WorldWideScience

Sample records for pulsatile flow conditions

  1. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  2. Platelet adhesion to polyurethane urea under pulsatile flow conditions.

    Science.gov (United States)

    Navitsky, Michael A; Taylor, Joshua O; Smith, Alexander B; Slattery, Margaret J; Deutsch, Steven; Siedlecki, Christopher A; Manning, Keefe B

    2014-12-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s(-1). The aim of the current work is to determine the properties of platelet adhesion to the polyurethane urea surface as a function of time-varying shear exposure. A rotating disk system was used to study the influence of steady and pulsatile flow conditions (e.g., cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments were conducted with the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk was rotated in platelet-rich bovine plasma for 2 h, with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow was found to decay exponentially with increasing shear rate. Adhesion levels were found to depend upon peak platelet flux and shear rate, regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices.

  3. Flow Field Characterization Inside an Arteriovenous Graft-to-Vein Anastomosis Under Pulsatile Flow Conditions

    Science.gov (United States)

    2007-11-02

    1 FLOW FIELD CHARACTERIZATION INSIDE AN ARTERIOVENOUS GRAFT- TO-VEIN ANASTOMOSIS UNDER PULSATILE FLOW CONDITIONS Nurullah Arslan1, Francis Loth2...the relationship between the distribution of turbulence intensity and the localization of stenoses inside the venous anastomosis of arteriovenous (A...found to be greatest downstream of the anastomosis . KEYWORDS: Arteriovenous graft, dialysis, turbulence, stenosis I. INTRODUCTION

  4. Photoplethysmography for an independent measure of pulsatile pressure under controlled flow conditions.

    Science.gov (United States)

    Njoum, Haneen; Kyriacou, Panayiotis A

    2017-02-01

    Noninvasive continuous blood pressure measurements are desirable for patients and clinicians. This work proposes and validates a method for transmural pressure measurement using photoplethysmography (PPG) in an in vitro setup that allows control of pressure and flow conditions. The optimum pulsatile volume measure is obtained by comparing parameters extracted from the photoplethysmographic signal (AC amplitude, normalized pulse volume (NPV) and adjusted pulse volume (APV)). Pulsatile volume can then provide pressure measurements using the exponential pressure-volume (P-V) relationship and validated using the gold standard catheter pressure measurement. Pressure, red (R) and infrared (IR) PPG signals were recorded continuously in two arterial models with different cross-sectional areas (Model 1 and Model 2) utilising a pulsatile pump. Flow rates were controlled by varying pumping frequencies at low and high stroke volumes. The optimum method for estimation of the pulsatile volume is through APV, which had a highly significant correlation (r (2)  =  0.99, p  blood pressure measurement at different flow conditions.

  5. Pulsatile prosthetic valve flows.

    Science.gov (United States)

    Phillips, W M; Snyder, A; Alchas, P; Rosenberg, G; Pierce, W S

    1980-01-01

    The laser Doppler system has been established as a useful tool for eliciting the properties of simulated cardiovascular flows, and thus for comparative studies of flow properties of prosthetic valves. Significant differences among valve types and between models of one type have been documented. The complex variations of velocity profiles with time show that comparisons must be made for unsteady pulsatile rather than steady flow, despite the volume and complexity of the data required. Future studies will include methods of compacting the data presentation and improving the details of the experimental stimulation.

  6. Methicillin Resistant Staphylococcus Aureus Biofilm Formation Over A Separated Flow Region Under Steady And Pulsatile Flow Conditions

    Science.gov (United States)

    Salek, M. Mehdi; Martinuzzi, Robert

    2012-02-01

    Several researchers have observed that the formation, morphology and susceptibility of bacterial biofilms are affected by the local hydrodynamic condition and, in particular, shear stresses acting on the fluid-biofilm interface. A backwards facing step (BFS) experimental model has been widely utilized as an in vitro model to examine and characterize the effect of flow separation and recirculation zones comparable to those present within various medical devices as well as those observed in vivo. The specific geometry of BFS covers a vide range of flow features observed in physiological or environmental conditions. The hypothesis of this study is that the flow behavior and structures can effectively contribute to the transport and attachment of cells and affecting the morphology of adhered colonies as well as suspended structures (i.e. biofilm streamers). Hence, the formation of the recirculation region occurring within a backward facing step (BFS) under steady and pulsatile conditions as well as three-dimensional flow structures arising close to the side walls are investigated to correlate to biofilms behavior. This hypothesis is investigated using a backward facing step incorporated into a flow cell under steady and pulsatile flow regimes to study the growth of methicillin resistant Staphylococcus aureus (MRSA) UC18 as the study microorganism.

  7. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2016-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e. constant velocity unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Beyond the important practical applications, characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigated the wake of four canonical surface obstacles: hemisphere, cube, and circular cylinders with aspect ratio of 1:1 and 2:1. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Centeor Biomimetics and Bioinspired Engineering (COBRE).

  8. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions.

    Science.gov (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura

    2015-11-01

    Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.

  9. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    Science.gov (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  10. Pulsatile flow in ventricular catheters for hydrocephalus

    Science.gov (United States)

    Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.

    2017-05-01

    The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  11. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  12. Cerebral microcirculatory changes during pulsatile and non-pulsatile flow in hypovolemic hypotension

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cerebral microcirculatory changes in hypovolemic hypotension we re investigat ed in rats with a cardio-pulmonary bypass (CPB) during pulsatile and non-pulsati le flow. The hypovolemic hypotension was induced by reducing the CPB flow-rate. In the non-pulsatile flow, the cardiac beat was stopped using a fibrilator, whi le in the pulsatile flow the cardiac function was retained. The pial microcircul ation was observed and recorded during CPB, using fluorescence videomicroscopy. The arteriolar diameter and red cell velocity were measured based on the recorde d videoimages. The flow-rate was calculated from the measured diameter and veloc ity data. The present results showed that the flow-rate remained almost constant up to 60 mmHg arterial pressure during pulsatile flow. On the other hand, in n on-pulsatile flow, the flow-rate decreased with a decrease in arterial pressure, indicating the impairment of microvascular autoregulation. It was suggested th at pulsatile flow has an advantage over non-pulsatile flow in a view-point of ce rebral microcirculatory changes in hypovolemic hypotension. Collaborating researchers: Drs. T. Yamakawa, S. Yamaguchi, Y. Ohnishi (National Cardiovascular Center, Osaka,Japan)

  13. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.

    Science.gov (United States)

    Stanfield, J Ryan; Selzman, Craig H

    2013-03-01

    Recently, continuous-flow ventricular assist devices (CF-VADs) have supplanted older, pulsatile-flow pumps, for treating patients with advanced heart failure. Despite the excellent results of the newer generation devices, the effects of long-term loss of pulsatility remain unknown. The aim of this study is to compare the ability of both axial and centrifugal continuous-flow pumps to intrinsically modify pulsatility when placed under physiologically diverse conditions. Four VADs, two axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. Each VAD was operated at a constant impeller speed over three hypothetical cardiac conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was compared for each device under each condition. Centrifugal-flow devices had a higher PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial and centrifugal groups, respectively (p centrifugal pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs were capable of maintaining some pulsatile-flow when connected in parallel with our mock ventricle. We conclude that centrifugal-flow devices outperform the axial pumps from the basis of PI under tested conditions.

  14. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  15. Effects of the pulsatile flow settings on pulsatile waveforms and hemodynamic energy in a PediVAS centrifugal pump.

    Science.gov (United States)

    Wang, Shigang; Rider, Alan R; Kunselman, Allen R; Richardson, J Scott; Dasse, Kurt A; Undar, Akif

    2009-01-01

    The objective of this study was to test different pulsatile flow settings of the PediVAS centrifugal pump to seek an optimum setting for pulsatile flow to achieve better pulsatile energy and minimal backflow. The PediVAS centrifugal pump and the conventional pediatric clinical circuit, including a pediatric membrane oxygenator, arterial filter, arterial cannula, and 1/4 in circuit tubing were used. The circuit was primed with 40% glycerin water mixture. Postcannula pressure was maintained at 40 mm Hg by a Hoffman clamp. The experiment was conducted at 800 ml/min of pump flow with a modified pulsatile flow setting at room temperature. Pump flow and pressure readings at preoxygenator and precannula sites were simultaneously recorded by a data acquisition system. The results showed that backflows appeared at flow rates of 200-800 ml/min (200 ml/min increments) with the default pulsatile flow setting and only at 200 ml/min with the modified pulsatile flow setting. With an increased rotational speed difference ratio and a decreased pulsatile width, the pulsatility increased in terms of surplus hemodynamic energy and total hemodynamic energy at preoxygenator and precannula sites. Backflows seemed at preoxygenator and precannula sites at a 70% of rotational speed difference ratio. The modified pulsatile flow setting was better than the default pulsatile flow setting in respect to pulsatile energy and backflow. The pulsatile width and the rotational speed difference ratio significantly affected pulsatility. The parameter of the rotational speed difference ratio can automatically increase pulsatility with increased rotational speeds. Further studies will be conducted to optimize the pulsatile flow setting of the centrifugal pump.

  16. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  17. In vitro heart valve testing: steady versus pulsatile flow.

    Science.gov (United States)

    Black, M M; Hose, D R; Lamb, C J; Lawford, P V; Ralph, S J

    1994-03-01

    The design of artificial heart valves has traditionally been based on the development of a prototype device which was then subjected to extensive laboratory testing in order to confirm its suitability for clinical use. In the past the in vitro assessment of a valve's performance was based principally on the measurement of parameters such as pressure difference, regurgitation and, more recently, energy losses. Such measurements can be defined as being at the 'macro' level and rarely show any clinically significant differences amongst currently available prostheses. The analytical approach to flow through heart valves has previously been hampered by difficulties experienced in solving the relevant equations of flow particularly in the case of pulsatile conditions. Computational techniques are now available which enable appropriate solutions to be obtained for these problems and consequently provide an opportunity for detailed examination of the 'micro' level of flow disturbances exhibited by the different valves. This present preliminary study is designed to illustrate the use of such an analytical approach to the flow through prosthetic valves. A single topic has been selected for this purpose which is the comparative value of steady versus pulsatile flow testing. A bileaflet valve was chosen for the analysis and a mathematical model of this valve in the aortic position of the Sheffield Pulse Duplicator was created. The theoretical analysis was carried out using a commercially available Computational Fluid Dynamics package, namely, FIDAP, on a SUN MICROSYSTEMS 10-30 workstation.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Pulsatile blood flow in Abdominal Aortic Aneurysms

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  19. Flush-mounted hot film anemometer accuracy in pulsatile flow.

    Science.gov (United States)

    Nandy, S; Tarbell, J M

    1986-08-01

    The accuracy of a flush-mounted hot film anemometer probe for wall shear stress measurements in physiological pulsatile flows was evaluated in fully developed pulsatile flow in a rigid straight tube. Measured wall shear stress waveform based on steady flow anemometer probe calibrations were compared to theoretical wall shear stress waveforms based on well-established theory and measured flow rate waveforms. The measured and theoretical waveforms were in close agreement during systole (average deviation of 14 percent at peak systole). As expected, agreement was poor during diastole because of flow reversal and diminished frequency response at low shear rate.

  20. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    LIUZhao-rong; XUGang; CHENYong; TENGZhong0=zhao; QINKai-rong

    2003-01-01

    Blood flow in artery was treated as the flow under equilibriums state(the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small,so that the equations of vesse wall motion under the pulsatile pressure could be established here.Through solving both the vessel equations and the linear Navier-Stokes equations,the analytic expressions of the blood flow velocities and the vascular displacements were obtained.The influence of the difference between vascular circumferentia and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  1. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    柳兆荣; 徐刚; 陈泳; 滕忠照; 覃开蓉

    2003-01-01

    Blood flow in artery was treated as the flow under equilibrium state ( the steady flow under mean pressure ) combined with the periodically small pulsatile flow. Using vascular strain energy function advanced by Fung, the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile pressure could be established here. Through solving both the vessel equations and the linear NavierStokes equations, the analytic expressions of the blood flow velocities and the vascular displacements were obtained. The influence of the difference between vascular circumferential and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  2. Cinematics and sticking of heart valves in pulsatile flow test.

    Science.gov (United States)

    Köhler, J; Wirtz, R

    1991-05-01

    The aim of the project was to develop laboratory test devices for studies of the cinematics and sticking behaviour of technical valve protheses. The second step includes testing technical valves of different types and sizes under static and dynamic conditions. A force-deflection balance was developed in order to load valve rims by static radial forces until sticking or loss of a disc (sticking- and clamping-mould point) with computer-controlled force deflection curves. A second deflection device was developed and used for prosthetic valves in the aortic position of a pulsatile mock circulation loop with simultaneous video-cinematography. The stiffness of technical valve rims varied between 0.20 (St. Jude) and about 1.0 N/micron (metal rim valves). The stiffness decreased significantly with increasing valve size. Sticking under pulsatile flow conditions was in good agreement with the static deflection measurements. Hence, valve sticking with increasing danger of thrombus formation is more likely with a less stiff valve rim. In the case of forces acting perpendicularly to the pendulum axis, the clamping mould-point of the valve can be reached, followed by disc dislodgement.

  3. ANALYSIS OF PULSATILE BLOOD FLOW IN AXIALLY MOVING ARTERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to study motional properties of pulsatile blood flow in axially moving arteries, the authors derived some expressions of the pulsatile blood flow from the basic equations of motion for blood and vascular walls, including an axial blood velocity equation, a flow rate equation and a wall shear stress equation, which described not only the overall axial movement of the arteries but also the elastic properties of the vascular walls, discussed the effects of the arterial wall elasticity on the wall shear stress in coronary arteries in terms of these expressions, and analyzed changes of motional properties of pulsatile blood flow between an elastic arterial tube model and a rigid tube model. The results proved the inference by J.E. Moore Jr. et al. (1994) that the axial movement of arteries be as important in determining coronary artery hemodynamics as the elastic property of the vascular wall.

  4. Numerical simulation of pulsatile flow in rough pipes

    Science.gov (United States)

    Chin, Cheng; Monty, Jason; Ooi, Andrew; Illingworth, Simon; Marusic, Ivan; Skvortsov, Alex

    2016-11-01

    Direct numerical simulation (DNS) of pulsatile turbulent pipe flow is carried out over three-dimensional sinusoidal surfaces mimicking surface roughness. The simulations are performed at a mean Reynolds number of Reτ 540 (based on friction velocity, uτ, and pipe radii, δ) and at various roughness profiles following the study of Chan et al., where the size of the roughness (roughness semi-amplitude height h+ and wavelength λ+) is increased geometrically while maintaining the height-to-wavelength ratio of the sinusoidal roughness element. Results from the pulsatile simulations are compared with non-pulsatile simulations to investigate the effects of pulsation on the Hama roughness function, ΔU+ . Other turbulence statistics including mean turbulence intensities, Reynolds stresses and energy spectra are analysed. In addition, instantaneous phase (eg. at maximum and minimum flow velocities) and phase-averaged flow structures are presented and discussed.

  5. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.

    Science.gov (United States)

    Karantonis, Dean M; Cloherty, Shaun L; Mason, David G; Ayre, Peter J; Lovell, Nigel H

    2007-01-01

    A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min. Taking the pump feedback signals of speed and power, together with the HCT level, as input parameters, several flow estimate models were developed via system identification methods. Three autoregressive with exogenous input (ARX) model structures were evaluated: structures I and II used the input parameters directly; structure II incorporated additional terms for HCT; and the third structure employed as input a non-pulsatile flow estimate equation. Optimal model orders were determined, and the associated models yielded minimum mean flow errors of 5.49% and 0.258 L/min for structure II, and 5.77% and 0.270 L/min for structure III, when validated on unseen data. The models developed in this study present a practical method of accurately estimating iRBP flow in a pulsatile environment.

  6. A new method of providing pulsatile flow in a centrifugal pump: assessment of pulsatility using a mock circulatory system.

    Science.gov (United States)

    Herreros, Jesús; Berjano, Enrique J; Sales-Nebot, Laura; Más, Pedro; Calvo, Irene; Mastrobuoni, Stefano; Mercé, Salvador

    2008-06-01

    Previous studies have demonstrated the potential advantages of pulsatile flow as compared with continuous flow. However, to date, physiologic pumps have been technically complex and their application has therefore remained in the experimental field. We have developed a new type of centrifugal pump, which can provide pulsatile as well as continuous flow. The inner wall of a centrifugal pump is pulsed by means of a flexible membrane, which can be accurately controlled by means of either a hydraulic or pneumatic driver. The aim of this study was to assess the hydraulic behavior of the new pump in terms of surplus hemodynamic energy (SHE). We conducted experiments using a mock circulatory system including a membrane oxygenator. No differences were found in the pressure-flow characteristics between the new pump and a conventional centrifugal pump, suggesting that the inclusion of the flexible membrane does not alter hydraulic performance. The value of SHE rose when systolic volume was increased. However, SHE dropped when the percentage of ejection time was reduced and also when the continuous flow (programmed by the centrifugal console) increased. Mean flow matched well with the continuous flow set by the centrifugal console, that is, the pulsatile component of the flow was exclusively controlled by the pulsatile console, and was therefore independent of the continuous flow programmed by the centrifugal console. The pulsatility of the new pump was approximately 25% of that created with a truly pulsatile pump.

  7. Large-Eddy simulation of pulsatile blood flow.

    Science.gov (United States)

    Paul, Manosh C; Mamun Molla, Md; Roditi, Giles

    2009-01-01

    Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology.

  8. Visualization of pulsatile flow for magnetic nanoparticle based therapies

    Science.gov (United States)

    Wentzel, Andrew; Yecko, Philip

    2015-11-01

    Pulsatile flow of blood through branched, curved, stenosed, dilated or otherwise perturbed vessels is more complex than flow through a straight, uniform and rigid tube. In some magnetic hyperthermia and magnetic chemo-therapies, localized regions of magnetic nanoparticle laden fluid are deliberately formed in blood vessels and held in place by magnetic fields. The effect of localized magnetic fluid regions on blood flow and the effect of the pulsatile blood flow on such magnetic fluid regions are poorly understood and difficult to examine in vivo or by numerical simulation. We present a laboratory model that facilitates both dye tracer and particle imaging velocimetry (PIV) studies of pulsatile flow of water through semi-flexible tubes in the presence of localized magnetic fluid regions. Results on the visualization of flows over a range of Reynolds and Womersley numbers and for several different (water-based) ferrofluids are compared for straight and curved vessels and for different magnetic localization strategies. These results can guide the design of improved magnetic cancer therapies. Support from the William H. Sandholm Program of Cooper Union's Kanbar Center for Biomedical Engineering is gratefully acknowledged.

  9. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  10. ANALYSIS OF PULSATILE FLOW IN THE PARALLEL-PLATE FLOW CHAMBER WITH SPATIAL SHEAR STRESS GRADIENT

    Institute of Scientific and Technical Information of China (English)

    QIN Kai-rong; HU Xu-qu; LIU Zhao-rong

    2007-01-01

    The Parallel-Plate Flow Chamber (PPFC), of which the height is far smaller than its own length and width, is one of the main apparatus for the in-vitro study of the mechanical behavior of cultured vascular Endothelical Cells (ECs) exposed to fluid shear stress. The steady flow in different kinds of PPFC has been extensively investigated, whereas, the pulsatile flow in the PPFC has little attention. In consideration of the characteristics of geometrical size and pulsatile flow in the PPFC, the 3-D pulsatile flow was decomposed into a 2-D pulsatile flow in the vertical plane, and an incompressible plane potential flow in the horizontal plane. A simple method was then proposed to analyze the pulsatile flow in the PPFC with spatial shear stress gradient. On the basis of the method, the pulsatile fluid shear stresses in several reported PPFCs with spatial shear stress gradients were calculated. The results were theoretically meaningful for applying the PPFCs in-vitro, to simulate the pulsatile fluid shear stress environment, to which cultured ECs were exposed.

  11. The dynamics of pulsatile flow in distensible model arteries.

    Science.gov (United States)

    Liepsch, D W; Zimmer, R

    1995-12-01

    Deposits and blockages are often found in the carotid, coronary, renal and femoral arteries. This paper deals with laser-Doppler velocity measurements in models of bifurcations of the human femoral arteries. Several models were prepared for the studies: a simplified 35 degrees glass model, two elastic-silicone-rubber models with a wall thickness of 1 mm and 2 mm, and true-to-scale rigid and elastic models. These measurements give a clearer picture of how hemodynamics influences the formation of atherosclerotic plaques where there is a hardening of the arterial walls and a loss of elasticity. In addition to the effects of elasticity, the influence of the flow's pulsatility were studied. The measurements were done in steady and pulsatile flow. From the velocity measurements the shear stresses were calculated.

  12. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  13. Holographic laser Doppler imaging of pulsatile blood flow

    CERN Document Server

    Bencteux, Jeffrey; Kostas, Thomas; Bayat, Sam; Atlan, Michael

    2015-01-01

    We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second, and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

  14. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    Science.gov (United States)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  15. A New System to Analyze Pulsatile Flow Characteristics in Elastic Tubes for Hemodynamic Applications

    Directory of Open Access Journals (Sweden)

    Afshin A. Benam

    2008-01-01

    Full Text Available In this research, we present a new designed experimental setup for study of characteristics of pulsatile flow in elastic tubes, aiming to simulate arterial blood flow. This system includes four major components: (1 a pulsatile pump producing original arterial flow, (2 an elastic element to simulate coupling of the heart with the arterial system, (3 an elastic tube with mechanical characteristics of the arterial wall and assembly of pressure transducers to monitor inlet and outlet pulsatile pressures and the resultant pulsatile pressure gradient and (4 a resistant element to simulate peripheral resistant distal the artery. The system is capable of performing under different mechanical conditions, including tubes with different elastic moduli and fluids with different viscosities. Experimental results showed a precise ability of producing original blood flow waves and recording pressure pulses and pressure gradient waves under different mechanical conditions. The resultant pressure pulses were compatible with the diastolic-systolic pressure pulses of typical arteries. The system showed an accurate sensitivity to variations of fluid viscosity and elasticity of tube wall. Experimental results showed that stiffening of the wall resulted in decrease of mean pressure gradient pulse. Results also showed that an elevated fluid viscosity led to a higher mean value of pressure gradient and less fluctuation of pressure gradient pulse. Results are in good agreement with theoretical considerations of higher energy dissipation and consequent pressure drop by increased fluid viscosity. The designed experimental setup might be used in evaluation of hemodynamic parameters in patho-physiological situations such as stenotic arteries and age related stiffening.

  16. Pulsatile flow during cardiopulmonary bypass. Evaluation of a new pulsatile pump.

    Science.gov (United States)

    Waaben, J; Andersen, K; Husum, B

    1985-01-01

    Pulsatile cardiopulmonary bypass (CPB) has been suggested to be superior to nonpulsatile CPB. This report concerns a newly developed pulsatile pump for clinical use. It is designed as a positive displacement pump, with blood allowed to collect in a valved cavity from which it is ejected by the reciprocating action of a piston. Using a uniform procedure of anaesthesia and surgery, 14 pigs were subjected to CPB at 37 degrees C for 3 hours. The pulsatile pump was used in seven pigs and a conventional roller pump in the other seven. The wave-form of the pulse during pulsatile CPB was similar to that recorded in the pigs before bypass. The values for rate of pressure change with respect to time (dp/dt) obtained in the aorta were close to the pre-CPB values. No difference was found between the two groups with respect to platelet count or haemolysis. The investigated pulsatile device appeared to be reliable and easy to handle, and the pulsation it produced closely resembled the physiologic pulse-wave form.

  17. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  18. EFFECTS OF VASCULAR ZERO-STRESS STATE ON PULSATILE BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure) combined with the periodically small pulsatile flow. Based on vascular zero-stress state[1], the pulsatile strains according to the radial and axial displacements of blood vessel were obtained. With the use of Hooke’s law, the pulsatile strains and the corresponding Cauchy stresses were connected, so the corresponding wall motion equations could be established here. By solving the linearized Navier-Stokes equations, the analytic expressions of the blood flow velocities and the vascular displacements could be obtained, and the influence of the circumferential and axial stretch ratio on pulsatile blood flow and vascular motion was discussed in details.

  19. Time-resolved X-ray PIV measurements of hemodynamic information of real pulsatile blood flows

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2015-11-01

    X-ray imaging technique has been used to visualize various bio-fluid flow phenomena as a nondestructive manner. To obtain hemodynamic information related with circulatory vascular diseases, a time-resolved X-ray PIV technique with high temporal resolution was developed. In this study, to embody actual pulsatile blood flows in a circular conduit without changes in hemorheological properties, a bypass loop is established by connecting a microtube between the jugular vein and femoral artery of a rat. Biocompatible CO2 microbubbles are used as tracer particles. After mixing with whole blood, CO2 microbubbles are injected into the bypass loop. Particle images of the pulsatile blood flows in the bypass loop are consecutively captured by the time-resolved X-ray PIV system. The velocity field information are obtained with varying flow rate and pulsataility. To verify the feasibility of the use of CO2 microbubbles under in vivo conditions, the effects of the surrounding-tissues are also investigated, because these effects are crucial for deteriorating the image contrast of CO2 microbubbles. Therefore, the velocity information of blood flows in the abdominal aorta are obtained to demonstrate the visibility and usefulness of CO2 microbubbles under ex vivo conditions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  20. Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-06-01

    Steady flow and physiological pulsatile flow in a rigid 180° curved tube are investigated using particle image velocimetry. A non-Newtonian blood-analog fluid is used, and in-plane primary and secondary velocity fields are measured. A vortex detection scheme ( d 2-method) is applied to distinguish vortical structures. In the pulsatile flow case, four different vortex types are observed in secondary flow: deformed-Dean, Dean, Wall and Lyne vortices. Investigation of secondary flow in multiple cross sections suggests the existence of vortex tubes. These structures split and merge over time during the deceleration phase and in space as flow progresses along the 180° curved tube. The primary velocity data for steady flow conditions reveal additional vortices rotating in a direction opposite to Dean vortices—similar to structures observed in pulsatile flow—if the Dean number is sufficiently high.

  1. Analytical and experimental characterization of a miniature calorimetric sensor in pulsatile flow

    CERN Document Server

    Gelderblom, H; Haartsen, J R; Rutten, M C M; van de Ven, A A F; van de Vosse, F N; 10.1017/S0022112010004234

    2011-01-01

    The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary artery flow assessment, is investigated in both steady and pulsatile tube flow. The sensor is composed of a heating element operated at constant power, and two thermopiles that measure flow-induced temperature differences over the sensor surface. An analytical sensor model is developed, which includes axial heat conduction in the fluid and a simple representation of the solid wall, assuming a quasi-steady sensor response to the pulsatile flow. To reduce the mathematical problem, described by a two-dimensional advection-diffusion equation, a spectral method is applied. A Fourier transform is then used to solve the resulting set of ordinary differential equations and an analytical expression for the fluid temperature is found. To validate the analytical model, experiments with the sensor mounted in a tube have been performed in steady and pulsatile water flow with various amplitudes and Strouhal numbers. E...

  2. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, Anders

    2012-07-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  3. Analytical and experimental characterization of a miniature calorimetric sensor in a pulsatile flow

    NARCIS (Netherlands)

    Gelderblom, H.; Horst, van der A.; Haartsen, J.R.; Rutten, M.C.M.; Ven, van de A.A.F.; Vosse, van de F.N.

    2010-01-01

    The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary-artery-flow assessment, is investigated in both steady and pulsatile tube flows. The sensor is composed of a heating element operated at constant power and two thermopiles that measure flow-ind

  4. Attenuation of hypoxic pulmonary vasoconstriction by pulsatile flow in dog lungs.

    Science.gov (United States)

    Gregory, T J; Newell, J C; Hakim, T S; Levitzky, M G; Sedransk, N

    1982-12-01

    We measured pulmonary arterial pressure in isolated lower lobes of dog lungs perfused in situ at several flows during ventilation with 95% O2-5% CO2 and with 3% O2-5% CO2. Pulsatile perfusion was provided by a piston pump, and steady perfusion was provided by a roller pump. The slope of the pressure-flow curve was 16.1 +/- 1.6 Torr X 1(-1) X min at all flows between 200 and 800 ml/min during 95-5 ventilation and increased to 19.4 +/- 3.7 in hypoxia. When flow was 600 ml/min, with 95-5 ventilation, mean arterial pressure was 16.2 +/- 1.2 Torr in steady flow and was unchanged at 15.0 +/- 1.0 Torr in pulsatile flow. At the same flow during hypoxic ventilation, mean arterial pressure increased to 27.9 +/- 2.4 Torr (P less than 0.01) when flow was steady but only to 19.3 +/- 1.6 Torr (P less than 0.01) when flow was made pulsatile. Thus hypoxia increased perfusion pressure by a nearly parallel shift of the pressure-flow curve to higher pressures, and this change was smaller in pulsatile than in steady flow.

  5. The hemodynamic and embolizing forces acting on thrombi--II. The effect of pulsatile blood flow.

    Science.gov (United States)

    Basmadjian, D

    1986-01-01

    A previous analysis (Basmadjian, J. Biomechanics 17, 287-298, 1984) of the embolizing forces acting on thrombi in steady Poiseuille flow has been extended to pulsatile blood flow conditions in the major blood vessels. We show that for incipient and small compact thrombi up to 0.1 mm height, the maximum embolizing stresses can be calculated from the corresponding 'quasi-steady' viscous drag forces and measured maximum wall shear. Their magnitude is from 5 to 30 times (tau w)Max, the maximum wall shear stress during the cardiac cycle in the absence of thrombi. For larger thrombi, inertial and 'history' effects have to be taken into account, leading to embolizing stresses in excess of 100 Pa (1000 dyn cm-2).

  6. A study of the pulsatile flow and its interaction with rectangular leaflets

    Science.gov (United States)

    Ledesma, Rene; Zenit, Roberto; Pulos, Guillermo

    2009-11-01

    To avoid the complexity and limited understanding of the 3D pulsatile flow field through heart valves, a cardiac-like flow circuit and a test channel were designed to study the behavior of bidimensional leaflets made of hyperelastic materials. We study a simple 2D arrangement to understand the basic physics of the flow-leaflet interaction. Creating a periodic pressure gradient, measurements of leaflet deflection were obtained for different flow conditions, geometries and materials. Using PIV and Phase Locking techniques, we have obtained the leaflet motion and the time-dependent flow velocity fields. The results show that two dimensionless parameters determine the performance of a simple bi-dimensional valve, in accordance with the flow conditions applied: π1=f(sw)^1/2(E/ρ)^1/2 and π2=V/(2slw), where f is the pulsation frequency, V is the stroke volume, s, w and l are the dimensions on the leaftlet and E and ρ are the elastic modulus and density of the material, respectively. Furthermore, we have identified the conditions for which the fluid stresses can be minimized. With these results we propose a new set of parameters to improve the performance of prosthetic heart valves and, in consequence, to reduce blood damage.

  7. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation

  8. Observer-based Controller For Microrobot in Pulsatile Blood Flow

    OpenAIRE

    Sadelli, Lounis; Fruchard, Matthieu; Ferreira, Antoine

    2014-01-01

    International audience; We propose an observer-based controller for a magnetic microrobot immersed in the human vasculature. The drag force depends on the pulsatile blood velocity and specially acts on the microrobot dynamics. In the design of advanced control laws, the blood velocity is usually assumed to be known or set to a constant mean value to achieve the control objectives, whereas the sole robot position is measured. We prove the stability of the proposed observer-based controller com...

  9. Analytical and experimental characterization of a miniature calorimetric sensor in a pulsatile flow

    NARCIS (Netherlands)

    Gelderblom, Hanneke; van der Horst, A.; Haartsen, J.R.; Rutten, M.C.M.; van de Ven, A.A.F.; van de Vosse, F.N.

    2010-01-01

    The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary-artery-flow assessment, is investigated in both steady and pulsatile tube flows. The sensor is composed of a heating element operated at constant power and two thermopiles that measure

  10. Observation of the CSF pulsatile flow in the aqueduct using cine MRI with presaturation bolus tracking, 3; The pathophysiological significance of the pulsatile flow patterns in adult patients with ventriculomegaly

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Satoshi (Tokyo Medical Coll. (Japan))

    1992-06-01

    The to-and-fro motion patterns of the CSF flow in the aqueduct in ten normal adults, ten patients with secondary normal-pressure hydrocephalus (NPH), and fourteen patients with idiopathic ventriculomegaly were analyzed using cine MRI with presaturation bolus tracking. The to-and-fro motion patterns of the CSF flow in the aqueduct were thus classified into four types according to their maximum velocity and the relative time duration of their flow in the rostral and caudal directions. The correlation between the clinical symptoms, the CT findings, the RI-cisternography findings, the results of the ICP monitorings, and the CSF pulsatile-flow patterns were then analyzed. In secondary NPH disclosing frequent B waves on ICP monitoring, the maximum velocity of the CSF flow in the aqueduct was over 15 mm/sec, and the duration of the CSF flow was longer in the caudal direction than in the rostral direction. Furthermore, the faster the maximum velocity of the CSF flow, the larger the ventricular size on CT and the more severe the CSF malabsorption on cisternography. In idiopathic ventriculomegaly, only two cases demonstrated the same CSF flow pattern as was shown in secondary NPH; the other cases demonstrated other CSF flow patterns, which were considered to indicate hydrocephalus ex vacuo or arrested hydrocephalus. The CSF pulsatile-flow pattern was assumed to change according to the degree of the CSF circulatory disorder, its compensatory process, and the plasticity of the brain. The investigation of the CSF pulsatile flow gives important information for the evaluation of various hydrocephalic conditions. (author).

  11. Effect of pulsatile and continuous flow on yes-associated protein.

    Science.gov (United States)

    Chitragari, Gautham; Shalaby, Sherif Y; Sumpio, Brandon J; Sumpio, Bauer E

    2014-09-01

    Yes-associated protein (YAP) is a mechanosignaling protein that relays mechanical information to the nucleus by changing its level of phosphorylation. We hypothesize that different flow patterns show differential effect on phosphorylated YAP (pYAP) (S127) and total YAP and could be responsible for flow dependent localization of atherosclerosis. Confluent human umbilical vein endothelial cells (HUVECs) seeded on fibronectin-coated glass slides were exposed to continuous forward flow (CFF) and pulsatile forward flow (PFF) using a parallel plate flow chamber system for 30 minutes. Cell lysates were prepared and immunoblotted to detect the levels of phosphorylated YAP and total YAP. HUVECs exposed to both PFF and CFF showed a mild decrease in the levels of both pYAP (S127) and total YAP. While the levels of pYAP (S127) decreased to 87.85 and 85.21% of static control with PFF and CFF, respectively, the levels of total YAP significantly decreased to 91.31 and 92.27% of static control. No significant difference was seen between CFF and PFF on their effect on pYAP (S127), but both conditions resulted in a significant decrease in total YAP at 30 minutes. The results of this experiment show that the possible effect of different types of flow on YAP is not induced before 30 minutes. Experiments exposing endothelial cells to various types of flow for longer duration of time could help to elucidate the role of YAP in the pathogenesis of atherosclerosis.

  12. Beyond the Virtual Intracranial Stenting Challenge 2007: non-Newtonian and flow pulsatility effects.

    Science.gov (United States)

    Cavazzuti, Marco; Atherton, Mark; Collins, Michael; Barozzi, Giovanni

    2010-09-17

    The Virtual Intracranial Stenting Challenge 2007 (VISC'07) is becoming a standard test case in computational minimally invasive cerebrovascular intervention. Following views expressed in the literature and consistent with the recommendations of a report, the effects of non-Newtonian viscosity and pulsatile flow are reported. Three models of stented cerebral aneurysms, originating from VISC'07 are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software. We conclude that non-Newtonian and pulsatile effects are important to include in order to discriminate more effectively between stent designs.

  13. Clinical evaluation of pulsatile flow mode of Terumo Capiox centrifugal pump.

    Science.gov (United States)

    Nishida, H; Uesugi, H; Nishinaka, T; Uwabe, K; Aomi, S; Endo, M; Koyanagi, H; Oshiyama, H; Nogawa, A; Akutsu, T

    1997-07-01

    The Terumo Capiox centrifugal pump system possesses an automatic priming function in which the motor repeatedly stops and runs intermittently to eliminate air bubbles in the circuit through the micropores of the hollow-fiber membrane oxygenator. By modifying this mechanism, we have developed a pulsatile flow mode. In this mode, maximum and minimum pump rotational speeds can be independently set every 20 rpm in the range of 0 to 3,000 rpm. The duration of the pump run at maximum and minimum speeds can also be independently set every 0.1 s in the range of 0.2 to 15 s. In a clinical trial, after obtaining the desired flow rate, 2.4 L/min/m2 in nonpulsatile flow mode, a pulsatile flow mode of 60 cycles/min (with 1 cycle being maximum speed for 0.4 s and minimum speed for 0.6 s) was obtained by adding and subtracting 500 rpm to and from the rotational speed in nonpulsatile flow mode. Pulse pressures in the femoral artery and in the circuit just proximal to the perfusion cannula (6.5 mm Sarns high flow cannula with metal tip) were measured in 5 patients who underwent pulsatile cardiopulmonary bypass (CPB) for a coronary artery bypass graft (CABG), and compared to pulse pressures obtained by intraaortic balloon pumping (IABP) in 3 patients and by the pulsatile mode of the 3M Delphin pump in 3 patients. The platelet count, free hemoglobin, and beta-thromboglobulin (beta-TG) were measured and compared with measurements from another 5 patients who underwent nonpulsatile CPB. Although the pulse pressure measured in the circuit was 180 mm Hg on average, the pressure in the femoral artery was only 15 to 40 mm Hg with a mean of 20 mm Hg. In the same patients, 60 to 80 mm Hg pulse pressure was obtained with IABP. The pulse pressure obtained with the Delphin pump was not more than that obtained with the Terumo pump. There were no significant differences in percents of preoperative levels of platelet counts (pulsatile, 87.6 +/- 15.8% and nonpulsatile, 72.4 +/- 40.6%), free

  14. A Pulsatile Bioreactor for Conditioning of Tissue-Engineered Cardiovascular Constructs under Endoscopic Visualization.

    Science.gov (United States)

    König, Fabian; Hollweck, Trixi; Pfeifer, Stefan; Reichart, Bruno; Wintermantel, Erich; Hagl, Christian; Akra, Bassil

    2012-07-19

    Heart valve disease (HVD) is a globally increasing problem and accounts for thousands of deaths yearly. Currently end-stage HVD can only be treated by total valve replacement, however with major drawbacks. To overcome the limitations of conventional substitutes, a new clinical approach based on cell colonization of artificially manufactured heart valves has been developed. Even though this attempt seems promising, a confluent and stable cell layer has not yet been achieved due to the high stresses present in this area of the human heart. This study describes a bioreactor with a new approach to cell conditioning of tissue engineered heart valves. The bioreactor provides a low pulsatile flow that grants the correct opening and closing of the valve without high shear stresses. The flow rate can be regulated allowing a steady and sensitive conditioning process. Furthermore, the correct functioning of the valve can be monitored by endoscope surveillance in real-time. The tubeless and modular design allows an accurate, simple and faultless assembly of the reactor in a laminar flow chamber. It can be concluded that the bioreactor provides a strong tool for dynamic pre-conditioning and monitoring of colonized heart valve prostheses physiologically exposed to shear stress.

  15. A Pulsatile Bioreactor for Conditioning of Tissue-Engineered Cardiovascular Constructs under Endoscopic Visualization

    Directory of Open Access Journals (Sweden)

    Bassil Akra

    2012-07-01

    Full Text Available Heart valve disease (HVD is a globally increasing problem and accounts for thousands of deaths yearly. Currently end-stage HVD can only be treated by total valve replacement, however with major drawbacks. To overcome the limitations of conventional substitutes, a new clinical approach based on cell colonization of artificially manufactured heart valves has been developed. Even though this attempt seems promising, a confluent and stable cell layer has not yet been achieved due to the high stresses present in this area of the human heart. This study describes a bioreactor with a new approach to cell conditioning of tissue engineered heart valves. The bioreactor provides a low pulsatile flow that grants the correct opening and closing of the valve without high shear stresses. The flow rate can be regulated allowing a steady and sensitive conditioning process. Furthermore, the correct functioning of the valve can be monitored by endoscope surveillance in real-time. The tubeless and modular design allows an accurate, simple and faultless assembly of the reactor in a laminar flow chamber. It can be concluded that the bioreactor provides a strong tool for dynamic pre-conditioning and monitoring of colonized heart valve prostheses physiologically exposed to shear stress.

  16. Pulsatile flow in a compliant stenosed asymmetric model

    Science.gov (United States)

    Usmani, Abdullah Y.; Muralidhar, K.

    2016-12-01

    Time-varying velocity field in an asymmetric constricted tube is experimentally studied using a two-dimensional particle image velocimetry system. The geometry resembles a vascular disease which is characterized by arterial narrowing due to plaque deposition. The present study compares the nature of flow patterns in rigid and compliant asymmetric constricted tubes for a range of dimensionless parameters appearing in a human artery. A blood analogue fluid is employed along with a pump that mimics cardioflow conditions. The peak Reynolds number range is Re 300-800, while the Womersley number range considered in experiments is Wo 6-8. These values are based on the peak velocity in a straight rigid tube connected to the model, over a pulsation frequency range of 1.2-2.4 Hz. The medial-plane velocity distribution is used to investigate the nature of flow patterns. Temporal distribution of stream traces and hemodynamic factors including WSS, TAWSS and OSI at important phases of the pulsation cycle are discussed. The flow patterns obtained from PIV are compared to a limited extent against numerical simulation. Results show that the region downstream of the constriction is characterized by a high-velocity jet at the throat, while a recirculation zone, attached to the wall, evolves in time. Compliant models reveal large flow disturbances upstream during the retrograde flow. Wall shear stress values are lower in a compliant model as compared to the rigid. Cross-plane flow structures normal to the main flow direction are visible at select phases of the cycle. Positive values of largest Lyapunov exponent are realized for wall movement and are indicative of chaotic motion transferred from the flow to the wall. These exponents increase with Reynolds number as well as compliance. Period doubling is observed in wall displacement of highly compliant models, indicating possible triggering of hemodynamic events in a real artery that may cause fissure in the plaque deposits.

  17. Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity.

    Science.gov (United States)

    Shahriari, S; Kadem, L; Rogers, B D; Hassan, I

    2012-11-01

    This paper aims to extend the application of smoothed particle hydrodynamics (SPH), a meshfree particle method, to simulate flow inside a model of the heart's left ventricle (LV). This work is considered the first attempt to simulate flow inside a heart cavity using a meshfree particle method. Simulating this kind of flow, characterized by high pulsatility and moderate Reynolds number using SPH is challenging. As a consequence, validation of the computational code using benchmark cases is required prior to simulating the flow inside a model of the LV. In this work, this is accomplished by simulating an unsteady oscillating flow (pressure amplitude: A = 2500 N ∕ m(3) and Womersley number: W(o)  = 16) and the steady lid-driven cavity flow (Re = 3200, 5000). The results are compared against analytical solutions and reference data to assess convergence. Then, both benchmark cases are combined and a pulsatile jet in a cavity is simulated and the results are compared with the finite volume method. Here, an approach to deal with inflow and outflow boundary conditions is introduced. Finally, pulsatile inlet flow in a rigid model of the LV is simulated. The results demonstrate the ability of SPH to model complex cardiovascular flows and to track the history of fluid properties. Some interesting features of SPH are also demonstrated in this study, including the relation between particle resolution and sound speed to control compressibility effects and also order of convergence in SPH simulations, which is consistently demonstrated to be between first-order and second-order at the moderate Reynolds numbers investigated.

  18. The Effect of Arterial Curvature on Blood Flow in Arterio-Venous Fistulae: Realistic Geometries and Pulsatile Flow.

    Science.gov (United States)

    Grechy, L; Iori, F; Corbett, R W; Gedroyc, W; Duncan, N; Caro, C G; Vincent, P E

    2017-07-26

    Arterio-Venous Fistulae (AVF) are regarded as the "gold standard" method of vascular access for patients with End-Stage Renal Disease (ESRD) who require haemodialysis. However, up to 60% of AVF do not mature, and hence fail, as a result of Intimal Hyperplasia (IH). Unphysiological flow and oxygen transport patterns, associated with the unnatural and often complex geometries of AVF, are believed to be implicated in the development of IH. Previous studies have investigated the effect of arterial curvature on blood flow in AVF using idealized planar AVF configurations and non-pulsatile inflow conditions. The present study takes an important step forwards by extending this work to more realistic non-planar brachiocephalic AVF configurations with pulsatile inflow conditions. Results show that forming an AVF by connecting a vein onto the outer curvature of an arterial bend does not, necessarily, suppress unsteady flow in the artery. This finding is converse to results from a previous more idealized study. However, results also show that forming an AVF by connecting a vein onto the inner curvature of an arterial bend can suppress exposure to regions of low wall shear stress and hypoxia in the artery. This finding is in agreement with results from a previous more idealized study. Finally, results show that forming an AVF by connecting a vein onto the inner curvature of an arterial bend can significantly reduce exposure to high WSS in the vein. The results are important, as they demonstrate that in realistic scenarios arterial curvature can be leveraged to reduce exposure to excessively low/high levels of WSS and regions of hypoxia in AVF. This may in turn reduce rates of IH and hence AVF failure.

  19. Numerical reconstruction of pulsatile blood flow from 4D computer tomography angiography data

    CERN Document Server

    Lovas, Attila; Csobo, Elek; Szilágyi, Brigitta; Sótonyi, Péter

    2015-01-01

    We present a novel numerical algorithm developed to reconstuct pulsatile blood flow from ECG-gated CT angiography data. A block-based optimization method was constructed to solve the inverse problem corresponding to the Riccati-type ordinary differential equation that can be deduced from conservation principles and Hooke's law. Local flow rate for 5 patients was computed in 10cm long aorta segments that are located 1cm below the heart. The wave form of the local flow rate curves seems to be realistic. Our approach is suitable for estimating characteristics of pulsatile blood flow in aorta based on ECG gated CT scan thereby contributing to more accurate description of several cardiovascular lesions.

  20. Assessment of turbulence models for pulsatile flow inside a heart pump.

    Science.gov (United States)

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2016-02-01

    Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with

  1. An instability mechanism of pulsatile flow along particle trajectories for the axisymmetric Euler equations

    CERN Document Server

    Yoneda, Tsuyoshi

    2016-01-01

    The dynamics along the particle trajectories for the 3D axisymmetric Euler equations in an infinite cylinder are considered. It is shown that if the inflow-outflow is rapidly increasing in time, the corresponding laminar profile of the Euler flow is not (in some sense) stable provided that the swirling component is not small. This exhibits an instability mechanism of pulsatile flow. In the proof, Frenet-Serret formulas and orthonormal moving frame are essentially used.

  2. Measurement of pulsatile turbulent flow downstream of polyurethane heart valve prosthesis using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K.; Sung, J.Y. [Graduate School, Seoul National University, Seoul (Korea); Chang, J.K.; Min, B.G.; Yoo, J.Y. [Seoul National University, Seoul (Korea)

    1998-11-01

    In-vitro flow characteristics downstream of a polyurethane artificial heart valve under a pulsatile flow condition were investigated using Particle Image Velocimetry (PIV). With a triggering system and a time-delay circuit the velocity field downstream of the valve was evaluated in conjunction with the opening behavior of a flexible valve leaflet during a cardiac cycle.. Reynolds shear stress distribution was calculated from the velocity fields at a peak systolic phase. Direct measurements of the wall shear stress by hot-film anemometry (HFA) were compared with the PIV data. The possibilities of vascular complications, such as the thrombus formation and red blood cell damage, could be estimated from the overall view of the instantaneous velocity and stress fields obtained. A correlation between the flow pattern downstream of the valve and the corresponding opening posture of the polyurethane valve membrane gives useful data necessary for the improved design of the frame structure and leaflet geometry of the valve. (author). 11 refs., 8 figs., 5 tabs.

  3. Pulsatile cerebrospinal fluid flow measurement using phase-contrast magnetic resonance imaging in patients with cervical myelopathy.

    Science.gov (United States)

    Shibuya, Ryoichi; Yonenobu, Kazuo; Koizumi, Toshiaki; Kato, Yasuji; Mitta, Motoharu; Yoshikawa, Hideki

    2002-05-15

    A technical report is presented. To investigate the relation between the severity of myelopathy and the degree of cerebrospinal fluid flow disturbance by using magnetic resonance imaging to measure the velocity of the cerebrospinal fluid flow in patients with cervical spondylotic myelopathy. Analyses of pulsatile cerebrospinal fluid flow measured by phase-contrast magnetic resonance imaging in healthy subjects and patients with Arnold-Chiari syndrome have been reported. Few studies have evaluated the change of pulsatile cerebrospinal fluid flow velocity and the waveform of the plotted velocity in patients with cervical spondylotic myelopathy. Study 1: Pulsatile cerebrospinal fluid flow was measured at C7, positioned with cervical spine flexion and extension, to investigate the influence of cervical alignment on the pulsatile cerebrospinal fluid flow in five patients with cervical spondylotic myelopathy. Study 2: In 31 patients with cervical spondylotic myelopathy, pulsatile cerebrospinal fluid flow was measured at C3 and C7, with the neck set centrally. The relevance of cerebrospinal fluid flow disturbance and the severity of myelopathy evaluated by the Japanese Orthopedic Association scoring system also were studied. Study 1: The waveform of plotted pulsatile cerebrospinal fluid flow velocity showed no change resulting from the position of the cervical spine. Study 2: A high correlation between the Japanese Orthopedic Association score and the cerebrospinal fluid pulsatile flow amplitude at C7 was demonstrated (r = 0.75; P < 0.0001). The average Japanese Orthopedic Association score of 14 patients whose cerebrospinal fluid flow velocity waveforms were absent was significantly lower (P < 0.0001) than that of 17 patients whose waveforms were present. The disturbance of pulsatile cerebrospinal fluid flow demonstrated high correlation with the severity of myelopathy. Measurement of cerebrospinal fluid flow disturbance can quantify the degree of dural sac and spinal

  4. Quantitative myocardial perfusion magnetic resonance imaging: the impact of pulsatile flow on contrast agent bolus dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Graafen, Dirk; Hamer, Julia; Weber, Stefan; Schreiber, Laura M, E-mail: graafen@uni-mainz.de [Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz (Germany)

    2011-08-21

    Myocardial blood flow (MBF) can be quantified using T{sub 1}-weighted first-pass magnetic resonance imaging (MRI) in combination with a tracer-kinetic model, like MMID4. This procedure requires the knowledge of an arterial input function which is usually estimated from the left ventricle (LV). Dispersion of the contrast agent bolus may occur between the LV and the tissue of interest. The aim of this study was to investigate the dispersion under conditions of physiological pulsatile blood flow, and to simulate its effect on MBF quantification. The dispersion was simulated in coronary arteries using a computational fluid dynamics (CFD) approach. Simulations were accomplished on straight vessels with stenosis of different degrees and shapes. The results show that dispersion is more pronounced under resting conditions than during hyperemia. Stenosis leads to a reduction of dispersion. In consequence, dispersion results in a systematic MBF underestimation between -0.4% and -9.3%. The relative MBF error depends not only on the dispersion but also on the actual MBF itself. Since MBF under rest is more underestimated than under stress, myocardial perfusion reserve is overestimated between 0.1% and 4.5%. Considering other sources of errors in myocardial perfusion MRI, systematic errors of MBF by bolus dispersion are relatively small.

  5. Evaluation of pulsatile and nonpulsatile flow in capillaries of goat skeletal muscle using intravital microscopy.

    Science.gov (United States)

    Lee, J J; Tyml, K; Menkis, A H; Novick, R J; Mckenzie, F N

    1994-11-01

    It is commonly believed that pulsatile flow generated by the pumping action of the heart is dampened out by the time it reaches the microcirculation. In clinical practice, most of the cardiopulmonary bypass pumps and ventricular assist devices are nonpulsatile. To test the hypothesis that pulsatile flow generated by the heart does exist at the microvascular level, intravital microscopy of a large animal model (goat) was developed to visualize and to videorecord the surface microcirculation of the flexor carpi ulnaris muscle from the right forelimb. Density of perfused capillaries and red blood cell velocity in capillaries were measured in five goats during pulsatile perfusion provided by the heart and during a subsequent 3-hr period of nonpulsatile perfusion provided by a centrifugal ventricular assist device (Centrimed, Sarns 3M) that bypassed the heart. Throughout the experiment, the heart rate, innominate artery mean blood pressure, and flow remained unchanged. During the pulsatile regimen, velocities showed regular fluctuations that coincided with the period of the cardiac cycle (range of periods: 0.5-0.8 sec). The peak velocity amplitudes (range: 0.25-0.55 mm/sec) correlated directly with the amplitude of the pulse pressure. During the nonpulsatile regimen, no such correlations were seen. During pulsatile flow and during the 3-hr nonpulsatile period, capillary density remained stable at 24 capillaries/mm of test line but there were significant increases in red cell velocity, from 0.8 to 1.2 mm/sec (P < 0.05), and in coefficient of variation of velocity (used as an index of flow heterogeneity), from 19 to 34% (P < 0.05). We conclude that (1) pulsatility exists in the capillary bed and that it directly correlates with the pumping action of the heart and (2) nonpulsatile flow produced by the ventricular assist device does not cause an acute deterioration in microvascular perfusion. We interpret the increase in heterogeneity of flow as an early sign of

  6. Estimation of Several Turbulent Fluctuation Quantities Using an Approximate Pulsatile Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy.. This model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to be valid for a fully turbulent flow domain. Here unsteady turbulent behavior is modeled via a sinusoidal pulsatile approach. While the individual modes of the turbulent flow fluctuation behavior are rather crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square (RMS) velocity fluctuations. RMS pressure fluctuations and spectra are of particular interest and are estimated via the pressure Poisson expression. Both RMS and Power Spectral Density (PSD), i.e. spectra are developed. Comparison with available measurements suggests reasonable agreement. An additional fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with measurement.

  7. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  8. Desarrollo de un prototipo de bomba de flujo pulsátil para caracterizar las condiciones hidrodinámicas en un ambiente de circulación extracorpórea Development of a prototype of pulsatile flow pump for characterizing the hydrodinamic conditions in an extracorporeal circulation setting

    Directory of Open Access Journals (Sweden)

    John Bustamante O

    2007-02-01

    Full Text Available Es difícil generar con bombas convencionales las condiciones de flujo del sistema cardiovascular, con las cuales se emulen condiciones hemodinámicas para evaluar diferentes dispositivos interpuestos a la corriente sanguínea. Para resolver este inconveniente, se desarrolló un sistema automatizado de bombeo de flujo pulsátil, conformado por un controlador difuso que captura datos de los instrumentos de monitoreo de variables hidrodinámicas a través de una interfaz de adquisición, y aplica señales de control a una bomba de flujo pulsátil. Este sistema permite hacer pruebas hidromecánicas que brindan elementos para interpretar la influencia de las variables que intervienen en el flujo pulsante y simular condiciones hemodinámicas en un ambiente de circulación extracorpórea. Mediante técnicas de diseño asistido por computador, se construyó una bomba de diafragma accionada neumáticamente. El controlador se desarrolló mediante la técnica de Fuzzi Control®, el cual regula el pulso y el flujo de acuerdo con parámetros y datos capturados con la interfaz de adquisición. Las pruebas del prototipo se realizaron en un laboratorio de fluidos variando frecuencia, resistencia hidráulica, viscosidad y presión de pulso, imitando las condiciones hemodinámicas de un adulto y usando como fluido de trabajo una solución acuosa con 5 cPo a 370C, para simular la viscosidad sanguínea a temperatura corporal. La reproducción de una bomba que sirve para analizar el efecto de las variables en el flujo pulsante, puede usarse en el estudio de diferentes dispositivos intravasculares y ayudar a refinar aspectos técnicos y funcionales en el estudio preliminar de máquinas de circulación extracorpórea.With conventional pumps, it is difficult to generate the cardiovascular system conditions that may emulate hemodynamic conditions for evaluating different devices interposed to the blood flow. In order to resolve this inconvenient, an automated pulsatile

  9. Simultaneous pulsatile flow and oscillating wall of a non-Newtonian liquid

    Science.gov (United States)

    Herrera-Valencia, E. E.; Sánchez-Villavicencio, M. L.; Calderas, F.; Pérez-Camacho, M.; Medina-Torres, L.

    2016-11-01

    In this work, analytical predictions of the rectilinear flow of a non-Newtonian liquid are given. The fluid is subjected to a combined flow: A pulsatile time-dependent pressure gradient and a random longitudinal vibration at the wall acting simultaneously. The fluctuating component of the combined pressure gradient and oscillating flow is assumed to be of small amplitude and can be adequately represented by a weakly stochastic process, for which a quasi-static perturbation solution scheme is suggested, in terms of a small parameter. This flow is analyzed with the Tanner constitutive equation model with the viscosity function represented by the Ellis model. According to the coupled Tanner-Ellis model, the flow enhancement can be separated in two contributions (pulsatile and oscillating mechanisms) and the power requirement is always positive and can be interpreted as the sum of a pulsatile, oscillating, and the coupled systems respectively. Both expressions depend on the amplitude of the oscillations, the perturbation parameter, the exponent of the Ellis model (associated to the shear thinning or thickening mechanisms), and the Reynolds and Deborah numbers. At small wall stress values, the flow enhancement is dominated by the axial wall oscillations whereas at high wall stress values, the system is governed by the pulsating noise perturbation. The flow transition is obtained for a critical shear stress which is a function of the Reynolds number, dimensionless frequency and the ratio of the two amplitudes associated with the pulsating and oscillating perturbations. In addition, the flow enhancement is compared with analytical and numerical predictions of the Reiner-Phillipoff and Carreau models. Finally, the flow enhancement and power requirement are predicted using biological rheometric data of blood with low cholesterol content.

  10. THE STEADY/PULSATILE FLOW AND MACROMOLECULAR TRANSPORT IN T-BIFURCATION BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    李丁; 温功碧

    2003-01-01

    A numerical analysis of the steady and pulsatile, macromolecular( such as lowdensity lipopotein ( LDL ), Albumin ) transport in T-bifurcation was proposed. Theinfluence of Reynolds number and mass flow ratio etc. parameters on the velocity field andmass transport were calculated. The computational results predict that the blood flow factorsaffect the macromolecular distribution and the transport across the wall, it shows thathemodynamic play an important role in the process of atherosclerosis . The LDL and Albuminconcentration on the wall varies most greatly in flow bifurcation area where the wall shearstress varies greatly at the branching vessel and the atherosclerosis often appears there.

  11. Impact of Pulsatility and Flow Rates on Hemodynamic Energy Transmission in an Adult Extracorporeal Life Support System.

    Science.gov (United States)

    Wolfe, Rachel; Strother, Ashton; Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2015-07-01

    This study investigated the total hemodynamic energy (THE) and surplus hemodynamic energy transmission (SHE) of a novel adult extracorporeal life support (ECLS) system with nonpulsatile and pulsatile settings and varying pulsatility to define the most effective setting for this circuit. The circuit consisted of an i-cor diagonal pump (Xenios AG, Heilbronn, Germany), an XLung membrane oxygenator (Xenios AG), an 18 Fr Medos femoral arterial cannula (Xenios AG), a 23/25 Fr Estech RAP femoral venous cannula (San Ramon, CA, USA), 3/8 in ID × 140 cm arterial tubing, and 3/8 in ID × 160 cm venous tubing. Priming was done with lactated Ringer's solution and packed red blood cells (HCT 36%). The trials were conducted at flow rates 1-4 L/min (1 L/min increments) under nonpulsatile and pulsatile mode, with differential speed values 1000-4000 rpm (1000 rpm increments) at 36°. The pseudo patient's mean arterial pressure was kept at 100 mm Hg using a Hoffman clamp during all trials. Real-time flow and pressure data were collected using a custom-based data acquisition system. Mean pressures across the circuit increased with increasing flow rates, but increased insignificantly with increasing differential speed values. Mean pressure did not change significantly between pulsatile and nonpulsatile modes. Pulsatile flow created more THE than nonpulsatile flow at the preoxygenator site (P rates. No SHE was created with nonpulsatile flow, but SHE was created with pulsatile flow, and increased with increasing differential speed values. At lower flow rates (1-2 L/min), the arterial cannula contributed the most to SHE loss, but at higher flow rates the arterial tubing created the most SHE loss. The circuit pressure drop values across all flow rates were 33.1-246.5 mm Hg, and were slightly higher under pulsatile mode than nonpulsatile mode. The i-cor diagonal pump creates satisfactory pulsatile and nonpulsatile flows, and can easily change the

  12. Clinical effectiveness of centrifugal pump to produce pulsatile flow during cardiopulmonary bypass in patients undergoing cardiac surgery.

    Science.gov (United States)

    Gu, Y John; van Oeveren, Willem; Mungroop, Hubert E; Epema, Anne H; den Hamer, Inez J; Keizer, Jorrit J; Leuvenink, Ron P; Mariani, Massimo A; Rakhorst, Gerhard

    2011-02-01

    Although the centrifugal pump has been widely used as a nonpulsatile pump for cardiopulmonary bypass (CPB), little is known about its performance as a pulsatile pump for CPB, especially on its efficacy in producing hemodynamic energy and its clinical effectiveness. We performed a study to evaluate whether the Rotaflow centrifugal pump produces effective pulsatile flow during CPB and whether the pulsatile flow in this setting is clinically effective in adult patients undergoing cardiac surgery. Thirty-two patients undergoing CPB for elective coronary artery bypass grafting were randomly allocated to a pulsatile perfusion group (n = 16) or a nonpulsatile perfusion group (n = 16). All patients were perfused with the Rotaflow centrifugal pump. In the pulsatile group, the centrifugal pump was adjusted to the pulsatile mode (60 cycles/min) during aortic cross-clamping, whereas in the nonpulsatile group, the pump was kept in its nonpulsatile mode during the same period of time. Compared with the nonpulsatile group, the pulsatile group had a higher pulse pressure (P centrifugal pump is associated with a small gain of EEP and SHE, which does not seem to be clinically effective in adult cardiac surgical patients.

  13. [Pulsatile flow model with elastic blood vessels for duplex ultrasound studies].

    Science.gov (United States)

    Petrick, J; Schlief, R; Zomack, M; Langholz, J; Urbank, A

    1992-12-01

    Using ultrasound duplex technique flow phenomena in patients' circulation can be examined. For the interpretation of these examinations it is necessary to have extensive knowledge on flow influencing parameters. This can be easily obtained from simplified flow models. This article describes the components of a flow model that allows examination of ultrasonic contrast media flowing through an artificial heart and vessel mimicking tubes. The artificial heart is the drive which pumps a water glycerol cellulose mixture through the circulation in a pulsatile manner. The shape of the ventricle, the compliance of the aorta, the viscosity of the flow medium and the wall elasticity of the examination vessel were taken into account. The attenuation caused by the surrounding tissue is simulated by a variable layer of castor oil. The flow model is suitable to produce flow profiles that are very similar to physiological profiles.

  14. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.

    Science.gov (United States)

    Shen, Hua; Zhu, Yong; Qin, Kai-Rong

    2016-12-01

    The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. In this study, integrating Ling and Atabek's local flow theory and Maxwell-Fricke theory, we develop an elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conductivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary factor that affects the conductivity of flowing blood in arteries.

  15. Impact of the postpump resistance on pressure-flow waveform and hemodynamic energy level in a neonatal pulsatile centrifugal pump.

    Science.gov (United States)

    Wang, Shigang; Haines, Nikkole; Richardson, J Scott; Dasse, Kurt A; Undar, Akif

    2009-01-01

    This study tested the impact of different postpump resistances on pulsatile pressure-flow waveforms and hemodynamic energy output in a mock extracorporeal system. The circuit was primed with a 40% glycerin-water mixture, and a PediVAS centrifugal pump was used. The pre- and postpump pressures and flow rates were monitored via a data acquisition system. The postpump resistance was adjusted using a Hoffman clamp at the outlet of the pump. Five different postpump resistances and rotational speeds were tested with nonpulsatile (NP: 5000 RPM) and pulsatile (P: 4000 RPM) modes. No backflow was found when using pulsatile flow. With isoresistance, increased arterial resistances decreased pump flow rates (NP: from 1,912 ml/min to 373 ml/min; P: from 1,485 ml/min to 288 ml/min), increased postpump pressures (NP: from 333 mm Hg to 402 mm Hg; P: from 223 mm Hg to 274 mm Hg), and increased hemodynamic energy output with pulsatile mode. Pump flow rate correlated linearly with rotational speed (RPMs) of the pump, whereas postpump pressures and hemodynamic energy outputs showed curvilinear relationships with RPMs. The maximal pump flow rate also increased from 618 ml/min to 4,293 ml/min with pulsatile mode and from 581 ml/min to 5,665 ml/min with nonpulsatile mode. Results showed that higher postpump resistance reduced the pump flow range, and increased postpump pressure and surplus hemodynamic energy output with pulsatile mode. Higher rotational speeds also generated higher pump flow rates, postpump pressures, and increased pulsatility.

  16. Non-invasive Estimation of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand

    2014-01-01

    This paper investigates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The presented set-up is based on vector velocity fields measured on a blood mimicking fluid moving at a peak flow rate of 1 ml/s through a constricted vessel. Fields of ...... and standard deviation of 10% and 13%, respectively, relative to peak estimated gradient. The paper concludes that maps of pressure gradients can be measured non-invasively using ultrasound with a precision of more than 85%......This paper investigates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The presented set-up is based on vector velocity fields measured on a blood mimicking fluid moving at a peak flow rate of 1 ml/s through a constricted vessel. Fields...... of pressure gradients are calculated using the Navier-Stokes equations. Flow data are acquired to a depth of 3 cm using directional synthetic aperture flow imaging on a linear array transducer producing 1500 image frames of velocity estimates per second. Scans of a carotid bifurcation phantom with a 70...

  17. Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    approach. Pressure gradients are calculated from the measured velocity fields using the Navier-Stokes equation. Velocity fields are measured during constant and pulsating flow on a carotid bifurcation phantom and on a common carotid artery in-vivo. Scanning is performed with a 5 MHz BK8670 linear......This paper demonstrates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The proposed method relies on vector velocity fields acquired from ultrasound data. 2-D flow data are acquired at 18-23 frames/sec using the Transverse Oscillation...... transducer using a BK Medical 2202 UltraView Pro Focus scanner. The calculated pressure gradients are validated through a finite element simulation of the constant flow model. The geometry of the flow simulation model is reproduced using MRI data, thereby providing identical flow domains in measurement...

  18. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.

    Science.gov (United States)

    Ghalichi, Farzan; Deng, Xiaoyan

    2003-01-01

    The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.

  19. Pulsatile Flow through Annular Space Bounded by Outer Porous Cylinder and an Inner Cylinder of Permeable Material

    Science.gov (United States)

    Rashidi, M. M.; Keimanesh, M.; Rajvanshi, S. C.; Wasu, S.

    2012-10-01

    This study investigates the problem of pulsatile flow of an incompressible Newtonian fluid through annular space bounded by an outer porous cylinder and an inner cylinder of permeable material. The coupled flow has been analyzed by solving Navier-Stokes equations in the free fluid region and Darcy's equation in the porous region. Beaver-Joseph slip-condition has been used at the free fluid-permeable medium interface. The similarity transformation for the governing equations gives a system of nonlinear ordinary differential equations which are analytically solved by the homotopy analysis method (HAM). The analytical solutions have been obtained in the form of a series. An admissible interval for the convergence of the series solutions has been indicated. Graphical results are presented to show the influence of different parameters on velocity profiles, pressure drop, and skin friction. Comparison between the solutions obtained by the HAM and the numerical solution shows good agreement.

  20. A Pulsatile Flow Phantom for Image-Guided HIFU Hemostasis of Blood Vessels

    Science.gov (United States)

    Greaby, Robyn; Vaezy, Shahram

    2005-03-01

    A pulsatile flow phantom for studying ultrasound image-guided acoustic hemostasis in a controlled environment has been developed. An ex vivo porcine carotid artery was attached to the phantom and embedded in a visually and ultrasonically transparent gel. Heparinized porcine blood was pumped through the phantom. Power-Doppler and B-mode ultrasound were used to remotely target the HIFU focus to the site of a needle puncture. In nine trials, complete hemostasis was achieved after an average HIFU application of 55 +/- 34 seconds. The vessels remained patent after treatment. With this phantom, it will be possible to do controlled studies of ultrasound image-guided acoustic hemostasis.

  1. The Response of an Elastic Splitter Plate Attached to a Cylinder to Laminar Pulsatile Flow

    CERN Document Server

    Kundu, Anup; Bhardwaj, Rajneesh; Thompson, Mark C

    2016-01-01

    The flow-induced deformation of a thin, elastic splitter plate attached to the rear of a circular cylinder and subjected to laminar pulsatile inflow is investigated. The cylinder and elastic splitter plate are contained within a narrow channel and the Reynolds number is mostly restricted to Re = 100, primarily covering the two-dimensional flow regime. An in-house fluid-structure interaction code is employed for simulations, which couples a sharp-interface immersed boundary method for the fluid dynamics with a finite-element method to treat the structural dynamics. The structural solver is implicitly (two-way) coupled with the flow solver using a partitioned approach. This implicit coupling ensures numerical stability at low structure-fluid density ratios. A power spectrum analysis of the time-varying plate displacement shows that the plate oscillates at more than a single frequency for pulsatile inflow, compared to a single frequency observed for steady inflow. The multiple frequencies obtained for the former...

  2. The impact of deformation of an aneurysm model under pulsatile flow on hemodynamic analysis.

    Science.gov (United States)

    Kawakami, T; Takao, H; Ichikawa, C; Kamiya, K; Murayama, Y; Motosuke, M

    2016-08-01

    Hemodynamic analysis of cerebral aneurysms has been widely carried out to clarify the mechanisms of their growth and rupture. In several cases, patient-specific aneurysm models made of transparent polymers have been used. Even though periodic changes in aneurysms due to the pulsation of blood flow could be important, the deformation of the model geometry and its effect on hemodynamic evaluation has not been fully investigated. In addition, the fabrication accuracy of aneurysm models has not been evaluated even though it may affect the hemodynamic parameters to be analyzed. In this study, the fabrication accuracy of a silicone aneurysm model was investigated. Additionally, the deformation of the model under pulsatile flow as well as its correlation with flow behavior was evaluated. Consequently, a fabrication method for an aneurysm model with high accuracy was established and the importance of the wall thickness of the model was also specified.

  3. Quantitative photoacoustic assessment of red blood cell aggregation under pulsatile blood flow: experimental and theoretical approaches

    Science.gov (United States)

    Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.

    2017-03-01

    In the present paper, the optical wavelength dependence on the photoacoustic (PA) assessment of the pulsatile blood flow was investigated by means of the experimental and theoretical approaches analyzing PA radiofrequency spectral parameters such as the spectral slope (SS) and mid-band fit (MBF). For the experimental approach, the pulsatile flow of human whole blood at 60 bpm was imaged using the VevoLAZR system (40-MHz-linear-array probe, 700-900 nm illuminations). For the theoretical approach, a Monte Carlo simulation for the light transmit into a layered tissue phantom and a Green's function based method for the PA wave generation was implemented for illumination wavelengths of 700, 750, 800, 850 and 900 nm. The SS and MBF for the experimental results were compared to theoretical ones as a function of the illumination wavelength. The MBF increased with the optical wavelength in both theory and experiments. This was expected because the MBF is representative of the PA magnitude, and the PA signal from red blood cell (RBC) is dependent on the molar extinction coefficient of oxyhemoglobin. On the other hand, the SS decreased with the wavelength, even though the RBC size (absorber size which is related to the SS) cannot depend on the illumination wavelength. This conflicting result can be interpreted by means of the changes of the fluence pattern for different illumination wavelengths. The SS decrease with the increasing illumination wavelength should be further investigated.

  4. Pulsatile microvascular blood flow imaging by short-time Fourier transform analysis of ultrafast laser holographic interferometry

    CERN Document Server

    Puyo, L; Rancillac, A; Simonutti, M; Paques, M; Sahel, J A; Fink, M; Atlan, M

    2015-01-01

    We report on wide-field imaging of pulsatile microvascular blood flow in the exposed cerebral cortex of a mouse by holographic interferometry. We recorded interferograms of laser light backscattered by the tissue, beating against an off-axis reference beam with a 50 kHz framerate camera. Videos of local Doppler contrasts were rendered numerically by Fresnel transformation and short-time Fourier transform analysis. This approach enabled instantaneous imaging of pulsatile blood flow contrasts in superficial blood vessels over 256 x 256 pixels with a spatial resolution of 10 microns and a temporal resolution of 20 ms.

  5. Numerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction

    Directory of Open Access Journals (Sweden)

    Mehdi Jahangiri

    2015-01-01

    Full Text Available The turbulent pulsatile blood flow through stenosed arteries considering the elastic property of the wall is investigated numerically. During the numerical model validation both standard k-ε model and RNG K-ε model are used. Compared with the RNG K-ε model, the standard K-ε model shows better agreement with previous experimental results and is better able to show the reverse flow region. Also, compared with experimental data, the results show that, up to 70% stenosis, the flow is laminar and for 80% stenosis the flow becomes turbulent. Assuming laminar or turbulent flow and also rigid or elastic walls, the results are compared with each other. The investigation of time-averaged shear stress and the oscillatory shear index for 80% stenosis show that assuming laminar flow will cause more error than assuming a rigid wall. The results also show that, in turbulent flow compared with laminar flow, the importance of assuming a flexible artery wall is more than assuming a rigid artery wall.

  6. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI.

    Science.gov (United States)

    Bouvy, W H; Geurts, L J; Kuijf, H J; Luijten, P R; Kappelle, L J; Biessels, G J; Zwanenburg, J J M

    2016-09-01

    Thus far, blood flow velocity measurements with MRI have only been feasible in large cerebral blood vessels. High-field-strength MRI may now permit velocity measurements in much smaller arteries. The aim of this proof of principle study was to measure the blood flow velocity and pulsatility of cerebral perforating arteries with 7-T MRI. A two-dimensional (2D), single-slice quantitative flow (Qflow) sequence was used to measure blood flow velocities during the cardiac cycle in perforating arteries in the basal ganglia (BG) and semioval centre (CSO), from which a mean normalised pulsatility index (PI) per region was calculated (n = 6 human subjects, aged 23-29 years). The precision of the measurements was determined by repeated imaging and performance of a Bland-Altman analysis, and confounding effects of partial volume and noise on the measurements were simulated. The median number of arteries included was 14 in CSO and 19 in BG. In CSO, the average velocity per volunteer was in the range 0.5-1.0 cm/s and PI was 0.24-0.39. In BG, the average velocity was in the range 3.9-5.1 cm/s and PI was 0.51-0.62. Between repeated scans, the precision of the average, maximum and minimum velocity per vessel decreased with the size of the arteries, and was relatively low in CSO and BG compared with the M1 segment of the middle cerebral artery. The precision of PI per region was comparable with that of M1. The simulations proved that velocities can be measured in vessels with a diameter of more than 80 µm, but are underestimated as a result of partial volume effects, whilst pulsatility is overestimated. Blood flow velocity and pulsatility in cerebral perforating arteries have been measured directly in vivo for the first time, with moderate to good precision. This may be an interesting metric for the study of haemodynamic changes in aging and cerebral small vessel disease. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd.

  7. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  8. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  9. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  10. What is the definition of pulsatile umbilical venous flow in twin-twin transfusion syndrome?

    Science.gov (United States)

    Russell, Zoi; Quintero, Rubén A; Kontopoulos, Eftichia V

    2008-12-01

    The aim of the study was to derive an objective definition of pulsatile umbilical venous flow (PUVF). Pulsed Doppler waveform analysis of the umbilical vein was performed in stages III and IV twin-twin transfusion syndrome (TTTS) patients. In patients with PUVF, the umbilical vein maximum (Vmax) and the umbilical vein minimum velocity (Vmin) and the resistance index for the umbilical vein (UVRI) = (100 x [Vmax - Vmin]/Vmax) were assessed. PUVF was noted in 130 of 226 stages III and IV TTTS patients. Digital images were available for analysis in 65 of 130 patients (50%). The minimum UVRI associated with PUVF was 16% for stages III and IV TTTS. There was a trend for increasing UVRI with stage (P = .052). Stage IV patients were more likely to have an UVRI greater than 30% (P = .02). PUVF can be defined as an UVRI greater than 15%. A scale definition of PUVF may further facilitate assessment of the degree of fetal hemodynamic compromise.

  11. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.

    Science.gov (United States)

    Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke

    2016-09-01

    Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.

  12. In vitro Doppler ultrasound investigation of turbulence intensity in pulsatile flow with simulated cardiac variability.

    Science.gov (United States)

    Thorne, Meghan L; Poepping, Tamie L; Nikolov, Hristo N; Rankin, Richard N; Steinman, David A; Holdsworth, David W

    2009-01-01

    An in vitro investigation of turbulence intensity (TI) associated with a severe carotid stenosis in the presence of physiological cardiac variability is described. The objective of this investigation was to determine if fluctuations due to turbulence could be quantified with conventional Doppler ultrasound (DUS) in the presence of normal physiological cycle-to-cycle cardiac variability. An anthropomorphic model of a 70% stenosed carotid bifurcation was used in combination with a programmable flow pump to generate pulsatile flow with a mean flow rate of 6 mL/s. Utilizing the pump, we studied normal, nonrepetitive cycle-to-cycle cardiac variability (+/-3.9%) in flow, as well as waveform shapes with standard deviations equal to 0, 2 and 3 times the normal variation. Eighty cardiac cycles of Doppler data were acquired at two regions within the model, representing either laminar or turbulent flow; each measurement was repeated six times. Turbulence intensity values were found to be 11 times higher (p laminar region, with a mean difference of 24 cm/s. Twenty cardiac cycles were required for confidence in TI values. In conclusion, these results indicate that it is possible to quantify TI in vitro, even in the presence of normal and exaggerated cycle-to-cycle cardiac variability.

  13. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of axial length.

    Science.gov (United States)

    Dastiridou, Anna I; Ginis, Harilaos; Tsilimbaris, Miltiadis; Karyotakis, Nikos; Detorakis, Efstathios; Siganos, Charalambos; Cholevas, Pierros; Tsironi, Evangelia E; Pallikaris, Ioannis G

    2013-03-01

    Previous studies have shown a negative correlation between axial length (AL) and pulsatile ocular blood flow (POBF). This relation has been questioned because of the possible confounding effect of ocular volume on ocular rigidity (OR). The purpose of this study was to investigate the relation between AL, as a surrogate parameter for ocular volume, and OR, ocular pulse amplitude (OPA), and POBF. Eighty-eight cataract patients were enrolled in this study. A computer-controlled device comprising a microdosimetric pump and a pressure sensor was used intraoperatively. The system was connected to the anterior chamber and used to raise the intraocular pressure (IOP) from 15 to 40 mm Hg, by infusing the eye with a saline solution. After each infusion step, the IOP was continuously recorded for 2 seconds. Blood pressure and pulse rate were measured during the procedure. The OR coefficient was calculated from the pressure volume data. OPA and POBF were measured from pressure recordings. Median AL was 23.69 (interquartile range 3.53) mm. OR coefficient was 0.0218 (0.0053) μL(-1). A negative correlation between the OR coefficient and AL (ρ = -0.641, P < 0.001) was documented. Increasing AL was associated with decreased OPA (ρ = -0.637, P < 0.001 and ρ = -0.690, P < 0.001) and POBF (ρ = -0.207, P = 0.053 and ρ = -0.238, P = 0.028) at baseline and elevated IOP, respectively. Based on manometric data, increasing AL is associated with decreased OR, OPA, and POBF. These results suggest decreased pulsatility in high myopia and may have implications on ocular pulse studies and the pathophysiology of myopia.

  14. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    Science.gov (United States)

    Pirbodaghi, Tohid

    2017-01-18

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context.

  15. Numerical analysis of bypass model geometrical parameters influence on pulsatile blood flow

    Directory of Open Access Journals (Sweden)

    Jonášová A.

    2011-06-01

    Full Text Available The present study is focused on the analysis of pulsatile blood flow in complete idealized 3D bypass models in dependence on three main geometrical parameters (stenosis degree, junction angle and diameter ratio. Assuming the blood to be an incompressible Newtonian fluid, the non-linear system of Navier-Stokes equations is integrated in time by a fully implicit second-order accurate fractional-step method. The space discretization is performed with the help of the cell-centred finite volume method formulated for unstructured tetrahedral grids. In order to model a realistic coronary blood flow, a time-dependent flow rate taken from corresponding literature is considered. For the analysis of obtained numerical results, special emphasis is placed on their comparison in the form of velocity isolines at several selected cross-sections during systolic and diastolic phases. The remainder of this paper is devoted to discussion of walls shear stress distribution and its oscillatory character described by the oscillatory shear index with regard to areas prone to development of intimal hyperplasia or to thrombus formation.

  16. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression

    Directory of Open Access Journals (Sweden)

    Lange Rüdiger

    2011-07-01

    Full Text Available Abstract Background The use of human saphenous vein grafts (HSVGs as a bypass conduit is a standard procedure in the treatment of coronary artery disease while their early occlusion remains a major problem. Methods We have developed an ex vivo perfusion system, which uses standardized and strictly controlled hemodynamic parameters for the pulsatile and non-static perfusion of HSVGs to guarantee a reliable analysis of molecular parameters under different pressure conditions. Cell viability of HSVGs (n = 12 was determined by the metabolic conversion of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT into a purple formazan dye. Results Under physiological flow rates (10 mmHg HSVGs remained viable for two weeks. Their exposure to arterial conditions (100 mmHg was possible for one week without important reduction in viability. Baseline expression of matrix metalloproteinase-2 (MMP-2 after venous perfusion (2.2 ± 0.5, n = 5 was strongly up-regulated after exposure to arterial conditions for three days (19.8 ± 4.3 or five days (23.9 ± 6.1, p Conclusion Therefore, our system might be helpful to more precisely understand the molecular mechanisms leading to an early failure of HSVGs.

  17. Pulsatile blood flow in large arteries:comparative study of Burton’s and McDonald’s models

    Institute of Scientific and Technical Information of China (English)

    K.GAYATHRI; K.SHAILENDHRA

    2014-01-01

    To get a clear picture of the pulsatile nature of blood flow and its role in the pathogenesis of atherosclerosis, a comparative study of blood flow in large arteries is carried out using the two widely used models, McDonald’s and Burton’s models, for the pressure gradient. For both models, the blood velocity in the lumen is obtained analytically. Elaborate investigations on the wall shear stress (WSS) and oscillatory shear index (OSI) are carried out. The results are in good agreement with the available data in the literature. The superiority of McDonald’s model in capturing the pulsatile nature of blood flow, especially the OSI, is highlighted. The present investigation supports the hypothesis that not only WSS but also OSI are the essential features determining the pathogenesis of atherosclerosis. Finally, by reviewing the limitations of the present investigation, the possibility of improvement is explored.

  18. The heritability of glaucoma-related traits corneal hysteresis, central corneal thickness, intraocular pressure, and choroidal blood flow pulsatility.

    Directory of Open Access Journals (Sweden)

    Ellen E Freeman

    Full Text Available PURPOSE: The purpose of this work was to investigate the heritability of potential glaucoma endophenotypes. We estimated for the first time the heritability of the pulsatility of choroidal blood flow. We also sought to confirm the heritability of corneal hysteresis, central corneal thickness, and 3 ways of measuring intraocular pressure. METHODS: Measurements were performed on 96 first-degree relatives recruited from Maisonneuve-Rosemont Hospital in Montreal. Corneal hysteresis was determined using the Reichert Ocular Response Analyser. Central corneal thickness was measured with an ultrasound pachymeter. Three measures of intraocular pressure were obtained: Goldmann-correlated and corneal compensated intraocular pressure using the Ocular Response Analyser, and Pascal intraocular pressure using the Pascal Dynamic Contour Tonometer. The pulsatility of choroidal blood velocity and flow were measured in the sub-foveolar choroid using single-point laser Doppler flowmetry (Oculix. We estimated heritability using maximum-likelihood variance components methods implemented in the SOLAR software. RESULTS: No significant heritability was detected for the pulsatility of choroidal blood flow or velocity. The Goldman-correlated, corneal compensated, and Pascal measures of intraocular pressure measures were all significantly heritable at 0.94, 0.79, and 0.53 after age and sex adjustment (p = 0.0003, p = 0.0023, p = 0.0239. Central corneal thickness was significantly heritable at 0.68 (p = 0.0078. Corneal hysteresis was highly heritable but the estimate was at the upper boundary of 1.00 preventing us from giving a precise estimate. CONCLUSION: Corneal hysteresis, central corneal thickness, and intraocular pressure are all heritable and may be suitable as glaucoma endophenotypes. The pulsatility of choroidal blood flow and blood velocity were not significantly heritable in this sample.

  19. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure.

    Science.gov (United States)

    Dastiridou, Anna I; Ginis, Harilaos S; De Brouwere, Dirk; Tsilimbaris, Miltiadis K; Pallikaris, Ioannis G

    2009-12-01

    The purpose of this study was to characterize the pressure-volume relation in the living human eye, measure the ocular pulse amplitude (OPA), and calculate the corresponding pulsatile ocular blood flow (POBF) in a range of clinically relevant IOP levels. Fifty patients with cataract (50 eyes) were enrolled in the study. After cannulation of the anterior chamber, a computer-controlled device for the intraoperative measurement and control of IOP was used to artificially increase the IOP in a stepping procedure from 15 to 40 mm Hg. The IOP was continuously recorded for 2 seconds after each infusion step. The pressure-volume relation was approximated with an exponential fit, and the ocular rigidity coefficient was computed. OPA, pulse volume (PV), and POBF were measured from the continuous IOP recordings. The average rigidity coefficient was 0.0224 microL(-1) (SD 0.0049). OPA increased by 91% and PV and POBF decreased by 29% and 30%, respectively, when increasing the IOP from 15 to 40 mm Hg. The OPA is positively correlated with the coefficient of ocular rigidity (r = 0.65, P < 0.01). The present results suggest a nonlinear pressure-volume relation in the living human eye characterized by an increase in rigidity at higher IOP levels. The increased OPA and decreased pulse volume relate to the decreased POBF and the increased mechanical resistance of the ocular wall at high IOP levels.

  20. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  1. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization

    Science.gov (United States)

    Nauman, E. A.; Satcher, R. L.; Keaveny, T. M.; Halloran, B. P.; Bikle, D. D.

    2001-01-01

    Although there is no consensus as to the precise nature of the mechanostimulatory signals imparted to the bone cells during remodeling, it has been postulated that deformation-induced fluid flow plays a role in the mechanotransduction pathway. In vitro, osteoblasts respond to fluid shear stress with an increase in PGE(2) production; however, the long-term effects of fluid shear stress on cell proliferation and differentiation have not been examined. The goal of this study was to apply continuous pulsatile fluid shear stresses to osteoblasts and determine whether the initial production of PGE(2) is associated with long-term biochemical changes. The acute response of bone cells to a pulsatile fluid shear stress (0.6 +/- 0.5 Pa, 3.0 Hz) was characterized by a transient fourfold increase in PGE(2) production. After 7 days of static culture (0 dyn/cm(2)) or low (0.06 +/- 0.05 Pa, 0.3 Hz) or high (0.6 +/- 0.5 Pa, 3.0 Hz) levels of pulsatile fluid shear stress, the bone cells responded with an 83% average increase in cell number, but no statistical difference (P > 0.53) between the groups was observed. Alkaline phosphatase activity per cell decreased in the static cultures but not in the low- or high-flow groups. Mineralization was also unaffected by the different levels of applied shear stress. Our results indicate that short-term changes in PGE(2) levels caused by pulsatile fluid flow are not associated with long-term changes in proliferation or mineralization of bone cells.

  2. Numerical simulation of pulsatile flow with newtonian and non-newtonian behavior in arterial stenosis

    Directory of Open Access Journals (Sweden)

    MM Movahedi

    2008-03-01

    Full Text Available Background: There is considerable evidence that vascular fluid dynamics plays an important role in the developmentand prevalence of atherosclerosis which is one of the most widespread disease in humans .The onset and prevalence of atherosclerosis hemodynamic parameter are largely affected by geometric parameters. If any obstacle interferes with the blood flow, the above parameters change dramatically. Most of the arterial diseases, such as atherosclerosis, occur in the arteries with complex patterns of fluid flow where the blood dynamics plays an important role. Arterial stenosis mostly occurs in an area with a complex pattern of fluid flow, such as coronary artery, aorta bifurcation, carotid and vessels of lower limbs. During the past three decades, many experimental studies have been performed on the hemodynamic role of the blood in forming sediment in the inner wall of the vessels. It has been shown that forming sediment in the inner wall of vessels depends on the velocity of fluid and also on the amount of wall shear stress.Methods: We have examined the effect on the blood flow of local stenosis in carotid artery in numerical form using the incompressible Navier-Stockes equations. The profile of the velocity in different parts and times in the pulsatile cycle, separation and reattachment points on the wall, the distance stability of flow and also alteration caused by the wall shear stress in entire vessel were shown and compared with two behaviors flow (Newtonian and Non-Newtonian.Finally we describe the influence of the severity of the stenosis on the separation and reattachmentpoints for a Non-Newtonian fuid. Results: In the present study, we have pointed very low and high oscillating WSS (Wall Shear Stress values play a significant role in the development of forming sediment in the inner wall of vessels. Also, we obtain this probability is higher for Newtonian than Non-Newtonian fluid behavior.Conclusion: Based on our results, the

  3. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients.

    Science.gov (United States)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-04-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R2=0.982) and a mean absolute error (e) of 0.323 L min(-1), while for head, R2=0.933 and e=7.682 mmHg were obtained. R2=0.849 and e=0.584 L min(-1) were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N=6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands.

  4. Pulsatile flow in the aorta of the LVAD supported heart studied using particle image velocimetry

    Science.gov (United States)

    Moyedi, Zahra

    Currently many patients die because of the end-stage heart failure, mainly due to the reduced number of donor heart transplant organs. Studies show that a permanent left ventricular assist device (LVAD), a battery driven pump which is surgically implanted, increased the survival rate of patients with end-stage heart failure and improved considerably their quality of life. The inlet conduit of the LVAD is attached to the left ventricle and the outflow conduit anastomosed to the ascending aorta. The purpose of LVAD support is to help a weakened heart to pump blood to the rest of the body. However LVAD can cause some alterations of the natural blood flow. When your blood comes in contact with something that isn't a natural part of your body blood clots can occur and disrupt blood flow. Aortic valve integrity is vital for optimal support of left ventricular assist LVAD. Due to the existence of high continuous transvalvular pressure on the aortic valve, the opening frequency of the valve is reduced. To prevent the development of aortic insufficiency, aortic valve closure during LVAD implantation has been performed. However, the closed aortic valve reduces wash out of the aortic root, which causes blood stagnation and potential thrombus formation. So for this reason, there is a need to minimize the risks of occurring blood clot, by having more knowledge about the flow structure in the aorta during LVAD use. The current study focuses on measuring the flow field in the aorta of the LVAD assisted heart with two different types of aortic valve (Flat and Finned) using the SDSU cardiac simulator. The pulsatile pump that mimics the natural pulsing action of the heart also added to the system. The flow field is visualized using Particle Image Velocimetry (PIV). Furthermore, The fluid mechanics of aorta has been studied when LVAD conduit attached to two different locations (proximal and distal to the aortic valve) with pump speeds of 8,000 to 10,000 revolutions per minute (RPM

  5. Pulsatile flow and simple flow control method during weaning period in centrifugal pump: toward more expanded usage in open heart surgery.

    Science.gov (United States)

    Nishida, H; Koyanagi, H; Endo, M; Suzuki, S; Oshiyama, H; Nojiri, C; Fukasawa, H; Akutsu, T

    1994-09-01

    To expand the usage of the centrifugal pump (CP) in open heart surgery, we performed two studies. In the first, we evaluated pulsatile flow in the CP. In vitro pump performance of the Terumo Capiox pump (TCP) and the Sarns Delphin pump (SDP) and increase of free hemoglobin (mg/dl) after driving 6 h were investigated using bovine blood. A roller pump (RP) was used as a comparison. Equally effective pulsatile flow was obtained in both CPs. Hemolysis was less severe in TCP (120 mg/dl) than SDP (210 mg/dl) and RP (320 mg/dl). In the second study, we evaluated a simple flow control method. Flow rate was easily controlled with step-wise clamping of 3-pronged tubing (Triple-flow) without changing rotational speed, regardless of afterload. Fluctuation of flow was much less with this method than with the rotational speed change method. The use of pulsatile flow of TCP, with its minimum increase of hemolysis and the easier flow control method during the weaning process, may expand the usage of CP in open heart surgery.

  6. Estimation of ocular rigidity in glaucoma using ocular pulse amplitude and pulsatile choroidal blood flow.

    Science.gov (United States)

    Wang, Jing; Freeman, Ellen E; Descovich, Denise; Harasymowycz, Paul J; Kamdeu Fansi, Alvine; Li, Gisele; Lesk, Mark R

    2013-03-07

    Theoretical models and animal studies have suggested that scleral rigidity plays an important role in the pathogenesis of glaucoma. The aim of this study was to present a noninvasive technique for estimating ocular rigidity (E) in vivo, and to compare the estimated rigidity between patients with open-angle glaucoma (OAG); ocular hypertension (OHT); suspect glaucomatous disc (GS); and normal subjects (N). We hypothesized that OHT patients would have higher rigidity. All patients underwent measurements of ocular pulse amplitude (OPA) using dynamic contour tonometry, pulsatile choroidal blood flow (ChBFP) using laser Doppler flowmetry; axial length (AL); and assessment of automated visual field mean deviation (MD). The ratio between OPA and ChBFP was calculated according to the Friedenwald's equation of ocular rigidity. The calculated ratio is denoted as (ER). The average ER values of the four diagnostic groups were compared using nonparametric tests. The relationship between ER and other ocular and systemic factors was examined using correlation and regression analysis. A total of 257 subjects were included in the study (56 N, 108 OAG, 48 GS, and 45 OHT). ER correlated negatively with AL and positively with MD, signifying that a lower rigidity was associated with a longer eye and a worse (more negative) MD. ER was also found to be highest in OHT (0.235 ± 0.16) and lowest in OAG (0.188 ± 0.14; P = 0.01). Estimated coefficient of ocular rigidity by OPA and ChBFP suggested that glaucoma patients had the lowest rigidity and OHT the highest. It supports the idea that a more compliant ocular shell may predispose the optic nerve head to intraocular pressure (IOP)-related damage.

  7. Numerical Simulation of Steady and Pulsatile Flow Through Vascular Stenoses and Comparisons with Experiments Using Phase Contrast Magnetic Resonance Imaging

    Science.gov (United States)

    Behrens, Geoffrey; Agarwal, Ramesh; Moghaddam, Abbas N.; Choi, Eric T.; Amini, Amir A.

    2003-11-01

    A commercially available numerical flow solver "FLUENT" is employed in simulation of blood flow through vascular stenoses. Fluid properties are set to match those of the blood mimicking fluid used in flow phantom experiments at the Washington University School of Medicine. Computational results are compared for steady flow through axisymmetric and three-dimensional phantoms modeling mild to severe stenonses with the data collected using Phase Contrast Magnetic Resonance Imaging (PC-MRI) technique by colleagues in the CVIA laboratory at Washington University School of Medicine. Computations are also performed for pulsatile flow through vascular stenoses. Comparisons of PC-MRI and FLUENT output data show qualitative agreement in streamline patterns and good quantitative agreement for pressure drop across the stenoses.

  8. Pulsatile flow characterization in a vessel phantom with elastic wall using ultrasonic particle image velocimetry technique: the impact of vessel stiffness on flow dynamics.

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wong, Kelvin Kian Loong; Abbott, Derek; Zhou, Qifa; Zheng, Hairong

    2014-09-01

    This study aims to experimentally investigate the impact of vessel stiffness on the flow dynamics of pulsatile vascular flow. Vessel phantoms with elastic walls were fabricated using polyvinyl alcohol cryogel to result in stiffness ranging from 60.9 to 310.3 kPa and tested with pulsatile flows using a flow circulation set-up. Two-dimensional instantaneous and time-dependent flow velocity and shear rate vector fields were measured using ultrasonic particle image velocimetry (EchoPIV). The waveforms of peak velocities measured by EchoPIV were compared with the ultrasonic pulse Doppler spectrum, and the measuring accuracy was validated. The cyclic vessel wall motion and flow pressure were obtained as well. The results showed that vessel stiffening influenced the waveforms resulting from vessel wall distension and flow pressure, and the fields of flow velocity and shear rate. The stiffer vessel had smaller inner diameter variation, larger pulse pressure and median pressure. The velocity and shear rate maximized at peak systole for all vessels. The results showed a decrease in wall shear stress for a stiffer vessel, which can initiate the atherosclerotic process. Our study elucidates the impact of vessel stiffness on several flow dynamic parameters, and also demonstrates the EchoPIV technique to be a useful and powerful tool in cardiovascular research.

  9. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis

    NARCIS (Netherlands)

    Buschmann, Ivo; Pries, Axel; Styp-Rekowska, Beata; Hillmeister, Philipp; Loufrani, Laurent; Henrion, Daniel; Shi, Yu; Duelsner, Andre; Hoefer, Imo; Gatzke, Nora; Wang, Haitao; Lehmann, Kerstin; Ulm, Lena; Ritter, Zully; Hauff, Peter; Hlushchuk, Ruslan; Djonov, Valentin; van Veen, Toon; Le Noble, Ferdinand

    2010-01-01

    In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analy

  10. Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis.

    Science.gov (United States)

    Mittal, R; Simmons, S P; Udaykumar, H S

    2001-08-01

    The technique of large-eddy simulation (LES) has been applied to the study of pulsatile flow through a modeled arterial stenosis. A simple stenosis model has been used that consists of a one-sided 50 percent semicircular constriction in a planar channel. The inlet volume flux is varied sinusoidally in time in a manner similar to the laminar flow simulations of Tutty (1992). LES is used to compute flow at a peak Reynolds number of 2000 and a Strouhal number of 0.024. At this Reynolds number, the flow downstream of the stenosis transitions to turbulence and exhibits all the classic features of post-stenotic flow as described by Khalifa and Giddens (1981) and Lieber and Giddens (1990). These include the periodic shedding of shear layer vortices and transition to turbulence downstream of the stenosis. Computed frequency spectra indicate that the vortex shedding occurs at a distinct high frequency, and the potential implication of this for noninvasive diagnosis of arterial stenoses is discussed. A variety of statistics have been also extracted and a number of other physical features of the flow are described in order to demonstrate the usefulness of LES for the study of post-stenotic flows.

  11. Slip Effects on the Unsteady MHD Pulsatile Blood Flow through Porous Medium in an Artery under the Effect of Body Acceleration

    Directory of Open Access Journals (Sweden)

    Islam M. Eldesoky

    2012-01-01

    Full Text Available Unsteady pulsatile flow of blood through porous medium in an artery has been studied under the influence of periodic body acceleration and slip condition in the presence of magnetic field considering blood as an incompressible electrically conducting fluid. An analytical solution of the equation of motion is obtained by applying the Laplace transform. With a view to illustrating the applicability of the mathematical model developed here, the analytic explicit expressions of axial velocity, wall shear stress, and fluid acceleration are given. The slip condition plays an important role in shear skin, spurt, and hysteresis effects. The fluids that exhibit boundary slip have important technological applications such as in polishing valves of artificial heart and internal cavities. The effects of slip condition, magnetic field, porous medium, and body acceleration have been discussed. The obtained results, for different values of parameters into the problem under consideration, show that the flow is appreciably influenced by the presence of Knudsen number of slip condition, permeability parameter of porous medium, Hartmann number of magnetic field, and frequency of periodic body acceleration. The study is useful for evaluating the role of porosity and slip condition when the body is subjected to magnetic resonance imaging (MRI.

  12. Observation of the CSF pulsatile flow in an aqueduct using cine MRI with presaturation bolus tracking, (2); The classification of pulsatile-flow patterns in adult patients with ventriculomegaly

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Satoshi; Akada, Shouhiro; Deguchi, Itaru; Miwa, Tetsurou; Itoh, Hiroshi (Tokyo Medical Coll. (Japan))

    1991-12-01

    Various to-and-fro motion patterns of the CSF flow in an aqueduct were analyzed in ten normal volunteers, in ten patients with secondary normal-pressure hydrocephalus, in nine patients with idiopathic ventriculomegaly, and in five cases of brain atrophy using cine MRI with presaturation bolus tracking. The to-and-fro motion patterns were classified into four types. Type I; in which the velocity of the CSF in the aqueduct is slower than 15 mm/sec, and the duration of the flow in the caudal direction is longer than in the rostral. Type II; in which the velocity of the CSF in the aqueduct is faster than 15 mm/sec, and the duration of the flow in the caudal direction is longer than in the rostral. Type III; in which the velocity is relatively faster than Type I, but the duration of the flow in the caudal direction is shorter than in the rostral. Type IV; in which the velocity is slower than 15 mm/sec, and the duration of the flow in the caudal direction is shorter than in the rostral. In secondary normal-pressure hydrocephalus (NPH), the flow patterns were all of Type II. In idiopathic ventriculomegaly, the cases of which showed ventricular reflux on RI-cisternography, the flow patterns were divided into three types (II, III and IV). In the cases of brain atrophy, who did not show ventricular reflux on RI-cisternography, the flow patterns were all of Type I. We conclude that the evaluation of the CSF pulsatile flow in the aqueduct can give new clinical information for use in investigating the pathogenesis of the ventriculomegaly. (author).

  13. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.

  14. Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile.

    Science.gov (United States)

    Barber, Tracie J; Simmons, Anne

    2011-07-01

    Computational fluid dynamics simulation of stenosed arteries allows the analysis of quantities including wall shear stress, velocity, and pressure; detailed in vivo measurement is difficult yet the analysis of the fluid dynamics related to stenosis is important in understanding the likely causes and ongoing effects on the integrity of the vessel. In this study, a three-dimensional Large Eddy Simulation is conducted of a 50% occluded vessel, with a typical femoral artery profile used as the transient inlet conditions. The fluid is assumed to be homogenous, Newtonian and incompressible and the walls are assumed rigid. The stenosis is axisymmetric, however the three-dimensional study allows for a flow field that is not axisymmetric and results show significant three-dimensionality. High values of wall shear stress and oscillatory values of wall shear stress (varying in both space time) are observed. The results of the study give insight into the time-varying flow structures for a mildly stenosed artery and indicate that three-dimensional simulations may be important to gain a complete understanding of the flow field.

  15. A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network.

    Science.gov (United States)

    Flores, Joaquín; Alastruey, Jordi; Corvera Poiré, Eugenia

    2016-10-01

    Haemodynamic simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. We propose a novel linear 1-D dynamical theory of blood flow in networks of flexible vessels that is based on a generalized Darcy's model and for which a full analytical solution exists in frequency domain. We assess the accuracy of this formulation in a series of benchmark test cases for which computational 1-D and 3-D solutions are available. Accordingly, we calculate blood flow and pressure waves, and velocity profiles in the human common carotid artery, upper thoracic aorta, aortic bifurcation, and a 20-artery model of the aorta and its larger branches. Our analytical solution is in good agreement with the available solutions and reproduces the main features of pulse waveforms in networks of large arteries under normal physiological conditions. Our model reduces computational time and provides a new approach for studying arterial pulse wave mechanics; e.g.,  the analyticity of our model allows for a direct identification of the role played by physical properties of the cardiovascular system on the pressure waves.

  16. 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch: Investigation of Non-Newtonian Characteristics of Human Blood

    CERN Document Server

    Sultanov, Renat A; Engelbrekt, Brent; Blankenbecler, Richard

    2008-01-01

    Methods of Computational Fluid Dynamics are applied to simulate pulsatile blood flow in human vessels and in the aortic arch. The non-Newtonian behaviour of the human blood is investigated in simple vessels of actual size. A detailed time-dependent mathematical convergence test has been carried out. The realistic pulsatile flow is used in all simulations. Results of computer simulations of the blood flow in vessels of two different geometries are presented. For pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and widely used method in literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, wall sear stress distribution, is found in the region of the aortic arch. We consider this result as theoretical evidence that supports existing clinical observations and those models not using non-Newtonian treatment underestimate the risk of disru...

  17. Sensitivity Analysis of Pulsatile Hydromagnetic Biofluid Flow and Heat Transfer with Non Linear Darcy-Forchheimer Drag

    Directory of Open Access Journals (Sweden)

    S. Rawat

    2016-01-01

    Full Text Available In the present paper we examine the pulsatile hydromagnetic flow and heat transfer of a non-Newtonian biofluid through a saturated non-Darcian porous medium channel. The upper plate of the channel is heated and the lower plate is cooled. The Nakamura-Sawada rheological model is employed which provides a higher yield stress than the Casson model. A Darcy-Forchheimer porous medium drag force model is incorporated to simulate blood vessel blockage with deposits in the cardiovascular system. Viscous heating is also included in the energy equation. The governing conservation equations for mass, momentum and energy equation are transformed into a system of nonlinear, coupled ordinary differential equations and these are solved numerically using finite element method. The effect of other important parameters such as magnetohydrodynamic parameter (Nm, Reynolds number (Re, Eckert number (Ec, Darcian parameter (, Forchheimer parameter (NF and Prandtl number on velocity and temperature profiles are studied graphically. Spatial-temporal velocity and temperature profile visualizations are also presented. Numerical results shows that normalized fluid velocity (U increases throughout the channel (-1 < Y < 1 with an increase in Reynolds number, Darcian parameter, steady pressure gradient parameter and rheological parameter; conversely velocity is decreased with the increase in magnetic parameter and Forchheimer quadratic drag parameter. Higher Eckert number (Ec = 3 is also found to have a considerable effect on temperature ( profile. Finite difference numerical computations are also compared with the finite element solutions to verify efficiency and accuracy.

  18. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  19. Percentage of peak-to-peak pulsatility of portal blood flow can predict right-sided congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Jui-Ting Hu; Sien-Sing Yang; Yun-Chih Lai; Cheng-Yen Shih; Cheng-Wen Chang

    2003-01-01

    AIM: To study the change of portal blood flow for the prediction of the status of right-sided heart failure by using non-invasive way.METHODS: We studied 20 patients with rheumatic and atherosclerotic heart diseases. All the patients had constant systemic blood pressure and body weight 1 week prior to the study. Cardiac index (CI), left ventricular end-diastolic pressure (LVEDP), mean aortic pressure (AOP), pulmonary wedge pressure (PWP), mean pulmonary arterial pressure (PAP), mean right atrial pressure (RAP), right ventricular end-diastolic pressure (RVEDP) were recorded during cardiac catheterization. Ten patients with RAP<10 mmHg were classified as Group 1. The remaining 10 patients with RAP ≥ 10 mmHg were classified as Group 2. Portal blood velocity profiles were studied using an ultrasonic Doppler within 12h after cardiac catheterization.RESULTS: CI, AOP, and LVEDP had no difference between two groups. Patients in Group 1 had normal PWP (14.6±7.3mmHg), PAP (25.0±8.2 mmHg), RAP (4.7±2.4 mmHg), and RVEDP (6.4±2.7 mmHg). Patients in Group 2 had increased PWP (29.9±9.3 mmHg), PAP (46.3±13.2 mmHg), RAP (17.5±5.7 mmHg), and RVEDP (18.3±5.6 mmHg) (P<0.001).Mean values of maximum portal blood velocity (Vmax), mean portal blood velocity (Vmean), cross-sectional area (Area)and portal blood flow volume (PBF) had no difference between 2 groups. All the patients in Group 1 had a continuous antegrade portal flow with a mean percentage of peak-topeak pulsatility (PP) 27.0±8.9 % (range: 17-40 %). All the patients in Group 2 had pulsatile portal flow with a mean PP 86.6±45.6 (range: 43-194 %). One patient had a transient stagnant and three patients had a transient hepatofugal portal flow, which occurred mainly during the ventricular systole. Vmax, Vmean and PBF had a positive correlation with CO (P<0.001) but not with AOP, LVEDP, PWP, PAP,RAP, and RVEDP.PP showed a good correlation (P<0.001)with PWP, PAP, RAP, and RVEDP but not with CI, AOP, and LVEDP. All

  20. Effect of Body Acceleration on Pulsatile Flow of Micropolar Fluid through an Irregular Arterial Stenosis

    Science.gov (United States)

    Abdullah, Ilyani; Amin, Norsarahaida

    2008-01-01

    The present study deals with the effect of body acceleration together with surface irregularities on blood flow in artery. Prolonged exposure to high level unintended acceleration may cause serious health problems in the cardiovascular system. The situations like riding in vehicles, flying in airplanes and fast body movements during sport activities can lead to the impairment of certain physiological functions. A micropolar model of blood flow through an irregular arterial stenosis is considered. The governing equations involving unsteady nonlinear two-dimensional partial differential equations are solved employing finite difference scheme. Computational results on the velocity profiles and the flow characteristics are presented.

  1. Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation

    Science.gov (United States)

    Fan, Yubo; Jiang, Wentao; Zou, Yuanwen; Li, Jinchuan; Chen, Junkai; Deng, Xiaoyan

    2009-04-01

    Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact, however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them, the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10 s-1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had very similar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation.

  2. Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation

    Institute of Scientific and Technical Information of China (English)

    Yubo Fan; Wentao Jiang; Yuanwen Zou; Jinchuan Li; Junkai Chen; Xiaoyan Deng

    2009-01-01

    Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact,however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them,the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10s-1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had very similar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation.

  3. Ocular rigidity, outflow facility, ocular pulse amplitude, and pulsatile ocular blood flow in open-angle glaucoma: a manometric study.

    Science.gov (United States)

    Dastiridou, Anna I; Tsironi, Evangelia E; Tsilimbaris, Miltiadis K; Ginis, Harilaos; Karyotakis, Nikos; Cholevas, Pierros; Androudi, Sofia; Pallikaris, Ioannis G

    2013-07-10

    To compare ocular rigidity (OR) and outflow facility (C) coefficients in medically treated open-angle glaucoma (OAG) patients and controls, and to investigate differences in ocular pulse amplitude (OPA) and pulsatile ocular blood flow (POBF) between the two groups. Twenty-one OAG patients and 21 controls undergoing cataract surgery were enrolled. Patients with early or moderate primary or pseudoexfoliative OAG participated in the glaucoma group. A computer-controlled system, consisting of a pressure transducer and a microstepping device was employed intraoperatively. After cannulation of the anterior chamber, IOP was increased by infusing the eye with microvolumes of saline solution. IOP was recorded after each infusion step. At an IOP of 40 mm Hg, an IOP decay curve was recorded for 4 minutes. OR coefficients, C, OPA, and POBF were estimated from IOP and volume recordings. There were no differences in age or axial length in the two groups. The OR coefficient was 0.0220 ± 0.0053 μl(-1) in the OAG and 0.0222 ± 0.0039 μl(-1) in the control group (P = 0.868). C was 0.092 ± 0.082 μL/min/mm Hg in the glaucoma group compared with 0.149 ± 0.085 μL/min/mm Hg in the control group at an IOP of 35 mm Hg (P 0.05). Manometric data reveal lower C in OAG patients and increased C with increasing IOP. There were no differences in the OR coefficient, OPA, and POBF between medically treated OAG patients and controls, failing to provide evidence of altered scleral distensibility and choroidal blood flow in OAG.

  4. A quantitative study of CSF pulsatile flow in normal pressure hydrocephalus; An analysis of flow patterns before and after a shunting procedure using cine MR phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Shinji; Makabe, Tetsuo; Itoh, Takahiko (Okayama Univ. (Japan). School of Medicine) (and others)

    1992-06-01

    In the previous report, we described the visualization and quantitative analysis of a normal CSF pulsatile flow using cine MR phase imaging. In the present study, CSF flow velocities were measured in patients with normal pressure hydrocephalus (NPH) before and after a shunting procedure. All of the healthy subjects showed a similar flow pattern in the time-velocity flow profiles (TVFP). However, patients with NPH showed a variable pattern of TVFP and could be divided into the following four types: Type 0: the CSF flow pattern was similar to that of the healthy subjects. Type I: the caudal peak flow was delayed more than 190 msec on TVFP. Type II: the caudal peak flow was not apparent, but the CSF flow through the aqueduct was remarkable on phase images. Type III: the amplitude of TVFP was very small, and no CSF flow through the aqueduct was identified. The patients with Type III TVFP showed significantly lower NPH scores. The lumbar CSF pressures tended to be high in the patients with Type III TVFP, but nevertheless failed to reach a statistically significant level. The amplitude of TVFP increased in the patients who improved clinically after the shunting procedure. Some of the Type III patients changed into Type II, I, and 0; also, one of the Type II patients changed into a Type I patients after the shunting procedure. We conclude that cine MR phase imaging is useful for analyzing the CSF flow of the patients with NPH before and after the shunting procedure as well as for evaluating shunt patency. (author).

  5. Numerical simulation of MHD pulsatile flow of a biofluid in a channel

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-08-01

    Full Text Available The purpose of this paper is to numerically study the interaction of an external magnetic field with the flow of a biofluid through a Darcy-Forchhmeir porous channel, due to an oscillatory pressure gradient, in the presence of wall transpiration as well as chemical reaction considerations. We have noticed that if the Reynolds number of the wall transpiration flow is increased, the average (or maximum velocity of the main flow direction is raised. Similar effect has also been observed for the rheological parameter and the Darcy parameter, whereas an opposite trend has been noted for both the Forchheimer quadratic drag parameter and the magnetic parameter. Further, an increase in the Reynolds number results in straightening the concentration profile, thus making it an almost linear function of the dimensionless spatial variable.

  6. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  7. Mathematical Modeling of Magneto Pulsatile Blood Flow Through a Porous Medium with a Heat Source

    Directory of Open Access Journals (Sweden)

    Sharma B.K

    2015-05-01

    Full Text Available In the present study a mathematical model for the hydro-magnetic non-Newtonian blood flow in the non-Darcy porous medium with a heat source and Joule effect is proposed. A uniform magnetic field acts perpendicular to the porous surface. The governing non-linear partial differential equations have been solved numerically by applying the explicit finite difference Method (FDM. The effects of various parameters such as the Reynolds number, hydro-magnetic parameter, Forchheimer parameter, Darcian parameter, Prandtl number, Eckert number, heat source parameter, Schmidt number on the velocity, temperature and concentration have been examined with the help of graphs. The present study finds its applications in surgical operations, industrial material processing and various heat transfer operations.

  8. Pulsatile Non-Newtonian Laminar Blood Flows through Arterial Double Stenoses

    Directory of Open Access Journals (Sweden)

    Mir Golam Rabby

    2014-01-01

    Full Text Available The paper presents a numerical investigation of non-Newtonian modeling effects on unsteady periodic flows in a two-dimensional (2D pipe with two idealized stenoses of 75% and 50% degrees, respectively. The governing Navier-Stokes equations have been modified using the Cartesian curvilinear coordinates to handle complex geometries. The investigation has been carried out to characterize four different non-Newtonian constitutive equations of blood, namely, the (i Carreau, (ii Cross, (iii Modified Casson, and (iv Quemada models. The Newtonian model has also been analyzed to study the physics of fluid and the results are compared with the non-Newtonian viscosity models. The numerical results are represented in terms of streamwise velocity, pressure distribution, and wall shear stress (WSS as well as the vorticity, streamlines, and vector plots indicating recirculation zones at the poststenotic region. The results of this study demonstrate a lower risk of thrombogenesis at the downstream of stenoses and inadequate blood supply to different organs of human body in the Newtonian model compared to the non-Newtonian ones.

  9. Computational assessment of the effects of a pulsatile pump on toxin removal in blood purification

    Directory of Open Access Journals (Sweden)

    Shim Eun

    2010-06-01

    Full Text Available Abstract Background For blood purification systems using a semipermeable membrane, the convective mass transfer by ultrafiltration plays an important role in toxin removal. The increase in the ultrafiltration rate can improve the toxin removal efficiency of the device, ultimately reducing treatment time and cost. In this study, we assessed the effects of pulsatile flow on the efficiency of the convective toxin removal in blood purification systems using theoretical methods. Methods We devised a new mathematical lumped model to assess the toxin removal efficiency of blood purification systems in patients, integrating the mass transfer model for a human body with a dialyser. The human body model consists of a three-compartment model of body fluid dynamics and a two-compartment model of body solute kinetics. We simulated three types of blood purification therapy with the model, hemofiltration, hemodiafiltration, and high-flux dialysis, and compared the simulation results in terms of toxin (urea and beta-2 microglobulin clearance and the treatment dose delivered under conditions of pulsatile and non-pulsatile pumping. In vivo experiments were also performed to verify the model results. Results Simulation results revealed that pulsatile flow improved the convective clearance of the dialyser and delivered treatment dose for all three types of therapy. Compared with the non-pulsatile pumping method, the increases in the clearance of urea and beta-2 microglobulin with pulsatile pumping were highest with hemofiltration treatment (122.7% and 122.7%, respectively, followed by hemodiafiltration (3.6% and 8.3%, respectively, and high-flux dialysis (1.9% and 4.7%, respectively. EKRc and std Kt/V averaged 28% and 23% higher, respectively, in the pulsatile group than in the non-pulsatile group with hemofiltration treatment. Conclusions The pulsatile effect was highly advantageous for all of the toxins in the hemofiltration treatment and for β2-microglobulin in

  10. Clinical Effectiveness of Centrifugal Pump to Produce Pulsatile Flow During Cardiopulmonary Bypass in Patients Undergoing Cardiac Surgery

    NARCIS (Netherlands)

    Gu, Y. John; van Oeveren, Willem; Mungroop, Hubert E.; Epema, Anne H.; den Hamer, Inez J.; Keizer, Jorrit J.; Leuvenink, Ron P.; Mariani, Massimo A.; Rakhorst, Gerhard

    2011-01-01

    Although the centrifugal pump has been widely used as a nonpulsatile pump for cardiopulmonary bypass (CPB), little is known about its performance as a pulsatile pump for CPB, especially on its efficacy in producing hemodynamic energy and its clinical effectiveness. We performed a study to evaluate w

  11. Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration

    CERN Document Server

    Shit, G C

    2012-01-01

    With an aim to investigate the effect of externally imposed body acceleration and magnetic field on pulsatile flow of blood through an arterial segment having stenosis is under consideration in this paper. The flow of blood is presented by a unsteady micropolar fluid and the heat transfer characteristics have been taken into account. The non-linear equations that governing the flow are solved numerically using finite difference technique by employing a suitable coordinate transformation. The numerical results have been observed for axial and microrotation component of velocity, fluid acceleration, wall shear stress(WSS), flow resistance, temperature and the volumetric flow rate. It thus turns out that the rate of heat transfer increases with the increase of Hartmann number $H$, while the wall shear stress has a reducing effect on the Hartmann number $H$ and an enhancing effect on microrotation parameter $K$ as well as the constriction height $\\delta$.

  12. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.

    Science.gov (United States)

    Wang, Shigang; Win, Khin N; Kunselman, Allen R; Woitas, Karl; Myers, John L; Undar, Akif

    2008-01-01

    The study objective was to test the capability of Medtronic Affinity and Terumo Capiox pediatric arterial filters to trap gaseous microemboli in a simulated infant cardiopulmonary bypass (CPB) model. The filters were used in parallel pattern. The circuit was primed with lactated ringer's solution (700 ml) and postfilter pressure was maintained at 100 mm Hg using a Hoffman clamp. Trials were conducted at flow rates ranging from 500 to 1,250 ml/min. After introducing 20 ml air into the venous line via an 18-G needle, 2-minute segments of data were recorded. This entire process was repeated 6 times for each unique combination of arterial filter, flow rate and perfusion mode, yielding a total of 96 experiments. More than 80% of gaseous microemboli were trapped by the two pediatric arterial filters. With increased flow rates and pulsatile mode, more gaseous microemboli passed through the arterial filters. There were no differences in terms of the percentage of gaseous microemboli trapped and pressure drops between Medtronic Affinity and Terumo Capiox pediatric arterial filters. Results demonstrated that Medtronic Affinity and Terumo Capiox pediatric arterial filters could trap the majority of gaseous microemboli in this particular setting of an open arterial filter purge line in a simulated infant CPB circuit with pulsatile and nonpulsatile flow.

  13. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  14. SU-D-18C-04: The Feasibility of Quantifying MRI Contrast Agent in Pulsatile Flowing Blood Using DCE-MRI

    Energy Technology Data Exchange (ETDEWEB)

    N, Gwilliam M; J, Collins D; O, Leach M; R, Orton M [Institute of Cancer Research, London (United Kingdom)

    2014-06-01

    Purpose: To assess the feasibility of accurately quantifying the concentration of MRI contrast agent (CA) in pulsatile flowing blood by measuring its T{sub 1}, as is common for the purposes of obtaining a patientspecific arterial input function (AIF). Dynamic contrast enhanced (DCE) - MRI and pharmacokinetic (PK) modelling is widely used to produce measures of vascular function but accurate measurement of the AIF undermines their accuracy. A proposed solution is to measure the T{sub 1} of blood in a large vessel using the Fram double flip angle method during the passage of a bolus of CA. This work expands on previous work by assessing pulsatile flow and the changes in T{sub 1} seen with a CA bolus. Methods: A phantom was developed which used a physiological pump to pass fluid of a known T{sub 1} (812ms) through the centre of a head coil of a clinical 1.5T MRI scanner. Measurements were made using high temporal resolution sequences suitable for DCE-MRI and were used to validate a virtual phantom that simulated the expected errors due to pulsatile flow and bolus of CA concentration changes typically found in patients. Results: : Measured and virtual results showed similar trends, although there were differences that may be attributed to the virtual phantom not accurately simulating the spin history of the fluid before entering the imaging volume. The relationship between T{sub 1} measurement and flow speed was non-linear. T{sub 1} measurement is compromised by new spins flowing into the imaging volume, not being subject to enough excitations to have reached steady-state. The virtual phantom demonstrated a range of recorded T{sub 1} for various simulated T{sub 1} / flow rates. Conclusion: T{sub 1} measurement of flowing blood using standard DCE-MRI sequences is very challenging. Measurement error is non-linear with relation to instantaneous flow speed. Optimising sequence parameters and lowering baseline T{sub 1} of blood should be considered.

  15. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    Science.gov (United States)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution

  16. Relations of pulsatility index and particle residence time to the wall-shear-stress properties in pulsating flows with reverse flow phase

    CERN Document Server

    Kersh, Dikla

    2013-01-01

    Pulsating flows with a \\emph{total reverse flow} phase are ubiquitous in physiological systems in normal and pathological conditions. Irregularity of hemodynamic parameters in such flows is correlated with the appearance and development of several arterial pathologies. We study the relations between flow waveform parameters and the wall shear stress (WSS) related quantities such as mean, root-mean-square, gradient of WSS and the oscillating shear index. The phase-averaged velocity profiles measured by the digital particle image velocimetry are used to estimate WSS utilizing the Womersley pulsating flow model. In addition to the Reynolds and Womersley numbers, another dimensionless parameter, pulsating index (PI) which is the ratio of forward flow rate to the reverse flow rate is required. PI is essential for the complete description of the flow patterns with the total flow reversal. We demonstrate significant effects on the WSS quantities due to the pulsating frequency and PI. Furthermore, the particle reside...

  17. Wall Shear Stress in Aorta with Coarctation and Post-Stenotic Dilatation - Scale Resolved Simulation of Pulsatile Blood Flow

    Science.gov (United States)

    Gardhagen, Roland; Karlsson, Matts

    2012-11-01

    Large eddy simulations of pulsating blood flow in an idealized model of a human aorta with a coarctation and a post-stenotic dilatation were conducted before and after treatment of the stenosis using Ansys Fluent. The aim was to study wall shear stress (WSS), which influences the function of endothelial cells, and turbulence, which may play a role in thrombus formation. Phase average values of WSS before the treatment revealed high shear in the stenosis at peak systole, as expected, but also at the end of the dilatation. In the dilatation backflow causes a negative peak. Diastolic WSS is characterized by low amplitude oscillations, which promotes atherogenesis. Also noticeable is the asymmetric pattern between the inner and outer sides of the vessel caused by the arch upstream of the stenosis. Thus, large spatial, temporal, and probably asymmetric WSS gradients in the already diseased region suggest increased risk for further endothelial dysfunction. This reflects a complex, partly turbulent, flow pattern that may disturb the blood flow in the abdominal aorta. After treatment of the stenosis, but not the dilatation, fluctuations of velocity and WSS were still found, thus harmful flow conditions still exist.

  18. Lattice-Boltzmann simulation for bubble pulsatile flow in capillary tube%毛细管内多相脉动流动的格子-Boltzmann模拟

    Institute of Scientific and Technical Information of China (English)

    马强; 张莹; 曾建邦; 韩婧潇; 贾国瑞

    2011-01-01

    基于伪势模型理论,建立毛细管内汽液两相工质脉动流动的等温格子-Boltzmann模型.将利用该模型取得的静态液滴形态以及表面张力、大空间和窄空间内气泡浮升运动时的形态模拟结果与文献的研究结果进行对比,验证了模型的可靠性.对毛细管内泡状流和柱塞流两种流型在边界正弦压力波作用下绝热脉动流动情况进行了数值模拟.通过模拟研究了毛细管内不同压力波振幅下液相Reynolds数和气泡位移幅度周期性变化规律;获得了汽液界面形态在脉动过程中的变化;观察到在边界液相速度方向发生改变时,边界附近区域的Reynolds数振荡现象;分析了重力对脉动运动过程的影响.模拟结果为分析以毛细管为主要构件的脉动热管内汽液两相工质的工作过程提供了一定依据.%Based on the theory of pseudo-potential, an isothermal lattice-Boltzmann model for multiphase pulsatile flow in capillary tube was established. By selecting the appropriate dimensionless parameters, the simulation unit was loaded into an actual unit. Simulation results obtained by this model, such as surface tension of static drop, shape of rising bubble in large space and narrow space, were compared with theory and other scholars' research results, and the reliability of this model was verified. Bubbly flow driven by the sinusoidal pressure wave in capillary tube was simulated. The relationship between pressure wave amplitude and periodic variation of liquid phase Re number and bubble displacement was investigated. Shape changes of vapor-liquid interface in the periodic pulsatile process was obtained. The oscillation of Re number near the boundary area was observed when the direction of liquid velocity on the boundary was changed. The reason for this phenomenon was discussed in this paper. The effect of gravity on the pulsatile process was analyzed. Simulation results validated the empirical law that the flow

  19. Imaging in pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Madani, G. [Radiology Department, St Mary' s Hospital, London (United Kingdom)], E-mail: gittamadani@yahoo.com; Connor, S.E.J. [Neuroradiology Department, King' s College Hospital, London (United Kingdom)

    2009-03-15

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful.

  20. Fabrication of novel high surface area mushroom gilled fibers and their effects on human adipose derived stem cells under pulsatile fluid flow for tissue engineering applications.

    Science.gov (United States)

    Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2016-05-01

    The fabrication and characterization of novel high surface area hollow gilled fiber tissue engineering scaffolds via industrially relevant, scalable, repeatable, high speed, and economical nonwoven carding technology is described. Scaffolds were validated as tissue engineering scaffolds using human adipose derived stem cells (hASC) exposed to pulsatile fluid flow (PFF). The effects of fiber morphology on the proliferation and viability of hASC, as well as effects of varied magnitudes of shear stress applied via PFF on the expression of the early osteogenic gene marker runt related transcription factor 2 (RUNX2) were evaluated. Gilled fiber scaffolds led to a significant increase in proliferation of hASC after seven days in static culture, and exhibited fewer dead cells compared to pure PLA round fiber controls. Further, hASC-seeded scaffolds exposed to 3 and 6dyn/cm(2) resulted in significantly increased mRNA expression of RUNX2 after one hour of PFF in the absence of soluble osteogenic induction factors. This is the first study to describe a method for the fabrication of high surface area gilled fibers and scaffolds. The scalable manufacturing process and potential fabrication across multiple nonwoven and woven platforms makes them promising candidates for a variety of applications that require high surface area fibrous materials. We report here for the first time the successful fabrication of novel high surface area gilled fiber scaffolds for tissue engineering applications. Gilled fibers led to a significant increase in proliferation of human adipose derived stem cells after one week in culture, and a greater number of viable cells compared to round fiber controls. Further, in the absence of osteogenic induction factors, gilled fibers led to significantly increased mRNA expression of an early marker for osteogenesis after exposure to pulsatile fluid flow. This is the first study to describe gilled fiber fabrication and their potential for tissue engineering

  1. Optimal branching asymmetry of hydrodynamic pulsatile trees.

    Science.gov (United States)

    Florens, Magali; Sapoval, Bernard; Filoche, Marcel

    2011-04-29

    Most of the studies on optimal transport are done for steady state regime conditions. Yet, there exists numerous examples in living systems where supply tree networks have to deliver products in a limited time due to the pulsatile character of the flow, as it is the case for mammalian respiration. We report here that introducing a systematic branching asymmetry allows the tree to reduce the average delivery time of the products. It simultaneously increases its robustness against the inevitable variability of sizes related to morphogenesis. We then apply this approach to the human tracheobronchial tree. We show that in this case all extremities are supplied with fresh air, provided that the asymmetry is smaller than a critical threshold which happens to match the asymmetry measured in the human lung. This could indicate that the structure is tuned at the maximum asymmetry level that allows the lung to feed all terminal units with fresh air.

  2. 矩形通道内两相脉动流平均摩擦压降实验研究%Experimental Study on Average Frictional Pressure Drop of Gas-liquid Two-phase Pulsatile Flow

    Institute of Scientific and Technical Information of China (English)

    周豹; 高璞珍; 谭思超; 田竞达; 张虹

    2013-01-01

    通过对截面为40 mm ×3 mm窄矩形通道内不同正弦脉动周期、振幅、平均流量工况下氮气-水两相流(平均分液相雷诺数 Rel<10000,平均分气相雷诺数 Reg <800)进行实验研究,发现两相脉动流与单相水脉动流的规律不同,平均压差对脉动周期、振幅不敏感。应用各经验公式计算的脉动工况下平均摩擦压降的偏差与稳态工况的计算偏差在数值和分布上均无明显差异,且计算值分布在测量值两侧、相对偏差基本小于20%。其中,Mishima-Hibiki方法和Lee-Lee方法的计算结果与测量结果吻合良好,相对偏差在10%以内,说明两相流摩擦压降经验公式同样适用于脉动工况下平均摩擦压降的计算。%The gas-liquid two-phase pulsatile flow was studied in a rectangular channel with 40 mm × 3 mm cross section under different periods ,flow rate amplitudes and its mean values (mean Rel < 10 000 ,mean Reg < 800) .There was difference between the single phase pulsatile flow and the gas-liquid two-phase pulsatile flow ,and pulsation period and amplitude were not sensitive for the average frictional pressure drop .There was no significant difference on the values and distribution between the calculation deviations in pulsatile flow and the calculation deviations in steady flow by using different empirical formulas .Almost all of the relative deviations were less than 20% , and the relative deviations of Mishima-Hibiki method and Lee-Lee method were less than 10% .The results show that the empirical formulas for the two-phase steady flow frictional pressure drop are also suitable for the calculation of the average value of two-phase pulsatile flow .

  3. Numerical Investigation of Pulsatile Blood Flow in a Bifurcation Model with a Non-Planar Branch: The Effect of Different Bifurcation Angles and Non-Planar Branch

    Directory of Open Access Journals (Sweden)

    Omid Arjmandi-Tash

    2012-12-01

    Full Text Available Introduction: Atherosclerosis is a focal disease that susceptibly forms near bifurcations, anastomotic joints, side branches, and curved vessels along the arterial tree. In this study, pulsatile blood flow in a bifurcation model with a non-planar branch is investigated. Methods: Wall shear stress (WSS distributions along generating lines on vessels for different bifurcation angles are calculated during the pulse cycle. Results: The WSS at the outer side of the bifurcation plane vanishes especially for higher bifurcation angles but by increasing the bifurcation angle low WSS region squeezes. At the systolic phase there is a high possibility of formation of a separation region at the outer side of bifurcation plane for all the cases. WSS peaks exist on the inner side of bifurcation plane near the entry section of daughter vessels and these peaks drop as bifurcation angle is increased. Conclusion: It was found that non-planarity of the daughter vessel lowers the minimum WSS at the outer side of the bifurcation and increases the maximum WSS at the inner side. So it seems that the formation of atherosclerotic plaques at bifurcation region in direction of non-planar daughter vessel is more risky.

  4. Two-phase pulsatile flows through porous conical tubes of small diameters. Modelisation of the blood microcirculation.

    Science.gov (United States)

    Zeggwagh, G; Bellet, D

    1987-01-01

    A theoretical study concerning two-component fluid pulsating flow through porous conical ducts is presented. The model corresponds to blood flows through small diameter porous conical vessels. This approach is based on a finite difference method. The physical hypothesis used were based on findings from simultaneous visualization methods. The influence of geometrical, hydrodynamical and structural parameters is systematically examined and related to velocity profiles, hydrostatic pressure.

  5. Impact of Distinct Oxygenators on Pulsatile Energy Indicators in an Adult Cardiopulmonary Bypass Model.

    Science.gov (United States)

    Griep, Lonneke M; van Barneveld, Laurentius J M; Simons, Antoine P; Boer, Christa; Weerwind, Patrick W

    2017-02-01

    The quantification of pulse energy during cardiopulmonary bypass (CPB) post-oxygenator is required prior to the evaluation of the possible beneficial effects of pulsatile flow on patient outcome. We therefore, evaluated the impact of three distinctive oxygenators on the energy indicators energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) in an adult CPB model under both pulsatile and laminar flow conditions. The pre- and post-oxygenator pressure and flow were measured at room temperature using a 40% glycerin-water mixture at flow rates of 1, 2, 3, 4, 5, and 6 L/min. The pulse settings at frequencies of 40, 50, 60, 70, and 80 beats per minute were according to the internal algorithm of the Sorin CP5 centrifugal pump. The EEP is equal to the mean pressure, hence no SHE is present under laminar flow conditions. The Quadrox-i Adult oxygenator was associated with the highest preservation of pulsatile energy irrespective of flow rates. The low pressure drop-high compliant Quadrox-i Adult oxygenator shows the best SHE performance at flow rates of 5 and 6 L/min, while the intermediate pressure drop-low compliant Fusion oxygenator and the high pressure drop-low compliant Inspire 8F oxygenator behave optimally at flow rates of 5 L/min and up to 4 L/min, respectively. In conclusion, our findings contributed to studies focusing on SHE values post-oxygenator as well as post-cannula in clinical practice. In addition, our findings may give guidance to the clinical perfusionist for oxygenator selection prior to pulsatile CPB based on the calculated flow rate for the individual patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: comparison of wrapping and stenting.

    Science.gov (United States)

    Gao, Feng; Ueda, Hiroshi; Gang, Li; Okada, Hiroshi

    2013-04-26

    One treatment method for aortic aneurysm is the invasive insertion of a stent into the aneurysm. Another method is wrapping the aneurysm using newly developed expanded polytetrafluoroethylene (PTFE) material. A virtual stented aneurysm model and a wrapped aneurysm model were created to study the flow and wall dynamics by means of fluid-structure interaction analyses. The flow velocity and pressure distribution as well as the deformation and wall stress were investigated. Stenting significantly changed the blood flow pattern and the vortexes in the aneurysm. Wrapping increased the thickness of the aneurysm wall and increased the strength of the vessel wall. The maximum von Mises stress in the stented model was found to be 220,494 Pa and 228,218 Pa at the time of peak flow and peak pressure, respectively. This was reduced by 37.8% and 36.7% to 137,200 and 144,354 Pa, respectively, in the wrapped model. Our results provide information that may improve the understanding of the biomechanics of stenting and wrapping.

  7. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure

    Directory of Open Access Journals (Sweden)

    Kim Taehong

    2007-03-01

    Full Text Available Abstract Background This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture. Methods The transient temperature profile in inflamed atherosclerotic plaques is calculated by solving an energy equation and the Navier-Stokes equations in 2D idealized arterial models of a bending artery and an arterial bifurcation. For obtaining the numerical solution, the commercial package COMSOL 3.2 was used. The calculations correspond to a parametric study where arterial type and size, as well as plaque geometry and composition, are varied. These calculations are used to analyze the contribution of different factors affecting arterial wall temperature measurements. The main factors considered are the metabolic heat production of inflammatory cells, atherosclerotic plaque length lp, inflammatory cell layer length lmp, and inflammatory cell layer thickness dmp. Results The calculations indicate that the best location to perform the temperature measurement is at the back region of the plaque (0.5 ≤ l/lp ≤ 0.7. The location of the maximum temperature, or hot spot, at the plaque surface can move during the cardiac cycle depending on the arterial geometry and is a direct result of the blood flow pattern. For the bending artery, the hot spot moves 0.6 millimeters along the longitudinal direction; for the arterial bifurcation, the hot spot is concentrated at a single location due to the flow recirculation observed at both ends of the plaque. Focusing on the

  8. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.

    Science.gov (United States)

    Yigit, Berk; Pekkan, Kerem

    2016-01-01

    In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non

  9. Mixing Under Transcritical Flow Conditions

    Science.gov (United States)

    2011-03-01

    Raynal et al. [3] studied variable-density jets using hot - wire anemometry . They used their power spectral results to find that flow stability was not...affected by the presence of the hot - wire one jet diameter downstream the exit of the flow at several density ratios. They did find that as the probe...of the spectral level, which reflects the spatial amplification of the perturbations as the hot - wire was moved downstream. The power spectra also

  10. A Meta-Analysis of Renal Function After Adult Cardiac Surgery With Pulsatile Perfusion.

    Science.gov (United States)

    Nam, Myung Ji; Lim, Choon Hak; Kim, Hyun-Jung; Kim, Yong Hwi; Choi, Hyuk; Son, Ho Sung; Lim, Hae Ja; Sun, Kyung

    2015-09-01

    The aim of this meta-analysis was to determine whether pulsatile perfusion during cardiac surgery has a lesser effect on renal dysfunction than nonpulsatile perfusion after cardiac surgery in randomized controlled trials. MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were used to identify available articles published before April 25, 2014. Meta-analysis was conducted to determine the effects of pulsatile perfusion on postoperative renal functions, as determined by creatinine clearance (CrCl), serum creatinine (Cr), urinary neutrophil gelatinase-associated lipocalin (NGAL), and the incidences of acute renal insufficiency (ARI) and acute renal failure (ARF). Nine studies involving 674 patients that received pulsatile perfusion and 698 patients that received nonpulsatile perfusion during cardiopulmonary bypass (CPB) were considered in the meta-analysis. Stratified analysis was performed according to effective pulsatility or unclear pulsatility of the pulsatile perfusion method in the presence of heterogeneity. NGAL levels were not significantly different between the pulsatile and nonpulsatile groups. However, patients in the pulsatile group had a significantly higher CrCl and lower Cr levels when the analysis was restricted to studies on effective pulsatile flow (P < 0.00001, respectively). The incidence of ARI was significantly lower in the pulsatile group (P < 0.00001), but incidences of ARF were similar. In conclusion, the meta-analysis suggests that the use of pulsatile flow during CPB results in better postoperative renal function.

  11. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  12. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  13. Measuring blood oxygenation of pulsatile arteries using photoacoustic microscopy

    Science.gov (United States)

    Li, Qian; Yu, Tianhao; Li, Lin; Chai, Xinyu; Zhou, Chuanqing

    2016-10-01

    Heart pumps blood through the blood vessels to provide body with oxygen and nutrients. As the result, the blood flow, volume and oxygenation in arteries has a pulsatile nature. Measuring these pulsatile parameters enables more precise monitoring of oxygen metabolic rate and is thus valuable for researches and clinical applications. Photoacoustic microscopy (PAM) is a proven label-free method for in vivo measuring blood oxygenation at single blood vessel level. However, studies using PAM to observe the pulsatile nature of blood oxygenation in arteries were not reported. In this paper, we use optical-resolution PAM (OR-PAM) technology to study the blood oxygenation dynamics of pulsatile arteries. First, the ability of our OR-PAM system to accurately reflect the change of optical absorption in imaged objects is demonstrated in a phantom study. Then the system is used to image exposed cortical blood vessels of cat. The pulsatile nature of blood volume and oxygenation in arteries is clearly reflected in photoacoustic (PA) signals, whereas it's not observable in veins. By using a multi-wavelength laser, the dynamics of the blood oxygenation of pulsatile arteries in cardiac cycles can be measured, based on the spectroscopic method.

  14. Pulsatile lipid vesicles under osmotic stress

    CERN Document Server

    Chabanon, Morgan; Liedberg, Bo; Parikh, Atul N; Rangamani, Padmini

    2016-01-01

    The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously, in [Oglecka et al. 2014], we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypotonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we seek to deepen our quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions, by advancing a comprehensive theoretical model for vesicle dynamics. The model quantitatively captures our experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further identify new scaling relationships between the pulsatile dynamics and GUV properties. Our findings provide a fundamental framework that has the potential to guide future investigations on the non-equili...

  15. Optimum Heart Rate to Minimize Pulsatile External Cardiac Power

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2011-11-01

    The workload on the left ventricle is composed of steady and pulsatile components. Clinical investigations have confirmed that an abnormal pulsatile load plays an important role in the pathogenesis of left ventricular hypertrophy (LVH) and progression of LVH to congestive heart failure (CHF). The pulsatile load is the result of the complex dynamics of wave propagation and reflection in the compliant arterial vasculature. We hypothesize that aortic waves can be optimized to reduce the left ventricular (LV) pulsatile load. We used an in-vitro experimental approach to investigate our hypothesis. A unique hydraulic model was used for in-vitro experiments. This model has physical and dynamical properties similar to the heart-aorta system. Different compliant models of the artificial aorta were used to test the hypothesis under various aortic rigidities. Our results indicate that: i) there is an optimum heart rate that minimizes LV pulsatile power (this is in agreement with our previous computational study); ii) introducing an extra reflection site at the specific location along the aorta creates constructive wave conditions that reduce the LV pulsatile power.

  16. Highly stable superhydrophobic surfaces under flow conditions

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  17. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  18. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  19. Pulsatile blood flow interaction with arterial walls of aorta : autoregulation and impedance pressure boundary condition and its biomedical applications

    OpenAIRE

    Afkari, Damon

    2016-01-01

    Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que real...

  20. Pulsatile blood flow interaction with arterial walls of aorta : autoregulation and impedance pressure boundary condition and its biomedical applications

    OpenAIRE

    Afkari, Damon

    2015-01-01

    Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que real...

  1. CFD modeling of pulsatile hemodynamics in the total cavopulmonary connection

    Science.gov (United States)

    Zobaer, S. M. Tareq; Hasan, A. B. M. Toufique

    2016-07-01

    Total cavopulmonary connection is a blood flow pathway which is created surgically by an operation known as Fontan procedure, performed on children with single ventricle heart defects. Recent studies have shown that the hemodynamics in the connection can be strongly influenced by the presence of pulsatile flow. The aim of this paper is model the pulsatile flow patterns, and to calculate the vorticity field and power losses in an idealized 1.5D offset model of Total Cavopulmonary Connection. A three-dimensional polyhedral mesh was constructed for the numerical simulation. The rheological properties of blood were considered as Newtonian, and flow in the connection was assumed to be laminar. The results demonstrated complex flow patterns in the connection. The outcomes of the simulation showed reasonable agreement with the results available in the literature for a similar model.

  2. Index of consciousness and bispectral index values are interchangeable during normotension and hypotension but not during non pulsatile flow state during cardiac surgical procedures: a prospective study.

    Science.gov (United States)

    Chakravarthy, Murali; Holla, Srinivasa; Jawali, Vivek

    2010-04-01

    Awareness under anesthesia is an avoidable complication during general anesthesia. Anesthetic depth monitors assist anesthesiologists in providing appropriate levels of anesthesia. Index of consciousness monitoring is a recently introduced monitor in the array of anesthesia depth monitors. The objective of this study was to assess the interchangeability of bispectral index, which is already in clinical use and the recently introduced index of consciousness techniques. The other objective was to assess this interchangeability during normotension, hypotension and during pulseless state in patients undergoing coronary artery bypass graft surgery. This study is a prospective observational study, conducted in a tertiary referral hospital. Fifteen cardiac surgical patients undergoing off pump and conventional coronary artery bypass under cardiopulmonary bypass participated in the study. Bispectral index and index of consciousness monitoring were carried out simultaneously during various stages of consciousness, and assessed for interchangeability. Bland Altman plotting and 'mountain plot' were used to assess the interchangeability. Eleven in the cohort underwent off pump and the rest (n = 4) conventional coronary artery bypass surgery under cardiopulmonary bypass. A set of 887 data were obtained during the study period. The data were classified as those obtained during normotension, hypotension and pulseless state during cardiopulmonary bypass. 732 sets of data were obtained during normotension, 84 during hypotension and 71 during cardiopulmonary bypass. Overall interchangeability was good, suggested by low bias (0.96), high precision (0.54), r value of 0.7 and P value of consciousness values may be interchangeable. The interchangeability is better appreciated during normotension and hypotension but not during non pulsatile state of cardiopulmonary bypass.

  3. Recent developments of axial flow compressors under transonic flow conditions

    Science.gov (United States)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2017-05-01

    The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.

  4. Cardiovascular devices; reclassification of intra-aortic balloon and control systems for acute coronary syndrome, cardiac and non-cardiac surgery, or complications of heart failure; effective date of requirement for premarket approval for intra-aortic balloon and control systems for septic shock or pulsatile flow generation. Final order.

    Science.gov (United States)

    2013-12-30

    The Food and Drug Administration (FDA) is issuing a final order to reclassify intra-aortic balloon and control system (IABP) devices when indicated for acute coronary syndrome, cardiac and non-cardiac surgery, or complications of heart failure, a preamendments class III device, into class II (special controls), and to require the filing of a premarket approval application (PMA) or a notice of completion of a product development protocol (PDP) for IABPs when indicated for septic shock or pulsatile flow generation.

  5. Pulsatile airflow during phonation: an excised larynx model.

    Science.gov (United States)

    Alipour, F; Scherer, R C

    1995-02-01

    Pulsatile airflow in the excised larynx was investigated with simultaneous recordings of air velocity, subglottal pressure, volume flow, and the electroglottograph signal for various conditions of the larynx. Canine larynges were mounted on a bench with sutures attached to cartilages to mimic the function of laryngeal muscles. Sustained oscillations were established and maintained with the flow of heated and humidified air through the trachea. The instantaneous air velocity above the glottis, which is the summation of a periodic velocity and the turbulent component, was measured with a constant temperature hot-wire probe at various locations. The phase-averaged velocity was used to construct the patterns of jet flow at selected time frames of the oscillation cycle. Results suggest that supraglottal air velocity is highly spatially and temporally dependent. Cycles of local air velocity with double peaks were not uncommon and a case is provided. For one phase-averaged phonatory cycle, a 9 x 13 velocity measurement grid demonstrated strongly nonuniform velocity surfaces for eight phases of the cycle, with greater velocities located anteriorly.

  6. Pulsatile dynamics in the yeast proteome.

    Science.gov (United States)

    Dalal, Chiraj K; Cai, Long; Lin, Yihan; Rahbar, Kasra; Elowitz, Michael B

    2014-09-22

    The activation of transcription factors in response to environmental conditions is fundamental to cellular regulation. Recent work has revealed that some transcription factors are activated in stochastic pulses of nuclear localization, rather than at a constant level, even in a constant environment [1-12]. In such cases, signals control the mean activity of the transcription factor by modulating the frequency, duration, or amplitude of these pulses. Although specific pulsatile transcription factors have been identified in diverse cell types, it has remained unclear how prevalent pulsing is within the cell, how variable pulsing behaviors are between genes, and whether pulsing is specific to transcriptional regulators or is employed more broadly. To address these issues, we performed a proteome-wide movie-based screen to systematically identify localization-based pulsing behaviors in Saccharomyces cerevisiae. The screen examined all genes in a previously developed fluorescent protein fusion library of 4,159 strains [13] in multiple media conditions. This approach revealed stochastic pulsing in ten proteins, all transcription factors. In each case, pulse dynamics were heterogeneous and unsynchronized among cells in clonal populations. Pulsing is the only dynamic localization behavior that we observed, and it tends to occur in pairs of paralogous and redundant proteins. Taken together, these results suggest that pulsatile dynamics play a pervasive role in yeast and may be similarly prevalent in other eukaryotic species.

  7. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  8. Cirurgia de Glenn bidirecional: importância da manutenção de fluxo "pulsátil" na artéria pulmonar Bidirectional Glenn procedure: the importance of "pulsatile" flow in the pulmonary artery

    Directory of Open Access Journals (Sweden)

    Fernando Antônio Fantini

    1995-03-01

    In order to evaluate the effects of pulsatile flow in the pulmonary artery of patients undergoing bidirectional cavopulmonary shunts (BCS, we reviewed the data of 36 patients operated upon from October 1990 to July 1994. Age at operation ranged from 11 months to 14 years (mean 4.4 ± 3.4 years and diagnoses were as follows: tricuspid atresia (18, single ventricle (16, mitral atresia (1 and pulmonary atresia with intact ventricular septum (1. A total of 19 (52.8% patients had a prior palliative operation done. Cardiopulmonary bypass was used in every case, with mild hypothermia in 11 cases and profound hypothermia and circulatory arrest in the remaining. The surgical technique was an anastomosis between the superior vena cava and the ipsilateral pulmonary artery in an end-to-side fashion. The main pulmonary artery was ligated only if the mean pressure taken at the site of the anastomosis was higher than 15 mmHg but in 2 recent cases with a very high mean pulmonary pressure, the main pulmonary artery was banded, adjusting the pressure to the desirable levels. The overall hospital survival was 91.7% (33 patients. One patient required a systemic to pulmonary shunt due to persistent low arterial oxygen saturation, 7 days after the BCS. Twenty-eight patients were followed for a mean of 1.8 ± 1.2 years (3 months to 4.1 years and were divided in 2 groups: A-18 patients without pulsatile flow in the pulmonary artery, and B-10 patients with pulsatile flow. In Group B, the mean arterial saturation has ranged from 80% to 90% (mean 86 ± 3.8% and is significantly higher than in Group A (68 to 85%, mean, 77.6 ± 5.5 (p<0.001. Two patients of Group A are in NYHA functional class III, whereas all patients of Group B are in class I or II (p=0.05. There was one late death and one patient required a subsequent Fontan procedure, both of Group A. Thus, the presence of pulsatile flow in the pulmonary artery improved the arterial oxigen saturation and exercise tolerance in patients submitted to

  9. Reduced Pulsatility Induces Periarteritis in Kidney: Role of the Local Renin-Angiotensin System

    Science.gov (United States)

    Ootaki, Chiyo; Yamashita, Michifumi; Ootaki, Yoshio; Kamohara, Keiji; Weber, Stephan; Klatte, Ryan S.; Smith, William A.; Massiello, Alex L.; Emancipator, Steven N.; Golding, Leonard A.R.; Fukamachi, Kiyotaka

    2008-01-01

    Background The need for pulsatility in the circulation during long-term mechanical support has been a subject of debate. We compared histological changes in calf renal arteries subjected to various degrees of pulsatile circulation in vivo. We addressed the hypothesis that the local reninangiotensin system (RAS) may be implicated in these histological changes. Methods and Results Sixteen calves were implanted with devices giving differing degrees of pulsatile circulation: six had a continuous flow left ventricular assist device (LVAD); six had a continuous flow right ventricular assist device (RVAD); and four had a pulsatile total artificial heart (TAH). Six other calves were histological and immunohistochemical controls. In the LVAD group, the pulsatility index was significantly lower (0.28 ± 0.07 LVAD vs 0.56 ± 0.08 RVAD, vs 0.53 ± 0.10 TAH; p < 0.01), and we observed severe periarteritis in all cases in the LVAD group. The number of angiotensin II type 1 receptor (AT1R)-positive cells and angiotensin converting enzyme (ACE)-positive cells in periarterial areas was significantly higher in the LVAD group (AT1R: 350 ± 139 LVAD vs 8 ± 6 RVAD, vs 3 ± 2 TAH, vs 3 ± 2 in control; p < 0.001 and ACE: 325 ± 59 LVAD vs 6 ± 4 RVAD, vs 6 ± 5 TAH, vs 3 ± 1 control; p < 0.001). Conclusions The reduced pulsatility produced by a continuous flow LVAD implantation induced severe periarteritis in the kidney. The local RAS was upregulated in the inflammatory cells only in the continuous flow LVAD group. ULTAMINI-ABSTRACT We compared histological changes in calf renal arteries subjected to various degrees of pulsatile circulation; continuous flow left ventricular assist device (LVAD), continuous flow right ventricular assist device, pulsatile total artificial heart and control. We observed severe periarteritis, and upregulation of local renin angiotensin system only in the LVAD group. The necessity of maintaining pulsatility in the systemic circulation during long

  10. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.

    Science.gov (United States)

    Biswas, Dipankar; Casey, David M; Crowder, Douglas C; Steinman, David A; Yun, Yang H; Loth, Francis

    2016-07-01

    delayed by ∼20% (p flow conditions near transition could lead to large errors in velocity prediction for steady flow in a straight pipe. However, these results are specific to this pipe diameter and not generalizable since SR is highly dependent on pipe diameter. Further research is necessary to understand this relation in different pipe sizes, more complex geometries, and under pulsatile flow conditions.

  11. Pulsatile operation of the BiVACOR TAH - Motor design, control and hemodynamics.

    Science.gov (United States)

    Kleinheyer, Matthias; Timms, Daniel L; Greatrex, Nicholas A; Masuzawa, Toru; Frazier, O Howard; Cohn, William E

    2014-01-01

    Although there is limited consensus about the strict requirement to deliver pulsatile perfusion to the human circulatory system, speed modulation of rotary blood pumps is an approach that may capture the benefits of both positive displacement and continuous flow blood pumps. In the current stage of development of the BiVACOR Total Artificial Heart emphasis is placed on providing pulsatile outflow from the pump. Multiple pulsatile speed profiles have been applied in preliminary in-vivo operation in order to assess the capability of the TAH to recreate a physiologic pulse. This paper provides an overview about recent research towards pulsatile BiVACOR operation with special emphasis on motor and control requirements and developments.

  12. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue.

    Science.gov (United States)

    Conklin, B S; Surowiec, S M; Lin, P H; Chen, C

    2000-07-01

    Perfusion vascular culture models may provide a useful link between cell culture models and animal culture models by allowing a high level of control over important parameters while maintaining physiologic structure. The purpose of this study was to develop and test a new vascular culture system for pulsatile perfusion culture of intact vascular tissue. The system generates a pulsatile component of flow by means of a cam-driven syringe and a peristaltic pump and compliance chamber. Cams were designed, constructed and tested to simulate canine femoral and common carotid artery flows. The mean pressure was adjusted between 60 and 200 mmHg without significantly affecting flow rate, flow waveform, or the pressure waveform. Porcine common carotid artery segments were cultured in this pulsatile perfusion system. The viability of vascular segments was tested after various culture times with a functional assay that demonstrated both smooth muscle cell and endothelial cell response to vasomotor challenge.

  13. Modeling radial flow ion exchange performance for condensate polisher conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shallcross, D. [University of Melbourne, Melbourne, VIC (Australia). Department of Chemical Engineering; Renouf, P.

    2001-11-01

    A theoretical model is developed which simulates ion exchange performance within an annular resin bed. Flow within the mixed ion exchange bed is diverging, with the solution flowing outwards away from the bed's axis. The model is used to simulate performance of a mixed annular bed operating under condensate polisher conditions. The simulation predictions are used to develop design envelope curves for practical radial flow beds and to estimate potential cost savings flowing from less expensive polisher vessels. (orig.)

  14. Three-dimensional shape construction of pulsatile tissue from ultrasonic movies for assistance of clinical diagnosis

    Science.gov (United States)

    Fukuzawa, Masayuki; Kawaguchi, Hikari; Yamada, Masayoshi; Nakamori, Nobuyuki; Kitsunezuka, Yoshiki

    2010-02-01

    Three-dimensional shape of pulsatile tissue due to blood flow, which is one of key diagnostic features in ischemia, has been constructed from 2D ultrasonic movies for assisting clinical diagnosis. The 2D ultrasonic movies (640x480pixels/frame, 8bits/pixel, 33ms/frame) were taken with a conventional ultrasonic apparatus and an ultrasonic probe, while measuring the probe orientations with a compact tilt-sensor. The 2D images of pulsatile strength were obtained from each 2D ultrasonic movie by evaluating a heartbeat-frequency component calculated by Fourier transform of a series of pixel values sampled at each pixel. The 2D pulsatile images were projected into a 3D domain to obtain a 3D grid of pulsatile strength according to the probe orientations. The 3D shape of pulsatile tissue was constructed by determining the iso-surfaces of appropriate strength in the 3D grid. The shapes of pulsatile tissue examined in neonatal crania clearly represented the 3D structures of several arteries such as middle cerebral artery, which is useful for diagnosis of ischemic diseases. Since our technique is based on feature extraction in tissue dynamics, it is also useful for homogeneous tissue, for which conventional 3D ultrasonogram is unsuitable due to unclear tissue boundary.

  15. Experimental characterization of transitional unsteady flow inside graft-to-vein junction

    Science.gov (United States)

    Arslan, Nurullah

    1999-12-01

    Turbulent flow measurements were conducted inside an upscaled end-to-side model of a human arteriovenous graft using laser Doppler anemometry under steady and pulsatile flow conditions. This research is clinically relevant because turbulence and local fluid dynamic factors such as wall shear stress have been implicated as localization factors for intimal hyperplasia, the main cause of arteriovenous graft failure. This research is the first experimental study measuring the turbulence level and Reynolds stresses quantitatively inside an in vitro model representing an arteriovenous graft under pulsatile flow conditions. The turbulence intensity, Reynolds stresses, and mean velocities have been measured for steady and pulsatile flow. Reynolds numbers for steady flow were 1060, 1820, 2530 and 2720. The peak, mean and minimum Reynolds numbers were 2470, 1762 and 1198 for the pulsatile flow, respectively. The flow division was 90% entering from the graft inlet and 10% entering from the distal vein segment for steady flow measurements. It was 85% entering from the graft inlet and 15% entering from the distal vein segment for pulsatile flow measurements. Measurements were made thirteen axial locations in the plane of the bifurcation at the venous anastomosis. At high Reynolds numbers (>2000), the velocity profiles were blunt at the inlet of the arteriovenous graft. High turbulent fluctuations and Reynolds stresses were found in the proximal vein segment opposite to the vein side of the anastomosis for steady and pulsatile flows. Steady flow fluctuation values were 20-30% larger than pulsatile flow values for the same instantaneous Reynolds number. The highest value of the Reynolds stress was found to be 2080 and 1400 dynes/cm2 steady and pulsatile flow, respectively. A separation region was observed at the toe side of the arteriovenous graft. Strong secondary flows were found at the inlet to and inside the proximal vein segment under steady flow conditions. The results of

  16. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E

    2007-01-01

    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  17. Effects of Boundary Conditions on Single-File Pedestrian Flow

    CERN Document Server

    Zhang, Jun; Seyfried, Armin

    2015-01-01

    In this paper we investigate effects of boundary conditions on one dimensional pedestrian flow which involves purely longitudinal interactions. Qualitatively, stop-and-go waves are observed under closed boundary condition and dissolve when the boundary is open. To get more detailed information the fundamental diagrams of the open and closed systems are compared using Voronoi-based measurement method. Higher maximal specific flow is observed from the pedestrian movement at open boundary condition.

  18. Parathyroid hormone pulsatility:physiological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    Silvia Chiavistelli; Andrea Giustina; Gherardo Mazziotti

    2015-01-01

    Parathyroid hormone (PTH) secretion is characterized by an ultradian rhythm with tonic and pulsatile components. In healthy subjects, the majority of PTH is secreted in tonic fashion, whereas approximately 30%is secreted in low-amplitude and high-frequency bursts occurring every 10–20 min, superimposed on tonic secretion. Changes in the ultradian PTH secretion were shown to occur in patients with primary and secondary osteoporosis, with skeletal effects depending on the reciprocal modifications of pulsatile and tonic components. Indeed, pathophysiology of spontaneous PTH secretion remains an area potentially suitable to be explored, particularly in those conditions such as secondary forms of osteoporosis, in which conventional biochemical and densitometric parameters may not always give reliable diagnostic and therapeutic indications. This review will highlight the literature data supporting the hypothesis that changes of ultradian PTH secretion may be correlated with skeletal fragility in primary and secondary osteoporosis.

  19. A COMPREHENSIVE REVIEW OF PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Rompicharla Bhargavi

    2012-03-01

    Full Text Available Pulsatile drug delivery systems are gaining popularity in the field of pharmaceutical formulation, research and development. The prime advantage in this drug delivery is that the drug is released as per the pathophysiological need of the disease. As a result the change of development of drug resistance which is seen in conventional and sustained released formulations can be reduced. This therapy is mainly applicable where sustained action is not required and the drugs are toxic. Basic point of development of this formulation is to find out the circadian rhythms that is a suitable indicator that will trigger the release of drug from the device. Clock genes are the genes that control the circadian rhythms in human physiology. Pulsatile drug delivery systems are promising incase of asthma, cardiovascular diseases, peptic ulcers, arthritis, and hypercholesterolemic conditions.

  20. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    Energy Technology Data Exchange (ETDEWEB)

    Radmanesh, Alireza [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States); Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D. [Washington University School of Medicine, Department of Neurosurgery, St Louis, MO (United States); Chatterjee, Arindam; Sharma, Aseem [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States)

    2015-04-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  1. Basic characteristics of array of pulsatile jet

    Directory of Open Access Journals (Sweden)

    Vestfálová Magda

    2012-04-01

    Full Text Available The presented paper shows the results of measurement of basic characteristics of array of pulsatile jets which are used to enhance the efficiency of ejectors. Four pulsatile jets forms cross like structure where perpendicular couples are operating in two basic modes (a in phase and (b in antiphase. Paper presents phase averaged velocity profiles and velocity fields. All of the presented experiments are realized using hot wire anemometry method.

  2. A unified slip boundary condition for flow over a surface

    CERN Document Server

    Thalakkottor, Joseph John

    2015-01-01

    Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.

  3. Novel ECG-Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study.

    Science.gov (United States)

    Wang, Shigang; Spencer, Shannon B; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study is to evaluate electrocardiography (ECG)-synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i-cor diagonal pump and console, an iLA membrane ventilator, and an 18 Fr arterial cannula. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). An ECG simulator was used to trigger pulsatile flow and to generate selected cardiac rhythms. All trials were conducted at a flow rate of 2.5 L/min at room temperature for normal sinus rhythm at 45-180 bpm under non-pulsatile and pulsatile modes. Various atrial and ventricular arrhythmias were also tested. Real-time pressure and flow data were recorded using a custom-based data acquisition system. The energy equivalent pressure (EEP) generated by pulsatile flow was always higher than the mean pressure. No surplus hemodynamic energy (SHE) was recorded under non-pulsatile mode. Under pulsatile mode, SHE levels increased with increasing heart rates (45-120 bpm). SHE levels under a 1:2 assist ratio were higher than the 1:1 and 1:3 assist ratios with a heart rate of 180 bpm. A similar trend was recorded for total hemodynamic energy levels. There was no statistical difference between the two perfusion modes with regards to pressure drops across the ECLS circuit. The main resistance and energy loss came from the arterial cannula. The i-cor console successfully tracked electrocardiographic signals of 12 atrial and ventricular arrhythmias. Our results demonstrated that the i-cor pulsatile ECLS system can be synchronized with a normal heart rate or with various atrial/ventricular arrhythmias. Further in vivo studies are warranted to confirm our findings.

  4. Orbital reconstruction for pulsatile exophthalmos secondary to sphenoid wing dysplasia.

    Science.gov (United States)

    Dale, Elizabeth L; Strait, Timothy A; Sargent, Larry A

    2014-01-01

    Sphenoid wing dysplasia or absence of the greater sphenoid wing is a rare condition that is considered pathopneumonic for neurofibromatosis type 1 (NF1). It occurs in 4% to 11% of NF1 patients, and its precise cause is unclear. Some cases appear to be congenital, while others have demonstrated it to be a progressive degeneration of the orbital wall. In about half of cases, associated adjacent neurofibromas are described. Consistently, however, the clinical sequelae is herniation of the temporal lobe into the orbit, causing progressive proptosis and pulsatile exophthalmos. Reconstruction of the orbit has traditionally been with bone grafts, but due to problems with bone resorption and recurrence, titanium plates in conjunction with bone grafts have been reported. We present a case of a 6-year-old male patient who was first diagnosed with NF1 and associated absence of the greater sphenoid wing at the age of 2. Four years later, he was referred for reconstruction after the development of pulsatile exophthalmos. Surgical management included dissection of the dura of the temporal lobe off of the periorbita and skull base reconstruction with a combination of radial-shaped titanium mesh and split calvarial bone grafts. Postoperatively, there was near immediate resolution of the pulsatile exophthalmos, and follow-up at 1 year showed no recurrence.

  5. INTERVENTIONAI DIAGNOSIS AND TREATMENT OF VASCULOGENEIC PULSATILE TINNITUS

    Institute of Scientific and Technical Information of China (English)

    LI Baomin; CAO Xiangyu; LIU Xinfeng; LI Sheng; WANG Jun; LIANG Yongping; GE Aili; ZHANG Alan; FENG Huimin

    2014-01-01

    Objective To retrospectively study clinical features and diagnostic imaging of vasculogeneic pulsatile tin-nitus, and the feasibility and efficacy of transvascular interventional treatment for this condition. Methods Data from 82 cases of arterial or venous pulsatile tinnitus were reviewed. DSA characteristics and possible pathophysiological mechanisms of pulsatile tinnitus in these cases were studied. Diagnoses in this group in-cluded intracranial arterovenous fistula (AVF) (n=3), spontaneous skull base dural AVF (n=16), traumatic ca-rotid-cavernous sinus fistula (n=5), subclavian artery stenosis (n=2), internal carotid artery stenosis (n=3), in-tracranial arterial stenosis (n=1), kinked and/or elongated vertebrobasilar artery (n=2), venous sinus divertic-ulum (n=2), venous sinus stenosis on the dominant drainage side (n=46) and occipital sinus stenosis (n=2). Treatments included embolization and stenting using coils, NBCA glue, Balt balloons, self-expansion stents and intracranial micro-stents via either the femoral artery or femoral vein. Results Procedures were suc-cessful in all cases with no surgery-related complications. Tinnitus disappeared within 2 days after the pro-cedure in all cases. Follow up duration was 5-36 months. Recurrence occurred in 4 cases of arterial tinnitus within 3 months following the initial procedure, which improved after revision embolization or symptom management. There was no recurrence in venous tinnitus cases following stent plastic or stent-coiling embo-lization treatments. Conclusions Endovascular intervention provides a new approach to the diagnosis and treatment of intractable pulsatile tinnitus. It is also effective in differentiating and studying other types of tinnitus.

  6. Flow separation in rocket nozzles under high altitude condition

    Science.gov (United States)

    Stark, R.; Génin, C.

    2017-01-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  7. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    Science.gov (United States)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  8. PULSATILE DRUG DELIVERY SYSTEMS: RECENT TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Abdul Sayeed*, Md. M. Hamed , Mohd. Rafiq and Nahid Ali

    2013-03-01

    Full Text Available ABSTRACT: Pulsatile Drug Delivery Systems are gaining a lot of interest as they deliver the drug at the right place at the right time and in the right amount, thus providing spatial and temporal delivery and increasing patient compliance. These systems are designed according to the circadian rhythm of the body. The principle rationale for the use of pulsatile release of the drugs is where a constant drug release is not desired. A pulse has to be designed in such a way that a complete and rapid drug release is achieved after the lag time. Various systems like capsular systems, osmotic systems, single- and multiple-unit systems based on the use of soluble or erodible polymer coating and use of rupturable membranes have been dealt with in the article. It summarizes the latest technological developments, formulation parameters, and release profiles of these systems. These systems are beneficial for the drugs having chronopharmacological behavior where night time dosing is required, such as anti-arhythmic and anti-asthmatic. Current review article discussed the reasons for development of pulsatile drug delivery system, types of the disease in which pulsatile release is required, classification, advantages, limitation, and future aspects of pulsatile drug delivery system.

  9. Optimal design of multi-conditions for axial flow pump

    Science.gov (United States)

    Shi, L. J.; Tang, F. P.; Liu, C.; Xie, R. S.; Zhang, W. P.

    2016-11-01

    Passage components of the pump device will have a negative flow state when axial pump run off the design condition. Combined with model tests of axial flow pump, this paper use numerical simulation and numerical optimization techniques, and change geometric design parameters of the impeller to optimal design of multi conditions for Axial Flow Pump, in order to improve the efficiency of non-design conditions, broad the high efficient district and reduce operating cost. The results show that, efficiency curve of optimized significantly wider than the initial one without optimization. The efficiency of low flow working point increased by about 2.6%, the designed working point increased by about 0.5%, and the high flow working point increased the most, about 7.4%. The change range of head is small, so all working point can meet the operational requirements. That will greatly reduce operating costs and shorten the period of optimal design. This paper adopted the CFD simulation as the subject analysis, combined with experiment study, instead of artificial way of optimization design with experience, which proves the reliability and efficiency of the optimization design of multi-operation conditions of axial-flow pump device.

  10. Mock circulation loop to investigate hemolysis in a pulsatile total artificial heart.

    Science.gov (United States)

    Gräf, Felix; Finocchiaro, Thomas; Laumen, Marco; Mager, Ilona; Steinseifer, Ulrich

    2015-05-01

    Hemocompatibility of blood pumps is a crucial parameter that has to be ensured prior to in vivo testing. In contrast to rotary blood pumps, a standard for testing a pulsatile total artificial heart (TAH) has not yet been established. Therefore, a new mock circulation loop was designed to investigate hemolysis in the left ventricle of the ReinHeart TAH. Its main features are a high hemocompatibility, physiological conditions, a low priming volume, and the conduction of blood through a closed tubing system. The mock circulation loop consists of a noninvasive pressure chamber, an aortic compliance chamber, and an atrium directly connected to the ventricle. As a control pump, the clinically approved Medos-HIA ventricular assist device (VAD) was used. The pumps were operated at 120 beats per minute with an aortic pressure of 120 to 80 mm Hg and a mean atrial pressure of 10 mm Hg, generating an output flow of about 5 L/min. Heparinized porcine blood was used. A series of six identical tests were performed. A test method was established that is comparable to ASTM F 1841, which is standard practice for the assessment of hemolysis in continuous-flow blood pumps. The average normalized index of hemolysis (NIH) values of the VAD and the ReinHeart TAH were 0.018 g/100 L and 0.03 g/100 L, respectively. The standard deviation of the NIH was 0.0033 for the VAD and 0.0034 for the TAH. Furthermore, a single test with a BPX-80 Bio-Pump was performed to verify that the hemolysis induced by the mock circulation loop was negligible. The performed tests showed a good reproducibility and statistical significance. The mock circulation loop and test protocol developed in this study are valid methods to investigate the hemolysis induced by a pulsatile blood pump.

  11. [Hematologic and endocrinologic effects of pulsatile cardiopulmonary bypass using a centrifugal pump].

    Science.gov (United States)

    Komoda, T; Maeta, H; Imawaki, S; Shiraishi, Y; Tanaka, S

    1992-06-01

    The effects of pulsatile and nonpulsatile flow during cardiopulmonary bypass (CPB) with of centrifugal pump (Sarns) and membrane oxygenator, on blood cells, hemodynamics, and hormonal response were studied. In the pulsatile group (group P) in which pulsatile flow was generated by centrifugal pump and a 20 Fr arterial cannula was used, hemolysis and reduction of platelet count during CPB were more marked than in the nonpulsatile group (group NP), in which the same type of circuit was used. When the 20 Fr arterial cannula was replaced with a 24 Fr cannula (group Pc), the rate of hemolysis during CPB was significantly reduced compared with that in group P (p less than 0.05). The rate of rise in plasma free hemoglobin from 10 to 70 minutes CPB in group Pc was 15.0 mg/dl/hr, this value did not exceed that in either group NP or in group Pr, in which a roller pump rather than centrifugal pump was used to generate pulsatile flow. These findings show that pulsatile CPB with a centrifugal pump produces no deleterious hematologic effect in clinical use. The rise in the level of angiotensin II in group P was significantly smaller than that in group NP (p less than 0.05), and the rise in plasma renin activity and levels of angiotensin I, adrenalin and noradrenaline were smaller than those in group NP, although these differences were no significance. These findings indicate that the centrifugal pump generates pulsatile flow effectively, although not so effectively as to prevent the rise in peripheral vascular resistance. During CPB, there was no change in levels of thyroid hormones, including free T3, free T4 and reverse T3, in either pulsatile groups P and Pc or nonpulsatile group. TSH level in group Pc was significantly elevated in contrast with that in the nonpulsatile group (p less than 0.05), in which no change in TSH level was seen. It is suggested that pulsatile perfusion using a centrifugal pump might maintain sufficient hypothalamic-pituitary function to permit

  12. A case report of pulsatile tinnitus as a symptom of brain arteriovenous malformation

    Directory of Open Access Journals (Sweden)

    M. Sayadnasiri

    2015-12-01

    Full Text Available Pulsatile tinnitus is the result of blood flow related sounds transmitted to the inner ear and coincides with heartbeat. Although pulsatile tinnitus is a rare entity, this symptom is most often indicative of a serious underlying disease in central nervous system. Unfortunately, this symptom is often not properly assessed by clinician that leads to delayed diagnosis of underlying brain pathology. In this report, a patient is presented with chief complaint of tinnitus that had many medical visits for 2 years. Finally, a cerebral vascular malformation was diagnosed with regards to physical examination and neuroimaging findings.

  13. A meta-analysis of pulmonary function with pulsatile perfusion in cardiac surgery.

    Science.gov (United States)

    Lim, Choon-Hak; Nam, Myung-Ji; Lee, Ji-Sung; Kim, Hyun-Jung; Kim, Ji-Yeon; Shin, Hye-Won; Lee, Hye-Won; Sun, Kyung

    2015-02-01

    The aim of this study was to determine whether pulsatile or nonpulsatile perfusion had a greater effect on pulmonary dysfunction in randomized controlled trials. MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were used to identify available articles published before April 13, 2013. A meta-analysis was conducted on the effects of pulsatile perfusion on postoperative pulmonary function, intubation time, and the lengths of intensive care unit (ICU) and hospital stays. Eight studies involving 474 patients who received pulsatile perfusion and 496 patients who received nonpulsatile perfusion during cardiopulmonary bypass (CPB) were considered in the meta-analysis. Patients receiving pulsatile perfusion had a significantly greater PaO2 /FiO2 ratio 24 h and 48 h post-operation (P perfusion. The incidence of noninvasive ventilation for acute respiratory insufficiency was significantly lower (P perfusion during CPB compared with patients receiving nonpulsatile perfusion. In conclusion, our meta-analysis suggests that the use of pulsatile flow during CPB results in better postoperative pulmonary function and shorter ICU and hospital stays. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Verification of the karst flow model under laboratory controlled conditions

    Science.gov (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  15. The effect of pulsatile cardiopulmonary bypass on lung function in elderly patients

    NARCIS (Netherlands)

    Engels, Gerwin E.; Dodonov, Mikhail; Rakhorst, Gerhard; van Oeveren, Willem; Milano, Aldo D.; Gu, Y. John; Faggian, Giuseppe

    2014-01-01

    Purpose: Cardiopulmonary bypass is still a major cause of lung injury and delay in pulmonary recovery after cardiac surgery. Although it has been shown that pulsatile flow induced by intra-aortic balloon pumping is beneficial for preserving lung function, it is not clear if the same beneficial effec

  16. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  17. Oral pulsatile delivery: rationale and chronopharmaceutical formulations.

    Science.gov (United States)

    Maroni, Alessandra; Zema, Lucia; Del Curto, Maria Dorly; Loreti, Giulia; Gazzaniga, Andrea

    2010-10-15

    Oral pulsatile/delayed delivery systems are designed to elicit programmable lag phases preceding a prompt and quantitative, repeated or prolonged release of drugs. Accordingly, they draw increasing interest because of the inherent suitability for accomplishing chronotherapeutic goals, which have recently been highlighted in connection with a number of widespread chronic diseases with typical night or early-morning recurrence of symptoms (e.g. bronchial asthma, cardiovascular disease, rheumatoid arthritis, early-morning awakening). In addition, time-based colonic release can be attained when pulsatile delivery systems are properly adapted to overcome unpredictable gastric emptying and provide delay phases that would approximately match the small intestinal transit time. Oral pulsatile delivery is pursued by means of a variety of release platforms, namely reservoir, capsular and osmotic devices. The aim of the present review is to outline the rationale and main formulation strategies behind delayed-release dosage forms intended for the pharmacological treatment of chronopathologies.

  18. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  19. STOCHASTIC ANALYSIS OF GROUNDWATER FLOW SUBJECT TO RANDOM BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    SHI Liang-sheng; YANG Jin-zhong; CAI Shu-ying; LIN Lin

    2008-01-01

    A stochastic model was developed to simulate the flow in heterogeneous media subject to random boundary conditions.Approximate partial differential equations were derived based on the Karhunen-Loeve (KL) expansion and perturbation expansion. The effect of random boundary conditions on the two-dimensional flow was examined. It is shown that the proposed stochastic model is efficient to include the random boundary conditions. The random boundaries lead to the increase of head variance and velocity variance. The influence of the random boundary conditions on head uncertainty is exerted over the whole simulated region, while the randomness of the boundary conditions leads to the increase of the velocity variance in the vicinity of boundaries.

  20. Stem sap flow in plants under low gravity conditions

    Science.gov (United States)

    Tokuda, Ayako; Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    A study was conducted to obtain a fundamental knowledge for plant functions in bio-regenerative life support systems in space. Stem sap flow in plants is important indicators for water transport from roots to atmosphere through leaves. In this study, stem sap flow in sweetpotato was assessed at gravity levels from 0.01 to 2 g for about 20 seconds each during parabolic airplane flights. Stem sap flow was monitored with a heat balance method in which heat generated with a tiny heater installed in the stem was transferred upstream and downstream by conduction and upstream by convection with the sap flow through xylems of the vascular tissue. Thermal images of stem surfaces near heated points were captured using infrared thermography and the internal heat convection corresponding to the sap flow was analyzed. In results, the sap flow in stems was suppressed more at lower gravity levels without forced air circulation. No suppression of the stem sap flow was observed with forced air circulation. Suppressed sap flow in stems would be caused by suppression of transpiration in leaves and would cause restriction of water and nutrient uptake in roots. The forced air movement is essential to culture healthy plants at a high growth rate under low gravity conditions in space.

  1. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    as measured by quantitative real-time RT-PCR and normalized to GAPDH expression. Thereby, TRPC6 and TRPV1 mRNA expressions were significantly increased after 24 hours of exposure to an atheroprone flow profile compared with an atheroprotective flow profile. Furthermore, the expression of transcription factors......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...... shear stress, producing a constant laminar flow (generating a shear stress of 6 dyne/cm(2)), laminar pulsatile atheroprotective flow (with a mean shear stress of 20 dyne/cm(2)), or laminar atheroprone bidirectional flow (with a mean shear stress of 0 dyne/cm(2)) differentially induced TRPC6 and TRPV1 mRNA...

  2. Flux change in viscous laminar flow under oscillating boundary condition

    Science.gov (United States)

    Ueda, R.; Mikada, H.; Goto, T.; Takekawa, J.

    2012-12-01

    The behavior of interstitial fluid is one of major interest in earth sciences in terms of the exploitation of water resources, the initiation of earthquakes, enhanced oil recovery (EOR), etc. Seismic waves are often known to increase the flux of interstitial fluid but the relationship between the flux and propagating seismic waves have not been well investigated in the past, although seismic stimulation has been applied in the oil industry for enhanced oil recovery (EOR). Many observations indicated that seismic waves could stimulate the oil production due to lowering of apparent viscosity coefficient, to the coalescence and/or the dispersion of droplets of a phase in multiphase fluids. However, the detailed mechanism of seismic stimulation has not been fully understood, either. In this study, We attempt to understand the mechanism of the flux change in viscous laminar flow under oscillating boundary condition for the simulation of interstitial flow. Here, we analyze a monophase flow in a pore throat. We first assume a Hagen-Poiseuille flow of incompressible fluid through a pore-throat in a porous medium. We adopt the Lattice Boltzmann method (LBM) in which the motion of fluid is simulated through the variation of velocity distribution function representing the distribution of discrete particle velocities. We use an improved incompressible LBKG model (d2q9i) proposed in Zou et. al. (1995) to accurately accommodate the boundary conditions of pressure and velocity in the Hagen-Poiseuille flow. We also use an half-way bounce back boundary condition as the velocity boundary condition. Also, we assume a uniform pressure (density) difference between inlet and outlet flow, and the density difference could initiate the flow in our simulation. The oscillating boundary condition is given by the body force acting on fluid particles. In this simulation, we found that the flux change is negligible under small amplitude of oscillation in both horizontal and vertical directions

  3. A new pulsatile total artificial heart using a single centrifugal pump.

    Science.gov (United States)

    Imachi, K; Chinzei, T; Abe, Y; Mabuchi, K; Imanishi, K; Yonezawa, T; Kouno, A; Ono, T; Atsumi, K; Isoyama, T

    1991-01-01

    A new pulsatile total artificial heart (TAH) system, combining a single centrifugal pump (CFP) with two three-way valves, was developed. One port of each three-way valve was connected to the inlet and outlet of a CFP, respectively. The other two ports of each valve ware connected to the right and left atrium, pulmonary artery, and aorta. The CFP can perfuse the pulmonary and systemic circulation alternately with pulsatile flow. A prototype system composed of a Sarns' CFP and solenoid valves was connected to a mock circulatory system resulting in 1) a pulsatile TAH that could be produced with a single CFP, 2) 5 L/min of pulsatile output with a normal flow wave form that can be obtained alternately on the right and left side by switching the solenoid valves, and 3) flow balance between the left and the right that could be controlled easily by the length of switching duration. This new system could be miniaturized and is feasible for a totally implantable TAH.

  4. MR imaging of pulsatile CSF movement in hydrocephalus communicans before and after CSF shunt implantation. Magnetresonanztomographische Darstellung der Liquorpulsbewegung bei Hydrozephalus communicans vor und nach Shuntanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, A. (Abt. Radiologie 1, Ulm Univ. (Germany)); Kunz, U. (Abt. Neurochirurgie, Bundeswehrkrankenhaus Ulm (Germany)); Rotermund, F. (Abt. Neurochirurgie, Bundeswehrkrankenhaus Ulm (Germany)); Friedrich, J.M. (Abt. Radiologie 1, Ulm Univ. (Germany)); Schnarkowski, P. (Abt. Radiologie 1, Ulm Univ. (Germany))

    1992-12-01

    16 patients with hydrocephalus communicans and 5 healthy volunteers were examined to demonstrate the pattern of the pulsatile CSF flow. After implantation of a CSF shunt system the same patients were examined again to show the influence of the shunt on the CSF pulsations. We used a flow-sensitised, cardiac-gated 2D FLASH sequence and analysed the phase and magnitude images. It could be shown that most patients (n=12) had a hyerdynamic pulsatile flow preoperatively. After shunt implantation the pulsatile CSF motion and the clinical symptoms were improved in 8 of these patients. MRI of pulsatile CSF flow movement seems to be a helpful noninvasive tool to estimate the prognosis of a shunt implantation in patients with hydrocephalus communicans. (orig.)

  5. Experimental studies of pedestrian flows under different boundary conditions

    CERN Document Server

    Zhang, Jun

    2015-01-01

    In this article the dynamics of pedestrian streams in four different scenarios are compared empirically to investigate the influence of boundary conditions on it. The Voronoi method, which allows high resolution and small fluctuations of measured density in time and space, is used to analyze the experiments. It is found that pedestrian movement in systems with different boundary conditions (open, periodic boundary conditions and outflow restrained) presents various characteristics especially when the density is larger than 2 m-2. In open corridor systems the specific flow increases continuously with increasing density till 4 m-2. The specific flow keeps constant in systems with restrained outflow, whereas it decreases from 1 (m.s)-1 to zero in system with closed periodical condition.

  6. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    Science.gov (United States)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.

  7. Critical conditions of bed sediment entrainment due to debris flow

    Directory of Open Access Journals (Sweden)

    M. Papa

    2004-01-01

    Full Text Available The present study describes entrainment characteristics of bed material into debris flow, based on flume tests, numerical and dimensional analyses. Flume tests are conducted to investigate influences of bed sediment size on erosion rate by supplying debris flows having unsaturated sediment concentration over erodible beds. Experimental results show that the erosion rate decreases monotonically with increase of sediment size, although erosion rate changes with sediment concentration of debris flow body. In order to evaluate critical condition of bed sediment entrainment, a length scale which measures an effective bed shear stress is introduced. The effective bed shear stress is defined as total shear stress minus yield stress on the bed surface. The results show that critical entrainment conditions can be evaluated well in terms of Shields curve using the effective bed shear stress instead of a usual bed shear stress.

  8. A Boundary Condition for Simulation of Flow Over Porous Surfaces

    Science.gov (United States)

    Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.

    2001-01-01

    A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.

  9. Heat Flow for the Minimal Surface with Plateau Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    Kung Ching CHANG; Jia Quan LIU

    2003-01-01

    The heat flow for the minimal surface under Plateau boundary condition is defined to be aparabolic variational inequality, and then the existence, uniqueness, regularity, continuous dependenceon the initial data and the asymptotics are studied. It is applied as a deformation of the level sets inthe critical point theory.

  10. CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. R. Tajane et al.

    2012-01-01

    Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has increasing interest in the recent years. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis, and attention deficit syndrome in children, cancer, diabetes, and hypercholesterolemia. Pulsatile drug delivery system divided into 2 types’ preplanned systems and stimulus induced system, preplanned systems based on osmosis, rupturable layers, and erodible barrier coatings. Stimuli induced system based on electrical, temperature and chemically induced systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  11. Film coatings for oral pulsatile release.

    Science.gov (United States)

    Maroni, Alessandra; Zema, Lucia; Loreti, Giulia; Palugan, Luca; Gazzaniga, Andrea

    2013-12-05

    Pulsatile delivery is generally intended as a release of the active ingredient that is delayed for a programmable period of time to meet particular chronotherapeutic needs and, in the case of oral administration, also target distal intestinal regions, such as the colon. Most oral pulsatile delivery platforms consist in coated formulations wherein the applied polymer serves as the release-controlling agent. When exposed to aqueous media, the coating initially performs as a protective barrier and, subsequently, undergoes a timely failure based on diverse mechanisms depending on its physico-chemical and formulation characteristics. Indeed, it may be ruptured because of the gradual expansion of the core, swell and/or erode due to the glassy-rubbery polymer transition or become permeable thus allowing the drug molecules to diffuse outwards. Otherwise, when the coating is a semipermeable membrane provided with one or more orifices, the drug is released through the latter as a result of an osmotic water influx. The vast majority of pulsatile delivery systems described so far have been prepared by spray-coating, which offers important versatility and feasibility advantages over other techniques such as press- and dip-coating. In the present article, the design, manufacturing and performance of spray-coated pulsatile delivery platforms is thus reviewed.

  12. Glucocorticoid pulsatility : implications for brain functioning

    NARCIS (Netherlands)

    Sarabdjitsingh, Ratna Angela

    2010-01-01

    Pronounced ultradian and circadian rhythms in the hormones of the hypothalamic-pituitary-adrenal (HPA) axis (i.e. glucocorticoids), one of the body’s major neuroendocrine axes, were already demonstrated several decades ago. Until now, the clinical relevance of the pulsatile nature of glucocorticoids

  13. Introduction of a new model for time-continuous and non-contact investigations of in-vitro thrombolysis under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Trillenberg Peter

    2011-05-01

    Full Text Available Abstract Background Thrombolysis is a dynamic and time-dependent process influenced by the haemodynamic conditions. Currently there is no model that allows for time-continuous, non-contact measurements under physiological flow conditions. The aim of this work was to introduce such a model. Methods The model is based on a computer-controlled pump providing variable constant or pulsatile flows in a tube system filled with blood substitute. Clots can be fixed in a custom-built clot carrier within the tube system. The pressure decline at the clot carrier is measured as a novel way to measure lysis of the clot. With different experiments the hydrodynamic properties and reliability of the model were analyzed. Finally, the lysis rate of clots generated from human platelet rich plasma (PRP was measured during a one hour combined application of diagnostic ultrasound (2 MHz, 0.179 W/cm2 and a thrombolytic agent (rt-PA as it is commonly used for clinical sonothrombolysis treatments. Results All hydrodynamic parameters can be adjusted and measured with high accuracy. First experiments with sonothrombolysis demonstrated the feasibility of the model despite low lysis rates. Conclusions The model allows to adjust accurately all hydrodynamic parameters affecting thrombolysis under physiological flow conditions and for non-contact, time-continuous measurements. Low lysis rates of first sonothrombolysis experiments are primarily attributable to the high stability of the used PRP-clots.

  14. Experimental study of choking flow of water at supercritical conditions

    Science.gov (United States)

    Muftuoglu, Altan

    Future nuclear reactors will operate at a coolant pressure close to 25 MPa and at outlet temperatures ranging from 500°C to 625°C. As a result, the outlet flow enthalpy in future Supercritical Water-Cooled Reactors (SCWR) will be much higher than those of actual ones which can increase overall nuclear plant efficiencies up to 48%. However, under such flow conditions, the thermal-hydraulic behavior of supercritical water is not fully known, e.g., pressure drop, forced convection and heat transfer deterioration, critical and blowdown flow rate, etc. Up to now, only a very limited number of studies have been performed under supercritical conditions. Moreover, these studies are conducted at conditions that are not representative of future SCWRs. In addition, existing choked flow data have been collected from experiments at atmospheric discharge pressure conditions and in most cases by using working fluids different than water which constrain researchers to analyze the data correctly. In particular, the knowledge of critical (choked) discharge of supercritical fluids is mandatory to perform nuclear reactor safety analyses and to design key mechanical components (e.g., control and safety relief valves, etc.). Hence, an experimental supercritical water facility has been built at Ecole Polytechnique de Montreal which allows researchers to perform choking flow experiments under supercritical conditions. The facility can also be used to carry out heat transfer and pressure drop experiments under supercritical conditions. In this thesis, we present the results obtained at this facility using a test section that contains a 1 mm inside diameter, 3.17 mm long orifice plate with sharp edges. Thus, 545 choking flow of water data points are obtained under supercritical conditions for flow pressures ranging from 22.1 MPa to 32.1 MPa, flow temperatures ranging from 50°C to 502°C and for discharge pressures from 0.1 MPa to 3.6 MPa. Obtained data are compared with the data given in

  15. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  16. Fluid dynamics in airway bifurcations: III. Localized flow conditions.

    Science.gov (United States)

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    Localized flow conditions (e.g., backflows) in transition regions between parent and daughter airways of bifurcations were investigated using a computational fluid dynamics software code (FIDAP) with a Cray T90 supercomputer. The configurations of the bifurcations were based on Schreck s (1972) laboratory models. The flow intensities and spatial regions of reversed motion were simulated for different conditions. The effects of inlet velocity profiles, Reynolds numbers, and dimensions and orientations of airways were addressed. The computational results showed that backflow was increased for parabolic inlet conditions, larger Reynolds numbers, and larger daughter-to-parent diameter ratios. This article is the third in a systematic series addressed in this issue; the first addressed primary velocity patterns and the second discussed secondary currents.

  17. Stokes Flow with Slip and Kuwabara Boundary Conditions

    Indian Academy of Sciences (India)

    Sunil Datta; Satya Deo

    2002-08-01

    The forces experienced by randomly and homogeneously distributed parallel circular cylinder or spheres in uniform viscous flow are investigated with slip boundary condition under Stokes approximation using particle-in-cell model technique and the result compared with the no-slip case. The corresponding problem of streaming flow past spheroidal particles departing but little in shape from a sphere is also investigated. The explicit expression for the stream function is obtained to the first order in the small parameter characterizing the deformation. As a particular case of this we considered an oblate spheroid and evaluate the drag on it.

  18. Estimation of overland flow metrics at semiarid condition: Patagonian Monte

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-05-01

    Full Text Available Water infiltration and overland flow (WIOF processes are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological management. WIOF processes in arid and semiarid regions present regional characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina was performed in order to estimate infiltration-overland descriptive flow parameters. The micro-relief of undisturbed field plots at z-scale <1 mm was characterized through close-range stereo-photogrammetry and geo-statistical modelling. The overland flow areas produced by experimental runoff events were video-recorded and the runoff speed was measured with ortho-image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the soil at the upper vadose zone were estimated. Field data were used to calibrate a physically-based, time explicit model of water balance in the upper soil and overland flows with a modified Green-Ampt (infiltration and Chezy's (overland flow algorithms. Modelling results satisfy validation criteria based on the observed overland flow areas, runoff-speed, water mass balance of the upper vadose zone, infiltration depth, slope along runoff-plume direction, and depression storage intensity. The experimental procedure presented supplies plot-scale estimates of overland flow and infiltration intensities at various intensities of water input which can be incorporated in larger-scale hydrological grid-models of arid regions. Findings were: (1 Overland flow velocities as well as infiltration-overland flow mass balances are consistently modelled by considering variable infiltration rates corresponding to depression storage and/or non-ponded areas. (2 The statistical relations presented

  19. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  20. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  1. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    Science.gov (United States)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  2. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    Science.gov (United States)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  3. Experimental and Numerical Analysis of the Bulk Flow Parameters Within an Arteriovenous Fistula.

    Science.gov (United States)

    Browne, Leonard D; Walsh, Michael T; Griffin, Philip

    2015-12-01

    The creation of an arteriovenous fistula for hemodialysis has been reported to generate unstable to turbulent flow behaviour. On the other hand, the vast majority of computational fluid dynamic studies of an arteriovenous fistula use low spatial and temporal resolutions resolution in conjunction with laminar assumptions to investigate bulk flow and near wall parameters. The objective of the present study is to investigate if adequately resolved CFD can capture instabilities within an arteriovenous fistula. An experimental model of a representative fistula was created and the pressure distribution within the model was analysed for steady inlet conditions. Temporal CFD simulations with steady inflow conditions were computed for comparison. Following this verification a pulsatile simulation was employed to assess the role of pulsatility on bulk flow parameters. High frequency fluctuations beyond 100 Hz were found to occupy the venous segment of the arteriovenous fistula under pulsatile conditions and the flow within the venous segment exhibited unstable behaviour under both steady and pulsatile inlet conditions. The presence of high frequency fluctuations may be overlooked unless adequate spatial and temporal resolutions are employed. These fluctuations may impact endothelial cell function and contribute to the cascade of events leading to aggressive intimal hyperplasia and the loss of functionality of the vascular access.

  4. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  5. A hemodynamic evaluation of the Levitronix Pedivas centrifugal pump and Jostra Hl-20 roller pump under pulsatile and nonpulsatile perfusion in an infant CPB model.

    Science.gov (United States)

    Ressler, Noel; Rider, Alan R; Kunselman, Allen R; Richardson, J Scott; Dasse, Kurt A; Wang, Shigang; Undar, Akif

    2009-01-01

    The hemodynamic comparison of the Jostra HL-20 and the Levitronix PediVAS blood pumps is the focus this study, where pressure-flow waveforms and hemodynamic energy values are analyzed in the confines of a pediatric cardiopulmonary bypass circuit.The pseudo pediatric patient was perfused with flow rates between 500 and 900 ml/min (100 ml/min increments) under pulsatile and nonpulsatile mode. The Levitronix continuous flow pump utilized a customized controller to engage in pulsatile perfusion with equivalent pulse settings to the Jostra HL-20 roller pump. Hemodynamic measurements and waveforms were recorded at the precannula location, while the mean arterial pressure was maintained at 40 mm Hg for each test. Glycerin water was used as the blood analog circuit perfusate. At each flow rate 24 trials were conducted yielding a total of 120 experiments (n=60 pulsatile and n=60 nonpulsatile).Under nonpulsatile perfusion the Jostra roller pump produced small values for surplus hemodynamic energy (SHE) due to its inherent pulsatility, while the Levitronix produced values of essentially zero for SHE. When switching to pulsatile perfusion, the SHE levels for both the Jostra and Levitronix pump made considerable increases. In comparing the two pumps under pulsatile perfusion, the Levitronix PediVAS produced significantly more surplus and total hemodynamic energy than did the Jostra roller pump each pump flow rate.The study suggests that the Levitronix PediVAS centrifugal pump has the capability of achieving quality pulsatile waveforms and delivering more SHE to the pseudo patient than the Jostra HL-20 roller pump. Further studies are warranted to investigate the Levitronix under bovine blood studies and with various pulsatile settings.

  6. Experimental study of swirl flow patterns in Gas Conditioning Tower at various entry conditions

    DEFF Research Database (Denmark)

    Jinov, Andrei A.; Larsen, Poul Scheel

    1999-01-01

    In a gas conditioning tower hot flue gas with relatively high dust loads is cooled by injecting water spray near the top. For satisfactory operation wet particles should be kept off walls and all water should have evaporated to yield a uniformly cooled flow before it reaches the bottom of the tower...

  7. A pulsatile cardiopulmonary bypass system that prevents negative pressure at the membrane oxygenator.

    Science.gov (United States)

    Komoda, T; Maeta, H; Imawaki, S; Shiraishi, Y; Arioka, I; Fukunaga, S; Tanaka, S; Nasu, N

    1993-01-01

    Negative pressure is a problem in pulsatile cardiopulmonary bypass (CPB). To avoid this, the authors designed a pulsatile CPB system containing a Sarns centrifugal pump (CP) and a Univox membrane oxygenator, in which the inertial flow is not obstructed by the CP. In both an in vitro study and a clinical study, negative pressure was not observed in the arterial line of the CPB circuit when this system was used. When a roller pump (RP) was used, however, instead of a CP, negative pressure did occur. In a clinical study using this system, mean pulse pressure was 36 mmHg and hemolysis, expressed as the rate of rise in plasma free hemoglobin from 10 to 70 min of CPB, was 26.2 mg/dl/hr, which did not exceed that seen with a pulsatile CPB using an RP instead of a CP. The hemolysis seen in the study caused no clinical problems. Thus, pulsatile CPB using a CP and Univox membrane oxygenator should be considered for clinical use to prevent the occurrence of negative pressure.

  8. The Flow Of Granular Matter Under Reduced-Gravity Conditions

    CERN Document Server

    Hofmeister, Paul Gerke; Heißelmann, Daniel

    2009-01-01

    To gain a better understanding of the surfaces of planets and small bodies in the solar system, the flow behavior of granular material for various gravity levels is of utmost interest. We performed a set of reduced-gravity measurements to analyze the flow behavior of granular matter with a quasi-2D hourglass under coarse-vacuum conditions and with a tilting avalanche box. We used the Bremen drop tower and a small centrifuge to achieve residual-gravity levels between 0.01 g and 0.3 g. Both experiments were carried out with basalt and glass grains as well as with two kinds of ordinary sand. For the hourglass experiments, the volume flow through the orifice, the repose and friction angles, and the flow behavior of the particles close to the surface were determined. In the avalanche-box experiment, we measured the duration of the avalanche, the maximum slope angle as well as the width of the avalanche as a function of the gravity level.

  9. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    Energy Technology Data Exchange (ETDEWEB)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-(3-/sup 3/H)glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml/sup -1/ during continuous infusion and varied between 95 and 501 pg x ml/sup -1/ during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production.

  10. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  11. Physical Model Study: Rill Erosion Morphology and Flow Conditions

    Science.gov (United States)

    Strohmeier, S.; Klik, A.; Nouwakpo, S. K.

    2012-04-01

    Using common catchment size erosion model software either lack of knowledge or lack in process ability of watershed characteristics leads to increasing simplifications in model assumptions. Referring to open channel hydraulics, erosion model equations are prevalently based on stepwise uniform flow condition requirements. Approaching balance of gravitational and frictional resistance forces, channel roughness is fundamental model input. The fusion of simplified model assumptions and the use of lumped roughness determination cause ambivalence in model calibration. By means of a physical model experiment at the National Soil Erosion Laboratory (NSERL), West Lafayette, USA, channel roughness was itemized into skin friction and channel shape friction due to rill morphology. Particularly the Manning-Strickler equation was analyzed concerning the applicability of constant and holistic factors describing boundary friction impacts. The insufficiency in using the Manning-Strickler equation for non-uniform flow conditions is widely advised, whereas lack in predictability in rill erosion development inhibits proper model adoptions. The aim of the present study is to determine the impact of channel morphology on roughness assessment in rill erosion scale. Therefore a 1.9 meter long, 0.6 meter wide and 0.3 meter deep flume with an inclination of 10 % was filled with a loamy soil representing a section of a hill slope. The soil was prepared and saturated by simulated rainfall before each model run. A single erosion channel was enforced to develop by means of steady state runoff. Two different erosion channel types were initiated and observed: I.) a Straight Constrained Rill (SCR) shape by concentration of the runoff into a prepared straight initial rill and II.) a Free Developing Rill (FDR) by back-cut erosion through the plain soil body. Discharge of the outflow was measured in 5 minute interval and outflow sediment concentration was measured every minute. A top view stereo

  12. COMPUTER SIMULATION OF NON-NEWTONIAN FLOW AND MASS TRANSPORT THROUGH CORONARY ARTERIAL STENOSIS

    Institute of Scientific and Technical Information of China (English)

    李新宇; 温功碧; 李丁

    2001-01-01

    A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions was carried out. Based on these results, the concentration fields of LDL ( low density lipoprotein ) and Albumin were discussed. According to the results, in great details the macromolecule transport influences of wall shear stress, non-Newtonian fluid character and the scale of the molecule etc are given. The results of Newtonian fluid flow and non Newtonian fluid flow , steady flow and pulsatile flow are compared. These investigations can provide much valuable information about the correlation between the flow properties, the macromolecule transport and the development of atherosclerosis.

  13. Boundary conditions for soft glassy flows: slippage and surface fluidization.

    Science.gov (United States)

    Mansard, Vincent; Bocquet, Lydéric; Colin, Annie

    2014-09-28

    We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

  14. Stretched flow of Carreau nanofluid with convective boundary condition

    Indian Academy of Sciences (India)

    T Hayat; M Waqas; S A Shehzad; A Alsaedi

    2016-01-01

    The steady laminar boundary layer flow of Carreau nanofluid over a stretching sheet is investigated. Effects of Brownian motion and thermophoresis are present. Heat transfer is characterized using convective boundary condition at the sheet. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations through suitable transformations. Results of velocity, temperature and concentration fields are computed via homotopic procedure. Numerical values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed. A comparative study with existing solutions in a limiting sense is made.

  15. Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Duggen, Lars; Lassen, Benny

    2016-01-01

    A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating...

  16. Revisiting Johnson and Jackson boundary conditions for granular flows

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  17. Bridge Pressure Flow Scour at Clear Water Threshold Condition

    Institute of Scientific and Technical Information of China (English)

    GUO Junke; KERENYI Kornel; PAGAN-ORTIZ Jorge E; FLORA Kevin

    2009-01-01

    Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally. The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional; all the measured scour profiles can be described by two similarity equations, where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth; the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge; the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge; and the maximum scour depth decreases with increas-ing sediment size, but increases with deck inundation. The theoretical analysis shows that: bridge scour can be divided into three cases, i.e. downstream unsubmerged, partially submerged, and totally submerged. For downstream unsubmerged flows, the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied; for partially and totally submerged flows, the equilibrium maximum scour depth can be described by a scour and an inundation similarity number, which has been confirmed by experiments with two decks and two sediment sizes. For application, a design and field evaluation procedure with examples is presented, including the maximum scour depth and scour profile.

  18. Elliptic Flow from Nonequilibrium Color Glass Condensate Initial Conditions

    CERN Document Server

    Ruggieri, M; Plumari, S; Greco, V

    2013-01-01

    A current goal of relativistic heavy ion collisions experiments is the search for a Color Glass Condensate as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to estimate $4\\pi \\eta/s \\sim 1$, while a Color Glass Condensate modeling leads to at least a factor of 2 larger $\\eta/s$. Within a kinetic theory approach based on a relativistic Boltzmann-like transport simulation, we point out that the out-of-equilibrium initial distribution proper of a Color Glass Condensate reduces the efficiency in building-up the elliptic flow. Our main result at RHIC energy is that the available data on $v_2$ are in agreement with a $4\\pi \\eta/s \\sim 1$ also for Color Glass Condensate initial conditions, opening the possibility to describe self-consistently also higher order flow, otherwise significantly underestimated, and to pursue further the search for signatures of the Color Glass Condensate.

  19. The pulsatility index and the resistive index in renal arteries. Associations with long-term progression in chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Talleruphuus, U

    1997-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurements of downstream renal artery resistance. PI and RI have been found to correlate with renal vascular resistance, filtration fraction and effective renal plasma flow in chronic renal failure. The aim...

  20. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults.

    Science.gov (United States)

    Guan, Yulong; Karkhanis, Tushar; Wang, Shigang; Rider, Alan; Koenig, Steven C; Slaughter, Mark S; El Banayosy, Aly; Undar, Akif

    2010-07-01

    A growing population experiencing heart failure (100,000 patients/year), combined with a shortage of donor organs (less than 2200 hearts/year), has led to increased and expanded use of mechanical circulatory support (MCS) devices. MCS devices have successfully improved clinical outcomes, which are comparable with heart transplantation and result in better 1-year survival than optimal medical management therapies. The quality of perfusion provided during MCS therapy may play an important role in patient outcomes. Despite demonstrated physiologic benefits of pulsatile perfusion, continued use or development of pulsatile MCS devices has been widely abandoned in favor of continuous flow pumps owing to the large size and adverse risks events in the former class, which pose issues of thrombogenic surfaces, percutaneous lead infection, and durability. Next-generation MCS device development should ideally implement designs that offer the benefits of rotary pump technology while providing the physiologic benefits of pulsatile end-organ perfusion.

  1. Flow coefficient measurements for an engine cylinder head under transient flow conditions with continuous valve lift change

    OpenAIRE

    Daesan Oh; Choong Hoon Lee

    2015-01-01

    A flow coefficient measurement system which is operated under an unsteady intake flow condition in the intake port of a diesel engine cylinder head was developed. In order to determine the actual engine intake flow condition, the valve lift of the intake valve, whose rod is in contact with the camshaft, is varied continuously by rotating the camshaft directly. While varying the rotation speed of the camshaft, the flow coefficients were calculated by measuring various sensor signals, in this c...

  2. Precise quantification of pulsatility is a necessity for direct comparisons of six different pediatric heart-lung machines in a neonatal CPB model.

    Science.gov (United States)

    Undar, Akif; Eichstaedt, Harald C; Masai, Takafumi; Bigley, Joyce E; Kunselman, Allen R

    2005-01-01

    Generation of pulsatile flow depends on an energy gradient. Surplus hemodynamic energy (SHE) is the extra hemodynamic energy generated by a pulsatile device when the adequate pulsatility is achieved. The objective of this study was to precisely quantify and compare pressure-flow waveforms in terms of surplus hemodynamic energy levels of six different pediatric heart-lung machines in a neonatal piglet model during cardiopulmonary bypass (CPB) procedures with deep hypothermic circulatory arrest (DHCA). Thirty-nine piglets (average weight, 3 kg) were subjected to CPB with a hydraulically driven physiologic pulsatile pump (PPP; n=7), Jostra-HL 20 pulsatile roller pump (Jostra-PR; n=6), Stockert Sill pulsatile roller pump (SIII-PR; n=6), Stockert Sill mast-mounted pulsatile roller pump with a miniature roller head (Mast-PR; n=7), Stockert Sill mast-mounted nonpulsatile roller pump (Mast-NP; n=7), or Stockert CAPS nonpulsatile roller pump (CAPS-NP, n=7). Once CPB was begun, each animal underwent 20 minutes of hypothermia, 60 minutes of DHCA, 10 minutes of cold reperfusion, and 40 minutes of rewarming. The pump flow rate was maintained at 150 ml x kg(-1) x min(-1) and the mean arterial pressure (MAP) at 45 mm Hg. In the pulsatile experiments, the pump rate was kept at 150 bpm and the stroke volume at 1 ml/kg. The SHE (ergs/cm3) = 1,332 ([(integral fpdt) / (integral fdt)] - MAP) was calculated at each experimental stage. During normothermic CPB (15 minutes on pump), the physiologic pulsatile pump generated the highest surplus hemodynamic energy (8563 +/- 1918 ergs/cm3, p CPB and after DHCA and rewarming, the results were extremely similar to those seen during normothermic CPB. The surplus hemodynamic energy formula is a novel method to precisely quantify different levels of pulsatility and nonpulsatility for direct and meaningful comparisons. The PPP produced the greatest surplus hemodynamic energy. Most of the pediatric pulsatile pumps (except Mast-PR) generated

  3. Investigation and numerical simulation of inner-flow of an axial mineflow fan under low flow rate conditions

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; ZHOU Zhong-ning

    2008-01-01

    Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reli-ability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investi-gated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.

  4. Fluid flow in nanopores: An examination of hydrodynamic boundary conditions

    Science.gov (United States)

    Sokhan, V. P.; Nicholson, D.; Quirke, N.

    2001-08-01

    Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.

  5. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  6. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  7. A fluid dynamics study in a 50 cc pulsatile ventricular assist device: influence of heart rate variability.

    Science.gov (United States)

    Nanna, Jason C; Navitsky, Michael A; Topper, Stephen R; Deutsch, Steven; Manning, Keefe B

    2011-10-01

    Although left ventricular assist devices (LVADs) have had success in supporting severe heart failure patients, thrombus formation within these devices still limits their long term use. Research has shown that thrombosis in the Penn State pulsatile LVAD, on a polyurethane blood sac, is largely a function of the underlying fluid mechanics and may be correlated to wall shear rates below 500 s(-1). Given the large range of heart rate and systolic durations employed, in vivo it is useful to study the fluid mechanics of pulsatile LVADs under these conditions. Particle image velocimetry (PIV) was used to capture planar flow in the pump body of a Penn State 50 cubic centimeters (cc) LVAD for heart rates of 75-150 bpm and respective systolic durations of 38-50%. Shear rates were calculated along the lower device wall with attention given to the uncertainty of the shear rate measurement as a function of pixel magnification. Spatial and temporal shear rate changes associated with data collection frequency were also investigated. The accuracy of the shear rate calculation improved by approximately 40% as the resolution increased from 35 to 12 μm/pixel. In addition, data collection in 10 ms, rather than 50 ms, intervals was found to be preferable. Increasing heart rate and systolic duration showed little change in wall shear rate patterns, with wall shear rate magnitude scaling by approximately the kinematic viscosity divided by the square of the average inlet velocity, which is essentially half the friction coefficient. Changes in in vivo operating conditions strongly influence wall shear rates within our device, and likely play a significant role in thrombus deposition. Refinement of PIV techniques at higher magnifications can be useful in moving towards better prediction of thrombosis in LVADs.

  8. Detection and measurement of retinal blood vessel pulsatile motion

    Science.gov (United States)

    Xiao, Di; Frost, Shaun; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. Pulsatile properties caused by cardiac rhythm, such as spontaneous venous pulsation (SVP) and pulsatile motion of small arterioles, can be visualized by dynamic retinal imaging techniques and provide clinical significance. In this paper, we aim at vessel pulsatile motion detection and measurement. We proposed a novel approach for pulsatile motion measurement of retinal blood vessels by applying retinal image registration, blood vessel detection and blood vessel motion detection and measurement on infrared retinal image sequences. The performance of the proposed methods was evaluated on 8 image sequences with 240 images. A preliminary result has demonstrated the good performance of the method for blood vessel pulsatile motion observation and measurement.

  9. Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation.

    Science.gov (United States)

    Jabir, E; Lal, S Anil

    2016-08-01

    The presence of a stenosis caused by the abnormal narrowing of the lumen in the artery tree can cause significant variations in flow parameters of blood. The original flow, which is believed to be laminar in most situations, may turn out to turbulent by the geometric perturbation created by the stenosis. Flow may evolve to fully turbulent or it may relaminarise back according to the intensity of the perturbation. This article reports the numerical simulation of flow through an eccentrically located asymmetric stenosis having elliptical cross section using computational fluid dynamics. Large eddy simulation technique using dynamic Smagorinsky sub-grid scale model is applied to capture the turbulent features of flow. Analysis is carried out for two situations: steady inflow as ideal condition and pulsatile inflow corresponding to the actual physiological condition in common carotid artery. The spatially varying pulsatile inflow waveforms are mathematically derived from instantaneous mass flow measurements available in the literature. Carreau viscosity model is used to estimate the effect of non-Newtonian nature of blood. The present simulations for steady and pulsatile conditions show that post-stenotic flow field undergoes transition to turbulence in all cases. The characteristics of mean and turbulent flow fields have been presented and discussed in detail.

  10. Active acromegaly enhances spontaneous parathyroid hormone pulsatility.

    Science.gov (United States)

    Mazziotti, Gherardo; Cimino, Vincenzo; De Menis, Ernesto; Bonadonna, Stefania; Bugari, Giovanna; De Marinis, Laura; Veldhuis, Johannes D; Giustina, Andrea

    2006-06-01

    In healthy subjects, parathyroid hormone (PTH) is secreted in a dual fashion, with low-amplitude and high-frequency pulses superimposed on tonic secretion. These 2 components of PTH secretion seem to have different effects on target organs. The aim of our study was to evaluate whether growth hormone excess in acromegaly may modify the spontaneous pulsatility of PTH. Five male patients with newly diagnosed active acromegaly and 8 healthy subjects were evaluated by 3-minute blood sampling for 6 hours. Plasma PTH concentrations were evaluated by multiparameter deconvolution analysis. Plasma PTH release profiles were also subjected to an approximate entropy (ApEn) estimate, which provides an ensemble measure of the serial regularity or orderliness of the release process. In acromegalic patients, baseline serum PTH values were not significantly different from those measured in the healthy subjects, as well as tonic PTH secretion rate, number of bursts, fractional pulsatile PTH secretion, and ApEn ratio. Conversely, PTH pulse half-duration was significantly longer in acromegalic patients vs healthy subjects (11.8+/-0.95 vs 6.9+/-1.6 minutes; P=.05), whereas PTH pulse mass showed a tendency (P=.06) to be significantly greater in acromegalic patients. These preliminary data suggest that growth hormone excess may affect PTH secretory dynamics in patients with acromegaly. Potentially negative bone effects of the modifications of PTH secretory pattern in acromegaly should be investigated.

  11. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  12. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  13. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  14. Diffusion of bed load particles subject to different flow conditions

    Science.gov (United States)

    Cecchetto, Martina; Cotterle, Luca; Tregnaghi, Matteo; Tait, Simon; Marion, Andrea

    2015-04-01

    An in-depth understanding of sediment motion in rivers has acquired increasing importance lately in order to plan restoration activities that provide ecological benefit. River beds constitute the interfacial environment where several species live and mass exchange of sediments/nutrients/pollutants can take place. Moving grains interacting with the bed deposit and can locally change the bed surface topography they can also act as carriers for contaminants associated with the grains. Study the motion of grains on the bed, in particular the extent and variability of their travel distance with regards to the flow conditions can provide information on the transport of grain associated contaminants. The results of a series of experimental tests, in which increasing levels of boundary shear stress were applied over a bed deposit of natural river gravel, are reported. Image databases consisted of a series of bed images acquired at a frequency of 45 Hz were collected. Analysis of the images has provided time and position data to plot the trajectories of more than 200 moving grains for each test. This data enables the derivation of the statistics of the un-truncated probability distribution of the detected particles' step length, which is consider as the distance moved by a particle from the moment it is entrained to the instant it stops on the bed. In recent studies the movement of bed load material has been indicated as diffusive, but little is known about the spatial and temporal scales of this diffusion. The analysis of the longitudinal and transverse trajectories for the tracked particles has here revealed three regimes of diffusion: a ballistic diffusion which takes place at the very beginning of particles motion, an anomalous intermediate regime, and a normal subdiffusion which occurs for larger times. Characteristic time scales separate these three diffusive regimes. Results show that in experiments with higher shear stresses the time scale separating the ballistic

  15. Investigation on magnesium degradation under flow versus static conditions using a novel impedance-driven flow apparatus

    Institute of Scientific and Technical Information of China (English)

    Elbert David Mai; Huinan Liu

    2014-01-01

    This article reports a novel impedance-driven flow apparatus and its applicability for studying magnesium degradation under flow versus static conditions. Magnesium has potential to be an effective biomaterial for use inside the human body due to its biodegradability and biocompatibility. Magnesium undergoes degradation reactions in aqueous solutions such as body fluids, leading to mass loss and pH increase of the surrounding fluid. To compare the degradation process of magnesium under flow versus static conditions, a novel flow apparatus consisting of an impedance pump and a flow chamber was designed and constructed. In addition to low-cost, this apparatus is flexible to be sterilized and assembled, and is small enough for use inside an incubator, making it appealing for measuring and comparing magnesium degradation in vitro under flow versus static conditions. The average flow rate in this flow apparatus was 2.8 ml/s, mimicking the flow rate (2.6 ml/s) in coronary artery. In a simulated body fluid (SBF), magnesium samples lost their mass at a much faster rate under the flow condition than that under the static condition. Starting with a pH of 7.4, the SBF showed a pH increase to 8.5 under the flow condition within 96 h due to the degradation of magnesium, greater than the pH increase under the static condition. The results of this study demonstrated the effects of fluid flow on magnesium degradation using the impedance-driven flow apparatus, providing useful design guidelines for magnesium-based implants that may be exposed to body fluid flow.

  16. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  17. Flow in the well: computational fluid dynamics is essential in flow chamber construction.

    Science.gov (United States)

    Vogel, Markus; Franke, Jörg; Frank, Wolfram; Schroten, Horst

    2007-09-01

    A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish.

  18. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    Science.gov (United States)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  19. Embolization: critical thrombus height, shear rates, and pulsatility. Patency of blood vessels.

    Science.gov (United States)

    Basmadjian, D

    1989-11-01

    The present article builds on elementary fluid dynamics and previous analyses by the author to delineate approximate boundaries of mural thrombus height Hp, maximum shear rate gamma Max, and flow pulsatility beyond which thrombi are subject to either very high or very low probabilities of embolization. A thrombus height of approximately 0.1 mm emerges as a critical dividing line: Below it, the maximum embolizing shear stress tau s is independent of thrombus height and varies only linearly with shear rate. Above it, tau s quickly approaches a strong quadratic dependence on both thrombus height and shear rate: tau s approximately (Hp gamma)2, significantly increasing the likelihood of an embolizing event. By contrast, convective-diffusive removal of blood components during the initial stages of thrombus formation varies only weakly with gamma 1/3 in all but the smallest vessels. These maximum embolizing stresses are due principally to fluid drag. Acceleration (pulsatile) forces only begin to make their presence felt at gamma less than 500 s-1 and reach parity with fluid drag at gamma approximately 10 s-1, i.e., at a level where the presence of pulsatility is questionable. The results are used to provide maps of domains with high and low probabilities of an embolytic event and of vessel patency. The maps reveal that relatively modest changes in shear rate and/or vessel lumen can cause shifts from high to low likelihood of vessel patency, opening up possible ways of controlling blockage by manipulation of these variables.

  20. Automatic air flow control in air conditioning ducts

    Science.gov (United States)

    Obler, H. D.

    1972-01-01

    Device is designed which automatically selects air flow coming from either of two directions and which can be adjusted to desired air volume on either side. Device uses one movable and two fixed scoops which control air flow and air volume.

  1. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.

  2. Numerical investigation of three patterns of motion in an electromagnetic pulsatile VAD.

    Science.gov (United States)

    Shahraki, Zahra Hashemi; Oscuii, Hanieh Niroomand

    2014-01-01

    Hemolysis and thrombus formation which are critical concerns in designing a long-term implantable ventricular assist device (VAD) have impeded the widespread use of VADs. In this study, thus, the three-dimensional fluid domain of blood flow in a small bichamber positive displacement VAD (25 ml) with a magnetically levitated moving pusher plate was simulated by the means of a finite element package called ADINA. To optimize the function of the pump for minimizing shear stress induced blood damage, three different driver patterns (linear, sinusoidal, and Guyton's pulse) were investigated. The first pattern produced a constant flow, whereas the two others created pulsatile flows. The flow pattern and the distribution of shear stress of each pattern were observed for comparison. It was revealed that the three types of motions may induce less than 0.06% red blood cell damage. Moreover, in comparison to the other patterns not only did the sinusoidal motion of the pusher plate cause less risk of hemolysis, but in comparison to the linear pattern, it produced a pulsatile flow which reduced the stagnation areas in chambers, lowering the probability of thrombosis. In addition, this motion eliminates the probability of cavitations as compared with the Guyton's pulse pattern.

  3. Two-phase nozzle flow and the subcharacteristic condition

    DEFF Research Database (Denmark)

    Linga, Gaute; Aursand, Peder; Flåtten, Tore

    2015-01-01

    We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....

  4. Does cortisol acting via the type II glucocorticoid receptor mediate suppression of pulsatile luteinizing hormone secretion in response to psychosocial stress?

    Science.gov (United States)

    Breen, Kellie M; Oakley, Amy E; Pytiak, Andrew V; Tilbrook, Alan J; Wagenmaker, Elizabeth R; Karsch, Fred J

    2007-04-01

    This study assessed the importance of cortisol in mediating inhibition of pulsatile LH secretion in sheep exposed to a psychosocial stress. First, we developed an acute psychosocial stress model that involves sequential layering of novel stressors over 3-4 h. This layered-stress paradigm robustly activated the hypothalamic-pituitary-adrenal axis and unambiguously inhibited pulsatile LH secretion. We next used this paradigm to test the hypothesis that cortisol, acting via the type II glucocorticoid receptor (GR), mediates stress-induced suppression of pulsatile LH secretion. Our approach was to determine whether an antagonist of the type II GR (RU486) reverses inhibition of LH pulsatility in response to the layered stress. We used two animal models to assess different aspects of LH pulse regulation. With the first model (ovariectomized ewe), LH pulse characteristics could vary as a function of both altered GnRH pulses and pituitary responsiveness to GnRH. In this case, antagonism of the type II GR did not prevent stress-induced inhibition of pulsatile LH secretion. With the second model (pituitary-clamped ovariectomized ewe), pulsatile GnRH input to the pituitary was fixed to enable assessment of stress effects specifically at the pituitary level. In this case, the layered stress inhibited pituitary responsiveness to GnRH and antagonism of the type II GR reversed the effect. Collectively, these findings indicate acute psychosocial stress inhibits pulsatile LH secretion, at least in part, by reducing pituitary responsiveness to GnRH. Cortisol, acting via the type II GR, is an obligatory mediator of this effect. However, under conditions in which GnRH input to the pituitary is not clamped, antagonism of the type II GR does not prevent stress-induced inhibition of LH pulsatility, implicating an additional pathway of suppression that is independent of cortisol acting via this receptor.

  5. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability.

    Science.gov (United States)

    Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke

    2016-06-01

    We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.

  6. Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve

    Science.gov (United States)

    Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk

    2016-11-01

    The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.

  7. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.

    Science.gov (United States)

    Wu, Z J; Antaki, J F; Burgreen, G W; Butler, K C; Thomas, D C; Griffith, B P

    1999-01-01

    As continuous flow pumps become more prominent as long-term ventricular assist devices, the wide range of conditions under which they must be operated has become evident. Designed to operate at a single, best-efficiency, operating point, continuous flow pumps are required to perform at off-design conditions quite frequently. The present study investigated the internal fluid dynamics within two representative rotary fluid pumps to characterize the quality of the flow field over a full range of operating conditions. A Nimbus/UoP axial flow blood pump and a small centrifugal pump were used as the study models. Full field visualization of flow features in the two pumps was conducted using a laser based fluorescent particle imaging technique. Experiments were performed under steady flow conditions. Flow patterns at inlet and outlet sections were visualized over a series of operating points. Flow features specific to each pump design were observed to exist under all operating conditions. At off-design conditions, an annular region of reverse flow was commonly observed within the inlet of the axial pump, while a small annulus of backflow in the inlet duct and a strong disturbed flow at the outlet tongue were observed for the centrifugal pump. These observations were correlated to a critical nondimensional flow coefficient. The creation of a "map" of flow behavior provides an additional, important criterion for determining favorable operating speed for rotary blood pumps. Many unfavorable flow features may be avoided by maintaining the flow coefficient above a characteristic critical coefficient for a particular pump, whereas the intrinsic deleterious flow features can only be minimized by design improvement. Broadening the operating range by raising the band between the critical flow coefficient and the designed flow coefficient, is also a worthy goal for design improvement.

  8. Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions

    OpenAIRE

    Paranjape, Sidharth; Ritchey, Susan N; Garimella, S V

    2012-01-01

    Electrical impedance of a two-phase mixture is a function of void fraction and phase distribution. The difference in the specific electrical conductance and permittivity of the two phases is exploited to measure electrical impedance for obtaining void fraction and flow regime characteristics. An electrical impedance meter is constructed for the measurement of void fraction in microchannel two-phase flow. The experiments are conducted in air–water two-phase flow under adiabatic conditions. A t...

  9. Preload-based starling-like control for rotary blood pumps: numerical comparison with pulsatility control and constant speed operation.

    Directory of Open Access Journals (Sweden)

    Mahdi Mansouri

    Full Text Available In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs using left ventricular end-diastolic pressure (PLVED as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC, the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow ([Formula: see text] with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP of 84 mmHg. In transition to low LVC, [Formula: see text] for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, [Formula: see text] fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a [Formula: see text] of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach.

  10. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Science.gov (United States)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  11. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    National Research Council Canada - National Science Library

    S. Ravindra; Chintalapudi V. Suresh; S. Sivanagaraju; V.C. Veera Reddy

    2017-01-01

    .... An improved teaching learning based optimization (ITLBO) algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC...

  12. Assessment of pulsatile wall shear stress in compliant arteries: numerical model, validation and experimental data.

    Science.gov (United States)

    Salvucci, Fernando P; Perazzo, Carlos A; Barra, Juan G; Armentano, Ricardo L

    2009-01-01

    There is evidence that wall shear stress (WSS) is associated with vascular disease. In particular, it is widely accepted that vascular segments with low or oscillatory values of WSS are more probable to develop vascular disease. It is then necessary to establish a realistic model of the blood flow in blood vessels in order to determine precisely WSS. We proposed a numerical 1D model which takes into account the pulsatile nature of blood flow, the elasticity of the vessel, and its geometry. The model allows the calculation of shear stress. It was validated for stationary situations. Then, we computed the time-dependent WSS distribution from experimental data in the sheep thoracic aorta. Results showed that mean WSS calculated through steady flow and rigid walls models is overestimated. Peak WSS values for pulsatile flow must be considered since they resulted to be at least one order higher than mean values. Oscillations in shear stress in a period showed to be approximately of 40%. These findings show that the proposed model is suitable for estimating time-dependent WSS distributions, and confirm the need of using this kind of model when trying to evaluate realistic WSS in blood vessels.

  13. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  14. Effect of echo artifacts on characterization of pulsatile tissues in neonatal cranial ultrasonic movies

    Science.gov (United States)

    Fukuzawa, Masayuki; Takahashi, Kazuki; Tabata, Yuki; Kitsunezuka, Yoshiki

    2016-04-01

    Effect of echo artifacts on characterization of pulsatile tissues has been examined in neonatal cranial ultrasonic movies by characterizing pulsatile intensities with different regions of interest (ROIs). The pulsatile tissue, which is a key point in pediatric diagnosis of brain tissue, was detected from a heartbeat-frequency component in Fourier transform of a time-variation of 64 samples of echo intensity at each pixel in a movie fragment. The averages of pulsatile intensity and power were evaluated in two ROIs: common fan-shape and individual cranial-shape. The area of pulsatile region was also evaluated as the number of pixels where the pulsatile intensity exceeds a proper threshold. The extracranial pulsatile region was found mainly in the sections where mirror image was dominant echo artifact. There was significant difference of pulsatile area between two ROIs especially in the specific sections where mirror image was included, suggesting the suitability of cranial-shape ROI for statistical study on pulsatile tissues in brain. The normalized average of pulsatile power in the cranial-shape ROI exhibited most similar tendency to the normalized pulsatile area which was treated as a conventional measure in spite of its requirement of thresholding. It suggests the potential of pulsatile power as an alternative measure for pulsatile area in further statistical study of pulsatile tissues because it was neither affected by echo artifacts nor threshold.

  15. A study on the counter current and cocurrent annular flow critical heat flux under low flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    1998-02-15

    Empirical and phenomenological investigations have been performed for countercurrent and cocurrent annular flow critical heat fluxes(CHFs) under low flow conditions. The CHF characteristics on finned surfaces were also examined by experiments and analyses for finned and unfinned geometries. A new form of C{sub w}{sup 2} in the Wallis flooding correlation was proposed for a general use in predicting the flooding limited CHF at tubes, annuli and rectangular channels under zero and very low flow conditions. The suggested correlation showed reasonable predictions compared to the measured CHF with an root-mean-square(RMS) error of 18.8%. A physical model for the prediction of a CHF location at a zero inlet flow condition was improved to take into account entrainment from the liquid film and to extend the applicable range to subcooled inlet flow conditions. The improved model showed reasonable agreements with the Katto data, and provided details of the CHF mechanism due to flooding. It was analytically confirmed that the flooding is a triggering mechanism of a countercurrent annular flow CHF under zero and very low flow conditions. It was also revealed that the heat flux effect such as the nucleation induced entrainment in the liquid film should be considered for the analysis of a flooding limited CHF, especially in small L/D geometry. In addition, an attempt was made to predict CHF values by applying the improved model with predetermined CHF locations. The results showed that the predictions by the improved physical model agreed reasonably with the experimental data. Annular flow hydrodynamic models of Whalley, Levy and Katto, which were developed for high flow conditions, were compared with available low flow CHF data to make out the applicability of the models to low flow conditions. As a result, it was found that Katto model, which improved the fault of Whally and Levy models, could be applied to predict low flow CHF with some improvements although the model

  16. Remote Monitoring of Subsurface Flow Conditions in Rivers

    Science.gov (United States)

    2013-09-30

    measured by the ADV. The colored stars represent the run mean flow magnitudes obtained by the 3 methods: DPIV, OF and SAS. TKE Dissipation The...Mech., vol. 77, 531-560. Korchoka Y. M. (1968). Investigation of the dune movement of sediments on the Polomet’ River. Sov. Hydrol. 541-559. McKenna

  17. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments

    NARCIS (Netherlands)

    Cartigny, M.J.B.; Ventra, D.; Postma, G.; Berg, J.H. van den

    2012-01-01

    Particulate density currents, such as pyroclastic flows and turbidity currents, are prone to flow in a supercritical state, due to their small density difference in relation to the ambient fluid. Facies deposited in supercritical-flow conditions are therefore likely to be common, yet their recogniti

  18. In Vitro Model of Physiological and Pathological Blood Flow with Application to Investigations of Vascular Cell Remodeling.

    Science.gov (United States)

    Elliott, Winston; Scott-Drechsel, Devon; Tan, Wei

    2015-11-03

    Vascular disease is a common cause of death within the United States. Herein, we present a method to examine the contribution of flow dynamics towards vascular disease pathologies. Unhealthy arteries often present with wall stiffening, scarring, or partial stenosis which may all affect fluid flow rates, and the magnitude of pulsatile flow, or pulsatility index. Replication of various flow conditions is the result of tuning a flow pressure damping chamber downstream of a blood pump. Introduction of air within a closed flow system allows for a compressible medium to absorb pulsatile pressure from the pump, and therefore vary the pulsatility index. The method described herein is simply reproduced, with highly controllable input, and easily measurable results. Some limitations are recreation of the complex physiological pulse waveform, which is only approximated by the system. Endothelial cells, smooth muscle cells, and fibroblasts are affected by the blood flow through the artery. The dynamic component of blood flow is determined by the cardiac output and arterial wall compliance. Vascular cell mechano-transduction of flow dynamics may trigger cytokine release and cross-talk between cell types within the artery. Co-culture of vascular cells is a more accurate picture reflecting cell-cell interaction on the blood vessel wall and vascular response to mechanical signaling. Contribution of flow dynamics, including the cell response to the dynamic and mean (or steady) components of flow, is therefore an important metric in determining disease pathology and treatment efficacy. Through introducing an in vitro co-culture model and pressure damping downstream of blood pump which produces simulated cardiac output, various arterial disease pathologies may be investigated.

  19. Contaminant removal in septage treatment with vertical flow constructed wetlands operated under batch flow conditions.

    Science.gov (United States)

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2016-01-01

    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.

  20. Generalized second-order slip boundary condition for nonequilibrium gas flows

    Science.gov (United States)

    Guo, Zhaoli; Qin, Jishun; Zheng, Chuguang

    2014-01-01

    It is a challenging task to model nonequilibrium gas flows within a continuum-fluid framework. Recently some extended hydrodynamic models in the Navier-Stokes formulation have been developed for such flows. A key problem in the application of such models is that suitable boundary conditions must be specified. In the present work, a generalized second-order slip boundary condition is developed in which an effective mean-free path considering the wall effect is used. By combining this slip scheme with certain extended Navier-Stokes constitutive relation models, we obtained a method for nonequilibrium gas flows with solid boundaries. The method is applied to several rarefied gas flows involving planar or curved walls, including the Kramers' problem, the planar Poiseuille flow, the cylindrical Couette flow, and the low speed flow over a sphere. The results show that the proposed method is able to give satisfied predictions, indicating the good potential of the method for nonequilibrium flows.

  1. Laryngeal two-phase flow in realistic breathing conditions

    OpenAIRE

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Legou, Thierry; Lagier, Aude; Caillibotte, Georges; Pichelin, Marine

    2013-01-01

    International audience; Liquid aerosols are efficient vectors for drug delivery in upper and lower respiratory tract. Characteristics of inhaled particles, flow properties, and airway morphology represent the main influential factors of the transport mechanisms. Numerous works have been carried out to characterize the airflow behaviour during human breathing [Baier, 1977; Brancatisano, 1983], and to determine the trajectories of inhaled particles through the extrathoracic region. Recent studi...

  2. Corrected second-order slip boundary condition for fluid flows in nanochannels.

    Science.gov (United States)

    Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei

    2010-06-01

    A corrected second-order slip boundary condition is proposed to solve the Navier-Stokes equations for fluid flows confined in parallel-plate nanochannels. Compared with the classical second-order slip boundary condition proposed by Beskok and Karniadakis, the corrected slip boundary condition is not only dependent on the Knudsen number and the tangential momentum accommodation coefficient, but also dependent on the relative position of the slip surface in the Knudsen layer. For the fluid flows in slip-flow regime with the Knudsen number less than 0.3, Couette cell is investigated using molecular-dynamics simulations to verify Newtonian flow behaviors by examining the constitutive relationship between shear stress and strain rate. By comparing the velocity profiles of Poiseuille flows predicted from the Navier-Stokes equations with the corrected slip boundary condition with that from molecular-dynamics simulations, it is found that the flow behaviors in our models can be effectively captured.

  3. In vivo assessment of a new method of pulsatile perfusion based on a centrifugal pump.

    Science.gov (United States)

    Herreros, Jesús; Ubilla, Matías; Berjano, Enrique J; Vila-Nuñez, Juan E; Páramo, José A; Sola, Josu; Mercé, Salvador

    2010-02-01

    The aim of this study was to assess platelet dysfunction and damage to organs after extracorporeal circulation using a pump based on a new method that adds a pulsatile flow to the continuous flow provided by a centrifugal pump. The continuous component of the total flow (2-3 L/min) is created by a Bio-Pump centrifugal pump, while the pulsatile component is created by the pulsating of an inner membrane pneumatically controlled by an intra-aortic counterpulsation balloon console (systolic volume of 37.5 mL in an asynchronous way with a frequency of 60 bpm). Six pigs were subjected to a partial cardiopulmonary bypass lasting 180 min and were sacrificed 60 min after extracorporeal circulation was suspended. The hematological study included the measurement of hematocrit, hemoglobin, leukocytes, and platelet function. The new pump did not significantly alter either platelet count or platelet function. In contrast, hematocrit and hemoglobin were significantly reduced during extracorporeal circulation (approximately 5% P = 0.011, and 2 g/dL P = 0.01, respectively). The leukocyte count during extracorporeal circulation showed a tendency to decrease, but this was not significant. In general, the short-term use of the new pump (4 h) did not cause any serious morphological damage to the heart, lung, kidney, or liver. The results suggest that the hemodynamic performance of the new pump is similar to a conventional centrifugal pump and could therefore be appropriate for use in extracorporeal circulation.

  4. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  5. Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery

    Directory of Open Access Journals (Sweden)

    A. Zaman

    2015-03-01

    Full Text Available A two-dimensional model is used to analyze the unsteady pulsatile flow of blood through a tapered artery with stenosis. The rheology of the flowing blood is captured by the constitutive equation of Carreau model. The geometry of the time-variant stenosis has been used to carry out the present analysis. The flow equations are set up under the assumption that the lumen radius is sufficiently smaller than the wavelength of the pulsatile pressure wave. A radial coordinate transformation is employed to immobilize the effect of the vessel wall. The resulting partial differential equations along with the boundary and initial conditions are solved using finite difference method. The dimensionless radial and axial velocity, volumetric flow rate, resistance impedance and wall shear stress are analyzed for normal and diseased artery with particular focus on variation of these quantities with non-Newtonian parameters.

  6. Stabilizing control for a pulsatile cardiovascular mathematical model.

    Science.gov (United States)

    de los Reyes, Aurelio A; Jung, Eunok; Kappel, Franz

    2014-06-01

    In this paper, we develop a pulsatile model for the cardiovascular system which describes the reaction of this system to a submaximal constant workload imposed on a person at a bicycle ergometer test after a period of rest. Furthermore, the model should allow to use measurements for the pulsatile pressure in fingertips which provide information on the diastolic and the systolic pressure for parameter estimation. Based on the assumption that the baroreceptor loop is the essential control loop in this case, we design a stabilizing feedback control for the pulsatile model which is obtained by solving a linear-quadratic regulator problem for the linearization of a non-pulsatile counterpart of the pulsatile model. We also investigate the behavior of the model with respect to changes in the weight of the term in the cost functional for the linear-quadratic regulator problem which penalizes the deviation of the momentary pressure in the aorta from the pressure at the stationary situation which should be obtained.

  7. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  8. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing

    Science.gov (United States)

    Ma, Chao; Wang, Yu-jie; Du, Cui; Wang, Yun-qi; Li, Yun-peng

    2016-11-01

    Debris flows in the mountain regions surrounding Beijing have been occurring for a long time and have resulted in great economic losses. In this study, 23 rainstorm events, surficial sediments, and debris flow deposits were analyzed to quantify the area's rainfall threshold and to investigate how such conditions may be used to predict debris flow in this region. Rainfall threshold of intensity-duration (I-D) functions after vegetation recovery was higher than before recovery and also higher than I-D levels in other regions where debris flows are closely associated with runoff. Field investigations revealed that surficial sediments were characterized by coarse-grained sediments and that debris flow deposits lacked fine particles. Local debris flows can be triggered by runoff; however, no single standard equation is used to predict the conditions that lead to runoff-triggered debris flow; and commonly used equations give different values. Here, we propose an empirical function that takes into account peak discharge per width and particle diameter. This model should be verified with further investigations so that it can be used as a reference to analyze the conditions that lead to debris flow in the study area. Finally, debris flows may have been related to occasional storms in the study area, which has been experiencing substantially increased temperatures and decreased annual precipitation. This work provides important information about the conditions that initiated debris flow in the Beijing mountain regions in the last few decades.

  9. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  10. Some analytical solutions for flows of Casson fluid with slip boundary conditions

    Directory of Open Access Journals (Sweden)

    K. Ramesh

    2015-09-01

    Full Text Available In the present paper, we have studied three fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible Casson fluid between parallel plates using slip boundary conditions. The equations governing the flow of Casson fluid are non-linear in nature. Analytical solutions of the non-linear governing equations with non-linear boundary conditions are obtained for each case. The effect of the various parameters on the velocity and volume flow rate for each problem is studied and the results are presented through graphs. It is observed that, the presence of Casson number decreases the velocity and volume flow rate of the fluid. Increasing of slip parameter increases the velocity and volume flow rate in both Poiseuille and generalized Couette flows.

  11. Tip clearance noise of axial flow fans operating at design and off-design condition

    Science.gov (United States)

    Fukano, T.; Jang, C.-M.

    2004-08-01

    The noise due to tip clearance (TC) flow in axial flow fans operating at a design and off-design conditions is analyzed by an experimental measurement using two hot-wire probes rotating with the fan blades. The unsteady nature of the spectra of the real-time velocities measured by two hot-wire sensors in a vortical flow region is investigated by using cross-correlation coefficient and retarded time of the two fluctuating velocities. The results show that the noise due to TC flow consists of a discrete frequency noise due to periodic velocity fluctuation and a broadband noise due to velocity fluctuation in the blade passage. The peak frequencies in a vortical flow are mainly observed below at four harmonic blade passing frequency. The discrete frequency component of velocity fluctuation at the off-design operating conditions is generated in vortical flow region as well as in reverse flow region. The peak frequency can be an important noise source when the fans are rotated with a high rotational speed. The authors propose a spiral pattern of velocity fluctuation in the vortical flow to describe the generation mechanism of the peak frequency in the vortical flow. In addition, noise increase due to TC flow at low flow rate condition is analyzed with relation to the distribution of velocity fluctuation due to the interference between the tip leakage vortex and the adjacent pressure surface of the blade.

  12. Magnetohydrodynamic Stagnation Point Flow with a Convective Surface Boundary Condition

    Science.gov (United States)

    Jafar, Khamisah; Ishak, Anuar; Nazar, Roslinda

    2011-09-01

    This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities.

  13. Magnetohydrodynamic stagnation point flow with a convective surface boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Jafar, Khamisah [Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia). Faculty of Engineering and Built Environment; Ishak, Anuar; Nazar, Roslinda [Universiti Kebangsaan, Bangi, Selangor (Malaysia). School of Mathematical Sciences

    2011-08-15

    This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities. (orig.)

  14. PRINCIPLES OF SAFETY MANAGEMENT OF AIR TRAFFIC FLOWS AND CAPACITY UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2016-11-01

    Full Text Available Purpose: The aim of this study is to investigate the general principles of safety and capacity management in Aeronautical systems regarding air traffic flows operations under uncertainty conditions. In this work the theoretical framework assessing at the same time both the uncertainty model and flight plans model are proposed. Methods: To study features of safety of air traffic flows and capacity under uncertainty conditions were built the original probabilistic models including Bayesian Network for flight plan and air traffic control sector model based on Poisson Binomial Distribution. Results: We obtained models for safety management of air traffic flows and capacity under uncertainty conditions. We discussed appropriate approach for estimating the parameters of safety of air traffic flows and capacity under uncertainty and Markovian uncertainty model for the flight plan. Discussion: We developed the Bayesian Network for flight plan and air traffic control sector models for safety management of air traffic flows and capacity under uncertainty conditions.

  15. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Menge, Björn A; Grüber, Lena; Jørgensen, Signe M;

    2011-01-01

    In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known.......In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known....

  16. Influence of the initial conditions for the numerical simulation of two-phase slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Pachas Napa, Alex A.; Morales, Rigoberto E.M.; Medina, Cesar D. Perea

    2010-07-01

    Multiphase flows in pipelines commonly show several patterns depending on the flow rate, geometry and physical properties of the phases. In oil production, the slug flow pattern is the most common among the others. This flow pattern is characterized by an intermittent succession in space and time of an aerated liquid slug and an elongated gas bubble with a liquid film. Slug flow is studied through the slug tracking model described as one-dimensional and Lagrangian frame referenced. In the model, the mass and the momentum balance equations are applied in control volumes constituted by the gas bubble and the liquid slug. Initial conditions must be determined, which need to reproduce the intermittence of the flow pattern. These initial conditions are given by a sequence of flow properties for each unit cell. Properties of the unit cell in initial conditions should reflect the intermittence, for which they can be analyzed in statistical terms. Therefore, statistical distributions should be obtained for the slug flow variables. Distributions are complemented with the mass balance and the bubble design model. The objective of the present work is to obtain initial conditions for the slug tracking model that reproduce a better adjustment of the fluctuating properties for different pipe inclinations (horizontal, vertical or inclined). The numerical results are compared with experimental data obtained by PFG/FEM/UNICAMP for air-water flow at 0 deg, 45 deg and 90 deg and good agreement is observed. (author)

  17. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    Science.gov (United States)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  18. Pulsatile enophthalmos, severe esotropia, kinked optic nerve and visual loss in neurofibromatosis type-1

    Directory of Open Access Journals (Sweden)

    Virender Sachdeva

    2015-01-01

    Full Text Available Neurofibromatosis Type I if associated with aplasia of greater wing of sphenoid may be associated with a pulsatile exophthalmos. However, very rarely it may be associated with a pulsatile enophthalmos. This clinical image describes a rare presentation with pulsatile enophthalmos, esotropia and kinking of the optic nerve due to neurofibomatosis type I.

  19. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    DEFF Research Database (Denmark)

    Feenstra, T.; Schmidt Thøgersen, Mariane; Wieser, E.

    2017-01-01

    H mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial...... mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel...

  20. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    Science.gov (United States)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  1. Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies

    KAUST Repository

    Bucs, Szilard

    2015-07-10

    Systematic laboratory studies on membrane biofouling require experimental conditions that are well defined and representative for practice. Hydrodynamics and flow rate variations affect biofilm formation, morphology, and detachment and impacts on membrane performance parameters such as feed channel pressure drop. There is a suite of available monitors to study biofouling, but systems to operate monitors have not been well designed to achieve an accurate, constant water flow required for a reliable determination of biomass accumulation and feed channel pressure drop increase. Studies were done with membrane fouling simulators operated in parallel with manual and automated flow control, with and without dosage of a biodegradable substrate to the feedwater to enhance biofouling rate. High flow rate variations were observed for the manual water flow system (up to ≈9%) compared to the automatic flow control system (<1%). The flow rate variation in the manual system was strongly increased by biofilm accumulation, while the automatic system maintained an accurate and constant water flow in the monitor. The flow rate influences the biofilm accumulation and the impact of accumulated biofilm on membrane performance. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. Stable and accurate feedwater flow rates are essential for biofouling studies in well-defined conditions in membrane systems. © 2015 Balaban Desalination Publications. All rights reserved.

  2. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    Energy Technology Data Exchange (ETDEWEB)

    Nowe, V.; Wang, X.L.; Gielen, J.; Goethem, J.Van; Oezsarlak, Oe.; De Schepper, A.M.; Parizel, P.M. [University of Antwerp, Department of Radiology, Edegem (Belgium); Ridder, D. De [University of Antwerp, Department of Neurosurgery, Edegem (Belgium); Heyning, P.H.Van de [University of Antwerp, Department of Otorhinolaryngology, Edegem (Belgium)

    2004-12-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  3. A methodological approach of estimating resistance to flow under unsteady flow conditions

    Science.gov (United States)

    Mrokowska, M. M.; Rowiński, P. M.; Kalinowska, M. B.

    2015-10-01

    This paper presents an evaluation and analysis of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The main points of the methodology are (1) to choose a resistance relation with regard to a shape of a channel and (2) type of wave, (3) to choose an appropriate method to evaluate slope of water depth, and (4) to assess the uncertainty of result. In addition to a critical analysis of existing methods, new approaches are presented: formulae for resistance parameters for a trapezoidal channel, and a translation method instead of Jones' formula to evaluate the gradient of flow depth. Measurements obtained from artificial dam-break flood waves in a small lowland watercourse have made it possible to apply the method and to analyse to what extent resistance parameters vary in unsteady flow. The study demonstrates that results of friction slope and friction velocity are more sensitive to applying simplified formulae than the Manning coefficient (n). n is adequate as a flood routing parameter but may be misleading when information on trend of resistance with flow rate is crucial. Then friction slope or friction velocity seems to be better choice.

  4. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  5. Simulations of inducers at Low-Flow Off-Design Conditions

    Science.gov (United States)

    Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating at low-flow, off-design conditions is evaluated. A sub-scale version of a three- bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained at all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles at the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD@ code that has a generalized multi-element unstructured framework and an advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers at design conditions.

  6. Overland flow under rainfall: some aspects related to modelling and conditioning factors.

    NARCIS (Netherlands)

    Lima, de J.L.M.P.

    1989-01-01

    This study concerns the theory and some practical aspects of overland flow under rainfall. Of the conditioning factors and processes which govern the generation of overland flow, the following were studied: depression storage, infiltration, morphology and wind. Special attention was paid to wind-dri

  7. Endothelial biocompatibility and accumulation of SPION under flow conditions

    Science.gov (United States)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan; Nowak, Johannes; Odenbach, Stefan; Alexiou, Christoph; Cicha, Iwona

    2015-04-01

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0-60 μg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions.

  8. Endothelial biocompatibility and accumulation of SPION under flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany); Nowak, Johannes; Odenbach, Stefan [Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden (Germany); Alexiou, Christoph [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany); Cicha, Iwona, E-mail: Iwona_Cicha@yahoo.com [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany)

    2015-04-15

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0–60 µg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions.

  9. Safety analysis of switching between reductive and oxidative conditions in a reaction coupling reverse flow reactor.

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    A new reverse flow reactor is developed where endothermic reactants (propane dehydrogenation) and exothermic reactants (fuel combustion) are fed sequentially to a monolithic catalyst, while periodically alternating the inlet and outlet positions. Upon switching from reductive to oxidative conditions

  10. Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery.

    Science.gov (United States)

    Kuntsche, Judith; Decker, Christiane; Fahr, Alfred

    2012-08-01

    Liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol were analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering. In addition to evaluation of fractionation conditions (flow conditions, sample mass, carrier liquid), radiolabeled drug-loaded liposomes were used to determine the liposome recovery and a potential loss of incorporated drug during fractionation. Neither sample concentration nor the cross-flow gradient distinctly affected the size results but at very low sample concentration (injected mass 5 μg) the fraction of larger vesicles was underestimated. Imbalance in the osmolality between the inner and outer aqueous phase resulted in liposome swelling after dilution in hypoosmotic carrier liquids. In contrast, liposome shrinking under hyperosmotic conditions was barely visible. The liposomes themselves eluted completely (lipid recoveries were close to 100%) but there was a loss of incorporated drugs during separation with a strong dependence on the octanol-water partition coefficient of the drug. Whereas corticosterone (partition coefficient ~2) was washed out more or less completely (recovery about 2%), loss of temoporfin (partition coefficient ~9) was only minor (recovery about 80%). All fractionations were well repeatable under the experimental conditions applied in the present study.

  11. Metals, nutrients and total suspended solids discharged during different flow conditions in highly urbanised catchments.

    Science.gov (United States)

    Beck, Hayden J; Birch, Gavin F

    2012-01-01

    Stormwater discharged from highly urbanised catchments on the southern shore of Sydney estuary, Australia, has been identified as the primary source of contaminants responsible for ecological degradation and reduction in recreational value of the waterway. Effective management of this pollution requires knowledge of contaminant loads associated with various stormwater flow conditions in three highly urbanised catchments in Sydney estuary catchment. The majority (>90%) of metal (Cu, Pb and Zn) and total suspended solid annual loads were contributed during high-flow conditions (>50 mm rainfall day(t1)), whereas ≤55% of TN and ≤21% of total phosphorus were contributed to annual loading by dry weather base-flow conditions. All flow conditions posed an in-stream ecological threat because contaminant concentrations exceeded water quality guidelines for all analytes measured, except Pb. Irregular, temporal variability in contaminant concentrations associated with base-flow (within day and amongst days), high-flow (amongst events) and irregular discharges indicated that contaminant contributions in stormwater were strongly controlled by human activity in the three catchments. Significant variation in contaminant concentrations under all flow conditions revealed unique chemical signatures for each catchment despite similarities in land uses, location and geology amongst catchments. These characteristics indicate that assessment and management of stormwater pollution needs to be conducted on an individual-catchment basis for highly urbanised regions of Sydney estuary catchment.

  12. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  13. Study of two-phase flow regime identification in horizontal tube bundles under vertical upward cross-flow condition using wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Xinghua HUANG; Li WANG; Feng JIA

    2008-01-01

    A wavelet-transform based approach for flow regime identification in horizontal tube bundles under vertical upward cross-flow condition was presented. Tests on two-phase flow pattern of R 134a were conducted under low mass velocity and flow boiling conditions over Time series of differential pressure fluctuations were mea-sured and analyzed with discrete wavelet transform. Different time-scale characteristics in bubbly flow, churn flow and annular flow were analyzed. The wavelet energy distributions over scales were found to be appropriate for flow regime identification. Based on the wavelet energy distribution over characteristic scales, a criterion of flow regime identification was proposed. The comparison with experiment results show that it is feasible to use the dis-crete wavelet transform as the tool of flow regime iden-tification in horizontal tube bundles under vertical upward cross-flow condition.

  14. Spatial probabilistic pulsatility model for enhancing photoplethysmographic imaging systems

    Science.gov (United States)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-11-01

    Photoplethysmographic imaging (PPGI) is a widefield noncontact biophotonic technology able to remotely monitor cardiovascular function over anatomical areas. Although spatial context can provide insight into physiologically relevant sampling locations, existing PPGI systems rely on coarse spatial averaging with no anatomical priors for assessing arterial pulsatility. Here, we developed a continuous probabilistic pulsatility model for importance-weighted blood pulse waveform extraction. Using a data-driven approach, the model was constructed using a 23 participant sample with a large demographic variability (11/12 female/male, age 11 to 60 years, BMI 16.4 to 35.1 kg·m-2). Using time-synchronized ground-truth blood pulse waveforms, spatial correlation priors were computed and projected into a coaligned importance-weighted Cartesian space. A modified Parzen-Rosenblatt kernel density estimation method was used to compute the continuous resolution-agnostic probabilistic pulsatility model. The model identified locations that consistently exhibited pulsatility across the sample. Blood pulse waveform signals extracted with the model exhibited significantly stronger temporal correlation (W=35,pbpm].

  15. Hippocampal Fast Glutamatergic Transmission Is Transiently Regulated by Corticosterone Pulsatility

    NARCIS (Netherlands)

    Sarabdjitsingh, R Angela; Pasricha, Natasha; Smeets, Johanna A S; Kerkhofs, Amber; Mikasova, Lenka; Karst, Henk; Groc, Laurent; Joëls, Marian

    2016-01-01

    In recent years it has become clear that corticosteroid hormones (such as corticosterone) are released in ultradian pulses as a natural consequence of pituitary-adrenal interactions. All organs, including the brain, are thus exposed to pulsatile changes in corticosteroid hormone level, important to

  16. Case of a non-pulsatile groin swelling.

    Science.gov (United States)

    Razif, M A Mohamed; Rajasingam, V; Abdullah, B J J

    2002-12-01

    We report a case of a non-pulsatile groin swelling in a 38 years old male drug addict without the typical clinical signs of an aneurysm. Ultrasound revealed a left femoral artery pseudo-aneurysm. He was surgically treated and the vessels were ligated without revascularisation.

  17. ORAL MULTIPARTICULATE PULSATILE DRUG DELIVERY SYSTEMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Shaji Jessy

    2011-02-01

    Full Text Available Pulsatile drug delivery aims to release drugs in a planned pattern i.e. at appropriate time and/or at a suitable site of action. Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. However, in recent pharmaceutical applications involving pulsatile delivery, multiparticulate dosage forms are gaining much favour over single-unit dosage forms because of their potential benefits like predictable gastric emptying, no risk of dose dumping, flexible release patterns and increased bioavailability with less inter- and intra-subject variability. Based on these, the present review aims to study multiparticulate pulsatile delivery systems, for which the Reservoir systems with rupturable polymeric coatings and Reservoir systems with erodible polymer coatings are primarily involved in the control of release. Multiparticulate drug delivery systems provide tremendous opportunities for designing new controlled and delayed release oral formulations, thus extending the frontier of future pharmaceutical development. The development of low density floating multiparticulate pulsed-release dosage forms possessing gastric retention capabilities has also been addressed with increasing focus on the upcoming multiparticulate-pulsatile technologies being exploited on an industrial scale.

  18. Oral pulsatile delivery systems based on swellable hydrophilic polymers.

    Science.gov (United States)

    Gazzaniga, Andrea; Palugan, Luca; Foppoli, Anastasia; Sangalli, Maria Edvige

    2008-01-01

    Upon contact with aqueous fluids, swellable hydrophilic polymers undergo typical chain relaxation phenomena that coincide with a glassy-rubbery transition. In the rubbery phase, these polymers may be subject to swelling, dissolution and erosion processes or, alternatively, form an enduring gel barrier when cross-linked networks (hydrogels) are dealt with. Because of the peculiar hydration and biocompatibility properties, such materials are widely exploited in the pharmaceutical field, particularly as far as hydrophilic cellulose derivatives are concerned. In oral delivery, they have for long been employed in the manufacturing of prolonged release matrices and, more recently, for pulsatile (delayed) release devices as well. Pulsatile delivery, which is meant as the liberation of drugs following programmed lag phases, has drawn increasing interest especially in view of emerging chronotherapeutic approaches. In pursuit of pulsatile release, various design strategies have been proposed, chiefly including reservoir, capsular and osmotic formulations. In most cases, water-swellable polymers play a key role in the overall delivery mechanism after being activated by physiological media. Based on these premises, the aim of the present review is to survey the main oral pulsatile delivery systems, for which swelling, dissolution and/or erosion of hydrophilic polymers are primarily involved in the control of release.

  19. On sufficient stability conditions of the Couette — Poiseuille flow of monodisperse mixture

    Science.gov (United States)

    Popov, D. I.; Sagalakov, A. M.; Nikitenko, N. G.

    2011-06-01

    The stability of the Couette — Poiseuille flow of a monodisperse mixture is considered. Sufficient stability conditions are derived. Results of the computation of the spectrum are presented. A considerable stabilization of the flow with particles admixture to small disturbances is observed. It is found that the regions of instability generation may have complex geometry. The influence of the main velocity profile and admixture parameters on the stability conditions is considered.

  20. Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition

    Institute of Scientific and Technical Information of China (English)

    谭臻; 齐海涛; 蒋晓芸

    2014-01-01

    In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier’s slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.

  1. Study of safety relief valve operation under ATWS conditions. [Supercritical flow

    Energy Technology Data Exchange (ETDEWEB)

    Hutmacher, E.S.; Whitten, S.D.

    1979-09-01

    In March 1979, the NRC published a report (NUREG/CR-0687) prepared by the Energy Technology Engineering Center (ETEC-TDR-78-19). That report presented a literature survey which updated earlier NRC studies of saturated or subcooled water flow through relief valves, under ATWS conditions. This supplement expands upon that search to include supercritical steam-water flow. No applicable data for the supercritical conditions were found, nor were any newer data on saturated or subcooled conditions uncovered. This supplement also updates a look for facilities currently capable of simultaneously imposing all ATWS conditions upon test relief valves. Results confirmed the negative findings of NUREG/CR-0687.

  2. Study of safety relief valve operation under ATWS conditions. [Super critical flow

    Energy Technology Data Exchange (ETDEWEB)

    Hutmacher, E.S.; Whitten, S.D.

    1979-07-25

    In March 1979, ETEC published as ETEC-TDR-78-19 a search which updated earlier NRC studies of saturated or subcooled water flow through relief valves, under ATWS conditions. This Supplement expands upon that search to include supercritical steam-water flow. No applicable data for the supercritical conditions was found, nor were any newer data on saturated or subcooled conditions uncovered. The Supplement also updated a look for facilities currently capable of simultaneously imposing all ATWS conditions upon test relief valves. Results confirmed the negative findings of ETEC-TDR-78.19.

  3. Acoustic boundary conditions at an impedance lining in inviscid shear flow

    OpenAIRE

    Khamis, Doran; Brambley, Edward James

    2016-01-01

    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Cambridge University Press. The accuracy of existing impedance boundary conditions is investigated, and new impedance boundary conditions are derived, for lined ducts with inviscid shear flow. The accuracy of the Ingard–Myers boundary condition is found to be poor. Matched asymptotic expansions are used to derive a boundary condition accurate to second order in the boundary layer thic...

  4. Investigation and Modelling of Thermal Conditions in Low Flow SDHW Systems

    DEFF Research Database (Denmark)

    Shah, Louise Jivan

    1999-01-01

    The purpose of this study was to characterise the thermal conditions in low flow SDHW systems. As the heat storage has proved to be the most important system component, there has been an emphasis on this component in the study. A literature survey revealed that the mantle tank heat storage type...... and compared with the CFD-predicted flow structures in the mantle. The results showed that the mantle flow was highly dominated by buoyancy and the CFD-models were able to model this flow. With a steel mantle tank, different dynamic thermal experiments were carried out in a heat storage test facility...

  5. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, F. M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alsaedi, A.; Obid, Mustafa A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-03-15

    This article explores the hydromagnetic steady flow of Jeffrey fluid in the presence of thermal radiation. The chosen nanofluid model takes into account the Brownian motion and thermophoresis effects. Flow and heat transfer characteristics are determined by a stretching surface with flux conditions. The nonlinear boundary layer flow through partial differential systems is converted into the ordinary differential systems. The resulting reduced systems are computed for the convergent solutions of velocity, temperature and nanoparticle concentration. Graphs of dimensionless temperature and nanoparticle concentration profiles are presented for different values of emerging parameters. Skin-friction coefficient are computed and analyzed in both hydrodynamic and hydromagnetic flow situations.

  6. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid

    Directory of Open Access Journals (Sweden)

    F. M. Abbasi

    2015-03-01

    Full Text Available This article explores the hydromagnetic steady flow of Jeffrey fluid in the presence of thermal radiation. The chosen nanofluid model takes into account the Brownian motion and thermophoresis effects. Flow and heat transfer characteristics are determined by a stretching surface with flux conditions. The nonlinear boundary layer flow through partial differential systems is converted into the ordinary differential systems. The resulting reduced systems are computed for the convergent solutions of velocity, temperature and nanoparticle concentration. Graphs of dimensionless temperature and nanoparticle concentration profiles are presented for different values of emerging parameters. Skin-friction coefficient are computed and analyzed in both hydrodynamic and hydromagnetic flow situations.

  7. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    validated and showed that a slip flow model need be used. A test case 8.8 kW residential air-conditioning system with R410A as refrigerant is chosen as baseline for the numerical investigations, and the simulations are performed at standard rating conditions from ANSI/AHRI Standard 210/240 (2008...... cases are standard tube circuitry designs and these results are thus tube circuitry specific. In addition, a novel method of compensating flow maldistribution is analyzed, i.e. the discontinuous liquid injection principle. The method is based upon the recently developed EcoFlowTM valve by Danfoss A...

  8. Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions

    Directory of Open Access Journals (Sweden)

    K. W. Cheah

    2007-01-01

    Full Text Available The current investigation is aimed to simulate the complex internal flow in a centrifugal pump impeller with six twisted blades by using a three-dimensional Navier-Stokes code with a standard k-ε two-equation turbulence model. Different flow rates were specified at inlet boundary to predict the characteristics of the pump. A detailed analysis of the results at design load, Qdesign, and off-design conditions, Q = 0.43 Qdesign and Q = 1.45 Qdesign, is presented. From the numerical simulation, it shows that the impeller passage flow at design point is quite smooth and follows the curvature of the blade. However, flow separation is observed at the leading edge due to nontangential inflow condition. The flow pattern changed significantly inside the volute as well, with double vortical flow structures formed at cutwater and slowly evolved into a single vortical structure at the volute diffuser. For the pressure distribution, the pressure increases gradually along streamwise direction in the impeller passages. When the centrifugal pump is operating under off-design flow rate condition, unsteady flow developed in the impeller passage and the volute casing.

  9. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael H., E-mail: ahmedw@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia); Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Mass transfer downstream of orifices was numerically and experimentally investigated. Black-Right-Pointing-Pointer The surface wear pattern is measured and used to validate the present numerical results. Black-Right-Pointing-Pointer The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. Black-Right-Pointing-Pointer The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. Black-Right-Pointing-Pointer The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO{sub 4}{center_dot} Vulgar-Fraction-One-Half H{sub 2}O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice

  10. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Sharma, Vishaldeep [ORNL

    2017-01-01

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution will have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility

  11. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  12. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    Science.gov (United States)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  13. Laboratory Evaluation of Hemolysis and Systemic Inflammatory Response in Neonatal Nonpulsatile and Pulsatile Extracorporeal Life Support Systems.

    Science.gov (United States)

    Wang, Shigang; Krawiec, Conrad; Patel, Sunil; Kunselman, Allen R; Song, Jianxun; Lei, Fengyang; Baer, Larry D; Ündar, Akif

    2015-09-01

    The objective of this study was to compare the systemic inflammatory response and hemolytic characteristics of a conventional roller pump (HL20-NP) and an alternative diagonal pump with nonpulsatile (DP3-NP) and pulsatile mode (DP3-P) in simulated neonatal extracorporeal life support (ECLS) systems. The experimental neonatal ECLS circuits consist of a conventional Jostra HL20 roller pump or an alternative Medos DP3 diagonal pump, and Medos Hilite 800 LT hollow-fiber oxygenator with diffusion membrane. Eighteen sterile circuits were primed with freshly donated whole blood and divided into three groups: conventional HL20 with nonpulsatile flow (HL20-NP), DP3 with nonpulsatile flow (DP3-NP), and DP3 with pulsatile flow (DP3-P). All trials were conducted for durations of 12 h at a flow rate of 500 mL/min at 36°C. Simultaneous blood flow and pressure waveforms were recorded. Blood samples were collected to measure plasma-free hemoglobin (PFH), human tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-8, in addition to the routine blood gas, lactate dehydrogenase, and lactic acid levels. HL20-NP group had the highest PFH levels (mean ± standard error of the mean) after a 12-h ECLS run, but the difference among groups did not reach statistical significance (HL20-NP group: 907.6 ± 253.1 mg/L, DP3-NP group: 343.7 ± 163.2 mg/L, and DP3-P group: 407.6 ± 156.6 mg/L, P = 0.06). Although there were similar trends but no statistical differences for the levels of proinflammatory cytokines among the three groups, the HL20-NP group had much greater levels than the other groups (P > 0.05). Pulsatile flow generated higher total hemodynamic energy and surplus hemodynamic energy levels at pre-oxygenator and pre-clamp sites (P hemolysis compared with the conventional roller pump ECLS circuit in simulated neonatal ECLS systems. Pulsatile flow delivered more hemodynamic energy to the pseudo-patient without increased odds of hemolysis compared

  14. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-09-01

    This communication addresses the magnetohydrodynamic (MHD) three dimensional flow of Sisko nanofluid bounded by a surface stretched bidirectionally. Nanofluid model includes the Brownian motion and thermophoresis. Heat transfer through convective condition is discussed. Developed condition with the zero nanoparticles mass flux at the surface is implemented. The governing problems subject to boundary layer approximations are computed for the convergent series solutions. Effects of interesting flow parameters on the temperature and nanoparticles concentration distributions are studied and discussed. Skin friction coefficients and the local Nusselt number are computed and analyzed. - Highlights: • Three-dimensional flow of Sisko nanofluid is modeled. • Uniform applied magnetic field is adopted. • Brownian motion and thermophoresis effects are accounted. • Heat transfer convective condition is utilized. • Recently constructed condition with zero nanoparticles mass flux is implemented.

  15. Unsteady Flow Analysis of Pump Mode Small Discharge Condition for a Francis Pump-turbine

    Science.gov (United States)

    Xiaoran, ZHAO; Yexiang, XIAO; Jincai, XU; Wei, XU; Jianbo, SUN; Zhengwei, WANG; Yangyang, YAO

    2016-11-01

    Unsteady flow phenomena, including vortex flow at runner inlet, helical backflow in the draft tube and numerous vortexes inside the guide vanes, can occur in pump-turbines under off design conditions at pump mode and can impact normal operation of pump-turbines. All of these phenomena cause serious pressure pulsation, which is quite different from cases in normal pump mode. There is also a difference of pressure pulsation frequency and amplitude in different place through the runner. This paper builds a whole flow passage of a model pump-turbine, simulates flow characteristics in runner by CFD technology, analyses pressure pulsation in the runner and explores the origin and mechanism of pressure pulsations. The SST-CC turbulence model is adopted to perform unsteady simulations of the pump-turbine under 0.46Q BEP small discharge condition at pump mode. Unsteady flow structures are proceeded combined with hydraulic loss and pressure amplitude spectra. The results indicates that there is complicated disordered flow inside the runner under 0.46Q BEP small discharge condition at pump mode, shows the amplitude and frequency characteristic of pressure pulsations through runner flow passage.

  16. 4D-Flow validation, numerical and experimental framework

    Science.gov (United States)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  17. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    Science.gov (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  18. Geometric scaling of artificial hair sensors for flow measurement under different conditions

    Science.gov (United States)

    Su, Weihua; Reich, Gregory W.

    2017-03-01

    Artificial hair sensors (AHSs) have been developed for prediction of the local flow speed and aerodynamic force around an airfoil and subsequent application in vibration control of the airfoil. Usually, a specific sensor design is only sensitive to the flow speeds within its operating flow measurement region. This paper aims at expanding this flow measurement concept of using AHSs to different flow speed conditions by properly sizing the parameters of the sensors, including the dimensions of the artificial hair, capillary, and carbon nanotubes (CNTs) that make up the sensor design, based on a baseline sensor design and its working flow condition. In doing so, the glass fiber hair is modeled as a cantilever beam with an elastic foundation, subject to the distributed aerodynamic drag over the length of the hair. Hair length and diameter, capillary depth, and CNT height are scaled by keeping the maximum compressive strain of the CNTs constant for different sensors under different speed conditions. Numerical studies will demonstrate the feasibility of the geometric scaling methodology by designing AHSs for aircraft with different dimensions and flight conditions, starting from the same baseline sensor. Finally, the operating bandwidth of the scaled sensors are explored.

  19. Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation

    Science.gov (United States)

    Singh, Shiwani; Jiang, Fei; Tsuji, Takeshi

    2017-07-01

    To emphasize the importance of the kinetic boundary condition for micro- to nanoscale flow, we present an ad hoc kinetic boundary condition suitable for torturous geological porous media. We found that the kinetic boundary condition is one of the essential features which should be supplemented to the standard lattice Boltzmann scheme in order to obtain accurate continuum observables. The claim is validated using a channel flow setup by showing the agreement of mass flux with analytical value. Further, using a homogeneous porous structure, the importance of the kinetic boundary condition is shown by comparing the permeability correction factor with the analytical value. Finally, the proposed alternate to the kinetic boundary condition is validated by showing its capability to capture the basic feature of the kinetic boundary condition.

  20. Analysis of boundary conditions for SSME subsonic internal viscous flow analysis

    Science.gov (United States)

    Baker, A. J.

    1986-01-01

    A study was completed of mathematically proper boundary conditions for unique numerical solution of internal, viscous, subsonic flows in the space shuttle main engine. The study has concentrated on well posed considerations, with emphasis on computational efficiency and numerically stable boundary condition statements. The method of implementing the established boundary conditions is applicable to a wide variety of finite difference and finite element codes, as demonstrated.

  1. Triggering conditions and mobility of debris flows associated to complex earthflows

    Science.gov (United States)

    Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.

    2005-03-01

    Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging

  2. Experimental study of two-phase flows under reduced gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, T., E-mail: tirthankar.roy@ntnu.no [Purdue Univ., West Lafayette, Indiana (United States); Norwegian Univ. of Science and Tech., Trondheim (Norway); Liu, Y.; Chen, S.-W.; Hibiki, T.; Ishii, M., E-mail: liu130@purdue.edu, E-mail: hibiki@purdue.edu, E-mail: ishii@purdue.edu [Purdue Univ., West Lafayette, Indiana (United States); Duval, W., E-mail: walter.m.duval@nasa.gov [NASA Glenn Research Center, Cleveland, Ohio (United States)

    2011-07-01

    Study of gas-liquid two-phase flows under reduced gravity conditions is very important for space applications such as active thermal control systems. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to dynamically predict the behavior of such two-phase flows under normal and reduced gravity conditions. As part of a big program experiments were carried out in a 304 mm inner diameter test facility on earth to generate a detailed experimental data base which is required for the evaluation of two-fluid model along with IATE under reduced gravity conditions. In the present case reduced gravity condition is simulated using two-liquids of similar densities. Such a large diameter test section was chosen to study the development of drops to their full. Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using double-sensor conductivity probes. Some of the results are presented here and discussed. (author)

  3. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  4. Comparison of Flow Characteristics Around Refractive and Right-angled Groins in Barotropic and Baroclinic Conditions

    Institute of Scientific and Technical Information of China (English)

    Omdehghiasi Hamed; Mojtahedi Alireza; Lotfollahi-Yaghin Mohammad Ali

    2015-01-01

    Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm’s length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.

  5. Flow, slippage and a hydrodynamic boundary condition of polymers at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M; Pastorino, C; Servantie, J [Institut fuer Theoretische Physik, Georg-August-Universitaet, D-37077 Goettingen (Germany)], E-mail: mmueller@theorie.physik.uni-goettingen.de

    2008-12-10

    Tailoring surface interactions or grafting of polymers onto surfaces is a versatile tool for controlling wettability, lubrication, adhesion and interactions between surfaces. Using molecular dynamics of a coarse-grained, bead-spring model and dynamic single-chain-in-mean-field simulations, we investigate how structural changes near the surface affect the flow of a polymer melt over the surface and how these changes can be parameterized by a hydrodynamic boundary condition. We study the temperature dependence of the near-surface flow of a polymer melt at a corrugated, attractive surface. At weakly attractive surfaces, lubrication layers form, the slip length is large and increases upon cooling. Close to the glass transition temperature, very large slip lengths are observed. At a more attractive surface, a 'sticky surface layer' is build up, giving rise to a small slip length. Upon cooling, the slip length decreases at high temperatures, passes through a minimum and increases upon approaching the glass transition temperature. At strongly attractive surfaces, the Navier slip condition fails to describe Couette and Poiseuille flows simultaneously. A similar failure of the Navier slip condition is observed for the flow of a polymer melt over a brush comprised of identical molecules. The wetting and flow properties of this surface are rather complex. Most notably, the cyclic motion of the grafted molecules gives rise to a reversal of the flow direction at the grafting surface. The failure of the Navier slip condition in both cases can be rationalized within a schematic, two-layer model, which demonstrates that the Navier slip condition fails to simultaneously describe Poiseuille and Couette flow if the fluid at the surface exhibits a higher viscosity than the bulk.

  6. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure.

  7. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo;

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  8. Parachute gore shape and flow visualization during transient and steady-state conditions.

    Science.gov (United States)

    Dereng, V. G.

    1973-01-01

    Single parachute gore segments were tested in an experimental wind tunnel having a unique 'V' splitter plate test section with a glass panel on the near side and a grid of orifices for smoke injection on the back panel. The parachute gore shape and flow patterns were viewed in cross section during the inflation process and also during changing flow conditions as would occur with rapid reduction of payload weight. Observations of flow during inflation revealed a transient internal counterflow and the formation and degeneration of several trailing vortices. Gore shapes observed compared well with those of free flight.

  9. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows

    Science.gov (United States)

    Hirota, Makoto; Morrison, Philip J.

    2016-05-01

    Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm-Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor-Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh-Fjørtoft criterion for unstratified shear flows.

  10. Test facility and the available inlet flow condition to transonic radial diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Hayami, Hiroshi; Senoo, Yasutoshi; Nakashima, Koji; Kawaguchi, Nobumasa

    1987-12-28

    In order to stabilize the characteristics combined with diffuser(DF) and expand the flow rate range, a transonic centrifugal impeller(B rotor) with backward blade angle of 40deg was made trially. Single characteristic was tested for five rotating speed equal to or less than 19,000 rpm with freon R12. The flow rate range from choke to inducer(ID) stalling for B rotor is 17% of choke flow rate which is comaratively wider than 11% of conventional impeller(R rotor) with forward blade angle. When the flow field of impeller exit, that is, DF inlet is considered, the maximum value of inlet flow angle in a constant rotating speed corresponds to choke condition or maximum flow rate and minimum value corresponds to operating condition of critical flow rate resulting ID spalling speed. Inflow Mach number to DF changes mainly for the impeller rotating speed. It is possible to pursue the experimental work on diffusers in the range of 21deg(max) to 11.6deg(min) inflow angle and up to 1.31 Mach number using the present facility. (9 figs, 4 refs)

  11. Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions

    CERN Document Server

    Mayrhofer, Arno; Violeau, Damien; Ferrand, Martin

    2013-01-01

    The semi-analytical wall boundary conditions present a mathematically rigorous framework to prescribe the influence of solid walls in SPH for fluid flows. In this paper they are investigated with respect to the skew-adjoint property which implies exact energy conservation. It will be shown that this property holds only in the limit of the continuous SPH approximation, whereas in the discrete SPH formulation it is only approximately true, leading to numerical noise. This noise, interpreted as form of "turbulence", is treated using an additional volume diffusion term in the continuity equation which we show is equivalent to an approximate Riemann solver. Subsequently two extensions to the boundary conditions are presented. The first dealing with a variable driving force when imposing a volume flux in a periodic flow and the second showing a generalization of the wall boundary condition to Robin type and arbitrary-order interpolation. Two modifications for free-surface flows are presented for the volume diffusio...

  12. CFD Analysis of the Human Exhalation Flow using Different Boundary Conditions and Ventilation Strategies

    DEFF Research Database (Denmark)

    Villafruela, J.M.; Olmedo, Inés; Ruiz de Adana, M.;

    2013-01-01

    This paper analyses the dispersion of the exhaled contaminants by humans in indoor environments, with special attention to the exhalation jet and its interaction with the indoor airflow pattern in both mixing and displacement ventilation conditions. The way in which three different numerical boun...... with respect to Test a. These differences are evaluated by comparing the penetration length and vertical ascendance values for the different tests....... boundary conditions for the exhalation flow (one timedependent and two steady conditions) predict that contaminant dispersion is also analyzed. The first boundary condition is a time-dependent sinusoidal function, which is the most realistic condition (Test a), and it is used to validate the numerical...... model with experimental data obtained from a previous study. The second one (Test b) maintains the momentum of the exhalation flow and the third (Test c) uses the maximum exhalation velocity. The objectives of this study are to increase knowledge regarding the exhaled contaminant distribution under...

  13. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)

    2007-02-15

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  14. Balanced steady-state free-precession MR imaging for measuring pulsatile motion of cerebellar tonsils during the cardiac cycle: a reliability study

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Aseem; Parsons, Matthew S. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, Campus Box 8131, St. Louis, MO (United States); Barnes-Jewish Hospital South, Department of Radiology, St. Louis, MO (United States); St. Louis Children' s Hospital, Department of Radiology, St. Louis, MO (United States); Pilgram, Thomas K. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, Campus Box 8131, St. Louis, MO (United States)

    2012-02-15

    Assessment of the motion of the cerebellar tonsils is of interest in diseases affecting the CSF flow at the foramen magnum. Cardiac-gated balanced steady-state free-precession technique, which has recently been shown to demonstrate the pulsatile motion of neural structures, appears well suited to allow direct measurement of craniocaudal translation of cerebellar tonsils during the cardiac cycle. Our aim was to assess the intra-observer and inter-observer variability in the assessment of tonsillar motion utilizing this technique. We retrospectively identified 44 patients who had undergone MR imaging with cine TrueFISP sequence, as a part of CSF flow study. Two neuroradiologists independently assessed the images. The tonsillar pulsatility was subjectively characterized into none, minimal, and marked categories after review of the images on a cine loop. For patients with identifiable tonsillar motion, the maximal extent of translation of the inferior edge of the cerebellar tonsil was directly measured. Both readers repeated the measurements after a minimum interval of 2 weeks. Intra- and inter-observer variability was characterized by calculating the kappa statistics. The intra-observer agreement for subjective assessment of tonsillar pulsatility was near perfect while the inter-observer agreement was substantial. A good intra- and inter-observer correlation was also seen for the objective measurements of the tonsillar motion. A good correlation was found between the subjective categorization of the tonsillar pulsatility and the objective measurements. Steady-state balanced free-precession MR imaging technique allows for a reproducible subjective and objective assessment of tonsillar pulsatility. (orig.)

  15. Endovascular treatment of jugular bulb diverticula causing debilitating pulsatile tinnitus.

    Science.gov (United States)

    Mortimer, Alex M; Harrington, Tim; Steinfort, Brendan; Faulder, Ken

    2016-03-01

    We describe the case of a patient who presented with debilitating pulsatile tinnitus in association with two jugular bulb diverticula. The diverticula were treated with stenting of the jugular bulb and coil embolization of the diverticula over two procedures. This resulted in successful resolution of symptoms and at 10 months follow-up the patient is asymptomatic. The technique is discussed with regard to similar published cases and surrogate measures of safety taken from the literature pertaining to idiopathic intracranial hypertension.

  16. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu

    2017-01-01

    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  17. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition

    Science.gov (United States)

    Hayat, T.; Muhammad, Taseer; Ahmad, B.; Shehzad, S. A.

    2016-09-01

    This communication addresses the magnetohydrodynamic (MHD) three dimensional flow of Sisko nanofluid bounded by a surface stretched bidirectionally. Nanofluid model includes the Brownian motion and thermophoresis. Heat transfer through convective condition is discussed. Developed condition with the zero nanoparticles mass flux at the surface is implemented. The governing problems subject to boundary layer approximations are computed for the convergent series solutions. Effects of interesting flow parameters on the temperature and nanoparticles concentration distributions are studied and discussed. Skin friction coefficients and the local Nusselt number are computed and analyzed.

  18. Pulsatile drug delivery systems: An approach for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Arora Shweta

    2006-01-01

    Full Text Available Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery and increasing patient compliance. These systems are designed according to the circadian rhythm of the body. The principle rationale for the use of pulsatile release is for the drugs where a constant drug release, i.e., a zero-order release is not desired. The release of the drug as a pulse after a lag time has to be designed in such a way that a complete and rapid drug release follows the lag time. Various systems like capsular systems, osmotic systems, single- and multiple-unit systems based on the use of soluble or erodible polymer coating and use of rupturable membranes have been dealt with in the article. It summarizes the latest technological developments, formulation parameters, and release profiles of these systems. Products available as once-a-daily formulation based on Pulsatile release like Pulsincap ®, Ritalin ®, and Pulsys ® are also covered in the review. These systems are beneficial for the drugs having chronopharmacological behaviour where night time dosing is required and for the drugs having high first-pass effect and having specific site of absorption in GIT. Drugs used in asthmatic patients and patients suffering from rheumatoid arthritis are also discussed along with many other examples.

  19. Pulsatile compression of the rostral ventrolateral medulla in hypertension.

    Science.gov (United States)

    Morimoto, S; Sasaki, S; Miki, S; Kawa, T; Itoh, H; Nakata, T; Takeda, K; Nakagawa, M; Naruse, S; Maeda, T

    1997-01-01

    The rostral ventrolateral medulla (RVLM) has been known to be a major regulating center of sympathetic and cardiovascular activities. An association between essential hypertension and neurovascular compression of the RVLM has been reported in clinical observations, including magnetic resonance imaging (MRI) studies. To reconfirm this relationship, we performed MRI using a high-resolution 512 x 512 matrix in patients with essential and secondary hypertension and in normotensive subjects. The duration of hypertension and the degree of organ damage by hypertension were not significantly different between the two hypertension groups. Neurovascular compression of the RVLM was observed in 74% of the essential hypertension group, and the incidence of compression was significantly higher than in the secondary hypertension group (11%) or in the normotensive group (13%) (P model has already been reported, its underlying mechanism is not well known. Accordingly, we performed experiments to investigate whether pulsatile compression of the RVLM would increase arterial pressure and to elucidate the mechanism of the pressor response in rats. Sympathetic nerve activity, arterial pressure, heart rate, and plasma levels of epinephrine and norepinephrine were increased by pulsatile compression of the RVLM. The pressor response was abolished by intravenous treatment with hexamethonium or RVLM injection of kainic acid. In summary, the results from the MRI studies suggest that neurovascular compression of the RVLM is, at least in part, causally related to essential hypertension. This was supported by the results from experimental studies using rats indicating that pulsatile compression of the RVLM increases arterial pressure by enhancing sympathetic outflow.

  20. Reference ranges for uterine artery pulsatility index during the menstrual cycle: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Luís Guedes-Martins

    Full Text Available Cyclic endometrial neoangiogenesis contributes to changes in local vascular patterns and is amenable to non-invasive assessment with Doppler sonography. We hypothesize that the uterine artery (UtA impedance, measured by its pulsatility index (PI, exhibits a regular pattern during the normal menstrual cycle. Therefore, the main study objective was to derive normative new day-cycle-based reference ranges for the UtA-PI during the entire cycle from days 1 to 34 according to the isolated time effect and potential confounders such as age and parity.From January 2009 to December 2012, a cross-sectional study of 1,821 healthy women undergoing routine gynaecological ultrasound was performed. The Doppler flow of the right and left UtA-PI was studied transvaginally by colour and pulsed Doppler imaging. The mean right and left values and the presence or absence of a bilateral protodiastolic notch were recorded. Reference intervals for the PI according to the cycle day were generated by classical linear regression.The majority of patients (97.5% presented unilateral or bilateral UtA notches. The crude 5th, 50th, and 95th reference percentile curves of the UtA-PI at 1-34 days of the normal menstrual cycle were derived. In all curves, a progressive significant decrease occurred during the first 13 days, followed by an increase and recovery in the UtA-PI. The adjusted 5th, 50th, and 95th reference percentile curves for the effects of age and parity were also obtained. These two conditions generated an approximately identical UtA-PI pattern during the cycle, except with small but significant reductions at the temporal extremes.The median, 5th, and the 95th percentiles of the UtA-PI decrease during the first third of the menstrual cycle and recover to their initial values during the last two thirds of the cycle. The rates of decrease and recovery depend significantly on age and parity.

  1. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    Science.gov (United States)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  2. Arterial pulsatility as an index of cerebral microangiopathy in diabetes type 2.

    Science.gov (United States)

    Agha, M S; Alboudi, A

    2014-01-09

    Transcranial doppler is an inexpensive, non-invasive investigation. This study assessed its validity in determining cerebral small vessel disease in patients with type 2 diabetes mellitus. Flow velocity and pulsatility index were measured in the middle cerebral, basilar and intracranial internal carotid arteries of a sample of 141 diabetic patients with no other risk factors, and 132 age- and sex-matched healthy controls. The patients were divided into 2 groups: 73 with complicated and 68 with uncomplicated diabetes. There was a statistically significant difference between the complicated diabetes and control groups for the 3 arteries and most indices. The differences between the uncomplicated diabetes patients and the controls were also statistically significant but less strongly. Transcranial doppler may be useful in early diagnosis of cerebral small vessel disease in patients with type 2 diabetes mellitus.

  3. Pulsatile delivery pellets:research advances%脉冲释药微丸的研究进展

    Institute of Scientific and Technical Information of China (English)

    冯航; 李迎; 梅兴国

    2015-01-01

    Under physiological conditions, many vital functions of the body are controlled by transient release of bioactive substances at a specific time and site. Based on the circadian rhythm character of disease and chronotherapeutic conceptions, pulsatile delivery system has been designed to achieve optimal therapeutic effect and reduce the toxic and side-effect. In recent years, more and more studies are focused on the pulsatile multiparticulate drug delivery system. Pulsatile multiparticulate system possesses many benefits, such as no risk of dose dumping, predictable gastric emptying, flexible release patterns and increased bioavailability. Based on these premises, the aim of this review is to summarize the major design methods of pulsatile multiparticulate and the research progress.%机体正常生理功能的调节是由特定时间和特定部位瞬间释放的生物活性物质所控制的。脉冲释药系统是根据疾病的昼夜节律特点,并遵循时辰药理学原理在最佳时间释放药物,达到最佳疗效和最低毒副作用的一种释药模型。近几年,脉冲微丸以无剂量突释、可预测的胃排空时间、灵活的释药模式和较高的生物利用度的特点受到越来越多的关注。本文主要介绍脉冲微丸的设计原理及其研究进展。

  4. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  5. A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui;

    2016-01-01

    This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....

  6. Influence of the Tool Shoulder Contact Conditions on the Material Flow During Friction Stir Welding

    Science.gov (United States)

    Doude, Haley R.; Schneider, Judy A.; Nunes, Arthur C.

    2014-09-01

    Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.

  7. A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui

    2016-01-01

    This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....

  8. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  9. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  10. Coupling the Guyton model to pulsatile ventricles using a multiresolution modelling environment.

    OpenAIRE

    Le Rolle, Virginie; Ojeda, David; Madeleine, Raphael; Carrault, Guy; Hernández, Alfredo

    2010-01-01

    International audience; In this paper, we propose the substitution of the original, non-pulsatile cardiac sub-model of the Guyton model by an elastance-based pulsatile model of the heart, including interventricular interaction through the septum. Parameters of this cardiac model were identified by comparing the simulations obtained from the original Guyton model with those obtained from the proposed integrated, pulsatile model, during the 5 minutes simulation of a sudden severe muscle exercis...

  11. Simulation of High-Level Way Toll Systemunder the Condition of Mixed Traffic Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Parking-toll on main-line is one of toll models on high-level ways in our country at present. This paper analyzes the flow' s distributing function, queuing model, and vehicle passing time. Through computer simulation, the negative index relationships between carrying capacity and serving time, and the index relationships between the queuing delay and flow are gained under the condition of different serving time and different vehicle type composition. When the flow density is low, the vehicle type composing has less influence on system serving level. Contrarily, also. Disposing toll station by roadway where flow density is high, we can save transection areas of toll station, reduce system queuing delay time, and enhance carrying capacity of toll station.

  12. DEPTH-AVERAGE ANALYSIS OF HYSTERESIS BETWEEN FLOW AND SEDIMENT TRANSPORT UNDER UNSTEADY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Weiming WU; Mustafa ALTINAKAR; Sam S.Y.WANG

    2006-01-01

    A depth-averaged two-dimensional model has been established to simulate unsteady flow and sediment transport in streams. The difference in flow and sediment velocities is considered. It has been found that the depth-averaged suspended-sediment velocity and the bed-load velocity are smaller than the depth-averaged flow velocity, inducing a time lag between water and sediment transport. The significance of this time lag increases as the sediment size increases. The exchange between the moving sediment and the bed material, which may induce a spatial lag, is modeled by a non-equilibrium transport approach. Tests using laboratory and field measurements have shown that the established model is capable of capturing the hysteresis between flow and sediment transport under unsteady conditions. It is demonstrated that the hysteresis is larger when the hydrograph has steeper rising and falling limbs, and the time delay increases downstream.

  13. Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition

    Directory of Open Access Journals (Sweden)

    Ghada H. Ibraheem,

    2014-07-01

    Full Text Available This paper presents a research for magnetohydrodynamic (MHD flow of an incompressible generalized Burgers' fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers' fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i flow due to a constant pressure gradient, and (ii flow due to due to a sinusoidal pressure gradient. The solutions for no – slip condition and no magnetic field, can be derived as special cases of our solutions. Furthermore, the effects of various parameters on the velocity distribution characteristics are analyzed and discussed in detail. Comparison between the two cases is also made.

  14. Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems.

    Science.gov (United States)

    Masselon, Chloé; Colin, Annie; Olmsted, Peter D

    2010-02-01

    In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.

  15. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Makoto, E-mail: hirota@dragon.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Morrison, Philip J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-05-06

    Highlights: • New stability criteria of stably stratified shear flow are discovered. • Our criteria substantially improve the Howard–Miles criterion (1961). • Our criteria also generalize Rayleigh's inflection point theorem. • The novel approach we found is also efficient as a numerical approach. - Abstract: Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm–Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor–Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh–Fjørtoft criterion for unstratified shear flows.

  16. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.

    Science.gov (United States)

    Szalmás, Lajos

    2006-06-01

    A slip-flow boundary condition has been developed in the lattice Boltzmann model combining an interpolation method and a simple slip boundary condition for straight walls placed at arbitrary distance from the last fluid node. An analytical expression has been derived to connect the model parameters with the slip velocity for Couette and Poiseuille flows in the nearly continuum limit. The proposed interpolation method ensures that the slip velocity is independent of the wall position in first order of the Knudsen number. Computer simulations have been carried out to validate the model. The Couette and Poiseuille flows agree with the analytical results to machine order. Numerical simulation of a moving square demonstrates the accuracy of the model for walls moving in both the tangential and normal directions.

  17. High-speed flow visualization in a pump-turbine under off-design operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M, E-mail: vlad.hasmatuchi@epfl.c [Laboratory for Hydraulic Machines, Ecole Polytechnique Federale de Lausanne Av. de Cour 33bis, Lausanne, CH-1007 (Switzerland)

    2010-08-15

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  18. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  19. Intraoral air pressure and oral air flow under different bleed and bite-block conditions.

    Science.gov (United States)

    Putnam, A H; Shelton, R L; Kastner, C U

    1986-03-01

    Intraoral pressures and oral flows were measured as normal talkers produced /p lambda/ and /si/ under experimental conditions that perturbed the usual aeromechanical production characteristics of the consonants. A translabial pressure-release device was used to bleed off intraoral pressure during /p/. Bite-blocks were used to open the anterior bite artificially during /s/. For /p/, intraoral pressure decreased and translabial air leakage increased as bleed orifice area increased. For /s/, flow increased as the area of sibilant constriction increased, but differential pressure across the /s/ oral constriction did not vary systematically with changes in its area. Flow on postconsonantal vowels /lambda/ and /i/ did not vary systematically across experimental conditions. The data imply that maintenance of perturbed intraoral pressure was more effective when compensatory options included opportunity for increased respiratory drive and structural adjustments at the place of consonant articulation rather than increased respiratory drive alone.

  20. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  1. Distribution of flowing fluids in a confined porous medium under microgravity conditions

    Science.gov (United States)

    Guo, Boyun; Holder, Donald W.; Carter, Layne

    2004-08-01

    Predicting distribution of flowing fluids in confined porous media under microgravity conditions is vitally important for optimal design of packed bubble column reactors in space stations. Existing correlations have been found inaccurate when applied to microgravity conditions. On the basis of Darcy's law for two-phase flow, a simple mathematical model has been developed in this study. Sensitivity analyses with the model indicate that for a given combination of wetting and nonwetting fluid flow rates, fluid holdups are controlled by relative permeabilities. The effect of gravity on fluid holdup is influenced by the absolute permeability of the porous medium. Fluid distribution is affected by the temperature-dependent fluid properties and wall effect.

  2. DSMC-LBM hybrid scheme for flows with variable rarefaction conditions

    Science.gov (United States)

    di Staso, Gianluca; Succi, Sauro; Toschi, Federico; Clercx, Herman

    2015-11-01

    The kinetic description of gases, based on the Boltzmann equation, allows to cover flow regimes ranging from the rarefied to the continuum limit. The two limits are traditionally studied by numerically approximating the Boltzmann equation via Direct Simulation Monte Carlo (DSMC) method or the Lattice Boltzmann Equation method (LBM). While DSMC is suitable for rarefied flows, its computational cost makes it unpractical to study hydrodynamic flows. The LBM has instead proved itself to be an efficient and accurate method in the hydrodynamic limit even though simulation of rarefied flows requires additional modeling. Here, results on the development of a hybrid scheme capable of coupling the LBM and the DSMC methods and able to efficiently simulate flows with variable rarefaction conditions are presented. The coupling scheme is based on Grad's moment method approach and the local single particle distribution function at a given order of truncation is built by using the Hermite polynomials expansion approach and Gauss-Hermite quadratures. The capabilities of the hybrid approach for simulating flows in the transition regime are illustrated in the case of planar Couette and Poiseuille flows.

  3. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jonkers, Niels; Kohler, Hans-Peter E.; Dammshaeuser, Anna [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Giger, Walter [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland)], E-mail: giger@eawag.ch

    2009-03-15

    This study focused on the occurrence and behaviour in wastewater and surface waters of several phenolic endocrine disrupting compounds (EDCs) including parabens, alkylphenolic compounds, phenylphenol (PhP) and bisphenol A (BPA). Analytical procedures using solid-phase-extraction and LC-MS/MS techniques were applied to samples of influents and effluents of wastewater treatment plants (WWTPs) discharging into the Glatt River (Switzerland) as well as to river water samples. A mass flow analysis provided insight into the main sources and the fate of these contaminants during different weather conditions. Concentrations in influents were in the low {mu}g/L range for most analytes. Removal of parabens in the WWTPs was mostly above 99%. Nonylphenol polyethoxylates (A{sub 9}PEO) removal amounted to 98%, but in some cases nonylphenoxy acetic acid (A{sub 9}PEC) or nonylphenols (NP) were formed. In effluents, concentrations were highest for the A{sub 9}PEC, A{sub 9}PEO and NP. Concentrations in river water were in the high ng/L range for alkylphenolic compounds and in the low ng/L range for BPA, PhP and the parabens. During the sampling period, in which several rain events occurred, both water flows and mass flows varied strongly. Mass flows in WWTP effluents and in the river increased with increasing water flows for most compounds indicating that higher water flows do not lead necessarily to a proportional dilution of the pollutants. Throughout the low water flow period, mass flows predicted from the known inputs were similar to the actual mass flows at the end of the river for most analytes. For none of the EDCs, significant in-stream removal could be observed. In the periods with high water flows, mass flows in the river were much higher than can be explained by the initially defined sources. Discharge of untreated wastewater influent into the river was assessed as an additional source. Adding this source improved the mass balance for some, but not all of the analytes

  4. The pulsatility index and the resistive index in renal arteries. Associations with long-term progression in chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Talleruphuus, U

    1997-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurements of downstream renal artery resistance. PI and RI have been found to correlate with renal vascular resistance, filtration fraction and effective renal plasma flow in chronic renal failure. The aim...... of the present study was to evaluate the potential relationship between these indices and the rate of decline in renal function, as reflected by changes in different parameters of renal function in patients with chronic renal failure....

  5. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution...

  6. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  7. Polynomial analysis of placental flow patterns in growth-retarded fetuses.

    Science.gov (United States)

    Hütter, W; Grab, D; Sterzik, K; Terinde, R; Wolf, A

    1993-01-01

    Correct interpretation of conspicuous blood flow velocity waveforms cannot rely solely on the evaluation of uteroplacental vascular Doppler flow patterns by means of angle-independent indices such as the resistance or pulsatility index. In addition to the degree of pulsatility, the waveform shape between the systolic and diastolic peak values is of considerable consequence. A subdivision of the total flow waveform into orthogonal polynomial components allows both pulsatility evaluation and notching to be registered, providing a higher sensitivity in identification of pathological vascular resistance. Accurate recording and assessment of the flow waveform is therefore an important qualitative criterion for the classification of Doppler flow patterns in pregnancies with reduced uteroplacental perfusion.

  8. Combining geoelectrical and advanced lysimeter methods to characterize heterogeneous flow and transport under unsaturated transient conditions

    Science.gov (United States)

    Wehrer, M.; Skowronski, J.; Binley, A. M.; Slater, L. D.

    2013-12-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous - or preferential - flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we applied systematically varied input flow boundary conditions, resembling natural precipitation events. We simultaneously measured the breakthrough of a conservative tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct ground-truthing of soil moisture and pore fluid resistivity changes estimated noninvasively using ERT. We were able to image both the advancing infiltration front and the advancing tracer front using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long term displacement of the solute front was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential flow fraction was observed to be independent of precipitation rate. This suggests the presence of a fingering process

  9. Study on Performance and Internal Flow Condition of Mini Turbo-Pump

    Science.gov (United States)

    Shigemitsu, Toru; Fukutomi, Junichiro; Nasada, Ryoichi

    2010-06-01

    Mini turbo-pumps which have a diameter smaller than 100mm are utilized in many fields; automobile radiator pump, artificial heart pump, cooling pump for electric devices, washing machine pump and so on. And the needs for the mini turbo-pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini turbo-pump design is as simple as possible due to the limitation of the precision for manufacture. But the design method for the mini turbo-pump is not established because the internal flow condition for these small-sized fluid machineries is not clarified and conventional theory is not conductive for small-sized pumps because of the low Reynolds number and the size effects. Therefore, we started the research of the mini turbo-pump for the purpose of development of high performance mini turbo-pump with simple structure. As a first step of this research, mini turbo-pump with the 46mm rotor diameter was designed based on the conventional design method in order to clarify the problems for the application of conventional method for mini turbo-pump in details. The three dimensional steady numerical flow analysis was conducted with the commercial code (Fluent6.3). The numerical flow analysis was also performed under the condition with and without a tip clearance because the tip clearance influence on the performance and internal flow condition is extremely large for mini turbo-pumps. It was clarified from the numerical results that head of the mini turbo-pump at the designed point without the tip clearance satisfied the designed value head H = 1.2m and the efficiency is about η = 60% which is acceptable value for the centrifugal pump. On the other hand, head and efficiency decreased drastically with the increase of the tip clearance. The flow condition near the tip region was influenced by the leakage flow from the blade tip. And it is observed by the results of the total pressure distributions that the total

  10. EXPERIMENTAL STUDY OF EFFECTS OF OPERATING CONDITIONS ON THE FLOW CHARACTERISTICS OF WATER HYDRAULIC THROTTLE

    Institute of Scientific and Technical Information of China (English)

    Liu Yinshui; Nie Songlin; Zhu Yuquan; He Xiaofeng; Li Zhuangyun

    2004-01-01

    Experimental investigations are made on the effects of operating conditions on the flow characteristics of throttle when tap water is used as the working media. The researched throttles include cone poppet valve, ball valve, disc valve and dumping orifice. Operating condition includes poppet lift, working media, back pressure, medium temperature, etc. Because the vapourous pressure of water is much higher than that of oil, cavitation is easier to occur in water hydraulic elements and systems, so the effects of operating conditions on the cavitation characteristics of throttle are also researched.

  11. Heat Transfer Characteristics of Laminar Flow in Internally Finned Tubes under Various Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    Ze-NingWang; Qiang-TaiZhou

    1994-01-01

    Numerical solutions for fully developed laminar flow in internally finned tubes with trapezoidal and triangular fin profiles were given with Finite Elemant Method(FEM):The heat transfer charactieristics were obtained and compared under the boundary conditions of uniform heat flux,univform wall tepmerature,and the third boundary condition with finite wall thermal conductivity considered.The numerical results show that boundary conditions have pronounced effects on the temperature field.Furthermore,a new mechanism on the heat transfer augmentation of internally finned tubes is proposed.

  12. NON-STATIONARY STOKES FLOWS UNDER LEAK BOUNDARY CONDITIONS OF FRICTION TYPE

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Fujita

    2001-01-01

    This paper is concerned with the initial value problem for non-stationary Stokes flows,under a certain non-linear boundary condition which can be called the leak boundarycondition of friction type. Theoretically, our main purpose is to show the strong solvability(i.e.,the unique existence of the L2-strong solution) of this initial value problem by meansof the non-linear semi-group theory originated with Y. Komura. The method of analysiscan be applied to other boundary or interface conditions of friction type. It should benoted that the result yields a sound basis of simulation methods for evolution problemsinvolving these conditions.

  13. Pulsatile compared with nonpulsatile perfusion using a centrifugal pump for cardiopulmonary bypass during coronary artery bypass grafting. Effects on systemic haemodynamics, oxygenation, and inflammatory response parameters.

    Science.gov (United States)

    Driessen, J J; Dhaese, H; Fransen, G; Verrelst, P; Rondelez, L; Gevaert, L; van Becelaere, M; Schelstraete, E

    1995-01-01

    The present study investigated the influence of pulsatile or nonpulsatile flow delivery with a centrifugal pump for cardiopulmonary bypass (CPB) during coronary artery bypass grafting (CABG) in two randomized groups of 19 patients each. All patients received a standard anaesthetic and surgical protocol. Pulsatile perfusion during CPB was created by accelerating the baseline pump speed of the Sarns centrifugal pump at a rate of 50 cycles per minute. Measurements included perioperative systemic haemodynamics and oxygen exchange, total haemolytic complement (CH50), polymorphonuclear (neutrophil) granulocyte (PMN) count and plasma granulocyte elastase bound to alpha 1-proteinase inhibitor (E-alpha 1-PI). Laboratory measurements were corrected for haemodilution. During and after CPB there were only a few significant differences between the groups in systemic haemodynamics and oxygenation, i.e. a lower mean arterial blood pressure after the end of CPB in the nonpulsatile group (65 mmHg, SD = 11 vs 76 mmHg, SD = 11) and a lower SvO2 during rewarming on CPB in the nonpulsatile group (62%, SD = 8 vs 67%, SD = 8). The decrease in percentage of PMNs in the total white blood cell count during CPB was greater in the nonpulsatile group than in the pulsatile group (from 61 to 46% vs 63 to 53% of prebypass value). The steep increase of PMN count at the end of CPB and postoperatively was comparable in both groups. The maximal decrease of CH50 levels, occurring after surgery, was significantly higher in the nonpulsatile group (70% SD = 15 vs 79%, SD = 16, of baseline value), suggesting a greater complement activation. E-alpha 1-PI levels increased significantly in both groups during and after CPB with higher peak levels, obtained at one hour after admission to an intensive care unit, in the nonpulsatile group (316 micrograms/l, SD = 102) than in the pulsatile group (247 micrograms/l, SD = 106). There was a partly inverse correlation between the peak postoperative elastase levels and

  14. Transport of bromide measured by soil coring, suction plates, and lysimeters under transient flow conditions.

    Science.gov (United States)

    Kasteel, R.; Pütz, Th.; Vereecken, H.

    2003-04-01

    Lysimeter studies are one step within the registration procedure of pesticides. Flow and transport in these free-draining lysimeters do not reflect the field situation mainly because of the occurence of a zone of local saturation at the lower boundary (seepage face). The objective of this study is to evaluate the impact of flow and transport behaviour of bromide detected with different measuring devices (lysimeters, suction plates, and soil coring) by comparing experimental results with numerical simulations in heterogeneous flow domains. We applied bromide as a small pulse to the bare soil surface (Orthic Luvisol) of the three devices and the displacement of bromide was regurlarly sampled for three years under natural wheather conditions. Based on the mean breakthrough curves we observe experimentally that lysimeters have a lower effective pore-water velocity and exhibit more solute spreading resulting in a larger dispersivity than the suction plates. This can be ascribed to the artefact of the lower boundary. We performed numerical transport simulations in 2-D heterogeneous flow fields (scaling approach) choosing appropriate boundary conditions for the various devices. The simulations allow to follow the temporal evolution of flow and transport processes in the various devices and to gain additional process understanding. We conclude that the model is essentially capable to reproduce the main experimental findings only if we account for the spatial correlation structure of the hydraulic properties, i.e. soil heterogeneity.

  15. Experimental investigation on the CHF in the narrow rectangular channel under the downward flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Huiyung; Yun, Byongjo; Bak, Jinyeong [Pusan national university, Pusan (Korea, Republic of); Park, Jonghark; Chae, Heetaek; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The new research reactor under constructing in Kijang adopts a plate-type-fuel with downward flow cooling to prevent release of radioactive substance at pool surface. The thermal hydraulic design for the narrow rectangular channel differs from that for rod bundle channel. The licensing for construction of research reactor requires thermal hydraulic safety analysis of narrow rectangular channel. In the thermal hydraulic safety analysis, critical heat flux (CHF) on the fuel surface is considerably important to determine power and safety margin. The objectives of present study are, therefore, to carry out the experiment of CHF for downward flow in narrow rectangular channel, to obtain the correlation of CHF prediction applicable to a subchannel of plate-type-fuel. CHF experiments were carried out in the narrow rectangular channel simulating plate-type-fuel for research reactors under the downward flow condition. With the investigation of CHF data of the present experiment and previous studies, a new CHF correlation was proposed for the downward flow in the subchannel of plate-type-fuel. The predicted CHF by the new CHF correlation shows good agreement with experimental data in the present study. However, the correlation was based on the limited number of experimental data under low-flow conditions. Therefore, further studies for more data are needed to generalize the CHF correlation.

  16. Influence of surfactant conditions on the structure of an upward bubbly channel flow

    Science.gov (United States)

    Ogasawara, Toshiyuki

    2005-11-01

    We investigated an upward bubbly channel flow and the effects of surfactant on its flow structure experimentally. 3-Pentanol and Triton X-100 are used as surfactants. By the addition of small amount of surfactant, bubble coalescences are prevented and mono-dispersed 1mm spherical bubbles are obtained. Under all of our experimental conditions, the added surfactants do not influence the single-phase turbulence. On the other hand, small amount of surfactant drastically changes the whole flow structure of bubbly flow. On the low concentration of 3-Pentanol (21-63ppm), bubbles strongly migrate towards the wall and these highly accumulated bubbles on the wall form crescent-like shaped horizontal bubble clusters of 10-40mm length. However, in 3-Pentanol solution of higher concentration (˜168ppm) or in the 2ppm Triton X-100 solution, the tendency of the lateral migration of bubbles is weaken and the bubbles are distributed uniformly in the channel. In the surfactant solution, the slip velocity on the bubble surface retards and the bubble rising velocity decreases (Marangoni effect). The change of boundary condition on the bubble surface affects not only drag force but shear-induced lift force. It is indicated that this change of shear-induced lift force greatly relates to the lateral migration of bubbles and the disaggregation of the bubble clusters. We also measured the turbulent properties using LDV and discuss the flow structure.

  17. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    Science.gov (United States)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  18. Effects of Reducing Convective Acceleration Terms in Modelling Supercritical and Transcritical Flow Conditions

    Directory of Open Access Journals (Sweden)

    Yared Abayneh Abebe

    2016-11-01

    Full Text Available Modelling floods and flood-related disasters has become priority for many researchers and practitioners. Currently, there are several options that can be used for modelling floods in urban areas and the present work attempts to investigate effectiveness of different model formulations in modelling supercritical and transcritical flow conditions. In our work, we use the following three methods for modelling one-dimensional (1D flows: the MIKE 11 flow model, Kutija’s method, and the Roe scheme. We use two methods for modelling two-dimensional (2D flows: the MIKE21 flow model and a non-inertia 2D model. Apart from the MIKE11 and MIKE21 models, the code for all other models was developed and used for the purposes of the present work. The performance of the models was evaluated using hypothetical case studies with the intention of representing some configurations that can be found in urban floodplains. The present work does not go into the assessment of these models in modelling various topographical features that may be found on urban floodplains, but rather focuses on how they perform in simulating supercritical and transcritical flows. The overall findings are that the simplified models which ignore convective acceleration terms (CATs in the momentum equations may be effectively used to model urban flood plains without a significant loss of accuracy.

  19. On the existence of an exponential attractor for a planar shear flow with Tresca's friction condition

    CERN Document Server

    Łukaszewicz, Grzegorz

    2012-01-01

    We consider a two-dimensional nonstationary Navier-Stokes shear flow with a subdifferential boundary condition on a part of the boundary of the flow domain, namely, with a boundary driving subject to the Tresca law. There exists a unique global in time solution of the considered problem which is governed by a variational inequality. Our aim is to prove the existence of a global attractor of a finite fractional dimension and of an exponential attractor for the associated semigroup. We use the method of $l$-trajectories. This research is motivated by a problem from lubrication theory.

  20. Analytical solutions of couple stress fluid flows with slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Devakar M.

    2014-09-01

    Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.

  1. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution....... Fin-and-tube heat exchangers usually have a predefined circuitry, however, the evaporator model is simplified to have straight tubes, in order to perform a generic investigation. The compensation of flow maldistribution is performed by control of the superheat in the individual channels. Furthermore...

  2. The performance of a cryogenic pump for the two-phase flow condition

    OpenAIRE

    YAMADA, HITOSHI; WATANABE, Mitsuo; Hasegawa, Satoshi; Kamijo, Kenjiro; 山田, 仁; 渡辺, 光男; 長谷川, 敏; 上條, 謙二郎

    1985-01-01

    An experimental investigation was carried out in order to obtain the performance characteristics of a cryogenic pump under a two-phase flow condition. The experiment used an oxygen pump with an inducer and liquid nitrogen as the test fluid. The vapor volumetric fraction at the pump inlet was calculated with an assumption of a constant enthalpy process across an orifice which was used to generate the two-phase flow at the pump inlet. The results showed that the pump head rise did hardly decrea...

  3. Magnetohydrodynamic flow of nanofluid over permeable stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Hayat Tasawar

    2016-01-01

    Full Text Available Analysis has been carried out for the magnetohydrodynamic (MHD boundary layer flow of nanofluid. The flow is caused by a permeable stretching sheet. Convective type boundary conditions are employed in modeling the heat and mass transfer process. Appropriate transformations reduce the nonlinear partial differential equations to ordinary differential equations. The convergent series solutions are constructed. Graphical results of different parameters are discussed. The behaviors of Brownian motion and thermophoretic diffusion of nanoparticles have been examined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been evaluated and discussed.

  4. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L, E-mail: liaoweili2004@163.co [Institute of Water Resources and Hydro-Electric Engineering, Xi' an University of Technology No.5 South Jinhua Road, Xi' an, Shaanxi, 710048 (China)

    2010-08-15

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  5. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  6. Coronary Artery Stenosis Flow: Experimental and Computational Investigation

    Science.gov (United States)

    Egelhoff, Carla; Budwig, Ralph; Hansen, Byron; Foster, Jonathan

    2000-11-01

    The effects of symmetry, flowrate, wall roughness and size are investigated using realistic pulsatile waveforms for flow viz and LDV experimental models as well as CFD models using original code. Distal to the stenosis flow is characterized by a high speed jet which is central for symmetric models and attached to the wall for eccentric models. The jet is accompanied by a low speed recirculation zone which persists while lengthening and shortening during most of the cardiac cycle. Of particular note is the downstream onset of flow instability and turbulence for high flow rate conditions in symmetric and eccentric severely occluded stenoses. The location and extent of the unstable flow region continually changes throughout the cycle, which may be a factor contributing to the thrombogenesis which coronary arteries experience.

  7. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. Matthew; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests

  8. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    Science.gov (United States)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same

  9. An Optimization Formulation for Characterization of Pulsatile Cortisol Secretion

    Directory of Open Access Journals (Sweden)

    Rose Taj Faghih

    2015-08-01

    Full Text Available Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an l0-norm cost function for this controller, and solve a reweighed l1-norm minimization algorithm for obtaining the solution to this optimization problem. We use 4 examples to illustrate the performance of this approach: (i a toy problem that achieves impulse control, (ii two examples that achieve physiologically plausible pulsatile cortisol release, (iii an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications.

  10. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions.

    Science.gov (United States)

    Haber, S; Filipovic, N; Kojic, M; Tsuda, A

    2006-10-01

    The dissipative particle dynamics (DPD) method was used to simulate the flow in a system comprised of a fluid occupying the space between two cylinders rotating with equal angular velocities. The fluid, initially at rest, ultimately reaches a steady, linear velocity distribution (a rigid-body rotation). Since the induced flow field is solely associated with the no-slip boundary condition at the walls, we employed this system as a benchmark to examine the effect of bounce-back reflections, specular reflections, and Pivkin-Karniadakis no-slip boundary conditions, upon the steady-state velocity, density, and temperature distributions. An additional advantage of the foregoing system is that the fluid occupies inherently a finite bounded domain so that the results are affected by the prescribed no-slip boundary conditions only. Past benchmark systems such as Couette flow between two infinite parallel plates or Poiseuille flow in an infinitely long cylinder must employ artificial periodic boundary conditions at arbitrary upstream and downstream locations, a possible source of spurious effects. In addition, the effect of the foregoing boundary conditions on the time evolution of the simulated velocity profile was compared with that of the known, time-dependent analytical solution. It was shown that bounce-back reflection yields the best results for the velocity distributions with small fluctuations in density and temperature at the inner fluid domain and larger deviations near the walls. For the unsteady solutions a good fit is obtained if the DPD friction coefficient is proportional to the kinematic viscosity. Based on dimensional analysis and the numerical results a universal correlation is suggested between the friction coefficient and the kinematic viscosity.

  11. Simulation of Local Blood Flow in Human Brain under Altered Gravity

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.

  12. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adesanya, S.O., E-mail: adesanyas@run.edu.ng [Department of Mathematical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Oluwadare, E.O. [Department of Mathematical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Falade, J.A., E-mail: faladej@run.edu.ng [Department of Physical Sciences, College of Natural Sciences, Redeemer’s University (Nigeria); Makinde, O.D., E-mail: makinded@gmail.com [Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395 (South Africa)

    2015-12-15

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field.

  13. Laminar and turbulent channel flow simulations and the choice of appropriate boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baerwolff, G. [FB Mathematik, TU Berlin (Germany); Koster, F.

    1998-07-01

    Transitional flow over a backward-facing step is studied by large eddy simulation (LES) and direct numerical simulation (DNS). The simulation was performed at a Reynolds number of 3000 based on step height and inlet stream velocity. We compare the passive flow and the flow controlled by a two-dimensional acoustic manipulation in front of the separation line. The aim of the boundary layer control is to decrease the reattachment length. Huppertz and Janke (1995/1997) demonstrated experimentally a reduction of the reattachment length of approximately 30% for a cetain frequency of the acoustic disturbancies. Our statistical results show a good agreement with the experimental data of Huppertz and Janke. The problem of the choice of suitable outflow boundary conditions was considered with respect to the reduction of the length of the computational domain and the reduction of computational expenses respectively. (orig.)

  14. Compatibility conditions, modulation mechanisms and preferred modes in incompressible flow over a cavity

    CERN Document Server

    Delprat, Nathalie

    2010-01-01

    Self-sustained oscillations in cavity-flows can be strongly influenced by shear layer instability acting together with feedback and modulation mechanisms. When coherently organized, these oscillations lock-on at a fundamental frequency and compatibility conditions exist between shear layer forcing, non linear interactions and low-frequency modulations. Special attention is given to the frequency coincidence which may appear in spectral distributions due to combinations between the dominant peak and its sidebands. Hence, the possible existence of two preferred modes in incompressible cavity-flows at medium Reynolds numbers is shown. This leads to a detailed categorization of the flow modulated regimes and to the specification of a persistent mode involved in modulation process whatever the oscillation stage.

  15. Linear propagation of pulsatile waves in viscoelastic tubes.

    Science.gov (United States)

    Horsten, J B; Van Steenhoven, A A; Van Dongen, M E

    1989-01-01

    An experimental and theoretical analysis is made of pulsatile wave propagation in deformable latex tubes as a model of the propagation of pressure pulses in arteries. A quasi one-dimensional linear model is used in which, in particular, attention is paid to the viscous phenomena in fluid and tube wall. The agreement between experimental and theoretical results is satisfactory. It appeared that the viscoelastic behaviour of the tube wall dominates the damping of the pressure pulse. Several linear models are used to describe the wall behaviour. No significant differences between the results of these models were found.

  16. Test Outline for Flutter Analysis of Rectangular Panels in Rarefied Flow Conditions

    Science.gov (United States)

    Akl, Fred A.

    1996-01-01

    Jet plume impingement forces acting on large flexible space structures may precipitate dynamically unstable behavior during space flights. Typical operating conditions in space involve rarefied gas flow regimes which are intrinsically distinct from continuum gas flow and are normally modeled using the kinetic theory of gas flow. Docking and undocking operations of the Space Shuttle with the Russian Mir space laboratory represent a scenario in which the stability boundaries of solar panels may be of interest. Extensive literature review of research work on the dynamic stability of rectangular panels in rarefied gas flow conditions indicated the lack of published reports dealing with this phenomenon. A recently completed preliminary study for NASA JSC dealing with the mathematical analysis of the stability of two-degree-of-freedom elastically supported rigid panels under the effect of rarefied gas flow was reviewed. A test plan outline is prepared for the purpose of conducting a series of experiments on four rectangular rigid test articles in a vacuum chamber under the effect of continuous and pulsating Nitrogen jet plumes. The purpose of the test plan is to gather enough data related to a number of key parameters to allow the validation of the two-degree-of-freedom mathematical model. The hardware required careful design to select a very lightweight material while satisfying rigidity and frequency requirements within the constraints of the test environment. The data to be obtained from the vacuum chamber tests can be compared with the predicted behavior of the theoretical two-degree-of-freedom model. Using the data obtained in this study, further research can identify the limitations of the mathematical model. In addition modifications to the mathematical model can be made, if warranted, to accurately predict the behavior of rigid panels under rarefied gas flow regimes.

  17. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico

    Science.gov (United States)

    Cannon, S.H.; Reneau, S.L.

    2000-01-01

    Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire-related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder-sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris-flow producing and flood-producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris-flow responses were produced without the presence of water-repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris-flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley and Sons, Ltd.

  18. CFD Analysis of Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions

    Science.gov (United States)

    Drozda, Tomasz G.; Drummond, J. Philip; Baurle, Robert A.

    2016-01-01

    CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.

  19. Determination of Flow Conditions in Coronary Bifurcation Lesions in the Context of the Medina Classification

    Directory of Open Access Journals (Sweden)

    Marjan Molavi Zarandi

    2012-01-01

    Full Text Available Coronary artery bifurcation lesions are complex and several classifications are presented to describe them. Recently, the Medina classification has been proposed. This classification uses binary values for characterization of stenosis. Flow conditions according to Medina classification have not been described. In this paper, bifurcation lesions corresponding to anatomical Medina lesion classification are compared on the basis of flow and Wall Shear Stress (WSS. Computational models of healthy and stenosed coronary artery bifurcations ((1, 1, 1, (0, 1, 1 and (1, 0, 1 with moderate and severe stenoses of 50% and 75% diameter were analyzed. The results showed that, flow conditions vary in bifurcation lesion types according to the clinically-oriented Medina classification. The flow in SB of bifurcation was dependent of the Medina lesion type and was more affected in lesion type (1, 0, 1. The magnitudes of WSS on the inner and outer walls of SB of bifurcation lesion (1, 0, 1 in post-stenotic region and along the arterial wall were smaller than bifurcations lesions (0, 1, 1 and (1, 1, 1 respectively. Our results suggest that SB of bifurcation lesion (1, 0, 1 is more prone to atherosclerosis progression compared to types (0, 1, 1 and (1, 1, 1.

  20. Prediction of fluid forces acting on a hand model in unsteady flow conditions.

    Science.gov (United States)

    Kudo, Shigetada; Yanai, Toshimasa; Wilson, Barry; Takagi, Hideki; Vennell, Ross

    2008-01-01

    The aim of this study was to develop a method to predict fluid forces acting on the human hand in unsteady flow swimming conditions. A mechanical system consisting of a pulley and chain mechanism and load cell was constructed to rotate a hand model in fluid flows. To measure the angular displacement of the hand model a potentiometer was attached to the axis of the rotation. The hand model was then fixed at various angles about the longitudinal axis of the hand model and rotated at different flow velocities in a swimming flume for 258 different trials to approximate a swimmer's stroke in unsteady flow conditions. Pressures were taken from 12 transducers embedded in the hand model at a sampling frequency of 200Hz. The resultant fluid force acting on the hand model was then determined on the basis of the kinetic and kinematic data taken from the mechanical system at the frequency of 200Hz. A stepwise regression analysis was applied to acquire higher order polynomial equations that predict the fluid force acting on the accelerating hand model from the 12 pressure values. The root mean square (RMS) difference between the resultant fluid force measured and that predicted from the single best-fit polynomial equation across all trials was 5N. The method developed in the present study accurately predicted the fluid forces acting on the hand model.

  1. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    Science.gov (United States)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  2. A Sufficient Condition for Power Flow Insolvability with Applications to Voltage Stability Margins

    CERN Document Server

    Molzahn, Daniel K; DeMarco, Christopher L

    2012-01-01

    For the nonlinear power flow problem specified with standard PQ, PV, and slack bus equality constraints, we present a sufficient condition under which the specified set of nonlinear algebraic equations has no solution. This sufficient condition is constructed in a framework of an associated feasible, convex optimization problem. The objective employed in this optimization problem yields a measure of distance (in a parameter set) to the power flow solution boundary. In practical terms, this distance is closely related to quantities that previous authors have proposed as voltage stability margins. A typical margin is expressed in terms of the parameters of system loading (injected powers); here we additionally introduce a new margin in terms of the parameters of regulated bus voltages.

  3. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.

    Science.gov (United States)

    Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko

    2007-09-01

    It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.

  4. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios

    2017-09-11

    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  5. Numerical study of cross flow fan performance in an indoor air conditioning unit

    Science.gov (United States)

    Yet, New Mei; Raghavan, Vijay R.; Chinc, W. M.

    2012-06-01

    The cross flow fan is a unique type of turbo machinery where the air stream flows transversely across the impeller, passing the blades twice. Due to its complex geometry, and highly turbulent and unsteady air-flow, a numerical method is used in this work to conduct the characterization study on the performance of a cross flow fan. A 2D cross-sectional model of a typical indoor air conditioning unit has been chosen for the simulation instead of a three dimensional 3D model due to the highly complex geometry of the fan. The simplified 2D model has been validated with experiments where it is found that the RMS error between the simulation and experimental results is less than 7%. The important parameters that affect the cross flow fan performance, i.e. the internal and external blade angles, the blade thickness, and the casing design, are analyzed in this study. The formation of an eccentric vortex is observed within the impeller.

  6. Flow stress prediction for B210P steel at hot working conditions

    Science.gov (United States)

    Jiang, Guangwei; Di, Hongshuang; Cao, Yu; Zhang, Zhongwei; Wang, Yafei; Sui, Pengfei

    2013-05-01

    Prediction of the flow stress is a significant step to optimize the hot working processes. In order to establish a proper deformation constitutive equation, the compressive deformation behavior of B210P steel was investigated at temperature from 950° to 1150° and strain rates from 0.1s-1 to 10s-1 on a Gleeble-2000 thermo-simulation machine. Based on the true stress-strain data from flow stress curves, a revised model describing the relationships of the flow stress, strain rate and temperature of B210P steel at elevated temperatures is proposed considering the effect of strain on flow stress. The activation energies have been in the range of 277.740-420.241kJ/mol for different amounts of strain. Finally, the accuracy of the developed constitutive equation has been verified using standard statistical parameters. The results confirm that the developed strain-dependent constitutive equation gives an accurate and precise estimate of the flow stress in the relevant deformation conditions.

  7. Thermal-hydraulic instabilities in natural circulation flow loops under supercritical conditions

    Science.gov (United States)

    Jain, Rachna

    In recent years, a growing interest has been generated in investigating the thermal hydraulics and flow stability phenomenon in supercritical natural circulation loops. These flow conditions are relevant to some of the innovative passive safety designs proposed for the Gen-IV Supercritical Water Reactor (SCWR) concepts. A computational model has been developed at UW Madison which provides a good basic simulation tool for the steady state and transient analysis of one dimensional natural circulation flow, and can be applied to conduct stability analysis. Several modifications and improvements were incorporated in an earlier numerical scheme before applying it to investigate the transient behavior of two experimental loops, namely, the supercritical water loop at UW-Madison and the supercritical carbon-dioxide (SCCO2) loop at Argonne National Laboratories. Although the model predicted development of instabilities for both SCW and SCCO2 loop which agrees with some previous work, the experiments conducted at SCCO2 loop exhibited stable behavior under similar conditions. To distinguish between numerical effects and physical processes, a linear stability approach has also been developed to investigate the stability characteristics associated with the natural circulation loop systems for various inlet conditions, input powers and geometries. The linear stability results for the SCW and SCCO2 loops exhibited differences with the corresponding transient simulations. This linear model also predicted the presence of instability in the SCCO 2 loop for certain high input powers contradictory to the experimental findings. Dimensionless parameters were proposed which would generalize the stability characteristics of the natural circulation flow loops under supercritical conditions.

  8. Research of products of high temperature synthesis flowing in the rotation conditions

    Science.gov (United States)

    Ksandopulo, G.; Baideldinova, A.; Riabikin, Y.; Mukhina, L.; Ponomareva, E.; Vasilieva, N.

    2017-02-01

    The method of production of materials by out-furnace process of self-propagating high temperature synthesis (SHS), flowing in the conditions of action of centrifugal force, is developed presently. The primary purpose of working is achievement high level of generating of energy and use of it for forming of steady meta-stable crystalline phases with an uncommon set of physical and chemical properties.

  9. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    OpenAIRE

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution. Fin-and-tube heat exchangers usually have a predefined circuitry, however, the evaporator model is simplified to have straight tubes, in order to perform a generic investigation. The compensation of ...

  10. The existence and stability of steady circulations in a conditionally symmetrically unstable basic flow

    Science.gov (United States)

    Xu, Qin

    1987-01-01

    The existence of steady, nonlinear circulations in a flow susceptible to conditionally symmetric instability is studied, treating the latent heating as an energy source which is implicitly related to the motion field. The viscous nonlinear circulations of symmetrical instability are briefly discussed, and an existence theorem for steady, nonlinear symmetric circulations with bounded rates of latent heat release is given. The uniqueness and stability of these circulations are discussed, and some physical interpretations are given.

  11. Pollen flow of wheat under natural conditions in the Huanghuai River Wheat Region, China

    OpenAIRE

    Sun, Ai-Qing; Zhang, Chun-Qing; Wu, Cheng-Lai; Gao, Qing-Rong

    2015-01-01

    The transgenic pollen spread is the main pathway of transgenic plant gene flow. The maximum distance of pollen dispersal (horizontal), the spatial dynamics of pollen movement (vertical), and the patterns of pollen dispersal are important considerations in biosafety assessments of genetically modified crops. To evaluate wheat (Triticum aestivum) pollen dispersal, we measured the pollen suspension velocity and analyzed pollen dispersal patterns under natural conditions in the Huanghuai River wh...

  12. Effect of heating conditions on flow patterns during the seeding stage of Kyropoulos sapphire crystal growth

    Science.gov (United States)

    Timofeev, Vladimir V.; Kalaev, Vladimir V.; Ivanov, Vadim G.

    2016-07-01

    We apply numerical simulation to understand the effect of heating conditions on melt convection in an industrial Ky furnace. The direct numerical simulation (DNS) approach was used to investigate the features of melt flow during the seeding stage. Two different cases of Kyropoulos furnace hot zone design were studied numerically, and results were compared with experimental data to understand the effect of modifications on melt convection.

  13. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface

    Institute of Scientific and Technical Information of China (English)

    M. Sajid; K. Mahmood; Z. Abbas

    2012-01-01

    We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface.The power law non-Newtonian fluid is considered as a lubricant.The lubrication layer is thin and assumed to have a variable thickness.The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization.The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order RungeKutta method.The results are discussed to see the influence of pertinent parameters.The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.%We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface. The power law non-Newtonian fluid is considered as a lubricant. The lubrication layer is thin and assumed to have a variable thickness. The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization. The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order Runge Kutta method. The results arc discussed to see the influence of pertinent parameters. The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.

  14. Processing Methods and Storage Conditions on Chocolate and Coffee Powder Flow Properties

    OpenAIRE

    Gong, Sunland L; Della Bella, Andrea; Carvajal, Teresa M.

    2015-01-01

    Powders are widely used in a countless number of industries, and are crucial to the quality control of products in areas such as pharmaceuticals and food. Particle physicochemical properties (morphology, solid state – crystalline, amorphous or both) are important factors for powder flow, which in turn can have significant impact on the stability, performance, and presentation of powders. Different processing methods as well as storage conditions such as relative humidity (RH) can drastically ...

  15. [The concentration of viruses in water using the tangential flow ultrafiltration. Recovery effectiveness in experimental conditions].

    Science.gov (United States)

    Bigliardi, L; Cesari, C; Zoni, R; Sansebastiano, G E

    2004-01-01

    Poliovirus 1 concentration tests were carried out in artificially contaminated water by tangential flow ultrafiltration with Polisulfone filters 100000 MWCO. The tests were performed in 1 and in 20 liters of waters. The filters were conditioned and eluted respectively with Beef extract 3% and with glicina 1% at pH 7 and pH 9. The recovery mean using Beef extract resulted properly good, about the 83% and comparable to percentages we obtained in previous works with filters in cellulose nitrate and Virosorb filters. The viral recovery was low using the glicina for conditioning and eluting the filters.

  16. Inflow performance relationship curves in two-phase and three-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sukarno, P.

    1986-01-01

    This research investigates inflow performance relationship IPR curves for two and three-phase flow conditions, using a one-dimensional, three-phase cylindrical reservoir simulator. Using the simulator, a new method for predicting future IPR curves was developed. IPR curves for two-phase flow conditions from a well producing from low permeability formations are also presented. The purpose of this investigation is to predict the IPR curves at pseudo-steady state conditions using flowing test data obtained during the transient period. The new equations have also been applied to data from the simulator with good agreement. Three-phase IPR curves are also determined by using the simulator, and seven different hypothetical three-phase reservoir cases were studied. Three-hundred and eighty five data points were collected using 5 different values of water cut. Regression analysis techniques were applied to the data points and the new equations for predicting the three-phase IPR curves were developed. Comparison of the new equations to results from the simulator show excellent agreement.

  17. Constraining Eruptive Conditions From Lava Flow Morphometry: A Case Study With Field Evidence

    Science.gov (United States)

    Bowles, Z. R.; Clarke, A.; Greeley, R.

    2007-12-01

    Volcanism is widely recognized as one of the primary factors affecting the surfaces of solid planets and satellites throughout the solar system. Basaltic lava is thought to be the most common composition based on observed features typical of basaltic eruptions found on Earth. Lava flows are one of the most easily recognizable landforms on planetary surfaces and their features may provide information about eruption dynamics, lava rheology, and potential hazards. More recently, researchers have taken a multi-faceted approach to combine remote sensing, field observations and quantitative modeling to constrain volcanic activity on Earth and other planets. Here we test a number of published models, including empirically derived relationships from Mt. Etna and Kilauea, models derived from laboratory experiments, and theoretical models previously applied to remote sensing of planetary surfaces, against well-documented eruptions from the literature and field observations. We find that the Graetz (Hulme and Felder, 1977, Phil.Trans., 285, 227 - 234) method for estimating effusion rates compares favorably with published eruption data, while, on the other hand, inverting lava flow length prediction models to estimate effusion rates leads to several orders of magnitude in error. The Graetz method also better constrains eruption duration. Simple radial spreading laws predict Hawaiian lava flow lengths quite well, as do using the thickness of the lava flow front and chilled crust. There was no observed difference between results from models thought to be exclusive to aa or pahoehoe flow fields. Interpreting historic conditions should therefore follow simple relationships to observable morphologies no matter the composition or surface texture. We have applied the most robust models to understand the eruptive conditions and lava rheology of the Batamote Mountains near Ajo, AZ, an eroded shield volcano in southern Arizona. We find effusion rates on the order of 100 - 200 cubic

  18. A Convective-like Energy-Stable Open Boundary Condition for Simulations of Incompressible Flows

    CERN Document Server

    Dong, Suchuan

    2015-01-01

    We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on...

  19. Automatic Germination Evaluation and Qualitative Analysis of Essential Oil of Mentha × piperita L. under the Influence of High Frequency Pulsatile Electromagnetic and Ultrasound Pulsatile Fields

    Directory of Open Access Journals (Sweden)

    Valentin SINGUREANU

    2015-04-01

    Full Text Available The study illustrates the influence of high frequency pulsatile electromagnetic fields and ultrasound pulsatile fields on Mentha × piperita L. seed germination and the quality of its essential oil. The physiological role of the above mentioned experimental factors was considered to be a catalyticall base point, improving germination percent, SVI (seedling vigor index, GVI (germination velocity index. All the biometric aspects of the germination process (seed area, seed perimeter, seed development on x and y radius, radicele length, hypocotyl length where determined using open free software, consolidating the general idea that scientific communities can improve and perfect open source projects. High frequency pulsatile electromagnetic fields (91.75% and ultrasound pulsatile fields (64.75% experimental variants gave higher germination percent compared to control (47.00%. Following the main terpenes determination, the same experimental variants obtained high accumulations of menthol, eugenol, thymol, eucalyptol, linalool and other components. These aspects can be scientifically sustained by the seedling vigor index marks obtained at high frequency pulsatile electromagnetic fields (1985.47 and ultrasound pulsatile fields (1480.09, creating the general premises for better development stages in the nursery sector. Raised accumulation of main therapeutical terpenes in Mentha × piperita L. must be supervised in further studies, when microscopically imagery of glandular trichomes and their density may lead to more profound conclusions.

  20. Variably-saturated flow in large weighing lysimeters under dry conditions: inverse and predictive modeling

    Science.gov (United States)

    Iden, Sascha; Reineke, Daniela; Koonce, Jeremy; Berli, Markus; Durner, Wolfgang

    2015-04-01

    A reliable quantification of the soil water balance in semi-arid regions requires an accurate determination of bare soil evaporation. Modeling of soil water movement in relatively dry soils and the quantitative prediction of evaporation rates and groundwater recharge pose considerable challenges in these regions. Actual evaporation from dry soil cannot be predicted without detailed knowledge of the complex interplay between liquid, vapor and heat flow and soil hydraulic properties exert a strong influence on evaporation rates during stage-two evaporation. We have analyzed data from the SEPHAS lysimeter facility in Boulder City (NV) which was installed to investigate the near-surface processes of water and energy exchange in desert environments. The scientific instrumentation consists of 152 sensors per Lysimeter which measured soil temperature, soil water content, and soil water potential. Data from three weighing lysimeters (3 m long, surface area 4 m2) were used to identifiy effective soil hydraulic properties of the disturbed soil monoliths by inverse modeling with the Richards equation assuming isothermal flow conditions. Results indicate that the observed soil water content in 8 different soil depths can be well matched for all three lysimeters and that the effective soil hydraulic properties of the three lysimeters agree well. These results could only be obtained with a flexible model of the soil hydraulic properties which guaranteed physical plausibility of water retention towards complete dryness and accounted for capillary, film and isothermal vapor flow. Conversely, flow models using traditional parameterizations of the soil hydraulic properties were not able to match the observed evaporation fluxes and water contents. After identifying the system properties by inverse modeling, we checked the possibility to forecast evaporation rates by running a fully coupled water, heat and vapor flow model which solved the energy balance of the soil surface. In these

  1. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    Science.gov (United States)

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  2. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    Science.gov (United States)

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  3. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    KAUST Repository

    Qamar, Adnan

    2017-06-28

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological

  4. Finite element formulation of unilateral boundary conditions for unsaturated flow in porous continua

    Science.gov (United States)

    Abati, A.; Callari, C.

    2014-06-01

    This paper presents the numerical resolution of unilateral boundary conditions able to effectively model several problems of unsaturated flow, as those involving rainfall infiltration and seepage faces. Besides the penalty technique, we also consider the novel regularization of these conditions by means of the more effective augmented Lagrangian method. The performance of the so-obtained finite element method is carefully investigated in terms of accuracy and ill-conditioning effects, including comparisons with analytical solutions and a complete identification of the analogies with the problem of frictionless contact. In this way, we provide a priori estimates of optimal and admissible ranges for the penalty coefficient as functions of permeability and spatial discretization. The proposed method and the estimated coefficient ranges are validated in further numerical examples, involving the propagation of a wetting front due to rainfall and the partial saturation of an aged concrete dam. These applications show that the proposed regularizations do not induce any detrimental effect on solution accuracy and on convergence rate of the employed Newton-Raphson method. Hence, the present approach should be preferred to the commonly used iterative switching between the imposed-flow and the imposed-pressure conditions, which often leads to spurious oscillations and convergence failures.

  5. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-11-15

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8{sup th} floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C.

  6. Adsorption of phosphorus in sediment re-suspension under sudden expansion flow conditions

    Institute of Scientific and Technical Information of China (English)

    LIANG Wen; WANG Ze; JIAO Zeng-xiang; WAN Jun

    2013-01-01

    Based on the study of hydraulic characteristics of the sudden expansion water flow of an annular flume,this paper determines the vertical velocity distribution and the turbulence intensity distribution in the mainstream and the recirculation regions to analyze the basic features of this flow field.The adsorption of the phosphorus in the sediment is studied by adding the bacteriostatic agent.The results show that the flow speed in the mainstream region is higher than that in the recirculation region.However,the turbulence intensity in the recirculation region increases more than that in the mainstream region.The adsorption of the phosphorus in the sediment includes the physisorption and the biosorption,and the former is stronger than the latter.With the biosorption in the phosphorus removal process,the phosphorus released by the sediment is mainly completed by the poly-P bacteria in the anaerobic condition.The adsorption of the phosphorus in the sediment in the mainstream region of a sudden expansion water flow is strong and stable,whereas the adsorption in the sediment in the recirculation region is largely fluctuated.

  7. The effect of anti-rosetting agents against malaria parasites under physiological flow conditions.

    Directory of Open Access Journals (Sweden)

    Yvonne Adams

    Full Text Available Rosetting remains the dominant malaria parasite adhesion phenotype associated with severe disease and pathogenicity in Africa. The formation of rosettes, whereby a Plasmodium falciparum infected erythrocyte (IE adheres to two or more non-IEs, is thought to facilitate the occlusion of microvascular blood vessels by adhering to host endothelial cells and other bound IEs. Current methods of determining the rosette-disrupting capabilities of antibodies/drugs have focused on static assays. As IEs in vivo are exposed to shear stresses within the microvasculature, the effect of flow conditions on rosetting requires further examination. This study establishes a new rosetting flow assay using a closed perfusion system together with inverted fluorescence microscopy and image analysis, and confirms previous reports that rosettes exist under shear stresses equivalent to those present in the microvasculature (0.5-1.0 dyn/cm(2. Furthermore, we tested the effectiveness of rosette-disrupting PfEMP1 antibodies, heparin and fucoidan over a range of concentrations on two P. falciparum strains, and found no statistically significant differences between the results of static and flow assays. The new flow assay is a valuable addition to the tools available to study rosetting. However, the static assay has good predictive value and remains useful as the standard screening test for rosette-disrupting interventions.

  8. Unsteady Pressure Measurements around Rotor of an Axial Flow Fan under Stable and Unstable Operating Conditions

    Science.gov (United States)

    Shin, You Hwan; Kim, Kwang Ho; Kang, Chang Sik

    This study presents some measurement results on the unsteady pressure fields around rotor under stable and unstable operating conditions of an axial flow fan. The unsteady static pressure of rotor passage was measured by using high frequency pressure transducers mounted on the casing wall. The measurements on the unsteady total pressure at rotor inlet and outlet were also conducted with specially designed high frequency total pressure probe. Double Phase-Locked Ensemble Averaging Technique was used for analysis of pressure fluctuations around the rotor at rotating stall onset point. From the results, the unsteady pressure fields during stable and unstable operations of the axial fan were investigated and compared with each other. Particularly one period of rotating stall could be divided into two regions, stalled flow and unstalled flow region respectively. Furthermore the former could be also classified into two zones, bubbled and disturbed region by their features. The flow characteristics for each zone were described in detail and the static and total pressure fields were also analyzed in terms of the pressure distribution along pressure side and suction side on the blade tip profile.

  9. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining

    Science.gov (United States)

    Sawicki, Jerzy; Paczkowski, Tomasz

    2015-05-01

    The paper presents the results of experimental studies of electrochemical machining process oriented on occurring in the treatment critical states caused by electrolyte flow hydrodynamic conditions in the gap between electrodes. Material forming in electrochemical machining is carried out by anodic dissolution. In general in ECM process, the essence of the treatment is that the workpiece is the anode and the tool is the cathode. The space between the anode and cathode is filled by electrolyte. The current flow between the electrodes causes anodic dissolution process, resulting in the removal of material from the anode. Choosing in the process of electrochemical machining, respectively: anode and cathode material, electrolyte and processing parameters, such conditions can be created that enable a high process efficiency and smoothness of the surface. Inappropriate selection of machining parameters can cause the emergence of critical states in the ECM, which are mainly related to the flow of the electrolyte in the gap between electrodes. This work is an attempt to assess the occurring critical states in ECM on the example of machining of curved surfaces with any sort of outline and curved rotating surfaces.

  10. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  11. Generation of Turbulent Inflow Conditions for Pipe Flow via an Annular Ribbed Turbulator

    Science.gov (United States)

    Moallemi, Nima; Brinkerhoff, Joshua

    2016-11-01

    The generation of turbulent inflow conditions adds significant computational expense to direct numerical simulations (DNS) of turbulent pipe flows. Typical approaches involve introducing boxes of isotropic turbulence to the velocity field at the inlet of the pipe. In the present study, an alternative method is proposed that incurs a lower computational cost and allows the anisotropy observed in pipe turbulence to be physically captured. The method is based on a periodic DNS of a ribbed turbulator upstream of the inlet boundary of the pipe. The Reynolds number based on the bulk velocity and pipe diameter is 5300 and the blockage ratio (BR) is 0.06 based on the rib height and pipe diameter. The pitch ratio is defined as the ratio of rib streamwise spacing to rib height and is varied between 1.7 and 5.0. The generation of turbulent flow structures downstream of the ribbed turbulator are identified and discussed. Suitability of this method for accurate representation of turbulent inflow conditions is assessed through comparison of the turbulent mean properties, fluctuations, Reynolds stress profiles, and spectra with published pipe flow DNS studies. The DNS results achieve excellent agreement with the numerical and experimental data available in the literature.

  12. Physostomous channel catfish, Ictalurus punctatus, modify swimming mode and buoyancy based on flow conditions.

    Science.gov (United States)

    Yoshida, Makoto A; Yamamoto, Daisuke; Sato, Katsufumi

    2017-02-15

    The employment of gliding in aquatic animals as a means of conserving energy has been theoretically predicted and discussed for decades. Several studies have shown that some species glide, whereas others do not. Freshwater fish species that widely inhabit both lentic and lotic environments are thought to be able to adapt to fluctuating flow conditions in terms of locomotion. In adapting to the different functional demands of lentic and lotic environments on fish energetics, physostomous (open swim bladder) fish may optimise their locomotion and activity by controlling their net buoyancy; however, few buoyancy studies have been conducted on physostomous fish in the wild. We deployed accelerometers on free-ranging channel catfish, Ictalurus punctatus, in both lentic and lotic environments to quantify their swimming activity, and to determine their buoyancy condition preferences and whether gliding conserves energy. Individual comparisons of swimming efforts between ascent and descent phases revealed that all fish in the lentic environment had negative buoyancy. However, all individuals showed many descents without gliding phases, which was contrary to the behaviour predicted to minimise the cost of transport. The fact that significantly fewer gliding phases were observed in the lotic environment, together with the existence of neutrally buoyant fish, indicated that channel catfish seem to optimise their locomotion through buoyancy control based on flow conditions. The buoyancy optimisation of channel catfish relative to the flow conditions that they inhabit not only reflects differences in swimming behaviour but also provides new insights into the adaptation of physostome fish species to various freshwater environments. © 2017. Published by The Company of Biologists Ltd.

  13. Effect of Inflow Boundary Conditions on Hovering Tilt-Rotor Flows

    Science.gov (United States)

    Kaul, Upender K.

    2012-01-01

    A study on the effect of inflow turbulence boundary conditions on the local flow on and around a body in flight has been carried out. The study has been carried out using OVERFLOW2 flow solver using the default Spalart-Allmaras turbulence model in OVERFLOW. Many OVERFLOW turbulent flow simulations have been reported using the SA-fv3 model1 over the years. The present study demonstrates that the turbulence levels imposed as a boundary condition (b.c.) in the far-field as implemented in OVERFLOW are not correct. In fact, very low level of turbulence at the far-field boundary as implemented in OVERFLOW results in the SA-fv3 model predicting transition-like profiles on a given body. By choosing sufficiently high levels of the Reynolds number of turbulence, Rt, as a boundary condition, this anomalous behavior of SA-fv3 model is eliminated. Since numerous papers using OVERFLOW have been presented in the literature including that by the author2 using low level of inflow turbulence, it will be beneficial to the CFD community at large and in particular to the OVERFLOW community to understand this effect of the inflow b.c. in the SA-fv3 model. Various results reported over the years in domains such as high-lift applications, drag prediction applications and rotorcraft flow applications can be revisited using the new turbulence inflow boundary condition prescription as suggested in this study. It has been demonstrated in the literature that the effect of inflow turbulence level on the downstream development of flow is too important to be ignored. Demonstrative results are shown and compared with experiment for the case of hovering XV-15 rotor flow at a tip Reynolds number of 4.9 x 10(exp 6) and Mach number of 0.69 in Figs. 1 and 2 below. Fig. 1(a,b) shows skin friction predictions at radial station of r/R = 0.28 corresponding to 5 different inflow boundary conditions obtained with the SA-fv3 model. As the inflow turbulence is increased monotonically, from a value of Rt = 0

  14. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions.

    Science.gov (United States)

    Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil

    2017-06-01

    This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg(-1)) and γ-HCH (lindane, 25 mg kg(-1)) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/Fe(II), Na2S2O8 alone, Na2S2O8/Fe(II), and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe(II)-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/Fe(II) > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

  15. Numerical Simulation of Flow Through Equilateral Triangular Duct Under Constant Wall Heat Flux Boundary Condition

    Science.gov (United States)

    Kumar, Rajneesh; Kumar, Anoop; Goel, Varun

    2017-06-01

    The force convective heat transfer in an equilateral triangular duct of different wall heat flux configurations was analysed for the laminar hydro-dynamically developed and thermally developing flow by the use of finite volume method. Unstructured meshing was generated by multi-block technique and set of governing equations were discretized using second-order accurate up-wind scheme and numerically solved by SIMPLE Algorithm. For ensuring accuracy, grid independence study was also done. Numerical methodology was verified by comparing results with previous work and predicted results showed good agreement with them (within error of ±5 %). The different combinations of constant heat flux boundary condition were analysed and their effect on heat transfer and fluid flow for different Reynolds number was also studied. The results of different combinations were compared with the case of force convective heat transfer in the equilateral triangular duct with constant heat flux on all three walls.

  16. Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T. [Faculty of Computing, Mohammad Ali Jinnah University, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-08-15

    This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases.

  17. Self-organized phenomena of pedestrian counter flow in a channel under periodic boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Li Xiang; Duan Xiao-Yin; Dong Li-Yun

    2012-01-01

    In this paper we investigate self-organized phenomena such as lane formation generated by pedestrian counter flow in a channel.The lattice gas model is extended to take the effect of walkers in the opposite direction into account simultaneously when they are in the view field of a walker,i.e.,walkers tend to follow the leaders in the same direction and avoid conflicts with those walking towards them.The improved model is then used to mimic pedestrian counter flow in a channel under periodic boundary conditions.Numerical simulations show that lane formation is well reproduced,and this process is rather rapid which coincides with real pedestrian traffic.The average velocity and critical density are found to increase to some degree with the consideration of view field.

  18. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions

    Science.gov (United States)

    Pham, Ngoc H.; Voronov, Roman S.; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V.

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  19. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions.

    Science.gov (United States)

    Pham, Ngoc H; Voronov, Roman S; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  20. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.

    Science.gov (United States)

    Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús

    2015-01-15

    Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can

  1. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  2. Uncertainty quantification in coronary blood flow simulations: Impact of geometry, boundary conditions and blood viscosity.

    Science.gov (United States)

    Sankaran, Sethuraman; Kim, Hyun Jin; Choi, Gilwoo; Taylor, Charles A

    2016-08-16

    Computational fluid dynamic methods are currently being used clinically to simulate blood flow and pressure and predict the functional significance of atherosclerotic lesions in patient-specific models of the coronary arteries extracted from noninvasive coronary computed tomography angiography (cCTA) data. One such technology, FFRCT, or noninvasive fractional flow reserve derived from CT data, has demonstrated high diagnostic accuracy as compared to invasively measured fractional flow reserve (FFR) obtained with a pressure wire inserted in the coronary arteries during diagnostic cardiac catheterization. However, uncertainties in modeling as well as measurement results in differences between these predicted and measured hemodynamic indices. Uncertainty in modeling can manifest in two forms - anatomic uncertainty resulting in error of the reconstructed 3D model and physiologic uncertainty resulting in errors in boundary conditions or blood viscosity. We present a data-driven framework for modeling these uncertainties and study their impact on blood flow simulations. The incompressible Navier-Stokes equations are used to model blood flow and an adaptive stochastic collocation method is used to model uncertainty propagation in the Navier-Stokes equations. We perform uncertainty quantification in two geometries, an idealized stenosis model and a patient specific model. We show that uncertainty in minimum lumen diameter (MLD) has the largest impact on hemodynamic simulations, followed by boundary resistance, viscosity and lesion length. We show that near the diagnostic cutoff (FFRCT=0.8), the uncertainty due to the latter three variables are lower than measurement uncertainty, while the uncertainty due to MLD is only slightly higher than measurement uncertainty. We also show that uncertainties are not additive but only slightly higher than the highest single parameter uncertainty. The method presented here can be used to output interval estimates of hemodynamic indices

  3. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Science.gov (United States)

    Cinsdikici, Muhammed G.; Memiş, Kemal

    2010-12-01

    Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  4. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Memiş Kemal

    2010-01-01

    Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  5. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  6. Assessment of blood coagulation under various flow conditions with ultrasound backscattering.

    Science.gov (United States)

    Huang, Chih-Chung; Wang, Shyh-Hau

    2007-12-01

    Several in vitro studies have employed ultrasonic techniques to detect varying properties of coagulating blood under static or stirred conditions. Most of those studies mainly addressed on the development and feasibility of modalities and however were not fully considering the effect of blood flow. To better elucidate this issue, ultrasonic backscattering were measured from the coagulating porcine blood circulated in a mock flow loop with various steady laminar flows at mean shear rates from 10 to 100 s(-1). A 3 ml of 0.5 M CaCl2 solution for inducing blood coagulation was added to that of 30 ml blood circulated in the conduit. For each measurement carried out with a 10-MHz transducer, backscattered signals digitized at 100-MHz sampling frequency were acquired for a total of 20 min at temporal resolution of 50 A-lines per s. The integrated backscatter (IB) was calculated for assessing backscattering properties of coagulating blood. The results show that blood coagulation tended to be increased corresponding to the addition of CaCl2 solution: the IB was increased approximately 6.1 +/- 0.6 (mean +/- standard deviation), 5.4 +/- 0.9, and 4.5 +/- 1.2 dB at 310 +/- 62, 420 +/- 88, and 610 +/- 102 s associated with mean shear rates of 10, 40, and 100 s(-1), respectively. The rate of increasing IB for evaluating the growth of clot was estimated to be 0.075 +/- 0.017, 0.052 +/- 0.027, and 0.038 +/- 0.012 delta dB delta s(-1) corresponding to the increase of mean shear rates. These results consistently demonstrate that higher shear rate tends to prolong the duration for the flowing blood to be coagulated and to decrease the rate of IB. Moreover, the laminar flow was changed to turbulent flow during that the blood was clotting discerned by spatial variations of ultrasound backscattering in the conduit. All these results validate that ultrasound backscattering is feasible to be utilized for detecting and assessing blood coagulation under dynamic conditions.

  7. Phantom-based ground-truth generation for cerebral vessel segmentation and pulsatile deformation analysis

    Science.gov (United States)

    Schetelig, Daniel; Säring, Dennis; Illies, Till; Sedlacik, Jan; Kording, Fabian; Werner, René

    2016-03-01

    Hemodynamic and mechanical factors of the vascular system are assumed to play a major role in understanding, e.g., initiation, growth and rupture of cerebral aneurysms. Among those factors, cardiac cycle-related pulsatile motion and deformation of cerebral vessels currently attract much interest. However, imaging of those effects requires high spatial and temporal resolution and remains challenging { and similarly does the analysis of the acquired images: Flow velocity changes and contrast media inflow cause vessel intensity variations in related temporally resolved computed tomography and magnetic resonance angiography data over the cardiac cycle and impede application of intensity threshold-based segmentation and subsequent motion analysis. In this work, a flow phantom for generation of ground-truth images for evaluation of appropriate segmentation and motion analysis algorithms is developed. The acquired ground-truth data is used to illustrate the interplay between intensity fluctuations and (erroneous) motion quantification by standard threshold-based segmentation, and an adaptive threshold-based segmentation approach is proposed that alleviates respective issues. The results of the phantom study are further demonstrated to be transferable to patient data.

  8. Corrosion of Cr bearing low alloy pipeline steel in CO{sub 2} environment at static and flowing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lining, E-mail: xulining@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shaoqiang [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Chang, Wei [CNOOC Research Institute, Beijing 100027 (China); Chen, Taihui [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Lihua [CNOOC Research Institute, Beijing 100027 (China); Lu, Minxu [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-04-01

    We study the corrosion performance of Cr bearing low alloy pipeline steel (Cr3MoNi) in CO{sub 2} saturated formation water, under both static and flowing conditions. Cross-sectional morphologies of corrosion scales at progressively increased test duration are observed by scanning electron microscopy. The characteristic of the corrosion scales are investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. Our results show that the corrosion rate of Cr3MoNi steel at flowing condition is higher than that of static condition, and the degree of Cr enrichment in the scales at flowing condition is also higher. Flow also makes ions distribute evenly in the solution close to the specimen, leading to a uniform distribution of Cr compound in the amorphous corrosion scales. In this way, flow suppresses the presence of the potential pits and also leads to a more flat scale/substrate interface.

  9. A comparison of methods for analyzing time series of pulsatile hormone data.

    Science.gov (United States)

    Carlson, N E; Horton, K W; Grunwald, G K

    2013-11-20

    Many endocrine systems are regulated by pulsatile hormones - hormones that are secreted intermittently in boluses rather than continuously over time. To study pulsatile secretion, blood is drawn every few minutes for an extended period. The result is a time series of hormone concentrations for each individual. The goal is to estimate pulsatile hormone secretion features such as frequency, location, duration, and amount of pulsatile and non-pulsatile secretion and compare these features between groups. Various statistical approaches to analyzing these data have been proposed, but validation has generally focused on one hormone. Thus, we lack a broad understanding of each method's performance. By using simulated data with features seen in reproductive and stress hormones, we investigated the performance of three recently developed statistical approaches for analyzing pulsatile hormone data and compared them to a frequently used deconvolution approach. We found that methods incorporating a changing baseline modeled both constant and changing baseline shapes well; however, the added model flexibility resulted in a slight increase in bias in other model parameters. When pulses were well defined and baseline constant, Bayesian approaches performed similar to the existing deconvolution method. The increase in computation time of Bayesian approaches offered improved estimation and more accurate quantification of estimation variation in situations where pulse locations were not clearly identifiable. Within the class of deconvolution models for fitting pulsatile hormone data, the Bayesian approach with a changing baseline offered adequate results over the widest range of data.

  10. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    Science.gov (United States)

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  11. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  12. Investigations of Internal Flow Fields of Constant-Area Mixing-Tubes under Starting-Limit Conditions

    Science.gov (United States)

    Kitamura, Eijiro; Tomioka, Sadatake; Sakuranaka, Noboru; Watanabe, Syuichi; Masuya, Goro

    Flow fields in the constant-area mixing tubes of ejector jets were investigated under the starting-limit conditions of an aerodynamic choking mode by performing numerical simulations and cold flow experiments. Pressure recovery was almost completed in the shock-train region. The length of the shock-train region (Lst) was measured under various conditions. Lst was proportional to the mass flow rate ratio of the secondary flow to the primary flow when this ratio was less than 0.15. On the other hand, Lst became almost constant when the mass flow rate ratio exceeded 0.15. Numerical studies showed that this change was caused by the difference in the mechanism of the flow fields. In the cases with low air mass flow rates, the primary and secondary flows almost mixed in a region between the inlets of the mixing tubes and the choking points. The pressure was recovered by a pseudo-shock-wave generated downstream of the choking point. On the other hand, when the mass flow rate ratio was higher than 0.15, the primary and secondary flows were clearly separated at the choking point. The pressure recovery was achieved by the mixing between the primary and secondary flows downstream of the choking point.