD, the presence of an ICD was not associated with reduced mortality. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.