WorldWideScience

Sample records for pulsatile flow conditions

  1. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  2. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    Science.gov (United States)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  3. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    Science.gov (United States)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  4. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    Science.gov (United States)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  5. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  6. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  7. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  8. Pulsatile pipe flow transition: Flow waveform effects

    Science.gov (United States)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  9. Pulsatile flow in ventricular catheters for hydrocephalus

    Science.gov (United States)

    Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.

    2017-05-01

    The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  10. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  11. AN OVERVIEW ON PULSATILE FLOW DYNAMICS

    OpenAIRE

    Çarpinlioğlu, Melda Özdinç

    2015-01-01

    Pulsatile flow dynamics in reference to the relevant experimental research on the manner between the time periods of 1997- 2015 is presented in this paper. The flow field under discussion is generated through a rigid circular cross-sectional pipe as an axial slightly- compressible and sinusoidal one in a controlled range of the oscillation parameters. Laminar and turbulent flow regimes are considered with a particular emphasis devoted to the transitional characteristics of laminar pulsatile f...

  12. 21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow generator is an electrically and pneumatically operated device used to create pulsatile blood flow. The...

  13. Investigation of the pulsatile pipe flow

    Czech Academy of Sciences Publication Activity Database

    Adamec, J.; Nožička, J.; Kořenář, Josef

    2000-01-01

    Roč. 18, č. 2 (2000), s. 17-22 ISSN 0392-8764 Institutional research plan: CEZ:AV0Z2060917 Keywords : pulsatile flow * laminar-turbulent transition * reynolds normal stress Subject RIV: BK - Fluid Dynamics

  14. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  15. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  16. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  17. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  19. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  20. Effect of Acute Resistance Exercise on Carotid Artery Stiffness and Cerebral Blood Flow Pulsatility

    Directory of Open Access Journals (Sweden)

    Wesley K Lefferts

    2014-03-01

    Full Text Available Arterial stiffness is associated with cerebral flow pulsatility. Arterial stiffness increases following acute resistance exercise (RE. Whether this acute RE-induced vascular stiffening affects cerebral pulsatility remains unknown. Purpose: To investigate the effects of acute RE on common carotid artery (CCA stiffness and cerebral blood flow velocity (CBFv pulsatility. Methods: Eighteen healthy men (22 ± 1 yr; 23.7 ± 0.5 kg∙m-2 underwent acute RE (5 sets, 5-RM bench press, 5 sets 10-RM bicep curls with 90 s rest intervals or a time control condition (seated rest in a randomized order. CCA stiffness (β-stiffness, Elastic Modulus (Ep and hemodynamics (pulsatility index, forward wave intensity and reflected wave intensity were assessed using a combination of Doppler ultrasound, wave intensity analysis and applanation tonometry at baseline and 3 times post-RE. CBFv pulsatility index was measured with transcranial Doppler at the middle cerebral artery (MCA. Results: CCA β-stiffness, Ep and CCA pulse pressure significantly increased post-RE and remained elevated throughout post-testing (p 0.05. There were significant increases in forward wave intensity post-RE (p0.05. Conclusion: Although acute RE increases CCA stiffness and pressure pulsatility, it may not affect CCA or MCA flow pulsatility. Increases in pressure pulsatility may be due to increased forward wave intensity and not pressure from wave reflections.

  1. Arduino control of a pulsatile flow rig.

    Science.gov (United States)

    Drost, S; de Kruif, B J; Newport, D

    2018-01-01

    This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-09-15

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  3. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    International Nuclear Information System (INIS)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.

    2009-01-01

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  4. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  5. Preliminary design of the internal geometry in a minimally invasive left ventricular assist device under pulsatile-flow conditions.

    Science.gov (United States)

    Smith, P Alex; Wang, Yaxin; Metcalfe, Ralph W; Sampaio, Luiz C; Timms, Daniel L; Cohn, William E; Frazier, O H

    2018-03-01

    A minimally invasive, partial-assist, intra-atrial blood pump has been proposed, which would unload the left ventricle with a flow path from the left atrium to the arterial system. Flow modulation is a common strategy for ensuring washout in the pump, but it can increase power consumption because it is typically achieved through motor-speed variation. However, if a pump's performance curve had the proper gradient, flow modulation could be realized passively. To achieve this goal, we propose a pump performance operating curve as an alternative to the more standard operating point. Mean-line theory was employed to generate an initial set of geometries that were then tested on a hydraulic test rig at ~20,000 r/min. Experimental results show that the intra-atrial blood pump performed below the operating region; however, it was determined that smaller hub diameter and longer chord length bring the performance of the intra-atrial blood pump device closer to the operating curve. We found that it is possible to shape the pump performance curve for specifically targeted gradients over the operating region through geometric variations inside the pump.

  6. Observation of the CSF pulsatile flow on MRI, (2)

    International Nuclear Information System (INIS)

    Ohara, Shigeki; Nagai, Hajime; Suzuka, Tomonao; Matsumoto, Takashi; Banno, Tatsuo

    1988-01-01

    In a retrospective study of the MR images of 289 neurosurgical patients, a loss of the signal intensity (the signal-void phenomenon =SVP) of the cerebrospinal fluid in the mesencephalic aqueduct was observed in 77 patients. The CSF in the cranial cavity flows toward the spinal sac in a to-and-fro manner in response to the pulsations of the brain. Because the intracranial compliance is lower than the intraspinal compliance, the systolic expansions and diastolic reductions in the brain volume are buffered by the spinal cavity via this to-and-fro flow of CSF. The SVP reflects the CSF pulsatile flow forced out of the intracranial space into the intraspinal space by the brain's pulsations. Intracranial abnormalities can be divided into two categories according to the craniospinal compliance (CC): normal CC (communicating hydrocephalus) and decreased CC (supratentorial tumor). We may expect those conditions which increase compliance to increase the CSF flow and yield a more prominent SVP. Conversely, conditions which decrease compliance may be expected to decrease the flow and extinguish the SVP. Both the brain's pulsations and the compliance of the craniospinal cavity are closely related to the presence of the SVP in CSF, as revealed by MRI. The SVP in CSF may reflect the pressure-buffering capacity of the cranio-spinal cavity. If further investigation supports our hypothesis, it may be possible to estimate the intracranial pressure noninvasively. (author)

  7. Experimental Investigation of Pulsatile Flow in Circular Tubes

    Czech Academy of Sciences Publication Activity Database

    Adamec, J.; Nožička, J.; Hanus, D.; Kořenář, Josef

    2001-01-01

    Roč. 17, č. 5 (2001), s. 1133-1136 ISSN 0748-4658 Institutional research plan: CEZ:AV0Z2060917 Keywords : pulsatile flow * laminar-turbulent transition * reynolds normal stress Subject RIV: BK - Fluid Dynamics Impact factor: 0.418, year: 2001

  8. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    Leaback of Pulsatile Flow of Particle Fluid Suspension Model of Blood Under Periodic Body Acceleration. ... The variation in body acceleration amplitude though affects the velocity profile in the capillary tubes, it has no effect on the leakback in the tubes. Leakback is mainly determined by the balance of the viscous drag and ...

  9. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  10. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    Science.gov (United States)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  11. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    International Nuclear Information System (INIS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik

    2011-01-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  12. Experimental study on quantitative evaluation of slow pulsatile flow of CSF with cine MRI

    International Nuclear Information System (INIS)

    Matsuda, Masao

    1991-01-01

    The present study was designed to evaluate the slow pulsatile flow of cerebrospinal fluid (CSF) quantitatively with cine MRI in phantom experiment for the clinical application. The flow phantom was constructed from a plastic tube with a narrow channel to represent the central aqueduct. The phantom was filled with water to represent the CSF. The second tube filled with stationary water was positioned beside the flow phantom and acted as a control for no-flow signal strength. The ratio of signal intensity in regions of interest for the flow phantom and the control was measured. Not only the actual velocity curve of the flowing water through the phantom but also the temporal profile of signal intensity showed two main peaks with other small peaks in one cycle. This suggested a close relationship between signal intensity of cine MRI and flow velocity. A significant correlation between the signal intensity ratio and the velocity was obtained on cine MRI pulse sequences. Cine MRI was thus found to have the ability to give quantitative information about slow pulsatile flow. The most suitable pulse sequence was fast imaging with steady state free precession pulse sequence at the flip angle between 50 and 90 degrees. This preliminary study suggests that the slow pulsatile flow of CSF passing along the aqueduct can be visualized and measured. Thus, the sequence proposed has a potential for the investigation of normal and disturbed CSF circulation and the mapping of the flow pattern in different pathological conditions. (N.K.)

  13. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  14. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility.

    Science.gov (United States)

    Ng, Boon C; Kleinheyer, Matthias; Smith, Peter A; Timms, Daniel; Cohn, William E; Lim, Einly

    2018-01-01

    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9-15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states.

  15. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    Science.gov (United States)

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  16. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    Science.gov (United States)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  17. Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study

    Science.gov (United States)

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-01-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257

  18. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    Science.gov (United States)

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  19. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  20. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.

    Science.gov (United States)

    Le, Trung B; Borazjani, Iman; Sotiropoulos, Fotis

    2010-11-01

    High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.

  1. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    Science.gov (United States)

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  2. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    Science.gov (United States)

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  3. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  4. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, Anders

    2012-07-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  5. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    International Nuclear Information System (INIS)

    Waahlin, Anders

    2012-01-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  6. Transition to turbulence in pulsatile flow through heart valves--a modified stability approach.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1994-11-01

    The presence of turbulence in the cardiovascular system is generally an indication of some type of abnormality. Most cardiologists agree that turbulence near a valve indicates either valvular stenosis or regurgitation, depending on the phase of its occurrence during the cardiac cycle. As no satisfying analytical solutions of the stability of turbulent pulsatile flow exist, accurate, unbiased flow stability criteria are needed for the identification of turbulence initiation. The traditional approach uses a stability diagram based upon the stability of a plane Stokes layer where alpha (the Womersley parameter) is defined by the fundamental heart rate. We suggest a modified approach that involves the decomposition of alpha into its frequency components, where alpha is derived from the preferred modes induced on the flow by interaction between flow pulsation and the valve. Transition to turbulence in pulsatile flow through heart values was investigated in a pulse duplicator system using three polymer aortic valve models representing a normal aortic valve, a 65 percent stenosed valve and a 90 percent severely stenosed valve, and two mitral valve models representing a normal mitral valve and a 65 percent stenosed valve. Valve characteristics were closely simulated as to mimic the conditions that alter flow stability and initiate turbulent flow conditions. Valvular velocity waveforms were measured by laser Doppler anemometry (LDA). Spectral analysis was performed on velocity signals at selected spatial and temporal points to produce the power density spectra, in which the preferred frequency modes were identified. The spectra obtained during the rapid closure stage of the valves were found to be governed by the stenosis geometry. A shift toward higher dominant frequencies was correlated with the severity of the stenosis. According to the modified approach, stability of the flow is represented by a cluster of points, each corresponding to a specific dominant mode apparent

  7. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation

  8. A study of the pulsatile flow and its interaction with rectangular leaflets

    Science.gov (United States)

    Ledesma, Rene; Zenit, Roberto; Pulos, Guillermo

    2009-11-01

    To avoid the complexity and limited understanding of the 3D pulsatile flow field through heart valves, a cardiac-like flow circuit and a test channel were designed to study the behavior of bidimensional leaflets made of hyperelastic materials. We study a simple 2D arrangement to understand the basic physics of the flow-leaflet interaction. Creating a periodic pressure gradient, measurements of leaflet deflection were obtained for different flow conditions, geometries and materials. Using PIV and Phase Locking techniques, we have obtained the leaflet motion and the time-dependent flow velocity fields. The results show that two dimensionless parameters determine the performance of a simple bi-dimensional valve, in accordance with the flow conditions applied: π1=f(sw)^1/2(E/ρ)^1/2 and π2=V/(2slw), where f is the pulsation frequency, V is the stroke volume, s, w and l are the dimensions on the leaftlet and E and ρ are the elastic modulus and density of the material, respectively. Furthermore, we have identified the conditions for which the fluid stresses can be minimized. With these results we propose a new set of parameters to improve the performance of prosthetic heart valves and, in consequence, to reduce blood damage.

  9. Observation of the CSF pulsatile flow in the aqueduct using cine MRI with presaturation bolus tracking, 3

    International Nuclear Information System (INIS)

    Nakajima, Satoshi

    1992-01-01

    The to-and-fro motion patterns of the CSF flow in the aqueduct in ten normal adults, ten patients with secondary normal-pressure hydrocephalus (NPH), and fourteen patients with idiopathic ventriculomegaly were analyzed using cine MRI with presaturation bolus tracking. The to-and-fro motion patterns of the CSF flow in the aqueduct were thus classified into four types according to their maximum velocity and the relative time duration of their flow in the rostral and caudal directions. The correlation between the clinical symptoms, the CT findings, the RI-cisternography findings, the results of the ICP monitorings, and the CSF pulsatile-flow patterns were then analyzed. In secondary NPH disclosing frequent B waves on ICP monitoring, the maximum velocity of the CSF flow in the aqueduct was over 15 mm/sec, and the duration of the CSF flow was longer in the caudal direction than in the rostral direction. Furthermore, the faster the maximum velocity of the CSF flow, the larger the ventricular size on CT and the more severe the CSF malabsorption on cisternography. In idiopathic ventriculomegaly, only two cases demonstrated the same CSF flow pattern as was shown in secondary NPH; the other cases demonstrated other CSF flow patterns, which were considered to indicate hydrocephalus ex vacuo or arrested hydrocephalus. The CSF pulsatile-flow pattern was assumed to change according to the degree of the CSF circulatory disorder, its compensatory process, and the plasticity of the brain. The investigation of the CSF pulsatile flow gives important information for the evaluation of various hydrocephalic conditions. (author)

  10. Augmentative effect of pulsatility on the wall shear stress in tube flow.

    Science.gov (United States)

    Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K

    1999-08-01

    Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.

  11. Assessment of turbulence models for pulsatile flow inside a heart pump.

    Science.gov (United States)

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2016-02-01

    Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with

  12. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    Science.gov (United States)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  13. Precise position control of a helical magnetic robot in pulsatile flow using the rotating frequency of the external magnetic field

    Directory of Open Access Journals (Sweden)

    Jongyul Kim

    2017-05-01

    Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.

  14. A pulsatile flow model for in vitro quantitative evaluation of prosthetic valve regurgitation

    Directory of Open Access Journals (Sweden)

    S. Giuliatti

    2000-03-01

    Full Text Available A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.

  15. Computational model on pulsatile flow of blood through a tapered ...

    Indian Academy of Sciences (India)

    S PRIYADHARSHINI

    2017-11-02

    Nov 2, 2017 ... It is pertinent to note that the magnitudes of flow resistance are higher in the case of ... mathematical model on non-Newtonian flow of blood through a ..... The important predictions of the present investigation are enumerating the .... drug carriers for targeted drug delivery, reducing blood flow at the time of ...

  16. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system

    NARCIS (Netherlands)

    Bozkurt, S.; van de Vosse, F.N.; Rutten, M.C.M.

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase

  17. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  18. The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting

    Directory of Open Access Journals (Sweden)

    Kang Woog Lee

    2018-01-01

    Full Text Available Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines regarding a small-sized artificial vessel in the field of tissue engineering.

  19. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    International Nuclear Information System (INIS)

    Shit, G.C.; Majee, Sreeparna

    2015-01-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field

  20. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  1. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.

    Science.gov (United States)

    Xu, Liang; Yang, Ming; Ye, Lin; Dong, Zhaopeng

    2015-01-01

    Hemocompatibility is highly affected by the flow field in Left Ventricular Assistant Devices (LVAD). An asymmetric inflow and outflow channel arrangement with a 45° intersection angle with respect to the blood chamber is proposed to approximate the vascular structure of the aorta and left atrium on the left ventricle. The structure is expected to develop uninterruptible vortex flow state which is similar to the flow state in human left ventricle. The Computational Fluid Dynamics (CFD) asymmetric model is simulated using ANSYS workbench. To validate the velocity field calculated by CFD, a Particle Image Velocimetry (PIV) experiment is conducted. The CFD results show that the proposed blood chamber could generate a shifting vortex flow that would be redirected to the aorta during ejection to form a persistent recirculating flow state, which is similar to the echocardiographic flow state in left ventricle. Both the PIV and the CFD results show the development of a persistent vortex during the pulsatile period. Comparison of the qualitative flow pattern and quantitative probed velocity histories in a pulsatile period shows a good agreement between the CFD and PIV data. The goal of developing persistent quasi intra-ventricle vortex flow state in LVAD is realized.

  2. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  3. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2012-01-01

    range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last

  4. On heat transfer to pulsatile flow of a two-phase fluid

    Directory of Open Access Journals (Sweden)

    S. P. Chakraborty

    2005-09-01

    Full Text Available The problem of heat transfer to pulsatile flow of a two-phase fluid-particle system contained in a channel bounded by two infinitely long rigid impervious parallel walls has been studied in this paper. The solutions for the steady and the fluctuating temperature distributions are obtained. The rates of heat transfer at the walls are also calculated. The results are discussed numerically with graphical presentations. It is shown that the presence of the particles not only diminishes the steady and unsteady temperature fields but also decreases the reversal of heat flux at the hotter wall irrespective of the influences of other flow parameters.

  5. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    Science.gov (United States)

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  6. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  7. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  8. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    International Nuclear Information System (INIS)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun

    2016-01-01

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  9. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  10. Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.

    Science.gov (United States)

    Zierenberg, Jennifer R.

    2005-11-01

    The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship

  11. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    Science.gov (United States)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  12. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    OpenAIRE

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV...

  13. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    Science.gov (United States)

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    Science.gov (United States)

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, Pwave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, Pwave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, Pwave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, Pwave

  15. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.

    Science.gov (United States)

    Lozowy, Richard J; Kuhn, David C S; Ducas, Annie A; Boyd, April J

    2017-03-01

    Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.

  16. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    Science.gov (United States)

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  18. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  19. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-01-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R 2 = 0.982) and a mean absolute error (e) of 0.323 L min −1 , while for head, R 2 = 0.933 and e = 7.682 mmHg were obtained. R 2 = 0.849 and e = 0.584 L min −1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  20. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect.

    Science.gov (United States)

    Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H

    2017-01-01

    Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.

  1. INFLUENCE OF PULSATILE FLOW ON THE BEHAVIOR OF HUMAN FIBROBLASTS ADHERED TO GLASS

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1993-01-01

    In the human body, cells contacting biomaterials surfaces are frequently exposed to pulsatile shear stresses, e.g. blood vessel prostheses. Most studies involving shear, however, try to achieve a steady, pulse-free shear stress in studying cell-biomaterial interactions. In this study, human

  2. Flow visualization of three-dimensionality inside the 12 cc Penn State pulsatile pediatric ventricular assist device.

    Science.gov (United States)

    Roszelle, Breigh N; Deutsch, Steven; Manning, Keefe B

    2010-02-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps.

  3. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Hyacinthe, Jean-Noël; Van De Ville, Dimitri; Richiardi, Jonas

    2013-01-01

    Human bone blood flow, mean blood speed and the number of moving red blood cells were assessed (in arbitrary units), as a function of time, during one cardiac cycle. The measurements were obtained non-invasively on five volunteers by laser-Doppler flowmetry at large interoptode spacing. The investigated bones included: patella, clavicle, tibial diaphysis and tibial malleolus. As hypothesized, we found that in all bones the number of moving cells remains constant during cardiac cycles. Therefore, we concluded that the pulsatile nature of blood flow must be completely determined by the mean blood speed and not by changes in blood volume (vessels dilation). Based on these results, it is finally demonstrated using a mathematical model (derived from the radiative transport theory) that photoplethysmographic (PPG) pulsations observed by others in the literature, cannot be generated by oscillations in blood oxygen saturation, which is physiologically linked to blood speed. In fact, possible oxygen saturation changes during pulsations decrease the amplitude of PPG pulsations due to specific features of the PPG light source. It is shown that a variation in blood oxygen saturation of 3% may induce a negative change of ∼1% in the PPG signal. It is concluded that PPG pulsations are determined by periodic ‘positive’ changes of the reduced scattering coefficient of the tissue and/or the absorption coefficient at constant blood volume. No explicit experimental PPG measurements have been performed. As a by-product of this study, an estimation of the arterial pulse wave velocity obtained from the analysis of the blood flow pulsations give a value of 7.8 m s −1 (95% confidence interval of the sample mean distribution: [6.7, 9.5] m s −1 ), which is perfectly compatible with data in the literature. We hope that this note will contribute to a better understanding of PPG signals and to further develop the domain of the vascular physiology of human bone. (note)

  4. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  5. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  6. MR angiography of stenosis and aneurysm models in the pulsatile flow: variation with imaging parameters and concentration of contrast media

    International Nuclear Information System (INIS)

    Park, Kyung Joo; Park, Jae Hyung; Lee, Hak Jong; Won, Hyung Jin; Lee, Dong Hyuk; Min, Byung Goo; Chang, Kee Hyun

    1997-01-01

    The image quality of magnetic resonance angiography (MRA) varies according to the imaging techniques applied and the parameters affected by blood flow patterns, as well as by the shape of the blood vessels. This study was designed to assess the influence on signal intensity and its distribution of the geometry of these vessels, the imaging parameters, and the concentration of contrast media in MRA of stenosis and aneurysm models. MRA was performed in stenosis and aneurysm models made of glass tubes, using pulsatile flow with viscosity and flow profile similar to those of blood. Slice and maximum intensity projection (MIP) images were obtained using various imaging techniques and parameters;there was variation in repetition time, flip angle, imaging planes, and concentrations of contrast media. On slice images of three-dimensional (3D) time-of-flight (TOF) techniques, flow signal intensity was measured at five locations in the models, and contrast ratio was calculated as the difference between flow signal intensity (SI) and background signal intensity (SIb) divided by background signal intensity or (SI-SIb)/SIb. MIP images obtained by various techniques and using various parameters were also analyzed, with emphasis in the stenosis model on demonstrated degree of stenosis, severity of signal void and image distortion, and in the aneurysm model, on degree of visualization, distortion of contour and distribution of signals. In 3D TOF, the shortest TR (36 msec) and the largest FA (50 deg ) resulted in the highest contrast ratio, but larger flip angles did not effectively demonstrate the demonstration of the peripheral part of the aneurysm. Loss of signal was most prominent in images of the stenosis model obtained with parallel or oblique planes to the flow direction. The two-dimensional TOF technique also caused signal void in stenosis, but precisely demonstrated the aneurysm, with dense opacification of the peripheral part. The phase contrast technique showed some

  7. Numerical simulation of MHD pulsatile flow of a biofluid in a channel

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-08-01

    Full Text Available The purpose of this paper is to numerically study the interaction of an external magnetic field with the flow of a biofluid through a Darcy-Forchhmeir porous channel, due to an oscillatory pressure gradient, in the presence of wall transpiration as well as chemical reaction considerations. We have noticed that if the Reynolds number of the wall transpiration flow is increased, the average (or maximum velocity of the main flow direction is raised. Similar effect has also been observed for the rheological parameter and the Darcy parameter, whereas an opposite trend has been noted for both the Forchheimer quadratic drag parameter and the magnetic parameter. Further, an increase in the Reynolds number results in straightening the concentration profile, thus making it an almost linear function of the dimensionless spatial variable.

  8. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  9. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  10. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  11. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system.

    Science.gov (United States)

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Thrombi made of lamb's blood were placed into a pulsatile flow system perfused with Hartmann's solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted.

  12. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  14. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    Science.gov (United States)

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  15. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1995-08-01

    Many problems and complications associated with heart valves are related to the dynamic behavior of the valve and the resultant unsteady flow patterns. An accurate depiction of the spatial and temporal velocity and rms distributions imparts better understanding of flow related valve complications, and may be used as a guideline in valve design. While the generalized correlation between increased turbulence level and the severity of the stenosis is well established, few studies addressed the issue of the intermittent nature of turbulence and its timing in the cardiac cycle, and almost none assessed the effect of a progressive stenosis on the flow characteristics through heart valves. In this experimental work we simulated the type of flow which is present in normal and stenosed valves and conducted a comprehensive investigation of valve hemodynamics, valvular turbulence and morphology under varying degrees of stenosis. The characteristics of valves and stenoses were simulated closely, to achieve the flow conditions that initiate turbulent flow conditions. Laser Doppler anemometry (LDA) measurements were carried out in a pulse duplicator system distal to trileaflet polyurethane prosthetic heart valves, installed at mitral and aortic positions. The effect of the degree of the stenosis was comparatively studied through the structure of the turbulent jets emerging from normal and stenotic heart valves. Maximum turbulence level was achieved during the decelerating phase and correlated to the severity of the stenosis, followed by relaminarization of the flow during the acceleration phase. The intermittent nature of the turbulence emphasized the importance of realizing the timing of the turbulence production and its spatial location for optimizing current valve designs. The plug flow through the normal aortic valve prosthesis was replaced by jet like behavior for a 65% stenosis, with the jet becoming narrower and stronger for a 90% stenosis. The morphology of the velocity

  16. Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow

    Science.gov (United States)

    Nagaoka, Ryo; Iwasaki, Ryosuke; Arakawa, Mototaka; Kobayashi, Kazuto; Yoshizawa, Shin; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2015-07-01

    We proposed an estimation method for a tissue stiffness from deformations induced by arterial pulsation, and named this proposed method intrinsic elastography (IE). In IE, assuming that the velocity of the deformation propagation in tissues is closely related to the stiffness, the propagation velocity (PV) was estimated by spatial compound ultrasound imaging with a high temporal resolution of 1 ms. However, the relationship between tissue stiffness and PV has not been revealed yet. In this study, the PV of the deformation induced by the pulsatile pump was measured by IE in three different poly(vinyl alcohol) (PVA) phantoms of different stiffnesses. The measured PV was compared with the shear wave velocity (SWV) measured by shear wave imaging (SWI). The measured PV has trends similar to the measured SWV. These results obtained by IE in a healthy male show the possibility that the mechanical properties of living tissues could be evaluated by IE.

  17. Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration

    Science.gov (United States)

    Ponalagusamy, R.; Priyadharshini, S.

    2017-11-01

    The present study investigates the pulsatile flow of Casson nanofluid through an inclined and stenosed artery with tapering in the presence of magnetic field and periodic body acceleration. The iron oxide nanoparticles are allowed to flow along with it. The governing equations for the flow of Casson fluid when the artery is tapered slightly having mild stenosis are highly non-linear and the momentum equations for temperature and concentration are coupled and are solved using finite difference numerical schemes in order to find the solutions for velocity, temperature, concentration, wall shear stress, and resistance to blood flow. The aim of the present study is to analyze the effects of flow parameters on the flow of nanofluid through an inclined arterial stenosis with tapering. These effects are represented graphically and concluded that the wall shear stress profiles enhance with increase in yield stress, magnetic field, thermophoresis parameter and decreases with Brownian motion parameter, local temperature Grashof number, local nanoparticle Grashof number. The significance of the model is the existence of yield stress and it is examined that when the rheology of blood changes from Newtonian to Casson fluid, the percentage of decrease in the flow resistance is higher with respect to the increase in the parameters local temperature Grashof number, local nanoparticle Grashof number, Brownian motion parameter, and Prandtl number. It is pertinent to observe that increase in the Brownian motion parameter leads to increment in concentration and temperature profiles. It is observed that the concentration of nanoparticles decreases with increase in the value of thermophoresis parameter.

  18. Imaging in pulsatile tinnitus

    International Nuclear Information System (INIS)

    Madani, G.; Connor, S.E.J.

    2009-01-01

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful

  19. Imaging in pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Madani, G. [Radiology Department, St Mary' s Hospital, London (United Kingdom)], E-mail: gittamadani@yahoo.com; Connor, S E.J. [Neuroradiology Department, King' s College Hospital, London (United Kingdom)

    2009-03-15

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful.

  20. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid

    Science.gov (United States)

    Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2008-09-01

    We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.

  1. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure

    Directory of Open Access Journals (Sweden)

    Kim Taehong

    2007-03-01

    Full Text Available Abstract Background This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture. Methods The transient temperature profile in inflamed atherosclerotic plaques is calculated by solving an energy equation and the Navier-Stokes equations in 2D idealized arterial models of a bending artery and an arterial bifurcation. For obtaining the numerical solution, the commercial package COMSOL 3.2 was used. The calculations correspond to a parametric study where arterial type and size, as well as plaque geometry and composition, are varied. These calculations are used to analyze the contribution of different factors affecting arterial wall temperature measurements. The main factors considered are the metabolic heat production of inflammatory cells, atherosclerotic plaque length lp, inflammatory cell layer length lmp, and inflammatory cell layer thickness dmp. Results The calculations indicate that the best location to perform the temperature measurement is at the back region of the plaque (0.5 ≤ l/lp ≤ 0.7. The location of the maximum temperature, or hot spot, at the plaque surface can move during the cardiac cycle depending on the arterial geometry and is a direct result of the blood flow pattern. For the bending artery, the hot spot moves 0.6 millimeters along the longitudinal direction; for the arterial bifurcation, the hot spot is concentrated at a single location due to the flow recirculation observed at both ends of the plaque. Focusing on the

  2. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations

    Science.gov (United States)

    Themelis, George; D'Arceuil, Helen; Diamond, Solomon G.; Thaker, Sonal; Huppert, Theodore J.; Boas, David A.

    2009-01-01

    We describe a near-infrared spectroscopy (NIRS) method to noninvasively measure relative changes in the pulsate components of cerebral blood flow (pCBF) and volume (pCBV) from the shape of heartbeat oscillations. We present a model that is used and data to show the feasibility of the method. We use a continuous-wave NIRS system to measure the arterial oscillations originating in the brains of piglets. Changes in the animals' CBF are induced by adding CO2 to the breathing gas. To study the influence of scalp on our measurements, comparative, invasive measurements are performed on one side of the head simultaneously with noninvasive measurements on the other side. We also did comparative measurements of CBF using a laser Doppler system to validate the results of our method. The results indicate that for sufficient source-detector separation, the signal contribution of the scalp is minimal and the measurements are representative of the cerebral hemodynamics. Moreover, good correlation between the results of the laser Doppler system and the NIRS system indicate that the presented method is capable of measuring relative changes in CBF. Preliminary results show the potential of this NIRS method to measure pCBF and pCBV relative changes in neonatal pigs. PMID:17343508

  3. Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration

    Science.gov (United States)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2018-06-01

    In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.

  4. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  5. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1987-01-01

    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  6. Do Students Experience Flow Conditions Online?

    Science.gov (United States)

    Meyer, Katrina A.; Jones, Stephanie J.

    2013-01-01

    This pilot study asked graduate students enrolled in higher education programs at two institutions to ascertain whether and to what extent they experienced nine flow-related conditions in two settings: (1) online courses or (2) surfing or gaming online. In both settings, flow was experienced "sometimes," although no significant…

  7. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  8. Preferential flow occurs in unsaturated conditions

    Science.gov (United States)

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  9. Burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagai, Toshiyuki

    1982-01-01

    Burnout characteristics in a uniformly heated, vertically oriented tube, under flow reduction condition, were experimentally studied. Test pressures ranged 0.5 -- 3.9 MPa and flow reduction rates 0.6 -- 35%/s. An analytical method was developed to obtain the local mass velocity during a transient condition. The local mass velocity at the burnout location with an increasing flow reduction rate was slightly different from that measured in steady state tests. The system pressure had a significant effect on the difference. An empirical correlation was presented to give the ratio between the transient and steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. Experimental results of previous work were compared with this correlation. (author)

  10. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  11. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.

    Science.gov (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M

    2004-01-01

    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  12. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.

    Science.gov (United States)

    Yigit, Berk; Pekkan, Kerem

    2016-01-01

    In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non

  13. Pulmonary O2 transfer during pulsatile and non-pulsatile perfusion.

    Science.gov (United States)

    Hauge, A; Nicolaysen, G

    1980-07-01

    The importance of the perfusion pattern for the oxygen transfer has been examined in isolated rabbit lungs perfused with plasma at constant volume inflow. The lungs were ventilated with constant tidal volume and constant end-expiratory pressure. Following a standardized rise in FIO2 the rate of rise in pulmonary venous PO2 (delta PO2/delta t) was measured during alternately pulsatile and non-pulsatile perfusion in normal lungs and in lungs made edematous by elevation of left atrial pressure. In normal lungs there was no difference in delta PO2/delta t when the two modes of perfusion were compared. In edematous lungs delta PO/delta t was statistically higher during pulsatile perfusion, indicating a beneficial effect of flow- and pressure pulsations, e.g. a better distribution of V/Q ratios throughout the lungs. In a separate series of expts. the advancement of a high O2 front through the airways was measured, and the two perfusion patterns compared. Since no difference was found, we suggest that the phenomenon of "cardiogenic gas mixing" in the airways in vivo is a result of a direct action of the heart on the lungs rather than arterial pulsations.

  14. Transient burnout in flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1981-01-01

    A transient flow reduction burnout experiment was conducted with water in a uniformly heated, vertically oriented tube. Test pressures ranged from 0.5 to 3.9 MPa. An analytical method was developed to obtain transient burnout conditions at the exit. A simple correlation to predict the deviation of the transient burnout mass velocity at the tube exit from the steady state mass velocity obtained as a function of steam-water density ratio and flow reduction rate. The correlation was also compared with the other data. (author)

  15. MR imaging of pulsatile CSF movement in hydrocephalus communicans before and after CSF shunt implantation

    International Nuclear Information System (INIS)

    Goldmann, A.; Kunz, U.; Rotermund, F.; Friedrich, J.M.; Schnarkowski, P.

    1992-01-01

    16 patients with hydrocephalus communicans and 5 healthy volunteers were examined to demonstrate the pattern of the pulsatile CSF flow. After implantation of a CSF shunt system the same patients were examined again to show the influence of the shunt on the CSF pulsations. We used a flow-sensitised, cardiac-gated 2D FLASH sequence and analysed the phase and magnitude images. It could be shown that most patients (n=12) had a hyerdynamic pulsatile flow preoperatively. After shunt implantation the pulsatile CSF motion and the clinical symptoms were improved in 8 of these patients. MRI of pulsatile CSF flow movement seems to be a helpful noninvasive tool to estimate the prognosis of a shunt implantation in patients with hydrocephalus communicans. (orig.) [de

  16. Better and faster velocity pulsatility assessment in cerebral white matter perforating arteries with 7T quantitative flow MRI through improved slice profile, acquisition scheme, and postprocessing.

    Science.gov (United States)

    Geurts, Lennart; Biessels, Geert Jan; Luijten, Peter; Zwanenburg, Jaco

    2018-03-01

    A previously published cardiac-gated 2D Qflow protocol at 7 T in cerebral perforating arteries was optimized to reduce velocity underestimation and improve temporal resolution. First, the signal-to-noise ratio (SNR) gain of the velocity measurement (SNR v ) was tested for two signal averages versus one. Second, the decrease in velocity underestimation with a tilted optimized nonsaturating excitation (TONE) pulse was tested. Third, the decrease in pulsatility index (PI) underestimation through improved temporal resolution was tested. Test-retest agreement was measured for the resulting acquisition in older volunteers (mean age 63 years), and the results were compared with the other volunteers (mean age 26 years). Using two signal averages increased SNR v by only 12% (P = 0.04), probably due to motion of the subvoxel-size arteries. The TONE decreased velocity underestimation, thereby increasing the mean velocity from 0.52 to 0.67 cm/s (P < 0.001). The PI increased substantially with increasing temporal resolution. The test-retest agreement showed good coefficients of repeatability of 0.18 cm/s for velocity and 0.14 for PI. The measured velocity was lower in the older group: 0.42 versus 0.51 cm/s (P = 0.05). The optimized sequence yields better velocity and PI estimates in small vessels, has twice as good test-retest agreement, and has a suitable scan time for use in patients. Magn Reson Med 79:1473-1482, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for

  17. Cirurgia de Glenn bidirecional: importância da manutenção de fluxo "pulsátil" na artéria pulmonar Bidirectional Glenn procedure: the importance of "pulsatile" flow in the pulmonary artery

    Directory of Open Access Journals (Sweden)

    Fernando Antônio Fantini

    1995-03-01

    In order to evaluate the effects of pulsatile flow in the pulmonary artery of patients undergoing bidirectional cavopulmonary shunts (BCS, we reviewed the data of 36 patients operated upon from October 1990 to July 1994. Age at operation ranged from 11 months to 14 years (mean 4.4 ± 3.4 years and diagnoses were as follows: tricuspid atresia (18, single ventricle (16, mitral atresia (1 and pulmonary atresia with intact ventricular septum (1. A total of 19 (52.8% patients had a prior palliative operation done. Cardiopulmonary bypass was used in every case, with mild hypothermia in 11 cases and profound hypothermia and circulatory arrest in the remaining. The surgical technique was an anastomosis between the superior vena cava and the ipsilateral pulmonary artery in an end-to-side fashion. The main pulmonary artery was ligated only if the mean pressure taken at the site of the anastomosis was higher than 15 mmHg but in 2 recent cases with a very high mean pulmonary pressure, the main pulmonary artery was banded, adjusting the pressure to the desirable levels. The overall hospital survival was 91.7% (33 patients. One patient required a systemic to pulmonary shunt due to persistent low arterial oxygen saturation, 7 days after the BCS. Twenty-eight patients were followed for a mean of 1.8 ± 1.2 years (3 months to 4.1 years and were divided in 2 groups: A-18 patients without pulsatile flow in the pulmonary artery, and B-10 patients with pulsatile flow. In Group B, the mean arterial saturation has ranged from 80% to 90% (mean 86 ± 3.8% and is significantly higher than in Group A (68 to 85%, mean, 77.6 ± 5.5 (p<0.001. Two patients of Group A are in NYHA functional class III, whereas all patients of Group B are in class I or II (p=0.05. There was one late death and one patient required a subsequent Fontan procedure, both of Group A. Thus, the presence of pulsatile flow in the pulmonary artery improved the arterial oxigen saturation and exercise tolerance in patients submitted to

  18. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  19. Pulsatile versus steady infusions for hepatic artery chemotherapy

    International Nuclear Information System (INIS)

    Kim, E.E.; Haynie, T.P.; Wright, K.C.; Chaynsangavej, C.; Gianturco, C.; Lamki, L.; Wallace, S.

    1984-01-01

    Hepatic artery chemotherapy for unresectable liver tumors requires an even distribution of the drugs in the tumor or vascular bed. This cannot be determined angiographically because the drugs are infused at a much lower rate than the contrast media. It is easy, however, to determine the quality of the perfusion by injecting a small volume of Tc-99m MAA in one of the side ports while chemotherapeutic agent is being infused at the same rate. Usually this shows a uniform, satisfactory distribution of isotope. Occasionally, however, some areas fail to receive Tc-99m in spite of what appears to be a good position of the catheter tip. Since ''streaming'' of the infused drugs has been blamed for their uneven distribution, the authors decided to compare the usual steady flow infusions with infusions made pulsatile by the addition of a pulsing device (Gianturco Pump) attached to the infusion tubing. Eighty-three patients were studied with steady as well as pulsatile infusions. In 16 of these patients the perfusion pattern was definitely changed by the pulsatile infusion. In one patient the pulsatile mode resulted in an unwanted gastric perfusion. In 5 patients the distribution was improved in one hepatic lobe and in 10 patients it was improved in both lobes. These results show that hepatic artery perfusions can occasionally be improved by pulsing the infusate. However, pulsing can produce the unwanted perfusion of extra-hepatic areas

  20. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    Science.gov (United States)

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  1. Adaptive boundary conditions for exterior flow problems

    CERN Document Server

    Boenisch, V; Wittwer, S

    2003-01-01

    We consider the problem of solving numerically the stationary incompressible Navier-Stokes equations in an exterior domain in two dimensions. This corresponds to studying the stationary fluid flow past a body. The necessity to truncate for numerical purposes the infinite exterior domain to a finite domain leads to the problem of finding appropriate boundary conditions on the surface of the truncated domain. We solve this problem by providing a vector field describing the leading asymptotic behavior of the solution. This vector field is given in the form of an explicit expression depending on a real parameter. We show that this parameter can be determined from the total drag exerted on the body. Using this fact we set up a self-consistent numerical scheme that determines the parameter, and hence the boundary conditions and the drag, as part of the solution process. We compare the values of the drag obtained with our adaptive scheme with the results from using traditional constant boundary conditions. Computati...

  2. On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging

    International Nuclear Information System (INIS)

    Greitz, D.; Franck, A.; Nordell, B.

    1993-01-01

    Cerebrospinal fluid (CSF) flow was studied in 24 healthy volunteers using gated MR phase imaging. The subarachnoid space (SAS) was divided into 5 compartments depending on the magnitude of the pulsatile CSF flows: a high velocity compartment in the area of the brain stem and spinal cord, 2 slow ones at the upper and lower extremes of the SAS, and finally 2 intermediate velocity compartments in between. The main pulsatile spinal flow channel had a meandering pattern. The extraventricular CSF-circulation can be explained by pulsatile CSF flow without the necessity of assuming existence of a net flow. A successive time offset during the cardiac cycle has been found in the fronto-occipital direction of the interplay between the arterial expansion, brain expansion, volume changes of the CSF spaces and of the veins. It is proposed to name this time offset the intracranial ''volume wave'' (VoW). (orig.)

  3. Investigation of pulsatile flowfield in healthy thoracic aorta models.

    Science.gov (United States)

    Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen

    2010-02-01

    Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the

  4. Particle Entrainment under Turbulent Flow Conditions

    Science.gov (United States)

    Diplas, Panayiotis

    2009-11-01

    Erosion, transportation and deposition of sediments and pollutants influence the hydrosphere, pedosphere, biosphere and atmosphere in profound ways. The global amount of sediment eroded annually over the continental surface of the earth via the action of water and wind is estimated to be around 80 billion metric tons, with 20 of them delivered by rivers to the oceans. This redistribution of material over the surface of the earth affects most of its physical, chemical and biological processes in ways that are exceedingly difficult to comprehend. The criterion currently in use for predicting particle entrainment, originally proposed by Shields in 1936, emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. A new criterion that was developed recently in an effort to overcome the limitations of the previous approach will be presented. It is hypothesized that not only the magnitude, but also the duration of energetic near bed turbulent events is relevant in predicting grain removal from the bed surface. It is therefore proposed that the product of force and its duration, or impulse, is a more appropriate and universal criterion for identifying conditions suitable for particle dislodgement. Analytical formulation of the problem and experimental data are used to examine the validity of the new criterion.

  5. Effects of alloy composition and flow condition on the flow accelerated corrosion in neutral water condition

    International Nuclear Information System (INIS)

    Satoh, Tomonori; Ugachi, Hirokazu; Tsukada, Takashi; Uchida, Shunsuke

    2008-01-01

    The major mechanism of Flow accelerated corrosion (FAC) is the dissolution of the protective oxide on carbon steel, which is enhanced by mass transfer and erosion under high flow velocity conditions. In this study, the effects of alloy composition and flow velocity on FAC of carbon steel were evaluated by measuring FAC rate of tube type carbon steel specimens in the neutral water condition at 150degC. Obtained results are summarized in follows. 1) High FAC rate was depended upon the v 1.2 in the tube type specimen made of the standard alloy. 2) FAC was mitigated for the carbon steel with more than 0.03% of Cr content. 3) FAC rate decreased as Ni content increased in more than 0.1% of Ni content. 4) The difference in chemical composition of oxide film between Ni added carbon steel and Cr added one was confirmed. The hematite rich oxide was observed for Ni added carbon steel. 5) The effects of Cu on FAC rate was not observed up to 0.1% of Cu content. (author)

  6. Superior vena cava syndrome after pulsatile bidirectional Glenn shunt procedure: Perioperative implications

    Directory of Open Access Journals (Sweden)

    Neema Praveen

    2009-01-01

    Full Text Available Bidirectional superior cavopulmonary shunt (bidirectional Glenn shunt is generally performed in many congenital cardiac anomalies where complete two ventricle circulations cannot be easily achieved. The advantages of BDG shunt are achieved by partially separating the pulmonary and systemic venous circuits, and include reduced ventricular preload and long-term preservation of myocardium. The benefits of additional pulsatile pulmonary blood flow include the potential growth of pulmonary arteries, possible improvement in arterial oxygen saturation, and possible prevention of development of pulmonary arteriovenous malformations. However, increase in the systemic venous pressure after BDG with additional pulsatile blood flow is known. We describe the peri-operative implications of severe flow reversal in the superior vena cava after pulsatile BDG shunt construction in a child who presented for surgical interruption of the main pulmonary artery.

  7. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    International Nuclear Information System (INIS)

    Radmanesh, Alireza; Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D.; Chatterjee, Arindam; Sharma, Aseem

    2015-01-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  8. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    Energy Technology Data Exchange (ETDEWEB)

    Radmanesh, Alireza [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States); Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D. [Washington University School of Medicine, Department of Neurosurgery, St Louis, MO (United States); Chatterjee, Arindam; Sharma, Aseem [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States)

    2015-04-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  9. An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions

    OpenAIRE

    Ruffa, Anthony A.

    2004-01-01

    An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.

  10. Study of transient burnout under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1986-09-01

    Transient burnout characteristics of a fuel rod under a rapid flow reduction condition of a light water reactor were experimentally and analytically studied. The test sections were uniformly heated vertical tube and annulus with the heated length of 800 mm. Test pressures ranged 0.5 ∼ 3.9 MPa, heat fluxes 2,160 ∼ 3,860 KW/m 2 , and flow reduction rates 0.44 ∼ 770 %/s. The local flow condition during flow reduction transients were calculated with a separate flow model. The two-fluid/three-field thermal-hydraulic code, COBRA/TRAC, was also used to investigate the liquid film behavior on the heated surface. The major results obtained in the present study are as follows: The onset of burnout under a rapid flow reduction condition was caused by a liquid film dryout on the heated surface. With increasing flow reduction rate beyond a threshold, the burnout mass velocity at the inlet became lower than the steady-state burnout mass velocity. This is explained by the fact that the vapor flow rate continues to increase due to the delay of boiling boundary movement and the resultant high vapor velocity sustains the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. The ratio of inlet burnout mass velocities between flow reduction transient and steady-state became smaller with increasing system pressure because of the lower vapor velocity due to the lower vapor specific volume. Flow reduction burnout occurred when the outlet quality agreed with the steady-state burnout quality within 10 %, suggesting that the local condition burnout model can be used for flow reduction transients. Based on this model, a method to predict the time to burnout under a flow reduction condition in a uniformly heated tube was developed. The calculated times to burnout agreed well with some experimental results obtained by the Author, Cumo et al., and Moxon et al. (author)

  11. Tissue Doppler Imaging in the evaluation of abdominal aortic pulsatility: a useful tool for the neonatologist.

    Science.gov (United States)

    Valerio, Enrico; Grison, Alessandra; Capretta, Anna; Golin, Rosanna; Ferrarese, Paola; Bellettato, Massimo

    2017-03-01

    Sonographic cardiac evaluation of newborns with suspected aortic coarctation (AoC) should tend to demonstrate a good phasic and pulsatile flow and the absence of pressure gradient along a normally conformed aortic arch from the modified left parasternal and suprasternal echocardiographic views; these findings, however, may not necessarily rule out a more distal coarctation in the descending aorta. For this reason, the sonographic exam of newborns with suspected AoC should always include a Doppler evaluation of abdominal aortic blood flow from the subcostal view. Occasionally, however, a clearly pulsatile Doppler flow trace in abdominal aorta may be difficult to obtain due to the bad insonation angle existing between the probe and the vessel. In such suboptimal ultrasonic alignment situation, the use of Tissue Doppler Imaging instead of classic Doppler flow imaging may reveal a preserved aortic pulsatility by sampling the aortic wall motion induced by normal flow. We propose to take advantage of the TDI pattern as a surrogate of a normal pulsatile Doppler flow trace in abdominal aorta when the latter is difficult to obtain due to malalignment with the insonated vessel.

  12. Increasing awareness with recognition of pulsatile tinnitus for nurse practitioners in the primary care setting: A case study.

    Science.gov (United States)

    Vecchiarelli, Kelly; Amar, Arun Paul; Emanuele, Donna

    2017-09-01

    Pulsatile tinnitus is a whooshing sound heard synchronous with the heartbeat. It is an uncommon symptom affecting fewer than 10% of patients with tinnitus. It often goes unrecognized in the primary care setting. Failure to recognize this symptom can result in a missed or delayed diagnosis of a potentially life-threatening condition known as a dural arteriovenous fistula. The purpose of this case study is to provide a structured approach to the identification of pulsatile tinnitus and provide management recommendations. A case study and review of pertinent literature. Pulsatile tinnitus usually has a vascular treatable cause. A comprehensive history and physical examination will alert the nurse practitioner (NP) when pulsatile tinnitus is present. Auscultation in specific areas of the head can detect audible or objective pulsatile tinnitus. Pulsatile tinnitus that is audible to the examiner is an urgent medical condition requiring immediate consultation and referral. Knowledge of pulsatile tinnitus and awareness of this often treatable condition directs the NP to perform a detailed assessment when patients present with tinnitus, directs appropriate referral for care and treatment, and can reduce the risk of delayed or missed diagnosis. ©2017 American Association of Nurse Practitioners.

  13. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.

    Directory of Open Access Journals (Sweden)

    Idit Avrahami

    Full Text Available Arterial wall shear stress (WSS parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q and heart rate (HR measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity-known as the pulsatility index (PI-which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV. The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%], oscillating shear index (OSI and the ratio of minimum to maximum shear stress rates (min/max, are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS.

  14. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E

    2007-01-01

    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  15. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  16. Bridge pressure flow scour for clear water conditions

    Science.gov (United States)

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  17. Effect of flow conditions on flow accelerated corrosion in pipe bends

    International Nuclear Information System (INIS)

    Mazhar, H.; Ching, C.Y.

    2015-01-01

    Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)

  18. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Geir Ringstad

    Full Text Available Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43. Pulse pressure gradients were also similar in patients and healthy controls (P = .26, and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97. Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

  19. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  20. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  1. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  2. Verification of the karst flow model under laboratory controlled conditions

    Science.gov (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  3. Enhancing sedimentation by improving flow conditions using parallel retrofit baffles.

    Science.gov (United States)

    He, Cheng; Scott, Eric; Rochfort, Quintin

    2015-09-01

    In this study, placing parallel-connected baffles in the vicinity of the inlet was proposed to improve hydraulic conditions for enhancing TSS (total suspended solids) removal. The purpose of the retrofit baffle design is to divide the large and fast inflow into smaller and slower flows to increase flow uniformity. This avoids short-circuiting and increases residence time in the sedimentation basin. The newly proposed parallel-connected baffle configuration was assessed in the laboratory by comparing its TSS removal performance and the optimal flow residence time with those from the widely used series-connected baffles. The experimental results showed that the parallel-connected baffles outperformed the series-connected baffles because it could disperse flow faster and in less space by splitting the large inflow into many small branches instead of solely depending on flow internal friction over a longer flow path, as was the case under the series-connected baffles. Being able to dampen faster flow before entering the sedimentation basin is critical to reducing the possibility of disturbing any settled particles, especially under high inflow conditions. Also, for a large sedimentation basin, it may be more economically feasible to deploy the proposed parallel retrofit baffle in the vicinity of the inlet than series-connected baffles throughout the entire settling basin. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  5. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  6. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  7. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    Science.gov (United States)

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions

    International Nuclear Information System (INIS)

    Le Corre, Jean-Marie; Yao, Shi-Chune; Amon, Cristina H.

    2010-01-01

    A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the 'most-likely' mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].

  9. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    Science.gov (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  10. Study on the flow reduction of forced flow superconducting magnet and its stable operation condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Makoto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-03-01

    The forced flow superconducting coil especially made from a Cable-in-Conduit Conductor (CICC) is applied for large-scale devices such as fusion magnets and superconducting magnet energy storage (SMES) because it has high mechanical and electrical performance potential. The flow reduction phenomena caused by AC loss generation due to the pulsed operation was found based on the experimental results of three forced flow superconducting coils. And relation between the AC loss generation and flow reduction was defined from viewpoint of the engineering design and operation of the coils. Also the mechanism of flow reduction was investigated and stable operation condition under the flow reduction was clarified for forced flow superconducting coils. First, experiments of three different large-scale superconducting coils were carried out and experimental database of the flow reduction by AC loss generation was established. It was found experimentally that the flow reduction depends on the AC loss generation (W/m{sup 3}) in all of coils. It means the stable operation condition is defined not only the electro magnetism of superconducting coil but also flow condition. Mechanism of the flow reduction was investigated based on the experimental database. Hydraulics was applied to supercritical helium as a coolant. Also performances of the cryogenic pump by which coolant are supplied to the coil and friction of the superconductor as cooling path is considered for hydraulic estimation. The flow reduction of the coil is clarified and predictable by the equations of continuity, momentum and energy balance. Also total mass flow rate of coolant was discussed. The estimation method in the design phase was developed for total mass flow rate which are required under the flow reduction by AC losses. The friction of the superconductor and performance of cryogenic pump should be required for precise prediction of flow reduction. These values were obtained by the experiment data of coil and

  11. Study of transient burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1984-03-01

    As part of a study of the thermal behavior of fuel rods during Power-Cooling-Mismatch (PCM) accidents in light water reactors, burnout characteristics in a uniformly heated, vertically oriented tube or annulus, under flow reduction condition, were experimentally studied. Test pressures ranged 0.1--3.9 MPa and flow reduction rates 0.44--1100%/s. An analytical method is developed to obtain the local mass velocity during a transient condition. The major results are as follows: With increasing flow reduction rate beyond a threshold, transient burnout mass velocity at the inlet was lower than that in steady state tests under the experimental pressures. The higher system pressure resulted in the less transient effects. At pressures higher than 2.0 MPa and flow reduction rates lower than 20%/s, the local burnout mass velocity agreed with the steady state burnout mass velocity, whereas the local burnout mass velocity became higher than the steady state burnout mass velocity at flow reduction rates higher than 20%/s. At pressures lower than 1 MPa, with increasing flow reduction rate beyond the threshold value of 2%/s, the local burnout mass velocity was lower than the steady state burnout mass velocity. An empirical correlation is presented to give the ratio of the transient to the steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. The experimental results by Cumo et al. agree with the correlation. The correlation, however, cannot predict the experimental results at higher flow reduction rates beyond 40%/s. (author)

  12. Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units

    Science.gov (United States)

    Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James

    2012-11-01

    There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.

  13. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  14. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  15. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  16. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    International Nuclear Information System (INIS)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-[3- 3 H]glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml -1 during continuous infusion and varied between 95 and 501 pg x ml -1 during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production

  17. On the freestream matching condition for stagnation point turbulent flows

    Science.gov (United States)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  18. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  19. Reference Curve for the Mean Uterine Artery Pulsatility Index in Singleton Pregnancies.

    Science.gov (United States)

    Weichert, Alexander; Hagen, Andreas; Tchirikov, Michael; Fuchs, Ilka B; Henrich, Wolfgang; Entezami, Michael

    2017-05-01

    Doppler sonography of the uterine artery (UA) is done to monitor pregnancies, because the detected flow patterns are useful to draw inferences about possible disorders of trophoblast invasion. Increased resistance in the UA is associated with an increased risk of preeclampsia and/or intrauterine growth restriction (IUGR) and perinatal mortality. In the absence of standardized figures, the normal ranges of the various available reference curves sometimes differ quite substantially from one another. The causes for this are differences in the flow patterns of the UA depending on the position of the pulsed Doppler gates as well as branching of the UA. Because of the discrepancies between the different reference curves and the practical problems this poses for guideline recommendations, we thought it would be useful to create our own reference curves for Doppler measurements of the UA obtained from a singleton cohort under standardized conditions. This retrospective cohort study was carried out in the Department of Obstetrics of the Charité - Universitätsmedizin Berlin, the Department for Obstetrics and Prenatal Medicine of the University Hospital Halle (Saale) and the Center for Prenatal Diagnostics and Human Genetics Kurfürstendamm 199. Available datasets from the three study locations were identified and reference curves were generated using the LMS method. Measured values were correlated with age of gestation, and a cubic model and Box-Cox power transformation (L), the median (M) and the coefficient of variation (S) were used to smooth the curves. 103 720 Doppler examinations of the UA carried out in singleton pregnancies from the 11th week of gestation (10 + 1 GW) were analyzed. The mean pulsatility index (Mean PI) showed a continuous decline over the course of pregnancy, dropping to a plateau of around 0.84 between the 23rd and 27th GW, after which it decreased again. Age of gestation, placental position, position of pulsed Doppler gates and branching of

  20. R 12 two-phase flow in throttle capillaries in critical flow conditions

    International Nuclear Information System (INIS)

    Petry, G.

    1983-01-01

    In this dissertation, the state of knowledge on two phase flow, its use and measurement processes are given from an extensive search of the literature. In the experimental part of the work, a continuously working experimental circuit was built up, by which single component two phase flow can be examined in critical flow conditions. Using the maintenance equations, a system of equations was produced, by which the content of steam flow, the content of steam volume and the slip between the phases at the end corssection of the capillary can be determined. The transfer of the experimental results into the Baker diagram shows that the experimental values lie in the region of mist, bubble and foam flow. (orig.) [de

  1. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  2. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  3. Structure of wall-bounded flows at transcritical conditions

    Science.gov (United States)

    Ma, Peter C.; Yang, Xiang I. A.; Ihme, Matthias

    2018-03-01

    At transcritical conditions, the transition of a fluid from a liquidlike state to a gaslike state occurs continuously, which is associated with significant changes in fluid properties. Therefore, boiling in its conventional sense does not exist and the phase transition at transcritical conditions is known as "pseudoboiling." In this work, direct numerical simulations (DNS) of a channel flow at transcritical conditions are conducted in which the bottom and top walls are kept at temperatures below and above the pseudoboiling temperature, respectively. Over this temperature range, the density changes by a factor of 18 between both walls. Using the DNS data, the usefulness of the semilocal scaling and the Townsend attached-eddy hypothesis are examined in the context of flows at transcritical conditions—both models have received much empirical support from previous studies. It is found that while the semilocal scaling works reasonably well near the bottom cooled wall, where the fluid density changes only moderately, the same scaling has only limited success near the top wall. In addition, it is shown that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy spectrum exhibits an inverse wave-number scaling, thus providing support to the attached-eddy model at transcritical conditions.

  4. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  5. Cellular automata model for traffic flow with safe driving conditions

    International Nuclear Information System (INIS)

    Lárraga María Elena; Alvarez-Icaza Luis

    2014-01-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model. (general)

  6. Error estimation for CFD aeroheating prediction under rarefied flow condition

    Science.gov (United States)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  7. Experimental study of swirl flow patterns in Gas Conditioning Tower at various entry conditions

    DEFF Research Database (Denmark)

    Jinov, Andrei A.; Larsen, Poul Scheel

    1999-01-01

    In a gas conditioning tower hot flue gas with relatively high dust loads is cooled by injecting water spray near the top. For satisfactory operation wet particles should be kept off walls and all water should have evaporated to yield a uniformly cooled flow before it reaches the bottom of the tower...

  8. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  9. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  10. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  11. The gradient flow running coupling with twisted boundary conditions

    International Nuclear Information System (INIS)

    Ramos, Alberto

    2014-09-01

    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density left angle E(t) right angle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.

  12. Open boundary condition, Wilson flow and the scalar glueball mass

    International Nuclear Information System (INIS)

    Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy

    2014-01-01

    A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.

  13. Revisiting Johnson and Jackson boundary conditions for granular flows

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  14. The Eschenmoser coupling reaction under continuous-flow conditions

    Science.gov (United States)

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  15. The Eschenmoser coupling reaction under continuous-flow conditions

    Directory of Open Access Journals (Sweden)

    Sukhdeep Singh

    2011-08-01

    Full Text Available The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.

  16. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    International Nuclear Information System (INIS)

    Lee, Kyung Soon; Woo, Bock Hi

    2001-01-01

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  17. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Soon; Woo, Bock Hi [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2001-06-15

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  18. Compressible turbulent channel flow with impedance boundary conditions

    Science.gov (United States)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  19. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    International Nuclear Information System (INIS)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David; Gylling, Bjoern; Marsic, Niko; Rhen, Ingvar

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  20. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  1. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  2. Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Directory of Open Access Journals (Sweden)

    Seyed Hadi Hosseini

    2014-10-01

    Full Text Available Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method.

  3. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  4. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  5. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  6. A durability study of a paracorporeal pulsatile electro-mechanical pneumatic biventricular assist device.

    Science.gov (United States)

    Choi, Hyuk; Lee, Heung-Man; Nam, Kyoung Won; Choi, Jaesoon; Lee, Jung-Joo; Kim, Ho Chul; Song, Seung Joon; Ahn, Chi Bum; Son, Ho Sung; Lim, Choon Hak; Son, Kuk Hui; Park, Yong Doo; Jeong, Gi Seok; Sun, Kyung

    2011-06-01

    In 2002, the paracorporeal pulsatile electro-mechanical pneumatic ventricular assist device (VAD) began to be developed by the Korea Artificial Organ Center at Korea University under a Health & Medical Technology Research and Development program which finished in 2008. In vitro durability testing was conducted on the paracorporeal pulsatile pneumatic VAD to determine device durability and to evaluate device failures. The 1- and 2-year reliability of the paracorporeal pulsatile pneumatic VAD was shown to be 91.2% and 54.9%, respectively, with an 80% confidence level. Failure modes were analyzed using fault tree analysis, with customized software continuously acquiring data during the test period. After this period, 21 in vivo animal tests were done, with 14 cases of left atrium to left ventricle (LV) inflow cannulation (36Fr)/outflow grafting to descending aorta, and seven cases of apex cannulation of LV to descending aorta (12 mm). The longest postoperative day (182 days) in Korea was recently recorded in in vivo animal testing (bovine, 90 kg, male, 3.5-4.0 L/min flow rate, and 55 bpm). © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  8. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  9. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    Science.gov (United States)

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  10. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.

    Science.gov (United States)

    Eide, Per K

    2008-11-01

    Data from intracranial pressure (ICP) recordings in patients with hydrocephalus were reviewed to determine whether intracranial pulsatility within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(LV)) may differ from that within the brain parenchyma (ICP(PAR)), and whether pulsatility may differ between noncommunicating ventricles. The authors retrieved data from recordings previously obtained in 7 patients with hydrocephalus (noncommunicating in 4 and communicating in 3) and shunt failure who received both an external ventricular drainage (EVD) and an ICP sensor as part of surveillance during intensive care. Simultaneous ICP(LV) and ICP(PAR) signals were available in 6 cases, and simultaneous signals from the lateral and fourth ventricles (ICP(LV) and ICP4V, respectively) were recorded in 1 case. The recordings with both signals were parsed into 6-second time windows. Pulsatility was characterized by the wave amplitude and rise time coefficient, and differences in pulsatility between the ICP(LV) and ICP(PAR) signals (6 cases) or ICP(LV) and ICP4V signals (1 case) were determined. There was uneven distribution of intracranial pulsatility in all 7 patients, shown as significantly elevated pulsatility (that is, higher wave amplitudes and rise time coefficients) within the ventricles (ICP(LV)) than within brain parenchyma (ICP(PAR)) in 6 patients, and significantly higher pulsatility in the fourth (ICP4V) than in the lateral (ICP(LV)) ventricles in 1 patient. Differences > or = 1 mm Hg in ICP wave amplitude were found in 0.5-100% (median 9.4%) of observations in the 7 patients (total number of 6-second time windows, 68,242). The present observations demonstrate uneven distribution of intracranial pulsatility in patients with hydrocephalus, higher pulse pressure amplitudes within the ventricular CSF (ICP(LV)) than within the brain parenchyma (ICP(PAR)). This may be one mechanism behind ventricular enlargement in hydrocephalus.

  11. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  12. Flow conditions of fresh mortar and concrete in different pipes

    International Nuclear Information System (INIS)

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-01-01

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  13. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  14. Enhancing chemical synthesis using catalytic reactions under continuous flow conditions

    OpenAIRE

    Asadi, Mousa

    2017-01-01

    Many advantages have been demonstrated for continuous flow chemistry in comparison with batch chemistry; such as easy automation, high level of reproducibility, improved safety, and process reliability. Indeed, with continuous flow processes constant reaction parameters such as temperature, time, amount of reagents, catalyst, solvents, efficient mixing etc. can easily be assured. The research detailed in this PhD thesis takes advantages of flow chemistry applying it to the Fukuyama ...

  15. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents.

    Science.gov (United States)

    Hsiao, Hao-Ming; Yin, Ming-Ting

    2014-02-01

    Intravascular stenting has emerged as the primary treatment for vascular diseases and has received great attention from the medical community since its introduction two decades ago. The endovascular self-expanding stent is used to treat peripheral artery diseases; however, once implanted, these stents suffer from various cyclic motions caused by pulsatile blood pressure and daily activities. Due to this challenging environment, fatigue performance has become a critical issue for stent design. In this paper, a simple yet intriguing concept of stent design aimed at enhancing pulsatile fatigue life is investigated. The concept of this design is to shift the highly concentrated stresses/strains away from the crown and re-distribute them along the stress-free bar arm by tapering its strut width. Finite element models were developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the stent to various loading conditions. Results show that the fatigue safety factor jumped to 2.5-3.0 times that of the standard stent with constant strut width. This is astonishing considering that the stent profile and scaffolding were not compromised. The findings of this paper provide an excellent approach to the optimization of future stent design to greatly improve stent fatigue performance.

  16. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Science.gov (United States)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  17. Measuring pulsatile forces on the human cranium.

    Science.gov (United States)

    Goldberg, Cory S; Antonyshyn, Oleh; Midha, Rajiv; Fialkov, Jeffrey A

    2005-01-01

    The cyclic stresses in the cranium caused by pulsation of the brain play an important role in the design of materials for cranioplasty, as well as craniofacial development. However, these stresses have never been quantified. In this study, the force in the epidural space against the cranium was measured intraoperatively in 10 patients using a miniature force probe. Heart and ventilatory rates computed from the force tracing correlated closely with the corresponding measured values in the patients, confirming that the forces measured were indeed a result of brain pulsation. The mean outward systolic normal and tangential stresses were 54.2 kilo-Pascals (kPa) and 345.4 kPa, respectively. The systolic shear stress was 199.8 kPa. Through mechanotransduction, these stresses play a role in cranial development. The calculated yield stress of a cranioplasty repair was 0.4 MPa, which is within one order of magnitude of the known strength of common calcium-phosphate cements. This indicates a possible relation of these pulsatile forces and occult failure of calcium-phosphate cement cranioplasties through material fatigue.

  18. Intrinsic Motivation and Flow Condition on the Music Teacher's Performance

    Science.gov (United States)

    Torres Delgado, Gabriela

    2017-01-01

    The aim of these research is to identify if music teachers and teachers from other areas are intrinsically or extrinsically motivated, to identify the dimensions of the flow state, and to identify if there is a relationship between intrinsic motivation and flow state in these teachers. The sample was made up of 738 active teachers. The presence of…

  19. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.

    Science.gov (United States)

    Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe

    2013-05-01

    The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work

  20. Use of a Phase Transition Concept for Traffic Flow Condition Estimation

    Directory of Open Access Journals (Sweden)

    Larin Oleg N.

    2014-12-01

    Full Text Available The article covers the main models of traffic flow conditions, analyzes the condition estimation criteria, and provides the classification of models. The article provides the grounds for the use of the phase transition concept for traffic flow condition estimation. The models of the aggregate condition of free and congested traffic have been developed, the phase boundaries between free and congested traffic have been defined. Applicability conditions for the models of the aggregate condition of have been analyzed.

  1. Application of tailings flow analyses to field conditions

    International Nuclear Information System (INIS)

    Bryant, S.M.

    1983-01-01

    Catastrophic failures of tailings impoundments, in which liquefied tailings flow over substantial distances, pose severe hazards to the health and safety of people in downstream areas, and have a potential for economic and environmental devastation. The purpose of this study, an extension of prior investigations, was to develop procedures to measure Bingham flow parameters for mine tailings. In addition, the analytical procedures developed by Lucia (1981) and Jeyapalan (1980) for predicting the consequences of tailings flow failures were evaluated and applied to the Tenmile Tailings Pond at Climax, Colorado. Revisions in the simplified equilibrium procedure, developed by Lucia (1981), make it more compatible with infinite slope solutions. Jeyapalan's model was evaluated using a simple rheological analogy, and it appears there are some numerical difficulties with the operation of the computer program TFLOW used to model the displacements and velocities of flow slides. Comparable flow distances can be determined using either model if the flow volume used in the simplified equilibrium procedure is estimated properly. When both analytical procedures were applied to the Tenmile Pond, it was concluded there was no potential for a flow slide at the site

  2. Debris flows susceptibility mapping under tropical rain conditions in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri

    2017-04-01

    Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.

  3. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  4. Calibration of CORSIM models under saturated traffic flow conditions.

    Science.gov (United States)

    2013-09-01

    This study proposes a methodology to calibrate microscopic traffic flow simulation models. : The proposed methodology has the capability to calibrate simultaneously all the calibration : parameters as well as demand patterns for any network topology....

  5. Analysis of flow induced valve operation and pressure wave propagation for single and two-phase flow conditions

    International Nuclear Information System (INIS)

    Nagel, H.

    1986-01-01

    The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)

  6. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  7. Heat transfer critical conditions in two-plase flow

    International Nuclear Information System (INIS)

    Assis, M.C.V. de.

    1980-02-01

    The critical heat flux for forced-convection flow of water inside an uniformly heated circular channel is analysed, taking into account several flow patterns usually met in this type of investigation. Comments about nomenclature, experimental methods and influence of operational parameters used in the description of this phenomenon are made. The experimental results from 187 tests of critical heat flux at low pressure are presented. One empirical correlation between the critical heat flux and the independent parameters, was developed. Some correlations developed in other laboratories in the same range of parameters are mentioned and compared with present one. (Author) [pt

  8. Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic individuals

    DEFF Research Database (Denmark)

    Rohrer, Stefan; Menge, Björn A; Grüber, Lena

    2012-01-01

    Postprandial hyperglucagonemia is frequently found in patients with diabetes. Recently, a loss of the inverse relationship between pulsatile insulin and glucagon secretion has been reported in patients with type 2 diabetes. The crosstalk between pulsatile islet hormone secretion in prediabetic...

  9. Reflood modeling under oscillatory flow conditions with Cathare

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J M; Bartak, J; Janicot, A

    1994-12-31

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs.

  10. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.

    1993-01-01

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  11. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  12. Cerebrovascular pulsatility in patients with sleep-disordered breathing.

    Science.gov (United States)

    Ramos, Alberto R; Cabral, Digna; Lee, David J; Sacco, Ralph L; Rundek, Tatjana

    2013-05-01

    The aim of our study is to determine the association between the pulsatility index (PI), a surrogate of cerebral small vessel disease and sleep-disordered breathing (SDB). We conducted a transcranial Doppler ultrasound (TCD) study of 19 consecutive patients free of stroke and cardiovascular disease, referred for the evaluation of SDB. TCD was performed by a certified technologist. Subsequent polysomnography was performed according to the practice parameters of the American Academy of Sleep Medicine. We evaluated the association between the apnea-hypopnea index (AHI), the oxygen nadir, the blood flow velocities, and the Gosling PI, for the middle cerebral artery. We performed Spearman's rank correlation and nonparametric regression to evaluate the relationship between AHI, oxygen levels, and the PI. Median age was 48 years (range 37-83), with 52 % male sex (n = 10), and median BMI of 29.9 (range 25-40.4). The median AHI was 16.4 (0.2-69). The median PI was 0.97 (0.72-1.89) cm/s. The PI correlated with the AHI (rho = 0.44; p = 0.004) and with age (rho = 0.57; p = 0.001). Nonparametric regression adjusting for age showed a positive association between the AHI and the PI (standardized estimate = 0.88; p = 0.002). There was no relation between the oxygen nadir and the PI. We observed increased PI in patients with SDB during wakefulness. The PI could potentially be an estimate of cerebral small vessel disease in patients with SDB and hence allow evaluating cerebral hemodynamics during wakefulness with a clinically relevant device.

  13. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Menge, Björn A; Grüber, Lena; Jørgensen, Signe M

    2011-01-01

    In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known.......In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known....

  14. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  15. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  16. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link ...

  17. Condition of the existence of cooling flow in galaxies

    International Nuclear Information System (INIS)

    Volkov, E.V.

    1986-01-01

    A criterion for the existence of subsonic spherical symmetrical flow of cooling gas in galaxies has been found. Some equations are given describing the behaviour of gas in the gravitational field of a galaxy in the framework of a stationary accretion model. The results of numerical calculations of a nonstationary accretion of gas on a cD galaxy are presented. The gas is initially in a hydrostatic equilibrium

  18. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    International Nuclear Information System (INIS)

    Nowe, V.; Wang, X.L.; Gielen, J.; Goethem, J.Van; Oezsarlak, Oe.; De Schepper, A.M.; Parizel, P.M.; Ridder, D. De; Heyning, P.H.Van de

    2004-01-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  19. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    Energy Technology Data Exchange (ETDEWEB)

    Nowe, V; Wang, X L; Gielen, J; Goethem, J Van; Oezsarlak, Oe; De Schepper, A M; Parizel, P M [University of Antwerp, Department of Radiology, Edegem (Belgium); Ridder, D De [University of Antwerp, Department of Neurosurgery, Edegem (Belgium); Heyning, P.H.Van de [University of Antwerp, Department of Otorhinolaryngology, Edegem (Belgium)

    2004-12-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  20. Identification of two-phase flow regimes under variable gravity conditions

    International Nuclear Information System (INIS)

    Kamiel S Gabriel; Huawei Han

    2005-01-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  1. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  2. Concentration of nanoparticles and/or microparticles in flow conditions by dielectrophoresis

    DEFF Research Database (Denmark)

    2017-01-01

    A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention.......A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention....

  3. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  4. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  5. Kisspeptin and LH pulsatile temporal coupling in PCOS patients.

    Science.gov (United States)

    Katulski, Krzysztof; Podfigurna, Agnieszka; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Alessandro D

    2018-05-04

    To evaluate the temporal coupling between spontaneous kisspeptin and luteinizing hormone (LH) pulsatile releases in polycystic ovary syndrome (PCOS) patients. We examined 71 patients diagnosed with PCOS. A 2 h pulsatility study was performed to evaluate serum kisspeptin and LH pulse frequency and concentration, sampled every 10 min; baseline follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), cortisol, 17-hydroksy-progesterone (17OHP), testosterone (T), free testosterone index (FTI, and insulin levels were also measured. Detect and Specific Concordance (SC) algorithms were used to evaluate the temporal coupling associations between spontaneous episodic secretion of kisspeptin and LH. All PCOS patients demonstrated LH and kisspeptin pulsatile secretions. When the SC index was calculated across the sample of PCOS patients (n = 71), no temporal coupling was observed between kisspeptin and LH pulses. When PCOS patients were subdivided according to their menstrual cyclicity, oligomenorrheic patients demonstrated elevated kisspeptin pulse frequency. Additionally, the SC index reveled a temporal coupling between kisspeptin and LH secretory peaks only in eumenorrheic patients (n = 30, intermenstrual interval PCOS patients (intermenstrual interval > 45 days) did not demonstrate temporal coupling between kisspeptin and LH secretory peaks. The study of the endogenous kisspeptin and LH pulsatile release revealed the temporal coupling of kisspeptin with LH secretory pulses only in eumenorrheic. This data supports the hypothesis that neuroendocrine impairments in PCOS affect the coupling of kisspeptin with LH pulses and potentially worsen as the disease progresses, becoming unequivocally evident in oligomenorrheic PCOS patients.

  6. Pulsatile thyrotropin secretion in patients with Cushing's syndrome

    NARCIS (Netherlands)

    Adriaanse, R.; Brabant, G.; Endert, E.; Wiersinga, W. M.

    1994-01-01

    Pulsatile and circadian thyrotropin (TSH) secretion were studied in 16 healthy controls and in three patients with Cushing's syndrome who were studied twice (before and after treatment). Blood was sampled every 10 minutes over 24 hours for TSH (immunoradiometric assay [IRMA]). Mean 24-hour TSH in

  7. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  8. Categorization of flow conditions using Integral quantities for characterizing stagnation and recirculation

    International Nuclear Information System (INIS)

    Han, M.H.; Hwang, W.T.; Jeong, H.J.; Kim, E.H.

    2008-01-01

    This paper describes a method for categorizing an atmospheric flow condition of a site by using integral quantities for characterizing stagnation and recirculation. Authors have devised a method for categorizing flow conditions using distribution curves which represent the flow condition of the whole of Korea. It was found that the flow conditions for four nuclear power plant sites were good enough from a meteorological aspect. Among the four sites, Kori nuclear power plant site which is located at the south-eastern part of the Korean peninsular shows the best condition. Meteorological condition is the key factor for estimating the environmental effects of a nuclear facility. The devised method can be used for assessing the relative environmental risk of a nuclear facility with only meteorological data. And the devised categorization method can be used for choosing a suitable site for an industrial facility such as a nuclear power plant and a chemical complex. (author)

  9. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  10. Evaluation of nonequilibrium boundary conditions for hypersonic rarefied gas flows

    Science.gov (United States)

    Le, N. T. P.; Greenshields, Ch. J.; Reese, J. M.

    2012-01-01

    A new Computational Fluid Dynamics (CFD) solver for high-speed viscous §ows in the OpenFOAM code is validated against published experimental data and Direct Simulation Monte Carlo (DSMC) results. The laminar §at plate and circular cylinder cases are studied for Mach numbers, Ma, ranging from 6 to 12.7, and with argon and nitrogen as working gases. Simulation results for the laminar §at plate cases show that the combination of accommodation coefficient values σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski conditions, and the coefficient values A1 = 1.5 and A2 = 1.0 in the second-order velocity slip condition, give best agreement with experimental data of surface pressure. The values σu = 0.7 and σT = 1.0 also give good agreement with DSMC data of surface pressure at the stagnation point in the circular cylinder case at Kn = 0.25. The Langmuir surface adsorption condition is also tested for the laminar §at plate case, but initial results were not as good as the Maxwell/Smoluchowski boundary conditions.

  11. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  12. Effective viscous flow properties for fiber suspensions under concentrated conditions

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1993-01-01

    The effective longitudinal and transverse shear viscosities are derived for an aligned fiber suspension. The solutions are valid under very concentrated conditions for a hexagonal arrangement of the single size fibers. The results compliment the classical dilute suspension forms at the other extreme of concentration. Empirical forms are constructed to cover the full range of volume fraction of the fiber phase. Also, single size spherical particle suspensions are given a similar treatment to that of the fiber case

  13. FLOWNET: A Computer Program for Calculating Secondary Flow Conditions in a Network of Turbomachinery

    Science.gov (United States)

    Rose, J. R.

    1978-01-01

    The program requires the network parameters, the flow component parameters, the reservoir conditions, and the gas properties as input. It will then calculate all unknown pressures and the mass flow rate in each flow component in the network. The program can treat networks containing up to fifty flow components and twenty-five unknown network pressures. The types of flow components that can be treated are face seals, narrow slots, and pipes. The program is written in both structured FORTRAN (SFTRAN) and FORTRAN 4. The program must be run in an interactive (conversational) mode.

  14. Influence of the initial conditions for the numerical simulation of two-phase slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Pachas Napa, Alex A.; Morales, Rigoberto E.M.; Medina, Cesar D. Perea

    2010-07-01

    Multiphase flows in pipelines commonly show several patterns depending on the flow rate, geometry and physical properties of the phases. In oil production, the slug flow pattern is the most common among the others. This flow pattern is characterized by an intermittent succession in space and time of an aerated liquid slug and an elongated gas bubble with a liquid film. Slug flow is studied through the slug tracking model described as one-dimensional and Lagrangian frame referenced. In the model, the mass and the momentum balance equations are applied in control volumes constituted by the gas bubble and the liquid slug. Initial conditions must be determined, which need to reproduce the intermittence of the flow pattern. These initial conditions are given by a sequence of flow properties for each unit cell. Properties of the unit cell in initial conditions should reflect the intermittence, for which they can be analyzed in statistical terms. Therefore, statistical distributions should be obtained for the slug flow variables. Distributions are complemented with the mass balance and the bubble design model. The objective of the present work is to obtain initial conditions for the slug tracking model that reproduce a better adjustment of the fluctuating properties for different pipe inclinations (horizontal, vertical or inclined). The numerical results are compared with experimental data obtained by PFG/FEM/UNICAMP for air-water flow at 0 deg, 45 deg and 90 deg and good agreement is observed. (author)

  15. Numerical Evaluation of Averaging BDFT(bidirectional flow tube) Flow Meter on Applicability in the Fouling Condition

    International Nuclear Information System (INIS)

    Park, J. P.; Jeong, J. H.; Yuna, B. J.; Jerng, D. W.

    2013-01-01

    The results show that the averaging BDFT is a promising flow meter for the accurate measurement of flow rates in the fouling condition of the NPPs. A new instrumentation, an averaging BDFT, was proposed to measure the accurate flow rate under corrosion environment. In this study, to validate the applicability of the averaging BDFT on the fouling conditions, flow analyses using the CFD code were performed. Analyses results show that this averaging BDFT does not lose the measuring performance even under the corrosion environment. Therefore, it is expected that the averaging BDFT can replace the type flow meters for the feedwater pipe of steam generator of NPPs. Most of the NPPs adopt pressure difference type flow meters such as venturi and orifice meters for the measurement of feedwater flow rates to calculate reactor thermal power. However, corrosion products in the feedwater deposits on the flow meter as operating time goes. These effects lead to severe errors in the flow indication and then determination of reactor thermal power. The averaging BDFT has a potentiality to minimize this problem. Therefore, it is expected that the averaging BDFT can replace the type venturi meters for the feedwater pipe of steam generator of NPPs. The present work compares the amplification factor, K, based on CFD calculation against the K obtained from experiments in order to confirm whether a CFD code can be applicable to the evaluation of characteristic for the averaging BDFT. In addition to this, the simulations to take into account of fouling effect are also carried out by rough wall option

  16. stochastic estimation of transmissivity fields conditioned to flow connectivity data

    Science.gov (United States)

    Freixas, Genis; Fernàndez-Garcia, Daniel; Sanchez-vila, Xavier

    2017-04-01

    Most methods for hydraulic parameter interpretation rely on a number of simplifications regarding the homogeneity of the underlying porous media. This way, the actual heterogeneity of any natural parameter, such as transmissivity, is transferred to the estimated in a way heavily dependent on the interpretation method used. An example is a pumping test, in most cases interpreted by means of the Cooper-Jacob method, which implicitly assumes a homogeneous isotropic confined aquifer. It was shown that the estimates obtained from this method when applied to a real site are not local values, but still have a physical meaning; the estimated transmissivity is equal to the effective transmissivity characteristic of the regional scale, while the log-ratio of the estimated storage coefficient with respect to the actual real value (assumed constant), indicated by , is an indicator of flow connectivity, representative of the scale given by the distance between the pumping and the observation wells. In this work we propose a methodology to use together with actual measurements of the log transmissivity at selected points to obtain a map of the best local transmissivity estimates using cokriging. Since the interpolation involves two variables measured at different support scales, a critical point is the estimation of the covariance and crosscovariance matrices, involving some quadratures that are obtained using some simplified approach. The method was applied to a synthetic field displaying statistical anisotropy, showing that the use of connectivity indicators mixed with the local values provide a better representation of the local value map, in particular regarding the enhanced representation of the continuity of structures corresponding to either high or low values.

  17. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    Science.gov (United States)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  18. Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies

    KAUST Repository

    Bucs, Szilard

    2015-07-10

    Systematic laboratory studies on membrane biofouling require experimental conditions that are well defined and representative for practice. Hydrodynamics and flow rate variations affect biofilm formation, morphology, and detachment and impacts on membrane performance parameters such as feed channel pressure drop. There is a suite of available monitors to study biofouling, but systems to operate monitors have not been well designed to achieve an accurate, constant water flow required for a reliable determination of biomass accumulation and feed channel pressure drop increase. Studies were done with membrane fouling simulators operated in parallel with manual and automated flow control, with and without dosage of a biodegradable substrate to the feedwater to enhance biofouling rate. High flow rate variations were observed for the manual water flow system (up to ≈9%) compared to the automatic flow control system (<1%). The flow rate variation in the manual system was strongly increased by biofilm accumulation, while the automatic system maintained an accurate and constant water flow in the monitor. The flow rate influences the biofilm accumulation and the impact of accumulated biofilm on membrane performance. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. Stable and accurate feedwater flow rates are essential for biofouling studies in well-defined conditions in membrane systems. © 2015 Balaban Desalination Publications. All rights reserved.

  19. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  20. Endothelial biocompatibility and accumulation of SPION under flow conditions

    International Nuclear Information System (INIS)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan; Nowak, Johannes; Odenbach, Stefan; Alexiou, Christoph; Cicha, Iwona

    2015-01-01

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0–60 µg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions

  1. Endothelial biocompatibility and accumulation of SPION under flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany); Nowak, Johannes; Odenbach, Stefan [Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden (Germany); Alexiou, Christoph [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany); Cicha, Iwona, E-mail: Iwona_Cicha@yahoo.com [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany)

    2015-04-15

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0–60 µg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions.

  2. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  3. Safety analysis of switching between reductive and oxidative conditions in a reaction coupling reverse flow reactor.

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    A new reverse flow reactor is developed where endothermic reactants (propane dehydrogenation) and exothermic reactants (fuel combustion) are fed sequentially to a monolithic catalyst, while periodically alternating the inlet and outlet positions. Upon switching from reductive to oxidative conditions

  4. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  5. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  6. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    Science.gov (United States)

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  7. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    International Nuclear Information System (INIS)

    Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam

    2012-01-01

    Highlights: ► Mass transfer downstream of orifices was numerically and experimentally investigated. ► The surface wear pattern is measured and used to validate the present numerical results. ► The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. ► The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. ► The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO 4 ·½H 2 O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice. The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. The current study found to offer very

  8. Assessment of Environmental Flows under Human Intervention and Climate Change Conditions in a Mediterranean Watershed

    Science.gov (United States)

    Yilmaz, M. T.; Alp, E.; Aras, M.; Özaltın, A. M.; Sarıcan, Y.; Afsar, M.; Bulut, B.; Ersoy, E. N.; Karasu, İ. G.; Onen, A.

    2017-12-01

    Allocation of the river flow for ecosystems is very critical for sustainable management of ecosystems containing aquatic habitats in need of more water than other environments. Availability and allocation of water over such locations becomes more stressed as a result of the influence of human interventions (e.g., increased water use for irrigation) and the expected change in climate. This study investigates the current and future (until 2100) low-flow requirements over 10 subcatchments in a Mediterranean Watershed, in Turkey, using Tennant and hydrological low-flow methods. The future river flows are estimated using HBV model forced by climate projections obtained by HADGEM2, MPI-ESM-MR, and CNRM-CM5.1 models coupled with RegCM4.3 under RCP 4.5 and RCP 8.5 emission scenarios. Critical flows (i.e., Q10, Q25, Q50) are calculated using the best fit to commonly used distributions for the river flow data, while the decision between the selection of Q10, Q25, Q50 critical levels are made depending on the level of human interference made over the catchment. Total three low-flow requirement estimations are obtained over each subcatchment using the Tennant (two estimates for the low and high flow seasons for environmentally good conditions) and the hydrological low-flow methods. The highest estimate among these three methods is selected as the low-flow requirement of the subcatchment. The river flows over these 10 subcatchments range between 197hm3 and 1534hm3 while the drainage areas changing between 936 and 4505 km2. The final low-flow estimation (i.e., the highest among the three estimate) for the current conditions range between 94 hm3 and 715 hm3. The low-flow projection values between 2075 and 2099 are on average 39% lower than the 2016 values, while the steepest decline is expected between 2050 and 2074. The low flow and high flow season Tennant estimates dropped 22-25% while the hydrological method low-flow estimates dropped 32% from 2016 to 2075-2099 average, where

  9. Validation of a CFD code for Unsteady Flows with cyclic boundary Conditions

    International Nuclear Information System (INIS)

    Kim, Jong-Tae; Kim, Sang-Baik; Lee, Won-Jae

    2006-01-01

    Currently Lilac code is under development to analyze thermo-hydraulics of a high-temperature gas-cooled reactor (GCR). Interesting thermo-hydraulic phenomena in a nuclear reactor are usually unsteady and turbulent. The analysis of the unsteady flows by using a three dimension CFD code is time-consuming if the flow domain is very large. Hopefully, flow domains commonly encountered in the nuclear thermo-hydraulics is periodic. So it is better to use the geometrical characteristics in order to reduce the computational resources. To get the benefits from reducing the computation domains especially for the calculations of unsteady flows, the cyclic boundary conditions are implemented in the parallelized CFD code LILAC. In this study, the parallelized cyclic boundary conditions are validated by solving unsteady laminar and turbulent flows past a circular cylinder

  10. Conversion Method of the Balance Test Results in Open Jet Tunnel on the Free Flow Conditions

    Directory of Open Access Journals (Sweden)

    V. T. Bui

    2015-01-01

    Full Text Available The paper considers a problem of sizing a model and converting the balance test results in the low speed open-jet wind tunnel to free-flow conditions. The ANSYS Fluent commercial code performs flow model calculations in the test section and in the free flow, and the ANSYS ICEM CFD module is used to provide grid generation. A structured grid is generated in the free flow and an unstructured one is provided in the test section. The changes of aerodynamic coefficients are determined at the different values of the blockage factor for the segmental-conical and hemisphere cylinder-cone shapes of the model. The blockage factor values are found at which the interference of the test section – model is neglected. The paper presents a technique to convert the wind tunnel test results to the free flow conditions.

  11. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    Science.gov (United States)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  12. Qualitative analysis of intracranial CSF flow on cine-MR imaging, with special reference to signal ratio of CSF to fat tissue

    International Nuclear Information System (INIS)

    Kadowaki, Chikafusa; Hara, Mitsuhiro; Numoto, Mitsuo; Takeuchi, Kazuo; Saito, Isamu

    1993-01-01

    Cine magnetic resonance images (MR) dramatically demonstrate the pulsatile flow of cerebrospinal fluid (CSF) stimulated by the pulsatile motion of the brain following cardiac pulsation. Reduced signal intensity, frequently observed especially in the aqueduct of Sylvius, the third ventricle and the fourth ventricle, is believed to reflect the pulsatile motion of the CSF. Qualitative analysis of MR signal intensity of CSF on each cine frame is compared with CSF flow within the ventricles on real-time cine MR images. While the chronological changes in signal intensities of CSF within the ventricles show only marginal changes in signal intensity in the third ventricle related to downward flow of CSF passing through the foramen of Monro during the early stage of cardiac systole, these changes are thought to have no significant correlation with the CSF flow in the CSF pathway. The chronological changes in relative signal ratios, SR [signal intensities of CSF/signal intensities of fat] can show CSF flow and turbulence within the ventricles. Under normal conditions, within the third ventricle the SR decreases due to pulsatile CSF flow through the foramen of Monro during the early stage of cardiac systole, and decreases because of the flow of CSF from the anterior to the posterior part of the third ventricle, the downward flow of CSF through the aqueduct leads to a lower SR during cardiac diastole. These changes in the fourth ventricle are stimulated by the changes in SR in the third ventricle. The new method of analyzing chronological changes in the relative MR signal ratio of CSF to fat [SR] has the distinct advantage of providing an accurate evaluation of CSF dynamics, and it provides us with important diagnostic information leading to clarification of the pathophysiology of CSF dynamics. (author)

  13. Imaging findings of pulsatile tinnitus caused by sigmoid sinus abnormalities

    International Nuclear Information System (INIS)

    Liang Xihong; Wang Zhenchang; Gong Shusheng; Xia Yin; Wang Zhengyu; Yang Bentao; Yan Fei; Li Jing; Xian Junfang; Chen Guangli

    2010-01-01

    Objective: To study a rare CT finding of pulsatile tinnitus (PT) caused by sigmoid sinus abnormalities. Methods: The imaging data of PT caused by sigmoid sinus abnormalities were analyzed retrospectively in 15 patients (15 female). The median age was 45 years (24 to 63 years). The duration of persistence pulsatile tinnitus was from 0.5 year to 36.0 years (median time, 2.0 years). The tinnitus was at left side in 5 patients and right side in 10 patients. Fifteen patients underwent HRCT of the temporal bone. Of them, 12 patients underwent cerebral CT angiography and CT venogram (CTA/CTV), and 9 patients underwent cerebral digital subtraction angiography (DSA). Nine patients underwent transmastoid reconstruction surgery of the sigmoid sinus. Of them, the tinnitus was at left side in 2 patients and right side in 7 patients. Paired rank sum test was used to compare the cross-sectional area of the sigmoid sinus of the tinnitus side and normal side.Results: On HRCT, foca bony coarse defect is shown in the anterior sigmoid wall in 11 patients and anterolateral sigmoid wall in 4 patients. On CTA/CTV, the sigmoid sinus focally protuded into the adjacent mastoid air cells and formed diverticulum in 10 patients. The pulsatile tinnitus disappeared immediately after transmastoid reconstruction surgery of the sigmoid sinus in all 9 patients. The cross-sectional area of the sigmoid sinus of the tinnitus side was 100.6 (41.5-96.2)mm 2 , it was 77.0 (92.1-122.4)mm 2 in the nonmal side (Z=2.158, P=0.031). Conclusion: Focal bony defect of the sigmoid wall with sigmoid sinus diverticula is one of the causes which lead to pulsatile tinnitus, which can be easily identified by imaging examination. (authors)

  14. Imaging findings of pulsatile tinnitus caused by sigmoid sinus abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Xihong, Liang; Zhenchang, Wang; Shusheng, Gong; Yin, Xia; Zhengyu, Wang; Bentao, Yang; Fei, Yan; Jing, Li; Junfang, Xian; Guangli, Chen [Department of Radiology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing (China)

    2010-04-15

    Objective: To study a rare CT finding of pulsatile tinnitus (PT) caused by sigmoid sinus abnormalities. Methods: The imaging data of PT caused by sigmoid sinus abnormalities were analyzed retrospectively in 15 patients (15 female). The median age was 45 years (24 to 63 years). The duration of persistence pulsatile tinnitus was from 0.5 year to 36.0 years (median time, 2.0 years). The tinnitus was at left side in 5 patients and right side in 10 patients. Fifteen patients underwent HRCT of the temporal bone. Of them, 12 patients underwent cerebral CT angiography and CT venogram (CTA/CTV), and 9 patients underwent cerebral digital subtraction angiography (DSA). Nine patients underwent transmastoid reconstruction surgery of the sigmoid sinus. Of them, the tinnitus was at left side in 2 patients and right side in 7 patients. Paired rank sum test was used to compare the cross-sectional area of the sigmoid sinus of the tinnitus side and normal side.Results: On HRCT, foca bony coarse defect is shown in the anterior sigmoid wall in 11 patients and anterolateral sigmoid wall in 4 patients. On CTA/CTV, the sigmoid sinus focally protuded into the adjacent mastoid air cells and formed diverticulum in 10 patients. The pulsatile tinnitus disappeared immediately after transmastoid reconstruction surgery of the sigmoid sinus in all 9 patients. The cross-sectional area of the sigmoid sinus of the tinnitus side was 100.6 (41.5-96.2)mm{sup 2}, it was 77.0 (92.1-122.4)mm{sup 2} in the nonmal side (Z=2.158, P=0.031). Conclusion: Focal bony defect of the sigmoid wall with sigmoid sinus diverticula is one of the causes which lead to pulsatile tinnitus, which can be easily identified by imaging examination. (authors)

  15. Gravity-driven, dry granular flows over a loose bed in stationary and homogeneous conditions

    Science.gov (United States)

    Meninno, Sabrina; Armanini, Aronne; Larcher, Michele

    2018-02-01

    Flows involving solid particulates have been widely studied in recent years, but their dynamics are still a complex issue to model because they strongly depend on the interaction with the boundary conditions. We report on laboratory investigations regarding homogeneous and steady flows of identical particles over a loose bed in a rectangular channel. Accurate measurements were carried out through imaging techniques to estimate profiles of the mean velocity, solid concentration, and granular temperature for a large set of flow rates and widths. Vertical and transversal structures observed in the flow change as interparticle interactions become more collisional, and they depend on the bottom over which the flow develops. The lateral confinement has a remarkable effect on the flow, especially for narrow channels compared with the grain size, and a hydraulic analogy is able to show how the walls influence the mechanisms of friction and energy dissipation.

  16. Closing in on the Mechanisms of Pulsatile Insulin Secretion.

    Science.gov (United States)

    Bertram, Richard; Satin, Leslie S; Sherman, Arthur S

    2018-03-01

    Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca 2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca 2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca 2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets. © 2018 by the American Diabetes Association.

  17. Development of a gastroretentive pulsatile drug delivery platform.

    Science.gov (United States)

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  18. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  19. Reference ranges for uterine artery pulsatility index during the menstrual cycle: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Luís Guedes-Martins

    Full Text Available Cyclic endometrial neoangiogenesis contributes to changes in local vascular patterns and is amenable to non-invasive assessment with Doppler sonography. We hypothesize that the uterine artery (UtA impedance, measured by its pulsatility index (PI, exhibits a regular pattern during the normal menstrual cycle. Therefore, the main study objective was to derive normative new day-cycle-based reference ranges for the UtA-PI during the entire cycle from days 1 to 34 according to the isolated time effect and potential confounders such as age and parity.From January 2009 to December 2012, a cross-sectional study of 1,821 healthy women undergoing routine gynaecological ultrasound was performed. The Doppler flow of the right and left UtA-PI was studied transvaginally by colour and pulsed Doppler imaging. The mean right and left values and the presence or absence of a bilateral protodiastolic notch were recorded. Reference intervals for the PI according to the cycle day were generated by classical linear regression.The majority of patients (97.5% presented unilateral or bilateral UtA notches. The crude 5th, 50th, and 95th reference percentile curves of the UtA-PI at 1-34 days of the normal menstrual cycle were derived. In all curves, a progressive significant decrease occurred during the first 13 days, followed by an increase and recovery in the UtA-PI. The adjusted 5th, 50th, and 95th reference percentile curves for the effects of age and parity were also obtained. These two conditions generated an approximately identical UtA-PI pattern during the cycle, except with small but significant reductions at the temporal extremes.The median, 5th, and the 95th percentiles of the UtA-PI decrease during the first third of the menstrual cycle and recover to their initial values during the last two thirds of the cycle. The rates of decrease and recovery depend significantly on age and parity.

  20. Analysis of reverse flow in inverted U-tubes of steam generator under natural circulation condition

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Liu Jinggong; Qin Shiwei

    2008-01-01

    In this paper, we report on the analysis of reverse flow in inverted U-tubes of a steam generator under natural circulation condition. The mechanism of reverse flow in inverted U-tubes of the steam generator with natural circulation is graphically analyzed by using the full-range characteristic curve of parallel U-tubes. The mathematical model and numerical calculation method for analyzing the reverse flow in inverted U-tubes of the steam generator with natural circulation have been developed. The reverse flow in an inverted U-tube steam generator of a simulated pressurized water reactor with natural circulation in analyzed. Through the calculation, the mass flow rates of normal and reverse flows in individual U-tubes are obtained. The predicted sharp drop of the fluid temperature in the inlet plenum of the steam generator due to reverse flow agrees very well with the experimental data. This indicates that the developed mathematical model and solution method can be used to correctly predict the reverse flow in the inverted U-tubes of the steam generator with natural circulation. The obtained results also show that in the analysis of natural circulation flow in the primary circuit, the reverse flow in the inverted U-tubes of the steam generator must be taken into account. (author)

  1. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-09-01

    This communication addresses the magnetohydrodynamic (MHD) three dimensional flow of Sisko nanofluid bounded by a surface stretched bidirectionally. Nanofluid model includes the Brownian motion and thermophoresis. Heat transfer through convective condition is discussed. Developed condition with the zero nanoparticles mass flux at the surface is implemented. The governing problems subject to boundary layer approximations are computed for the convergent series solutions. Effects of interesting flow parameters on the temperature and nanoparticles concentration distributions are studied and discussed. Skin friction coefficients and the local Nusselt number are computed and analyzed. - Highlights: • Three-dimensional flow of Sisko nanofluid is modeled. • Uniform applied magnetic field is adopted. • Brownian motion and thermophoresis effects are accounted. • Heat transfer convective condition is utilized. • Recently constructed condition with zero nanoparticles mass flux is implemented.

  2. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  3. The pulsatility index and the resistive index in renal arteries. Associations with long-term progression in chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Talleruphuus, U

    1997-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurements of downstream renal artery resistance. PI and RI have been found to correlate with renal vascular resistance, filtration fraction and effective renal plasma flow in chronic renal failure. The aim...... of the present study was to evaluate the potential relationship between these indices and the rate of decline in renal function, as reflected by changes in different parameters of renal function in patients with chronic renal failure....

  4. Investigation on premature occurrence of critical heat flux under oscillatory flow and power conditions

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Dasgupta, A.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Two-phase natural circulation loops have extensive applications in nuclear and process industries. One of the major concerns with natural circulation is the occurrence of the various types of flow instabilities, which can cause premature boiling crisis due to flow and power oscillations. In this work a transient computer code COPCOS (Code for Prediction of CHF under Oscillating flow and power condition) has been developed to predict the premature occurrence of CHF (critical heat flux) under oscillating flow and power. The code incorporates conduction equation of the fuel and coolant energy equation. For CHF prediction, CHF look-up table developed by Groeneveld is used. A facility named CHF and Instability Loop (CHIL) has been set up to study the effect of oscillatory flow on CHF. CHF and Instability Loop (CHIL) is a simple rectangular loop having a 10.5 mm ID and 1.2 m long test section. The flow through the test section is controlled by a canned motor pump using a Variable Frequency Drive (VFD). This leads to the ability of having a very precise control over flow oscillations which can be induced in the test section. The effect of frequency and amplitude of flow oscillation on occurrence of premature CHF has been investigated in this facility using COPCOS. Full paper covers details of COPCOS code, description of the facility and effect of frequency and the effect of oscillatory flow on CHF in the facility. (author)

  5. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  6. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  7. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)

    2004-05-01

    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  8. Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity

    International Nuclear Information System (INIS)

    Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2015-01-01

    Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)

  9. Theoretical analysis of effect of ocean condition on natural circulation flow

    International Nuclear Information System (INIS)

    Gong Houjun; Yang Xingtuan; Jiang Shengyao; Liu Zhiyong

    2010-01-01

    According to the simulation loop of Integrated natural circulation reactor,the mathematical model of natural circulation in non-inertial reference system is established, and the influence mechanism of ocean condition upon natural circulation is analyzed. Software is programmed to investigate the behaviors in the cases of rolling without heating power, static state with different power and rolling with heating power, and calculation results show that: the inertia force added by rolling causes the periodical fluctuating of the flow rate of channels, but it is not the direct reason of core flow fluctuation. The heave changes the driving head, and causes the same flow rate fluctuation of all channels. Inclining makes the core flow rate decrease, but the change of flow rate of different channels is different.(authors)

  10. Application of a film flow model to predicting burnout under transient conditions

    International Nuclear Information System (INIS)

    Leslie, D.C.; Kirby, G.J.

    1967-08-01

    The film flow model developed previously has been generalised to transient situations by assuming that only convection is changed by the transient; evaporation, deposition and entrainment are assumed to be unaffected. A computer code TRABUT computes the time behaviour of the mass velocity and the quality by the method of characteristics, and then integrates the film flow equations along the same characteristics until the point of burn-out or zero film flow is reached. The time delay between the onset of a transient and burn-out has been computed both for flux and flow transients. These computations have been compared with those made using the standard local conditions hypothesis. The film flow model gives shorter delays in almost all cases, but the difference would not be detectable with present experimental techniques. (author)

  11. Effects of Packed Structure and Operation Conditions on Liquid Flow Behavior in Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Hong, Jun; Zhang, Jianliang; Zheng, Jin

    The circulating flow of molten iron is an important reason that results in the erosion of blast furnace hearth. In order to prolong the campaign life of blast furnace, it is necessary to analysis the flow state of molten iron. The three-dimensional mathematical model at steady state which takes the standard k-e and porous zone model into consideration is applied to simulate the flow field under different conditions. The results showed that floating of the deadman did strengthen molten iron circulating flow. Increasing the deadman diameter will increase the erosion of hearth and bottom. Deepen the depth of the taphole and reduce the taphole diameter can reduce the circulating flow. Effect of the taphole angle from 10° to 15° is not significant. The results can be used to provide guidance for protecting the blast furnace hearth.

  12. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  13. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  14. Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions

    Science.gov (United States)

    2016-04-26

    domain used in our thrombus formation simulations. Fig. 2 B shows the 3D geometry of the flow-chamber section consisting of two channels measuring 250 60...ArticleComputational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow ConditionsVijay Govindarajan,1 Vineet Rakesh,1 Jaques...understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to

  15. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  16. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)

    2007-02-15

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  17. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    International Nuclear Information System (INIS)

    Kellner, Erik

    2007-02-01

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  18. Prediction of flow recirculation in a blanket assembly under worst-case natural-convection conditions

    International Nuclear Information System (INIS)

    Khan, E.U.; Rector, D.R.

    1982-01-01

    Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient

  19. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.

    1990-01-01

    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  20. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  1. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries.

    Science.gov (United States)

    Fayssal, Iyad A; Moukalled, Fadl; Alam, Samir; Isma'eel, Hussain

    2018-04-01

    This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the "functional significance" of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

  2. Adverse Condition and Critical Event Prediction in Cranfield Multiphase Flow Facility

    DEFF Research Database (Denmark)

    Egedorf, Søren; Shaker, Hamid Reza

    2017-01-01

    , or even to the environment. To cope with these, adverse condition and critical event prediction plays an important role. Adverse Condition and Critical Event Prediction Toolbox (ACCEPT) is a tool which has been recently developed by NASA to allow for a timely prediction of an adverse event, with low false...... alarm and missed detection rates. While ACCEPT has shown to be an effective tool in some applications, its performance has not yet been evaluated on practical well-known benchmark examples. In this paper, ACCEPT is used for adverse condition and critical event prediction in a multiphase flow facility....... Cranfield multiphase flow facility is known to be an interesting benchmark which has been used to evaluate different methods from statistical process monitoring. In order to allow for the data from the flow facility to be used in ACCEPT, methods such as Kernel Density Estimation (KDE), PCA-and CVA...

  3. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  4. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    DEFF Research Database (Denmark)

    Feenstra, T.; Schmidt Thøgersen, Mariane; Wieser, E.

    2017-01-01

    H mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial...... adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study...... mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel...

  5. Pulsatility index variations using two different transit-time flowmeters in coronary artery bypass surgery.

    Science.gov (United States)

    Nordgaard, Håvard B; Vitale, Nicola; Astudillo, Rafael; Renzulli, Attilio; Romundstad, Pål; Haaverstad, Rune

    2010-05-01

    Transit-time flow measurement is widely accepted as an intra-operative assessment in coronary artery bypass grafting (CABG). However, the two most commonly applied flowmeters, manufactured by MediStim ASA and Transonic Inc., have different default filter settings of 20 and 10 Hz, respectively. This may cause different flow measurements, which will influence the reported results. The aim was to compare pulsatility index (PI) values recorded by the MediStim and Transonic flowmeters in two different clinical settings: (1) analysis of the flow patterns recorded simultaneously by both flowmeters in the same CABGs; and (2) evaluation of flow patterns under different levels of filter settings in the same grafts. Graft flow and PI were measured using the two different flowmeters simultaneously in 19 bypass grafts. Finally, eight grafts were assessed under different digital filter settings at 5, 10, 20, 30, 50 and 100 Hz. The Transonic flowmeter provided substantially lower PI as compared with the MediStim flowmeter. By increasing the filter setting in the flowmeter, PI increased considerably. The Transonic flowmeter displayed a lower PI than the MediStim, due to a lower filter setting. In the Transonic,flow signals are filtered at a lower level, rendering a 'smoother' pattern of flow curves. Because different filter settings determine different PIs, caution must be taken when flow values and flowmeters are compared. The type of flowmeter should be indicated whenever graft flow measurements and derived indexes are provided [corrected]. Copyright 2009 European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu

    2017-01-01

    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  7. An analysis of critical flow for steam and water extending to supercritical conditions with experimental validation

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1985-01-01

    The basic method used in this paper for establishing the critical flow of a water steam mixture including subcooled water conditions, the quality range and superheated steam conditions has already been reported and the methods are once more summarised in the next section. These methods can be extended to any fluid and results have been reported for Freon and dissociating NO/sub 2/. If an extended or complex length of pipe is involved before the position where critical flow is established, a more elaborate method is required which involves establishing the losses down the pipe. A code RAPVOID is available for analysing such cases

  8. Flow conditioning for improved optical propagation of beams through regions bounded by surfaces of high solidity

    International Nuclear Information System (INIS)

    Robey, H.F.; Albrecht, G.F.; Freitas, B.L.

    1991-01-01

    A flow conditioning system has been designed to maximize the thermal homogeneity in an enclosed region through which a laser beam must propagate. In the present application, such an enclosed region exists between the Nd:glass disks of a high average power solid-state laser amplifier. Experiments have been conducted on a test facility to quantify the magnitude of the beam losses due to thermal scattering. It is shown that the intensity of the incoherent light which is thermally scattered from this region can be reduced to less than 0.1% of the incident-beam intensity under apropriate flow and cooling conditions

  9. Leaching of radioactive waste forms under saturated and unsaturated flow conditions

    International Nuclear Information System (INIS)

    Petelka, M.F.

    1987-01-01

    To predict the environmental impact of shallow land burial sites for radioactive waste, the mobilization and migration of waste nuclides must be estimated. The theoretical understanding that in potential leaching mechanisms leach-rate variations may arise from changes in both moisture content and volumetric flow rate was tested in column flow leach experiments using labeled vermiculite particles as a simulated waste form. As far as possible, conditions of flow rate and solution ion concentration were chosen to roughly approximate expected field conditions. A modified pressure-plate apparatus was developed, tested, and found suitable for the production of steady-state unsaturated conditions with leachate flow. Water content was determined using the gamma-ray attenuation method. The effects of several parameters on leaching were studied, including moisture content and pore velocity. Pore velocity effects were found to be negligible. It was found that the leach rate depends on the fraction of the exposed waste surface that is wetted and varies with the mobile water content in a non-linear fashion. The experimental results indicate that the release rate of radionuclides placed within a properly sited low-level waste disposal site may be two to three times smaller than that predicted assuming saturated conditions. This study was performed using a homogeneous fine-grained synthetic waste form, at room temperature, with a near neutral pH leachant and oxidizing conditions

  10. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    Science.gov (United States)

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P correlation coefficient between the young, healthy group and the other two groups. A significant difference (P correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  11. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  12. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  13. A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui

    2016-01-01

    This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...

  14. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  15. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    International Nuclear Information System (INIS)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal; Jansson, Peter

    2012-11-01

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  16. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  17. Nonlinear vortex structures and Rayleigh instability condition in shear flow plasmas

    International Nuclear Information System (INIS)

    Haque, Q.; Saleem, H.; Mirza, A.M.

    2009-01-01

    Full text: It is shown that the shear flow produced by externally applied electric field can unstable the drift waves. Due to shear flow, the Rayleigh instability condition is modified, which is obtained for both electron-ion and electron-positron-ion plasmas. These shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime, the stationary structures may appear in electron-positron-ion plasmas similar to electron-ion plasmas. The nonlinear vortex structures like counter rotating dipole vortices and vortex chains can be formed with the aid of special type of shear flows. The positrons can be used as a probe in laboratory plasmas, which make it a multi-component plasma. The presence of positrons in electron-ion plasma system can affect the speed and amplitude of the nonlinear vortex structures. This investigation can have application in both laboratory and astrophysical plasmas. (author)

  18. Modeling flows of heterogeneous media in pipelines when substantiating operating conditions of hydrocarbon field transportation systems

    Science.gov (United States)

    Dudin, S. M.; Novitskiy, D. V.

    2018-05-01

    The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.

  19. Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release.

    Science.gov (United States)

    Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao

    2017-11-01

    The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain relatively in an ideal and safe situation. Copyright © 2017. Published by Elsevier Ltd.

  20. Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.

  1. Flow behavior of volume-heated boiling pools: implications with respect to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1979-01-01

    Observations of two-phase flow fields in single-component volume-heated boiling pools were made. Photographic observations, together with pool-average void fraction measurements, indicate that the churn-turbulent flow regime is stable for superficial vapor velocities up to nearly five times the Kutateladze dispersal limit. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. An extrapolation of the data to transition phase accident conditions suggests that intense boilup could occur where the pool-average void fraction would be >0.6 for steel vaporization rates equivalent to power levels >1% of nominal liquid-metal fast breeder reactor power density. The extended stability of bubbly flow to unusually large vapor fluxes and void fractions, observed in some experiments, is a major unresolved issue

  2. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  3. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    Science.gov (United States)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  4. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  5. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  6. Volume-heated boiling pool flow behavior and application to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1978-01-01

    Observations of two-phase flow fields in volume-heated boiling pools are reported. Photographic observations, together with pool-average void fraction measurements are presented. Flow regime transition criteria derived from the measurements are discussed. The churn-turbulent flow regime was the dominant regime for superficial vapor velocities up to nearly five times the Kutateladze dispersal velocity. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. The results of the experiment and analyses are extrapolated to transition phase conditions. It is shown that intense pool boil-up could occur where the pool-average void fraction would be greater than 0.6 for steel vaporization rates equivalent to power levels greater than one percent of nominal LMFBR power density

  7. Pulsatile luteinising hormone releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; Vandekerckhove, P.; Lilford, R.; van der Veen, F.

    2000-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intra-venous or subcutaneous route using a portable pump has been used successfully in

  8. Pulsatile gonadotrophin releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; van der Veen, F.

    2004-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intravenous or subcutaneous route using a portable pump has been used successfully in

  9. Predicting the onset of dynamic instability of a cylindrical plate under axial flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A semi-numerical flow induced vibration model is developed of a cylindrical plate. Black-Right-Pointing-Pointer Test case results are presented and agree well with previous studies data. Black-Right-Pointing-Pointer The model identifies a relationship between forces and the plate natural frequency. - Abstract: The dynamic mechanical stability of a single cylindrical plate under flow conditions is considered herein. Numerous plate-type research reactors such as the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) comprise fuel elements which contain arrays of concentrically aligned cylindrical plates. Several of these reactors are licensed to operate at extreme heat fluxes; as a corollary their hydraulic designs require large flow rates sufficient to remove this heat. These flow rates may reach superficial velocities upwards of 15 m/s through individual flow channels. Given that fuel plates typically found in such research reactors are relatively long ({approx}1.2573 m), wide ({approx}0.1397 m), and extremely thin ({approx}0.00127 m) concern is drawn toward the susceptibility of flow induced vibration (FIV). In an attempt to gain a more comprehensive understanding toward the dynamic mechanical limit of stability of cylindrical plates, a FIV model was developed using semi-numerical methods. The FIV model was developed in two separate modules; a plate stability module, and a flow module. These modules were then coupled together to produce a FIV model. In this study, a set of test cases are presented on the plate stability module under free vibration conditions, comparing well against known available information from previous studies. Results are similarly presented on the flow module and compared against a RELAP5-3D model. Lastly, results of these coupled modules are presented and discussion is given toward the relationship between plate natural frequency, geometry, and plate membrane pressures.

  10. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  11. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  12. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    Science.gov (United States)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  13. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.

    Science.gov (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez

    2017-07-26

    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  14. Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel

    NARCIS (Netherlands)

    Moonen, P.; Blocken, B.J.E.; Roels, S.; Carmeliet, J.E.

    2006-01-01

    A methodology for numerically simulating the flow conditions in closed-circuit wind tunnels is developed as a contribution to the general philosophy of incorporating Computational Fluid Dynamics (CFD) in wind tunnel design and testing and to CFD validation studies. The methodology is applied to the

  15. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution....

  16. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  17. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  18. Effect of Varying Hemodynamic and Vascular Conditions on Fractional Flow Reserve: An In Vitro Study.

    Science.gov (United States)

    Kolli, Kranthi K; Min, James K; Ha, Seongmin; Soohoo, Hilary; Xiong, Guanglei

    2016-06-30

    The aim of this study was to investigate the impact of varying hemodynamic conditions on fractional flow reserve (ratio of pressure distal [Pd] and proximal [Pa] to stenosis under hyperemia) in an in vitro setting. Failure to achieve maximal hyperemia and the choice of hyperemic agents may have differential effects on coronary hemodynamics and, consequently, on the determination of fractional flow reserve. An in vitro flow system was developed to experimentally model the physiological coronary circulation as flow-dependent stenosis resistance in series with variable downstream resistance. Five idealized models with 30% to 70% diameter stenosis severity were fabricated using VeroClear rigid material in an Objet260 Connex printer. Mean aortic pressure was maintained at 7 levels (60-140 mm Hg) from hypotension to hypertension using a needle valve that mimicked adjustable microcirculatory resistance. A range of physiological flow rates was applied by a steady flow pump and titrated by a flow sensor. The pressure drop and the pressure ratio (Pd/Pa) were assessed for the 7 levels of aortic pressure and differing flow rates. The in vitro experimental data were coupled with pressure-flow relationships from clinical data for populations with and without myocardial infarction, respectively, to evaluate fractional flow reserve. The curve for pressure ratio and flow rate demonstrated a quadratic relationship with a decreasing slope. The absolute decrease in fractional flow reserve in the group without myocardial infarction (with myocardial infarction) was on the order of 0.03 (0.02), 0.05 (0.02), 0.07 (0.05), 0.17 (0.13) and 0.20 (0.24), respectively, for 30%, 40%, 50%, 60%, and 70% diameter stenosis, for an increase in aortic pressure from 60 to 140 mm Hg. The fractional flow reserve value, an index of physiological stenosis significance, was observed to decrease with increasing aortic pressure for a given stenosis in this idealized in vitro experiment for vascular

  19. Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A., E-mail: ono.ayako@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan); Kimura, N.; Kamide, H.; Tobita, A. [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan)

    2011-11-15

    In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2 Multiplication-Sign 10{sup 7}. Moreover, a short-elbow is adopted in the hot leg pipe in order to achieve compact plant layout and to reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation source which is caused by the pressure fluctuation in the pipe. The pressure fluctuation in the pipe is closely related with the velocity fluctuation. As the first step of clarification of the FIV mechanism, it is important to grasp the mechanism of flow fluctuation in the elbow. In this study, water experiments with two types of elbows with different curvature ratios were conducted in order to investigate the interaction between flow separation and the secondary flow due to the elbow curvature. The experiments were conducted with the short-elbow and the long-elbow under Re = 1.8 Multiplication-Sign 10{sup 5} and 5.4 Multiplication-Sign 10{sup 5} conditions. The velocity fields in the elbows were measured using a high-speed Particle Image Velocimetry (PIV). The time-series of axial velocity fields and the cross-section velocity fields obtained by the high-speed PIV measurements revealed the unsteady and complex flow structure in the elbow. The flow separation always occurred in the short-elbow while the flow separation occurred intermittently in the long-elbow case. The circumferential secondary flows in clockwise and counterclockwise directions flowed forward downstream of reattachment point alternately in both elbows.

  20. Calculation of local flow conditions in the lower core of a PWR with code-Saturne

    International Nuclear Information System (INIS)

    Fournier, Y.

    2003-01-01

    In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit

  1. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions

    OpenAIRE

    Jodeau , M.; Hauet , A.; Paquier , A.; Le Coz , J.; Dramais , G.

    2008-01-01

    Large Scale Particle Image Velocimetry (LS-PIV) is used to measure the surface flow velocities in a mountain stream during high flow conditions due to a reservoir release. A complete installation including video acquisition from a mobile elevated viewpoint and artificial flow seeding has been developed and implemented. The LS-PIV method was adapted in order to take into account the specific constraints of these high flow conditions. Using a usual LS-PIV data processing, significant variations...

  2. Induction of pulsatile secretion of leptin in horses following thyroidectomy.

    Science.gov (United States)

    Buff, Preston R; Messer, Nat T; Cogswell, Andria M; Wilson, David A; Johnson, Philip J; Keisler, Duane H; Ganjam, Venkataseshu K

    2007-02-01

    Endocrine characteristics of Quarter Horse-type mares were determined during a 68 h feed deprivation and again in the same mares following surgical thyroidectomy (THX). A crossover experimental design was implemented, in which mares received brome hay available ad libitum (FED) or were food deprived (RES) for 68 h. Blood samples were collected every 20 min for 48 h, beginning 20 h after the onset of food deprivation. Concentrations of triiodothyronine and thyroxine were undetectable post-THX. Plasma concentrations of thyrotropin were greater post-THX versus pre-THX (P<0 x 001). Plasma concentrations of leptin were greater in the THX FED group than in the THX RES group (P<0 x 01). The existence of leptin pulse secretion was found only in post-THX compared with the same horses pre-THX (P=0 x 02). We theorize that non-pulsatile secretion of leptin may have contributed to the survival of this species, as it evolved in the regions of seasonal availability of food. Lack of pulsatile secretion of leptin may contribute to the accumulation of energy stores by modulating leptin sensitivity.

  3. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    Jackson, J.D.; Li, J.

    2002-01-01

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  4. Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions

    International Nuclear Information System (INIS)

    Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.

    1984-01-01

    The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)

  5. Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions

    Science.gov (United States)

    Flack, Karen; Lust, Ethan; Bailin, Ben

    2017-11-01

    Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.

  6. Study on natural circulation flow under reactor cavity flooding condition in advanced PWRs

    International Nuclear Information System (INIS)

    Tao Jun; Yang Jiang; Cao Jianhua; Lu Xianghui; Guo Dingqing

    2015-01-01

    Cavity flooding is an important severe accident management measure for the in-vessel retention of a degraded core by external reactor vessel cooling in advanced PWRs. A code simulation study on the natural circulation flow in the gap between the reactor vessel wall and insulation material under cavity flooding condition is performed by using a detailed mechanistic thermal-hydraulic code package RELAP 5. By simulating of an experiment carried out for studying the natural circulation flow for APR1400 shows that the code is applicable for analyzing the circulation flow under this condition. The analysis results show that heat removal capacity of the natural circulation flow in AP1000 is sufficient to prevent thermal failure of the reactor vessel under bounding heat load. Several conclusions can be drawn from the sensitivity analysis. Larger coolant inlet area induced larger natural circulation flow rate. The outlet should be large enough and should not be submerged by the cavity water to vent the steam-water mixture. In the implementation of cavity flooding, the flooding water level should be high enough to provide sufficient natural circulation driven force. (authors)

  7. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  8. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    Science.gov (United States)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  9. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    Science.gov (United States)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  10. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Conditions for similitude and the effect of finite Debye length in electroosmotic flows.

    Science.gov (United States)

    Oh, Jung Min; Kang, Kwan Hyoung

    2007-06-15

    Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.

  12. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  13. Analytical solutions of couple stress fluid flows with slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Devakar M.

    2014-09-01

    Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.

  14. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    International Nuclear Information System (INIS)

    Brugiere, O; Balarac, G; Corre, C; Metais, O; Flores, E; Pleroy

    2012-01-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  15. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    Science.gov (United States)

    Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy

    2012-11-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  16. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    Szenknect, St.

    2003-10-01

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  17. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  18. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  19. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    International Nuclear Information System (INIS)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L

    2010-01-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  20. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L, E-mail: liaoweili2004@163.co [Institute of Water Resources and Hydro-Electric Engineering, Xi' an University of Technology No.5 South Jinhua Road, Xi' an, Shaanxi, 710048 (China)

    2010-08-15

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  1. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Science.gov (United States)

    Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L.

    2010-08-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  2. Characteristic of local parameter of bubbly flow in rectangular channel under inclined and rolling conditions

    International Nuclear Information System (INIS)

    Yan Changqi; Jin Guangyuan; Sun Licheng; Wang Yang

    2015-01-01

    Characteristics of local parameters of bubbly flow were investigated in rectangular channel (40 mm × 3 mm) under inclined and rolling conditions. Under vertical condition, the distribution type 'wall peak' and 'core peak' are observed, and 'core peak' exists when the liquid superficial velocity is low and the gas superficial velocity is high. Under inclined condition, the peaks of two distribution types get strengthened at the top of the channel, and weakened at the bottom. Under rolling condition, the peaks of two distribution types get strengthened compared with the same angle under inclined condition when the angle is getting larger. The influence from rolling motion gets stronger on the peak of two distribution types when the rolling movement is more violent. (authors)

  3. Experimental Analysis of the Vorticity and Turbulent Flow Dynamics of a Pitching Airfoil at Realistic Flight Conditions

    National Research Council Canada - National Science Library

    Bowersox, Rodney D; Sahoo, Dipankar

    2007-01-01

    The primary objective of this research proposal was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions...

  4. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    KAUST Repository

    Qamar, Adnan; Bull, Joseph L.

    2017-01-01

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological

  5. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    KAUST Repository

    Qamar, Adnan

    2017-06-28

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological

  6. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    International Nuclear Information System (INIS)

    Adesanya, S.O.; Oluwadare, E.O.; Falade, J.A.; Makinde, O.D.

    2015-01-01

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field

  7. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  8. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    International Nuclear Information System (INIS)

    Grubbs, R.K.; George, S.M.

    2006-01-01

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H 2 pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H 2 heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H 2 flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H 2 gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, γ, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes

  9. Investigation of two-phase flow instability under SMART-P core conditions

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Lee, Chung Chan

    2005-01-01

    An integral-type advanced light water reactor, named SMART-P, is being continuously studied at KAERI. The reactor core consists of hundreds of closed-channel type fuel assemblies with vertical upward flows. The upper and lower parts of the fuel assembly channels are connected to the common heads. The constant pressure drop imposed on the channel is responsible for the occurrence of density wave oscillations under local boiling and/or natural circulation conditions. The fuel assembly channel with oscillatory flow is highly susceptible to experience the CHF which may cause the fuel failure due to a sudden increase of the cladding temperature. Thus, prevention of the flow instability is an important criterion for the SMART-P core design. Experimental and analytical studies have been conducted in order to investigate the onset of flow instability (OFI) under SMART core conditions. The parallel channel oscillations were observed in a high pressure water-loop test facility. A linear stability analysis model in the frequency-domain was developed for the prediction of the marginal stability boundary (MSB) in the parallel boiling channels

  10. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  11. On flows of viscoelastic fluids under threshold-slip boundary conditions

    Science.gov (United States)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  12. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    International Nuclear Information System (INIS)

    Xu, H.; Mamou, M.; Khalid, M.

    2004-01-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  13. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2004-07-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  14. Elliptic flow from non-equilibrium initial condition with a saturation scale

    International Nuclear Information System (INIS)

    Ruggieri, M.; Scardina, F.; Plumari, S.; Greco, V.

    2013-01-01

    A current goal of relativistic heavy-ion collisions experiments is the search for a Color Glass Condensate (CGC) as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to estimate 4πη/s∼1, while employing the Kharzeev–Levin–Nardi (KLN) modeling of the glasma leads to at least a factor of 2 larger η/s. Within a kinetic theory approach based on a relativistic Boltzmann-like transport simulation, our main result is that the out-of-equilibrium initial distribution reduces the efficiency in building-up the elliptic flow. At RHIC energy we find the available data on v 2 are in agreement with a 4πη/s∼1 also for KLN initial conditions. More generally, our study shows that the initial non-equilibrium in p-space can have a significant impact on the build-up of anisotropic flow

  15. Multi-condition optimization and experimental study of impeller blades in a mixed-flow pump

    Directory of Open Access Journals (Sweden)

    Houlin Liu

    2016-05-01

    Full Text Available On the basis of design of experiment and numerical simulation, a reliable optimization method for blades of a mixed-flow pump is proposed with the maximum weighted average efficiency at multi-conditions as optimum objective. First, the performance of the model pump was measured and the test results were used to validate the simulation method. To improve the simulation accuracy, the check of the grid independence and the comparison of different turbulence models were done in detail. Then, the method of design of experiment for key geometrical parameters was used to obtain the optimization scheme. The maximum weighted average efficiency of pump at three operation conditions was chosen as optimum objective. The optimum solution was gotten and confirmed by the experiment. The results demonstrate that efficiency of the mixed-flow pump with optimized impeller increases by 3.9%, and the high-efficiency zone is increased from 0.021 to 0.040.

  16. Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow

    International Nuclear Information System (INIS)

    Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.

    2015-01-01

    Highlights: • Bespoke non-adiabatic pressure loss boundary for pulse flow turbine modelling. • Predictions show convincing results against experimental and literature data. • Predicted pulse pressure propagation is in good agreement with literature data. • New methodology is time efficient and requires minimal geometrical inputs. - Abstract: This paper presents a simplified methodology of pulse flow turbine modelling, as an alternative over the meanline integrated methodology outlined in previous work, in order to make its application to engine cycle simulation codes much more straight forward. This is enabled through the development of a bespoke non-adiabatic pressure loss boundary to represent the turbine rotor. In this paper, turbocharger turbine pulse flow performance predictions are presented along with a comparison of computation duration against the previously established integrated meanline method. Plots of prediction deviation indicate that the mass flow rate and actual power predictions from both methods are highly comparable and are reasonably close to experimental data. However, the new boundary condition required significantly lower computational time and rotor geometrical inputs. In addition, the pressure wave propagation in this simplified unsteady turbine model at different pulse frequencies has also been found to be in agreement with data from the literature, thereby supporting the confidence in its ability to simulate the wave action encountered in turbine pulse flow operation

  17. Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD

    Directory of Open Access Journals (Sweden)

    Mohammed El-Adawy

    2017-11-01

    Full Text Available The current study demonstrates an experimental investigation of the tumble flow structures using Particle Image Velocimetry (PIV under steady-state conditions considering the central vertical tumble plane. The experiments were carried out on a four-valve, pent-roof Gasoline Direct Injection (GDI engine head at different valve lifts and with a pressure difference of 150 mmH2O across the intake valves. Furthermore, the Proper Orthogonal Decomposition (POD analytical technique was applied to PIV-measured velocity vector maps to characterize the flow structures at various valve lifts, and hence the different rig tumble values. The results show that at low valve lifts (1 to 5 mm, 48.9 to 46.6% of the flow energy is concentrated in the large (mode 1 eddies with only 8.4 to 11.46% in mode 2 and 7.2 to 7.5 in mode 3. At high valve lifts, it can be clearly seen that some of the energy in the large eddies of mode 1 is transferred to the smaller flow structures of modes 2 and 3. This can be clearly seen at valve lift 10 mm where the values of the flow energy were 40.6%, 17.3%, and 8.0% for modes 1, 2, and 3, respectively.

  18. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios

    2017-09-11

    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  19. Effect of Inhibitors on Weld Corrosion under Sweet Conditions Using Flow Channel

    OpenAIRE

    Khaled Alawadhi; Abdulkareem Aloraier; Suraj Joshi; Jalal Alsarraf

    2014-01-01

    The aim of this paper is to compare the effectiveness and electrochemical behavior of typical oilfield corrosion inhibitors with previous oilfield corrosion inhibitors under the same electrochemical techniques to control preferential weld corrosion of X65 pipeline steel in artificial seawater saturated with carbon dioxide at a pressure of one bar. A secondary aim is to investigate the conditions under which current reversal takes place. A flow channel apparatus was used in the laboratory to s...

  20. Influence of Slip Condition on Unsteady Free Convection Flow of Viscous Fluid with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Sami Ul Haq

    2015-01-01

    Full Text Available The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform technique. Graphical results to see the effects of Prandtl number Pr, time t, and slip parameter η on velocity and skin friction for the case of ramped and constant temperature of the plate are provided and discussed.

  1. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  2. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.

    1963-06-01

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources

  3. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Persson, P

    1963-06-15

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources.

  4. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  5. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative

  6. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Fich, Jens

    2016-01-01

    . The quantity of wear particles in gear oil is analysed with respect to system running conditions. It is shown that the model fits the data in terms of startup “particle burst” phenomenon, quasi-stationary conditions during operation, and clean-up filtration when placed out of operation. In order to establish...... boundary condition for particle burst phenomenon, the release of wear particles from a pleated mesh filter is measured in a test rig and included in the model. The findings show that a dual filter model, with startup phenomenon included, can describe trends in the wear particle flow observed in the gear...... particle generation is made possible by model parameter estimation and identification of an unintended lack of filter change. The model may also be used to optimise system and filtration performance, and to enable continuous condition monitoring....

  7. Assessment of bridge abutment scour and sediment transport under various flow conditions

    Science.gov (United States)

    Gilja, Gordon; Valyrakis, Manousos; Michalis, Panagiotis; Bekić, Damir; Kuspilić, Neven; McKeogh, Eamon

    2017-04-01

    Safety of bridges over watercourses can be compromised by flow characteristics and bridge hydraulics. Scour process around bridge foundations can develop rapidly during low-recurrence interval floods when structural elements are exposed to increased flows. Variations in riverbed geometry, as a result of sediment removal and deposition processes, can increase flood-induced hazard at bridge sites with catastrophic failures and destructive consequences for civil infrastructure. The quantification of flood induced hazard on bridge safety generally involves coupled hydrodynamic and sediment transport models (i.e. 2D numerical or physical models) for a range of hydrological events covering both high and low flows. Modelled boundary conditions are usually estimated for their probability of occurrence using frequency analysis of long-term recordings at gauging stations. At smaller rivers gauging station records are scarce, especially in upper courses of rivers where weirs, drops and rapids are common elements of river bathymetry. As a result, boundary conditions that accurately represent flow patterns on modelled river reach cannot be often reliably acquired. Sediment transport process is also more complicated to describe due to its complexity and dependence to local flow field making scour hazard assessment a particularly challenging issue. This study investigates the influence of flow characteristics to the development of scour and sedimentation processes around bridge abutments of a single span masonry arch bridge in south Ireland. The impact of downstream weirs on bridge hydraulics through variation of downstream model domain type is also considered in this study. The numerical model is established based on detailed bathymetry data surveyed along a rectangular grid of 50cm spacing. Acquired data also consist of riverbed morphology and water level variations which are monitored continuously on bridge site. The obtained data are then used to compare and calibrate

  8. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    Science.gov (United States)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  9. Luteinizing hormone pulsatility in females following radiation therapy for central nervous system malignancies

    International Nuclear Information System (INIS)

    Brasacchio, R.A.; Constine, L.S.; Woolf, P.; Raubertas, R.F.; Veldhuis, J.D.; Muhs, A.G.

    1997-01-01

    Purpose: Females incidentally irradiated to the hypothalamic-pituitary axis (H/P-A) during radiation therapy (RT) for brain tumors may become oligoamenorrheic. We previously demonstrated that these women are hypoestrogenemic but frequently have near normal or only moderately decreased basal luteinizing hormone (LH) levels and maintain appropriate peak pituitary responses to exogenous gonadotropin releasing hormone (GnRH). We postulated that hypothalamic injury resulting in abnormal LH pulsatility could explain this complex of findings. This investigation intended to characterize this hypothalamic injury and test two potentially corrective pharmacologic interventions. Catecholamines (specifically dopamine) and opiates are known to suppress pituitary LH release through inhibition of the pituitary gonadotropes or of the GnRH neuronal terminals in the hypothalamus. Radiation-induced dysfunction of the catecholaminergic or opiate control mechanisms might translate into an increase in dopamine or opiate release or receptor responsiveness, which in turn would inhibit pulsatile gonadotropin secretion, leading to reduced LH pulsatility and to gonadal dysfunction. We therefore determined the pattern of LH release in normal controls and in patients, at baseline as well as after administration of the dopamine receptor antagonist metoclopramide (MCP), and the opiate-receptor antagonist naloxone (NAL). Methods: Patient eligibility criteria included RT to the H/P-A for a non-H/P-A CNS tumor, usually astrocytoma, with subsequent hypoestrogenemia and oligo-amenorrhea. Patients and normal volunteers were studied first under control conditions and then using MCP and NAL in a randomized cross-over manner at monthly intervals. Serum samples for LH determination were taken every 10 minutes for 12 hours during an overnight hospital stay. MCP (10 mg) was administered as an IV bolus every 4.5 hours, and NAL was administered as a continuous infusion (1.6 mg/hour). The following morning each

  10. Experience With a Long-term Pulsatile Ventricular Assist Device as a Bridge to Heart Transplant in Adults.

    Science.gov (United States)

    Gómez Bueno, Manuel; Segovia Cubero, Javier; Serrano Fiz, Santiago; Ugarte Basterrechea, Juan; Hernández Pérez, Francisco José; Goirigolzarri Artaza, Josebe; Castedo Mejuto, Evaristo; Burgos Lázaro, Raúl; García Montero, Carlos; Moñivas Palomero, Vanessa; Mingo Santos, Susana; González Román, Ana Isabel; Álvarez Avelló, José Manuel; Vidal Fernández, Mercedes; Forteza Gil, Alberto; Alonso-Pulpón, Luis

    2017-09-01

    Most long-term ventricular assist devices (VADs) that are currently implanted are intracorporeal continuous-flow devices. Their main limitations include their high cost and inability to provide biventricular support. The aim of this study was to describe the results of using paracorporeal pulsatile-flow VADs as a bridge to transplant (BTT) in adult patients. Retrospective analysis of the characteristics, complications, and outcomes of a single-center case series of consecutive patients treated with the EXCOR VAD as BTT between 2009 and 2015. During the study period, 25 VADs were implanted, 6 of them biventricular. Ventricular assist devices were indicated directly as a BTT in 12 patients and as a bridge to decision in 13 due to the presence of potentially reversible contraindications or chance of heart function recovery. Twenty patients (80%) were successfully bridged to heart transplant after a median of 112 days (range, 8-239). The main complications included infectious (52% of patients), neurological events (32%, half of them fatal), bleeding (28%), and VAD malfunction requiring component replacement (28%). Eighty percent of patients with the EXCOR VAD as BTT achieved the goal after an average of almost 4 months of support. The most frequent complications were infectious, and the most severe were neurological. In our enivonment, the use of these pulsatile-flow VAD as BTT is a feasible strategy that obtains similar outcomes to those of intracorporeal continuous-flow devices. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    Science.gov (United States)

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  12. Parameters, which effect the mass flow in the PRHRS under a natural convection condition

    International Nuclear Information System (INIS)

    Chung, Y. J.; Lee, G. H.; Kim, H. C.; Kim, K. K.; Zee, S. Q.

    2004-01-01

    Small and medium sized integral type reactors for the diverse utilization of nuclear energy are getting much attention from the international nuclear community. They diversify the peaceful uses of nuclear energy in the areas of seawater desalination, district heating, industrial heat-generation process and ship propulsion. The SMART (System integrated Modular Advanced ReacTor) is a small modular integral type pressurized water reactor, which was developed for the dual purposes application of seawater desalination and small-scaled power generation in KOREA. The reactor is designed for a forced convection core cooling during start-up and normal operating conditions and for a natural circulation core cooling during accidental conditions. The main safety objective of the SMART is to increase the degree of inherent safety features by advanced designs such as a passive residual heat removal system (PRHRS). The passive residual heat removal system removes the core decay heat and sensible heat by a natural circulation in the case of emergency conditions. This study focuses on the flow behavior in the passive residual heat removal system of the integral reactor. The system necessitates a hydraulic head to achieve the required natural circulation flow rate, which in turn, may cause a larger two-phase pressure drop and flow oscillation. Also, it is of interest to investigate the complex effects of the boiling and condensation in such low frequency thermo-hydraulic oscillations. Thermal hydraulic analysis for the passive residual heat removal system has been carried out by means of the MARS code for a full range of reactor operating conditions. The MARS code has been developed at the Korea Atomic Energy Research Institute by consolidating and restructuring the RELAP5/MOD3.2 and COBRA-TF which has the capabilities of analyzing the one-dimensional or three-dimensional best estimated thermal-hydraulic system and the fuel responses of the light water reactor transients. A selected

  13. Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    OpenAIRE

    Herbert, Christopher; Alexander, Jan; Martinez De Alvaro, Maria

    2015-01-01

    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the g...

  14. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  15. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    International Nuclear Information System (INIS)

    Inasaka, F.; Nariai, H.

    1994-01-01

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m 2 . Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q cH (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q c,unif (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities

  16. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-11-15

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8{sup th} floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C.

  17. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    International Nuclear Information System (INIS)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe

    2015-01-01

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8"t"h floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C

  18. A new wall function boundary condition including heat release effect for supersonic combustion flows

    International Nuclear Information System (INIS)

    Gao, Zhen-Xun; Jiang, Chong-Wen; Lee, Chun-Hian

    2016-01-01

    Highlights: • A new wall function including heat release effect is theoretically derived. • The new wall function is a unified form holding for flows with/without combustion. • The new wall function shows good results for a supersonic combustion case. - Abstract: A new wall function boundary condition considering combustion heat release effect (denoted as CWFBC) is proposed, for efficient predictions of skin friction and heat transfer in supersonic combustion flows. Based on a standard flow model including boundary-layer combustion, the Shvab–Zeldovich coupling parameters are introduced to derive a new velocity law-of-the-wall including the influence of combustion. For the temperature law-of-the-wall, it is proposed to use the enthalpy–velocity relation, instead of the Crocco–Busemann equation, to eliminate explicit influence of chemical reactions. The obtained velocity and temperature law-of-the-walls constitute the CWFBC, which is a unified form simultaneously holding for single-species, multi-species mixing and multi-species reactive flows. The subsequent numerical simulations using this CWFBC on an experimental case indicate that the CWFBC could accurately reflect the influences on the skin friction and heat transfer by the chemical reactions and heat release, and show large improvements compared to previous WFBC. Moreover, the CWFBC can give accurate skin friction and heat flux for a coarse mesh with y"+ up to 200 for the experimental case, except for slightly larger discrepancy of the wall heat flux around ignition position.

  19. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.

    Science.gov (United States)

    Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-01-01

    Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.

  20. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    International Nuclear Information System (INIS)

    Lu, J L; Guo, P C; Zheng, X B; Zhao, Q; Luo, X Q

    2012-01-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  1. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  2. Decoupling in an expanding universe boundary RG-flow affects initial conditions for inflation

    CERN Document Server

    Schalm, K; Van der Schaar, J P; Schalm, Koenraad; Shiu, Gary; Schaar, Jan Pieter van der

    2004-01-01

    We study decoupling in FRW spacetimes, emphasizing a Lagrangian description throughout. To account for the vacuum choice ambiguity in cosmological settings, we introduce an arbitrary boundary action representing the initial conditions. RG flow in these spacetimes naturally affects the boundary interactions. As a consequence the boundary conditions are sensitive to high-energy physics through irrelevant terms in the boundary action. Using scalar field theory as an example, we derive the leading dimension four irrelevant boundary operators. We discuss how the known vacuum choices, e.g. the Bunch-Davies vacuum, appear in the Lagrangian description and square with decoupling. For all choices of boundary conditions encoded by relevant boundary operators, of which the known ones are a subset, backreaction is under control. All, moreover, will generically feel the influence of high-energy physics through irrelevant (dimension four) boundary corrections. Having established a coherent effective field theory framework ...

  3. Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T. [Faculty of Computing, Mohammad Ali Jinnah University, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-08-15

    This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases.

  4. Research on Dynamic Dissolving Model and Experiment for Rock Salt under Different Flow Conditions

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2015-01-01

    Full Text Available Utilizing deep rock salt cavern is not only a widely recognized energy reserve method but also a key development direction for implementing the energy strategic reserve plan. And rock salt cavern adopts solution mining techniques to realize building cavity. In view of this, the paper, based on the dissolving properties of rock salt, being simplified and hypothesized the dynamic dissolving process of rock salt, combined conditions between dissolution effect and seepage effect in establishing dynamic dissolving models of rock salt under different flow quantities. Devices were also designed to test the dynamic dissolving process for rock salt samples under different flow quantities and then utilized the finite-difference method to find the numerical solution of the dynamic dissolving model. The artificial intelligence algorithm, Particle Swarm Optimization algorithm (PSO, was finally introduced to conduct inverse analysis of parameters on the established model, whose calculation results coincide with the experimental data.

  5. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    Science.gov (United States)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  6. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-01-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4 sub 2 ; Mass velocity 144 2 /s; Heated length 1040 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the ranges investigated the observed steam quality at burnout, x BO generally decreases with increasing heat flux; increases with increasing pressure and decreases with increasing mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible

  7. A Fourier Collocation Approach for Transit-Time Ultrasonic Flowmeter Under Multi-Phase Flow Conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Lassen, Benny; Duggen, Lars

    2017-01-01

    A numerical model for a clamp-on transit-time ultrasonic flowmeter (TTUF) under multi-phase flow conditions is presented. The method solves equations of linear elasticity for isotropic heterogeneous materials with background flow where acoustic media are modeled by setting shear modulus to zero....... Spatial derivatives are calculated by a Fourier collocation method allowing the use of the fast Fourier transform (FFT) and time derivatives are approximated by a finite difference (FD) scheme. This approach is sometimes referred to as a pseudospectral time-domain method. Perfectly matched layers (PML......) are used to avoid wave-wrapping and staggered grids are implemented to improve stability and efficiency. The method is verified against exact analytical solutions and the effect of the time-staggering and associated lowest number of points per minimum wavelengths value is discussed. The method...

  8. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T

    2012-01-01

    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.

  9. A tool to estimate bar patterns and flow conditions in estuaries when limited data is available

    Science.gov (United States)

    Leuven, J.; Verhoeve, S.; Bruijns, A. J.; Selakovic, S.; van Dijk, W. M.; Kleinhans, M. G.

    2017-12-01

    The effects of human interventions, natural evolution of estuaries and rising sea-level on food security and flood safety are largely unknown. In addition, ecologists require quantified habitat area to study future evolution of estuaries, but they lack predictive capability of bathymetry and hydrodynamics. For example, crucial input required for ecological models are values of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns, their computational times are long and for each case a new model must be developed. Therefore, we developed a comprehensive set of relations that accurately predict the hydrodynamics and the patterns of channels and bars, using a combination of the empirical relations derived from approximately 50 estuaries and theory for bars and estuaries. The first step is to predict local tidal prisms, which is the tidal prism that flows through a given cross-section. Second, the channel geometry is predicted from tidal prism and hydraulic geometry relations. Subsequently, typical flow velocities can be estimated from the channel geometry and tidal prism. Then, an ideal estuary shape is fitted to the measured planform: the deviation from the ideal shape, which is defined as the excess width, gives a measure of the locations where tidal bars form and their summed width (Leuven et al., 2017). From excess width, typical hypsometries can be predicted per cross-section. In the last step, flow velocities are calculated for the full range of occurring depths and salinity is calculated based on the estuary shape. Here, we will present a prototype tool that predicts equilibrium bar patterns and typical flow conditions. The tool is easy to use because the only input required is the estuary outline and tidal amplitude. Therefore it can be used by policy makers and researchers from multiple disciplines, such as ecologists, geologists and hydrologists, for example for paleogeographic

  10. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  11. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Memiş Kemal

    2010-01-01

    Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  12. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  13. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  14. Flow behavior of Daqing waxy crude oil under simulated pipelining conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jianlin [China University of Petroleum, Beijing (China); PetroChina Company Ltd. (China); Zhang, Jinjun; Li, Hongying; Zhang, Fan; Yang, Xiaojing [China University of Petroleum, Beijing (China)

    2005-07-01

    Daqing oil field is the largest oil field in China. This crude oil is a typical waxy crude oil, with a wax content of 26% and a gel point of 32 deg C. Flow behaviors of waxy crude oils at temperatures near the gel point/pour point are vital for both pipeline hydraulic calculation and evaluation on restartability of a shutdown pipeline. In this study, experimental simulation was conducted by using a stirred vessel with the energy dissipation of viscous flow as the shear simulation parameter. The viscosity, gel point, yield stress and thixotropy were measured by sampling from the simulation vessel. The viscosity under simulated pipelining condition was found less than that measured under quiescent cooling condition. The gel point decreased with decreasing temperature of sampling, i.e. the end temperature of the dynamic cooling process. At sampling temperatures above 35 deg C, that is 3 deg C above the gel point measured under quiescent cooling condition, both the yield stresses and the thixotropic parameters showed little dependence on the shear history. However, at lower sampling temperatures, remarkable shear history dependence was found. Empirical correlations were developed between the yield stress and the sampling temperature as well as the measurement temperature, and between the thixotropic parameters and the sampling temperature. (author)

  15. Investigation and modelling of thermal conditions in low flow SDHW systems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, L.J.

    1999-07-01

    The purpose of this study was to characterise the thermal conditions in low flow SDHW systems. As the heat storage has proved to be the most important system component, there has been an emphasis on this component in the study. A literature survey revealed that the mantle tank heat storage type is one of the most promising storage designs and therefore only the mantle tank is investigated in this study. To optimise the design of mantle tanks and low flow SDHW systems, it was found necessary to understand how the thermal stratification is built up in the heat storage. In addition, it was necessary to model the flow and heat transfer in the tanks. Due to the complexity of the problems, CFD-models were used to take mantle tanks into calculation. Two CFD programs were used to model the mantle tank: CFX and Fluent. As the CFD-models formed the basis for the theoretical work, they were validated with experiments. In this study, both thermal measurements and experimentally visualised flow patterns were compared with CFD-predictions. The experimental flow visualisation was carried out with Particle image Velocimetry (PIV). With a transparent glass mantle tank, the structures in the mantle were visualised and compared with the CFD-predicted flow structures in the mantle. The results showed that the mantle flow was highly dominated by buoyancy and the CFD-models were able to model this flow. With a steel mantle tank, different dynamic thermal experiments were carried out in a heat storage test facility. These results were used to evaluate the CFD-predicted temperatures. Inner tank and mantle outlet temperatures were compared to the similar CFD-predictions and a good degree of similarity was found between measured and calculated temperatures. With the verified CFX models a parameter analysis was carried out. Based on this analysis, two Nusselt-Rayleigh heat transfer correlations were developed - one for the convective heat transfer in the mantle and one for the convective

  16. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  17. Deuterium used as artificial tracer in column studies under saturated water flow conditions

    Science.gov (United States)

    Koeniger, P.; Geiges, M.; Leibundgut, Ch.

    2003-04-01

    In contrast to numerous investigations using deuterium as an environmental tracer, hydrological investigations with deuterium-labelled water are rather rare. Currently applications in groundwater studies are restricted due to increasing costs of spiking large water quantities but an application as intelligent tracer might be of advantage especially in combination with other tracers and under distinct environmental conditions. Therefore deuterium was applied as artificial tracer in column experiments that are well proved as a tool to characterise tracer behaviour in recent studies. Deuterium was tested in comparison to the more familiar conservative tracer fluorescein. Varying experimental conditions, e.g. column length (0.5, 1.0, 1.5 m), initial tracer concentration (0.01, 0.02, 0.2 mg) and flow velocity (1.5 to 6.0 m/d) were used to investigate tracer behaviour under saturated water flow conditions. Deuterium was analysed using an H/Device with chrome reduction connected to an isotope ratio mass spectrometer and expressed in relative concentrations [per mill V-SMOW]. Theoretical tracer breakthrough curves were calculated using a one dimensional dispersion model. The results indicate higher mean transport velocities and smaller dispersion for deuterium in all experiments. Due to different molecule properties that also determine the interaction of soil substrate and tracer, deuterium indicates a more conservative transport behaviour. Deuterium is non-toxic, completely soluble, chemically and biologically stable and not subject to light-influenced decay. Furthermore, it shows promise for investigations of water flow in the unsaturated zone, and of interactions of water in soil-plant-atmosphere systems. A further discussion of problems, together with possibilities for applying deuterium as an artificial tracer, will be presented.

  18. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  19. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts

    Science.gov (United States)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia

    2016-04-01

    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural

  20. Investigation of analytical methods in thermal stratification analysis. Evaluation of flow rates through flow holes for normal and scram conditions of 40% power operation with AQUA code

    International Nuclear Information System (INIS)

    Doi, Yoshihiro; Muramatsu, Toshiharu

    1997-08-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of phenomena in the design of the internal structure in an LMFBR plenum. To evaluate flow rates through flow holes of the prototype fast breeder reactor, MONJU, numerical analyses were carried out with AQUA code for normal and scram conditions with 40% power operation. Through comparison of analysis results and measured temperature, thermal stratification phenomena in 300 second period after the scram was evaluated. Flow rate through the upper flow holes, the lower flow holes and annular gap between the inner barrel and the reactor vessel were evaluated with the measured temperature and the analysis results individually. (J.P.N.)

  1. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  2. Photocatalyzed synthesis of isochromanones and isobenzofuranones under batch and flow conditions

    Directory of Open Access Journals (Sweden)

    Manuel Anselmo

    2017-07-01

    Full Text Available Photocatalyzed reactions of 2-(alkoxycarbonylbenzenediazonium tetrafluoroborates with various alkenes afforded isochromanones in good yields, according to a mechanism that was investigated. The advantage of using highly soluble esters rather than carboxylic acids as starting compounds became evident when the reactions were performed under flow conditions. On the other hand, when 2-vinylbenzoic acid derivatives were employed as reagents, isobenzofuranones were obtained together with unprecedented benzo[e][1,3]oxazepin-1(5H-ones, with the latter derived from incorporation of the solvent (acetonitrile.

  3. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    superheat by distributing individual channel mass flow rate continuously (perfect control). The compensation method is compared to the use of a larger evaporator in order to study their trade-off in augmenting system performance (cooling capacity and COP). The studies are performed by numerical modeling...... profile across the A-coil evaporator was predicted by means of CFD simulation software STAR-CD 3.26 (2005) and applied in the numerical model. The main reason for the better face split evaporator performance at uniform conditions or when compensating, is that the superheated "weak" zones with low UA...

  4. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...... countries and, specifically in Colombia, design and operation parameters are not defined yet. The objective of this study was evaluate the effects of filter medium, the feeding frequency and Heliconia psittacorum presence, a typical local plant, on the domestic wastewater treatment in tropical conditions....

  5. Magnetohydrodynamic boundary layer flow past a porous substrate with Beavers-Joseph boundary condition

    International Nuclear Information System (INIS)

    Jat, R.N.; Chaudhary, Santosh

    2009-01-01

    The flow of an electrically conducting fluid past a porous substrate attached to the flat plate with Beavers-Joseph boundary condition under the influence of a uniform transverse magnetic field has been studied. Taking suitable similar variables, the momentum equation is transformed to ordinary differential equation and solved by standard techniques. The energy equation is solved by considering two boundary layers, one in the porous substrate and the other above the porous substrate. The velocity and temperature distributions along with Nusselt number are discussed numerically and presented through graphs. (author)

  6. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals

    International Nuclear Information System (INIS)

    Li, Q; Clifford, G D

    2012-01-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal. (paper)

  7. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.

    Science.gov (United States)

    Li, Q; Clifford, G D

    2012-09-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

  8. Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review.

    Science.gov (United States)

    Pandit, Vinay; Kumar, Ajay; Ashawat, Mahendra S; Verma, Chander P; Kumar, Pravin

    2017-01-01

    Pulsatile drug delivery system (PDDS) shows potential significance in the field of drug delivery to release the maximum amount of drug at a definite site and at specific time. PDDS are mainly time controlled delivery devices having a definite pause period for drug release, which is not affected by acidity, alkalinity, motility and enzymes present in the gastrointestinal tract. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. The review article, discuss the general concepts, marketed formulations and patents or any other recent advancement in pulsatile release technology. It also highlights on diseases requiring therapy by pulsatile release, various researches on herbal pulsatile formulations and quality control aspects of PDDS. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Cerebrovascular blood oxygenation level dependent pulsatility at baseline and following acute exercise among healthy adolescents.

    Science.gov (United States)

    Theyers, Athena E; Goldstein, Benjamin I; Metcalfe, Arron Ws; Robertson, Andrew D; MacIntosh, Bradley J

    2018-01-01

    Arterial stiffness is linked to cerebral small vessel damage and neurodegeneration, but barriers to accessing deep cerebrovascular anatomy limit our ability to assess the brain. This study describes an adaptation of a cardiac-related scrubbing method as a means of generating blood oxygenation level-dependent pulsatility maps based on the cardiac cycle. We examine BOLD pulsatility at rest, based on the non-parametric deviation from null metric, as well as changes following acute physiological stress from 20 min of moderate-intensity cycling in 45 healthy adolescents. We evaluate the influence of repetition time (TR) and echo time (TE) using simulated and multi-echo empirical data, respectively. There were tissue-specific and voxel-wise BOLD pulsatility decreases 20 min following exercise cessation. BOLD pulsatility detection was comparable over a range of TR and TE values when scan volumes were kept constant; however, short TRs (≤500 ms) and TEs (∼14 ms) acquisitions would yield the most efficient detection. Results suggest cardiac-related BOLD pulsatility may represent a robust and easily adopted method of mapping cerebrovascular pulsatility with voxel-wise resolution.

  10. The induction of ovulation by pulsatile administration of GnRH: an appropriate method in hypothalamic amenorrhea.

    Science.gov (United States)

    Christou, Fotini; Pitteloud, Nelly; Gomez, Fulgencio

    2017-08-01

    The induction of ovulation by the means of a pump which assures the pulsatile administration of GnRH is a well-known method that applies to women suffering from amenorrhea of hypothalamic origin. Although a simple and efficient method to establish fertility, it is underused. Twelve patients suffering from this condition, 1 Kallmann syndrome, 4 normosmic isolated hypogonadotropic hypogonadism, and 7 functional hypothalamic amenorrhea desiring pregnancy were treated. They underwent one or more cycles of pulsatile GnRH, at a frequency of 90 minutes, either by the intravenous or the subcutaneous route. An initial dose of 5 μg per pulse in the intravenous route was administered and of 15 μg per pulse in the subcutaneous route. The treatment was monitored by regular dosing of gonadotropins, estradiol and progesterone, and the development of follicles and ovulation was monitored by intra-vaginal ultrasonography. All the patients had documented ovulation, after a mean of 17 days on pump stimulation. Single ovulation occurred in 30 of 33 treatment cycles, irrespective of the route of administration. Ovulation resulted in 10 pregnancies over 7 patients (2 pregnancies in 3 of them), distributed in the 3 diagnostic categories. For comparison, a patient with PCOS treated similarly, disclosed premature LH surge without ovulation.

  11. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Mathisen, R P; Eklind, O; Norman, B

    1964-01-15

    The hydrodynamic stability and the burnout conditions for flow of boiling water have been studied in a natural circulation loop in the pressure range from 10 to 70 atg. The test section was a round, duct of 20 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested the stability of the flow increases with increasing pressure, increasing throttling before the test section, but decreases with increasing inlet sub-cooling and increasing throttling after the test section. The measured thresholds of instability compared well with the analytical results by Jahnberg. For an inlet sub-cooling temperature of about 2 deg C the measured burnout steam qualities were low by a factor of about 1.3 compared to forced circulation data obtained with the same test section. At higher sub-cooling temperatures the discrepancy between forced and natural circulation data increased, so that at {delta}t{sub sub} = 16 deg C, the natural circulation data were low by a factor of about 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data.

  12. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  13. Anomalous transport in cellular flows: The role of initial conditions and aging

    Science.gov (United States)

    Pöschke, Patrick; Sokolov, Igor M.; Nepomnyashchy, Alexander A.; Zaks, Michael A.

    2016-09-01

    We consider the diffusion-advection problem in two simple cellular flow models (often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.

  14. PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2018-04-01

    Full Text Available The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs is of the utmost importance and necessary for the design and correct implementation of these new renewable solutions. This research characterizes the water hammer phenomenon in the design of PAT systems, emphasizing the transient events that can occur during a normal operation. This is based on project concerns towards a stable and efficient operation associated with the normal dynamic behaviour of flow control valve closure or by the induced overspeed effect. Basic concepts of mathematical modelling, characterization of control valve behaviour, damping effects in the wave propagation and runaway conditions of PATs are currently related to an inadequate design. The precise evaluation of basic operating rules depends upon the system and component type, as well as the required safety level during each operation.

  15. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  16. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    Science.gov (United States)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the

  17. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    International Nuclear Information System (INIS)

    Mamou, M.; Xu, H.; Khalid, M.

    2004-01-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  18. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamou, M.; Xu, H.; Khalid, M. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Mahmoud.Mamou@nrc-cnrc.gc.ca

    2004-07-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  19. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  20. Cerebral Pulsatility Index Is Elevated in Patients with Elevated Right Atrial Pressure.

    Science.gov (United States)

    Lahiri, Shouri; Schlick, Konrad H; Padrick, Matthew M; Rinsky, Brenda; Gonzalez, Nestor; Jones, Heather; Mayer, Stephan A; Lyden, Patrick D

    2018-01-01

    Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. We retrospectively reviewed 61 consecutive patients with subarachnoid hemorrhage. We calculated CPI from transcranial Doppler studies and correlated these with echocardiographic measures of right atrial pressure. CPIs were compared from patients with elevated and normal right atrial pressure. There was a significant difference between CPI obtained from all patients with elevated right atrial pressure compared to those with normal right atrial pressure (P right and left hemispheric CPI from patients with both elevated and normal right atrial pressure. Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations. Copyright © 2017 by the American Society of Neuroimaging.

  1. Fuel Cooling in Absence of Forced Flow at Shutdown Condition with PHTS Partially Drained

    Energy Technology Data Exchange (ETDEWEB)

    Parasca, L.; Pecheanu, D.L., E-mail: laurentiu.parasca@cne.ro, E-mail: doru.pecheanu@cne.ro [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2014-09-15

    During the plant outage for maintenance on primary side (e.g. for the main Heat Transport System pumps maintenance, the Steam Generators inspection), there are situations which require the primary heat transport system (HTS) drainage to a certain level for opening the circuit. The primary fuel heat sink for this configuration is provided by the shutdown cooling system (SDCS). In case of losing the forced cooling (e.g. due to the loss of SDCS, design basis earthquake-DBE), flow conditions in the reactor core may become stagnant. Inside the fuel channels, natural circulation phenomena known as Intermittent Buoyancy Induced Flow (IBIF) will initiate, providing an alternate heat sink mechanism for the fuel. However, this heat sink is effective only for a limited period of time (recall time). The recall time is defined as the elapsed time until the water temperature in the HTS headers exceeds a certain limit. Until then, compensatory measures need to be taken (e.g. by re-establishing the forced flow or initiate Emergency Core Cooling system injection) to preclude fuel failures. The present paper briefly presents the results of an analysis performed to demonstrate that fuel temperature remains within acceptable limits during IBIF transient. One of the objectives of this analysis was to determine the earliest moment since the reactor shut down when maintenance activities on the HTS can be started such that IBIF is effective in case of losing the forced circulation. The resulting peak fuel sheath and pressure tube temperatures due to fuel heat up shall be within the acceptable limits to preclude fuel defect or fuel channel defects.Thermalhydraulic circuit conditions were obtained using a CATHENA model for the primary side of HTS (drained to a certain level), an ECC system model and a system model for SDCS. A single channel model was developed in GOTHIC code for the fuel assessment analysis. (author)

  2. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition

    International Nuclear Information System (INIS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2014-01-01

    Highlights: • Two-phase flow in PEMFC cathode channels is observed in different gravity environments. • The PEMFC shows different operating behavior in normal and microgravity conditions. • Water tends can be removed in microgravity conditions at high water production regime. • Liquid aggregation occurs in microgravity conditions at low water production regime. • Effect of gravity on performance and two-phase flow at two operating regimes is studied. - Abstract: Water management is important for improving the performance and stability of proton exchange membrane fuel cells (PEMFCs) for space applications. An in situ visual observation was conducted on the gas–liquid two-phase flow in the cathode channels of a PEMFC in short-term microgravity condition. The microgravity environment was supplied by a drop tower. A single serpentine flow channel with a depth of 2 mm and a width of 2 mm was applied as the cathode flow field. A membrane electrode assembly comprising of a Nafion 112 membrane sandwiched between gas diffusion layers was used. The anode and cathode were loaded with 1 mg cm −2 platinum. The PEMFC shows a distinct operating behavior in microgravity because of the effect of gravity on the two-phase flow. At a high water production regime, cell performance is enhanced by 4.6% and the accumulated liquid water in the flow channel tends can be removed in microgravity conditions to alleviate flooding. At a low water production regime, cell performance deteriorates by 6.6% and liquid aggregation occurs in the flow channel because of the coalescence of dispersed water droplets in microgravity conditions, thus squeezing the flow channel. The operating behavior of PEMFC in microgravity conditions is different from that in normal gravity conditions. Further studies are needed on PEMFC operating characteristics and liquid management for space applications

  3. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  4. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  5. Effect of Different Ground Scenarios on Flow Structure of a Rotor At Hover Condition

    Science.gov (United States)

    Kocak, Goktug; Nalbantoglu, Volkan; Yavuz, Mehmet Metin

    2017-11-01

    The ground effect of a scaled model rotor at hover condition was investigated experimentally in a confined environment. Different ground effect scenarios including full, partial, and inclined conditions, compared to out of ground condition, were characterized qualitatively and quantitatively using laser illuminated smoke visualization and Laser Doppler Anemometry measurements. The results indicate that the presence of the ground affects the flow regime near the blade tip by changing the spatial extent and the path of the vortex core. After the impingement of the wake to the ground, highly unsteady and turbulent wake is observed. Both the mean and the root mean square of the induced velocity increase toward the blade tip. In line with this, the spectral power of the dominant frequency in the velocity fluctuations significantly increases toward the blade tip. All these observations are witnessed in all ground effect conditions tested in the present study. Considering the inclined ground effect in particular, it is observed that the mean induced velocities of the high side (mountain) are higher compared to the velocities of the low side (valley) in contrast to the general trend observed in the present study where the ground effect reduces the induced velocity.

  6. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  7. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang [Capital Medical University, Department of Radiology, Beijing Friendship Hospital, Beijing (China); Niu, Yantao; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China)

    2016-01-15

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm{sup 2}), less so in PT patients (7.97 ± 5.17 mm{sup 2}). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  8. Measurement of pulsatile motion with millisecond resolution by MRI.

    Science.gov (United States)

    Souchon, Rémi; Gennisson, Jean-Luc; Tanter, Mickael; Salomir, Rares; Chapelon, Jean-Yves; Rouvière, Olivier

    2012-06-01

    We investigated a technique based on phase-contrast cine MRI combined with deconvolution of the phase shift waveforms to measure rapidly varying pulsatile motion waveforms. The technique does not require steady-state displacement during motion encoding. Simulations and experiments were performed in porcine liver samples in view of a specific application, namely the observation of transient displacements induced by acoustic radiation force. Simulations illustrate the advantages and shortcomings of the methods. For experimental validation, the waveforms were acquired with an ultrafast ultrasound scanner (Supersonic Imagine Aixplorer), and the rates of decay of the waveforms (relaxation time) were compared. With bipolar motion-encoding gradient of 8.4 ms, the method was able to measure displacement waveforms with a temporal resolution of 1 ms over a time course of 40 ms. Reasonable agreement was found between the rate of decay of the waveforms measured in ultrasound (2.8 ms) and in MRI (2.7-3.3 ms). Copyright © 2011 Wiley-Liss, Inc.

  9. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    International Nuclear Information System (INIS)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang; Niu, Yantao; Xian, Junfang

    2016-01-01

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm 2 ), less so in PT patients (7.97 ± 5.17 mm 2 ). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  10. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-05-15

    This paper deals with a new concept for predicting burnout conditions for forced convection of boiling water in fuel elements of nuclear boiling reactors. The concept states the importance of considering the ratio of heated channel perimeter to total channel perimeter. The perimeter ratio concept was arrived at from an experimental study of burnout conditions in rod clusters consisting of three rods of 13 mm outside diameter and 970 mm heated length. Data were obtained for pressures between{sub 2}. 5 and 10 kg/cm, surface heat fluxes between 50 and 120 W/cm, mass flow rates between 0.03 and 0.33 kg/sec and steam qualities between 0.01 and 0.52. The rod distances for the experiment were 2 mm and 6 mm. The diameter of the channel was 41.3 mm. Additional runs were also performed after introducing unheated displacement rods in the channel. The rod distance in this case was 6 mm. In the ranges investigated the measured burnout steam qualities at the outlet of the channel decreases with increasing heat flux and decreasing pressure. Furthermore it has been found that the influence of rod distance is, in the range investigated, of small significance for engineering purposes. It has also been observed that the present burnout steam quality data for the rod clusters are much lower than those earlier obtained for round ducts. This may be explained physically by means of the perimeter ratio concept. It has also been found that the surface shear-stress distribution around the channel perimeter and especially the position of maximum shear-stress is of great importance for predicting burnout conditions for flow in channels. Finally the new method has helped us to understand and interpret experimental results which earlier may have seemed inconsistent.

  11. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-05-01

    This paper deals with a new concept for predicting burnout conditions for forced convection of boiling water in fuel elements of nuclear boiling reactors. The concept states the importance of considering the ratio of heated channel perimeter to total channel perimeter. The perimeter ratio concept was arrived at from an experimental study of burnout conditions in rod clusters consisting of three rods of 13 mm outside diameter and 970 mm heated length. Data were obtained for pressures between 2 . 5 and 10 kg/cm, surface heat fluxes between 50 and 120 W/cm, mass flow rates between 0.03 and 0.33 kg/sec and steam qualities between 0.01 and 0.52. The rod distances for the experiment were 2 mm and 6 mm. The diameter of the channel was 41.3 mm. Additional runs were also performed after introducing unheated displacement rods in the channel. The rod distance in this case was 6 mm. In the ranges investigated the measured burnout steam qualities at the outlet of the channel decreases with increasing heat flux and decreasing pressure. Furthermore it has been found that the influence of rod distance is, in the range investigated, of small significance for engineering purposes. It has also been observed that the present burnout steam quality data for the rod clusters are much lower than those earlier obtained for round ducts. This may be explained physically by means of the perimeter ratio concept. It has also been found that the surface shear-stress distribution around the channel perimeter and especially the position of maximum shear-stress is of great importance for predicting burnout conditions for flow in channels. Finally the new method has helped us to understand and interpret experimental results which earlier may have seemed inconsistent

  12. Measurement of local flow pattern in boiling R12 simulating PWR conditions with multiple optical probes

    International Nuclear Information System (INIS)

    Garnier, J.

    1998-01-01

    For a comprehensive approach of boiling crisis phenomenon in order to get more reliable predictions of critical heat flux in PWR core, a flow pattern study is under progress at CEA GRENOBLE (in a joint program with Electricite de France: EdF). The first aim is to get experimental results on flow structure in the range of thermal hydraulic parameters involved in the core of a PWR (pressure up to 16 MPa, heat flux about 1 MW/m 2 , mass velocity up to 5000 kg/s/m 2 . As critical heat flux is a local phenomenon and is the result of the flow development, the data has to be measured from the beginning of boiling until boiling crisis, and from the bulk flow until the boundary layer close to the heating walls. Therefore, these results will be useful in modeling not only boiling crisis phenomenon but also condensation in subcooled boiling, coalescence, splitting up, mass and energy transfers at interfaces, and so on. In a first step, the test section is a vertical tube 19.2 mm internal diameter with an axial uniform heat flux over a 3.5m length. The study is performed on the DEBORA loop with Freon 12 as coolant fluid. We assume that basic boiling phenomena (and the knowledge we get about them) only depend on the fluid properties by means of dimensionless parameters but not on the fluid itself. In a first part, we briefly recall that interfacial detection is the most important parameter of a flow pattern study. Therefore, the use of probes able to measure the Phase Indicator Function (P.I.F.) is necessary. A first study of flow conditions shows that the flow pattern is essentially a bubbly one with vapor particles of low diameter (about 300 clm) and high velocity (up to 7 m/s). These criteria induce that a multiple optical probe is the most appropriate tool provided we improve the technology. We detail the way to obtain probes able to detect small particles at high velocity. Each fiber is stretched to get a tip of 10 Clm with the cladding kept on 50 μm length which defines

  13. Impact of VOC Composition and Reactor Conditions on the Aging of Biomass Cookstove Emissions in an Oxidation Flow Reactor

    Science.gov (United States)

    Oxidation flow reactor (OFR) experiments in our lab have explored secondary organic aerosol (SOA) production during photochemical aging of emissions from cookstoves used by billions in developing countries. Previous experiments, conducted with red oak fuel under conditions of hig...

  14. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Torelli, R.; Som, S.; Pei, Y.; Zhang, Yu; Traver, Michael

    2017-05-15

    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problem was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was

  15. [Prognostic Doppler ultrasound examination of fetal arteries blood flow].

    Science.gov (United States)

    Sieroszewski, Piotr; Sabatowska, Małgorzata; Karowicz-Bilińska, Agata; Suzin, Jacek

    2002-08-01

    particular pulsatility index PI, reflects the risk to foetus. Umbilical-cerebral index and renal-cerebral index demonstrate the mechanisms of circulation centralization in case of fetal distress. For the umbilical-cerebral index, the cut-off value is 1.0 and for the renal-cerebral index it is 2.5, 2) Evaluation of the blood flow in foetal vessels is a significant element of prenatal diagnostics. Due to its low sensitivity, it should be compared with the results of other biophysical tests, to achieve complex evaluation of the condition of the foetus.

  16. Bio-predictive tablet disintegration: effect of water diffusivity, fluid flow, food composition and test conditions.

    Science.gov (United States)

    Radwan, Asma; Wagner, Manfred; Amidon, Gordon L; Langguth, Peter

    2014-06-16

    Food intake may delay tablet disintegration. Current in vitro methods have little predictive potential to account for such effects. The effect of a variety of factors on the disintegration of immediate release tablets in the gastrointestinal tract has been identified. They include viscosity of the media, precipitation of food constituents on the surface of the tablet and reduction of water diffusivity in the media as well as changes in the hydrodynamics in the surrounding media of the solid dosage form. In order to improve the predictability of food affecting the disintegration of a dosage form, tablet disintegration in various types of a liquefied meal has been studied under static vs. dynamic (agitative) conditions. Viscosity, water diffusivity, osmolality and Reynolds numbers for the different media were characterized. A quantitative model is introduced which predicts the influence of the Reynolds number in the tablet disintegration apparatus on the disintegration time. Viscosity, water diffusivity and media flow velocity are shown to be important factors affecting dosage form disintegration. The results suggest the necessity of considering these parameters when designing a predictive model for simulating the in vivo conditions. Based on these experiments and knowledge on in vivo hydrodynamics in the GI tract, it is concluded that the disintegration tester under current pharmacopoeial conditions is operated in an unphysiological mode and no bioprediction may be derived. Recommendations regarding alternative mode of operation are made. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Modeling Quantum Dot Nanoparticle Fate and Transport in Saturated Porous Media under Varying Flow Conditions

    Science.gov (United States)

    Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.

    2010-12-01

    As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.

  18. Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm

    2009-09-01

    Full Text Available Abstract Background Sequestration of parasitized red blood cells in the microvasculature of major organs involves a sequence of events that is believed to contribute to the pathogenesis of severe falciparum malaria. Plasmodium falciparum infections are commonly composed of multiple subpopulations of parasites with varied adhesive properties. A key question is: do these subpopulations compete for adhesion to endothelium? This study investigated whether, in a laboratory model of cytoadherence, there is competition in binding to endothelium between pRBC infected with P. falciparum of variant adhesive phenotypes, particularly under flow conditions. Methods Four different P. falciparum isolates, of known adherence phenotypes, were matched in pairs, mixed in different proportions and allowed to bind to cultured human endothelium. Using in vitro competitive static and flow-based adhesion assays, that allow simultaneous testing of the adhesive properties of two different parasite lines, adherence levels of paired P. falciparum isolates were quantified and analysed using either non-parametric Wilcoxon's paired signed rank test or Student paired test. Results Study findings show that P. falciparum parasite lines show marked differences in the efficiency of adhesion to endothelium. Conclusion Plasmodium falciparum variants will compete for adhesion to endothelia and variants can be ranked by their efficiency of binding. These findings suggest that variants from a mixed infection will not show uniform cytoadherence and so may vary in their ability to cause disease.

  19. Buoyancy-driven mean flow in a long channel with a hydraulically constrained exit condition

    Science.gov (United States)

    Grimm, Th.; Maxworthy, T.

    1999-11-01

    Convection plays a major role in a variety of natural hydrodynamic systems. Those in which convection drives exchange flows through a lateral contraction and/or over a sill form a special class with typical examples being the Red and Mediterranean Seas, the Persian Gulf, and the fjords that indent many coastlines. The present work focuses on the spatial distribution and scaling of the density difference between the inflowing and outflowing fluid layers. Using a long water-filled channel, fitted with buoyancy sources at its upper surface, experiments were conducted to investigate the influence of the geometry of the strait and the channel as well as the magnitude of the buoyancy flux. Two different scaling laws, one by Phillips (1966), and one by Maxworthy (1994, 1997) were compared with the experimental results. It has been shown that a scaling law for which g[prime prime or minute] = kB02/3x/h4/3 best describes the distribution of the observed density difference along the channel, where B0 is the buoyancy flux, x the distance from the closed end of the channel, h its height at the open end (sill) and k a constant that depends on the details of the channel geometry and flow conditions. This result holds for the experimental results and appears to be valid for a number of natural systems as well.

  20. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  1. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-07-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible.

  2. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  3. Salt removal using multiple microbial desalination cells under continuous flow conditions

    KAUST Repository

    Qu, Youpeng

    2013-05-01

    Four microbial desalination cells (MDCs) were hydraulically connected and operated under continuous flow conditions. The anode solution from the first MDC flowed into the cathode, and then on to the anode of the next reactor, which avoided pH imbalances that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt solution from 1 to 2. days increased total NaCl removal from 76 ± 1% to 97 ± 1%, but coulombic efficiencies decreased from 49 ± 4% to 35 ± 1%. Total COD removals were similar at both HRTs (60 ± 2%, 2. days; 59 ± 2%, 1. day). Community analysis of the anode biofilms showed that bacteria most similar to the xylose fermenting bacterium Klebsiella ornithinolytica predominated in the anode communities, and sequences most similar to Geobacter metallireducens were identified in all MDCs except the first one. These results demonstrated successful operation of a series of hydraulically connected MDCs and good desalination rates. © 2013 Elsevier B.V..

  4. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  5. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.

    1963-06-01

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 2 ; Inlet subcooling 56 sub BO 2 ; Mass velocity 100 2 s; Heated length 600 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than ± 5 per cent. In the ranges investigated, the observed steam quality at burnout, X BO generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm 2

  6. Parallel and non-parallel laminar mixed convection flow in an inclined tube: The effect of the boundary conditions

    International Nuclear Information System (INIS)

    Barletta, A.

    2008-01-01

    The necessary condition for the onset of parallel flow in the fully developed region of an inclined duct is applied to the case of a circular tube. Parallel flow in inclined ducts is an uncommon regime, since in most cases buoyancy tends to produce the onset of secondary flow. The present study shows how proper thermal boundary conditions may preserve parallel flow regime. Mixed convection flow is studied for a special non-axisymmetric thermal boundary condition that, with a proper choice of a switch parameter, may be compatible with parallel flow. More precisely, a circumferentially variable heat flux distribution is prescribed on the tube wall, expressed as a sinusoidal function of the azimuthal coordinate θ with period 2π. A π/2 rotation in the position of the maximum heat flux, achieved by setting the switch parameter, may allow or not the existence of parallel flow. Two cases are considered corresponding to parallel and non-parallel flow. In the first case, the governing balance equations allow a simple analytical solution. On the contrary, in the second case, the local balance equations are solved numerically by employing a finite element method

  7. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  8. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  9. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    Science.gov (United States)

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  10. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.

    1985-01-01

    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  11. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Annuli (Part I)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1962-12-01

    The present report deals with measurements of burnout conditions for flow of boiling water in an annulus with an inner diameter of 9.92 mm, an outer diameter of 17 - 42 mm and a heated length of 608 mm. Data were obtained in respect of external heating only, internal heating only and dual uniform and non-uniform heating. The following ranges of variables were studied and 978 burnout measurements were obtained. Pressure 8.5 2 ; Inlet subcooling 60 sub i 2 ; Outer surface heat flux 0 o 2 ; Mass velocity 71 2 /sec; The results are presented in diagrams where the burnout steam qualities, x BO , were plotted against the pressure with the surface heat fluxes as parameters. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the case of equal heat fluxes on both walls of the annulus, burnout always occurred on the inner wall, and the data compared rather well with round duct data. When the annulus was heated internally only, the data showed very low burnout values in comparison with the results for dual heating and round ducts. This disagreement was explained by considering the climbing film flow model and by the fact that only a fraction of the channel perimeter was heated. For external heating the data are somewhat lower than corresponding round duct data, but rather high in comparison with internal heating. The climbing film flow model was also used to interpret this observation. For dual non-uniform heating it was found that the outer surface may be overloaded from 30 to 70 per cent compared with the inner surface without reducing the margin of safety in respect of burnout for the annulus. It was further observed that when the heat flux fox the wall on which burnout occurs is increased, the burnout steam quality for the channel decreases. If, however, the heat flux for the opposite wall is increased, the burnout steam quality also increases. It was also observed that the highest burnout values are obtained

  12. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Annuli (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, G

    1962-12-15

    The present report deals with measurements of burnout conditions for flow of boiling water in an annulus with an inner diameter of 9.92 mm, an outer diameter of 17 - 42 mm and a heated length of 608 mm. Data were obtained in respect of external heating only, internal heating only and dual uniform and non-uniform heating. The following ranges of variables were studied and 978 burnout measurements were obtained. Pressure 8.5 < 37.5 kg/cm{sup 2}; Inlet subcooling 60 < {delta}t{sub sub} < 205 deg C; Steam quality 0.1 < x < 0.91; Inner surface heat flux 0 < (q/A){sub i} < 303 W/cm{sup 2}; Outer surface heat flux 0 < (q/A){sub o} < 374 W/cm{sup 2}; Mass velocity 71 < m/F < 961 kg/m{sup 2}/sec; The results are presented in diagrams where the burnout steam qualities, x{sub BO}, were plotted against the pressure with the surface heat fluxes as parameters. The data have been correlated by curves. The scatter of the data around the curves is less than {+-} 5 per cent. In the case of equal heat fluxes on both walls of the annulus, burnout always occurred on the inner wall, and the data compared rather well with round duct data. When the annulus was heated internally only, the data showed very low burnout values in comparison with the results for dual heating and round ducts. This disagreement was explained by considering the climbing film flow model and by the fact that only a fraction of the channel perimeter was heated. For external heating the data are somewhat lower than corresponding round duct data, but rather high in comparison with internal heating. The climbing film flow model was also used to interpret this observation. For dual non-uniform heating it was found that the outer surface may be overloaded from 30 to 70 per cent compared with the inner surface without reducing the margin of safety in respect of burnout for the annulus. It was further observed that when the heat flux fox the wall on which burnout occurs is increased, the burnout steam quality for the

  13. Characterizing water surface elevation under different flow conditions for the upcoming SWOT mission

    Science.gov (United States)

    Domeneghetti, A.; Schumann, G. J.-P.; Frasson, R. P. M.; Wei, R.; Pavelsky, T. M.; Castellarin, A.; Brath, A.; Durand, M. T.

    2018-06-01

    The Surface Water and Ocean Topography satellite mission (SWOT), scheduled for launch in 2021, will deliver two-dimensional observations of water surface heights for lakes, rivers wider than 100 m and oceans. Even though the scientific literature has highlighted several fields of application for the expected products, detailed simulations of the SWOT radar performance for a realistic river scenario have not been presented in the literature. Understanding the error of the most fundamental "raw" SWOT hydrology product is important in order to have a greater awareness about strengths and limits of the forthcoming satellite observations. This study focuses on a reach (∼140 km in length) of the middle-lower portion of the Po River, in Northern Italy, and, to date, represents one of the few real-case analyses of the spatial patterns in water surface elevation accuracy expected from SWOT. The river stretch is characterized by a main channel varying from 100 to 500 m in width and a large floodplain (up to 5 km) delimited by a system of major embankments. The simulation of the water surface along the Po River for different flow conditions (high, low and mean annual flows) is performed with inputs from a quasi-2D model implemented using detailed topographic and bathymetric information (LiDAR, 2 m resolution). By employing a simulator that mimics many SWOT satellite sensor characteristics and generates proxies of the remotely sensed hydrometric data, this study characterizes the spatial observations potentially provided by SWOT. We evaluate SWOT performance under different hydraulic conditions and assess possible effects of river embankments, river width, river topography and distance from the satellite ground track. Despite analyzing errors from the raw radar pixel cloud, which receives minimal processing, the present study highlights the promising potential of this Ka-band interferometer for measuring water surface elevations, with mean elevation errors of 0.1 cm and 21

  14. Uric acid association with pulsatile and steady components of central and peripheral blood pressures.

    Science.gov (United States)

    Lepeytre, Fanny; Lavoie, Pierre-Luc; Troyanov, Stéphan; Madore, François; Agharazii, Mohsen; Goupil, Rémi

    2018-03-01

    Whether the cardiovascular risk attributed to elevated uric acid levels may be explained by changes in central and peripheral pulsatile and/or steady blood pressure (BP) components remains controversial. In a cross-sectional analysis of normotensive and untreated hypertensive participants of the CARTaGENE populational cohort, we examined the relationship between uric acid, and both pulsatile and steady components of peripheral and central BP, using sex-stratified linear regressions. Of the 20 004 participants, 10 161 individuals without antihypertensive or uric acid-lowering drugs had valid pulse wave analysis and serum uric acid levels. In multivariate analysis, pulsatile components of BP were not associated with uric acid levels, whereas steady components [mean BP (MBP), peripheral and central DBP] were all associated with higher levels of uric acid levels in women and men (all P uric acid levels but not for MBP-adjusted cSBP. Peripheral and cSBP, which are aggregate measures of pulsatile and steady BP, were also associated with uric acid levels in women (β = 0.063 and 0.072, respectively, both P uric acid levels. Serum uric acid levels appear to be associated with both central and peripheral steady but not pulsatile BP, regardless of sex.

  15. Altered cerebral blood flow velocity features in fibromyalgia patients in resting-state conditions.

    Science.gov (United States)

    Rodríguez, Alejandro; Tembl, José; Mesa-Gresa, Patricia; Muñoz, Miguel Ángel; Montoya, Pedro; Rey, Beatriz

    2017-01-01

    The aim of this study is to characterize in resting-state conditions the cerebral blood flow velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several signal processing methods based on time, information theory, frequency and time-frequency analyses were used in order to extract different features to characterize the CBFV signals in the different vessels. Main results indicated that, in comparison with control subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a different distribution of the power spectral density. In addition, it has been observed that complexity and spectral features show correlations with clinical pain parameters and emotional factors. The characterization features were used in a lineal model to discriminate between fibromyalgia patients and healthy controls, providing a high accuracy. These findings indicate that CBFV signals, specifically their complexity and spectral characteristics, contain information that may be relevant for the assessment of fibromyalgia patients in resting-state conditions.

  16. Flow analysis of the ophthalmic artery

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kuniaki; Hashimoto, Masato; Bandoh, Michio; Odawara, Yoshihiro; Kamagata, Masaki; Shirase, Ryuji [Sapporo Medical Univ. (Japan). Hospital

    2003-02-01

    The purpose of this study was to analyze the hemodynamics of ophthalmic artery flow using phase contrast MR angiography (PC-MRA). A total of 14 eyes from 10 normal volunteers and a patient with normal tension glaucoma (NTG) were analyzed. The optimal conditions were time repetition (TR)/echo time (TE)/flip angle (FA)/nex=40 ms/minimum/90 deg/2, field of view (FOV)=6 cm, matrix size=256 x 256. The resistive index (RI) and pulsatillity index (PI) values were significantly raised in the patient with NTG when compared to the control group. We therefore believe that PC-MRA may be a useful clinical tool for the assessment of the mechanism of NTG. (author)

  17. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the phenomena by steam flow experiment and CFD calculation

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2006-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop improvements by Computational Fluid Dynamics (CFD) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the way to prevent the pressure fluctuations by experiments and CFD calculations. But, as we used air as a working fluid in our previous research instead of steam that is used in the power plant, we couldn't consider effects of condensation and difference of change of the quantity of state between air and steam. In this report, we have conducted steam flow experiments by multi-purpose steam experiment apparatus 'WISSH' and CFD calculations by steam flow code 'MATIS-SC' to clarify those effects. As a result, in the middle opening condition, we have observed rotating pressure fluctuations in the experiment and valve-attached flow and local high-pressure region in the CFD result. These results show the pressure fluctuations in steam experiments and CFD is same kind of the fluctuations found in air experiment and CFD. (author)

  18. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition

    International Nuclear Information System (INIS)

    Tian Daogui; Sun Licheng; Yan Changqi; Liu Guoqiang

    2013-01-01

    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition, a method was proposed to measure the local parameters by using optical probes under rolling condition in this paper. An experimental investigation of two-phase flow under rolling condition was conducted using the probe fabricated by the authors. It is verified that the probe method is feasible to measure the local parameters in two'-phase flow under rolling condition. The results show that the interfacial parameters distribution near wall region has a distinct periodicity due to the rolling motion. The averaged deviation of the void fraction measured by the probe from that obtained from measured pressure drop is about 8%. (authors)

  19. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  20. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  1. Field studies of estuarine turbidity under different freshwater flow conditions, Kaipara River, New Zealand

    Science.gov (United States)

    Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark

    2017-11-01

    We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.

  2. Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment

    International Nuclear Information System (INIS)

    Roellin, S.; Spahiu, K.; Eklund, U.-B.

    2001-01-01

    Dissolution rates of spent UO 2 fuel have been investigated using flow-through experiments under oxidizing, anoxic and reducing conditions. For oxidizing conditions, approximately congruent dissolution rates were obtained in the pH range 3-9.3 for U, Np, Ba, Tc, Cs, Sr and Rb. For these elements, steady-state conditions were obtained in the flow rate range 0.02-0.3 ml min -1 . The dissolution rates were about 3 mg d -1 m -2 for pH>6. For pH 2 (g) saturated solutions dropped by up to four orders of magnitude as compared to oxidizing conditions. Because of the very low concentrations, only U, Pu, Am, Mo, Tc and Cs could be measured. For anoxic conditions, both the redox potential and dissolution rates increased approaching the same values as under oxidizing conditions

  3. Flow in a centrifugal fan impeller at off-design conditions

    Science.gov (United States)

    Wright, T.; Tzou, K. T. S.; Madhavan, S.

    1984-06-01

    A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.

  4. Rational ore deposit drilling pattern with construction of cluster pumping wells in the artesian flow conditions

    International Nuclear Information System (INIS)

    Matunov, A.; Pershin, M.

    2014-01-01

    Drilling pattern and quantity of technological (injection and production) wells in the uranium in-situ leaching is determined by the projection of ore deposit to the daylight surface, structure and hydrogeological characteristics of ore-bearing deposits and given well field productivity. The difference between the structure of production and injection wells lies in that the upper part of production well has a submersible pump which, compared to injection wells, requires installation in its the upper part of the casing string with larger diameter pipes to allow for the pump installation. As a result, the production wells can be operated in pumping and injection mode and injection wells only in injection mode. The essence of the new scheme is as follows: • All wells on the block are constructed as injection wells, i.e. without a larger diameter pipe being installed in the upper part of the string. • The wells selected for operation as production wells, are leak-proof connected with “cluster” pumping wells by plastic pipelines. • “Cluster” pumping wells up to 100 m deep equipped with dead-end string with no screen are constructed near the power sources. Submersible pumps are installed in such wells with the total capacity to be determined by the design flow rate of the block and to ensure the steady, directional flow from injection to production wells. The minimum number of such ''cluster'' pumping wells is one per a well field, which well can be piped to up to seven wells designed for production. As a result, the expenses on procurement of cable products and submersible pumps are reduced and funds for well drilling and their piping are saved. The proposed scheme of well field development used under the artesian flow conditions allows not only for the cost reduction on operating block piping but also for the use of injection wells as production wells at different stages of block development by selecting any necessary combinations of technological wells

  5. Hypersensitivity reaction with intravenous GnRH after pulsatile subcutaneous GnRH treatment in male hypogonadotrophic hypogonadism.

    OpenAIRE

    Popović, V.; Milosević, Z.; Djukanović, R.; Micić, D.; Nesović, M.