WorldWideScience

Sample records for pulsars

  1. Pulsar Magnetospheres and Pulsar Winds

    CERN Document Server

    Beskin, Vasily S

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  2. Pulsars at Parkes

    CERN Document Server

    Manchester, R N

    2012-01-01

    The first pulsar observations were made at Parkes on March 8, 1968, just 13 days after the publication of the discovery paper by Hewish and Bell. Since then, Parkes has become the world's most successful pulsar search machine, discovering nearly two thirds of the known pulsars, among them many highly significant objects. It has also led the world in pulsar polarisation and timing studies. In this talk I will review the highlights of pulsar work at Parkes from those 1968 observations to about 2006 when the Parkes Multibeam Pulsar Survey was essentially completed and the Parkes Pulsar Timing Array project was established.

  3. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  4. Fermi pulsar revolution

    CERN Document Server

    Caraveo, Patrizia A

    2010-01-01

    2009 has been an extraordinary year for gamma-ray pulsar astronomy and 2010 promises to be equally good. Not only have we registered an extraordinary increase in the number of pulsars detected in gamma rays, but we have also witnessed the birth of new sub-families: first of all, the radio-quiet gamma pulsars and later an ever growing number of millisecond pulsars, a real surprise. We started with a sample of 7 gamma-ray emitting neutron stars (6 radio pulsars and Geminga) and now the Fermi-LAT harvest encompasses 24 "Geminga-like" new gamma-ray pulsars, a dozen millisecond pulsars and about thirty radio pulsars. Moreover, radio searches targeted to LAT unidentified sources yielded 18 new radio millisecond pulsars, several of which have been already detected also in gamma rays. Thus, currently the family of gamma-ray emitting neutron stars seems to be evenly divided between classical radio pulsars, millisecond pulsars and radio quiet neutron stars.

  5. Pulsar Ephemerides for Timing LAT Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — Timing pulsars with the LAT requires the use of an ephemeris that covers the time period being analyzed. Below are several resources to provide this useful input to...

  6. Pulsars and Gravity

    CERN Document Server

    Manchester, R N

    2015-01-01

    Pulsars are wonderful gravitational probes. Their tiny size and stellar mass give their rotation periods a stablility comparable to that of atomic frequency standards. This is especially true of the rapidly rotating "millisecond pulsars" (MSPs). Many of these rapidly rotating pulsars are in orbit with another star, allowing pulsar timing to probe relativistic perturbations to the orbital motion. Pulsars have provided the most stringent tests of theories of relativistic gravitation, especially in the strong-field regime, and have shown that Einstein's general theory of relativity is an accurate description of the observed motions. Many other gravitational theories are effectively ruled out or at least severely constrained by these results. MSPs can also be used to form a "Pulsar Timing Array" (PTA). PTAs are Galactic-scale interferometers that have the potential to directly detect nanohertz gravitational waves from astrophysical sources. Orbiting super-massive black holes in the cores of distant galaxies are t...

  7. Wide Band Artificial Pulsar

    Science.gov (United States)

    Parsons, Zackary

    2017-01-01

    The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.

  8. Pulsars and Extreme Physics

    Science.gov (United States)

    Bell-Burnell, Jocelyn

    2004-10-01

    Pulsars were discovered 35 years ago. What do we know about them now, and what have they taught us about the extremes of physics? With an average density comparable to that of the nucleus, magnetic fields around 108 T and speeds close to c these objects have stretched our understanding of the behaviour of matter. They serve as extrememly accurate clocks with which to carry out precision experiments in relativity. Created in cataclysmic explosions, pulsars are a (stellar) form of life after death. After half a billion revolutions most pulsars finally die, but amazingly some are born again to yet another, even weirder, afterlife. Pulsar research continues lively, delivering exciting, startling and almost unbelievable results!

  9. Pulse Portraiture: Pulsar timing

    Science.gov (United States)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  10. Pulsar Timing Arrays

    OpenAIRE

    Joshi, Bhal Chandra

    2013-01-01

    In the last decade, the use of an ensemble of radio pulsars to constrain the characteristic strain caused by a stochastic gravitational wave background has advanced the cause of detection of very low frequency gravitational waves significantly. This electromagnetic means of gravitational wave detection, called Pulsar Timing Array(PTA), is reviewed in this article. The principle of operation of PTA, the current operating PTAs and their status is presented along-with a discussion of the main ch...

  11. Eclipsing Binary Pulsars

    CERN Document Server

    Freire, P C C

    2004-01-01

    The first eclipsing binary pulsar, PSR B1957+20, was discovered in 1987. Since then, 13 other eclipsing low-mass binary pulsars have been found, 12 of these are in globular clusters. In this paper we list the known eclipsing binary pulsars and their properties, with special attention to the eclipsing systems in 47 Tuc. We find that there are two fundamentally different groups of eclipsing binary pulsars; separated by their companion masses. The less massive systems (M_c ~ 0.02 M_sun) are a product of predictable stellar evolution in binary pulsars. The systems with more massive companions (M_c ~ 0.2 M_sun) were formed by exchange encounters in globular clusters, and for that reason are exclusive to those environments. This class of systems can be used to learn about the neutron star recycling fraction in the globular clusters actively forming pulsars. We suggest that most of these binary systems are undetectable at radio wavelengths.

  12. Revised Pulsar Spindown

    CERN Document Server

    Contopoulos, I; Contopoulos, Ioannis; Spitkovsky, Anatoly

    2005-01-01

    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-Pdot diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.

  13. Coherent Radio Emission from Pulsars

    CERN Document Server

    Mitra, Dipanjan; Gil, Janusz

    2015-01-01

    We review a physical model where the high brightness temperature of 10$^{25}-10^{30}$ K observed in pulsar radio emission is explained by coherent curvature radiation excited in the relativistic electron-positron plasma in the pulsar magnetosphere.

  14. Pulsars: Gigantic Nuclei

    CERN Document Server

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  15. Pulsar lensing geometry

    CERN Document Server

    Liu, Siqi; Macquart, J-P; Brisken, Walter; Deller, Adam

    2015-01-01

    Our analysis of archival VLBI data of PSR 0834+06 revealed that its scintillation properties can be precisely modelled using the inclined sheet model (Pen & Levin 2014), resulting in two distinct lens planes. These data strongly favour the grazing sheet model over turbulence as the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized ISM screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can i...

  16. Pulsar virtual observatory

    CERN Document Server

    Keith, M; Lyne, A; Brooke, J

    2007-01-01

    The Pulsar Virtual Observatory will provide a means for scientists in all fields to access and analyze the large data sets stored in pulsar surveys without specific knowledge about the data or the processing mechanisms. This is achieved by moving the data and processing tools to a grid resource where the details of the processing are seen by the users as abstract tasks. By developing intelligent scheduling middle-ware the issues of interconnecting tasks and allocating resources are removed from the user domain. This opens up large sets of radio time-series data to a wider audience, enabling greater cross field astronomy, in line with the virtual observatory concept. Implementation of the Pulsar Virtual Observatory is underway, utilising the UK National Grid Service as the principal grid resource.

  17. Handbook of pulsar astronomy

    CERN Document Server

    Lorimer, Duncan

    2005-01-01

    Radio pulsars are rapidly rotating highly magnetized neutron stars. Studies of these fascinating objects have provided applications in solid-state physics, general relativity, galactic astronomy, astrometry, planetary physics and even cosmology. Most of these applications and much of what we know about neutron stars are derived from single-dish radio observations using state-of-the-art receivers and data acquisition systems. This comprehensive 2004 book is a unique resource that brings together the key observational techniques, background information and a review of results, including the discovery of a double pulsar system. Useful software tools are provided which can be used to analyse example data, made available on a related website. This work will be of great value not only to graduate students but also to researchers wishing to carry out and interpret a wide variety of radio pulsar observations.

  18. Current Flows in Pulsar Magnetospheres

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The global structure of .current flows in pulsar magnetosphere is investigated, with rough calculations of the circuit elements. It is emphasized that the potential of the critical field lines (the field lines that intersect the null surface at the light cylinder radius) should be the same as that of interstellar medium, and that pulsars whose rotation axes and magnetic dipole axes are parallel should be positively charged, in order to close the pulsar's current flows. The statistical relation between the radio luminosity and pulsar's electric charge (or the spindown power) may hint that the millisecond pulsars could be low-mass bare strange stars.

  19. The Pulsar Search Collaboratory

    CERN Document Server

    Rosen, Rachel; McLaughlin, Maura A; Lynch, Ryan; Kondratiev, Vlad I; Boyles, Jason R; Wilson, M Terry; Lorimer, Duncan R; Ransom, Scott; 10.3847/AER2010004

    2010-01-01

    The Pulsar Search Collaboratory [PSC, NSF #0737641] is a joint project between the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) designed to interest high school students in science, technology, engineering, and mathematics [STEM] related career paths by helping them to conduct authentic scientific research. The 3- year PSC program, which began in summer 2008, teaches students to analyze astronomical radio data acquired with the 100-m Robert C. Byrd Green Bank Telescope for the purpose of discovering new pulsars. We present the results of the first complete year of the PSC, which includes two astronomical discoveries.

  20. Pulsars: Cosmic Permanent 'Neutromagnets'?

    CERN Document Server

    Hansson, Johan

    2011-01-01

    We argue that pulsars may be spin-polarized neutron stars, i.e. cosmic permanent magnets. This would simply explain several observational facts about pulsars, including the 'beacon effect' itself i.e. the static/stable misalignment of rotational and magnetic axes, the extreme temporal stability of the pulses and the existence of an upper limit for the magnetic field strength - coinciding with the one observed in "magnetars". Although our model admittedly is speculative, this latter fact seems to us unlikely to be pure coincidence.

  1. Pulsars in FIRST Observations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We identify 16 pulsars from the Survey of Faint Images of the Radio Sky at Twenty-cm (FIRST) at 1.4 GHz. Their positions and total flux densities are extracted from the FIRST catalog. By comparing the source positions with those in the PSR catalog, we obtain better determined positions of PSR J1022+1001,J1518+4904, J1652+2651, and proper motion upper limits of PSR J0751+1807,J1012+5307, and J1640+2224. The proper motions of the other ten pulsars are consistent with the catalog values.

  2. Pulsar Timing Techniques

    CERN Document Server

    Lommen, Andrea N

    2013-01-01

    We describe the procedure, nuances, issues, and choices involved in creating times-of-arrival (TOAs), residuals and error bars from a set of radio pulsar timing data. We discuss the issue of mis-matched templates, the problem that wide- bandwidth backends introduce, possible solutions to that problem, and correcting for offsets introduced by various observing systems.

  3. Observations of Accreting Pulsars

    Science.gov (United States)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; Vaughan, Brian A.; Wilson, Colleen A.; Wilson, Robert B.

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  4. On the randomness of pulsar nulls

    Science.gov (United States)

    Redman, Stephen L.; Rankin, Joanna M.

    2009-05-01

    Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald-Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.

  5. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  6. Gamma rays from Galactic pulsars

    OpenAIRE

    2014-01-01

    Gamma rays from young pulsars and milli-second pulsars are expected to contribute to the diffuse gamma-ray emission measured by the {\\it Fermi} Large Area Telescope (LAT) at high latitudes. We derive the contribution of the pulsars undetected counterpart by using information from radio to gamma rays and we show that they explain only a small fraction of the isotropic diffuse gamma-ray background.

  7. Interplanetary spacecraft navigation using pulsars

    CERN Document Server

    Deng, X P; You, X P; Li, M T; Keith, M J; Shannon, R M; Coles, W; Manchester, R N; Zheng, J H; Yu, X Z; Gao, D; Wu, X; Chen, D

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.

  8. Models of Pulsar Glitches

    CERN Document Server

    Haskell, Brynmor

    2015-01-01

    Radio pulsars provide us with some of the most stable clocks in the universe. Nevertheless several pulsars exhibit sudden spin-up events, known as glitches. More than forty years after their first discovery, the exact origin of these phenomena is still open to debate. It is generally thought that they an observational manifestation of a superfluid component in the stellar interior and provide an insight into the dynamics of matter at extreme densities. In recent years there have been several advances on both the theoretical and observational side, that have provided significant steps forward in our understanding of neutron star interior dynamics and possible glitch mechanisms. In this article we review the main glitch models that have been proposed and discuss our understanding, in the light of current observations.

  9. Eccentric Binary Millisecond Pulsars

    CERN Document Server

    Freire, Paulo C C

    2009-01-01

    In this paper we review the recent discovery of several millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses (1.3 to > 2 solar masses) than the normal and mildly recycled pulsars found in double neutron star (DNS) systems (1.25 < Mp < 1.44 solar masses). This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 ($1.67 +/- 0.01 solar masses) excludes several "soft" equations of state for dense matter.

  10. Electrodynamics of pulsar magnetospheres

    CERN Document Server

    Cerutti, Benoît

    2016-01-01

    We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.

  11. Strange-pulsar model

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina Nacional de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata, (Argentina))

    1990-02-12

    Deep modifications to the current strange-star structure can occur if strange matter is not stable all the way down to zero pressure. This would be the case, for example, if some stable particle is formed at relatively low pressure and/or temperature. We show that the inclusion of a likely specific candidate particle (quark {alpha}) in the strange-matter picture leads to stellar models that present more realistic behavior in the light of current pulsar understanding.

  12. Nature of eclipsing pulsars

    CERN Document Server

    Khechinashvili, D; Gil, J; Khechinashvili, David; Melikidze, George; Gil, Janusz

    2000-01-01

    We present a model for pulsar radio eclipses in some binary systems, and test this model for PSRs B1957+20 and J2051-0827. We suggest that in these binaries the companion stars are degenerate dwarfs with strong surface magnetic fields. The magnetospheres of these stars are permanently infused by the relativistic particles of the pulsar wind. We argue that the radio waves emitted by the pulsar split into the eigenmodes of the electron-positron plasma as they enter the companion's magnetosphere and are then strongly damped due to cyclotron resonance with the ambient plasma particles. Our model explains in a natural way the anomalous duration and behavior of radio eclipses observed in such systems. In particular, it provides stable, continuous, and frequency-dependent eclipses, in agreement with the observations. We predict a significant variation of linear polarization both at eclipse ingress and egress. In this paper we also suggest several possible mechanisms of generation of the optical and $X$-ray emission ...

  13. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  14. Pulsar Wind Nebulae Modeling

    CERN Document Server

    Bucciantini, N

    2013-01-01

    Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and de...

  15. Excitation of wakefield around pulsars

    CERN Document Server

    Berezhiani, V; Belic, M

    2016-01-01

    We study the generation of the wakefields by means of the high energy radiation of pulsars. The problem is considered in the framework of a one dimensional approach. We linearize the set of governing equations consisting of the momentum equation, continuity equation an Poisson equation and show that a wavelike structure will inevitably arise relatively close to the pulsar.

  16. Populations and evolution of radio pulsars

    Institute of Scientific and Technical Information of China (English)

    李向东; 汪珍如

    1996-01-01

    A new physical parameter Q=log(We/P2/3) is defined as a criterion for judging whether a radio pulsar is a normal pulsar or a recycled pulsar originating from accreting binary systems.Based on the definition,the observational characteristics and the evolution of the two groups of pulsars are discussed.

  17. Pulsars as Fantastic Objects and Probes

    CERN Document Server

    Han, J L

    2009-01-01

    Pulsars are fantastic objects, which show the extreme states of matters and plasma physics not understood yet. Pulsars can be used as probes for the detection of interstellar medium and even the gravitational waves. Here I review the basic facts of pulsars which should attract students to choose pulsar studies as their future projects.

  18. Magnetars and white dwarf pulsars

    Science.gov (United States)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  19. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  20. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  1. Millisecond pulsars: Timekeepers of the cosmos

    Science.gov (United States)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  2. The Coughing Pulsar Magnetosphere

    CERN Document Server

    Contopoulos, I

    2005-01-01

    Polar magnetospheric gaps consume a fraction of the electric potential that develops accross open field lines. This effect modifies significantly the structure of the axisymmetric pulsar magnetosphere. We present numerical stead-state solutions for various values of the gap potential. We show that a charge starved magnetosphere contains significantly less electric current than one with freely available electric charges. As a result, electromagnetic neutron star braking becomes inefficient. We argue that the magnetosphere may spontaneously rearrange itself to a lower energy configuration through a dramatic release of electromagnetic field energy and magentic flux. Our results might be relevant in understanding the recent December 27, 2004 burst observed in SGR 1806-20.

  3. The Pulsating Pulsar Magnetosphere

    CERN Document Server

    Tsui, K H

    2015-01-01

    Following the basic principles of a charge separated pulsar magnetosphere \\citep{goldreich1969}, we consider the magnetosphere be stationary in space, instead of corotating, and the electric field be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyro motion due to the transverse forces to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the $E_{\\parallel}=\\vec E\\cdot\\vec B=0$ plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields...

  4. Tempo: Pulsar timing data analysis

    Science.gov (United States)

    Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D.

    2015-09-01

    Tempo analyzes pulsar timing data. Pulse times of arrival (TOAs), pulsar model parameters, and coded instructions are read from one or more input files. The TOAs are fitted by a pulse timing model incorporating transformation to the solar-system barycenter, pulsar rotation and spin-down and, where necessary, one of several binary models. Program output includes parameter values and uncertainties, residual pulse arrival times, chi-squared statistics, and the covariance matrix of the model. In prediction mode, ephemerides of pulse phase behavior (in the form of polynomial expansions) are calculated from input timing models. Tempo is the basis for the Tempo2 (ascl:1210.015) code.

  5. The Pulsar Kick Velocity Distribution

    CERN Document Server

    Hansen, B M S; Hansen, Brad M. S.

    1997-01-01

    We analyse the sample of pulsar proper motions, taking detailed account of the selection effects of the original surveys. We treat censored data using survival statistics. From a comparison of our results with Monte Carlo simulations, we find that the mean birth speed of a pulsar is 250-300 km/s, rather than the 450 km/s foundby Lyne & Lorimer (1994). The resultant distribution is consistent with a maxwellian with dispersion $ \\sigma_v = 190 km/s$. Despite the large birth velocities, we find that the pulsars with long characteristic ages show the asymmetric drift, indicating that they are dynamically old. These pulsars may result from the low velocity tail of the younger population, although modified by their origin in binaries and by evolution in the galactic potential.

  6. Pulsar Electrodynamics: an unsolved problem

    CERN Document Server

    Melrose, D B

    2016-01-01

    Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving `gaps' with $E_\\parallel\

  7. Pulsar observations at Mt. Pleasant

    CERN Document Server

    Lewis, D R; McCulloch, P M

    2002-01-01

    Two daily pulsar monitoring programs are progressing at the Mount Pleasant Observatory, Hobart, Tasmania, Australia. A new system involving the 26-metre radio telescope monitors 10 young pulsars daily and is focussed on near-real-time glitch finding. This will allow Target of Opportunity observations to measure post-glitch heating of the neutron star surface (Helfand, Gotthelf, & Halpern 2000). The 14-metre continues its 21st year of daily monitoring of the Vela pulsar with a recent comprehensive frontend upgrade. This is prior to an upgrade of the backend equipment currently in progress. The 14-metre observed the most recent glitch of the Vela pulsar in January 2000 to the highest time resolution of any glitch and revealed a particularly short-term decay component (Dodson, McCulloch, & Lewis 2002). This decay component will provide constraints to the nature of the coupling of the stellar crust to the liquid interior.

  8. Higgs portals to pulsar collapse

    CERN Document Server

    Bramante, Joseph

    2015-01-01

    Pulsars apparently missing from the galactic center could have been destroyed by asymmetric fermionic dark matter ($m_X = 1-100$ GeV) coupled to a light scalar ($m_{\\phi}= 5-20$ MeV), which mixes with the Higgs boson. We point out that this pulsar-collapsing dark sector can resolve the core-cusp problem and will either be excluded or discovered by upcoming direct detection experiments. Another implication is a maximum pulsar age curve that increases with distance from the galactic center, with a normalization that depends on the couplings and masses of dark sector particles. In addition, we use old pulsars outside the galactic center to place bounds on asymmetric Higgs portal models.

  9. The Parkes Pulsar Timing Array

    CERN Document Server

    Hobbs, G

    2013-01-01

    The aims of the Parkes Pulsar Timing Array (PPTA) project are to 1) make a direct detection of gravitational waves, 2) improve the solar system planetary ephemeris and 3) develop a pulsar-based time scale. In this article we describe the project, explain how the data are collected and processed and describe current research. Our current data sets are able to place an upper bound on the gravitational wave background that is the most stringent to date.

  10. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  11. Ion-proton pulsars

    Science.gov (United States)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  12. Pulsars In The Headlines

    Science.gov (United States)

    Del Puerto, C.

    1967 was the year of the so-called “war of the six days” or “third Arab Israeli war”, the year of the Che Guevara's death in Bolivia, the year of the military coup in Greece and, in medicine, the year of the first human heart transplant. Moreover, the signing of the international agreement on the use of space with peaceful means and the crash of the Russian shuttle Soyuz-1, with Cosmonaut Vladimir Kamarov on board also happened that year. Likewise, Spanish writer and professor of journalists, José Azorín, passed away. However, here we are interested in 1967 because it was the year of the detection of pulsars, which astronomers initially confused with signals from extraterrestrials or Little Green Men. Nowadays, they are still present in the headlines.

  13. Ion-proton pulsars

    CERN Document Server

    Jones, P B

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  14. Young Radio Pulsars in Galactic Globular Clusters

    CERN Document Server

    Boyles, Jason; Turk, Phil J; Mnatsakanov, Robert; Lynch, Ryan S; Ransom, Scott M; Freire, Paulo C; Belczynski, Khris

    2011-01-01

    Currently three isolated radio pulsars and one binary radio pulsar with no evidence of any previous recycling are known in 97 surveyed Galactic globular clusters. As pointed out by Lyne et al., the presence of these pulsars cannot be explained by core-collapse supernovae, as is commonly assumed for their counterparts in the Galactic disk. We apply a Bayesian analysis to the results from surveys for radio pulsars in globular clusters and find the number of potentially observable non-recycled radio pulsars present in all clusters to be -0.6. In this case, the potentially observable population of such young pulsars is 447^{+1420}_{-399} (the error bars give the 95% confidence interval) and their birth rate is 0.012^{+0.037}_{-0.010} pulsars per century. The mostly likely creation scenario to explain these pulsars is the electron capture supernova of a OMgNe white dwarf.

  15. Polarization observations of 20 millisecond pulsars

    CERN Document Server

    Yan, Wenming; van Straten, Willem; Reynolds, John; Hobbs, George; Wang, Na; Bailes, Matthew; Bhat, Ramesh; Burke-Spolaor, Sarah; Champion, David; Coles, William; Hotan, Aidan; Khoo, Jonathan; Oslowski, Stefan; Sarkissian, John; Verbiest, Joris; Yardley, Daniel

    2011-01-01

    Polarization profiles are presented for 20 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array project. The observations used the Parkes multibeam receiver with a central frequency of 1369 MHz and the Parkes digital filterbank pulsar signal-processing system PDFB2. Because of the large total observing time, the summed polarization profiles have very high signal/noise ratios and show many previously undetected profile features. Thirteen of the 20 pulsars show emission over more than half of the pulse period. Polarization variations across the profiles are complex and the observed position angle variations are generally not in accord with the rotating-vector model for pulsar polarization. Never-the-less, the polarization properties are broadly similar to those of normal (non-millisecond) pulsars, suggesting that the basic radio emission mechanism is the same in both classes of pulsar. The results support the idea that radio emission from millisecond pulsars originates high in t...

  16. Star Cluster Buzzing With Pulsars

    Science.gov (United States)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  17. Towards a Realistic Pulsar Magnetosphere

    Science.gov (United States)

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice; Contopoulos, Ioannis

    2012-01-01

    We present the magnetic and electric field structures as well as the currents ami charge densities of pulsar magnetospberes which do not obey the ideal condition, E(raised dot) B = O. Since the acceleration of particles and the production of radiation requires the presence of an electric field component parallel to the magnetic field, E(sub ll) the structure of non-Ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-Ideal pulsar maglletospheres is important because their comparison (including models for t he production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support nonzero values for E(sub ll) and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) Force-Free Electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that tltis is at most 20-40% (depending on t he non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = pc and discuss their possible implicatioll on the determination of the "on/ off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E(sub ll) locally produce oscillations, potentially observable in the data.

  18. What brakes the Crab pulsar?

    Science.gov (United States)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  19. Search for Millisecond Pulsars for the Pulsar Timing Array project

    Science.gov (United States)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  20. Understanding pulsar magnetospheres with the SKA

    CERN Document Server

    Karastergiou, A; Andersson, N; Breton, R; Brook, P; Gwinn, C; Lewandowska, N; Keane, E; Kramer, M; Macquart, J -P; Serylak, M; Shannon, R; Stappers, B; van Leeuwen, J; Verbiest, J P W; Weltevrede, P; Wright, G

    2015-01-01

    The SKA will discover tens of thousands of pulsars and provide unprecedented data quality on these, as well as the currently known population, due to its unrivalled sensitivity. Here, we outline the state of the art of our understanding of magnetospheric radio emission from pulsars and how we will use the SKA to solve the open problems in pulsar magnetospheric physics.

  1. Using HAWC to Discover Invisible Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim [Ohio State U., CCAPP; Auchettl, Katie [Ohio State U., CCAPP; Bramante, Joseph [Perimeter Inst. Theor. Phys.; Cholis, Ilias [Johns Hopkins U.; Fang, Ke [Maryland U.; Hooper, Dan [Fermilab; Karwal, Tanvi [Johns Hopkins U.; Li, Shirley Weishi [Ohio State U., CCAPP

    2017-03-28

    Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.

  2. The timing behaviour of radio pulsars

    CERN Document Server

    Hobbs, G

    2009-01-01

    The purpose of this review paper is to summarise the pulsar timing method, to provide an overview of recent research into the spin-down of pulsars over decadal timescales and to highlight the science that can be achieved using high-precision timing of millisecond pulsars.

  3. Magnetars and White Dwarf Pulsars

    CERN Document Server

    Lobato, Ronaldo V; Coelho, Jaziel G

    2016-01-01

    The Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely $B\\gtrsim10^{14}$ G, and for that reason are known as Magnetars. However, in the last years some SGRs/AXPs with low surface magnetic fields $B\\sim(10^{12}-10^{13})$ G have been detected, challenging the Magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-Ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on white dwarfs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized white dwarfs can have surface magnetic field $B\\sim 10^{7}-10^{10}$ G and rotate very fast with frequencies $\\Omega\\sim 1$ rad/s, consistent with the observed rotation periods $P\\sim (2-12)$ s.

  4. Pulsars: Progress, Problems and Prospects

    CERN Document Server

    Arons, Jonathan

    2007-01-01

    I survey recent successes in the application of relativistic MHD and force-free electrodynamics to the modeling of the pulsars' rotational energy loss mechanism as well as to the structure and emission characteristics of Pulsar Wind Nebulae. I suggest that unsteady reconnection in the current sheet separating the closed from the open zones of the magnetosphere is responsible for the torque fluctuations observed in some pulsars, as well as for departures of the braking index from the canonical value of 3. I emphasize the significance of the boundary layer between the closed and open zones as the active site in the outer magnetopshere. I elaborate on the conflict between the models currently in use to interpret the gamma ray and X-ray pulses from these systems with the electric current flows found in the spin down models. Because the polar cap ``gap'' is the essential component in the supply of plasma to pulsar magnetospheres and to pulsar wind nebulae, I emphasize the importance of high sensitivity gamma ray o...

  5. Observational features of pulsar glitches

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Pulsar glitches are sudden increases in the rotation rate which probably result from angular momentum transfer within the neutron star. We review the observational features of the 39 glitches detected at Nanshan from 2000 to 2008, including several events which appear to be slow glitches. A wide variety of post-glitch behavior is observed with very little recovery in some pulsars and over-recovery in others. Analysis of the whole sample of known glitches shows that fractional glitch amplitudes are correlated with characteristic age with a peak at about 105 years, but there is a spread of two or three orders of magnitude at all ages. For individual pulsars with many glitches, the time until the next glitch is sometimes proportional to the fractional glitch amplitude.

  6. Autonomous Spacecraft Navigation With Pulsars

    CERN Document Server

    Becker, Werner; Jessner, Axel

    2013-01-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  7. Pulsar data analysis with PSRCHIVE

    CERN Document Server

    van Straten, Willem; Osłowski, Stefan

    2012-01-01

    PSRCHIVE is an open-source, object-oriented, scientific data analysis software library and application suite for pulsar astronomy. It implements an extensive range of general-purpose algorithms for use in data calibration and integration, statistical analysis and modeling, and visualisation. These are utilised by a variety of applications specialised for tasks such as pulsar timing, polarimetry, radio frequency interference mitigation, and pulse variability studies. This paper presents a general overview of PSRCHIVE functionality with some focus on the integrated interfaces developed for the core applications.

  8. Development of a pulsar-based timescale

    CERN Document Server

    Hobbs, G; Manchester, R N; Keith, M J; Shannon, R M; Chen, D; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Champion, D; Chaudhary, A; Hotan, A; Khoo, J; Kocz, J; Levin, Y; Oslowski, S; Preisig, B; Ravi, V; Reynolds, J E; Sarkissian, J; van Straten, W; Verbiest, J P W; Yardley, D; You, X P

    2012-01-01

    Using observations of pulsars from the Parkes Pulsar Timing Array (PPTA) project we develop the first pulsar-based timescale that has a precision comparable to the uncertainties in international atomic timescales. Our ensemble of pulsars provides an Ensemble Pulsar Scale (EPS) analogous to the free atomic timescale Echelle Atomique Libre (EAL). The EPS can be used to detect fluctuations in atomic timescales and therefore can lead to a new realisation of Terrestrial Time, TT(PPTA11). We successfully follow features known to affect the frequency of the International Atomic Timescale (TAI) and we find marginally significant differences between TT(PPTA11) and TT(BIPM11). We discuss the various phenomena that lead to a correlated signal in the pulsar timing residuals and therefore limit the stability of the pulsar timescale.

  9. Can gluon condensate in pulsar cores explain pulsar glitches ?

    CERN Document Server

    Ray, R D

    1998-01-01

    Making use of the possibility that gluon condensate can be formed in neutron star core, we study the vortex pinning force between the crust and the interior of the neutron star. Our estimations indicate an increase in pinning strength with the age of the neutron star. This helps in explaining observed pulsar glitches and removes some difficulties faced by vortex creep model.

  10. Millisecond Pulsars in 47 Tucanae

    CERN Document Server

    Freire, P C C; Lorimer, D R; Lyne, A G; Manchester, R N; Freire, Paulo C.; Camilo, Fernando; Lorimer, Duncan R.; Lyne, Andrew G.; Manchester, Richard N.

    1999-01-01

    Recent observations of the globular cluster 47 Tuc, made with the Parkes telescope at a wavelength of 20 cm, have resulted in the discovery of nine new millisecond pulsars, all in binary systems. The number of timing solutions available has risen from two to 14. These results will make possible a more detailed study of the cluster dynamics.

  11. Early pulsar observations with LOFAR

    NARCIS (Netherlands)

    Hessels, J.; Stappers, B.; Hassall, T.; Weltevrede, P.; Alexov, A.; Coenen, T.; van Leeuwen, J.; Kondratiev, V.; Mol, J.D.; Kramer, M.; Noutsos, A.; Karastergiou, A.

    2010-01-01

    This contribution to the proceedings of "A New Golden Age for Radio Astronomy" is simply intended to give some of the highlights from pulsar observations with LOFAR at the time of its official opening: June 12th, 2010. These observations illustrate that, though LOFAR is still under construction and

  12. Space 'beachballs' generate pulsar bursts

    CERN Multimedia

    Wasowicz, L

    2003-01-01

    Researchers have analyzed radio emissions from a pulsar at the center of the Crab Nebula and have found 'subpulses' that last around 2 nanoseconds. They speculate this means the regions in which these ultra-short pulses are generated can be no larger than about 2 feet across - the distance light travels in 2 nanoseconds (2 pages).

  13. Braking Index of Isolated Pulsars

    CERN Document Server

    Hamil, Oliver Q; Urbanec, Martin; Urbancova, Gabriela

    2016-01-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities $\\Omega$, and their time derivatives that show unambiguously that the pulsars are slowing down. The commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of $\\Omega$. This relation leads to the power law $\\dot{\\Omega}$ = -K $\\Omega^{\\rm n}$ where $n$ is called the braking index. The MDR model predicts $n$ exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of $n$, individually accurate to a few percent or better, in the range 1$ <$ n $ < $ 2.8, which is consistently less than the predictions of the MDR model. In spite of an extensive investigation of various modifications of the MDR model, no satisfactory explanation of observation has been found yet. The aim of this work is t...

  14. Pulsar VLBI to Measure Cosmological Rotation and Study Pulsar Emission Regions

    Science.gov (United States)

    Gwinn, C. R.

    2009-08-01

    Pulsars are useful for measuring the rotation of the universe. Also, their emission regions provide interesting laboratories for plasma physics. I describe here how VLBI of pulsars, and the VSOP-2 spacecraft, can contribute to such studies.

  15. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  16. The Pulsar in the Crab Nebula

    CERN Document Server

    Lewandowska, Natalia

    2015-01-01

    The Crab pulsar belongs to one of the most studied stellar objects in the sky. Since its accidental detection in 1968, its pulsed emission has been observed throughout most of the electromagnetic spectrum. Although currently one of more than 2000 known pulsars, its way of work has remained not understood making the Crab pulsar an object of continuous studies and interest. Referring to the pulsed emission of the Crab pulsar only at radio wavelengths, it reveals a diversity of different phenomena. They range from deviations of the predicted slowing down process of the pulsar with time (long time phenomena) to an irregularity of its single pulse emission (short time phenomena). Similar and different kinds of deviations are observed at other wavelengths. Consequently, the Crab pulsar provides a large diversity of different emission characteristics which have remained difficult to interpret with a uniform theoretical approach including all observed properties. Since a review of all currently examined properties of...

  17. Beyond the 2nd Fermi Pulsar Catalog

    CERN Document Server

    Hou, Xian; Reposeur, Thierry; Rousseau, Romain

    2013-01-01

    Over thirteen times more gamma-ray pulsars have now been studied with the Large Area Telescope on NASA's Fermi satellite than the ten seen with the Compton Gamma-Ray Observatory in the nineteen-nineties. The large sample is diverse, allowing better understanding both of the pulsars themselves and of their roles in various cosmic processes. Here we explore the prospects for even more gamma-ray pulsars as Fermi enters the 2nd half of its nominal ten-year mission. New pulsars will naturally tend to be fainter than the first ones discovered. Some of them will have unusual characteristics compared to the current population, which may help discriminate between models. We illustrate a vision of the future with a sample of six pulsars discovered after the 2nd Fermi Pulsar Catalog was written.

  18. No-Hair Theorem for Weak Pulsar

    CERN Document Server

    Gruzinov, Andrei

    2015-01-01

    It is proposed that there exists a class of pulsars, called weak pulsars, for which the large-scale magnetosphere, and hence the gamma-ray emission, are independent of the detailed pattern of plasma production. The weak pulsar magnetosphere and its gamma-ray emission are uniquely determined by just three parameters: spin, dipole, and the spin-dipole angle. We calculate this supposedly unique pulsar magnetosphere in the axisymmetric case. The magnetosphere is found to be very close to (although interestingly not fully identical with) the magnetosphere we have previously calculated, explaining the phenomenological success of the old calculation. We offer only a highly tentative proof of this "Pulsar No-Hair Theorem". Our analytics, while convincing in its non-triviality, is incomplete, and counts only as a plausibility argument. Our numerics, while complete, is dubious. The plasma flow in the weak pulsar magnetosphere turns out to be even more intricate than what we have previously proposed: some particles, aft...

  19. Pulsar Timing with the Fermi LAT

    CERN Document Server

    Ray, Paul S; Parent, Damien; PSC, the Fermi

    2010-01-01

    We present an overview of precise pulsar timing using data from the Large Area Telescope (LAT) on Fermi. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses allow the precise determination of the pulsar position, thus enabling detailed multiwavelength follow up.

  20. Stokes tomography of radio pulsar magnetospheres. II. Millisecond pulsars

    CERN Document Server

    Chung, C T Y

    2011-01-01

    The radio polarization characteristics of millisecond pulsars (MSPs) differ significantly from those of non-recycled pulsars. In particular, the position angle (PA) swings of many MSPs deviate from the S-shape predicted by the rotating vector model, even after relativistic aberration is accounted for, indicating that they have non-dipolar magnetic geometries, likely due to a history of accretion. Stokes tomography uses phase portraits of the Stokes parameters as a diagnostic tool to infer a pulsar's magnetic geometry and orientation. This paper applies Stokes tomography to MSPs, generalizing the technique to handle interpulse emission. We present an atlas of look-up tables for the Stokes phase portraits and PA swings of MSPs with current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models. We compare our look-up tables to data from 15 MSPs and find that the Stokes phase portraits for a current-modified dipole approximately match several MSPs whose PA swings ...

  1. Cherenkov Telescopes Results on Pulsar Wind Nebulae and Pulsars

    Science.gov (United States)

    Wilhelmi, Emma De Oña

    The last few years have seen a revolution in very high γ-ray astronomy (VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes. These new facilities, namely H.E.S.S. (High Energy Stereoscopic System), MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope) and its upgrade MAGIC 2, VERITAS (Very Energetic Radiation Imaging Telescope Array System) and CANGAROO (Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback) were designed to increase the flux sensitivity in the energy regime of hundreds of GeV, expanding the observed energy range from 50 to multi-TeV, and fostered as a result a period of rapid growth in our understanding of the Non-ThermalUniverse. As a result of this fast development the number of pulsar wind nebulae (PWNe) detected has increased from a few in the early 90's to more than two dozen of firm candidates nowadays. Also, the low energy threshold achieved allows to investigate the pulsed spectra of the high energy pulsars powering PWNe. A review of the most relevant VHE results concerning pulsars and their relativistic winds is discussed here in the context of Cherenkov telescopes.

  2. Circular Polarization in Pulsar Integrated Profiles: Updates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We update the systematic studies of circular polarization in integrated pulse profiles by Han et al. Data of circular polarization profiles are compiled. Sense reversals can occur in core or cone components, or near the intersection between components. The correlation between the sense of circular polarization and the sense of position angle variation for conal-double pulsars is confirmed with a much large database. Circular polarization of some pulsars has clear changes with frequency.Circular polarization of millisecond pulsars is marginally different from that of normal pulsars.

  3. An analysis of radio pulsar nulling statistics

    Science.gov (United States)

    Biggs, James D.

    1992-01-01

    Survival analysis methods are used to seek correlations between the fraction of null pulsars and other pulsar characteristics for an ensemble of 72 radio pulsars. The strongest correlation is found between the null fraction and the pulse period, suggesting that nulling is a manifestation of a faltering emission mechanism. Correlations are also found between the fraction of null pulses and other parameters that have a strong dependence on the pulse period. The results presented here suggest that nulling is broad-band and may ultimately be explained in terms of polar cap models of pulsar emission.

  4. The spin evolution of young pulsars

    CERN Document Server

    Espinoza, Cristobal M

    2012-01-01

    The current understanding of the spin evolution of young pulsars is reviewed through a compilation of braking index measurements. An immediate conclusion is that the spin evolution of all pulsars with a measured braking index is not purely caused by a constant magnetic dipole. The case of PSR J1734-3333 and its upward movement towards the magnetars is used as a guide to try to understand why pulsars evolve with n < 3. Evolution between different pulsar families, driven by the emergence of a hidden internal magnetic field, appears as one possible picture.

  5. Searching for gravitational waves from known pulsars

    CERN Document Server

    Pitkin, M; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Díaz, M; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Abbott, R; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J; Pitkin, Matthew

    2005-01-01

    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.

  6. Pulsar Discovery by Global Volunteer Computing

    Science.gov (United States)

    Knispel, B.; Allen, B.; Cordes, J. M.; Deneva, J. S.; Anderson, D.; Aulbert, C.; Bhat, N. D. R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Crawford, F.; Demorest, P. B.; Fehrmann, H.; Freire, P. C. C.; Gonzalez, M. E.; Hammer, D.; Hessels, J. W. T.; Jenet, F. A.; Kasian, L.; Kaspi, V. M.; Kramer, M.; Lazarus, P.; van Leeuwen, J.; Lorimer, D. R.; Lyne, A. G.; Machenschalk, B.; McLaughlin, M. A.; Messenger, C.; Nice, D. J.; Papa, M. A.; Pletsch, H. J.; Prix, R.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stappers, B. W.; Stovall, K.; Venkataraman, A.

    2010-09-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722’s pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  7. Pulsar Discovery by Global Volunteer Computing

    CERN Document Server

    Knispel, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Machenschalk, A G Lyne B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-01-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to "mine" large data sets. It has now found a 40.8 Hz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  8. The pulsar planet production process

    Science.gov (United States)

    Phinney, E. S.; Hansen, B. M. S.

    1993-01-01

    Most plausible scenarios for the formation of planets around pulsars end with a disk of gas around the pulsar. The supplicant author then points to the solar system to bolster faith in the miraculous transfiguration of gas into planets. We here investigate this process of transfiguration. We derive analytic sequences of quasi-static disks which give good approximations to exact solutions of the disk diffusion equation with realistic opacity tables. These allow quick and efficient surveys of parameter space. We discuss the outward transfer of mass in accretion disks and the resulting timescale constraints, the effects of illumination by the central source on the disk and dust within it, and the effects of the widely different elemental compositions of the disks in the various scenarios, and their extensions to globular clusters. We point out where significant uncertainties exist in the appropriate grain opacities, and in the effect of illumination and winds from the neutron star.

  9. What brakes the Crab pulsar?

    CERN Document Server

    Čadež, A; Barbieri, C; Calvani, M; Naletto, G; Barbieri, M; Ponikvar, D

    2015-01-01

    Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes "inst...

  10. Geminga's puzzling pulsar wind nebula

    CERN Document Server

    Posselt, B; Slane, P O; Romani, R; Bucciantini, N; Bykov, A M; Kargaltsev, O; Weisskopf, M C; Ng, C -Y

    2016-01-01

    We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $\\approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $\\approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {\\rm pc})$. The photon indices of the power law spectra of the lateral tails, $\\Gamma \\approx 1$, are significantly harder than those of the pulsar ($\\Gamma \\approx 1.5$) and the axial tail ($\\Gamma \\approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scena...

  11. Searching for Pulsars Using Image Pattern Recognition

    Science.gov (United States)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  12. Searching for pulsars using image pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brazier, A. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lynch, R.; Scholz, P. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M., E-mail: zhuww@phas.ubc.ca, E-mail: berndsen@phas.ubc.ca [Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  13. THE TIMING OF NINE GLOBULAR CLUSTER PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S. [Physics Department, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Freire, Paulo C. C. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-4325 (United States); Jacoby, Bryan A., E-mail: rlynch@physics.mcgill.ca, E-mail: pfreire@mpifr-bonn.mpg.de, E-mail: sransom@nrao.edu, E-mail: bryan.jacoby@gmail.com [Aerospace Corporation, 15049 Conference Center Drive, Chantilly, VA 20151-3824 (United States)

    2012-02-01

    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters (GCs) M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with other authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called 'black widow' class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in GCs. We have also measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M{sub Sun }) and companion mass (1.2064(20) M{sub Sun }), from which we derive the orbital inclination (sin i = 0.9956(14)) and the pulsar mass (1.3655(21) M{sub Sun }), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.

  14. Properties and geometry of radio pulsar emission

    NARCIS (Netherlands)

    Smits, Johannes Martinus

    2006-01-01

    This thesis consists of a number of studies on the radio emission of pulsars. The central topics are polarisation and multi frequency observations, which both lead to important information on the geometry of the emission. The first chapter introduces different aspects of pulsars that are related to

  15. Radio-quiet Gamma-ray Pulsars

    Science.gov (United States)

    Lin, Lupin Chun-Che

    2016-09-01

    A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog) known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400) of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on) are also specified to discuss their common and specific features.

  16. Non-Recycled Pulsars in Globular Clusters

    CERN Document Server

    Lynch, Ryan S; Lorimer, Duncan R; Mnatsakanov, Robert; Turk, Philip J; Ransom, Scott M

    2011-01-01

    We place limits on the population of non-recycled pulsars originating in globular clusters through Monte Carlo simulations and frequentist statistical techniques. We set upper limits on the birth rates of non-recycled cluster pulsars and predict how many may remain in the clusters, and how many may escape the cluster potentials and enter the field of the Galaxy.

  17. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  18. Recycled Pulsars: Spins, Masses and Ages

    CERN Document Server

    Tauris, Thomas M

    2016-01-01

    Recycled pulsars are mainly characterized by their spin periods, B-fields and masses. All these quantities are affected by previous interactions with a companion star in a binary system. Therefore, we can use these quantities as fossil records and learn about binary evolution. Here, I briefly review the distribution of these observed quantities and summarize our current understanding of the pulsar recycling process.

  19. Gamma Rays From Rotation-Powered Pulsars

    CERN Document Server

    Harding, A K

    2002-01-01

    The seven known gamma-ray pulsars represent a very small fraction of the more than 1000 presently known radio pulsars, yet they can give us valuable information about pulsar particle acceleration and energetics. Although the theory of acceleration and high-energy emission in pulsars has been studied for over 25 years, the origin of the pulsed gamma rays is a question that remains unanswered. Characteristics of the pulsars detected by the Compton Gamma-Ray Observatory could not clearly distinguish between an emission site at the magnetic poles (polar cap models) and emission from the outer magnetosphere (outer gap models). There are also a number of theoretical issues in both type of model which have yet to be resolved. The two types of models make contrasting predictions for the numbers of radio-loud and radio-quiet gamma-ray pulsars and of their spectral characteristics. GLAST will probably detect at least 50 radio-selected pulsars and possibly many more radio-quiet pulsars. With this large sample, it will b...

  20. Very-high energy emission from pulsars

    CERN Document Server

    Breed, M; Harding, A K

    2016-01-01

    The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 GeV, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, ...

  1. Rotational properties of strange-pulsar models

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata, Argentina (AR)); Horvath, J.E. (Instituto Astronomico e Geofisico, Departamento de Astronomia, Universidade de Sao Paulo, Caixa Postal 30627, 01051 Sao Paulo, Brazil (BR)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, Argentina (AR))

    1991-07-15

    We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties.

  2. Rotational properties of strange-pulsar models

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina)); Horvath, J.E. (Instituto Astronomico e Geofisico, Departamento de Astronomia, Universidade de Sao Paulo, Caixa Postal 30627, 01051 Sao Paulo (Brazil)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata (Argentina))

    1991-08-15

    We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties.

  3. High-time Resolution Astrophysics and Pulsars

    CERN Document Server

    Shearer, Andy

    2008-01-01

    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.

  4. A Radio Pulsar Spinning at 716 Hz

    CERN Document Server

    Hessels, J W T; Stairs, I H; Freire, P C C; Kaspi, V M; Camilo, F; Hessels, Jason W.T.; Ransom, Scott M.; Stairs, Ingrid H.; Freire, Paulo C.C.; Kaspi, Victoria M.; Camilo, Fernando

    2006-01-01

    We have discovered a 716-Hz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest-spinning neutron star ever found, breaking the 23-year-old record held by the 642-Hz pulsar B1937+21. The difficulty in detecting this pulsar, due to its very low flux density and high eclipse fraction (~40% of the orbit), suggests that even faster-spinning neutron stars exist. If the pulsar has a mass less than 2 Msun, then its radius is constrained by the spin rate to be < 16 km. The short period of this pulsar also constrains models that suggest gravitational radiation, through an r-mode instability, limits the maximum spin frequency of neutron stars.

  5. Searching for Pulsars with the SKA

    Science.gov (United States)

    Ransom, Scott

    2007-12-01

    One of the SKA Key Science Projects involves "strong field tests of gravity using pulsars and black holes". However, we currently don't know of any pulsar - black hole binaries! Another component of this key science project involves the detection of nano-Hertz gravitational waves using an ensemble of many tens or hundreds of very high-precision millisecond pulsars, many of which are also, as yet, unknown. It is clear that some of the first major pulsar projects conducted with early phases of the SKA will involve large-area surveys. Given the likely nature of the mid-frequency-range SKA (i.e. large numbers of small dishes), such surveys will be incredibly challenging, and will require extremely large data and computational rates. However, the technical issues are likely surmountable, and the resulting surveys will find thousands of new pulsars, many of which will be useful for these and other basic physics tests.

  6. Stability of pulsar rotational and orbital periods

    CERN Document Server

    Kopeikin, Sergei

    2009-01-01

    Millisecond and binary pulsars are the most stable astronomical standards of frequency. They can be applied to solving a number of problems in astronomy and time-keeping metrology including the search for a stochastic gravitational wave background in the early universe, testing general relativity, and establishing a new time-scale. The full exploration of pulsar properties requires that proper unbiased estimates of spin and orbital parameters of the pulsar be obtained. These estimates depend essentially on the random noise components present in pulsar timing residuals. The instrumental white noise has predictable statistical properties and makes no harm for interpretation of timing observations, while the astrophysical/geophysical low-frequency noise corrupts them, thus, reducing the quality of tests of general relativity and decreasing the stability of the pulsar time scale.

  7. The disturbance of a millisecond pulsar magnetosphere

    CERN Document Server

    Shannon, R M; Kerr, M; Bailes, M; Bhat, N D R; Coles, W A; Dai, S; Dempsey, J; Hobbs, G; Keith, M J; Lasky, P D; Levin, Y; Manchester, R N; Oslowski, S; Ravi, V; Reardon, D J; Rosado, P A; Spiewak, R; van Straten, W; Toomey, L; Wang, J -B; Wen, L; You, X -P; Zhu, X -J

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here we report on a broad-band variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over 4 months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  8. The Parkes Observatory Pulsar Data Archive

    CERN Document Server

    Hobbs, G; Manchester, R N; Dempsey, J; Chapman, J M; Khoo, J; Applegate, J; Bailes, M; Bhat, N D R; Bridle, R; Borg, A; Brown, A; Burnett, C; Camilo, F; Cattalini, C; Chaudhary, A; Chen, R; D'Amico, N; Kedziora-Chudczer, L; Cornwell, T; George, R; Hampson, G; Hepburn, M; Jameson, A; Keith, M; Kelly, T; Kosmynin, A; Lenc, E; Lorimer, D; Love, C; Lyne, A; McIntyre, V; Morrissey, J; Pienaar, M; Reynolds, J; Ryder, G; Sarkissian, J; Stevenson, A; Treloar, A; van Straten, W; Whiting, M; Wilson, G

    2011-01-01

    The Parkes pulsar data archive currently provides access to 144044 data files obtained from observations carried out at the Parkes observatory since the year 1991. Around 10^5 files are from surveys of the sky, the remainder are observations of 775 individual pulsars and their corresponding calibration signals. Survey observations are included from the Parkes 70cm and the Swinburne Intermediate Latitude surveys. Individual pulsar observations are included from young pulsar timing projects, the Parkes Pulsar Timing Array and from the PULSE@Parkes outreach program. The data files and access methods are compatible with Virtual Observatory protocols. This paper describes the data currently stored in the archive and presents ways in which these data can be searched and downloaded.

  9. Improving Pulsar Distances by Modelling Interstellar Scattering

    CERN Document Server

    Deshpande, A A

    1998-01-01

    We present here a method to study the distribution of electron density fluctuations in pulsar directions as well as to estimate pulsar distances. The method, based on a simple two-component model of the scattering medium discussed by Gwinn et al. (1993), uses scintillation & proper motion data in addition to the measurements of angular broadening & temporal broadening to solve for the model parameters, namely, the fractional distance to a discrete scatterer and the ascociated relative scattering strength. We show how this method can be used to estimate pulsar distances reliably, when the location of a discrete scatterer (e.g. an HII region), if any, is known. Considering the specific example of PSR B0736-40, we illustrate how a simple characterization of the Gum nebula region (using the data on the Vela pulsar) is possible and can be used along with the temporal broadening measurements to estimate pulsar distances.

  10. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  11. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    Science.gov (United States)

    Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.

    2013-09-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  12. Cosmic-Ray Positrons Produced by Pulsar Winds from Mature Gamma-Ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li

    2001-01-01

    In the frame of the γ-ray pulsar outer gap model, e± pairs in the pulsar magnetosphere are produced by the cascade of e+ pairs through synchrotron radiation of the return current from the outer gap. These pairs are accelerated mono-energetically to relativistic energies in the pulsar wind driven by low-frequency electromagnetic waves. Using Monte Carlo simulations, we generate a sample of the mature γ-ray pulsars in our Galaxy and calculate the positron production rate from these pulsars. With a simple leaky box model, we calculate the ratio of cosmic-ray positron to total electrons. Our result indicates that the pulsar contribution to the cosmic-ray positron peaks at about 40 GeV and the observed e+ / (e- + e+) ratio can be explained by this model.

  13. The LOFAR Known Pulsar Data Pipeline

    CERN Document Server

    Alexov, A; Mol, J D; Stappers, B; van Leeuwen, J

    2010-01-01

    Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being developed for the Blue Gene/P (BG/P) supercomputer and a large Linux cluster in order to utilize enormous amounts of computational capabilities (50Tflops) to process data streams of up to 23TB/hour. The LOFAR pipeline output will be using the Hierarchical Data Format 5 (HDF5) to efficiently store large amounts of numerical data, and to manage complex data encompassing a variety of data types, across distributed storage and processing architectures. We present the LOFAR Known Pulsar Data Pipeline overview, the pulsar beam-formed data format, the status of the pipeline processing as well as our future plans for developing the LOFAR Pulsar Search Pipeline. These LOFAR pipelines and software tools are being developed as the next gen...

  14. Searching for pulsars using image pattern recognition

    CERN Document Server

    Zhu, W W; Madsen, E C; Tan, M; Stairs, I H; Brazier, A; Lazarus, P; Lynch, R; Scholz, P; Stovall, K; Random, S M; Banaszak, S; Biwer, C M; Cohen, S; Dartez, L P; Flanigan, J; Lunsford, G; Matinez, J G; Mata, A; Rohr, M; Walker, A; Allen, B; Bhat, N D R; Bogdanov, S; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Desvignes, G; Ferdman, R D; Hessels, J W T; Jenet, F A; Kaplan, D; Kaspi, V M; Knispel, B; Lee, K J; van Leeuwen, J; Lyne, A G; McLaughlin, M A; Spitler, L G

    2014-01-01

    In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surv eys using image pattern recognition with deep neural nets---the PICS(Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interferences by looking for patterns from candidate. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of up to thousands pixel of image data. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its $\\sim$9000 neurons. Different from other pulsar selection programs which use pre-designed patterns, the PICS AI teaches itself the salient features of different pulsars from a set of human-labeled candidates through machine learning. The deep neural networks in this AI system grant it superior ability in recognizing various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated wi...

  15. Arecibo Pulsar and Transient Surveys Using ALFA

    Science.gov (United States)

    Cordes, J. M.

    2008-02-01

    A large scale survey for pulsars and transients is being conducted at the Arecibo Observatory using the Arecibo L-band Feed Array (ALFA). Data acquisition so far has been with correlation spectrometers that analyze a 0.1 GHz bandwidth at 1.4 GHz. The 256 frequency channels limit dispersion smearing to 1.2 ms at DMmax = 103 pc cm-3 while the sampling interval of 64 μs equals the dispersion smearing at DM~54 pc cm-3, providing high sensitivity to millisecond pulsars with standard periods out to implied distances of several kpc at low Galactic latitudes. In early 2008, we will use a new set of polyphase filter bank systems that provide the same time and frequency resolutions but over ALFA's full 0.3 GHz bandwidth. Currently the survey covers sky positions within 5° of the Galactic plane that are reachable with Arecibo. Preliminary results are given for some of the discoveries made so far, which include millisecond pulsars, a relativistic binary pulsar, a likely counterpart of a Compton GRO/EGRET gamma-ray source, and transient pulsars (including `RRATs''). We discuss the methodology of the survey, which includes archival of raw survey data at the Cornell Center for Advanced Computing and processing at distributed sites. The survey and follow up observations, which include timing observations, multiwavelength searches for orbital companions in the case of binary pulsars, etc. are organized through the Pulsar-ALFA (PALFA) Consortium. We expect the Galactic plane survey to continue until at least 2010, most likely involving multiple passes on each sky position to optimize detection of variable sources. The ALFA system will also be used to survey intermediate Galactic latitudes for millisecond pulsars, relativistic binaries with large systemic velocities, and runaway pulsars that will escape the Galaxy.

  16. Pulsar Search Using Supervised Machine Learning

    Science.gov (United States)

    Ford, John M.

    2017-05-01

    Pulsars are rapidly rotating neutron stars which emit a strong beam of energy through mechanisms that are not entirely clear to physicists. These very dense stars are used by astrophysicists to study many basic physical phenomena, such as the behavior of plasmas in extremely dense environments, behavior of pulsar-black hole pairs, and tests of general relativity. Many of these tasks require a large ensemble of pulsars to provide enough statistical information to answer the scientific questions posed by physicists. In order to provide more pulsars to study, there are several large-scale pulsar surveys underway, which are generating a huge backlog of unprocessed data. Searching for pulsars is a very labor-intensive process, currently requiring skilled people to examine and interpret plots of data output by analysis programs. An automated system for screening the plots will speed up the search for pulsars by a very large factor. Research to date on using machine learning and pattern recognition has not yielded a completely satisfactory system, as systems with the desired near 100% recall have false positive rates that are higher than desired, causing more manual labor in the classification of pulsars. This work proposed to research, identify, propose and develop methods to overcome the barriers to building an improved classification system with a false positive rate of less than 1% and a recall of near 100% that will be useful for the current and next generation of large pulsar surveys. The results show that it is possible to generate classifiers that perform as needed from the available training data. While a false positive rate of 1% was not reached, recall of over 99% was achieved with a false positive rate of less than 2%. Methods of mitigating the imbalanced training and test data were explored and found to be highly effective in enhancing classification accuracy.

  17. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    OpenAIRE

    Knispel, B.; Eatough, R.; Kim, H.; Keane, E; Allen, B.; Anderson, D; Aulbert, C.; Bock, O.; Crawford, F; Eggenstein, H.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A,; Machenschalk, B.

    2013-01-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of approximately 17000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop/s. We discovered 24 n...

  18. Millisecond Pulsars in Close Binaries

    CERN Document Server

    Tauris, Thomas M

    2015-01-01

    In this Habilitationsschrift (Habilitation thesis) I present my research carried out over the last four years at the Argelander Institute for Astronomy (AIfA) and the Max Planck Institute for Radio Astronomy (MPIfR). The thesis summarizes my main findings and has been written to fulfill the requirements for the Habilitation qualification at the University of Bonn. Although my work is mainly focused on the topic of millisecond pulsars (MSPs), there is a fairly broad spread of research areas ranging from the formation of neutron stars (NSs) in various supernova (SN) events, to their evolution, for example, via accretion processes in binary and triple systems, and finally to their possible destruction in merger events. The thesis is organized in the following manner: A general introduction to neutron stars and millisecond pulsars is given in Chapter 1. A selection of key papers published in 2011-2014 are presented in Chapters 2-10, ordered within five main research areas (ultra-stripped SNe in close binaries, ma...

  19. Gamma-ray Pulsar Revolution

    CERN Document Server

    Caraveo, Patrizia A

    2013-01-01

    Isolated Neutron Stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. At first, in the 70s, there were only two identified sources, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space both in the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting, INS, adding a new dimension to the INS family. Today we are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known of gamma-ray-emitting neutron stars. The 100 mark was crossed in 2011 and we are now appr...

  20. A digital pulsar backend based on FPGA

    Science.gov (United States)

    Luo, Jin-Tao; Chen, Lan; Han, Jin-Lin; Esamdin, Ali; Wu, Ya-Jun; Li, Zhi-Xuan; Hao, Long-Fei; Zhang, Xiu-Zhong

    2017-01-01

    A digital pulsar backend based on a Field Programmable Gate Array (FPGA) is developed. It is designed for incoherent de-dispersion of pulsar observations and has a maximum bandwidth of 512 MHz. The channel bandwidth is fixed to 1 MHz, and the highest time resolution is 10 {{μ }} s. Testing observations were carried out using the Urumqi 25-m telescope administered by Xinjiang Astronomical Observatory and the Kunming 40-m telescope administered by Yunnan Observatories, targeting PSR J0332+5434 in the L band and PSR J0437–4715 in the S band, respectively. The successful observation of PSR J0437–4715 demonstrates its ability to observe millisecond pulsars.

  1. On magnetic fields of radio pulsars

    CERN Document Server

    Nikitina, E B

    2016-01-01

    We used the magneto-dipole radiation mechanism for the braking of radio pulsars to calculate the new values of magnetic inductions at the surfaces of neutron stars. For this aim we estimated the angles ? between the rotation axis and the magnetic moment of the neutron star for 376 radio pulsars using three different methods. It was shown that there was the predominance of small inclinations of the magnetic axes. Using the obtained values of the angle ? we calculated the equatorial magnetic inductions for pulsars considered. These inductions are several times higher as a rule than corresponding values in the known catalogs.

  2. Dark matter vs. Pulsars: Catching the impostor

    CERN Document Server

    Mirabal, N

    2013-01-01

    Evidence of excess GeV emission nearly coinciding with the Galactic Centre has been interpreted as a possible signature of annihilating dark matter. In this paper, we argue that it seems too early to discard pulsars as a viable explanation for the observed excess. On the heels of the recently released Second Fermi LAT Pulsar Catalogue (2FPC), it is still possible that a population of hard (Gamma < 1) millisecond pulsars (MSPs) either endemic to the innermost region or part of a larger nascent collection of hard MSPs that appears to be emerging in the 2FPC could explain the GeV excess near the Galactic Centre.

  3. The characteristics of millisecond pulsar emission; 2, Polarimetry

    CERN Document Server

    Xilouris, K M; Jessner, A; Von Hoensbroech, A; Lorimer, D; Wielebinski, R; Wolszczan, A; Camilo, F M

    1998-01-01

    We have made polarimetric monitoring observations of millisecond pulsars visible from the northern hemisphere at 1410 MHz. Their emission properties are compared with those of normal pulsars. Although we demonstrated in paper I that millisecond pulsars exhibit the same flux density spectra and similar profile complexity, our results presented here suggest that millisecond pulsar profiles do not comply with the predictions of classification schemes based on ``normal'' pulsars. The frequency development of a large number of millisecond pulsar profiles is abnormal when compared with the development seen for normal pulsars. Moreover, the polarization characteristics suggest that millisecond-pulsar magnetospheres might not simply represent scaled versions of the magnetospheres of normal pulsars, supporting results of paper I. However, phenomena such as mode-changing activity in both intensity and polarization are recognized here for the first time (e.g., J1730--2304). This suggests that while the basic emission me...

  4. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  5. Observing pulsars and fast transients with LOFAR

    CERN Document Server

    Stappers, B W; Alexov, A; Anderson, K; Coenen, T; Hassall, T; Karastergiou, A; Kondratiev, V I; Kramer, M; van Leeuwen, J; Mol, J D; Noutsos, A; Romein, J W; Weltevrede, P; Fender, R; Wijers, R A M J; Bähren, L; Bell, M E; Broderick, J; Daw, E J; Dhillon, V S; Eislöffel, J; Falcke, H; Griessmeier, J; Law, C; Markoff, S; Miller-Jones, J C A; Scheers, B; Spreeuw, H; Swinbank, J; ter Veen, S; Wise, M W; Wucknitz, O; Zarka, P; Anderson, J; Asgekar, A; Avruch, I M; Beck, R; Bennema, P; Bentum, M J; Best, P; Bregman, J; Brentjens, M; van de Brink, R H; Broekema, P C; Brouw, W N; Brüggen, M; de Bruyn, A G; Butcher, H R; Ciardi, B; Conway, J; Dettmar, R -J; van Duin, A; van Enst, J; Garrett, M; Gerbers, M; Grit, T; Gunst, A; van Haarlem, M P; Hamaker, J P; Heald, G; Hoeft, M; Holties, H; Horneffer, A; Koopmans, L V E; Kuper, G; Loose, M; Maat, P; McKay-Bukowski, D; McKean, J P; Miley, G; Morganti, R; Nijboer, R; Noordam, J E; Norden, M; Olofsson, H; Pandey-Pommier, M; Polatidis, A; Reich, W; Röttgering, H; Schoenmakers, A; Sluman, J; Smirnov, O; Steinmetz, M; Sterks, C G M; Tagger, M; Tang, Y; Vermeulen, R; Vermaas, N; Vogt, C; de Vos, M; Wijnholds, S J; Yatawatta, S; Zensus, A

    2011-01-01

    Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric "radio window": 10-240MHz, that will greatly facilitate observing pulsars at low radio frequencies. Through the huge collecting area, long baselines, and flexible digital hardware, it is expected that LOFAR will revolutionize radio astronomy at the lowest frequencies visible from Earth. LOFAR is a next-generation radio telescope and a pathfinder to the Square Kilometre Array (SKA), in that it incorporates advanced multi-beaming techniques between thousands of individual elements. We discuss the motivation for low-frequency pulsar observations in general and the potential of LOFAR in addressing these science goals. We present LOFAR as it is designed to perform high-time-resolution observations of pulsars and other fast transients, and outline the various relevant observing modes and data reduct...

  6. The origin of the Guitar pulsar

    CERN Document Server

    Tetzlaff, Nina; Hohle, Markus M

    2009-01-01

    Among a sample of 140 OB associations and clusters, we want to identify probable parent associations for the Guitar pulsar (PSR B2224+65) which would then also constrain its age. For this purpose, we are using an Euler-Cauchy technique treating the vertical component of the galactic potential to calculate the trajectories of the pulsar and each association into the past. To include errors we use Monte-Carlo simulations varying the initial parameters within their error intervals. The whole range of possible pulsar radial velocities is taken into account during the simulations. We find that the Guitar pulsar most probably originated from the Cygnus OB3 association ~0.8 Myr ago inferring a current radial velocity of v_r~-30 km/s, consistent with the inclination of its bow shock.

  7. The origin of the Guitar pulsar

    Science.gov (United States)

    Tetzlaff, N.; Neuhäuser, R.; Hohle, M. M.

    2009-11-01

    Among a sample of 140 OB associations and clusters, we want to identify probable parent associations for the Guitar pulsar (PSR B2224+65), which would then also constrain its age. For this purpose, we are using an Euler-Cauchy technique, treating the vertical component of the Galactic potential to calculate the trajectories of the pulsar and each association into the past. To include errors, we use Monte Carlo simulations varying the initial parameters within their error intervals. The whole range of possible pulsar radial velocities is taken into account during the simulations. We find that the Guitar pulsar most probably originated from the Cygnus OB3 association ~0.8Myr ago, inferring a current radial velocity of vr ~ -30kms-1, consistent with the inclination of its bow shock.

  8. Perspectives on Gamma-Ray Pulsar Emission

    CERN Document Server

    Baring, Matthew G

    2010-01-01

    Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

  9. Outlook for Detecting Gravitational Waves with Pulsars

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  10. The Velocity Distribution of Isolated Radio Pulsars

    CERN Document Server

    Arzoumanian, Z; Cordes, J M

    2002-01-01

    (Abridged) We infer the velocity distribution of radio pulsars by modelling their birth, evolution, and detection in large-scale 0.4 GHz pulsar surveys, and by comparing model distributions of measurable pulsar properties with survey data using a likelihood function. We test models that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as sqrt(Edot) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/s and 500 km/s is greatly preferred to any one-component distribution. We explore some consequences of the preferred birth velocity distribution: (i)...

  11. Birth and Evolution of Isolated Radio Pulsars

    CERN Document Server

    Faucher-Giguere, C A

    2005-01-01

    We investigate the birth and evolution of Galactic isolated radio pulsars. We begin by estimating their birth space velocity distribution from proper motion measurements of Brisken et al. (2002, 2003). We find no evidence for multimodality of the distribution and favor one in which the absolute one-dimensional velocity components are exponentially distributed and with a three-dimensional mean velocity of 380^{+40}_{-60} km s^-1. We then proceed with a Monte Carlo-based population synthesis, modelling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam surveys. We present a population model that appears generally consistent with the observations. Our results suggest that pulsars are born in the spiral arms, with a Galactocentric radial distribution that is well described by the functional form proposed by Yusifov & Kucuk (2004), in which the pulsar surface density peaks at radius ~3 kpc. The birth spin period distribution extends to several h...

  12. Searching for Pulsars in Close Binary Systems

    CERN Document Server

    Jouteux, S; Stappers, B W; Jonker, P; Van der Klis, M

    2001-01-01

    We present a detailed mathematical analysis of the Fourier response of binary pulsar signals whose frequencies are modulated by circular orbital motion. The fluctuation power spectrum of such signals is found to be \

  13. Finding Pulsars with Einstein@Home

    Science.gov (United States)

    Knispel, Benjamin; Allen, B.; Cordes, J.; Deneva, J.; Anderson, D.; Aulbert, C.; Bhat, N. D. R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Crawford, F.; Demorest, P. B.; Fehrmann, H.; Freire, P. C. C.; Gonzalez, M. E.; Hammer, D.; Hessels, J. W. T.; Jenet, F. A.; Kasian, L.; Kaspi, V. M.; Kramer, M.; Lazarus, P.; van Leeuwen, J.; Lorimer, D. R.; Lyne, A. G.; Machenschalk, B.; McLaughlin, M. A.; Messenger, C.; Nice, D. J.; Papa, M. A.; Pletsch, H. J.; Prix, R.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stappers, B. W.; Stovall, K.; Venkataraman, A.; Desvignes, G.

    2011-01-01

    The Einstein@Home project is a global distributed computing project and aggregates the computer power of hundreds of thousands of volunteers from 192 countries to "mine" large data sets. Its long-term goal is the detection of continuous gravitational waves in data from the LIGO interferometric gravitational wave detectors. Since March 2009 about a third of Einstein@Home's computation cycles is also used to search for tight binary pulsars in PALFA radio data from the Arecibo observatory. In July 2010, two new pulsars were found by Einstein@Home, J2007+2722 and J1952+26, the latter in a binary system with 9.4 hours orbital period. Here, we present an overview of the status of the Einstein@Home project and describe its search for radio pulsars in binaries with periods larger than 11 minutes. Further, we briefly review Einstein@Home's pulsar discoveries.

  14. Testing Gravity with Pulsars in the SKA Era

    CERN Document Server

    Shao, Lijing; Antoniadis, John; Deller, Adam T; Freire, Paulo C C; Hessels, Jason W T; Janssen, Gemma H; Kramer, Michael; Kunz, Jutta; Lämmerzahl, Claus; Perlick, Volker; Possenti, Andrea; Ransom, Scott; Stappers, Benjamin W; van Straten, Willem

    2015-01-01

    The Square Kilometre Array (SKA) will use pulsars to enable precise measurements of strong gravity effects in pulsar systems, which yield tests of gravitational theories that cannot be carried out anywhere else. The Galactic census of pulsars will discover dozens of relativistic pulsar systems, possibly including pulsar -- black hole binaries which can be used to test the "cosmic censorship conjecture" and the "no-hair theorem". Also, the SKA's remarkable sensitivity will vastly improve the timing precision of millisecond pulsars, allowing probes of potential deviations from general relativity (GR). Aspects of gravitation to be explored include tests of strong equivalence principles, gravitational dipole radiation, extra field components of gravitation, gravitomagnetism, and spacetime symmetries.

  15. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  16. A Large Glitch in the Crab Pulsar

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a new pulsar timing system at the 25-m radio telescope of Urumqi Astronomical Observatory, we have detected a large glitch in the Crab pulsar which occurred in 2000 July. The size of the gfitch is Av/v ~ 2.4 × 10-8, with a rela tive increment in frequency derivative Av/v ~ 5 × 10-3. The observing system is introduced and the observed properties of the glitch are discussed.

  17. The Timing of Nine Globular Cluster Pulsars

    CERN Document Server

    Lynch, Ryan S; Ransom, Scott M; Jacoby, Bryan A

    2011-01-01

    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with past authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called "black widow" class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that on...

  18. Pulsar Navigation in the Solar System

    CERN Document Server

    Dong, Jiang

    2008-01-01

    The X-ray Pulsar-based Autonomous Navigation(XNAV) were recently tested which use the Crab pulsar (PSR B0531+21) in the USA Experiment on flown by the Navy on the Air Force Advanced Research and Global Observation Satellite (ARGOS) under the Space Test Program. It provide the way that the spacecraft could autonomously determine its position with respect to an inertial origin. Now I analysis the sensitivity of the exist instrument and the signal process to use radio pulsar navigation and discuss the integrated navigation use pulsar,then give the different navigation mission analysis and design process basically which include the space, the airborne, the ship and the land of the planet or the lunar.So the pulsar navigation can give the continuous position in deep spaces, that means we can freedom fly successfully in the solar system use celestial navigation that include pulsar and traditional star sensor.It also can less or abolish the depend of Global Navigation Satellite System which include GPS, GRONSS, Gali...

  19. The Future of Pulsar Timing Arrays

    Science.gov (United States)

    Stappers, B. W.

    Significant advances have been made in the sensitivity of pulsar timing arrays for the detection of gravitational waves in the last decade. This presentation looked forward to consider where the development of pulsar timing arrays might go as we head towards the Square Kilometre Array (SKA) and then beyond. I reviewed where progress needs to be made in terms of sensitivity to gravitational waves, including improvements to existing observing approaches and new telescopes such as MeerKAT and FAST and techniques like LEAP. The dramatic increase in the number of millisecond pulsars is presented and how that might affect progress towards a first detection is discussed. Developments in analytic techniques were also discussed, including the removal of interstellar medium effects, red noise and pulse profile variations. A summary of how the SKA can contribute through an increased millisecond pulsar population and pulsar timing sensitivity was presented. With the likelihood that the SKA will implement some form of Key Science Project approach, some ideas of how will this affect how the International Pulsar Timing Array effort and how it might evolve into a KSP were discussed.

  20. On gigahertz spectral turnovers in pulsars

    CERN Document Server

    Rajwade, Kaustubh; Anderson, Loren D

    2015-01-01

    Pulsars are known to emit non-thermal radio emission that is generally a power-law function of frequency. In some cases, a turnover is seen at frequencies around 100~MHz. Kijak et al. have reported the presence of a new class of ''Gigahertz Peaked Spectrum'' (GPS) pulsars that show spectral turnovers at frequencies around 1 GHz. We apply a model based on free-free thermal absorption to explain these turnovers in terms of surrounding material such as the dense environments found in HII regions, Pulsar Wind Nebulae (PWNe), or in cold, partially ionized molecular clouds. We show that the turnover frequency depends on the electron temperature of the environment close to the pulsar, as well as the emission measure along the line of sight. We fitted this model to the radio fluxes of known GPS pulsars and show that it can replicate the GHz turnover. From the thermal absorption model, we demonstrate that normal pulsars would exhibit a GPS-like behaviour if they were in a dense environment. We discuss the application ...

  1. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  2. The Parkes Pulsar Timing Array Project

    CERN Document Server

    Manchester, R N; Bailes, M; Coles, W A; van Straten, W; Keith, M J; Shannon, R M; Bhat, N D R; Brown, A; Burke-Spolaor, S G; Champion, D J; Chaudhary, A; Edwards, R T; Hampson, G; Hotan, A W; Jameson, A; Jenet, F A; Kesteven, M J; Khoo, J; Kocz, J; Maciesiak, K; Oslowski, S; Ravi, V; Reynolds, J R; Sarkissian, J M; Verbiest, J P W; Wen, Z L; Wilson, W E; Yardley, D; Yan, W M; You, X P

    2012-01-01

    A "pulsar timing array" (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of "global" phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For...

  3. Millisecond Pulsars, their Evolution and Applications

    Indian Academy of Sciences (India)

    R. N. Manchester

    2017-09-01

    Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from “normal” pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion-powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars.

  4. Pulsars in Globular Clusters with the SKA

    CERN Document Server

    Hessels, J W T; Bailes, M; Bassa, C G; Freire, P C C; Lorimer, D R; Lynch, R; Ransom, S M; Stairs, I H

    2015-01-01

    Globular clusters are highly efficient radio pulsar factories. These pulsars can be used as precision probes of the clusters' structure, gas content, magnetic field, and formation history; some of them are also highly interesting in their own right because they probe exotic stellar evolution scenarios as well as the physics of dense matter, accretion, and gravity. Deep searches with SKA1-MID and SKA1-LOW will plausibly double to triple the known population. Such searches will only require one to a few tied-array beams, and can be done during early commissioning of the telescope - before an all-sky pulsar survey using hundreds to thousands of tied-array beams is feasible. With SKA2 it will be possible to observe most of the active radio pulsars within a large fraction of the Galactic globular clusters, an estimated population of 600 - 3700 observable pulsars (those beamed towards us). This rivals the total population of millisecond pulsars that can be found in the Galactic field; fully characterizing it will p...

  5. Millisecond Pulsars, their Evolution and Applications

    Science.gov (United States)

    Manchester, R. N.

    2017-09-01

    Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from "normal" pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion-powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars.

  6. Radio polarimetry of Galactic centre pulsars

    CERN Document Server

    Schnitzeler, D H F M; Ferrière, K; Kramer, M; Lee, K J; Noutsos, A; Shannon, R M

    2016-01-01

    To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A*. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ~ 16-33 microgauss; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (~ 12 degrees). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsar...

  7. Scaling from Jupiter to pulsars and the acceleration of cosmic ray particles by pulsars, 3

    Science.gov (United States)

    Fan, C. Y.

    1985-01-01

    An expression for the rate of energy generation by a pulsar an estimate of contribution from all the pulsars in our galaxy to the observed cosmic ray intensity was presented. The theory was then developed to an expanded version, and observational facts supporting the theory were cited.

  8. The imprint of pulsar parameters on the morphology of Pulsar Wind Nebulae

    Science.gov (United States)

    Bühler, Rolf; Giomi, Matteo

    2016-11-01

    The morphology of young Pulsar Wind Nebulae (PWN) is largely determined by the properties of the wind injected by the pulsar. We have used a recent parametrization of the wind obtained from force-free electrodynamics simulations of pulsar magnetospheres to simulate nebulae for different sets of pulsar parameters. We performed axisymmetric relativistic magnetohydrodynamics simulations to test the morphology dependence of the nebula on the obliquity of the pulsar and on the magnetization of the pulsar wind. We compare these simulations to the morphology of the Vela and Crab PWN. We find that the morphology of Vela can be reproduced qualitatively if the pulsar obliquity angle is α ≈ 45° and the magnetization of the wind is high (σ0 ≈ 3.0). A morphology similar to the one of the Crab nebula is only obtained for low-magnetization simulations with α ≳ 45°. Interestingly, we find that Kelvin-Helmholtz instabilities produce small-scale turbulences downstream of the reverse shock of the pulsar wind.

  9. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to sear

  10. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    CERN Document Server

    Knispel, B; Kim, H; Keane, E F; Allen, B; Anderson, D; Aulbert, C; Bock, O; Crawford, F; Eggenstein, H -B; Fehrmann, H; Hammer, D; Kramer, M; Lyne, A G; Machenschalk, B; Miller, R B; Papa, M A; Rastawicki, D; Sarkissian, J; Siemens, X; Stappers, B W

    2013-01-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of approximately 17 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about one PFlop/s. We discovered 24 new pulsars in our search, of which 18 were isolated pulsars, and six were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (420 pc cm^{-3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2531 li...

  11. The imprint of pulsar parameters on the morphology of Pulsar Wind Nebulae

    CERN Document Server

    Buehler, Rolf

    2016-01-01

    The morphology of young Pulsar Wind Nebulae (PWN) is largely determined by the properties of the wind injected by the pulsar. We have used a recent parametrization of the wind obtained from Force Free Electrodynamics simulations of pulsar magnetospheres to simulate nebulae for different sets of pulsar parameters. We performed axisymmetric Relativistic Magnetohydrodynamics simulations to test the morphology dependence of the nebula on the obliquity of the pulsar and on the magnetization of the pulsar wind. We compare these simulations to the morphology of the Vela and Crab PWN. We find that the morphology of Vela can be reproduced qualitatively if the pulsar obliquity angle is alpha ~45deg and the magnetization of the wind is high (sigma_0 ~ 3.0). A morphology similar to the one of the Crab Nebula is only obtained for low magnetization simulations with alpha >~ 45deg. Interestingly, we find that Kelvin-Helmholtz instabilities produce small scale turbulences downstream of the reverse shock of the pulsar wind.

  12. Radio Searches of Fermi LAT Sources and Blind Search Pulsars: The Fermi Pulsar Search Consortium

    CERN Document Server

    Ray, P S; Parent, D; Bhattacharya, D; Bhattacharyya, B; Camilo, F; Cognard, I; Theureau, G; Ferrara, E C; Harding, A K; Thompson, D J; Freire, P C C; Guillemot, L; Gupta, Y; Roy, J; Hessels, J W T; Johnston, S; Keith, M; Shannon, R; Kerr, M; Michelson, P F; Romani, R W; Kramer, M; McLaughlin, M A; Ransom, S M; Roberts, M S E; Parkinson, P M Saz; Ziegler, M; Smith, D A; Stappers, B W; Weltevrede, P; Wood, K S

    2012-01-01

    We present a summary of the Fermi Pulsar Search Consortium (PSC), an international collaboration of radio astronomers and members of the Large Area Telescope (LAT) collaboration, whose goal is to organize radio follow-up observations of Fermi pulsars and pulsar candidates among the LAT gamma-ray source population. The PSC includes pulsar observers with expertise using the world's largest radio telescopes that together cover the full sky. We have performed very deep observations of all 35 pulsars discovered in blind frequency searches of the LAT data, resulting in the discovery of radio pulsations from four of them. We have also searched over 300 LAT gamma-ray sources that do not have strong associations with known gamma-ray emitting source classes and have pulsar-like spectra and variability characteristics. These searches have led to the discovery of a total of 43 new radio millisecond pulsars (MSPs) and four normal pulsars. These discoveries greatly increase the known population of MSPs in the Galactic disk...

  13. Possible distance indicators in gamma-ray pulsars

    Institute of Scientific and Technical Information of China (English)

    Wei Wang

    2011-01-01

    Distance measurement of gamma-ray pulsars is a current challenge in pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 70 gamma-ray pulsars including 24 new gamma-selected pulsars with almost no distance information. We study the relation between gammaray emission efficiency (η = Lγ/E) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT. We have introduced three generation-order parameters to describe the gamma-ray emission properties of pulsars, and find a strong correlation of rη- ζ3, a generation-order parameter which reflects γ-ray photon generation in the pair cascade processes induced by magnetic field absorption in a pulsar's magnetosphere.A good correlation of η- BLC, the magnetic field at the light cylinder radius, is also found. These correlations are the distance indicators in gamma-ray pulsars used to evaluate distances for gamma-selected pulsars. Distances of 25 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. The physical origin of the correlations may also be interesting for pulsar studies.

  14. Exploring Radio Pulsars With New Technologies

    Science.gov (United States)

    Torne, Pablo

    2017-04-01

    Pulsars are rapidly-rotating, highly-magnetized compact neutron stars. Their strong gravitational and magnetic fields, together with the stability of their rotations and the precision with which we can measure them using radio telescopes, make pulsars unique laboratories for a wide variety of physical experiments. This thesis presents an investigation of the application of new receiver technologies and observing techniques at different radio wavelengths to the search for and study of pulsars. Discovering new pulsars always expands our capabilities to do new science. In general, the most exciting pulsars are those in binary systems because of their potential in high-precision tests of General Relativity and other gravity theories, and for constraining the Equation-of-State of ultra-dense matter. I present a search for pulsars in the Galactic Centre, where the probabilities of finding pulsar binaries, including the long-sought pulsar-black hole system, are high. The data were taken with the Effelsberg 100-m radio telescope and used high radio frequencies between 4.85 and 18.95 GHz to partially overcome the strong scattering in the direction to the centre of the Galaxy. With approximately 50 per cent of the results reviewed, no new pulsars have been discovered. We carried out a study of the sensitivity limits of the survey, finding that our sensitivity to Galactic Centre pulsars is highly reduced by the contributions to the total system noise of the Galactic Centre background and the atmosphere. We conclude that the paucity of detections in this and perhaps also previous similar surveys is likely due to insufficient sensitivity, and not a lack of pulsars in the region. In March 2013, a radio magnetar, one of the rarest types of pulsars, became suddenly visible from the Galactic Centre. I led two multifrequency observing campaigns on this source, SGR J1745-2900, in order to study its radio emission properties. Four different observatories were involved (including

  15. Do asteroids evaporate near pulsars? Induction heating by pulsar waves revisited

    CERN Document Server

    Kotera, Kumiko; Voisin, Guillaume; Heyvaerts, Jean

    2016-01-01

    We investigate the evaporation of close-by pulsar companions, such as planets, asteroids, and white dwarfs, by induction heating. Assuming that the outflow energy is dominated by a Poynting flux (or pulsar wave) at the location of the companions, we calculate their evaporation timescales, by applying the Mie theory. Depending on the size of the companion compared to the incident electromagnetic wavelength, the heating regime varies and can lead to a total evaporation of the companion. In particular, we find that inductive heating is mostly inefficient for small pulsar companions, although it is generally considered the dominant process. Small objects like asteroids can survive induction heating for $10^4\\,$years at distances as small as $1\\,R_\\odot$ from the neutron star. For degenerate companions, induction heating cannot lead to evaporation and another source of heating (likely by kinetic energy of the pulsar wind) has to be considered. It was recently proposed that bodies orbiting pulsars are the cause of ...

  16. Interaction of a magnetized pulsar wind with its surroundings. MHD simulations of Pulsar Wind Nebulae

    CERN Document Server

    Van der Swaluw, E

    2003-01-01

    Magnetohydrodynamical simulations are presented of a magnetized pulsar wind interacting directly with the interstellar medium, or, in the case of a surrounding supernova remnant, with the associated freely expanding ejecta of the progenitor star. In both cases the simulations show that the pulsar wind nebula will be elongated due to the dynamical influence of the toroidal magnetic fields, which confirm predictions from a semi-analytical model presented by Begelman & Li. The simulations follow the expansion of the pulsar wind nebula when the latter is bounded by a strong shock and show that the expansion can be modeled with a standard power-law expansion rate. By performing different simulations with different magnetization parameters, I show that the latter weakly correlates with the elongation of the pulsar wind nebula. The results from the simulations are applied to determine the nature of the expansion rate of the pulsar wind nebula 3C58. It is shown that there is both observational and theoretical evi...

  17. A Gravitational Wave Pulsar Timing Backend for DSN Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a state-of-the-art pulsar timing processor to be installed at the DSN to demonstrate precision pulsar timing capability along with a novel signal processing...

  18. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    CERN Document Server

    Denisov, V I; Pimenov, A B; Sokolov, V A

    2016-01-01

    In this paper we investigate vacuum nonlinear electrodynamics corrections on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.

  19. The hunt for new pulsars with the Green Bank Telescope

    CERN Document Server

    Lynch, Ryan S; Banaszak, Shawn; Becker, Alison; Berndsen, Aaron; Biwer, Chris; Boyles, Jason; Cardoso, Rogerio F; Cherry, Angus; Dartez, Louis P; Day, David; Epstein, Courtney R; Flanigan, Joe; Ford, Anthony; Garcia, Alejandro; Hessels, Jason W T; Jenet, Fredrick A; Kaplan, David L; Karako-Argaman, Chen; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; Lunsford, Grady; Martinez, Jose; McLaughlin, Maura A; McPhee, Christie A; Pennucci, Tim; Ransom, Scott M; Roberts, Mallory S E; Rohr, Matt; Siemens, Xavi; Stairs, Ingrid H; Stovall, Kevin; van Leeuwen, Joeri; Walker, Arielle; Wells, Brad

    2013-01-01

    The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars. Over the last decade, the GBT has successfully found over 100 new pulsars through large-area surveys. Here I discuss the two most recent---the GBT 350 MHz Drift-scan survey and the Green Bank North Celestial Cap survey. The primary science goal of both surveys is to find interesting individual pulsars, including young pulsars, rotating radio transients, exotic binary systems, and especially bright millisecond pulsars (MSPs) suitable for inclusion in Pulsar Timing Arrays, which are trying to directly detect gravitational waves. These two surveys have combined to discover 85 pulsars to date, among which are 14 MSPs and many unique and fascinating systems. I present highlights from these surveys and discuss future plans. I also discuss recent results from targeted GBT pulsar searches of globular clusters and Fermi sources.

  20. How Fast Could a Proto-pulsar Rotate?

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to two estimated relations between the initial period andthe dynamo-generated magnetic dipole field of pulsars, we calculate the statisticaldistributions of pulsar initial periods. It is found that proto-pulsars are very likelyto have rotation periods between 20 ms and 30 ms, and that most of the pulsarsrotate initially at a period < 60 ms. Our result supports the asymmetric neutrinoemission model for pulsar kick.

  1. Chandra Associates Pulsar and Historic Supernova

    Science.gov (United States)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  2. Unusual flux-distance relationship for pulsars suggested by analysis of the Australia national telescopy facility pulsar catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John [Los Alamos National Laboratory; Perez, M R [Los Alamos National Laboratory; Singleton, J [Los Alamos National Laboratory; Ardavan, H [UNIV OF CAMBRIDGE; Ardavan, A [UNIV OF OXFORD

    2009-01-01

    We analyze pulsar fluxes at 1400 MHz (S(1400)) and distances d taken from the Australia National Telescope Facility (ATNF) Pulsar Catalogue. Under the assumption that pulsar populations in different parts of the Galaxy are similar, we find that either (a) pulsar fluxes diminish with distance according to a non-standard power law (we suggest S(1400){proportional_to} 1/d rather than {proportional_to} 1/d{sup 2}) or (b) that there are very significant (i.e. order of magnitude) errors in the distance estimates quoted in the ATNF Catalogue. The former conclusion (a) supports a recent model for pulsar emission that has also successfully explained the frequency spectrum of the Crab pulsar over 16 orders of magnitude of frequency, whilst alternative (b) would necessitate a radical re-evaluation of both the dispersion method for estimating pulsar distances and current ideas about the distribution of pulsars within our Galaxy.

  3. Frequency dependence of orthogonal polarisation modes in pulsars

    NARCIS (Netherlands)

    Smits, J.M.; Stappers, B.W.; Edwards, R.T.; Kuijpers, J.; Ramachandran, R.

    2006-01-01

    We have carried out a study of the orthogonal polarisation mode behaviour as afunction of frequency of 18pulsars, using average pulsar data from the European Pulsar Network(EPN). Assuming that the radiation consists of two100% polarised completely orthogonal superposed modes we separated these

  4. Clocks in the sky the story of pulsars

    CERN Document Server

    McNamara, Geoff

    2008-01-01

    Pulsars are rapidly spinning neutron stars, the collapsed cores of once massive stars that ended their lives as supernova explosions. Pulsar rotation rates can reach incredible speeds, up to hundreds of times per second. This title explores the history, subsequent discovery and contemporary research into pulsar astronomy.

  5. Detection and localization of continuous gravitational waves with pulsar timing arrays: the role of pulsar terms

    CERN Document Server

    Zhu, Xingjiang; Xiong, Jie; Xu, Yanjun; Wang, Yan; Mohanty, Soumya D; Hobbs, George; Manchester, Richard N

    2016-01-01

    A pulsar timing array is a Galactic-scale detector of nanohertz gravitational waves (GWs). Its target signals contain two components: the `Earth term' and the `pulsar term' corresponding to GWs incident on the Earth and pulsar respectively. In this work we present a Frequentist method for the detection and localization of continuous waves that takes into account the pulsar term and is significantly faster than existing methods. We investigate the role of pulsar terms by comparing a full-signal search with an Earth-term-only search for non-evolving black hole binaries. By applying the method to synthetic data sets, we find that (i) a full-signal search can slightly improve the detection probability (by about five percent); (ii) sky localization is biased if only Earth terms are searched for and the inclusion of pulsar terms is critical to remove such a bias; (iii) in the case of strong detections (with signal-to-noise ratio $\\gtrsim$ 30), it may be possible to improve pulsar distance estimation through GW meas...

  6. The Millisecond Pulsars in NGC 6760

    CERN Document Server

    Freire, P C C; Nice, D J; Ransom, S M; Lorimer, D R; Stairs, I H; Freire, Paulo C. C.; Hessels, Jason W. T.; Nice, David J.; Ransom, Scott M.; Lorimer, Duncan R.; Stairs, Ingrid H.

    2004-01-01

    We present the results of recent Arecibo and Green Bank observations of the globular cluster NGC 6760. Using Arecibo, a phase-coherent timing solution has been obtained for the previously known binary pulsar in this cluster, PSR J1911+0102A. We have also discovered a new millisecond pulsar in NGC 6760, PSR J1911+0101B, an isolated object with a rotational period of 5.38 ms and a dispersion measure DM = 196.7 cm-3 pc. Both pulsars are located within 1.3 core radii of the cluster center and have negative period derivatives. The resulting lower limits for the accelerations of the pulsars are within the range expected given a simple model of the cluster. A search for eclipses in the PSR J1911+0102A binary system using both telescopes yielded negative results. The corresponding limits on the extra gas column density at superior conjunction are consistent with the hypothesis that the observational properties of ultra-low-mass binary pulsars like PSR J1911+0102A are strongly affected by the inclination of the orbita...

  7. Binary pulsars as dark-matter probes

    CERN Document Server

    Pani, Paolo

    2015-01-01

    During the motion of a binary pulsar around the galactic center, the pulsar and its companion experience a wind of dark-matter particles that can affect the orbital motion through dynamical friction. We show that this effect produces a characteristic seasonal modulation of the orbit and causes a secular change of the orbital period whose magnitude can be well within the astonishing precision of various binary-pulsar observations. Our analysis is valid for binary systems with orbital period longer than a day. By comparing this effect with pulsar-timing measurements, it is possible to derive model-independent upper bounds on the dark-matter density at different distances $D$ from the galactic center. For example, the precision timing of J1713+0747 imposes $\\rho_{\\rm DM}\\lesssim 10^5\\,{\\rm GeV/cm}^3$ at $D\\approx7\\,{\\rm kpc}$. The detection of a binary pulsar at $D\\lesssim 10\\,{\\rm pc}$ could provide stringent constraints on dark-matter halo profiles and on growth models of the central black hole. The Square Kil...

  8. Thermal properties of three Fermi pulsars

    Science.gov (United States)

    Danilenko, A.; Karpova, A.; Kirichenko, A.; Shibanov, Y.; Shternin, P.; Zharikov, S.; Zyuzin, D.

    2014-07-01

    We analysed thermal properties of the Fermi pulsars J0357+3205, J1741-2054, and J0633+0632 using data from the XMM-Newton and Chandra archives. The X-ray spectra of all three pulsars can be fitted by sum of thermal and power-law components. For J1741-2054, the thermal component is best described by a blackbody model whose normalization suggests that the thermal emission comes from the bulk of the neutron star surface. The effective temperature of 60 eV, which is rather large for a pulsar as old as J1741-2054, makes it similar to the well-studied pulsar B1055-52, one of ``the three musketeers''. The thermal components of PSRs J0357+3205 and J0633+0632 can be equally well described by blackbody or the hydrogen atmosphere models. In the former case the normalizations suggest hot polar cap as thermal emission origin and only upper limits on the neutron stars surface temperatures can be computed. For the hydrogen atmosphere models, the normalizations are in agreement with emission coming from a substantial part of neutron star surface. Thermal properties of the pulsars are confronted with similar data on other isolated neutron stars and predictions of the neutron star cooling theory.

  9. The Ages, Speeds and Offspring of Pulsars

    Science.gov (United States)

    Hansen, Bradley Miles Stougaard

    1996-01-01

    We investigate the cooling of low mass white dwarfs with helium cores. We construct a detailed numerical model using the most modern input physics, including our own calculations of low temperature hydrogen opacities. We use our models to constrain the ages of binary millisecond pulsars from the optical observations of their white dwarf companions. We use this to place limits on the initial spin periods, magnetic field decay times and accretion histories of the millisecond pulsars. Our models can also be used along with observations of spectroscopic gravities and radial velocities to place interesting constraints on the neutron star equation of state. We provide grids of temperature and luminosity as a function of age for various white dwarf masses and surface compositions to facilitate future analyses. We have investigated the effect of the pulsar wind on the atmospheric composition of binary companions. The spallation of atmospheric helium to hydrogen increases the cooling age of the white dwarf. We find that all white dwarf companions in binaries with orbital period censored data using survival statistics, we arrive at an estimate of the characteristic pulsar birth velocity ~300 km.s ^{-1}, 2/3 that of Lyne & Lorimer. We also show that the older pulsar population shows the effects of the asymmetric drift, indicating that it must be dynamically old.

  10. Detecting pulsars in the Galactic centre

    CERN Document Server

    Rajwade, Kaustubh; Anderson, Loren

    2016-01-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic centre (GC) region, which we define to be within a projected distance of 1~pc from Sgr~A*. This null result is surprising given that several independent lines of evidence predict a sizeable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multi-path scattering to be the two main sources of flux mitigation. We demonstrate the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 50 canonical pulsars and 1430 millisecond pulsars. We find ...

  11. Triple Pulsar Tests Mass Triplets

    CERN Document Server

    Shao, Lijing

    2016-01-01

    Three conceptually different masses appear in equations of motion for objects under gravity, namely, inertial mass, $m_{\\cal I}$, passive gravitational mass, $m_{\\cal P}$, and active gravitational mass, $m_{\\cal A}$. It is assumed that, for any objects, $m_{\\cal I} = m_{\\cal P} = m_{\\cal A}$ in Newtonian gravity, and $m_{\\cal I} = m_{\\cal P}$ in Einsteinian gravity, oblivious to objects' sophisticated internal structure. Empirical examination of the equivalence probes deep into gravity theories. We propose new tests based on pulsar timing of the stellar triple system, PSR J0337+1715. Various machine-precision three-body simulations are performed, from which, equivalence-violating parameters are extracted with Markov chain Monte Carlo sampling that takes full correlations into account. We show that the difference in masses can be probed to $3\\times10^{-8}$, improving the post-Newtonian constraints of strong equivalence principle by $10^3$--$10^6$. The test of $m_{\\cal P}=m_{\\cal A}$ presents the first test of ...

  12. Polarization in Pulsar Wind Nebulae

    CERN Document Server

    Volpi, D; Amato, E; Bucciantini, N

    2009-01-01

    The main goal of our present work is to provide, for the first time, a simple computational tool that can be used to compute the brightness, the spectral index, the polarization, the time variability and the spectrum of the non-thermal light (both synchrotron and inverse Compton, IC) associated with the plasma dynamics resulting from given relativistic magnetohydrodynamics (RMHD) simulations. The proposed method is quite general, and can be applied to any scheme for RMHD and to all non-thermal emitting sources, e.g. pulsar wind nebulae (PWNe), and in particular to the Crab Nebula (CN) as in the present proceeding. Here only the linear optical and X-ray polarization that characterizes the PWNe synchrotron emission is analyzed in order to infer information on the inner bulk flow structure, to provide a direct investigation of the magnetic field configuration, in particular the presence and the strength of a poloidal component, and to understand the origin of some emitting features, such as the knot, whose origi...

  13. Testing gravity with pulsar scintillation measurements

    Science.gov (United States)

    Yang, Huan; Nishizawa, Atsushi; Pen, Ue-Li

    2017-04-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Compared to single-path pulsar timing measurements, the scintillation measurements can achieve an accuracy of one part in a thousand within one wave period, which means picosecond scale resolution in time, due to the effect of multipath interference. Previous scintillation measurements of PSR B 0834 +06 have hours of data acquisition, making this approach sensitive to mHz gravitational waves. Therefore it has unique advantages in measuring the effect of gravity or other mechanisms on light propagation. We illustrate its application in constraining the scalar gravitational-wave background, in which case the sensitivities can be greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  14. Testing Gravity with Pulsar Scintillation Measurements

    CERN Document Server

    Yang, Huan; Pen, Ue-Li

    2016-01-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can achieve a factor of 10^5 improvement in timing accuracy, due to the effect of multi-path interference. Previous scintillation measurements of PSR B0834+06 have data acquisition for hours, making this approach sensitive to mHz gravitational waves. Therefore it has unique advantages in measuring gravitational effect or other mechanisms (at mHz and above frequencies) on light propagation. We illustrate its application in constraining scalar gravitational-wave background, in which case the sensitivities can be greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  15. Polarized Curvature Radiation in Pulsar Magnetosphere

    CERN Document Server

    Wang, P F; Han, J L

    2014-01-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and co-rotating with the pulsar magnetosphere. Within the 1/{\\deg} emission cone, the waves can be divided into two natural wave mode components, the ordinary (O) mode and the extraord nary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O-mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the co-rotation of relativistic particles with...

  16. Arecibo Observations of Parkes Multibeam Pulsars

    Indian Academy of Sciences (India)

    N. D. R. Bhat; F. Camilo; J. M. Cordes; D. J. Nice; D. R. Lorimer; S. Chatterjee

    2002-03-01

    The on-going Parkes multibeam survey has been astoundingly successful (Manchester et al. 2001), and its discovery of over 600 pulsars has opened up new avenues for probing the Galaxy’s electron content and magnetic field. Here we report on recent observations made with the Arecibo 305-m telescope, where 80 distant, high dispersion measure pulsars (of which 35 are from the multibeam survey) were studied at multiple frequency bands in the range 0.4–2.4 GHz, in order to determine their scattering properties, rotation measures and spectral indices. The results will be used to meet a variety of science goals; viz., creating an improved model of the electron density, mapping out the Galactic magnetic field, and modeling the pulsar population.

  17. Pulsar Death at an Advanced Age

    CERN Document Server

    Arons, J

    1999-01-01

    I summarize the theory of acceleration of non-neutral particle beams by starvation electric fields along the polar magnetic field lines of rotation powered pulsars, including the effect of dragging of inertial frames which dominates the acceleration of a space charge limited beam. I apply these results to a new calculation of the radio pulsar death line, under the hypotheses that pulsar ``death'' corresponds to cessation of pair creation over the magnetic poles {\\it and} that the magnetic field has a locally dipolar topology. The frame dragging effect in star centered dipole geometry does improve comparison of the theory with observation, but an unacceptably large conflict between observation and theory still persists. Offsetting the dipole improves the comparison, but a fully satisfactory theory requires incorporating magnetic conversion of inverse Compton gamma rays, created by scattering thermal photons from the surface of old neutron stars ($t > 10^8 $ years) kept warm ($T \\geq 10^5$ K) by friction betwee...

  18. Gravitational Radiation from Compact Binary Pulsars

    CERN Document Server

    Antoniadis, John

    2014-01-01

    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.

  19. Consecutive Bright Pulses in the Vela Pulsar

    CERN Document Server

    Palfreyman, Jim L; Dickey, John M; Young, Timothy G; Hotan, Claire E; 10.1088/2041-8205/735/1/L17

    2011-01-01

    We report on the discovery of consecutive bright radio pulses from the Vela pulsar, a new phenomenon that may lead to a greater understanding of the pulsar emission mechanism. This results from a total of 345 hr worth of observations of the Vela pulsar using the University of Tasmania's 26 m radio telescope to study the frequency and statistics of abnormally bright pulses and sub-pulses. The bright pulses show a tendency to appear consecutively. The observations found two groups of six consecutive bright pulses and many groups of two to five bright pulses in a row. The strong radio emission process that produces the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses in sequence far exceed what would be expected if individual bright pulses were independent random events. Consecutive bright pulses must be generated by an emission process that is long lived relative to the rotation period of the neutron star.

  20. Gamma-ray pulsars: a gold mine

    CERN Document Server

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  1. Spectral indices for radio emission of 228 pulsars

    Science.gov (United States)

    Han, Jun; Wang, Chen; Xu, Jun; Han, Jin-Lin

    2016-10-01

    We determine spectral indices of 228 pulsars by using Parkes pulsar data observed at 1.4 GHz, among which 200 spectra are newly determined. The indices are distributed in the range from ‑4.84 to ‑0.46. Together with known pulsar spectra from literature, we tried to find clues to the pulsar emission process. The weak correlations between the spectral index, the spin-down energy loss rate E and the potential drop in the polar gap ΔΨ hint that emission properties are related to the particle acceleration process in a pulsar's magnetosphere.

  2. Radio Searches for Pulsars and Short-Duration Transients

    CERN Document Server

    McLaughlin, Maura

    2011-01-01

    I discuss methods and current software packages for radio searches for pulsars and short-duration transients. I then describe the properties of the current pulsar population and the status of and predictions for ongoing and future surveys. The presently observed pulsar population numbers around 2000 and is expected to roughly double over the next five years, with the number of millisecond pulsars expected to more than triple. Finally, I discuss individual objects discovered in the Green Bank Telescope 350-MHz Drift-Scan Survey and the Arecibo Pulsar ALFA Survey.

  3. A LOFAR census of millisecond pulsars

    Science.gov (United States)

    Kondratiev, V. I.; Verbiest, J. P. W.; Hessels, J. W. T.; Bilous, A. V.; Stappers, B. W.; Kramer, M.; Keane, E. F.; Noutsos, A.; Osłowski, S.; Breton, R. P.; Hassall, T. E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.-M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M. E.; Broderick, J. W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J. D.; Wijers, R. A. M. J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time atfrequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths, and flux densities and compare these with higher observing frequencies. The flux-calibrated, multifrequency LOFAR pulse profiles are publicly available via the European Pulsar Network Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of the LOFAR MSP profiles with those at higher radio frequencies shows constant separation between profile components. Similarly, the profile widths are consistent with those observed at higher frequencies, unless scattering dominates at the lowest frequencies. This is very different from what is observed for normal pulsars and suggests a compact emission region in the MSP magnetosphere. The amplitude ratio of the profile components, on the other hand, can dramatically change towards low frequencies, often with the trailing component becoming dominant. As previously demonstrated this can be caused by aberration and retardation. This data set enables high-precision studies of pulse profile evolution with frequency, dispersion, Faraday rotation, and scattering in the interstellar medium. Characterising and correcting these systematic effects may improve pulsar-timing precision at higher observing frequencies, where pulsar timing array projects aim to directly detect gravitational waves.

  4. A Cosmic Census of Radio Pulsars with the SKA

    CERN Document Server

    Keane, E F; Kramer, M; Stappers, B W; Bates, S D; Burgay, M; Chatterjee, S; Champion, D J; Eatough, R P; Hessels, J W T; Janssen, G; Lee, K J; van Leeuwen, J; Margueron, J; Oertel, M; Possenti, A; Ransom, S; Theureau, G; Torne, P

    2015-01-01

    The Square Kilometre Array (SKA) will make ground breaking discoveries in pulsar science. In this chapter we outline the SKA surveys for new pulsars, as well as how we will perform the necessary follow-up timing observations. The SKA's wide field-of-view, high sensitivity, multi-beaming and sub-arraying capabilities, coupled with advanced pulsar search backends, will result in the discovery of a large population of pulsars. These will enable the SKA's pulsar science goals (tests of General Relativity with pulsar binary systems, investigating black hole theorems with pulsar-black hole binaries, and direct detection of gravitational waves in a pulsar timing array). Using SKA1-MID and SKA1-LOW we will survey the Milky Way to unprecedented depth, increasing the number of known pulsars by more than an order of magnitude. SKA2 will potentially find all the Galactic radio-emitting pulsars in the SKA sky which are beamed in our direction. This will give a clear picture of the birth properties of pulsars and of the gr...

  5. Nature of microstructure in pulsar radio emission

    CERN Document Server

    Machabeli, G Z; Melikidze, G I; Shapakidze, D; Machabeli, George; Khechinashvili, David; Melikidze, George; Shapakidze, David

    2000-01-01

    We present a model for microstructure in pulsar radio emission. We propose that micropulses result from the alteration of the radio wave generation region by nearly transverse drift waves propagating across the pulsar magnetic field and encircling the bundle of the open magnetic field lines. It is demonstrated that such waves can modify significantly curvature of these dipolar field lines. This in turn affects strongly fulfillment of the resonance conditions necessary for the excitation of radio waves. The time-scale of micropulses is therefore determined by the wavelength of drift waves. Main features of the microstructure are naturally explained in the frame of this model.

  6. Pulsar glitches: The crust is not enough

    CERN Document Server

    Andersson, N; Ho, W C G; Espinoza, C M

    2012-01-01

    Pulsar glitches are traditionally viewed as a manifestation of vortex dynamics associated with a neutron superfluid reservoir confined to the inner crust of the star. In this Letter we show that the non-dissipative entrainment coupling between the neutron superfluid and the nuclear lattice leads to a less mobile crust superfluid, effectively reducing the moment of inertia associated with the angular momentum reservoir. Combining the latest observational data for prolific glitching pulsars with theoretical results for the crust entrainment we find that the required superfluid reservoir exceeds that available in the crust. This challenges our understanding of the glitch phenomenon, and we discuss possible resolutions to the problem.

  7. The braking indices in pulsar emission models

    CERN Document Server

    Wu, F; Gil, J; Gil, Janusz

    2003-01-01

    Using the method proposed in a previous paper, we calculate pulsar braking indices in the models with torque contributions from both inner and outer accelerating regions, assuming that the interaction between them is negligible. We suggest that it is likely that the inverse Compton scattering induced polar vacuum gap and the outer gap coexist in the pulsar magnetosphere. We include the new near threshold vacuum gap models with curvature-radiation and inverse Compton scattering induced cascades, respectively; and find that these models can well reproduce the measured values of the braking indices.

  8. The Feasibility of Using Black Widow Pulsars in Pulsar Timing Arrays for Gravitational Wave Detection

    CERN Document Server

    Bochenek, Christopher; Demorest, Paul

    2015-01-01

    In the past five years, approximately one third of the 65 pulsars discovered by radio observations of Fermi unassociated sources are black widow pulsars (BWPs). BWPs are binary millisecond pulsars with companion masses ranging from 0.01-0.1 solar masses which often exhibit radio eclipses. The bloated companions in BWP systems exert small torques on the system causing the orbit to change on small but measurable time scales. Because adding parameters to a timing model reduces sensitivity to a gravitational wave (GW) signal, the need to fit many orbital frequency derivatives to the timing data is potentially problematic for using BWPs to detect GWs with pulsar timing arrays. Using simulated data with up to four orbital frequency derivatives, we show that fitting for orbital frequency derivatives absorbs less than 5% of the low frequency spectrum expected from a stochastic gravitational wave background signal. Furthermore, this result does not change with orbital period. Therefore, we suggest that if timing syste...

  9. Effect of long-term intensity variations on pulsar searches and the pulsar luminosity function

    Science.gov (United States)

    Krishnamohan, S.

    1981-01-01

    Long-term intensity data for five pulsars are used to obtain the probability density distribution of intensities for each pulsar, and it is found that they are described satisfactorily by chi-squared distributions. Based on these distributions, the number of new pulsars expected to be found on repeatedly searching the same region of the sky with the same sensitivity is given. Nearly 25 percent more new pulsars are expected to be found on the first repeat search. It is also shown that the luminosity function deduced from either a single survey or surveys with very different sensitivities is not affected by the omission of flux density variations in the calculation of selection effects. Finally, a method is proposed for deriving the luminosity function by combining the different searches of a given area on the basis of a probabilistic approach to the evaluation of selection effects.

  10. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  11. Chandra Examines a Quadrillion-Volt Pulsar

    Science.gov (United States)

    2001-09-01

    The high-voltage environment of one of the most energetic and strongly magnetized pulsars known has been surveyed by NASA's Chandra X-ray Observatory. A team of astronomers found a powerful jet of high-energy particles extending over a distance of 20 light years and bright arcs believed to be due to particles of matter and anti-matter generated by the pulsar. The team of US, Canadian, and Japanese scientists pointed Chandra at the rapidly spinning neutron star B1509-58, located 19,000 light years away in the constellation of Circinus, for over five hours. These results were announced at the "Two Years of Science with Chandra" symposium in Washington, DC. "Jets and arcs on this vast scale have never been seen in any other pulsar," said Bryan Gaensler of the Smithsonian Astrophysical Observatory. "The spectacular images we have obtained of this source are letting us test theories as to how pulsars unleash so much energy." The features seen with Chandra give the scientists insight into the process by which voltages of more than 7000 trillion volts are created around rotating neutron stars (the dense remnants of supernova explosions) and how these extreme voltages affect their environment. B1509-58 is of particular interest because it has a much stronger magnetic field than the Crab Nebula pulsar, which exhibits similar features on a much smaller scale. The general picture emerging from these results is that high-energy particles of matter and antimatter are streaming away from the neutron star along its poles and near its equator. The particles leaving the poles produce the jets; astronomers speculate that only one side of the jet is apparent in B1509-58, indicating that this one side is beamed in our direction, while the other is rushing away. "Until this observation, no one knew for sure whether such tremendous voltages and energy outputs were a trademark of all pulsars, or if the Crab was an oddball," said Vicky Kaspi of McGill University in Montreal. "Now thanks

  12. Experimental Constraints on {\\gamma}-ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    CERN Document Server

    Abeysekara, A U

    2015-01-01

    The pulsar emission mechanism in the gamma-ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma-ray pulsars discovered by the Fermi Large Area Telescope (Fermi-LAT). In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor $\\left( f_\\Omega \\right)$ dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux and TeV or X-ray flux from the associated Pulsar Wind Nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between $f_\\Omega$ and $\\dot{E}$. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap and One Pole Caustic models for pulsar emission i...

  13. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; Huang, H.H. (eds.)

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  14. Recently discovered pulsars and unidentified EGRET sources

    CERN Document Server

    Torres, D F; Camilo, F M; Torres, Diego F.; Butt, Yousaf M.; Camilo, Fernando

    2001-01-01

    We present a correlative study between all unidentified EGRET sources at low Galactic latitudes and the newly discovered pulsars in the released portion of the Parkes multibeam radio survey. We note 14 positional coincidences: eight of these are ``Vela-like'' pulsars, with relatively small periods, small characteristic ages, and high spin-down luminosities. Three of these coincidences have been investigated by D'Amico et al. (2001) and Camilo et al. (2001). Among the others, we argue that PSR J1015-5719 may plausibly generate part of the high energy radiation observed from 3EG J1014-5705. Three additional interesting cases are: 3EG J1410-6147 and either of PSRs J1412-6145 or J1413-6141, if the pulsars are at the estimated distance of the coincident SNR G312.4-0.4; and 3EG J1639-4702/PSR J1637-4642. The remaining positional coincidences between the EGRET sources and the newly discovered pulsars are almost certainly spurious.

  15. A New Class of Radio Quiet Pulsars

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Harding, Alice K.

    1997-01-01

    The complete absence of radio pulsars with periods exceeding a few seconds has lead to the popular notion of the existence of a high $P$ death line. In the standard picture, beyond this boundary, pulsars with low spin rates cannot accelerate particles above the stellar surface to high enough energies to initiated pair cascades through curvature radiation, and the pair creation needed for radio emission is strongly suppressed. In this paper we postulate the existence of another pulsar ``death line,'' corresponding to high magnetic fields $B$ in the upper portion of the $\\dot{P}$--$P$ diagram, a domain where few radio pulsars are observed. The origin of this high $B$ boundary, which occurs when $B$ becomes comparable to or exceeds $10^{13}$ Gauss, is again due to the suppression of magnetic pair creation $\\gamma\\to e^+e^-$, but in this instance, primarily because of ineffective competition with the exotic QED process of magnetic photon splitting. This paper describes the origin, shape and position of the new ``...

  16. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  17. A LOFAR census of millisecond pulsars

    NARCIS (Netherlands)

    Kondratiev, V.I.; Verbiest, J.P.W.; Hessels, J.W.T.; Bilous, A.V.; Stappers, B.W.; Kramer, M.; Keane, E.F.; Noutsos, A.; Osłowski, S.; Breton, R.P.; Hassall, T.E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M.E.; Broderick, J.W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J.D.; Wijers, R.A.M.J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at

  18. A HIGH BRAKING INDEX FOR A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montréal, QC H3A 2T8 (Canada); Gotthelf, E. V. [Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027-6601 (United States); Guillot, S. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Harrison, F. A. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Keane, E. F. [SKA Organization, Jodrell Bank Observatory, Cheshire SK11 9DL (United Kingdom); Pivovaroff, M. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550-9234 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Tomsick, J. A. [Space Science Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States)

    2016-03-01

    We present a phase-coherent timing solution for PSR J1640–4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640–4631 to be n = 3.15 ± 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3σ upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy.

  19. A LOFAR census of millisecond pulsars

    NARCIS (Netherlands)

    Kondratiev, V.I.; Verbiest, J.P.W.; Hessels, J.W.T.; Bilous, A.V.; Stappers, B.W.; Kramer, M.; Keane, E.F.; Noutsos, A.; Osłowski, S.; Breton, R.P.; Hassall, T.E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M.E.; Broderick, J.W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J.D.; Wijers, R.A.M.J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at t

  20. Gamma-ray binaries: pulsars in disguise ?

    CERN Document Server

    Dubus, G

    2006-01-01

    LS 5039 and LSI +61 303 are unique amongst high-mass X-ray binaries (HMXB) for their spatially-resolved radio emission and their counterpart at >GeV gamma-ray energies, canonically attributed to non-thermal particles in an accretion-powered relativistic jet. The only other HMXB known to emit very high energy (VHE) gamma-rays, PSR B1259-63, harbours a non-accreting millisecond pulsar. I investigate whether the interaction of the relativistic wind from a young pulsar with the wind from its stellar companion, as in PSR B1259-63, constitutes a viable scenario to explain the observations of LS 5039 and LSI +61 303. Emission would arise from the shocked pulsar wind material, which then flows away to large distances in a comet-shape tail, reproducing on a smaller scale what is observed in isolated, high motion pulsars interacting with the ISM. Simple expectations for the SED are derived and are shown to depend on few input parameters. Detailed modelling of the particle evolution is compared to the observations from ...

  1. Pulsars at the Center of the Galaxy

    Science.gov (United States)

    Majid, Walid

    2016-07-01

    Over the past few years, a number of groups using data from NASA's space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner 1º of the Galactic Center (GC), with an even larger significant excess within 0.2º degrees. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  2. Pulsar motions from VEP neutrino oscillations

    Science.gov (United States)

    Barkovich, M.; Casini, H.; D'Olivo, J. C.; Montemayor, R.

    2002-07-01

    We show that a violation of the equivalence principle (VEP) can explain pulsar motions. We find that both the translational and rotational velocities can be accounted by VEP induced anisotropies in the linear and angular momentum of the neutrinos emitted by the protoneutron star. The violation needed to obtain the observed motions is compatible with existing boundaries.

  3. A Bayesian method for pulsar template generation

    CERN Document Server

    Imgrund, M; Kramer, M; Lesch, H

    2015-01-01

    Extracting Times of Arrival from pulsar radio signals depends on the knowledge of the pulsars pulse profile and how this template is generated. We examine pulsar template generation with Bayesian methods. We will contrast the classical generation mechanism of averaging intensity profiles with a new approach based on Bayesian inference. We introduce the Bayesian measurement model imposed and derive the algorithm to reconstruct a "statistical template" out of noisy data. The properties of these "statistical templates" are analysed with simulated and real measurement data from PSR B1133+16. We explain how to put this new form of template to use in analysing secondary parameters of interest and give various examples: We implement a nonlinear filter for determining ToAs of pulsars. Applying this method to data from PSR J1713+0747 we derive ToAs self consistently, meaning all epochs were timed and we used the same epochs for template generation. While the average template contains fluctuations and noise as unavoida...

  4. Improving Pulsar Timing Precision with Single Pulses

    CERN Document Server

    Kerr, Matthew

    2015-01-01

    The measurement error of pulse times of arrival (TOAs) in the high S/N limit is dominated by the quasi-random variation of a pulsar's emission profile from rotation to rotation. Like measurement noise, this noise is only reduced as the square root of observing time, posing a major challenge to future pulsar timing campaigns with large aperture telescopes, e.g. the Five-hundred-metre Aperture Spherical Telescope and the Square Kilometre Array. We propose a new method of pulsar timing that attempts to approximate the pulse-to-pulse variability with a small family of 'basis' pulses. If pulsar data are integrated over many rotations, this basis can be used to measure sub-pulse structure. Or, if high-time resolution data are available, the basis can be used to 'tag' single pulses and produce an optimal timing template. With realistic simulations, we show that these applications can dramatically reduce the effect of pulse-to-pulse variability on TOAs. Using high-time resolution data taken from the bright PSR J0835-...

  5. Pulsar discovery by global volunteer computing

    NARCIS (Netherlands)

    Knispel, B.; Allen, B.; Cordes, J.M.; Deneva, J.S.; Anderson, D.; Aulbert, C.; Bhat, N.D.R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D.J.; Chatterjee, S.; Crawford, F.; Demorest, P.B.; Fehrmann, H.; Freire, P.C.C.; Gonzalez, M.E.; Hammer, D.; Hessels, J.W.T.; Jenet, F.A.; Kasian, L.; Kaspi, V.M.; Kramer, M.; Lazarus, P.; van Leeuwen, J.; Lorimer, D.R.; Lyne, A.G.; Machenschalk, B.; McLaughlin, M.A.; Messenger, C.; Nice, D.J.; Papa, M.A.; Pletsch, H.J.; Prix, R.; Ransom, S.M.; Siemens, X.; Stairs, I.H.; Stappers, B.W.; Stovall, K.; Venkataraman, A.

    2010-01-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pul

  6. Testing Relativistic Gravity with Radio Pulsars

    CERN Document Server

    Wex, Norbert

    2014-01-01

    Before the 1970s, precision tests for gravity theories were constrained to the weak gravitational fields of the Solar system. Hence, only the weak-field slow-motion aspects of relativistic celestial mechanics could be investigated. Testing gravity beyond the first post-Newtonian contributions was for a long time out of reach. The discovery of the first binary pulsar by Russell Hulse and Joseph Taylor in the summer of 1974 initiated a completely new field for testing the relativistic dynamics of gravitationally interacting bodies. For the first time the back reaction of gravitational wave emission on the binary motion could be studied. Furthermore, the Hulse-Taylor pulsar provided the first test bed for the orbital dynamics of strongly self-gravitating bodies. To date there are a number of pulsars known, which can be utilized for precision test of gravity. Depending on their orbital properties and their companion, these pulsars provide tests for various different aspects of relativistic dynamics. Besides tests...

  7. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing, E-mail: linmx97@gmail.com, E-mail: r.x.xu@pku.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China)

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  8. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    Science.gov (United States)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  9. Einstein@Home Finds an Elusive Pulsar

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Since the release of the second Fermi-LAT catalog in 2012, astronomers have been hunting for 3FGL J1906.6+0720, a gamma-ray source whose association couldn't be identified. Now, personal-computer time volunteered through the Einstein@Home project has resulted in the discovery of a pulsar that has been hiding from observers for years. A Blind Search: Identifying sources detected by Fermi-LAT can be tricky: the instrument's sky resolution is limited, so the position of the source can be hard to pinpoint. The gamma-ray source 3FGL J1906.6+0720 appeared in both the second and third Fermi-LAT source catalogs, but even after years of searching, no associated radio or X-ray source had been found. A team of researchers, led by Colin Clark of the Max Planck Institute for Gravitational Physics, suspected that the source might be a gamma-ray pulsar. To confirm this, however, they needed to detect pulsed emission — something inherently difficult given the low photon count and the uncertain position of the source. The team conducted a blind search for pulsations coming from the general direction of the gamma-ray source. Two things were needed for this search: clever data analysis and a lot of computing power. The data analysis algorithm was designed to be adaptive: it searched a 4-dimensional parameter space that included a safety margin, allowing the algorithm to wander if the source was at the edge of the parameter space. The computing power was contributed by tens of thousands of personal computers volunteered by participants in the Einstein@Home project, making much shorter work out of a search that would have required dozens of years on a single laptop. The sky region around the newly discovered pulsar. The dotted ellipse shows the 3FGL catalog 95% confidence region for the source. The data analysis algorithm was designed to search an area 50% larger (given by the dashed ellipse), but it was allowed to “walk away” within the gray shaded region if the source seemed to

  10. Detecting Pulsars with Interstellar Scintillation in Variance Images

    CERN Document Server

    Dai, S; Bell, M E; Coles, W A; Hobbs, G; Ekers, R D; Lenc, E

    2016-01-01

    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximise the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show th...

  11. Discovery of Two New Pulsars in Archival Data

    CERN Document Server

    Mickaliger, Mitchell B; Boyles, Jason; McLaughlin, Maura A; Collins, Adam; Hough, Logan; Tehrani, Nathan; Tenney, Craig

    2012-01-01

    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of two previously unknown pulsars and several as-yet-unconfirmed candidates. One of the new pulsars, PSR J1725-3853, is an isolated 4.79-ms pulsar with a DM of 158.2 pc cm^-3. The other, PSR J1227-6208, has a period of 34.53 ms, a DM of 362.6 pc cm^-3, is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein@Home volunteers. These pulsars were likley missed in earlier processing efforts due to their high DMs and short periods. These serendipitous discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.

  12. Imprints of relic gravitational waves on pulsar timing

    CERN Document Server

    Tong, Ming-Lei; Zhao, Cheng-Shi; Gao, Feng; Yan, Bao-Rong; Yang, Ting-Gao; Gao, Yu-Ping

    2015-01-01

    Relic gravitational waves (RGWs) , a background originated during inflation, would give imprints on the pulsar timing residuals. This makes RGWs be one of important sources for detection using the method of pulsar timing. In this paper, we discuss the effects of RGWs on the single pulsar timing, and give quantitively the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noise in pulsar timing residuals were understood, even though observing simultaneously multiple millisecond pulsars is a more powerful technique in extracting gravitational wave signals. We corrected the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We made new constraints on RGWs using the recent observations from the Parkes ...

  13. A stroboscopic method for phase resolved pulsar observations

    CERN Document Server

    Vidrih, S; Carramiñana, A; Vidrih, Simon; Cadez, Andrej; Carraminana, Alberto

    2004-01-01

    We present a stroboscopic system developed for optical observations of pulsars and its application in the CLYPOS survey. The stroboscopic device is connected to a GPS clock and provides absolute timing to the stroboscopic shutter relative to the pulsar's radio ephemerides. By changing the phase we can examine the pulsar's light curve. The precisely timed stroboscope in front of the CCD camera can perform highly accurate time resolved pulsar photometry and offers the advantages of CCD cameras, which are high quantum efficiency as well as relatively large field of view, which is important for flux calibrations. CLYPOS (Cananea Ljubljana Young Pulsar Optical Survey) is an extensive search for optical counterparts of about 30 northern hemisphere radio pulsars. It is a collaboration between the INAOE, Mexico and the Faculty of Mathematics and Physics of the University of Ljubljana. Stroboscopic observations were done between December 1998 and November 2000 at the 2.12 m telescope of the Observatory Guillermo Haro ...

  14. High magnetic field pulsars and magnetars a unified picture

    CERN Document Server

    Zhang, B; Zhang, Bing; Harding, Alice K.

    2000-01-01

    We propose a unified picture of high magnetic field radio pulsars and magnetars by arguing that they are all rotating high-field neutron stars, but have different orientations of their magnetic axes with respective to their rotation axes. In strong magnetic fields where photon splitting suppresses pair creation near the surface, the high-field pulsars can have active inner accelerators while the anomalous X-ray pulsars cannot. This can account for the very different observed emission characteristics of the anomalous X-ray pulsar 1E 2259+586 and the high field radio pulsar PSR J1814-1744. A predicted consequence of this picture is that radio pulsars having surface magnetic field greater than about $2\\times 10^{14}$ G should not exist.

  15. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    CERN Document Server

    Noutsos, A; Kondratiev, V I; Weltevrede, P; Verbiest, J P W; Karastergiou, A; Kramer, M; Kuniyoshi, M; Alexov, A; Breton, R P; Bilous, A V; Cooper, S; Falcke, H; Grießmeier, J -M; Hassall, T E; Hessels, J W T; Keane, E F; Osłowski, S; Pilia, M; Serylak, M; Stappers, B W; ter Veen, S; van Leeuwen, J; Zagkouris, K; Anderson, K; Bähren, L; Bell, M; Broderick, J; Carbone, D; Cendes, Y; Coenen, T; Corbel, S; Eislöffel, J; Fender, R; Garsden, H; Jonker, P; Law, C; Marko, S; Masters, J; Miller-Jones, J; Molenaar, G; Osten, R; Pietka, M; Rol, E; Rowlinson, A; Scheers, B; Spreeuw, H; Staley, T; Stewart, A; Swinbank, J; Wijers, R; Wijnands, R; Wise, M; Zarka, P; van der Horst, A

    2015-01-01

    We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possi...

  16. An analysis of the timing irregularities for 366 pulsars

    CERN Document Server

    Hobbs, G; Kramer, M

    2009-01-01

    We provide an analysis of timing irregularities observed for 366 pulsars. Observations were obtained using the 76-m Lovell radio telescope at the Jodrell Bank Observatory over the past 36 years. These data sets have allowed us to carry out the first large-scale analysis of pulsar timing noise over time scales of > 10yr, with multiple observing frequencies and for a large sample of pulsars. Our sample includes both normal and recycled pulsars. The timing residuals for the pulsars with the smallest characteristic ages are shown to be dominated by the recovery from glitch events, whereas the timing irregularities seen for older pulsars are quasi-periodic. We emphasise that previous models that explained timing residuals as a low-frequency noise process are not consistent with observation.

  17. SKA-Japan Pulsar Science with the Square Kilometre Array

    CERN Document Server

    Takahashi, Keitaro; Iwata, Kengo; Kameya, Osamu; Kumamoto, Hiroki; Kuroyanagi, Sachiko; Mikami, Ryo; Naruko, Atsushi; Ohno, Hiroshi; Shibata, Shinpei; Terasawa, Toshio; Yonemaru, Naoyuki; Yoo, Chulmoon

    2016-01-01

    The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for the study of neutron stars themselves but for their usage as tools for probing fundamental physics such as general relativity, gravitational waves and nuclear interaction. In this article, we summarize the activity and interests of SKA-Japan Pulsar Science Working Group, focusing on an investigation of modified gravity theory with the supermassive black hole in the Galactic Centre, gravitational-wave detection from cosmic strings and binary supermassive black holes, a study of the physical state of plasma close to pulsars using giant radio pulses and determination of magnetic field structure of Galaxy with pulsar pairs.

  18. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  19. A Ray-Tracing Model of the Vela Pulsar

    CERN Document Server

    Hirano, C

    2001-01-01

    In the relativistic plasma surrounding a pulsar, a subluminal ordinary-mode electromagnetic wave will propagate along a magnetic field line. After some distance, it can break free of the field line and escape the magnetosphere to reach an observer. We describe a simple model of pulsar radio emission based on this scenario and find that applying this model to the case of the Vela pulsar reproduces qualitative characteristics of the observed Vela pulse profile.

  20. Detecting nanohertz gravitational waves with pulsar timing arrays

    CERN Document Server

    Zhu, Xing-Jiang; Hobbs, George; Manchester, Richard N; Shannon, Ryan M

    2015-01-01

    Complementary to ground-based laser interferometers, pulsar timing array experiments are being carried out to search for nanohertz gravitational waves. Using the world's most powerful radio telescopes, three major international collaborations have collected $\\sim$10-year high precision timing data for tens of millisecond pulsars. In this paper we give an overview on pulsar timing experiments, gravitational wave detection in the nanohertz regime, and recent results obtained by various timing array projects.

  1. Weak microlensing effect and stability of pulsar time scale

    CERN Document Server

    Pshirkov, M S

    2006-01-01

    An influence of the weak microlensing effect on the pulsar timing is investigated for pulsar B1937+21. Average residuals of Time of Arrival (TOA) due to the effect would be as large as 10 ns in 20 years observation span. These residuals can be much greater (up to 1 ms in 20 years span) if pulsar is located in globular cluster (or behind it).

  2. Pulsar timing noise and the minimum observation time to detect gravitational waves with pulsar timing arrays

    CERN Document Server

    Lasky, Paul D; Ravi, Vikram; Hobbs, George

    2015-01-01

    The sensitivity of pulsar timing arrays to gravitational waves is, at some level, limited by timing noise. Red timing noise - the stochastic wandering of pulse arrival times with a red spectrum - is prevalent in slow-spinning pulsars and has been identified in many millisecond pulsars. Phenomenological models of timing noise, such as from superfluid turbulence, suggest that the timing noise spectrum plateaus below some critical frequency, $f_c$, potentially aiding the hunt for gravitational waves. We examine this effect for individual pulsars by calculating minimum observation times, $T_{\\rm min}(f_c)$, over which the gravitational wave signal becomes larger than the timing noise plateau. We do this in two ways: 1) in a model-independent manner, and 2) by using the superfluid turbulence model for timing noise as an example to illustrate how neutron star parameters can be constrained. We show that the superfluid turbulence model can reproduce the data qualitatively from a number of pulsars observed as part of ...

  3. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    CERN Document Server

    Reardon, D J; Coles, W; Levin, Y; Keith, M J; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Kerr, M; Lasky, P D; Manchester, R N; Osłowski, S; Ravi, V; Shannon, R M; van Straten, W; Toomey, L; Wang, J; Wen, L; You, X P; Zhu, X -J

    2015-01-01

    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with $M_p=1.44\\pm0.07$ $M_\\odot$ and $M_p=1.47\\pm0.03$ $M_\\odot$ respectively. The improved orbital period-derivative measurement for PSR J043...

  4. Including the pulsar-term in continuous gravitational-wave searches using pulsar timing arrays: a blessing and a curse

    CERN Document Server

    Taylor, Stephen; Gair, Jonathan

    2014-01-01

    We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar timing arrays. These techniques mitigate the problematic increase of search-dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational-wave as it propagates past each pulsar so that we can coherently include the pulsar-term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates, and conclude that these techniques make excellent first-cut tools for detection and characterisation of continuous gravitational-wave signals with pulsar timing arrays. Crucially, at low to moderate signal-t...

  5. PEACE: Pulsar Evaluation Algorithm for Candidate Extraction -- A software package for post-analysis processing of pulsar survey candidates

    CERN Document Server

    Lee, K J; Jenet, F A; Martinez, J; Dartez, L P; Mata, A; Lunsford, G; Cohen, S; Biwer, C M; Rohr, M; Flanigan, J; Walker, A; Banaszak, S; Allen, B; Barr, E D; Bhat, N D R; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Cordes, J; Crawford, F; Deneva, J; Desvignes, G; Ferdman, R D; Freire, P; Hessels, J W T; Karuppusamy, R; Kaspi, V M; Knispel, B; Kramer, M; Lazarus, P; Lynch, R; Lyne, A; McLaughlin, M; Ransom, S; Scholz, P; Siemens, X; Spitler, L; Stairs, I; Tan, M; van Leeuwen, J; Zhu, W W

    2013-01-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labor intensive. In this paper, we introduce an algorithm called PEACE (Pulsar Evaluation Algorithm for Candidate Extraction) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command enter programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68% of the student-identified pulsars within the top 0.17% of sorted candidates, 95% ...

  6. Characterization of a Precision Pulsar Timing Gravitational Wave Detector

    Science.gov (United States)

    Lam, Michael T.

    2017-01-01

    We aim to construct a Galactic-scale detector comprised of an array of pulsars distributed across the sky in an effort to detect low-frequency (nanohertz) gravitational waves. Even without a detection, observations of pulsar timing arrays have allowed us to begin to place impactful astrophysical constraints on dynamical processes occurring during galaxy mergers. Understanding the detector is necessary for improving our sensitivity to gravitational waves and making a detection. Therefore, our goal is to characterize the entire propagation path through the pulsar timing array detector. To do so, we must understand: what intrinsic noise processes occur at the pulsar, what effects the interstellar medium has on pulsed radio emission, and what errors we introduce when measuring the incident electromagnetic radiation at our observatories.In this work, we observed of one of the most spin-stable objects known for 24 hours to understand the fundamental limits of precision pulsar timing. We investigated the effect of non-simultaneous, multi-frequency sampling of pulsar dispersion measures on timing and analyzed the cause of deterministic and stochastic temporal variations seen in dispersion measure time series. We analyzed errors in pulse arrival times and determined the white noise budget for pulsars on the timescale of a single observation. Finally, we measured the excess noise beyond the white noise model in pulsar timing residuals and incorporated our results into a global model over all pulsar populations to improve excess noise scaling relations.

  7. MULTIWAVELENGTH CONSTRAINTS ON PULSAR POPULATIONS IN THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, R. S.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (Puerto Rico); Lazio, T. J. W., E-mail: rwharton@astro.cornell.edu [Jet Propulsion Laboratory, California Institute of Technology, M/S 138-308, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2012-07-10

    The detection of radio pulsars within the central few parsecs of the Galaxy would provide a unique probe of the gravitational and magneto-ionic environments in the Galactic center (GC) and, if close enough to Sgr A*, precise tests of general relativity in the strong-field regime. While it is difficult to find pulsars at radio wavelengths because of interstellar scattering, the payoff from detailed timing of pulsars in the GC warrants a concerted effort. To motivate pulsar surveys and help define search parameters for them, we constrain the pulsar number and spatial distribution using a wide range of multiwavelength measurements. These include the five known radio pulsars within 15' of Sgr A*, non-detections in high-frequency pulsar surveys of the central parsec, radio and gamma-ray measurements of diffuse emission, a catalog of radio point sources from an imaging survey, infrared observations of massive star populations in the central few parsecs, candidate pulsar wind nebulae in the inner 20 pc, and estimates of the core-collapse supernova rate based on X-ray measurements. We find that under current observational constraints, the inner parsec of the Galaxy could harbor as many as {approx}10{sup 3} active radio pulsars that are beamed toward Earth. Such a large population would distort the low-frequency measurements of both the intrinsic spectrum of Sgr A* and the free-free absorption along the line of sight of Sgr A*.

  8. Observing peculiar γ-ray pulsars with AGILE

    Science.gov (United States)

    Pilia, M.; Pellizzoni, A.

    2011-08-01

    The AGILE γ-ray satellite provides large sky exposure levels (>=109 cm2 s per year on the Galactic Plane) with sensitivity peaking at E ~100 MeV where the bulk of pulsar energy output is typically released. Its ~1 μs absolute time tagging capability makes it perfectly suited for the study of γ-ray pulsars. AGILE collected a large number of γ-ray photons from EGRET pulsars (>=40,000 pulsed counts for Vela) in two years of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves, γ-ray emission from pulsar glitches and Pulsar Wind Nebulae. AGILE detected about 20 nearby and energetic pulsars with good confidence through timing and/or spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509-58 with a magnetic field in excess of 1013 Gauss, and PSR J2229+6114 providing a reliable identification for the previously unidentified EGRET source 3EG2227+6122. Moreover, the powerful millisecond pulsar B1821-24, in the globular cluster M28, is detected during a fraction of the observations.

  9. Searching for sub-millisecond pulsars: A theoretical view

    CERN Document Server

    Xu, R

    2006-01-01

    Sub-millisecond pulsars should be triaxial (Jacobi ellipsoids), which may not spin down to super-millisecond periods via gravitation wave radiation during their lifetimes if they are extremely low mass bare strange quark stars. It is addressed that the spindown of sub-millisecond pulsars would be torqued dominantly by gravitational wave radiation (with braking index n ~ 5). The radio luminosity of sub-millisecond pulsars could be high enough to be detected in advanced radio telescopes. Sub-millisecond pulsars, if detected, should be very likely quark stars with low masses and/or small equatorial ellipticities.

  10. New algorithms for radio pulsar search

    CERN Document Server

    Smith, Kendrick M

    2016-01-01

    The computational cost of searching for new pulsars is a limiting factor for upcoming radio telescopes such as SKA. We introduce four new algorithms: an optimal constant-period search, a coherent tree search which permits optimal searching with O(1) cost per model, a semicoherent search which combines information from coherent subsearches while preserving as much phase information as possible, and a hierarchical search which interpolates between the coherent and semicoherent limits. Taken together, these algorithms improve the computational cost of pulsar search by several orders of magnitude. In this paper, we consider the simple case of a constant-acceleration phase model, but our methods should generalize to more complex search spaces.

  11. Recycling Pulsars: spins, masses and ages

    CERN Document Server

    Tauris, T M; Langer, N

    2012-01-01

    Although the first millisecond pulsars (MSPs) were discovered 30 years ago we still do not understand all details of their formation process. Here, we present new results from Tauris, Langer & Kramer (2012) on the recycling scenario leading to radio MSPs with helium or carbon-oxygen white dwarf companions via evolution of low- and intermediate mass X-ray binaries (LMXBs, IMXBs). We discuss the location of the spin-up line in the (P,Pdot)-diagram and estimate the amount of accreted mass needed to obtain a given spin period and compare with observations. Finally, we constrain the true ages of observed recycled pulsars via calculated isochrones in the (P,Pdot)-diagram.

  12. Velocities of pulsars and neutrino oscillations

    CERN Document Server

    Kusenko, A; Kusenko, Alexander; Segre, Gino

    1996-01-01

    We show that two long-standing astrophysical puzzles may have a simultaneous solution. Neutrino oscillations, biased by the magnetic field, alter the shape of the neutrinosphere in a cooling protoneutron star emerging from the supernova collapse. The resulting anisotropy in the momentum of outgoing neutrinos can be the origin of the observed proper motions of pulsars. Since the birth velocities generated this way are proportional to the strength of the magnetic field, this may also explain the observed isotropy of the gamma-ray bursts if they originate from old neutron stars. The connection between the motion of pulsars and neutrino oscillations results in a prediction for the \\tau neutrino mass of m(\

  13. Pulsar searches in nearby dwarf spheroidal galaxies

    Science.gov (United States)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  14. Centrifugal acceleration of plasma in pulsar magnetosphere

    Indian Academy of Sciences (India)

    R T Gangadhara; V Krishna

    2003-12-01

    We present a relativistic model for the centrifugal acceleration of plasma bunches and the coherent radio emission in pulsar magnetosphere. We find that rotation broadens the width of leading component compared to the width of trailing component. We explain this difference in the component widths using the nested cone emission geometry. We estimate the effect of pulsar spin on the Stokes parameters, and find that the inclination between the rotation and magnetic axes can introduce an asymmetry in the circular polarization of the conal components. We analyse the single pulse polarization data of PSR B0329+54 at 606 MHz, and find that in its conal components, one sense of circular polarization dominates in the leading component while the other sense dominates in the trailing component. Our simulation shows that changing the sign of the impact parameter changes the sense of circular polarization as well as the swing of polarization angle.

  15. High Energy Processes in Pulsar Wind Nebulae

    CERN Document Server

    Bednarek, W

    2006-01-01

    Young pulsars produce relativistic winds which interact with matter ejected during the supernova explosion and the surrounding interstellar gas. Particles are accelerated to very high energies somewhere in the pulsar winds or at the shocks produced in collisions of the winds with the surrounding medium. As a result of interactions of relativistic leptons with the magnetic field and low energy radiation (of synchrotron origin, thermal, or microwave background), the non-thermal radiation is produced with the lowest possible energies up to $\\sim$100 TeV. The high energy (TeV) gamma-ray emission has been originally observed from the Crab Nebula and recently from several other objects. Recent observations by the HESS Cherenkov telescopes allow to study for the first time morphology of the sources of high energy emission, showing unexpected spectral features. They might be also interpreted as due to acceleration of hadrons. However, theory of particle acceleration in the PWNe and models for production of radiation ...

  16. Pulsar braking: Time dependent moment of inertia?

    Science.gov (United States)

    Urbanec, Martin

    2017-08-01

    Pulsars rotate with extremely stable rotational frequency enabling one to measure its first and second time derivatives. These observed values can be combined to the so-called braking index. However observed values of braking index differ from the theoretical value of 3 corresponding to braking by magnetic dipole radiation being the dominant theoretical model. Such a difference can be explained by contribution of other mechanism like pulsar wind or quadrupole radiation, or by time dependency of magnetic field or moment of inertia. In this presentation we focus on influence of time dependent moment of inertia on the braking index. We will also discuss possible physical models for time-dependence of moment of inertia.

  17. Crab pulsar timing 1982-87

    Science.gov (United States)

    Lyne, A. G.; Pritchard, R. S.; Smith, F. G.

    1988-08-01

    Observations of the arrival times of pulses from the pulsar in the Crab Nebula over a six-year interval are presented. The data are intended to permit the investigation of the interior of the neutron star through the study of glitches and timing noise and to provide an ephemeris for high-energy observations. The first and second frequency derivatives provide a value for the braking index of n = 2.509 + or - 0.001, which is consistent with previous observations. The third frequency derivative can now be determined over an 18-yr span and is as expected for this braking index. The predominant deviations from a simple slow-down model form a sinusoid with a period of 20 months, attributable to an oscillation of the bulk of the neutron superfluid in the pulsar. One conspicuous glitch occurred in August, 1986 and the subsequent recovery was studied from only one hour after the event.

  18. 50 pico arcsecond astrometry of pulsar emission

    CERN Document Server

    Pen, Ue-Li; Deller, Adam; Brisken, Walter

    2013-01-01

    We use VLBI imaging of the interstellar scattering speckle pattern associated with the pulsar PSR 0834+06 to measure the astrometric motion of its emission. The ~ 5AU interstellar baselines, provided by interference between speckles spanning the scattering disk, enable us to detect motions with sub nanoarcsecond accuracy. We measure a small pulse deflection of ~8+/-2 km (not including geometric uncertainties), which is 100 times smaller than the native resolution of this interstellar interferometer. This implies that the emission region is small, and at an altitude of a few hundred km, with the exact value depending on field geometry. This is substantially closer to the star than to the light cylinder. Future VLBI measurements can improve on this finding. This new regime of ultra-precise astrometry may enable precision parallax distance determination of pulsar binary displacements.

  19. Theory of pulsar magnetosphere and wind

    CERN Document Server

    Pétri, J

    2016-01-01

    Neutron stars are fascinating astrophysical objects immersed in strong gravitational and electromagnetic fields, at the edge of our current theories. These stars manifest themselves mostly as pulsars, emitting a timely very stable and regular electromagnetic signal. Even though discovered almost fifty years ago, they still remain mysterious compact stellar objects. In this review, we summarize the most fundamental theoretical aspects of neutron star magnetospheres and winds. The main competing models susceptible to explain their radiative properties like multi-wavelength pulse shapes and spectra and the underlying physical processes such as pair creation and radiation mechanisms are scrutinized. A global but still rather qualitative picture emerges slowly thanks to recent advances in numerical simulations on the largest scales. However considerations about pulsar magnetospheres remain speculative. For instance the exact composition of the magnetospheric plasma is not yet known. Is it solely filled with a mixt...

  20. Bayesian inference for pulsar timing models

    CERN Document Server

    Vigeland, Sarah J

    2013-01-01

    The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...

  1. Pulsar Scintillation and the Local Bubble

    CERN Document Server

    Bhat, N D R; Rao, A P; Gupta, Yashwant

    1998-01-01

    We present here the results from an extensive scintillation study of twenty pulsars in the dispersion measure (DM) range 3 - 35 pc cm^-3 caried out using the Ooty Radio Telescope (ORT) at 327 MHz, to investigate the distribution of ionized material in the local interstellar medium. Observations were made during the period January 1993 to August 1995, in which the dynamic scintillation spectra of these pulsars were regularly monitored over 10 - 90 epochs spanning 100 days. Reliable and accurate estimates of strengths of scattering have been deduced from the scintillation parameters averaged out for their long-term fluctuations arising from refractive scintillation (RISS) effects. Our analysis reveals several anomalies in the scattering strength, which suggest tht the distribution of scattering material in the Solar neighborhood is not uniform. We have modelled these anomalous scattering effects in terms of inhomogeneities in the distribution of electron dnsity fluctuations in the local interstellar medium (LIS...

  2. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    CERN Document Server

    Gralla, Samuel E; Philippov, Alexander

    2016-01-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields may have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly-rotating star of arbitrary magnetic field, mass, radius and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ~60% correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and size of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star ...

  3. Are there two types of pulsars?

    CERN Document Server

    Contopoulos, Ioannis

    2016-01-01

    In order to investigate the importance of dissipation in the pulsar magnetosphere we combined Force-Free with Aristotelian Electrodynamics. We obtain solutions that are ideal (non-dissipative) everywhere except in an equatorial current sheet where Poynting flux from both hemispheres converges and is dissipated into particle acceleration and radiation. We obtain significant dissipative losses similar to what is found in global PIC simulations in which particles are provided only on the stellar surface. We conclude that there might indeed exist two types of pulsars, strongly dissipative ones with particle injection only from the stellar surface, and ideal (weakly dissipative) ones with particle injection in the outer magnetosphere and in particular at the Y-point.

  4. Arecibo Pulsar Survey Using ALFA. III. Probing Radio Pulsar Intermittency and Transients

    CERN Document Server

    Deneva, J S; McLaughlin, M A; Nice, D J; Lorimer, D R; Crawford, F; Bhat, N D R; Camilo, F; Champion, D J; Freire, P C C; Edel, S; Kondratiev, V I; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Krämer, M; Lazarus, P; Van Leeuwen, J; Ransom, S M; Stairs, I H; Stappers, B W; Brazier, A; Venkataraman, A; Zollweg, J A

    2008-01-01

    We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) Survey of the Galactic plane. We have discovered seven objects by detecting isolated dispersed pulses and one of the new discoveries has a duty cycle of 0.01%, the smallest known. The impact of selection effects on the detectability and classification of intermittent sources is discussed, and the relative efficiencies of periodicity vs. single pulse searches are compared for various pulsar classes. We find that scintillation, off-axis detection and few rotation periods within an observation may misrepresent normal periodic pulsars as intermittent sources. Finally, we derive constraints on transient pulse rate and flux density from the PALFA survey parameters and results.

  5. Geminga’s Puzzling Pulsar Wind Nebula

    Science.gov (United States)

    Posselt, B.; Pavlov, G. G.; Slane, P. O.; Romani, R.; Bucciantini, N.; Bykov, A. M.; Kargaltsev, O.; Weisskopf, M. C.; Ng, C.-Y.

    2017-01-01

    We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures—two ≈ 0.2{d}250 pc long lateral tails and a segmented axial tail of ≈ 0.05{d}250 pc length, where {d}250=d/(250 {pc}). The photon indices of the power-law spectra of the lateral tails, {{Γ }}≈ 1, are significantly harder than those of the pulsar ({{Γ }}≈ 1.5) and the axial tail ({{Γ }}≈ 1.6). There is no significant diffuse X-ray emission between the lateral tails—the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indications of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids, which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.

  6. Pulsar PRS 0656 + 14 - Period and spindown

    Science.gov (United States)

    Domingue, D.; Rankin, J. M.; Weisberg, J. M.; Backus, P. R.

    1986-01-01

    Observations from various sources are used to explain the larger-than-expected period noted for pulsar 0656 + 14 on July 7, 1984 (Ashworth and Lyne, 1981). No indication of orbital motion was found, and most of the observations are consistent with a simple secular spindown. The derived period derivative of (54.3 + or - 1.3) x 10 to the -15th at epoch 2444300 is far greater than the previously reported value.

  7. The nature of pulsar radio emission

    Science.gov (United States)

    Dyks, J.; Rudak, B.; Demorest, P.

    2010-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.

  8. Braking index of isolated pulsars. II. A novel two-dipole model of pulsar magnetism

    Science.gov (United States)

    Hamil, O.; Stone, N. J.; Stone, J. R.

    2016-09-01

    The magnetic dipole radiation model is currently the best approach we have to explain pulsar radiation. However, a most characteristic parameter of the observed radiation, the braking index nobs , shows deviations for all the eight best studied isolated pulsars, from the simple model prediction ndip=3 . The index depends upon the rotational frequency and its first and second time derivatives but also on the assumption that the magnetic dipole moment and inclination angle and the moment of inertia of the pulsar are constant in time. In a recent paper [Phys. Rev. D 91, 063007 (2015)], we showed conclusively that changes in the moment of inertia with frequency alone cannot explain the observed braking indices. Possible observational evidence for the magnetic dipole moment migrating away from the rotational axis at a rate α ˙ ˜0.6 ° per 100 years over the lifetime of the Crab pulsar has been recently suggested by Lyne et al. In this paper, we explore the magnetic dipole radiation model with constant moment of inertia and magnetic dipole moment but variable inclination angle α . We first discuss the effect of the variation of α on the observed braking indices and show they all can be understood. However, no explanation for the origin of the change in α is provided. After discussion of the possible source(s) of magnetism in pulsars, we propose a simple mechanism for the change in α based on a toy model in which the magnetic structure in pulsars consists of two interacting dipoles. We show that such a system can explain the Crab observation and the measured braking indices.

  9. Highly-Magnetized Pulsars and Integral

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Harding, Alice K.

    1998-01-01

    The complete absence of radio pulsars with periods exceeding a few seconds has lead to the popular notion of the existence of a high period death line. We have recently postulated the existence of another radio quiescence boundary at high magnetic fields ($B\\gtrsim 4\\times 10^{13}$G) in the upper portion of the period-period derivative diagram, a domain where no radio pulsars are observed. The origin of this high B boundary is also due to the suppression of magnetic pair creation, $\\gamma\\to e^{\\pm}$, but mainly because of competition with the exotic QED process of magnetic photon splitting, $\\gamma\\to\\gamma\\gamma$, coupled with ground state pair creation. This mechanism could also explain the low spectral cutoff energy of the gamma-ray pulsar PSR1509-58, which lies near the high B death-line. In this paper, we summarize the hypothesis of this new ``death line,'' and discuss some subtleties of pair suppression that relate to photon polarization and positronium formation. We identify several ways in which Inte...

  10. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2016-12-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields will have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly rotating star of arbitrary magnetic field, mass, radius, and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ∼ 60 % correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and shape of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star and may help explain the modified beam characteristics of millisecond pulsars.

  11. Multiwavelength analysis of four millisecond pulsars

    Science.gov (United States)

    Guillemot, L.; Cognard, I.; Johnson, T. J.; Venter, C.; Harding, A. K.

    2011-08-01

    Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nançay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. We describe multiwavelength timing and spectral analysis of these four pulsars, and the modeling of their gamma-ray light curves in the context of theoretical models.

  12. LEAP: the large European array for pulsars

    CERN Document Server

    Bassa, C G; Karuppusamy, R; Kramer, M; Lee, K J; Liu, K; McKee, J; Perrodin, D; Purver, M; Sanidas, S; Smits, R; Stappers, B W

    2015-01-01

    The Large European Array for Pulsars (LEAP) is an experiment that harvests the collective power of Europe's largest radio telescopes in order to increase the sensitivity of high-precision pulsar timing. As part of the ongoing effort of the European Pulsar Timing Array (EPTA), LEAP aims to go beyond the sensitivity threshold needed to deliver the first direct detection of gravitational waves. The five telescopes presently included in LEAP are: the Effelsberg telescope, the Lovell telescope at Jodrell Bank, the Nan\\c cay radio telescope, the Sardinia Radio Telescope and the Westerbork Synthesis Radio Telescope. Dual polarization, Nyquist-sampled time-series of the incoming radio waves are recorded and processed offline to form the coherent sum, resulting in a tied-array telescope with an effective aperture equivalent to a 195-m diameter circular dish. All observations are performed using a bandwidth of 128 MHz centered at a frequency of 1396 MHz. In this paper, we present the design of the LEAP experiment, the ...

  13. High-energy radiation from old pulsars

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we study nonthermal high energy radiation from old rotation-powered pulsars with ages greater than 106 yr based on the revised outer gap model.In this model,the inclination angle and geometry of the magnetic field have been taken into account,and the fractional size f of the outer gap is determined by the electron/positron pair production process.The cascade process caused by the back-flowing particles moving from the outer gap to the star will produce the observed nonthermal X-ray emission,and the relativistic particles accelerated in the outer gap will produce gamma-rays via curvature radiation.For nine old pulsars which have been detected to have nonthermal X-rays,we first use the observed nonthermal X-ray emission to estimate reasonable inclination angles,and then estimate their gamma-ray emissions.We also study the possibilities of gamma-ray emissions from other old rotation-powered pulsars.We compare our predicted gamma-ray flux with the sensitivities of AGILE and Fermi.

  14. The nature of pulsar radio emission

    CERN Document Server

    Dyks, J; Demorest, P

    2009-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in `absorption' and emission. Averaged profile of a 5-ms pulsar J1012+5307 hosts a distinct, extremely symmetric, and bifurcated emission component (BFC) with deep central minimum. We show that the component can be very well fitted by the textbook formula for the non-coherent beam of curvature radiation (CR) in the polarisation state that is orthogonal to the plane of electron trajectory. The separation Delta_bfc of maxima in the BFC is observed to decrease with increasing frequency nu_obs at the rate that is consistent with the curvature origin (Delta_bfc proportional to nu_obs^(-1/3)). With zero emissivity in the plane of electron trajectory, the extraordinary-mode beam can naturally produce deep double absorption features (double notches) observed in other pulsars. The bifurcated emission components are observed when the line of sight passes through splitted fan beams produced by radially-extended streams of...

  15. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  16. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Science.gov (United States)

    Lobato, Ronaldo V.; Coelho, J. G.; Malheiro, M.

    2015-12-01

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ˜ 107 - 1010 G and rotate very fast with angular frequencies Ω ˜ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission "o2" is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  17. Detection of 107 glitches in 36 southern pulsars

    CERN Document Server

    Yu, M; Hobbs, G; Johnston, S; Kaspi, V M; Keith, M; Lyne, A G; Qiao, G J; Ravi, V; Sarkissian, J M; Shannon, R; Xu, R X

    2012-01-01

    Timing observations from the Parkes 64-m radio telescope for 165 pulsars between 1990 and 2011 have been searched for period glitches. A total of 107 glitches were identified in 36 pulsars, where 61 have previously been reported and 46 are new discoveries. Glitch parameters were measured by fitting the timing residual data. Observed relative glitch sizes \\Delta\

  18. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Pimenov, A.B.; Sokolov, V.A. [Moscow State University, Physics Department, Moscow (Russian Federation); Denisova, I.P. [Moscow Aviation Institute (National Research University), Moscow (Russian Federation)

    2016-11-15

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed. (orig.)

  19. Detection and estimation of pulsar signals for navigation

    NARCIS (Netherlands)

    Kabakchiev, Chr.; Behar, V.; Buist, P.; Heusdens, R.; Garvanov, I.; Kabakchieva, D.; Gaubitch, N.; Bentum, M.J.

    2015-01-01

    The paper focuses on scientific issues related to new application of pulsar signals for airplane-based navigation. A possible algorithm for processing of pulsar signals that consists of epoch-folding, matched filtering and detection is proposed and evaluated in this paper. The algorithm proposed is

  20. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NARCIS (Netherlands)

    Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; Bilous, A.V.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Hassall, T.E.; Hessels, J.W.T.; Keane, E.F.; Osłowski, S.; Pilia, M.; Serylak, M.; Stappers, B.W.; ter Veen, S.; van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, J.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; van der Horst, A.

    2015-01-01

    Aims. We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from t

  1. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    Science.gov (United States)

    Denisov, V. I.; Denisova, I. P.; Pimenov, A. B.; Sokolov, V. A.

    2016-11-01

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed.

  2. Local pulsars : A note on the birth-velocity distribution

    NARCIS (Netherlands)

    Blaauw, A; Ramachandran, R

    1998-01-01

    We explore a simple model for the representation of the observed distributions of the motions, and the characteristic ages of the local population of pulsars. The principal difference from earlier models is the introduction of a unique value, S, for the kick velocity with which pulsars are born. We

  3. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  4. Multiwavelength Constraints on Pulsar Populations in the Galactic Center

    CERN Document Server

    Wharton, R S; Cordes, J M; Deneva, J S; Lazio, T J W

    2011-01-01

    The detection of radio pulsars within the central few parsecs of the Galaxy would provide a unique probe of the gravitational and magneto-ionic environments in the Galactic Center (GC) and, if close enough to Sgr A*, precise tests of general relativity in the strong-field regime. While it is difficult to find pulsars at radio wavelengths because of interstellar scattering, the payoff from detailed timing of pulsars in the GC warrants a concerted effort. To motivate pulsar surveys and help define search parameters for them, we constrain the pulsar number and spatial distribution using a wide range of multiwavelength measurements. These include the five known radio pulsars within 15 arcmin of Sgr A*, radio and gamma-ray measurements of diffuse emission, non-detections in high frequency pulsar surveys of the central parsec, a catalog of radio point sources from an imaging survey, infrared observations of massive star populations in the central few parsecs, candidate pulsar wind nebulae in the inner 20 pc and est...

  5. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; O' Leary, Ryan M., E-mail: jdexter@berkeley.edu, E-mail: oleary@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  6. Observations of Binary and Millisecond Pulsars at Xinjiang Astronomical Observatory

    Indian Academy of Sciences (India)

    Jingbo Wang; Na Wang; Jianping Yuan; Zhiyong Liu

    2014-09-01

    We present the first results of radio timing observations of binary and millisecond pulsars in China. We have timed four binary pulsars for 9 years, using Nanshan 25-m radio telescope. The long time span has enabled us to determine their rotation and orbital parameters.

  7. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class; pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  8. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  9. Discovery of Two New Pulsars in 47 Tucanae (NGC 104)

    CERN Document Server

    Pan, Zhichen; Li, Di; Ridolfi, Alessandro; Wang, Pei; Freire, Paulo

    2016-01-01

    We report the discovery of two new millisecond pulsars (PSRs J0024$-$7204aa and J0024$-$7204ab) in the globular cluster 47\\,Tucanae (NGC 104). Our results bring the total number of pulsars in 47\\,Tucanae to 25. These pulsars were discovered by reprocessing archival observations from the Parkes radio telescope. We reprocessed the data using a standard search procedure based on the PRESTO software package as well as using a new method in which we incoherently added the power spectra corresponding to $\\sim$1100\\,hr of observations. The newly discovered PSR~J0024$-$7204aa, has a pulse frequency of $\\rm \\sim$541\\,Hz (corresponding to a $\\rm \\sim$1.84 ms period), which is higher than any other pulsars currently known in the cluster and ranks 12$^{\\rm{th}}$ amongst all the currently known pulsars. The dispersion measure of this pulsar, 24.941(7)\\,cm$^{-3}$ pc, is the highest in the cluster. The second discovered pulsar, PSR~J0024$-$7204ab, is an isolated pulsar with a pulse frequency of $\\rm \\sim$270\\,Hz (correspond...

  10. Bow-shock Pulsar Wind Nebulae Passing Through Density Discontinuities

    CERN Document Server

    Yoon, Doosoo

    2016-01-01

    Bow-shock pulsar wind nebulae are a subset of pulsar wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in H$_{\\alpha}$ emission. Among such bow-shock pulsar wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2-D and 3-D hydrodynamic simulations. The shape of the guitar nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millise...

  11. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NARCIS (Netherlands)

    Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; Bilous, A.V.; Cooper, S.; Falcke, H.; Griessmeier, J.-M.; Hassall, T.E.; Hessels, J.W.T.; Keane, E.F.; Oslowski, S.; Pilia, M.; Serylak, M.; Stappers, B.W.; Veen, S. ter; Leeuwen, J. van; Zagkouris, K.; Anderson, K.; Baehren, L.; Bell, M.E.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eisloeffel, J.; Fender, R.P.; Garsden, H.; Jonker, P.; Law, C.J.; Markoff, S.; Masters, J.; Miller-Jones, J.C.A.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, L.H.A.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.A.M.J.; Wijnands, R.; Wise, M.W.; Zarka, P.; Horst, A. van der

    2015-01-01

    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from t

  12. Pulsar Timing for the Fermi Gamma-ray Space Telescope

    CERN Document Server

    Smith, D A; Camilo, F; Cognard, I; Dumora, D; Espinoza, C; Freire, P C C; Gotthelf, E V; Harding, A K; Hobbs, G B; Johnston, S; Kaspi, V M; Krämer, M; Livingstone, M A; Lyne, A G; Manchester, R N; Marshall, F E; McLaughlin, M A; Noutsos, A; Ransom, S M; Roberts, M S E; Romani, R W; Stappers, B W; Theureau, G; Thompson, D J; Thorsett, S E; Wang, N; Weltevrede, P

    2008-01-01

    We describe a comprehensive pulsar monitoring campaign for the Large Area Telescope (LAT) on the {\\em Fermi Gamma-ray Space Telescope} (formerly GLAST). The detection and study of pulsars in gamma rays give insights into the populations of neutron stars and supernova rates in the Galaxy, into particle acceleration mechanisms in neutron star magnetospheres, and into the ``engines'' driving pulsar wind nebulae. LAT's unprecedented sensitivity between 20 MeV and 300 GeV together with its 2.4 sr field-of-view makes detection of many gamma-ray pulsars likely, justifying the monitoring of over two hundred pulsars with large spin-down powers. To search for gamma-ray pulsations from most of these pulsars requires a set of phase-connected timing solutions spanning a year or more to properly align the sparse photon arrival times. We describe the choice of pulsars and the instruments involved in the campaign. Attention is paid to verifications of the LAT pulsar software, using for example giant radio pulses from the Cra...

  13. Gravitational wave detection and data analysis for pulsar timing arrays

    NARCIS (Netherlands)

    Haasteren, Rutger van

    2011-01-01

    Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational w

  14. 1974: the discovery of the first binary pulsar

    CERN Document Server

    Damour, Thibault

    2014-01-01

    The 1974 discovery, by Russell A. Hulse and Joseph H. Taylor, of the first binary pulsar PSR 1913+16, opened up new possibilities for the study of relativistic gravity. PSR 1913+16, as well as several other binary pulsars, provided {\\it direct} observational proofs that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General Relativity has passed all the binary pulsar tests with flying colors. The discovery of binary pulsars had also very important consequences for astrophysics: accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events probably leading to an important emission of electromagnetic radiation and neutrinos. This article reviews the history of...

  15. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    CERN Document Server

    Pletsch, H J; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M -H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hartog, P R den; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Johannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Raino, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Parkinson, P M Saz; Schulz, A; Sgro, C; Silva, E do Couto e; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; 10.1126/science.1229054

    2012-01-01

    Millisecond pulsars (MSPs), old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  16. Are there real orthogonal polarization modes in pulsar radio emission?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 乔国俊

    2000-01-01

    The orthogonal polarization modes (OPM) have been reported observationally and widely accepted by pulsar researchers. However, no acceptable theory can explain the origin of the OPM, which becomes a mystery in pulsar research field. Here a possible way to solve this mystery is pre-sented. We ask a question: Does there exist any real so-called OPM in pulsar radiation? It is proposed that the ’observed OPM’ in individual pulses could be the results of depolarization of pulsar radiation and the observational uncertainties originated f rom polarimeter in observation. A possible method to check this idea is suggested. If the idea is verified, the pulsar research would be influenced significant-ly in theory and in observation.

  17. Are there real orthogonal polarization modes in pulsar radio emission?

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The orthogonal polarization modes (OPM) have been reported observationally and widely accepted by pulsar researchers. However, no acceptable theory can explain the origin of the OPM, which becomes a mystery in pulsar research field. Here a possible way to solve this mystery is presented. We ask a question: Does there exist any real so-called OPM in pulsar radiation? It is proposed that the 'observed OPM' in individual pulses could be the results of depolarization of pulsar radiation and the observational uncertainties originated from polarimeter in observation. A possible method to check this idea is suggested. If the idea is verified, the pulsar research would be influenced significantly in theory and in observation.

  18. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M

    2016-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen atoms penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of relativistic flow we find that if a relatively small density of neutral hydrogen, as low as $10^{-4}$ cm$^{-3}$, penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  19. Pulsar/CNS integrated navigation based on federated UKF

    Institute of Scientific and Technical Information of China (English)

    Jin Liu; Jie Ma; Jinwen Tian

    2010-01-01

    In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system)integrated navigation method based on federated unscented Kalman filter(UKF)is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservabie.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.

  20. Solution to the Sigma-Problem of Pulsar Wind Nebulae

    CERN Document Server

    Porth, Oliver; Keppens, Rony

    2012-01-01

    We present first results of three dimensional relativistic magnetohydrodynamical simulations of Pulsar Wind Nebulae. They show that the kink instability and magnetic dissipation inside these nebulae may be the key processes allowing to reconcile their observations with the theory of pulsar winds. In particular, the size of the termination shock, obtained in the simulations, agrees very well with the observations even for Poynting-dominated pulsar winds. Due to magnetic dissipation the total pressure in the simulated nebulae is particle-dominated and more or less uniform. While in the main body of the simulated nebulae the magnetic field becomes rather randomized, close to the termination shock, it is dominated by the regular toroidal field freshly injected by the pulsar wind. This field is responsible for driving polar outflows and may explain the high polarization observed in pulsar wind nebulae.

  1. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  2. Pulsar Search Results from the Arecibo Remote Command Center

    Science.gov (United States)

    Rodriguez, Miguel; Stovall, Kevin; Banaszak, Shawn A.; Becker, Alison; Biwer, Christopher M.; Boehler, Keith; Caballero, Keeisi; Christy, Brian; Cohen, Stephanie; Crawford, Fronefield; Cuellar, Andres; Danford, Andrew; Percy Dartez, Louis; Day, David; Flanigan, Joseph D.; Fonrouge, Aldo; Gonzalez, Adolfo; Gustavson, Kathy; Handzo, Emma; Hinojosa, Jesus; Jenet, Fredrick A.; Kaplan, David L. A.; Lommen, Andrea N.; Longoria, Chasity; Lopez, Janine; Lunsford, Grady; Mahany, Nicolas; Martinez, Jose; Mata, Alberto; Miller, Andy; Murray, James; Pankow, Chris; Ramirez, Ivan; Reser, Jackie; Rojas, Pablo; Rohr, Matthew; Rolph, Kristina; Rose, Caitlin; Rudnik, Philip; Siemens, Xavier; Tellez, Andrea; Tillman, Nicholas; Walker, Arielle; Wells, Bradley L.; Zaldivar, Jonathan; Zermeno, Adrienne; Gbncc Consortium, Palfa Consortium, Gbtdrift Consortium, Ao327 Consortium

    2015-01-01

    This poster presents the pulsar discoveries made by students in the Arecibo Remote Command Center (ARCC) program. The ARCC program was started at the University of Texas - Brownsville (UTB) within the Center for Advanced Radio Astronomy (CARA) as a group of scientists, faculty, graduate, undergraduate, and high school students interested in astrophysics. It has since expanded to form other ARCC programs at the University of Wisconsin-Milwaukee (UWM) and Franklin and Marshall College (F&M). The students in the ARCC group control the world's largest radio telescopes to search and discover pulsars. Pulsars are exotic neutron stars that emit beams of electromagnetic radiation. ARCC students use a web application to view and rate the images of radio pulsar candidates based on their signal characteristics. To date, ARCC students have searched through thousands of candidates and have discovered 61 pulsars to date.

  3. The Double Pulsar System J0737-3039

    Science.gov (United States)

    Lorimer, D. R.

    The double pulsar system J0737 - 3039 - a 22.7 ms pulsar in a compact 2.4 hr orbit about a 2.7 s pulsar was one of the long-awaited "holy grails" of pulsar astronomy. After only two years of timing, the system is close to surpassing the original Hulse-Taylor binary as a test of general relativity. On-going timing should soon reveal second-order effects in the post-Newtonian parameters. In addition, the observed interactions of the radio beams of the two pulsars provide a unique laboratory for probing neutron star magnetospheres and relativistic winds. Finally, a revised estimate of the cosmic rate of double neutron star mergers including J0737 - 3039 boosts previous estimates by an order of magnitude and suggests a high detection rate for the advanced LIGO gravitational wave detector.

  4. Fluxes and Death Lines of Gamma-Ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    张力; 姜泽军

    2003-01-01

    We study the fluxes and the death lines of γ-ray emission of the pulsars with outer gaps. In a self-sustained outer gap, we derive that the fractional size of the outer gap is a function of period, period derivative, radial distance and magnetic inclination angle for a pulsar. Our results indicate that (i) averaged typical γ-ray energy and γ-ray flux of a pulsar with an outer gap increase with the magnetic inclination angle; we estimate the averaged γ-ray fluxes for observed canonical pulsars with outer gaps and compare them with the sensitivities of AGILE and GLAST, and (ii) ff the fractional size of the outer gap at the inner boundary of the outer gap is not greater than unity, then an outer gap exists; such a condition gives the death lines of the pulsars with outer gaps.

  5. Statistical Analysis of I Stokes Parameter of Millisecond Pulsars

    CERN Document Server

    Panahi, Hossein; Monadi, Reza

    2016-01-01

    Using Detrended Fluctuation Analysis (DFA) and box counting method, we test spacial correlation and fractality of Polarization Pulse Profiles (PPPs) of 24 millisecond pulsars (MSPs) which were observed in Parkes Pulsar Timing Array (PPTA) project. DFA analysis indicates that MSPs' PPPs are persistent and the results of box counting method confirm the fractality in the majority of PPPs. A Kolmogorov-Smirnov test indicates that isolated MSPs have more complex PPPs than binary ones. Then we apply our analysis on a random sample of normal pulsars. Comparing the results of our analysis on MSPs and normal pulsars shows that MSPs have more complex PPPs which is resulted from smaller angular half-width of the emission cone and more peaks in MSPs PPPs. On the other hand, high values of Hurst exponent in MSPs confirm compact emission regions in these pulsars.

  6. The Pulsar Search Collaboratory: Discovery and Timing of Five New Pulsars

    CERN Document Server

    Rosen, R; McLaughlin, M A; Lorimer, D R; Yun, M; Heatherly, S; Boyles, J; Lynch, R; Kondratiev, V I; Scoles, S; Ransom, S M; Moniot, M L; Cottrill, A; Weaver, M; Snider, A; Thompson, C; Raycraft, M; Dudenhoefer, J; Allphin, L; Thorley, J; Meadows, B; Marchiny, G; Liska, A; O'Dwyer, A M; Butler, B; Bloxton, S; Mabry, H; Abate, H; Boothe, J; Pritt, S; Alberth, J; Green, A; Crowley, R J; Agee, A; Nagley, S; Sargent, N; Hinson, E; Smith, K; McNeely, R; Quigley, H; Pennington, A; Chen, S; Maynard, T; Loope, L; Bielski, N; McGough, J R; Gural, J C; Colvin, S; Tso, S; Ewen, Z; Zhang, M; Ciccarella, N; Bukowski, B; Novotny, C B; Gore, J; Sarver, K; Johnson, S; Cunningham, H; Collins, D; Gardner, D; Monteleone, A; Hall, J; Schweinhagen, R; Ayers, J; Jay, S; Uosseph, B; Dunkum, D; Pal, J; Dydiw, S; Sterling, M; Phan, E

    2012-01-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory (PSC), a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hours of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 square degrees of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are - PSR J1926-1314, a long period, nulli...

  7. The High Time Resolution Universe Pulsar Survey VIII: The Galactic millisecond pulsar population

    CERN Document Server

    Levin, L; Barsdell, B R; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Champion, D J; Coster, P; D'Amico, N; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Milia, S; Ng, C; Possenti, A; Stappers, B; Thornton, D; van Straten, W

    2013-01-01

    We have used millisecond pulsars (MSPs) from the southern High Time Resolution Universe (HTRU) intermediate latitude survey area to simulate the distribution and total population of MSPs in the Galaxy. Our model makes use of the scale factor method, which estimates the ratio of the total number of MSPs in the Galaxy to the known sample. Using our best fit value for the z-height, z=500 pc, we find an underlying population of MSPs of 8.3(\\pm 4.2)*10^4 sources down to a limiting luminosity of L_min=0.1 mJy kpc^2 and a luminosity distribution with a steep slope of d\\log N/d\\log L = -1.45(\\pm 0.14). However, at the low end of the luminosity distribution, the uncertainties introduced by small number statistics are large. By omitting very low luminosity pulsars, we find a Galactic population above L_min=0.2 mJy kpc^2 of only 3.0(\\pm 0.7)*10^4 MSPs. We have also simulated pulsars with periods shorter than any known MSP, and estimate the maximum number of sub-MSPs in the Galaxy to be 7.8(\\pm 5.0)*10^4 pulsars at L=0.1...

  8. The High Time Resolution Universe Pulsar Survey IV: Discovery and polarimetry of millisecond pulsars

    CERN Document Server

    Keith, M J; Bailes, M; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Jameson, A; Kramer, M; Levin, L; Milia, S; Possenti, A; Stappers, B W; van Straten, W; Parent, D

    2011-01-01

    We present the discovery of six millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) survey for pulsars and fast transients carried out with the Parkes radio telescope. All six are in binary systems with approximately circular orbits and are likely to have white dwarf companions. PSR J1017-7156 has a high flux density and a narrow pulse width, making it ideal for precision timing experiments. PSRs J1446-4701 and J1125-5825 are coincident with gamma-ray sources, and folding the high-energy photons with the radio timing ephemeris shows evidence of pulsed gamma-ray emission. PSR J1502-6752 has a spin period of 26.7 ms, and its low period derivative implies that it is a recycled pulsar. The orbital parameters indicate it has a very low mass function, and therefore a companion mass much lower than usually expected for such a mildly recycled pulsar. In addition we present polarisation profiles for all 12 MSPs discovered in the HTRU survey to date. Similar to previous observations of MSPs, we find ...

  9. Braking Index of Isolated Pulsars II: A novel two-dipole model of pulsar magnetism

    CERN Document Server

    Hamil, Oliver Q; Stone, Jirina R

    2016-01-01

    The magnetic dipole radiation (MDR) model is currently the best approach we have to explain pulsar radiation. However a most characteristic parameter of the observed radiation, the braking index n$_{\\rm obs}$ shows deviations for all the eight best studied isolated pulsars, from the simple model prediction n$_{\\rm dip}$ = 3. The index depends upon the rotational frequency and its first and second time derivatives, but also on the assumption of that the magnetic dipole moment and inclination angle, and the moment of inertia of the pulsar are constant in time. In a recent paper [Phys. Rev. D 91, 063007 (2015)] we showed conclusively that changes in the moment of inertia with frequency alone, cannot explain the observed braking indices. Possible observational evidence for the magnetic dipole moment migrating away from the rotational axis at a rate $\\dot\\alpha$ $\\sim$ 0.6$^{\\circ}$ per 100 years over the life time of the Crab pulsar has been recently suggested by Lyne et al. In this paper, we explore the MDR mode...

  10. HST optical polarimetry of the Vela pulsar and nebula

    Science.gov (United States)

    Moran, P.; Mignani, R. P.; Shearer, A.

    2014-11-01

    Polarization measurements of pulsars offer a unique insight into the geometry of the emission regions in the neutron star magnetosphere. Therefore, they provide observational constraints on the different models proposed for the pulsar emission mechanisms. Optical polarization data of the Vela pulsar was obtained from the Hubble Space Telescope (HST) archive. The data, obtained in two filters (F606W, central wavelength = 590.70 nm and F550M, central wavelength = 558.15 nm), consist of a series of observations of the pulsar taken with the HST/Advanced Camera for Surveys and cover a time span of 5 d. These data have been used to carry out the first high spatial resolution and multi-epoch study of the polarization of the pulsar. We produced polarization vector maps of the region surrounding the pulsar and measured the degree of linear polarization (P.D.) and the position angle (P.A.) of the pulsar's integrated pulse beam. We obtained P.D. = 8.1 ± 0.7 per cent and P.A. = 146.3° ± 2.4°, averaged over the time span covered by these observations. These results not only confirm those originally obtained by Wagner & Seifert and Mignani et al., both using the Very Large Telescope, but are of greater precision. Furthermore, we confirm that the P.A. of the pulsar polarization vector is aligned with the direction of the pulsar proper motion. The pulsar wind nebula is undetected in polarized light as is the case in unpolarized light, down to a flux limit of 26.8 mag arcsec-2.

  11. The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches

    CERN Document Server

    Caballero, R N; Lentati, L; Desvignes, G; Champion, D J; Verbiest, J P W; Janssen, G H; Stappers, B W; Kramer, M; Lazarus, P; Possenti, A; Tiburzi, C; Perrodin, D; Osłowski, S; Babak, S; Bassa, C G; Brem, P; Burgay, M; Cognard, I; Gair, J R; Graikou, E; Guillemot, L; Hessels, J W T; Karuppusamy, R; Lassus, A; Liu, K; McKee, J; Mingarelli, C M F; Petiteau, A; Purver, M B; Rosado, P A; Sanidas, S; Sesana, A; Shaifullah, G; Smits, R; Taylor, S R; Theureau, G; van Haasteren, R; Vecchio, A

    2015-01-01

    The sensitivity of Pulsar Timing Arrays to gravitational waves depends critically on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise might come from rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterising the low-frequency, stochastic and achromatic noise component, or "timing noise", we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the...

  12. Corrections of rotation of the Galaxy to measured P of pulsars

    Institute of Scientific and Technical Information of China (English)

    容建湘; 萧耐园; 陆埮

    1999-01-01

    The P of pulsars provides important information for studying their physical processes. In an all-round way the effect of the Galactic rotation on the measured P of pulsars is studied. It is shown that among 706 pulsars discovered so far there are 16 pulsars whose measured values of P have been affected by the Galactic rotation. So, it is necessary to make the corresponding corrections for those pulsars.

  13. Particle Acceleration in Dissipative Pulsar Magnetospheres

    Science.gov (United States)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  14. Scattering analysis of LOFAR pulsar observations

    Science.gov (United States)

    Geyer, M.; Karastergiou, A.; Kondratiev, V. I.; Zagkouris, K.; Kramer, M.; Stappers, B. W.; Grießmeier, J.-M.; Hessels, J. W. T.; Michilli, D.; Pilia, M.; Sobey, C.

    2017-09-01

    We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190 MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse shape, assuming single Gaussian component profiles. We find that the constant τ, associated with scattering by a single thin screen, has a power-law dependence on frequency τ ∝ ν-α, with indices ranging from α = 1.50 to 4.0, despite simplest theoretical models predicting α = 4.0 or 4.4. Modelling the screen as an isotropic or extremely anisotropic scatterer, we find anisotropic scattering fits lead to larger power-law indices, often in better agreement with theoretically expected values. We compare the scattering models based on the inferred, frequency-dependent parameters of the intrinsic pulse, and the resulting correction to the dispersion measure (DM). We highlight the cases in which fits of extreme anisotropic scattering are appealing, while stressing that the data do not strictly favour either model for any of the 13 pulsars. The pulsars show anomalous scattering properties that are consistent with finite scattering screens and/or anisotropy, but these data alone do not provide the means for an unambiguous characterization of the screens. We revisit the empirical τ versus DM relation and consider how our results support a frequency dependence of α. Very long baseline interferometry, and observations of the scattering and scintillation properties of these sources at higher frequencies, will provide further evidence.

  15. Axisymmetric rotator models as pulsars: abject failure

    Directory of Open Access Journals (Sweden)

    F. C. Michel

    2001-01-01

    Full Text Available El bien conocido modelo de Goldreich & Julian (1969 postul o que a un una estrella de neutrones en rotaci on con un momento de campo magn etico dipolar alineado ser a un pulsar activo. Aunque se sospech o desde 1980 que este modelo no podr a funcionar como se propuso, hemos visto el resurgimiento de modelos que no perciben los problemas b asicos subyacentes. A menos que esos modelos identi quen expl citamente el vicio de la falla de los modelos GJ, no se les debe dedicar tanto esfuerzo te orico.

  16. Theory of pulsar magnetosphere and wind

    Science.gov (United States)

    Pétri, Jérôme

    2016-10-01

    > leptons or does it contain a non-negligible fraction of protons and/or ions? Is it almost entirely filled or mostly empty except for some small anecdotal plasma filled regions? Answers to these questions will strongly direct the description of the magnetosphere to seemingly contradictory results leading sometimes to inconsistencies. Nevertheless, accounts are given as to the latest developments in the theory of pulsar magnetospheres and winds, the existence of a possible electrosphere and physical insight obtained from related observational signatures of multi-wavelength pulsed emission.

  17. DA495 - an aging pulsar wind nebula

    CERN Document Server

    Kothes, R; Reich, W; Safi-Harb, S; Arzoumanian, Z

    2008-01-01

    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed \\ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index ${\\alpha}={-0.45 \\pm 0.20}$ below the break and ${\\alpha}={-0.87 \\pm 0.10}$ above it (${S}_\

  18. Magnetospheric structure of rotation powered pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  19. Pulsar population synthesis using palfa detections and pulsar search collaboratory discoveries including a wide DNS system and a nearby MSP

    Science.gov (United States)

    Swiggum, Joseph Karl

    Using the ensemble of detections from pulsar surveys, we can learn about the sizes and characteristics of underlying populations. In this thesis, I analyze results from the Pulsar Arecibo L-band Feed Array (PALFA) precursor and Green Bank Telescope 350 MHz Drift Scan surveys; I examine survey sensitivity to see how detections can inform pulsar population models, I look at new ways of including young scientists -- high school students -- in the discovery process and I present timing solutions for students' discoveries (including a nearby millisecond pulsar and a pulsar in a wide-orbit double neutron star system). The PALFA survey is on-going and uses the ALFA 7-beam receiver at 1400 MHz to search both inner and outer Galactic sectors visible from Arecibo (32° ?£? 77° and 168° ?£? 214°) close to the Galactic plane (|b| ? 5°) for pulsars. The PALFA precursor survey observed a subset of this region, (|b| ? 1°) and detected 45 pulsars, including one known millisecond pulsar (MSP) and 11 previously unknown, long-period (normal) pulsars. I assess the sensitivity of the PALFA precursor survey and use the number of normal pulsar and MSP detections to infer the size of each underlying Galactic population. Based on 44 normal pulsar detections and one MSP, we constrain each population size to 107,000+36,000-25,000 and 15,000 +85,000-6,000 respectively with 95% confidence. Based on these constraints, we predict yields for the full PALFA survey and find a deficiency in normal pulsar detections, possibly due to radio frequency interference and/or scintillation, neither of which are currently accounted for in population simulations. The GBT 350 MHz Drift Scan survey collected data in the summer of 2007 while the GBT was stationary, undergoing track replacement. Results discussed here come from ~20% of the survey data, which were processed and donated to the Pulsar Search Collaboratory (PSC). The PSC is a joint outreach program between WVU and NRAO, involving high school

  20. Towards Robust Gravitational Wave Detection with Pulsar Timing Arrays

    CERN Document Server

    Cornish, Neil J

    2015-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the...

  1. Towards robust detection of gravitational waves by pulsar timing

    Science.gov (United States)

    Cornish, Neil J.; Sampson, Laura

    2016-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for detecting very low frequency sources of gravitational waves. In any one pulsar, the gravitational wave signal appears as an additional source of timing noise, and it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources, or in the limit where there are many pulsars in the array, the waves produce a unique tensor correlation pattern that depends only on the angular separation of each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when there are a finite number of signals and pulsars, which breaks the statistical isotropy of the timing array and of the gravitational wave sky. We also study the use of "sky-scrambles'' to break the signal correlations in the data as a way to increase confidence in a detection.

  2. Eight New Millisecond Pulsars in NGC 6440 and NGC 6441

    CERN Document Server

    Freire, Paulo C C; Begin, Steve; Stairs, Ingrid H; Hessels, Jason W T; Frey, Lucille H; Camilo, Fernando

    2007-01-01

    Motivated by the recent discovery of 30 new millisecond pulsars in Terzan 5, made using the Green Bank Telescope's S-band receiver and the Pulsar Spigot spectrometer, we have set out to use the same observing system in a systematic search for pulsars in other globular clusters. Here we report on the discovery of five new pulsars in NGC 6440 and three in NGC 6441; each cluster previously had one known pulsar. Using the most recent distance estimates to these clusters, we conclude that there are as many potentially observable pulsars in NGC 6440 and NGC 6441 as in Terzan 5. We present timing solutions for all of the pulsars in these globular clusters. Four of the new discoveries are in binary systems; one of them, PSR J1748-2021B (NGC 6440B), has a wide (P_b = 20.5 d) and eccentric (e = 0.57) orbit. This allowed a measurement of its rate of advance of periastron: 0.00391(18) degrees per year. If due to the effects of general relativity, the total mass of this binary system is 2.92 +/- 0.20 solar masses (1 sigma...

  3. Pulsar Populations and Unidentified Gamma-Ray Sources

    CERN Document Server

    Harding, A K; Grenier, I A; Perrot, C A

    2003-01-01

    The EGRET telescope on the Compton Gamma-Ray Observatory detected over 200 sources and the majority of these are still unidentified. At least three subpopulations of EGRET sources have been associated with the Galaxy: bright sources lying along the Galactic plane, weaker sources spatially correlated with the Gould Belt and a high-latitude, halo population. Many of these sources may be pulsars and there are more than two-dozen radio pulsars in or near EGRET source error boxes, most of them recently discovered in the Parkes Multibeam Survey. We present results from several population synthesis studies of pulsars in the Galaxy, which predict the number of pulsars detected by gamma-ray and radio surveys assuming models for the high-energy emission beam and its relation to the radio beam. Future gamma-ray pulsar detections by AGILE and GLAST together with the recent large rise in the radio pulsar population will give greatly improved statistics. The relative numbers of radio and gamma-ray pulsars detected in the p...

  4. Pulsar emission in the very-high-energy regime

    CERN Document Server

    Breed, M; Harding, A K

    2016-01-01

    The vast majority of the pulsars detected by the Fermi Large Area Telescope (LAT) display spectra with exponential cutoffs falling in a narrow range around a few GeV. Early spectral modelling predicted spectral cutoff energies of up to 100 GeV. More modern studies estimated spectral cutoff energies in the 1-20 GeV range. It was therefore not expected that pulsars would be visible in the very-high-energy (VHE; >100 GeV) regime. The VERITAS detection (confirmed by MAGIC) of pulsed emission from the Crab pulsar up to 400 GeV (and now possibly up to 1 TeV) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar in the 20-120 GeV range, making this the second pulsar detected by a ground-based Cherenkov telescope. We will review the latest developments in VHE pulsar science, including an overview of recent observations and refinements to radiation models and magnetic field structures. This wi...

  5. ON DETECTING MILLISECOND PULSARS AT THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Macquart, Jean-Pierre [ICRAR/Curtin University, Curtin Institute of Radio Astronomy, Perth WA 6845 (Australia); Kanekar, Nissim, E-mail: J.Macquart@curtin.edu.au [Swarnajayanti Fellow, National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Ganeshkhind, Pune-411007 (India)

    2015-06-01

    The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈8 GHz (weak-scattering) and ≈25 GHz (strong-scattering), for pulsars with periods 1–20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10–30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.

  6. Discovery of Two High-Magnetic-Field Radio Pulsars

    CERN Document Server

    Camilo, F M; Lyne, A G; Manchester, R N; Bell, J F; D'Amico, N; McKay, N P F; Crawford, F

    2000-01-01

    We report the discovery of two young isolated radio pulsars with very high inferred magnetic fields. PSR J1119-6127 has period P = 0.407 s, and the largest period derivative known among radio pulsars, Pdot = 4.0e-12. Under standard assumptions these parameters imply a characteristic spin-down age of only tau = 1.6 kyr and a surface dipole magnetic field strength of B = 4.1e13 G. We have measured a stationary period-second-derivative for this pulsar, resulting in a braking index of n = 2.91+-0.05. We have also observed a glitch in the rotation of the pulsar, with fractional period change Delta_P/P = -4.4e-9. Archival radio imaging data suggest the presence of a previously uncataloged supernova remnant centered on the pulsar. The second pulsar, PSR J1814-1744, has P = 3.975 s and Pdot = 7.4e-13. These parameters imply tau = 85 kyr, and B = 5.5e13 G, the largest of any known radio pulsar. Both PSR J1119-6127 and PSR J1814-1744 show apparently normal radio emission in a regime of magnetic field strength where som...

  7. Timing of 29 Pulsars Discovered in the PALFA Survey

    CERN Document Server

    Lyne, A G; Bogdanov, S; Ferdman, R; Freire, P C C; Kaspi, V M; Knispel, B; Lynch, R; Allen, B; Brazier, A; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Hessels, J W T; Jenet, F A; Lazarus, P; van Leeuwen, J; Lorimer, D R; Madsen, E; McKee, J; McLaughlin, M A; Parent, E; Patel, C; Ransom, S M; Scholz, P; Seymour, A; Siemens, X; Spitler, L G; Stairs, I H; Stovall, K; Swiggum, J; Wharton, R S; Zhu, W W

    2016-01-01

    We report on the discovery and timing observations of 29 distant long-period pulsars discovered in the ongoing Arecibo PALFA pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5-0.5, while J1925+1720 is coincident with a high-energy Fermi gamma-ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199-day binary orbit with a companion having a minimum mass of 0.33 solar masses. Several of the...

  8. A Search for X-ray Counterparts of Radio Pulsars

    CERN Document Server

    Prinz, Tobias

    2015-01-01

    We describe a systematic search for X-ray counterparts of radio pulsars. The search was accomplished by cross-correlating the radio timing positions of all radio pulsars from the ATNF pulsar database (version 1.54) with archival XMM-Newton and Chandra observations publicly released by August 1st 2015. In total, 171 of the archival XMM-Newton observations and 215 of the archival Chandra datasets where found to have a radio pulsar serendipitously in the field of view. From the 283 radio pulsars covered by these datasets we identified 19 previously undetected X-ray counterparts. For 6 of them the statistics was sufficient to model the energy spectrum with one- or two-component models. For the remaining new detections and for those pulsars for which we determined an upper limit to their counting rate we computed the energy flux by assuming a Crab-like spectrum. Additionally, we derived upper limits on the neutron stars' surface temperature and on the non-thermal X-ray efficiency for those pulsars for which the sp...

  9. Timing of 29 Pulsars Discovered in the PALFA Survey

    Science.gov (United States)

    Lyne, A. G.; Stappers, B. W.; Bogdanov, S.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Knispel, B.; Lynch, R.; Allen, B.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Hessels, J. W. T.; Jenet, F. A.; Lazarus, P.; van Leeuwen, J.; Lorimer, D. R.; Madsen, E.; McKee, J.; McLaughlin, M. A.; Parent, E.; Patel, C.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J.; Wharton, R. S.; Zhu, W. W.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B.

    2017-01-01

    We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5‑0.5, while J1925+1720 is coincident with a high-energy Fermi γ-ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M⊙. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.

  10. HST optical polarimetry of the Vela pulsar & nebula

    CERN Document Server

    Moran, P; Shearer, A

    2014-01-01

    Polarisation measurements of pulsars offer an unique insight into the geometry of the emission regions in the neutron star magnetosphere. Therefore, they provide observational constraints on the different models proposed for the pulsar emission mechanisms. Optical polarisation data of the Vela pulsar was obtained from the {\\em Hubble Space Telescope} ({\\em HST}) archive. The data, obtained in two filters (F606W; central wavelength = 590.70 nm, and F550M; central wavelength = 558.15 nm), consists of a series of observations of the pulsar taken with the {\\em HST}/Advanced Camera for Surveys (ACS) and covers a time span of 5 days. This data have been used to carry out the first high-spatial resolution and multi-epoch study of the polarisation of the pulsar. We produced polarisation vector maps of the region surrounding the pulsar and measured the degree of linear polarisation (P.D.) and the position angle (P.A.) of the pulsar's integrated pulse beam. %This yielded We obtained $\\rm P.D.=8.1\\%\\pm0.7\\%$ and $\\rm P....

  11. Pulsar Glitches: The Crust may be Enough

    CERN Document Server

    Piekarewicz, J; Horowitz, C J

    2014-01-01

    Pulsar glitches-the sudden spin-up in the rotational frequency of a neutron star-suggest the existence of an angular-momentum reservoir confined to the inner crust of the neutron star. Large and regular glitches observed in the Vela pulsar have originally constrained the fraction of the stellar moment of inertia that must reside in the solid crust to about 1.4%. However, crustal entrainment-which until very recently has been ignored-suggests that in order to account for the Vela glitches, the fraction of the moment of inertia residing in the crust must increase to about 7%. This indicates that the required angular momentum reservoir may exceed that which is available in the crust. We explore the possibility that uncertainties in the equation of state provide enough flexibility for the construction of models that predict a large crustal thickness and consequently a large crustal moment of inertia. Given that analytic results suggest that the crustal moment of inertia is sensitive to the transition pressure at ...

  12. Multiwavelength analysis of four millisecond pulsars

    CERN Document Server

    Guillemot, Lucas; Johnson, Tyrel J; Venter, Christo; Harding, Alice K

    2015-01-01

    Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nan\\c{c}ay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. W...

  13. A LOFAR Census of Millisecond Pulsars

    CERN Document Server

    Kondratiev, V I; Hessels, J W T; Bilous, A V; Stappers, B W; Kramer, M; Keane, E F; Noutsos, A; Osłowski, S; Breton, R P; Hassall, T E; Alexov, A; Cooper, S; Falcke, H; Grießmeier, J -M; Karastergiou, A; Kuniyoshi, M; Pilia, M; Sobey, C; ter Veen, S; Weltevrede, P; Bell, M E; Broderick, J W; Corbel, S; Eislöffel, J; Markoff, S; Rowlinson, A; Swinbank, J D; Wijers, R A M J; Wijnands, R; Zarka, P

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOFAR in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time at frequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths and flux densities, and compare these with higher observing frequencies. The LOFAR pulse profiles will be publicly available via the EPN Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of the LOFAR MSP profiles with those at higher radio frequencies shows constant separation between profile components. Simi...

  14. Pulsar Emission Geometry and Accelerating Field Strength

    Science.gov (United States)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  15. Electron Acceleration at Pulsar Wind Termination Shocks

    Science.gov (United States)

    Giacchè, S.; Kirk, John G.

    2017-02-01

    We study the acceleration of electrons and positrons at an electromagnetically modified, ultrarelativistic shock in the context of pulsar wind nebulae. We simulate the outflow produced by an obliquely rotating pulsar in proximity of its termination shock with a two-fluid code that uses a magnetic shear wave to mimic the properties of the wind. We integrate electron trajectories in the test-particle limit in the resulting background electromagnetic fields to analyze the injection mechanism. We find that the shock-precursor structure energizes and reflects a sizable fraction of particles, which becomes available for further acceleration. We investigate the subsequent first-order Fermi process sustained by small-scale magnetic fluctuations with a Monte Carlo code. We find that the acceleration proceeds in two distinct regimes: when the gyroradius {r}{{g}} exceeds the wavelength of the shear λ, the process is remarkably similar to first-order Fermi acceleration at relativistic, parallel shocks. This regime corresponds to a low-density wind that allows the propagation of superluminal waves. When {r}{{g}}< λ , which corresponds to the scenario of driven reconnection, the spectrum is softer.

  16. Pulsar Candidates Toward Fermi Unassociated Sources

    CERN Document Server

    Frail, D A; Jagannathan, P; Intema, H T

    2016-01-01

    We report on a search for steep spectrum radio sources within the 95% confidence error ellipses of the Fermi unassociated sources from the Large Array Telescope (LAT). Using existing catalogs and the newly released GMRT all-sky survey at 150 MHz we identify compact radio sources that are bright at MHz frequencies but faint or absent at GHz frequencies. Such steep spectrum radio sources are rare and constitute a sample of pulsar candidates, selected independently of period, dispersion measure, interstellar scattering and orbital parameters. We find point-like, steep spectrum candidates toward 11 Fermi sources. Based on the gamma-ray/radio positional coincidence, the rarity of such radio sources, and the properties of the 3FGL sources themselves, we argue that many of these sources could be pulsars. They may have been missed by previous radio periodicity searches due to interstellar propagation effects or because they lie in an unusually tight binary. If this hypothesis is correct, then renewed gamma-ray and ra...

  17. Rotation measure variations for 20 millisecond pulsars

    CERN Document Server

    Yan, Wenming; van Straten, Willem; Reynolds, John; Hobbs, George; Wang, Na; Bailes, Matthew; Bhat, Ramesh; Burke-Spolaor, Sarah; Champion, David; Chaudhary, Ankur; Coles, William; Hotan, Aidan; Khoo, Jonathan; Oslowski, Stefan; Sarkissian, John; Yardley, Daniel

    2011-01-01

    We report on variations in the mean position angle of the 20 millisecond pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is found that the observed variations are dominated by changes in the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric models are used to correct for the ionospheric contribution and it is found that one based on the International Reference Ionosphere gave the best results. Little or no significant long-term variation in interstellar RM was found with limits typically about 0.1 rad m$^{-2}$ yr$^{-1}$ in absolute value. In a few cases, apparently significant RM variations over timescales of a few 100 days or more were seen. These are unlikely to be due to localised magnetised regions crossing the line of sight since the implied magnetic fields are too high. Most probably they are statistical fluctuations due to random spatial and temporal variations in the interstellar electron density and magnetic field along the line of sight.

  18. Pulsar Observations of Extreme Scattering Events

    CERN Document Server

    Coles, W A; Shannon, R M; Hobbs, G; Manchester, R N; You, X P; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Levin, Y; Oslowski, S; Ravi, V; Reardon, D; Toomey, L; van Straten, W; Wang, J B; Wen, L; Zhu, X J

    2015-01-01

    Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a "diverging plasma lens" across the line of sight. Modeling the refraction of such a lens indicates that the structure size must be of order AU and the electron density of order 10s of cm^{-3}. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array (PPTA). These allow us to make more complete models of the ESE, including an estimate of the "outer-scale" of the turbulence in the plasma lens. These observations show clearly that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the line of sight, such...

  19. Elementary Wideband Timing of Radio Pulsars

    CERN Document Server

    Pennucci, Timothy T; Ransom, Scott M

    2014-01-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription put forth by Taylor (1992) to accommodate a general two-dimensional template ``portrait'', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between the two measured quantities, and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using Gaussian-component scheme that allows for independent component evolution with frequency, a ``fiducial component'', and the inclusion of scattering. A demonstration on three years of wideband data on the bright millisecond pulsar J1824-2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses showcase and validate the algorithm. By using a simple model portrait of M28A we obtain DM trends comparable to ...

  20. Prospects for High-Precision Pulsar Timing

    CERN Document Server

    Liu, K; Kramer, M; Stappers, B W; van Straten, W; Cordes, J M

    2011-01-01

    Timing pulses of pulsars has proved to be a most powerful technique useful to a host of research areas in astronomy and physics. Importantly, the precision of this timing is not only affected by radiometer noise, but also by intrinsic pulse shape changes, interstellar medium (ISM) evolution, instrumental distortions, etc. In this paper we review the known causes of pulse shape variations and assess their effect on the precision and accuracy of a single measurement of pulse arrival time with current instrumentation. Throughout this analysis we use the brightest and most precisely timed millisecond pulsar (MSP), PSR J0437-4715, as a case study, and develop a set of diagnostic tools to evaluate profile stability in timing observations. We conclude that most causes of distortion can be either corrected by state-of-the-art techniques or taken into account in the estimation of time-of-arrival (TOA) uncertainties. The advent of a new generation of radio telescopes (e.g. the Square Kilometre Array, SKA), and their in...

  1. SQM stars around pulsar PSR B1257+12

    CERN Document Server

    Kutschera, Marek; Kubis, Sebastian; Bratek, Łukasz

    2010-01-01

    Following Wolszczan's landmark discovery of planets in orbit around pulsar PSR B1257+12 in 1991, over 300 planets in more than 200 planetary systems have been found. Therefore, the meaning of Wolszczan's discovery cannot be overestimated. In this paper we aim to convince the reader that the objects accompanying pulsar PSR B1257+12 are more exotic than thought so far. They might not be ordinary planets but dwarf strange quark stars, whereas the pulsar might be a quark star with standard mass, not a neutron star. If this was the case, it would indicate that strange quark matter is the ground state of matter.

  2. Pulsar Search Results from the Arecibo Remote Command Center

    Science.gov (United States)

    Garcia, Alejandro; Stovall, K.; Banaszak, S. A.; Becker, A.; Biwer, C. M.; Boehler, K.; Caballero, K.; Christy, B.; Cohen, S.; Crawford, F.; Cuellar, A.; Danford, A.; Dartez, L. P.; Day, D.; Flanigan, J. D.; Gonzalez, A.; Gustavson, K.; Handzo, E.; Hinojosa, J.; Jenet, F.; Kaplan, D. L.; Kayal, K.; Lommen, A. N.; Longoria, C.; Lopez, J.; Lunsford, G.; Mahany, N.; Martinez, J.; Mata, A.; Miller, A.; Murray, J.; Pankow, C.; Ramirez, I.; Reser, J.; Rojas, P.; Rohr, M.; Rolph, K.; Rose, C.; Rudnik, P.; Siemens, X.; Tellez, A.; Tillman, N.; Walker, A.; Wells, B. L.; Zermeno, A.; Consortium, GBNCC; Consortium, PALFA; Consortium, GBTDrift; Consortium, AO327

    2014-01-01

    The Arecibo Remote Command Center (ARCC) at the University of Texas at Brownsville, in collaboration with various Universities, is currently engaged in searching through ongoing radio telescope surveys for radio pulsars. ARCC is an integrated research/education program that allows students at the high school and undergraduate level to be directly involved with the research at the Arecibo and Green Bank radio telescopes. We discuss the progress of our search effort with PRESTO pulsar search pipelines. Web based tools have been developed so that high school, undergraduate, and graduate students could rank the pulsar candidates created by PRESTO pipelines. We describe these tools and present our current discoveries.

  3. Pulsar coherent de-dispersion system of Urumqi Observatory

    Science.gov (United States)

    Liyong, Liu; Esamdin, Ali; Jin, Zhang

    Pulsar coherent de-dispersion experiment has been carried by using the 25-m Nanshan radio telescope of Urumqi Observatory It uses a dual polarization receiver operating at 18cm and a VLBI back-end Mark5A The data processing system is based on a C program on Linux and a 4-node Beowulf cluster A high quality data acquisition system and a cluster with more processors are needed to build an on-line pulsar coherent de-dispersion system in future Key words Astronomical instrument Pulsar Coherent de-dispersion Parallel computing Cluster Mark5A

  4. Magnetorotational and Tayler Instabilities in the Pulsar Magnetosphere

    Indian Academy of Sciences (India)

    Vadim Urpin

    2017-09-01

    The magnetospheres around neutron stars should be very particular because of their strong magnetic field and rapid rotation. A study of the pulsar magnetospheres is of crucial importance since it is the key issue to understand how energy outflow to the exterior is produced. In this paper, we discuss magnetohydrodynamic processes in the pulsar magnetosphere. We consider in detail the properties of magnetohydrodynamic waves that can exist in the magnetosphere and their instabilities. These instabilities lead to formation of magnetic structures and can be responsible for short-term variability of the pulsar emission.

  5. Analytical model of massive Pulsar J0348+0432

    Science.gov (United States)

    Kayum Jafry, M. Abdul; Molla, Sajahan; Islam, Rabiul; Kalam, Mehedi

    2017-10-01

    In this article we propose a model for the Pulsar J0348+0432 (Antoniadis et al. in Science 340:1233232, 2013) in a compact relativistic binary. Here we investigate the physical properties of the Pulsar J0348+0432 by using the Finch and Skea (Class. Quantum Gravity 4:467, 1989) metric. Using our model, we evaluate central density (ρ0), surface density (ρb), central pressure (p 0), surface redshift (Z s) and probable radius of the above mentioned compact object, which is very much consistent with reported data. We also obtain a possible equation of state (EoS) of the pulsar which is physically acceptable.

  6. Pulsar Coherent De-dispersion Experiment at Urumqi Observatory

    Science.gov (United States)

    Liu, Li-Yong; Ali, Esamdin; Zhang, Jin

    2006-12-01

    A Pulsar coherent de-dispersion experiment has been carried out using the 25-m Nanshan radio telescope at Urumqi Observatory. It uses a dual polarization receiver operating at 18 cm and a VLBI back-end: Mark5A, the minimum sampling time is 5 ns. The data processing system is based on a C program on Linux and a 4-node Beowulf cluster. A high quality data acquisition system and a cluster with more processors are needed to build an on-line pulsar coherent de-dispersion system in future. The main directions for the instrument are studies of pulsar timing, scintillation monitoring, etc.

  7. A Framework for Assessing the Performance of Pulsar Search Pipelines

    CERN Document Server

    van Heerden, E; Roberts, S J

    2016-01-01

    In this paper, we present a framework for assessing the effect of non-stationary Gaussian noise and radio frequency interference (RFI) on the signal to noise ratio, the number of false positives detected per true positive and the sensitivity of standard pulsar search pipelines. The results highlight the necessity to develop algorithms that are able to identify and remove non-stationary variations from the data before RFI excision and searching is performed in order to limit false positive detections. The results also show that the spectrum whitening algorithms currently employed, severely affect the efficiency of pulsar search pipelines by reducing their sensitivity to long period pulsars.

  8. Movement of the pulsars and neutrino oscillations; Movimiento de los pulsares y oscilaciones de neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barkovich, M.A

    2005-07-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  9. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    CERN Document Server

    Desvignes, G; Lentati, L; Verbiest, J P W; Champion, D J; Stappers, B W; Janssen, G H; Lazarus, P; Osłowski, S; Babak, S; Bassa, C G; Brem, P; Burgay, M; Cognard, I; Gair, J R; Graikou, E; Guillemot, L; Hessels, J W T; Jessner, A; Jordan, C; Karuppusamy, R; Kramer, M; Lassus, A; Lazaridis, K; Lee, K J; Liu, K; Lyne, A G; McKee, J; Mingarelli, C M F; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S; Sesana, A; Shaifullah, G; Smits, R; Taylor, S R; Theureau, G; Tiburzi, C; van Haasteren, R; Vecchio, A

    2016-01-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80\\% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 bina...

  10. Intrinsic Instrumental Polarization and High-Precision Pulsar Timing

    CERN Document Server

    Foster, Griffin; Paulin, Remi; Carozzi, Tobia; Johnston, Simon; van Straten, Willem

    2015-01-01

    Radio telescopes are used to accurately measure the time of arrival (ToA) of radio pulses in pulsar timing experiments that target mostly millisecond pulsars (MSPs) due to their high rotational stability. This allows for detailed study of MSPs and forms the basis of experiments to detect gravitational waves. Apart from intrinsic and propagation effects, such as pulse-to-pulse jitter and dispersion variations in the interstellar medium, timing precision is limited in part by the following: polarization purity of the telescope's orthogonally polarized receptors, the signal-to-noise ratio (S/N) of the pulsar profile, and the polarization fidelity of the system. Using simulations, we present how fundamental limitations in recovering the true polarization reduce the precision of ToA measurements. Any real system will respond differently to each source observed depending on the unique pulsar polarization profile. Using the profiles of known MSPs we quantify the limits of observing system specifications that yield s...

  11. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    Science.gov (United States)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  12. Giant pulsar glitches and the inertia of neutron star crusts

    Science.gov (United States)

    Delsate, T.; Chamel, N.; Gürlebeck, N.; Fantina, A. F.; Pearson, J. M.; Ducoin, C.

    2016-07-01

    Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this superfluid has been recently found to be entrained by the crust, and as a consequence it does not carry enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated employing a series of different unified dense-matter equations of state.

  13. The Crab Pulsar at Centimeter Wavelengths: I. Ensemble Characteristics

    CERN Document Server

    Hankins, T H; Eilek, J A

    2015-01-01

    We have observed the pulsar in the Crab Nebula at high radio frequencies and high time resolution. We present continuously sampled data at 640-ns time resolution, and individual bright pulses recorded at down to 0.25-ns time resolution. Combining our new data with previous data from our group and from the literature shows the dramatic changes in the pulsar's radio emission between low and high radio frequencies. Below about 5 GHz the mean profile is dominated by the bright Main Pulse and Low-Frequency Interpulse. Everything changes, however, above about 5 GHz; the Main Pulse disappears, the mean profile of the Crab pulsar is dominated by the High-Frequency Interpulse (which is quite different from its low-frequency counterpart) and the two High-Frequency Components. We present detailed observational characteristics of these different components which future models of the pulsar's magnetosphere must explain.

  14. Public List of LAT-Detected Gamma-Ray Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team,...

  15. Photon Attenuation and Pair Creation in Highly-Magnetized Pulsars

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Harding, Alice K.

    1999-01-01

    Developments over the last couple of years have supported the interpretation that anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) possess unusually high magnetic fields, and furthermore may represent a class or classes of neutron stars distinct from the population of conventional radio pulsars. We have recently suggested that such a dichotomization of the pulsar population may naturally arise due to the inherently different conditions in subcritical and supercritical magnetic fields. In this paper, we summarize, within the polar gap model, expectations for observable properties of highly magnetized pulsars, conventional or anomalous. This includes a discussion of the potential suppression of pair production and cascade generation in very strong fields by photon splitting and by threshold pair creation, which might explain radio quiescence in AXPs and SGRs. X-ray and hard gamma-ray spectral properties and trends are identified, with a view to establishing goals for future high energy experimenta...

  16. The role of multipolar magnetic fields in pulsar magnetospheres

    CERN Document Server

    Asséo, E; Asseo, Estelle; Khechinashvili, David

    2002-01-01

    We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centered multipolar fields. In configurations involving axially symmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high order multipoles. Consequently, such configurations are unable to provide an efficient pair creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axially symmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow sub-regions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair production p...

  17. X-Ray Emission from Rotation-Powered Pulsars

    Institute of Scientific and Technical Information of China (English)

    LIN Gui-Fang; ZHANG Li

    2005-01-01

    @@ We study the properties of pulsed component of hard (2-10keV) x-ray emission from pulsars based on the new version of outer gap model we proposed previously [Astrophys.J.604 (2004) 317].On the frame of this outer gap model, we derive an expression of non-thermal pulsed x-ray luminosity of rotation-powered pulsars, and then apply it to the pulsars whose pulsed x-rays are detected by ASCA.Using the Kolmogorov-Smirnov test,we determine the model parameter.The present results indicate LX ∝ L1.15sd for these x-ray pulsars, which is consistent with the observed data.

  18. Too much "pasta" for pulsars to spin down

    CERN Document Server

    Pons, Jose A; Rea, Nanda

    2013-01-01

    The lack of X-ray pulsars with spin periods > 12 s raises the question about where the population of evolved high magnetic field neutron stars has gone. Unlike canonical radio-pulsars, X-ray pulsars are not subject to physical limits to the emission mechanism nor observational biases against the detection of sources with longer periods. Here we show that a highly resistive layer in the innermost part of the crust of neutron stars naturally limits the spin period to a maximum value of about 10-20 s. This high resistivity is one of the expected properties of the nuclear pasta phase, a proposed state of matter having nucleons arranged in a variety of complex shapes. Our findings suggest that the maximum period of isolated X-ray pulsars can be the first observational evidence of the existence of such phase, which properties can be constrained by future X-ray timing missions combined with more detailed models.

  19. On the high frequency polarization of pulsar radio emission

    CERN Document Server

    Von Hoensbroech, A; Krawczyk, A

    1998-01-01

    We have analyzed the polarization properties of pulsars at an observing frequency of 4.9 GHz. Together with low frequency data, we are able to trace polarization profiles over more than three octaves into an interesting frequency regime. At those high frequencies the polarization properties often undergo important changes such as significant depolarization. A detailed analysis allowed us to identify parameters, which regulate those changes. A significant correlation was found between the integrated degree of polarization and the loss of rotational energy E^dot. The data were also used to review the widely established pulsar profile classification scheme of core- and cone-type beams. We have discovered the existence of pulsars which show a strongly increasing degree of circular polarization towards high frequencies. Previously unpublished average polarization profiles, recorded at the 100m Effelsberg radio telescope, are presented for 32 radio pulsars at 4.9 GHz. The data were used to derive polarimetric param...

  20. Effects of phase transition induced density fluctuations on pulsar dynamics

    Directory of Open Access Journals (Sweden)

    Partha Bagchi

    2015-07-01

    Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.

  1. The Aid of Optical Studies in Understanding Millisecond Pulsar Binaries

    CERN Document Server

    Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-01-01

    A large number of new "black widow" and "redback" energetic millisecond pulsars with irradiated stellar companions have been discovered through radio and optical searches of unidentified \\textit{Fermi} sources. Synchrotron emission, from particles accelerated up to several TeV in the intrabinary shock, exhibits modulation at the binary orbital period. Our simulated double-peaked X-ray light curves modulated at the orbital period, produced by relativistic Doppler-boosting along the intrabinary shock, are found to qualitatively match those observed in many sources. In this model, redbacks and transitional pulsar systems where the double-peaked X-ray light curve is observed at inferior conjunction have intrinsically different shock geometry than other millisecond pulsar binaries where the light curve is centered at superior conjunction. We discuss, and advocate, how current and future optical observations may aid in constraining the emission geometry, intrabinary shock and the unknown physics of pulsar winds.

  2. Pulsar radiation in post-Maxwellian vacuum nonlinear electrodynamics

    Science.gov (United States)

    Denisov, V. I.; Shvilkin, B. N.; Sokolov, V. A.; Vasili'ev, M. I.

    2016-08-01

    The effects of nonlinear vacuum electrodynamics are most clearly pronounced in a strong electromagnetic field close to Schwinger limit. Electromagnetic fields of such intensity can be obtained in laboratory conditions only on very few extreme laser facilities and during a short time interval. At the same time, the astrophysical compact objects with a strong electromagnetic field such as pulsars and magnetars are the best suited to study the effects of nonlinear vacuum electrodynamics. We present analytical calculations for pulsar proper radiation in parametrized post-Maxwellian nonlinear vacuum electrodynamics. Based on the obtained solutions, the effect of nonlinear vacuum corrections to pulsar spin down is being investigated. The analysis of torque functions show that the nonlinear vacuum electrodynamics corrections to the electromagnetic radiation for some pulsars may be comparable to the energy loss by gravitational radiation.

  3. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    CERN Document Server

    Harding, Alice K

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap, we derive the accelerating electric field above the polar cap in space charge limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the polar cap and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-Pdot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission and the pulsar contribution to cosmic ray positrons.

  4. Are Superfluid Vortices in Pulsars Violating the Weak Equivalence Principle?

    CERN Document Server

    de Matos, Clovis Jacinto

    2010-01-01

    In the present paper we argue that timing irregularities in pulsars, like glitches and timing noise, could be associated with the violation of the weak equivalence principle for vortices in the superfluid core of rotating neutron stars.

  5. Pulsar Science with the Green Bank 43m Telescope

    CERN Document Server

    Mickaliger, M B; Lorimer, D R; Langston, G I; Bilous, A V; Kondratiev, V I; Ransom, S M; Crawford, F

    2011-01-01

    The 43m telescope at the NRAO site in Green Bank, WV has recently been outfitted with a clone of the Green Bank Ultimate Pulsar Processing Instrument (GUPPI \\cite{Ransom:2009}) backend, making it very useful for a number of pulsar related studies in frequency ranges 800-1600 MHz and 220-440 MHz. Some of the recent science being done with it include: monitoring of the Crab pulsar, a blind search for transient sources, pulsar searches of targets of opportunity, and an all-sky mapping project. For the Crab monitoring project, regular observations are searched for giant pulses (GPs), which are then correlated with $\\gamma$-ray photons from the \\emph{Fermi} spacecraft. Data from the all-sky mapping project are first run through a pipeline that does a blind transient search, looking for single pulses over a DM range of 0-500 pc~cm$^{-3}$. These projects are made possible by MIT Lincoln Labs.

  6. PSRPI Mapping the Galactic distribution of pulsars with the VLBA

    Data.gov (United States)

    National Aeronautics and Space Administration — Observations for the initial PSRPI sample of 60 pulsars have now concluded. 84.7 hours were observed on the VLBA (plus 12 hours from a pilot project) searching for...

  7. AB INITIO PULSAR MAGNETOSPHERE: THE ROLE OF GENERAL RELATIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A.; Cerutti, Benoit; Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08544 (United States); Tchekhovskoy, Alexander, E-mail: sashaph@princeton.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2015-12-20

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.

  8. Pulsar H(alpha) Bowshocks probe Neutron Star Physics

    Science.gov (United States)

    Romani, Roger W.

    2014-08-01

    We propose a KOALA/AAOmega study of southern pulsar bow shocks. These rare, Balmer-dominated, non-radiative shocks provide an ideal laboratory to study the interaction of the relativistic pulsar wind with the ISM. We will cover H(alpha) at high spectral resolution to measure the kinematics of the upstream ISM and the post-shock flow, while the blue channel measures the Balmer decrement and probes for a faint cooling component. These data, with MHD models, allow us to extract the 3D flow geometry and the orientation and asymmetry of the pulsar wind. These data can also measure the pulsar spindown power, thus estimating the neutron star moment of inertia and effecting a fundamental test of dense matter physics.

  9. On the polar cap cascade pair multiplicity of young pulsars

    CERN Document Server

    Timokhin, A N

    2015-01-01

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ~few x 10^5. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence ...

  10. X-Ray Pulsar Based Navigation and Time Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will build on the Phase I X-ray pulsar-based navigation and timing (XNAV) feasibility assessment to develop a detailed XNAV simulation capability to...

  11. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M J

    2015-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar. A fraction of interstellar neutrals penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off distance, we find that a relatively small density of neutrals, as low as $n_{\\rm ISM}=10^{-4}\\,\\text{cm}^{-3}$, is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  12. JPL pulsar timing observations. IV - Excess phase noise

    Science.gov (United States)

    Downs, G. S.; Krause-Polstorff, J.

    1986-01-01

    Previously published tables of geocentric arrival times for 24 pulsars covering a 12 year span are extended here to 14.5 years. The list of pulsars is extended by nine, most of which were observed for about 4 years. Known positins of these new objects are confirmed, and limits on the proper motions are obtained. Large phase excursions in PSR 0525 + 21 are found. The orbital parameters of the binary pulsar 0820 + 02 are tentatively confirmed. Short-term timing noise in excess of that expected from receiver considerations alone is established. Variations in the timing residuals for the original 24 pulsars are analyzed for correlations with other observable parameters. Little significant correlation with changes in pulse shape or energy or with the drift correction is found on time scales of 500 pulses or longer.

  13. Upper limits on gravitational wave emission from 78 radio pulsars

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; De Bra, D; DeSalvo, R; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Dickson, J; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Díaz, M; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R E; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Gustafson, R; Günther, M; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Krämer, M; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Lyne, A G; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Müller, G; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C

    2007-01-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO600 gravitational wave detectors. The data from both runs have been combined coherently to maximise sensitivity. For the first time pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 3.2e-25 for PSRJ1603-7202, and the equatorial ellipticity of PSRJ2124-3358 is less than 10e-6. Furthermore, our strain upper limit for the Crab pulsar is only three times greater than the fiducial spin-down limit.

  14. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  15. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  16. Pulsar acceleration by asymmetric emission of sterile neutrinos

    CERN Document Server

    Nardi, E; Nardi, Enrico; Zuluaga, Jorge I.

    2001-01-01

    A convincing explanation for the observed pulsar large peculiar velocities is still missing. We argue that any viable particle physics solution would most likely involve the resonant production of a non-interacting neutrino $\

  17. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    CERN Document Server

    Champion, D J; Lazarus, P; Camilo, F; Bassa, C; Kaspi, V M; Nice, D J; Freire, P C C; Stairs, I H; Van Leeuwen, J; Stappers, B W; Cordes, J M; Hessels, J W T; Lorimer, D R; Arzoumanian, Z; Backer, D C; Bhat, N D R; Chatterjee, S; Cognard, I; Deneva, J S; Faucher-Giguere, C -A; Gaensler, B M; Han, J L; Jenet, F A; Kasian, L; Kondratiev, V I; Krämer, M; Lazio, J; McLaughlin, M A; Venkataraman, A; Vlemmings, W

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 ms in a highly eccentric (e = 0.44) 95-day orbit around a solar mass companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster then ejecting it into the Galactic disk or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74+/-0.04 Msun, an unusually high value.

  18. VizieR Online Data Catalog: ATNF Pulsar Catalogue (Manchester+, 2005)

    Science.gov (United States)

    Manchester, R. N.; Hobbs, G. B.; Teoh, A.; Hobbs, M.

    2016-05-01

    The catalogue is a compilation of the principal observed parameters of pulsars, including positions, timing parameters, pulse widths, flux densities, proper motions, distances, and dispersion, rotation, and scattering measures. It also lists the orbital elements of binary pulsars, and some commonly used parameters derived from the basic measurements. The catalogue includes all published rotation-powered pulsars, including those detected only at high energies. It also includes Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) for which coherent pulsations have been detected. However, it excludes accretion-powered pulsars such as Her X-1 and the recently discovered X-ray millisecond pulsars. (2 data files).

  19. Towards robust gravitational wave detection with pulsar timing arrays

    Science.gov (United States)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  20. MeV Pulsars: Modeling Spectra and Polarization

    Science.gov (United States)

    Kust Harding, Alice; Kalapotharakos, Constantinos

    2017-08-01

    A sub-population of energetic rotation-powered pulsars show high fluxes of pulsed non-thermal hard X-ray emission. While this ‘MeV pulsar’ population includes some radio-loud pulsars like the Crab and PSR B1509-58, a significant number have no detected radio or GeV emission, a mystery since gamma-ray emission is a common characteristic of pulsars with high spin-down power. Their steeply rising hard X-ray spectral energy distributions (SEDs) suggest peaks at 0.1 - 1 MeV but they have not been detected above 200 keV. Several upcoming and planned telescopes may shed light on the MeV pulsars. The Neutron star Interior Composition ExploreR (NICER) will observe pulsars in the 0.2 - 12 keV band and may discover additional MeV pulsars. The All-Sky Medium-Energy Gamma-Ray Observatory (AMEGO), in a study phase, can detect emission above 0.2 MeV and polarization in the 0.2 - 10 MeV band. We present a model for the spectrum and polarization of MeV pulsars where the X-ray emission comes from electron-positron pairs radiating in the outer magnetosphere and current sheet. This model predicts that the peak of the SED increases with surface magnetic field strength if the pairs are produced in polar cap cascades. For small inclination angles, viewing at large angles to the rotation axis can miss both the radio pulse and the GeV pulse from particles accelerating near the current sheet. Characterizing the emission and geometry of MeV pulsars can thus provide clues to the source of pairs and acceleration in the magnetosphere.

  1. X-Ray Observations of Black Widow Pulsars

    NARCIS (Netherlands)

    Gentile, P.A.; Roberts, M.S.E.; McLaughlin, M.A.; Camilo, F.; Hessels, J.W.T.; Kerr, M.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2014-01-01

    We describe the first X-ray observations of five short orbital period (PB < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024—are "black-widow" pulsars, with degenerate companions of mass Lt0.1 M ☉, three of which exhibit

  2. On binary pulsars and the force of gravity

    CERN Document Server

    Palle, D

    2002-01-01

    We reanalyze a binary pulsar system and show that the orbital period change rate can be completely understood as a curvature backreaction process. Appreciating a detailed theoretical and observational study of relativistic binary pulsar systems, especially the system of Hulse and Taylor, we conclude that general relativity and astrophysical observations rule out the existence of gravitational radiation. Thus, the force of gravity is not a local gauge force.

  3. The Arrival Directions of Ultrahigh Energy Cosmic Rays and Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, A.A. [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)

    2008-01-15

    The arrival directions of extensive air showers by Yakutsk data are analyzed. We found that fluxes of particles (clusters) with ultrahigh energy from the side of the galactic plane and the plane of Local group of Virgo galactic correlate with pulsars of the galactic plane. It is shown that the all 3 particles with the energy E>10{sup 20} eV by Yakutsk data correlate with a nearest pulsars.

  4. The Parkes multibeam pulsar survey: VII. Timing of four millisecond pulsars and the underlying spin period distribution of the Galactic millisecond pulsar population

    CERN Document Server

    Lorimer, D R; Manchester, R N; Possenti, A; Lyne, A G; McLaughlin, M A; Kramer, M; Hobbs, G; Stairs, I H; Burgay, M; Eatough, R P; Keith, M J; Faulkner, A J; D'Amico, N; Camilo, F; Corongiu, A; Crawford, F

    2015-01-01

    We present timing observations of four millisecond pulsars discovered in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. PSRs J1552-4937 and J1843-1448 are isolated objects with spin periods of 6.28 and 5.47 ms respectively. PSR J1727-2946 is in a 40-day binary orbit and has a spin period of 27 ms. The 4.43-ms pulsar J1813-2621 is in a circular 8.16-day binary orbit around a low-mass companion star with a minimum companion mass of 0.2 solar masses. Combining these results with detections from five other Parkes multibeam surveys, gives a well-defined sample of 56 pulsars with spin periods below 20 ms. We develop a likelihood analysis to constrain the functional form which best describes the underlying distribution of spin periods for millisecond pulsars. The best results were obtained with a log-normal distribution. A gamma distribution is less favoured, but still compatible with the observations. Uniform, power-law and Gaussian distributions are found to be inconsistent with the data. Galactic...

  5. XMM-Newton Observations of Four Millisecond Pulsars

    Science.gov (United States)

    Zavlin, Vyacheslav E.

    2005-01-01

    I present an analysis of the XMM-Newton observations of four millisecond pulsars, J0437-4715, J2124-3358, J1024-0719, and J0034-0534. The new data provide strong evidence of thermal emission in the X-ray flux detected from the first three objects. This thermal component is best interpreted as radiation from pulsar polar caps covered with a nonmagnetic hydrogen atmosphere. A nonthermal power-law component, dominating at energies E greater than or equal to 3 keV, can also be present in the detected X-ray emission. For PSR J0437-4715, the timing analysis reveals that the shape and pulsed fraction of the pulsar light curves are energy dependent. This, together with the results obtained from the phase-resolved spectroscopy, supports the two-component (thermal plus nonthermal) interpretation of the pulsar's X-ray radiation. Highly significant pulsations have been found in the X-ray flux of PSRs 52124-3358 and 51024-0719. For PSR 50034-0534, a possible X-ray counterpart of the radio pulsar has been suggested. The inferred properties of the detected thermal emission are compared with predictions of radio pulsar models.

  6. Radio Quiet Pulsars with Ultra-Strong Magnetic Fields

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Harding, Alice K.

    1998-01-01

    The notable absence of radio pulsars having measured magnetic dipole surface field strengths above $B_0\\sim 3\\times 10^{13}$ Gauss naturally raises the question of whether this forms an upper limit to pulsar magnetization. Recently there has been increasing evidence that neutron stars possessing higher dipole spin-down fields do in fact exist, including a growing list of anomalous X-ray pulsars (AXPs) with long periods and spinning down with high period derivatives, implying surface fields of $10^{14}$--$10^{15}$ Gauss. Furthermore, the recently reported X-ray period and period derivative for the Soft Gamma-ray Repeater (SGR) source SGR1806-20 suggest a surface field around $10^{15}$ Gauss. None of these high-field pulsars have yet been detected as radio pulsars. We propose that high-field pulsars should be radio-quiet because electron-positron pair production in their magnetospheres, thought to be essential for radio emission, is efficiently suppressed in ultra-strong fields ($B_0\\gtrsim 4\\times 10^{13}$ Gau...

  7. X-ray Observations of High-B Radio Pulsars

    CERN Document Server

    Olausen, S A; Vogel, J K; Kaspi, V M; Lyne, A G; Espinoza, C M; Stappers, B W; Manchester, R N; McLaughlin, M A

    2013-01-01

    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 +/- 60 eV, with bolometric luminosity L_bb = 2.0(+2.2 -0.7)e+32 erg/s = 0.0036E_dot for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1 sigma upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect eit...

  8. Gravitational waves from pulsars in the context of magnetic ellipticity

    CERN Document Server

    de Araujo, José C N; Costa, César A

    2016-01-01

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular to what concerns the gravitational waves generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which, in here we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best $h \\sim 10^{-28}$. This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, whether the ellipticity has magnetic origi...

  9. The KaVA and KVN Pulsar Project

    CERN Document Server

    Dodson, Richard; Sohn, Bongwon; Rioja, Mar\\'\\ia J; Jung, Taehyun; Seymour, Andrew; Raja, Wasim

    2014-01-01

    We present our work towards using the Korean VLBI (Very Long Baseline Interferometer) Network (KVN) and VLBI Exploration of Radio Astronomy (VERA) arrays combined into the KVN and VERA Array (KaVA) for observations of radio pulsars at high frequencies ($\\simeq$22-GHz). Pulsar astronomy is generally focused at frequencies approximately 0.3 to several GHz and pulsars are usually discovered and monitored with large, single-dish, radio telescopes. For most pulsars, reduced radio flux is expected at high frequencies due to their steep spectrum, but there are exceptions where high frequency observations can be useful. Moreover, some pulsars are observable at high frequencies only, such as those close to the Galactic Center. The discoveries of a radio-bright magnetar and a few dozen extended Chandra sources within 15 arc-minute of the Galactic Center provide strong motivations to make use of the KaVA frequency band for searching pulsars in this region. Here, we describe the science targets and report progresses made...

  10. Black Widow Pulsar radiation hydrodynamics simulation using Castro: Methodology

    Science.gov (United States)

    Barrios Sazo, Maria; Zingale, Michael; Zhang, Weiqun

    2017-01-01

    A black widow pulsar (BWP) is a millisecond pulsar in a tight binary system with a low mass star. The fast rotating pulsar emits intense radiation, which injects energy and ablates the companion star. Observation of the ablation is seen as pulsar eclipses caused by a larger object than the companion star Roche lobe. This phenomenon is attributed to a cloud surrounding the evaporating star. We will present the methodology for modeling the interaction between the radiation coming from the pulsar and the companion star using the radiation hydrodynamics code Castro. Castro is an adaptive mesh refinement (AMR) code that solves the compressible hydrodynamic equations for astrophysical flows with simultaneous refinement in space and time. The code also includes self-gravity, nuclear reactions and radiation. We are employing the gray-radiation solver, which uses a mixed-frame formulation of radiation hydrodynamics under the flux-limited diffusion approximation. In our setup, we are modeling the companion star with the radiation field as a boundary condition, coming from one side of the domain. In addition to a model setup in 2-d axisymmetry, we also have a 3-d setup, which is more physical given the nature of the system considering the companion is facing the pulsar on one side. We discuss the progress of our calculations, first results, and future work.The work at Stony Brook was supported by DOE/Office of Nuclear Physics grant DE-FG02-87ER40317

  11. The Vela Pulsar in the Near-Infrared

    CERN Document Server

    Shibanov, Y A; Sollerman, J; Lundqvist, P

    2003-01-01

    We report on the first detection of the Vela pulsar in the near-infrared with the VLT/ISAAC in the Js and H bands. The pulsar magnitudes are Js=22.71 +/- 0.10 and H=22.04 +/- 0.16. We compare our results with the available multiwavelength data and show that the dereddened phase-averaged optical spectrum of the pulsar can be fitted with a power law F_nu propto nu^(-alpha_nu) with alpha_nu = 0.12 +/- 0.05, assuming the color excess E(B-V)=0.055 +/-0.005 based on recent spectral fits of the emission of the Vela pulsar and its supernova remnant in X-rays. The negative slope of the pulsar spectrum is different from the positive slope observed over a wide optical range in the young Crab pulsar spectrum. The near-infrared part of the Vela spectrum appears to have the same slope as the phase-averaged spectrum in the high energy X-ray tail, obtained in the 2-10 keV range with the RXTE. Both of these spectra can be fitted with a single power law suggesting their common origin. Because the phase-averaged RXTE spectrum i...

  12. Tests of gravitational symmetries with radio pulsars

    Science.gov (United States)

    Shao, LiJing; Wex, Norbert

    2016-09-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  13. Compressed Baryonic Matter: from Nuclei to Pulsars

    CERN Document Server

    Xu, Renxin

    2013-01-01

    Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...

  14. Coherently dedispersed gated imaging of millisecond pulsars

    CERN Document Server

    Roy, Jayanta

    2013-01-01

    Motivated by the need for rapid localisation of newly discovered faint millisecond pulsars (MSPs) we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with best-fit topocentric rotational model derived from periodicity search in simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localise five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of +-1". Immediate knowledge of such precise position allows the use of sensitive coherent beams of array telescopes for follow-up timing observations, which substantially reduces the use of telescope time (~ 20X for the GMRT). In addition, precise a-priori astrometric position reduces the effect of large covariances in timing fit (with dis...

  15. Accreting Millisecond Pulsars and Fundamental Physics

    Science.gov (United States)

    Strohmayer, Tod

    2005-01-01

    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  16. High energy neutrinos from pulsar wind nebulae

    Science.gov (United States)

    Di Palma, Irene

    2017-09-01

    Several Pulsar Wind Nebulae have been detected in the TeV band in the last decade.The TeV emission is typically interpreted in a purely leptonic scenario, but this usually requires that the magnetic field in the Nebula be much lower than the equipartition value and the assumption of an enhanced target radiation at IR frequencies. In this work we consider the possibility that, in addition to the relativistic electrons, also relativistic hadrons are present in these nebulae. Assuming that part of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼ 1 ‑ 100 TeV neutrinos. We use the IceCube non detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in IceCube, ANTARES and in KM3Net.

  17. HESS Observations of Pulsar Wind Nebulae

    CERN Document Server

    De Jager, O C

    2006-01-01

    The high resolution capabilities of the High Energy Stereoscopic System (HESS) introduced a new era in Gamma-Ray Astronomy, and opens a new window on pulsar wind nebula (PWN) research. A rotationally induced jet (associated with PSR B1509-58) is resolved for the first time in gamma-rays, allowing us to trace the particle transport directly, without having the complicating effect of spatially varying field distributions on the synchrotron emissivity. For PWN older or more extended than Crab (i.e. those with lower field strengths), HESS also reveals the properties of electrons contributing to the EUV/soft X-ray synchrotron bands, whereas EUV/soft X-rays suffer from severe interstellar absorption effects. Finally, HESS morphological studies of evovled PWN also allow us to directly measure the effects of assymetric reverse shock interactions due to SNR forward shock expansion into the inhomogeneous interstellar medium.

  18. Tests of Gravitational Symmetries with Radio Pulsars

    CERN Document Server

    Shao, Lijing

    2016-01-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  19. Magnetic field decay in normal radio pulsars

    CERN Document Server

    Igoshev, A P

    2015-01-01

    We analyse the origin of the magnetic field decay in normal radio pulsars found by us in a recent study. This decay has a typical time scale $\\sim 4 \\times 10^5$~yrs, and operates in the range $\\sim 10^5$~--~few$\\times 10^5$~yrs. We demonstrate that this field evolution may be either due to the Ohmic decay related to the scattering from phonons, or due to the Hall cascade which reaches the Hall attractor. According to our analysis the first possibility seems to be more reliable. So, we attribute the discovered field decay mainly to the Ohmic decay on phonons which is saturated at the age few$\\times 10^5$~yrs, when a NS cools down to the critical temperature below which the phonon scattering does not contribute much to the resistivity of the crust. Some role of the Hall effect and attractor is not excluded, and will be analysed in our further studies.

  20. Pulse profile stability of the Crab pulsar

    CERN Document Server

    Jain, Chetana

    2011-01-01

    We present an X-ray timing analysis of the Crab pulsar, PSR B0531+21, using the archival RXTE data. We have investigated the stability of the Crab pulse profile, in soft (2-20 keV) and hard (30-100 keV) X-ray energies, over the last decade of RXTE operation. The analysis includes measurement of the separation between the two pulse peaks; and intensity and the widths of the two peaks. We did not find any significant time dependency in the pulse shape. The two peaks are stable in phase, intensity and widths, for the last ten years. The first pulse is relatively stronger at soft X-rays. The first pulse peak is narrower than the second peak, in both, soft- and hard X-ray energies. Both the peaks show a slow rise and a steeper fall. The ratio of the pulsed photons in the two peaks is also constant in time.

  1. SN 1054: A pulsar-powered supernova?

    Science.gov (United States)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  2. The theory of pulsar winds and nebulae

    CERN Document Server

    Kirk, J G; Petri, J

    2007-01-01

    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.

  3. Pulsar timing noise from superfluid turbulence

    CERN Document Server

    Melatos, Andrew

    2013-01-01

    Shear-driven turbulence in the superfluid interior of a neutron star exerts a fluctuating torque on the rigid crust, causing the rotational phase to walk randomly. The phase fluctuation spectrum is calculated analytically for incompressible Kolmogorov turbulence and is found to be red; the half-power point is set by the observed spin-down rate, the crust-superfluid lag, and the dynamical response time of the superfluid. Preliminary limits are placed on the latter quantities using selected time- and frequency-domain data. It is found that measurements of the normalization and slope of the power spectrum are reproduced for reasonable choices of the turbulence parameters. The results point preferentially to the neutron star interior containing a turbulent superfluid rather than a turbulent Navier-Stokes fluid. The implications for gravitational wave detection by pulsar timing arrays are discussed briefly.

  4. Youngest Radio Pulsar Revealed with Green Bank Telescope

    Science.gov (United States)

    2002-04-01

    Astronomers using the National Science Foundation's (NSF) newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have detected remarkably faint radio signals from an 820 year-old pulsar, making it the youngest radio-emitting pulsar known. This discovery pushes the boundaries of radio telescope sensitivity for discovering pulsars, and will enable scientists to conduct observations that could lead to a better understanding of how these stars evolve. The Robert C. Byrd Green Bank Telescope Robert C. Byrd Green Bank Telescope "Important questions about pulsars may be answered by long-term monitoring of objects such as the one we just detected," said Fernando Camilo of Columbia University in New York City. "Young pulsars are particularly rare, and being able to study such a young one at radio wavelengths provides an outstanding opportunity to learn critical facts about their evolution and workings." The results of this research, based on observations conducted on February 22-23, 2002, were accepted for publication in the Astrophysical Journal Letters. Scientists have long suspected that a pulsar - a rapidly spinning, superdense neutron star - was born when a giant star ended its life in a cataclysmic supernova explosion observed in late summer of 1181, as suggested by Japanese and Chinese historical records. For the past 20 years, astronomers have searched this supernova remnant (3C58), located 10,000 light-years away in the constellation Cassiopeia, for the telltale pulsations of a newly born pulsar. Late in 2001, data from NASA's Chandra X-ray satellite confirmed its existence, but it remained an elusive quarry for radio telescopes. "We believed from historical records and certainly knew from recent X-ray observations that this star was there," Camilo remarked, "but despite many attempts, no one had been able to find any radio pulsations from it because the signals are, it turns out, incredibly weak." For comparison, this pulsar's radio emission is some 250

  5. TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION. XI. UNDERSTANDING THE ORIENTATIONS OF PULSAR RADIATION AND SUPERNOVA “KICKS”

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M., E-mail: Joanna.Rankin@uvm.edu [Physics Department, University of Vermont, Burlington, VT 05405 (United States)

    2015-05-10

    Two entwined problems have remained unresolved since pulsars were discovered nearly 50 yr ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova “kicks” relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (“fiducial”) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is ∥ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both ∥ or ⊥ alignments. In this paper we analyze some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions (PMs). The “fiducial” polarization angle of the core emission, we then find, is usually oriented ⊥ to the PM direction on the sky. The primary core emission is polarized ⊥ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation. This shows that the PMs usually lie ∥ to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova “kicks” are responsible for pulsar PMs, they are mostly ∥ to the rotation axis; and, second, most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude “parent” core emission is polarized ⊥ to the emitting field, propagating as the extraordinary (X) mode.

  6. Probing the origin of Pulsar wind with a Black widow pulsar 2FGL J2339.6-0532

    Science.gov (United States)

    Yatsu, Yoichi; Shibata, Shinpei; Kawai, Nobuyuki; Kataoka, Jun; Saito, Yoshihiko

    Multi-wavelength observations of a black widow binary system 2FGL2339.6-0532 are presented. Black widow pulsars are believed to be in the intermediate stage between LMXB and isolated millisecond pulsars(MSPs). In a typical black widow system, the recycled MSP is evaporating up its companion star by the powerful pulsar wind. Fermi gamma-ray source 2FGL2339.6-0532 is recently categorized as an black widow pulsar. It possesses a K-star companion orbiting at a period of 4.63 h that corresponds to an orbit radius of about 10(11) cm for a standard NS mass. Our optical observations utilizing OISTER show clear sinusoidal light curves at various wavelength covering Ks B band. Phase resolved SED precisely constrained the size of the companion star and temperature. X-ray spectra taken with Suzaku revealed steady soft X-ray excess below 1 keV energy range that may be originated in blackbody emission from the neutron surface. While In hard X-ray energy band the X-ray light curve shows double peak modulation synchronized with the orbital motion indicating that the hard X-ray may be from the surface of the companion star. To explain the hard X-ray behavior we examined a simple geometry and estimated the physical state of the pulsar wind at immediate vicinity of the light cylinder of the pulsar.

  7. The effect of small inter-pulsar distance variations in stochastic gravitational wave background searches with Pulsar Timing Arrays

    CERN Document Server

    Mingarelli, Chiara M F

    2014-01-01

    One of the primary objectives for Pulsar Timing Arrays (PTAs) is to detect a stochastic background generated by the incoherent superposition of gravitational waves (GWs), in particular from the cosmic population of supermassive black hole binaries. Current stochastic background searches assume that pulsars in a PTA are separated from each other and the Earth by many GW wavelengths. As more millisecond pulsars are discovered and added to PTAs, some may be separated by only a few radiation wavelengths or less, resulting in correlated GW phase changes between close pulsars in the array. Here we investigate how PTA overlap reduction functions (ORFs), up to quadrupole order, are affected by these additional correlated phase changes, and how they are in turn affected by relaxing the assumption that all pulsars are equidistant from the solar system barycenter. We find that in the low frequency GW background limit of $f\\sim10^{-9}$~Hz, and for pulsars at varying distances from the Earth, that these additional correla...

  8. The High Time Resolution Universe Pulsar Survey XII : Galactic plane acceleration search and the discovery of 60 pulsars

    CERN Document Server

    Ng, C; Bailes, M; Barr, E D; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Flynn, C M L; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Levin, L; Petroff, E; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C; Eatough, R P; Lyne, A G

    2015-01-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD)...

  9. Method to detect gravitational waves from an ensemble of known pulsars

    CERN Document Server

    Fan, Xilong; Messenger, Christopher

    2016-01-01

    Combining information from weak sources, such as known pulsars, for gravitational wave detection, is an attractive approach to improve detection efficiency. We propose an optimal statistic for a general ensemble of signals and apply it to an ensemble of known pulsars. Our method combines $\\mathcal F$-statistic values from individual pulsars using weights proportional to each pulsar's expected optimal signal-to-noise ratio to improve the detection efficiency. We also point out that to detect at least one pulsar within an ensemble, different thresholds should be designed for each source based on the expected signal strength. The performance of our proposed detection statistic is demonstrated using simulated sources, with the assumption that all pulsars' ellipticities belong to a common (yet unknown) distribution. Comparing with an equal-weight strategy and with individual source approaches, we show that the weighted-combination of all known pulsars, where weights are assigned based on the pulsars' known informa...

  10. TIMING AND INTERSTELLAR SCATTERING OF 35 DISTANT PULSARS DISCOVERED IN THE PALFA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Altiere, E.; Farrington, D.; Popa, L.; Wang, Y. [Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cordes, J. M.; Brazier, A.; Chatterjee, S. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Sanpa-arsa, S. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Allen, B. [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Bhat, N. D. R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Champion, D. J. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); and others

    2013-07-20

    We have made extensive observations of 35 distant slow (non-recycled) pulsars discovered in the ongoing Arecibo PALFA pulsar survey. Timing observations of these pulsars over several years at Arecibo Observatory and Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation properties. Despite being a relatively distant population, these pulsars have properties that mirror those of the previously known pulsar population. Many of the sources exhibit timing noise, and one underwent a small glitch. We have used multifrequency data to measure the interstellar scattering properties of these pulsars. We find scattering to be higher than predicted along some lines of sight, particularly in the Cygnus region. Finally, we present XMM-Newton and Chandra observations of the youngest and most energetic of the pulsars, J1856+0245, which has previously been associated with the GeV-TeV pulsar wind nebula HESS J1857+026.

  11. Timing and Interstellar Scattering of Thirty-five Distant Pulsars Discovered in the PALFA Survey

    CERN Document Server

    Nice, D J; Bogdanov, S; Cordes, J M; Farrington, D; Hessels, J W T; Kaspi, V M; Lyne, A G; Popa, L; Ransom, S M; Sanpa-arsa, S; Stappers, B W; Wang, Y; Allen, B; Bhat, N D R; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Deneva, J S; Desvignes, G; Freire, P C C; Jenet, F A; Knispel, B; Lazarus, P; Lee, K J; van Leeuwen, J; Lorimer, D R; Lynch, R; McLaughlin, M A; Scholz, P; Siemens, X; Stairs, I H; Stovall, K; Venkataraman, A; Zhu, W

    2013-01-01

    We have made extensive observations of 35 distant slow (non-recycled) pulsars discovered in the ongoing Arecibo PALFA pulsar survey. Timing observations of these pulsars over several years at Arecibo Observatory and Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation properties. Despite being a relatively distant population, the properties of these pulsars mirror those of the previously known pulsar population. Many of the sources exhibit timing noise, and one underwent a small glitch. We have used multifrequency data to measure the interstellar scattering properties of these pulsars. We find scattering to be higher than predicted along some lines of sight, particularly in the Cygnus region. Lastly, we present XMM-Newton and Chandra observations of the youngest and most energetic of the pulsars, J1856+0245, which has previously been associated with the GeV-TeV pulsar wind nebula HESS J1857+026.

  12. A Mid-Infrared Search for the Outer Companion in a Millisecond Pulsar Triple System

    NARCIS (Netherlands)

    D. Kaplan; S. Ransom; I. Stairs; J. Hessels

    2012-01-01

    Only two systems with pulsars and multiple companions are known, but they offer a wealth of information about dynamics, binary evolution, and the pulsars themselves. We have recently discovered a bright new millisecond pulsar in a very exotic stellar system: a hierarchical triple system with a low-m

  13. Swinging between rotation and accretion power in a binary millisecond pulsar

    NARCIS (Netherlands)

    Papitto, A.; Ferrigno, C.; Bozzo, E.; Rea, N.

    2014-01-01

    We present the discovery of IGR J18245-2452, the first millisecond pulsar observed to swing between a rotation-powered, radio pulsar state, and an accretion-powered X-ray pulsar state [31]. This transitional source represents the most convincing proof of the evolutionary link shared by accreting

  14. A mathematical method for the de-dispersion of the pulsar profile

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents a mathematical method for de-dispersion of average pulsar profiles.We applied this method to four dispersed pulsar profiles.The results revealed that this method significantly removed the dispersion broadening and the pulse widths were reduced by about 7% to 27%,depending on the magnitude of the pulsar dispersion measure.

  15. Motion of charged particles in pulsar magnetospheres

    Science.gov (United States)

    Zachariades, Haris Andrea

    The motion of charges in the magnetosphere of pulsars is studied from two complementary points of view: (1) for the case of aligned magnetic and rotational axes we solve a fluid version of the Lorentz-Dirac equation, in the Landau approximation, for a two-component plasma. We start from an approximately force-free initial condition and numerically integrate the equations of motion for a time equal to 1.6 percent of one stellar rotation period. We find that the system tends to a charge-separated state in which a negative charge region above the poles is separated by a vacuum gap from a positive charge region near the equator. We see the formation of force-free regions and a tendency of the vacuum gap to spread as the integrations proceed. The energies attained by the charges are only mildly relativistic and radiation reaction does not play an important role during the integrations. The negative charge above the polar region is electrostatically bound and there is a force-free region towards which negative charge tends to flow. Some positive charge is magnetically confined near the stellar equator and other positive charge crosses magnetic field lines moving outward to the region beyond the light cylinder. The outward motion of positive charge is due to the relative magnitudes of the electric and magnetic fields. (2) For the case of non-aligned axes we study the single particle dynamics for electrons moving in the region beyond the light cylinder, again using the Landau approximation to the Lorentz-Dirac equation. The effect of the inner magnetosphere is taken into account by adding a central attractive charge. We find that there exists a class of solutions corresponding to bounded orbits beyond the light cylinder. In an independent particle picture, particles started with different initial conditions within the basin of attraction of this class of orbits eventually form corotating patterns beyond the light cylinder. For a frequently occurring particle configuration

  16. a Surprise from the Pulsar in the Crab Nebula

    Science.gov (United States)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  17. A novel look at the pulsar force-free magnetosphere

    CERN Document Server

    Petrova, S A

    2016-01-01

    The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, $B_{\\mathrm new}^0=3.3\\times 10^{-4}B/P$, where $P$ is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the $\\cot\\chi$-law, where $\\chi$ is a random quantity uniformly distributed in the interval $[0,\\pi/2]$. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle bet...

  18. Radio Pulsars: The Neutron Star Population & Fundamental Physics

    CERN Document Server

    Kaspi, Victoria M

    2016-01-01

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in obser...

  19. Systematic and Stochastic Variations in Pulsar Dispersion Measures

    CERN Document Server

    Lam, Michael T; Chatterjee, Shami; Jones, Megan L; McLaughlin, Maura A; Armstrong, John W

    2015-01-01

    We analyze deterministic and random variations in dispersion measure (DM) due to the full three-dimensional velocities of pulsars and the solar system combined with electron-density variations on a wide range of length scales. Previous treatments have largely ignored the role of the changing pulsar distance while favoring interpretations that involve only the change in sky position due to transverse motion. Linear trends seen in DM time series of many pulsars over 5-10~year timescales may signify sizable DM gradients in the interstellar medium that are sampled by the changing direction of the line of sight to the pulsar. However, we show that parallel motions can also account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Motions of pulsars through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss possibl...

  20. The LOFAR Pilot Surveys for Pulsars and Fast Radio Transients

    CERN Document Server

    Coenen, Thijs; Hessels, Jason W T; Stappers, Ben W; Kondratiev, Vladislav I; Alexov, A; Breton, R P; Bilous, A; Cooper, S; Falcke, H; Fallows, R A; Gajjar, V; Grießmeier, J -M; Hassall, T E; Karastergiou, A; Keane, E F; Kramer, M; Kuniyoshi, M; Noutsos, A; Osłowski, S; Pilia, M; Serylak, M; Schrijvers, C; Sobey, C; ter Veen, S; Verbiest, J; Weltevrede, P; Wijnholds, S; Zagkouris, K; van Amesfoort, A S; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Corstanje, A; Deller, A; Duscha, S; Eislöffel, J; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Hamaker, J P; Heald, G; Hoeft, M; van der Horst, A; Juette, E; Kuper, G; Law, C; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Munk, H; Orru, E; Paas, H; Pandey-Pommier, M; Polatidis, A G; Reich, W; Renting, A; Röttgering, H; Rowlinson, A; Scaife, A M M; Schwarz, D; Sluman, J; Smirnov, O; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, C; Vermeulen, R; Vocks, C; van Weeren, R J; Wucknitz, O; Zarka, P; Zensus, A

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~1.4 x 10^4 sq. deg, with 1-hr dwell times. Each observation covered ~75 sq. deg using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 sq. deg, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR "Superterp" stations, we formed 19 tied-array beams, together covering 4 sq. deg per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of 107 Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the firs...

  1. Regimes of Pulsar Pair Formation and Particle Energetics

    CERN Document Server

    Harding, A K; Muslimov, A G; Harding, Alice K.; Zhang, Alexander G. Muslimov & Bing

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond pulsar population. We also find that two-ph...

  2. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; Cognard, I.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Grove, J. E.; Abdo, A. A.; Desvignes, G.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Guillemot, L.; Gwon, C.; Johnston, S.; Harding, A. K.; Thompson, D. J.

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  3. X-ray Counterparts of Millisecond Pulsars in Globular Clusters

    CERN Document Server

    Becker, W; Prinz, T

    2010-01-01

    We have systematically studied the X-ray emission properties of globular cluster millisecond pulsars in order to evaluate their spectral properties and luminosities in a uniform way. Cross-correlating the radio timing positions of the cluster pulsars with the high resolution Chandra images revealed 31 X-ray counterparts identified in nine different globular cluster systems, including those in 47 Tuc. Timing analysis has been performed for all sources corresponding to the temporal resolution available in the archival Chandra data. Making use of unpublished data on M28, M4 and NGC 6752 allowed us to obtain further constraints for the millisecond pulsar counterparts located in these clusters. Counting rate and energy flux upper limits were computed for those 36 pulsars for which no X-ray counterparts could be detected. Comparing the X-ray and radio pulse profiles of PSR J1821-2452 in M28 and the 47 Tuc pulsars PSR J0024-7204D,O,R indicated some correspondence between both wavebands. The X-ray efficiency of the g...

  4. A 6.5-GHz Multibeam Pulsar Survey

    CERN Document Server

    Bates, S D; Lorimer, D R; Kramer, M; Possenti, A; Burgay, M; Stappers, B; Keith, M J; Lyne, A; Bailes, M; McLaughlin, M A; O'Brien, J T; Hobbs, G

    2010-01-01

    A survey of the Galactic plane in the region $-60\\degree \\leq l \\leq 30\\degree$, $|b| \\leq 0.25\\degree$ was carried out using the seven-beam Parkes Methanol Multibeam (MMB) receiver, which operates at a frequency of 6.5 GHz. Three pulsars were discovered, and 16 previously known pulsars detected. In this paper we present two previously-unpublished discoveries, both with extremely high dispersion measures, one of which is very close, in angular distance, to the Galactic centre. The survey data also contain the first known detection, at radio frequencies, of the radio magnetar PSR J1550-5418. Our survey observation was made 46 days prior to that previously published and places constraints on the beginning of pulsed radio emission from the source. The detection of only three previously undiscovered pulsars argues that there are few pulsars in the direction of the inner Galaxy whose flux density spectrum is governed by a flat power law. However, these pulsars would be likely to remain undetected at lower frequenc...

  5. X-ray states of redback millisecond pulsars

    CERN Document Server

    Linares, Manuel

    2014-01-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks", constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars, and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback which showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L$_\\mathrm{X}$), between [6-9]$\\times$10$^{32}$ erg s$^{-1}$ (disk-passive state) and [3-5]$\\times$10$^{33}$ erg s$^{-1}$ (disk-active state). This strongly suggests that mode switching $-$which has not been observed in quiescent low-mass X-ray binaries$-$ is universal among redback millisecond pulsars in the disk ...

  6. A millisecond pulsar in an extremely wide binary system

    CERN Document Server

    Bassa, C G; Stappers, B W; Tauris, T M; Wevers, T; Jonker, P G; Lentati, L; Verbiest, J P W; Desvignes, G; Graikou, E; Guillemot, L; Freire, P C C; Lazarus, P; Caballero, R N; Champion, D J; Cognard, I; Jessner, A; Jordan, C; Karuppusamy, R; Kramer, M; Lazaridis, K; Lee, K J; Liu, K; Lyne, A G; McKee, J; Oslowski, S; Perrodin, D; Sanidas, S; Shaifullah, G; Smits, R; Theureau, G; Tiburzi, C; Zhu, W W

    2016-01-01

    We report on 22 yrs of radio timing observations of the millisecond pulsar J1024$-$0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869$-$0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, $\\mathrm{[M/H]}=-1.0$, $T_\\mathrm{eff}=4050\\pm50$ K) and that its position, proper motion and distance are consistent with those of PSR J1024$-$0719. We conclude that PSR J1024$-$0719 and 2MASS J10243869$-$0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main...

  7. The Pulsar Population in Globular Clusters and in the Galaxy

    CERN Document Server

    Freire, Paulo C C

    2012-01-01

    In this paper, I review some of the basic properties of the pulsar population in globular clusters (GCs) and compare it with the the Galactic disk population. The neutron stars (NSs) in GCs were likely formed - and appear to continue forming - in highly symmetric supernovae (SNe), likely from accretion-induced collapse (AIC). I review the many pulsar finds and discuss some particularly well populated GCs and why they are so. I then discuss some particularly interesting objects, like millisecond pulsars (MSPs) with eccentric orbits, which were heavily perturbed by passing stars. Some of these systems, like NGC 1851A and NGC 6544B, are almost certainly the result of exchange interactions, i.e., they are witnesses to the very same processes that created the large population of MSPs in the first place. I also review briefly the problem posed by the presence of young pulsars in GCs (with a special emphasis on a sub-class of young pulsars, the super-energetic MSPs), which suggest continuing formation of NSs in low-...

  8. The High Time Resolution Universe Pulsar Survey - VII: discovery of five millisecond pulsars and the different luminosity properties of binary and isolated recycled pulsars

    CERN Document Server

    Burgay, M; Bates, S D; Bhat, N D R; Burke-Spolaor, S; Champion, D J; Coster, P; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Levin, L; Lyne, A G; Milia, S; Ng, C; Possenti, A; Stappers, B W; Thornton, D; Tiburzi, C; van Straten, W; Bassa, C G

    2013-01-01

    This paper presents the discovery and timing parameters for five millisecond pulsars (MSPs), four in binary systems with probable white dwarf companions and one isolated, found in ongoing processing of the High Time Resolution Universe Pulsar Survey (HTRU). We also present high quality polarimetric data on four of them. These further discoveries confirm the high potential of our survey in finding pulsars with very short spin periods. At least two of these five MSPs are excellent candidates to be included in the Pulsar Timing Array projects. Thanks to the wealth of MSP discoveries in the HTRU survey, we revisit the question of whether the luminosity distributions of isolated and binary MSPs are different. Using the Cordes and Lazio distance model and our new and catalogue flux density measurements, we find that 41 of the 42 most luminous MSPs in the Galactic disk are in binaries and a statistical analysis suggests that the luminosity functions differ with 99.9% significance. We conclude that the formation proc...

  9. Prospects for Observations of Pulsars and Pulsar Wind Nebulae with CTA

    CERN Document Server

    Wilhelmi, E de Ona; Barrio, J A; Contreras, J L; Gallant, Y; Hadasch, D; Hassan, T; Lopez, M; Mazin, D; Mirabal, N; Pedaletti, G; Renaud, M; Reyes, R de los; Torres, D F

    2012-01-01

    The last few years have seen a revolution in very-high gamma-ray astronomy (VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes (namely the H.E.S.S. telescope array, the MAGIC and MAGIC-II large telescopes and the VERITAS telescope array). The Cherenkov Telescope Array (CTA) project foresees a factor of 5 to 10 improvement in sensitivity above 0.1 TeV, extending the accessible energy range to higher energies up to 100 TeV, in the Galactic cut-off regime, and down to a few tens GeV, covering the VHE photon spectrum with good energy and angular resolution. As a result of the fast development of the VHE field, the number of pulsar wind nebulae (PWNe) detected has increased from one PWN in the early '90s to more than two dozen firm candidates today. Also, the low energy threshold achieved and good sensitivity at TeV energies has resulted in the detection of pulsed emission from the Crab Pulsar (or its close environment) opening new and exiting expectations about the pulsed spectra of the hi...

  10. Radio Emission Physics in the Crab Pulsar

    CERN Document Server

    Eilek, J A

    2016-01-01

    We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low-Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and gamma-ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of timescales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High-Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in it...

  11. Pulse profile stability of the Crab pulsar

    Institute of Scientific and Technical Information of China (English)

    Chetana Jain; Biswajit Paul

    2011-01-01

    We present an X-ray timing analysis of the Crab pulsar,PSR B0531+21,using archival RXTE data.We have investigated the stability of the Crab pulse profile,in soft (2-20keV) and hard (30-100keV) X-ray energies,over the last decade of RXTE operation.The analysis includes measurement of the separation between the two pulse peaks and the intensity and widths of the two peaks.We did not find any significant time dependency in the pulse shape.The two peaks have been stable in phase,intensity and width for the last ten years.The first pulse is relatively stronger at soft X-rays.The first pulse peak is narrower than the second peak in both soft and hard X-ray energies.Both the peaks show a slow rise and a steeper fall.The ratio of the pulsed photons in the two peaks is also constant in time.

  12. Fast radio bursts as pulsar lightning

    Science.gov (United States)

    Katz, J. I.

    2017-07-01

    There are striking phenomenological similarities between fast radio bursts (FRBs) and lightning in the Earth's and planetary atmospheres. Both have very low duty factors, ≲10-8-10-5 for FRBs and (very roughly) ˜10-4 for the main return strokes in an active thundercloud. Lightning occurs in an electrified insulating atmosphere when a conducting path is created by and permits current flow. FRBs may occur in neutron star magnetospheres whose plasma is believed to be divided by vacuum gaps. Vacuum is a perfect insulator unless electric fields are sufficient for electron-positron pair production by curvature radiation, a high-energy analogue of electrostatic breakdown in an insulating gas. FRB may be 'electrars' powered by the release of stored electrostatic energy, counterparts to soft gamma repeaters powered by the release of stored magnetostatic energy (magnetars). This frees pulsar FRB models from the constraint that their power not exceeds the instantaneous spin-down power. Energetic constraints imply that the sources of more energetic FRBs have shorter spin-down lifetimes, perhaps even less than the 3 yr over which FRB 121102 has been observed to repeat.

  13. Robust fitting for pulsar timing analysis

    Science.gov (United States)

    Wang, Yidi; Keith, Michael J.; Stappers, Benjamin; Zheng, Wei

    2017-07-01

    We introduce a robust fitting method into pulsar timing analysis to cope with the non-Gaussian noise. The general maximum likelihood estimator (M-estimator) can resist the impact of non-Gaussian noise by employing convex and bounded loss functions. Three loss functions, including the Huber function, the Bisquare function and the Welsch function, are investigated. The Shapiro-Wilk test is employed to test whether the uncertainty in the observed times of arrival is drawn from a non-Gaussian distribution. Two simulations, where the non-Gaussian distribution is modelled as contaminated Gaussian distributions, are performed. It is found that M-estimators are unbiased and could achieve a root-mean-square error smaller than that obtained by the least square (LS) at the cost of a slightly higher computation complexity in a non-Gaussian environment. M-estimators are also applied to the real timing data of PSR J1713+0747. The results have shown that the fitting results of M-estimators are more accurate than those of LS and are closer to the result of very long baseline interferometry.

  14. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  15. Arecibo Pulsar Survey Using ALFA. IV. Mock Spectrometer Data Analysis, Survey Sensitivity, and the Discovery of 41 Pulsars

    CERN Document Server

    Lazarus, P; Hessels, J W T; Karako-Argaman, C; Kaspi, V M; Lynch, R; Madsen, E; Patel, C; Ransom, S M; Scholz, P; Swiggum, J; Zhu, W W; Allen, B; Bogdanov, S; Camilo, F; Cardoso, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J S; Ferdman, R; Freire, P C C; Jenet, F A; Knispel, B; Lee, K J; van Leeuwen, J; Lorimer, D R; Lyne, A G; McLaughlin, M A; Siemens, X; Spitler, L G; Stairs, I H; Stovall, K; Venkataraman, A

    2015-01-01

    The on-going PALFA survey at the Arecibo Observatory began in 2004 and is searching for radio pulsars in the Galactic plane at 1.4 GHz. Observations since 2009 have been made with new wider-bandwidth spectrometers than were previously employed in this survey. A new data reduction pipeline has been in place since mid-2011 which consists of standard methods using dedispersion, searches for accelerated periodic sources, and search for single pulses, as well as new interference-excision strategies and candidate selection heuristics. This pipeline has been used to discover 41 pulsars, including 8 millisecond pulsars (MSPs; P = 100 ms that gradually becomes up to a factor of ~10 worse for P > 4 s at DM < 150 pc/cc. This degradation of sensitivity at long periods is largely due to red noise. We find that 35 +- 3% of pulsars are missed despite being bright enough to be detected in the absence of red noise. This reduced sensitivity could have implications on estimates of the number of long-period pulsars in the Gal...

  16. Modelling the light curves of Fermi LAT millisecond pulsars

    CERN Document Server

    Venter, C; Harding, AK; Grove, JE

    2014-01-01

    We modelled the radio and gamma-ray light curves of millisecond pulsars using outer gap, two-pole caustic, low-altitude slot gap, and pair-starved polar cap geometric models, combined with a semi-empirical conal radio model. We find that no model fits all cases, with the outer gap and two-pole caustic models providing best fits for comparable numbers of millisecond pulsar light curves. We find a broad distribution of best-fit inclination angles as well as a clustering at large observer angles. The outer gap model furthermore seems to require relatively larger inclination angles, while the two-pole caustic model hints at an inverse trend between inclination angle and pulsar spin-down luminosity.

  17. Observations of transients and pulsars with LOFAR international stations

    CERN Document Server

    Serylak, Maciej; Williams, Chris; Armour, Wes

    2012-01-01

    The LOw FRequency ARray - LOFAR is a new radio telescope that is moving the science of radio pulsars and transients into a new phase. Its design places emphasis on digital hardware and flexible software instead of mechanical solutions. LOFAR observes at radio frequencies between 10 and 240 MHz where radio pulsars and many transients are expected to be brightest. Radio frequency signals emitted from these objects allow us to study the intrinsic pulsar emission and phenomena such as propagation effects through the interstellar medium. The design of LOFAR allows independent use of its stations to conduct observations of known bright objects, or wide field monitoring of transient events. One such combined software/hardware solution is called the Advanced Radio Transient Event Monitor and Identification System (ARTEMIS). It is a backend for both targeted observations and real-time searches for millisecond radio transients which uses Graphical Processing Unit (GPU) technology to remove interstellar dispersion and d...

  18. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  19. New Observations of the Crab Nebula and Pulsar

    Science.gov (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Elsner, Ronald f.; Yakovlev, Dmitry R.; Zavlin, Vyacheslav E.; Becker, Werner

    2010-01-01

    We present a phase-resolved study of the X-ray spectrum of the Crab Pulsar, using data obtained in a special mode with the Chandra X-ray Observatory. The superb angular resolution easily enables discerning the Pulsar from the surrounding nebulosity, even at pulse minimum. We find that the Pulsar's X-ray spectral index varies sinusoidally with phase---except over the same phase range for which rather abrupt changes in optical polarization magnitude and position angle have been reported. In addition, we use the X-ray data to constrain the surface temperature for various neutron-star equations of state and atmospheres. Finally, we present new data on dynamical variations of structure within the Nebula.

  20. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  1. Simulations of the magnetospheres of accreting millisecond pulsars

    CERN Document Server

    Parfrey, Kyle; Beloborodov, Andrei M

    2016-01-01

    Accreting pulsars power relativistic jets, and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field. The total torque experienced by the pulsar comprises spin-up and spin-down contributions from different bundles of magnetic field lines; the spin-down `braking' torque is applied both by closed stellar field lines which enter the disc beyond the corotation radius, and those which are open and not loaded with disc material. The rates of energy and angular momentum extraction on these open field lines have lower bounds in the relativistic, magnetically dominated limit, due to the effective inertia of the electromagnetic field itself. Here we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations, with the pseudospectral PHAEDRA code, treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The m...

  2. Polar Cap Model for Pulsar High-Energy Emission

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    2002-01-01

    The study of physical processes associated with particle acceleration in the open field line region above the polar cap (PC) of an isolated neutron star (NS) plays a fundamental role in our understanding and interpretation of high-energy emission from pulsars. The systematic study of particle acceleration and formation of electron-positron pair fronts above the PCs of NSs was initiated two decades ago. The detailed analysis of these processes is now possible with the development of pair cascade codes that enables us to calculate the spectra and pulse profiles of high-energy emission from pulsars. The calculation of pair formation and gamma-ray production is being improved to include new results on the PC physics. We briefly outline the current status of the PC model for pulsar high-energy emission, focusing on some of our most recent results on the theoretical modeling of the PC acceleration and gamma-ray emission.

  3. Is Coherence Essential to Account for Pulsar Radio Emission?

    CERN Document Server

    Zhang, B; Qiao, G J; Zhang, Bing

    1999-01-01

    Based on definitions, two joint-criteria, namely, the optical-thin constraint and the energy budget constraint, are proposed to judge whether the emission nature of radio pulsars is incoherent or obligatory to be coherent. We find that the widely accepted criterion, $kT_B \\le \\epsilon$, is not a rational criterion to describe the optical-thin condition, even for the simplest case. The energy budget constraint could be released by introducing a certain efficient radiation mechanism (e.g. the inverse Compton scattering, QL98) with emission power of a single particle as high as a critical value $P_{sing,c} to interpret high luminosities of pulsars in terms of incoherent emission mechanisms, if the optical-thin constraint could be released by certain mechanism as well. Coherence may not be an essential condition to account for pulsar radio emission.

  4. The influence of quantum vacuum friction on pulsars

    CERN Document Server

    Coelho, Jaziel G; de Araujo, José C N

    2016-01-01

    We firstly revisit the energy loss mechanism known as quantum vacuum friction (QVF), clarifying some of its subtleties. Then we investigate the observables that could easily differentiate QVF from the classical magnetic dipole radiation for pulsars with braking indices (n) measured accurately. We show this is specially the case for the time evolution of a pulsar's magnetic dipole direction ($\\dot{\\phi}$) and surface magnetic field ($\\dot{B}_0$). As it is well known in the context of the classic magnetic dipole radiation, $n0$ ($\\dot{\\phi}>0$) when $\\phi$ ($B_0$) is constant. On the other hand, we show that QVF can result in very contrasting predictions with respect to the above ones. Finally, even in the case $\\dot{B}_0$ in both aforesaid models for a pulsar has the same sign, for a given $\\phi$, we show that they give rise to different associated timescales, which could be another way to falsify QVF.

  5. Scattering of pulsar radio emission by the interstellar plasma

    CERN Document Server

    Coles, W A; Gao, J J; Hobbs, G; Verbiest, J P W

    2010-01-01

    We present simulations of scattering phenomena which are important in pulsar observations, but which are analytically intractable. The simulation code, which has also been used for solar wind and atmospheric scattering problems, is available from the authors. These simulations reveal an unexpectedly important role of dispersion in combination with refraction. We demonstrate the effect of analyzing observations which are shorter than the refractive scale. We examine time-of-arrival fluctuations in detail: showing their correlation with intensity and dispersion measure; providing a heuristic model from which one can estimate their contribution to pulsar timing observations; and showing that much of the effect can be corrected making use of measured intensity and dispersion. Finally, we analyze observations of the millisecond pulsar J0437$-$4715, made with the Parkes radio telescope, that show timing fluctuations which are correlated with intensity. We demonstrate that these timing fluctuations can be corrected,...

  6. Pinning down the superfluid and measuring masses using pulsar glitches

    CERN Document Server

    Ho, Wynn C G; Antonopoulou, Danai; Andersson, Nils

    2015-01-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and X-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  7. A chaotic attractor in timing noise from the Vela pulsar?

    Science.gov (United States)

    Harding, Alice K.; Shinbrot, Troy; Cordes, James M.

    1990-01-01

    Fourteen years of timing residual data from the Vela pulsar have been analyzed in order to determine if a chaotic dynamical process is the origin of timing noise. Using the correlation sum technique, a dimension of about 1.5 is obtained. This low dimension indicates underlying structure in the phase residuals which may be evidence for a chaotic attractor. It is therefore possible that nonlinear dynamics intrinsic to the spin-down may be the cause of the timing noise in the Vela pulsar. However, it has been found that the stimulated random walks in frequency and frequency derivative often used to model pulsar timing noise also have low fractal dimension, using the same analysis technique. Recent work suggesting that random processes with steep power spectra can mimic strange attractors seems to be confirmed in the case of these random walks. It appears that the correlation sum estimator for dimension is unable to distinguish between chaotic and random processes.

  8. Developing radio beam geometry and luminosity models of pulsars

    CERN Document Server

    Gonthier, P L; Giacherio, B M; Arevalo, R A; Harding, A K

    2006-01-01

    Our recent studies of pulsar population statistics suggest that improvements of radio and gamma-ray beam geometry and luminosity models require further refinement. The goal of this project is to constrain the viewing geometry for some radio pulsars, especially three-peaked pulse profiles, in order to limit the uncertainty of the magnetic inclination and impact angles. We perform fits of the pulse profile and position angle sweep of radio pulsars for the available frequencies. We assume a single core and conal beams described by Gaussians. We incorporate three different size cones with frequency dependence from the work of Mitra & Deshpande (1999). We obtain separate spectral indices for the core and cone beams and explore the trends of the ratio of core to cone peak fluxes. This ratio is observed to have some dependence with period. However, we cannot establish the suggested functional form of this ratio as indicated by the work of Arzoumanian, Chernoff & Cordes (2002).

  9. Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres

    CERN Document Server

    Uzdensky, Dmitri A

    2012-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers --- temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial c...

  10. Binary pulsar with a very small mass function

    Science.gov (United States)

    Dewey, R. J.; Maguire, C. M.; Rawley, L. A.; Stokes, G. H.; Taylor, J. H.

    1986-08-01

    Radiotelescope pulse-arrival-time (PAT) data of PSR1831-00, primarily at 390 MHz, were collected to characterize the evolution of the binary pulsars. The data were used to calculate, the right ascension and declination, pulsar and orbital periods, dispersion measure, semi-major axis, eccentricity, and time of periastron. The orbital period and semi-major axis are used to calculate the mass function. Comparisons are made with other binary and millisecond pulsars, noting the high degree of similarity with the other objects. The limitations imposed on the evolution of the objects by the observed physical characteristics lead to two possible evolutionary models: mass transfer after or during the formation of the neutron star, or no mass transfer. The first model would have required a contact phase during evolution of the primary. The second model posits a three solar mass primary which was also in contact during its evolution and which went to supernova.

  11. Pulsar timing analysis in the presence of correlated noise

    CERN Document Server

    Coles, W; Champion, D J; Manchester, R N; Verbiest, J P W

    2011-01-01

    Pulsar timing observations are usually analysed with least-square-fitting procedures under the assumption that the timing residuals are uncorrelated (statistically "white"). Pulsar observers are well aware that this assumption often breaks down and causes severe errors in estimating the parameters of the timing model and their uncertainties. Ad hoc methods for minimizing these errors have been developed, but we show that they are far from optimal. Compensation for temporal correlation can be done optimally if the covariance matrix of the residuals is known using a linear transformation that whitens both the residuals and the timing model. We adopt a transformation based on the Cholesky decomposition of the covariance matrix, but the transformation is not unique. We show how to estimate the covariance matrix with sufficient accuracy to optimize the pulsar timing analysis. We also show how to apply this procedure to estimate the spectrum of any time series with a steep red power-law spectrum, including those wi...

  12. An active, asynchronous companion to a redback millisecond pulsar

    CERN Document Server

    van Staden, André

    2016-01-01

    PSR\\,J1723$-$2837 is a "redback" millisecond pulsar (MSP) with a low-mass companion in a 14.8\\,h orbit. The system's properties closely resemble those of "transitional" MSPs that alternate between spin-down and accretion-powered states. In this paper we report on long-term photometry of the 15.5\\,mag companion to the pulsar. We use our data to illustrate that the star experiences sporadic activity which we attribute to starspots. We also find that the companion is not tidally locked and infer $P_{\\rm s}/P_{\\rm b}= 0.9974(7)$ for the ratio between the rotational and orbital periods. We place constraints on various parameters, including the irradiation efficiency and pulsar mass. Finally, we discuss similarities with other redback MSPs and conclude that starspots provide the most likely explanation for the often seen irregular and asymmetric optical lightcurves.

  13. Gravitational-Wave Detection and Astrophysics with Pulsar Timing Arrays

    CERN Document Server

    Burke-Spolaor, Sarah

    2015-01-01

    We have begun an exciting era for gravitational wave detection, as several world-leading experiments are breaching the threshold of anticipated signal strengths. Pulsar timing arrays (PTAs) are pan-Galactic gravitational wave detectors that are already cutting into the expected strength of gravitational waves from cosmic strings and binary supermassive black holes in the nHz-$\\mu$Hz gravitational wave band. These limits are leading to constraints on the evolutionary state of the Universe. Here, we provide a broad review of this field, from how pulsars are used as tools for detection, to astrophysical sources of uncertainty in the signals PTAs aim to see, to the primary current challenge areas for PTA work. This review aims to provide an up-to-date reference point for new parties interested in the field of gravitational wave detection via pulsar timing.

  14. The frequency dependence of scattering imprints on pulsar observations

    CERN Document Server

    Geyer, Marisa

    2016-01-01

    Observations of pulsars across the radio spectrum are revealing a dependence of the characteristic scattering time ($\\tau$) on frequency, which is more complex than the simple power law with a theoretically predicted power law index. In this paper we investigate these effects using simulated pulsar data at frequencies below 300 MHz. We investigate different scattering mechanisms, namely isotropic and anisotropic scattering, by thin screens along the line of sight, and the particular frequency dependent impact on pulsar profiles and scattering time scales of each. We also consider how the screen shape, location and offset along the line of sight lead to specific observable effects. We evaluate how well forward fitting techniques perform in determining $\\tau$. We investigate the systematic errors in $\\tau$ associated with the use of an incorrect fitting method and with the determination of an off-pulse baseline. Our simulations provide examples of average pulse profiles at various frequencies. Using these we co...

  15. How promising is the search for gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V.

    1985-03-01

    Radiopulsars are rotating neutron stars. At present more than 330 of these objects are known. From two of them (Crab and Vela) pulsed emission has been observed at ..gamma..-ray energies, too. Because both of these pulsars have their maximum of luminosity at ..gamma..-ray energies and not in the radio range, it is supposed that the key for an understanding of the pulsar phenomenon will be found in the ..gamma..-ray range. In spite of intensive searches in the ..gamma..-ray range no further pulsars have been found yet. Indeed, theoretical estimates on the ..gamma..-ray luminosity indicate that only the next generation of ..gamma..-ray telescopes will be sufficiently sensitive to see more of them.

  16. Unidentified Gamma-Ray Sources as Ancient Pulsar Wind Nebulae

    CERN Document Server

    De Jager, O C; Djannati-Ataï, A; Dalton, M; Deil, C; Kosack, K; Renaud, M; Schwanke, U; Tibolla, O

    2009-01-01

    In this paper we explore the evolution of a PWN while the pulsar is spinning down. An MHD approach is used to simulate the evolution of a composite remnant. Particular attention is given to the adiabatic loss rate and evolution of the nebular field strength with time. By normalising a two component particle injection spectrum (which can reproduce the radio and X-ray components) at the pulsar wind termination shock to the time dependent spindown power, and keeping track with losses since pulsar/PWN/SNR birth, we show that the average field strength decreases with time as $t^{-1.3}$, so that the synchrotron flux decreases, whereas the IC gamma-ray flux increases, until most of the spindown power has been dumped into the PWN. Eventually adiabatic and IC losses will also terminate the TeV visibility and then eventually the GeV visibility.

  17. An Active, Asynchronous Companion to a Redback Millisecond Pulsar

    Science.gov (United States)

    van Staden, André D.; Antoniadis, John

    2016-12-01

    PSR J1723-2837 is a “redback” millisecond pulsar (MSP) with a low-mass companion in a 14.8 hr orbit. The system’s properties closely resemble those of “transitional” MSPs that alternate between spin-down and accretion-powered states. In this Letter, we report on long-term photometry of the 15.5 mag companion to the pulsar. We use our data to illustrate that the star experiences sporadic activity, which we attribute to starspots. We also find that the companion is not tidally locked and infer {P}{{s}}/{P}{{b}}=0.9974(7) for the ratio between the rotational and orbital periods. Finally, we place constraints on various parameters, including the irradiation efficiency and pulsar mass. We discuss similarities with other redback MSPs and conclude that starspots may provide the most likely explanation for the often seen irregular and asymmetric optical light curves.

  18. A software baseband receiver for pulsar astronomy at GMRT

    CERN Document Server

    Joshi, B C; Joshi, Bhal Chandra; Ramakrishna, Sunil

    2006-01-01

    A variety of pulsar studies, ranging from high precision astrometry to tests for theories of gravity, require high time resolution data. Few such observations at more than two frequencies below 1 GHz are available. Giant Meterwave Radio Telescope (GMRT) has the unique capability to provide such multi-frequency pulsar data at low observation frequencies, but the quality and time resolution of pulsar radio signals is degraded due to dispersion in the inter-stellar medium at these frequencies. Such degradation is usually taken care of by employing specialized digital hardware, which implement coherent dedispersion algorithm. In recent years, a new alternative is provided by the availability of cheap computer hardware. In this approach, the required signal processing is implemented in software using commercially off-the-shelf available computing hardware. This makes such a receiver flexible and upgradeable unlike a hardware implementation. The salient features and the modes of operation of a high time resolution ...

  19. Detecting gravitational waves from the galactic center with Pulsar Timing

    CERN Document Server

    Ray, Alak; Zwart, Simon Portegies

    2014-01-01

    Black holes orbiting the Super Massive Black Hole (SMBH) Sgr A* in the Milky-way galaxy center (GC) generate gravitational waves. The spectrum, due to stars and black holes, is continuous below 40 nHz while individual BHs within about 200 AU of the central SMBH stick out in the spectrum at higher frequencies. The GWs can be detected by timing radio pulsars within a few parsecs of this region. Future observations with the Square Kilometer Array of such pulsars with sufficient timing accuracy may be sensitive to signals from intermediate mass BHs (IMBH) in a 3 year observation baseline. The recent detection of radio pulsations from the magnetar SGR J1745-29 very near the GC opens up the possibilities of detecting millisecond pulsars (which can be used as probes of the GWs) through lines of sight with only moderate pulse and angular broadening due to scattering.

  20. What flashes of pulsars can teach us about their interior

    CERN Document Server

    Alford, Mark G

    2013-01-01

    The cores of compact stars reach the highest densities in nature and therefore could consist of novel phases of matter. They can be probed seismologically via mechanical oscillation modes. One example is unstable r-modes which, if not efficiently damped, emit gravitational waves that would quickly spin down a millisecond pulsar. The damping is determined by microscopic properties of the dense interior. We demonstrate via a detailed analysis of the pulsar evolution how precise pulsar timing data can constrain the star's composition. We find that interacting quark matter is consistent with both the observed radio and x-ray data, whereas for ordinary nuclear matter some additional enhanced damping mechanism will be required.

  1. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  2. A Massive Pulsar in a Compact Relativistic Binary

    CERN Document Server

    Antoniadis, John; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G; 10.1126/science.1233232

    2013-01-01

    Many physically motivated extensions to general relativity (GR) predict significant deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 +/- 0.04 solar mass pulsar in a 2.46-hr orbit with a 0.172 +/- 0.003 solar mass white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  3. Particle Emission-dependent Timing Noise of Pulsars?

    CERN Document Server

    Liu, Xiongwei; Xu, Renxin; Qiao, Guojun

    2010-01-01

    Though pulsars spin regularly, the differences between the observed and predicted ToA (time of arrival), known as "timing noise", can still reach a few milliseconds or more. We try to understand the noise in this paper. As proposed by Xu & Qiao in 2001, both dipole radiation and particle emission would result in pulsar braking. Accordingly, possible fluctuation of particle current flow is suggested here to contribute significant ToA variation of pulsars. We find that the particle emission fluctuation could lead to timing noise which can't be eliminated in timing process, and that a longer period fluctuation would arouse a stronger noise. The simulated timing noise profile and amplitude are in accord with the observed timing behaviors on the timescale of years.

  4. Detection of Hidden Pulsar J0737-3039B

    Science.gov (United States)

    Maynard, Tessa

    2016-01-01

    The double pulsar system, PSR J0737-3039, contains companions PSR J0737-3039A & PSR J0737-3039B, which rotate at 23 ms and 2.8 respectively. As of March 2008 pulsar B's radio signal disappeared, with previous decreases in flux density by 0.177 mJy yr-1 and evolving pulse profile seperation of 2fdg6 yr-1 from a single peak to a double peak. Models using the system's relativistic spin precession have predicted the reappearance of PSR J0737-3039B in approximately 2014 or 2035. Using data from the Green Bank telescope we attempt to redetect pulsar B and explain the mechanics of its disappearance.

  5. Gamma-rays from pulsar wind nebulae in starburst galaxies

    Science.gov (United States)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  6. On the occurrence of glitches in pulsar free precession candidates

    CERN Document Server

    Jones, D I; Prix, R

    2016-01-01

    The timing properties of radio pulsars provide a unique probe of neutron star interiors. Recent observations have uncovered quasi-periodicities in the timing and pulse properties of some pulsars, a phenomenon that has often been attributed to free precession of the neutron star, with profound implications for the distribution of superfluidity and superconductivity in the star. We advance this programme by developing consistency relations between free precession and pulsars glitches, and show that there are difficulties in reconciling the two phenomena in some precession candidates. This indicates that either the precession model used here needs to be modified, or some other phenomenon is at work in producing the quasi-periodicities, or even that there is something missing in terms of our understanding of glitches.

  7. A glitch in the millisecond pulsar J0613-0200

    CERN Document Server

    McKee, J W; Stappers, B W; Lyne, A G; Caballero, R N; Lentati, L; Desvignes, G; Jessner, A; Jordan, C A; Karuppusamy, R; Kramer, M; Cognard, I; Champion, D J; Graikou, E; Lazarus, P; Osłowski, S; Perrodin, D; Shaifullah, G; Tiburzi, C; Verbiest, J P W

    2016-01-01

    We present evidence for a small glitch in the spin evolution of the millisecond pulsar J0613$-$0200, using the EPTA Data Release 1.0, combined with Jodrell Bank analogue filterbank TOAs recorded with the Lovell telescope and Effelsberg Pulsar Observing System TOAs. A spin frequency step of 0.82(3) nHz and frequency derivative step of ${-1.6(39) \\times 10^{-19}\\,\\text{Hz} \\ \\text{s}^{-1}}$ are measured at the epoch of MJD 50888(30). After PSR B1821$-$24A, this is only the second glitch ever observed in a millisecond pulsar, with a fractional size in frequency of ${\\Delta \

  8. A Method for Judging Decay or Growth of the Magnetic Field of Pulsar

    Indian Academy of Sciences (India)

    Lin-Sen Li

    2009-09-01

    This paper provides a method for judging growth or decay of the magnetic field of pulsar by using pulse period , or frequency , and its first and second derivatives $\\dot{P}$, $\\ddot{P}$ or $\\dot{v}$, $\\ddot{v}$. The author uses this method to judge the growth or decay of the magnetic field of Crab pulsar. The judged result for Crab pulsar is that the magnetic field of Crab pulsar is growing now, but it is not decaying. The result corresponds with the actual case of Crab pulsar.

  9. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  10. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Science.gov (United States)

    Kisaka, Shota; Tanaka, Shuta J.

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ-ray pulsars (≲106 year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳106 year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L sd ≲ 1034 erg s‑1, non-dipole magnetic field components should be dominant at the emission region. For the γ-ray pulsars with L sd ≲ 1035 erg s‑1, observed γ-ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  11. PROSPECTS FOR PROBING THE SPACETIME OF Sgr A* WITH PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Wex, N.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, M/S 138-308, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-03-01

    The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of this supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 {mu}s precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below {approx}0.3 yr is there the possibility of having negligible external perturbations. For such orbits, we expect a {approx}10{sup -3} test of the frame dragging and a {approx}10{sup -2} test of the no-hair theorem within five years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R{sub 0}. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R{sub 0}.

  12. Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models

    Science.gov (United States)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos

    2017-08-01

    Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.

  13. Physical conditions in the reconnection layer in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  14. Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres

    Science.gov (United States)

    Uzdensky, Dmitri A.; Spitkovsky, Anatoly

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 1013 cm-3, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (~100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  15. Simultaneous multi-frequency single pulse observations of pulsars

    Science.gov (United States)

    Naidu, A.; Joshi, B. C.; Manoharan, P. K.; KrishnaKumar, M. A.

    2017-08-01

    Aims: We report on simultaneous multi-frequency single pulse observations of a sample of pulsars with previously reported, frequency dependent subpulse drift inferred from non-simultaneous and short observations. We aim to clarify if the frequency dependence is a result of multiple drift modes in these pulsars. Methods: We performed simultaneous observations at 326.5 MHz with the Ooty Radio Telescope and at 326, 610, and 1308 MHz with the Giant Meterwave Radio Telescope for a sample of 12 pulsars, where frequency dependent single pulse behaviour was reported. The single pulse sequences were analysed with three types of fluctuation analysis techniques, namely longitude-resolved fluctuation spectrum technique, two-dimensional fluctuation spectrum technique and sliding two-dimensional fluctuation spectrum technique. The first two techniques are sensitive to average fluctuation properties of the pulses, whereas the last technique is used for examining the temporal behaviour of the pulses. Results: We report subpulse drifting in PSR J0934-5249 for the first time. We also report pulse nulling measurements in PSRs J0934-5249, B1508+55, J1822-2256, B1845-19, and J1901-0906 for the first time. Our measurements of subpulse drifting and pulse nulling for the rest of the pulsars are consistent with previously reported values. Contrary to previous belief, we find no evidence for a frequency dependent drift pattern in PSR B2016+28 as reported in previous studies. In PSRs B1237+25, J1822-2256, J1901-0906, and B2045-16, our longer and more sensitive observations reveal multiple drift rates with distinct P3. We increase the sample of pulsars showing concurrent nulling across multiple frequencies by more than 100 percent, adding four more pulsars to this sample. Our results confirm and further strengthen the understanding that the subpulse drifting and pulse nulling are consistent in the broadband with previous studies and are closely tied to physics of polar gap.

  16. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  17. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  18. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  19. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  20. Radio pulsars and transients in the Galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Lazio, Joseph [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5351 (United States); Deneva, J S [Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 (United States); Bower, Geoffrey C [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Cordes, J M [Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 (United States); Hyman, Scott D [Department of Physics and Engineering, Sweet Briar College, Sweet Briar, VA 24595 (United States); Backer, D C [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Bhat, R [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Chatterjee, S [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Demorest, P [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Ransom, S M [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vlemmings, W [Jodrell Bank Observatory, University of Manchester, Macclesfleld, Cheshire, SK11 9DL, UK (United Kingdom)

    2006-12-15

    Radio pulsars and transients provide powerful probes of the star formation history, interstellar medium, and gravitational potential of the Galactic center. Historical radio observations of the Galactic center have not emphasized the time domain aspect of observing this region. We summarize a series of recent searches for and observations of radio transients and pulsars that make use of two advances in technology. The first is the formation of large fields of view ({approx}> 1{sup 0}) at relatively longer wavelengths ({lambda} > 1 m), and the second is the construction of receivers and instruments capable of collecting data on microsecond time scales at relatively short wavelengths ({approx} 3 cm)

  1. Pulsar average wave forms and hollow-cone beam models

    Science.gov (United States)

    Backer, D. C.

    1976-01-01

    Pulsar wave forms have been analyzed from observations conducted over a wide radio-frequency range to assess the wave-form morphologies and to measure wave-form widths. The results of the analysis compare favorably with the predictions of a model with a hollow-cone beam of fixed dimensions and with random orientation of both the observer and the cone axis with respect to the pulsar spin axis. A class of three-component wave forms is included in the model by adding a central pencil beam to the hollow-cone hypothesis. The consequences of a number of discrepancies between observations and quantitative predictions of the model are discussed.

  2. Strong binary pulsar constraints on Lorentz violation in gravity.

    Science.gov (United States)

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  3. Low-Frequency Variability of - for Timing of Millisecond Pulsars

    Science.gov (United States)

    Blandford, R.; Narayan, R.

    Rickett, Coles and Bourgois (1984) have argued that long-term (months to years) variation in pulsar flux is caused by fluctuations in the interstellar electron density on length scales ≡1013-16cm. In this paper the authors show that there should then be correlated fluctuations in the pulse arrival time, pulse width, and angular size. PSR 1937+21 is suitable for detecting some of the new effects. The timing noise and pulse width variation in this pulsar is estimated assuming a power-law spectrum for the electron density fluctuations, normalized using scintillation data.

  4. Pulsars: Macro-nuclei with 3-flavour symmetry

    CERN Document Server

    Xu, Renxin

    2015-01-01

    A pulsar-like compact star is the rump left behind after a supernova where normal baryonic matter is intensely compressed by gravity, but the real state of such compressed baryonic matter is still not well understood because of the non-perturbative nature of the fundamental color interaction. We argue that pulsars could be of condensed matter of quark clusters, i.e., "quark-cluster stars" which distinguish from conventional neutron and quark stars. In comparison with 2-flavour symmetric micro-nuclei, a quark-cluster star could simply be considered as a macro-nucleus with 3-flavour symmetry. New research achievements both theoretical and observational are briefly presented.

  5. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  6. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  7. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  8. Are the infrared-faint radio sources pulsars?

    CERN Document Server

    Keith, A D Cameron M J; Norris, R P; Mao, M Y; Middelberg, E

    2011-01-01

    Infrared-Faint Radio Sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50% duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  9. Pulsar Coherent De-dispersion System on the Urumqi Observatory

    Science.gov (United States)

    Liu, Li-Yong; Ali, Esamdin; Zhang, Jin

    2007-03-01

    Pulsar coherent de-dispersion experiment was carried out by using the 25m Nanshan radio telescope in the Urumqi Observatory. It uses a dual polarization receiver operating at 18cm and a VLBI back-end, Mark5A. The data processing system is based on a C program on the Linux and a 4-node Beowulf cluster. A high quality data acquisition system and a cluster with more processors are needed to build an online pulsar coherent de-dispersion system in the future.

  10. Study on autonomous navigation based on pulsar timing model

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The basic principle of pulsar timing model was introduced, and the general relativistic corrections were analyzed when pulse time of arrival (TOA) was transferred to coordinate TOA at the Solar System Barycentre. Based on the shifting, an iterative method of autonomous position determination for spacecraft was developed. Accordingly, the linear form of the position offset equation was evolved. Using the initial estimated value of spacecraft’s position as the input of pulsar timing equation, through calculation of the offset between measured or transferred and predicted TOA, the position offset can be solved by Least Squares. At last, the main error sources including modeling error and parameters error were discussed.

  11. Study on autonomous navigation based on pulsar timing model

    Institute of Scientific and Technical Information of China (English)

    LI JianXun; KE XiZheng

    2009-01-01

    The basic principle of pulsar timing model was introduced, and the general relativistic corrections were analyzed when pulse time of arrival (TOA) was transferred to coordinate TOA at the Solar System Barycentre. Based on the shifting, an iterative method of autonomous position determination for spacecraft was developed. Accordingly, the linear form of the position offset equation was evolved. Using the initial estimated value of spacecraft's position as the input of pulsar timing equation, through calculation of the offset between measured or transferred and predicted TOA, the position offset can be solved by Least Squares. At last, the main error sources including modeling error and parameters error were discussed.

  12. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-Ray Emission

    Institute of Scientific and Technical Information of China (English)

    张力; 吴杰; 姜泽军; 梅冬成

    2003-01-01

    We study the possibility of high-energy gamma-ray emission from the known 1130 radio pulsars based on the outer gap model of high-energy emission from pulsars. We estimate the fractional size of outer gap, the integrated flux, the gamma-ray luminosity for each known radio pulsar, and find that only 14% of the known radio pulsars are gamma-ray emitters according to the outer gap model. In the sample of possible 156 gamma-ray pulsars, our statistical analysis indicates that the distributions of the spin-down powers and the ages of these pulsars concentrate mainly on 1033.5-1039 erg/s and 103-107 y, respectively. The predictions of gamma-ray pulsars detected by the AGILE and GLAST missions are given.

  13. Pulsar observations with European telescopes for testing gravity and detecting gravitational waves

    CERN Document Server

    Perrodin, D; Janssen, G H; Karuppusamy, R; Kramer, M; Lee, K; Liu, K; McKee, J; Purver, M; Sanidas, S; Smits, R; Stappers, B W; Zhu, W; Concu, R; Melis, A; Burgay, M; Casu, S; Corongiu, A; Egron, E; Iacolina, N; Pellizzoni, A; Pilia, M; Trois, A

    2016-01-01

    A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pulsar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used t...

  14. Toward an Empirical Theory of Pulsar Emission XI. Understanding the Orientations of Pulsar Radiation and Supernova "Kicks"

    CERN Document Server

    Rankin, Joanna M

    2015-01-01

    Two entwined problems have remained unresolved since pulsars were discovered nearly 50 years ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova ``kicks' relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (``fiducial') polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is $\\parallel$ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both $\\parallel$ or $\\perp$ alignments. In this paper we analyze the some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions. The ``fiducial' polarization angle of the core emission, we then find, is usually oriented $\\perp$ to the proper-motion direction on the sky. As the primary core emission i...

  15. An Analysis of Average Pulsar Profiles and A Study of the ρ-P relation of Pulsars

    Institute of Scientific and Technical Information of China (English)

    Hua-Xiang Wang; Xin-Ji Wu

    2003-01-01

    Using the method of Gaussian Fit Separation of Average Profile (GFSAP), we re-examine the average profiles of nine pulsars at several frequencies,ranging from 408-1642 MHz. This method enables us to obtain the number of components for each pulsar, and the parameters for each component, the width, position and amplitude. The ρ-P relation for the inner cone and outer cone are studied separately, and the results are, respectively, ρ = p-0.51±0.05 and ρ = p-0.42±0.06. The results can be interpreted as a confirmation of the double-cone structure of pulsar emission beams. The altitudes of emission region, and the radius-to-frequency-map(RFM) are also examined; for the outer cone, we obtained r(y) ∝ v-0.19±0.09.

  16. The Einstein@Home Gamma-ray Pulsar Survey. I. Search Methods, Sensitivity and Discovery of New Young Gamma-ray Pulsars

    OpenAIRE

    Clark, C J; Wu, J.; Pletsch, H. J.; Guillemot, L.; Allen, B.; Aulbert, C.; Beer, C; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Kramer, M.; Machenschalk, B.; Nieder, L.

    2016-01-01

    We report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are...

  17. The NANOGrav Eleven-Year Data Set: High-precision timing of 48 Millisecond Pulsars

    Science.gov (United States)

    Nice, David J.; NANOGrav

    2017-01-01

    Gravitational waves from sources such as supermassive black hole binary systems perturb times-of-flight of signals traveling from pulsars to the Earth. The NANOGrav collaboration aims to measure these perturbations in high precision millisecond pulsar timing data and thus to directly detect gravitational waves and characterize the gravitational wave sources. By observing pulsars over time spans of many years, we are most sensitive to gravitational waves at nanohertz frequencies. This work is complimentary to ground based detectors such as LIGO, which are sensitive to gravitational waves with frequencies 10 orders of magnitude higher.In this presentation we describe the NANOGrav eleven-year data set. This includes pulsar time-of-arrival measurements from 48 millisecond pulsars made with the Arecibo Observatory (for pulsars with declinations between -1 and 39 degrees) and the Green Bank Telescope (for other pulsars, with two pulsars overlapping with Arecibo). The data set consists of more than 300,000 pulse time-of-arrival measurements made in nearly 7000 unique observations (a given pulsar observed with a given telescope receiver on a given day). In the best cases, measurement precision is better than 100 nanoseconds, and in nearly all cases it is better than 1 microsecond.All pulsars in our program are observed at intervals of 3 to 4 weeks. Observations use wideband data acquisition systems and are made at two receivers at widely separated frequencies at each epoch, allowing for characterization and mitigation of the effects of interstellar medium on the signal propagation. Observation of a large number of pulsars allows for searches for correlated perturbations among the pulsar signals, which is crucial for achieving high-significance detection of gravitational waves in the face of uncorrelated noise (from gravitational waves and rotation noise) in the individual pulsars. In addition, seven pulsars are observed at weekly intervals. This increases our sensitivity

  18. Three-dimensional analytical description of magnetized winds from oblique pulsars

    Science.gov (United States)

    Tchekhovskoy, Alexander; Philippov, Alexander; Spitkovsky, Anatoly

    2016-04-01

    Rotating neutron stars, or pulsars and magnetars, are plausibly the source of power behind many astrophysical systems, such as gamma-ray bursts, supernovae, pulsar wind nebulae, and supernova remnants. In the past several years, three-dimensional (3D) numerical simulations made it possible to compute pulsar spin-down luminosity from first principles and revealed that oblique pulsar winds are more powerful than aligned ones. However, what causes this enhanced power output of oblique pulsars is not understood. In this work, using time-dependent 3D magnetohydrodynamic and force-free simulations, we show that, contrary to the standard paradigm, the open magnetic flux, which carries the energy away from the pulsar, is laterally non-uniform. We argue that this non-uniformity is the primary reason for the increased luminosity of oblique pulsars. To demonstrate this, we construct simple analytic descriptions of aligned and orthogonal pulsar winds and combine them to obtain an accurate 3D description of the pulsar wind for any obliquity. Our approach describes both the warped magnetospheric current sheet and the smooth variation of pulsar wind properties outside of it. We find that the jump in magnetic field components across the current sheet decreases with increasing obliquity, which could be a mechanism that reduces dissipation in near-orthogonal pulsars. Our analytical description of the pulsar wind can be used for constructing models of pulsar gamma-ray emission, pulsar wind nebulae, neutron star powered ultra-luminous X-ray sources, and magnetar-powered core-collapse gamma-ray bursts and supernovae.

  19. Two Years of Chandra Observations: Neutron Stars and Pulsars with Emphasis on the Pulsar in the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory is entering its third year of operation. The Observatory, the premiere x-ray telescope for high-resolution imaging, has exceeded all expectations. The sub-arc second angular resolution together with other instrumental capabilities has allowed for new insights into the understanding of compact x-ray emitting objects including neutron stars and pulsars. We briefly review the Chandra Program and the first two years of observation with emphasis on these interesting objects. We detail the results of our observations of the pulsar in the Crab Nebula including the first continuum spectrum that is virtually uncontaminated by any dust-scattered radiation.

  20. Pulsar-Black Hole Binaries in the Galactic Center

    CERN Document Server

    Faucher-Giguere, C -A

    2010-01-01

    Binaries consisting of a pulsar and a black hole (BH) are a holy grail of astrophysics, both for their significance for stellar evolution and for their potential application as probes of strong gravity. In spite of extensive surveys of our Galaxy and its system of globular clusters, no pulsar-black hole (PSR-BH) binary has been found to date. Clues as to where such systems might exist are therefore highly desirable. We show that if the central parsec around Sgr A* harbors a cluster of ~25,000 stellar BHs (as predicted by mass segregation arguments) and if it is also rich in recycled pulsar binaries (by analogy with globular clusters), then 3-body exchange interactions should produce PSR-BHs in the Galactic center. Simple estimates of the formation rate and survival time of these binaries suggest that a few PSR-BHs should be present in the central parsec today. The proposed formation mechanism makes unique predictions for the PSR-BH properties: 1) the binary would reside within ~1 pc of Sgr A*; 2) the pulsar w...

  1. Upper limits on gravitational wave emission from 78 radio pulsars

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  2. On time transfer in X-ray pulsar navigation

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhen; LI Ming; SHUAI Ping

    2009-01-01

    X-ray pulsar navigation (XPNAV) is a new approach for spacecraft autonomous navigation. The system gets position information utilizing accurate timing methods. Among the timing models, the high-order relativistic effects on the propagated signal must be incorporated to attain precise timing. The time transfer model is provided in detail here in two parts: the time frame transformation and the relativistic effects.

  3. An exact solution of Haugan's binary pulsar equation of motion

    Science.gov (United States)

    Weinstein, M.; Mor, A.

    1988-05-01

    In his work on the post-Newtonian arrival-time analysis for a pulsary binary system, Haugan (1985) derived and integrated the two-body equation of the motion of the pulsar. The purpose of the present study is to show that there is an exact solution to this nonlinear equation, without any need of far-reaching assumptions and neglected nonlinear terms.

  4. Timing the Eccentric Binary Millisecond Pulsar in NGC 1851

    CERN Document Server

    Freire, P C; Gupta, Y; Freire, Paulo C.; Ransom, Scott M.; Gupta, Yashwant

    2007-01-01

    We have used the Green Bank Telescope to observe the millisecond pulsar PSR J0514-4002A on 43 occasions spread over 2 years. This 5-ms pulsar is located in the globular cluster NGC 1851; it belongs to a binary system and has a highly eccentric (e = 0.888) orbit. We have obtained a phase-coherent timing solution for this object, including very precise position, spin and orbital parameters. The pulsar is located 4.6" (about 1.3 core radii) from the center of the cluster, and is likely to lie on its more distant half. The non-detection of eclipses at superior conjunction can be used, given the peculiar geometry of this system, to rule out the possibility of an extended companion. We have measured the rate of advance of periastron for this binary system to be $\\dot{\\omega}$ = 0.01289(4) degrees per year, which if due completely to general relativity, implies a total system mass of 2.453(14) solar masses. Given the known mass function, the pulsar mass has to be 0.96 solar masses, implying that it is a heavy white...

  5. Enabling pulsar and fast transient searches using coherent dedispersion

    Science.gov (United States)

    Bassa, C. G.; Pleunis, Z.; Hessels, J. W. T.

    2017-01-01

    We present an implementation of the coherent dedispersion algorithm capable of dedispersing high-time-resolution radio observations to many different dispersion measures (DMs). This approach allows the removal of the dispersive effects of the interstellar medium and enables searches for pulsed emission from pulsars and other millisecond-duration transients at low observing frequencies and/or high DMs where time broadening of the signal due to dispersive smearing would otherwise severely reduce the sensitivity. The implementation, called cdmt, for coherent dispersion measure trials, exploits the parallel processing capability of general-purpose graphics processing units to accelerate the computations. We describe the coherent dedispersion algorithm and detail how cdmt implements the algorithm to efficiently compute many coherent DM trials. We apply the concept of a semi-coherent dedispersion search, where coherently dedispersed trials at coarsely separated DMs are subsequently incoherently dedispersed at finer steps in DM. The software is used in an ongoing LOFAR pilot survey to test the feasibility of performing semi-coherent dedispersion searches for millisecond pulsars at 135 MHz. This pilot survey has led to the discovery of a radio millisecond pulsar-the first at these low frequencies. This is the first time that such a broad and comprehensive search in DM-space has been done using coherent dedispersion, and we argue that future low-frequency pulsar searches using this approach are both scientifically compelling and feasible. Finally, we compare the performance of cdmt with other available alternatives.

  6. Numerical modeling of the pulsar wind interaction with ISM

    NARCIS (Netherlands)

    Bogovalov, S. V.; Chechetkin, V. M.; Koldoba, A. V.; Ustyugova, G. V.; Battiston, R; Shea, MA; Rakowski, C; Chatterjee, S

    2006-01-01

    Time dependent numerical simulation of relativistic wind interaction with interstellar medium was performed. The winds are ejected from magnetosphere of rotation powered pulsars. The particle flux in the winds is assumed to be isotropic. The energy flux is taken as strongly anisotropic in accordance

  7. Photon Splitting and Pair Creation in Highly Magnetized Pulsars

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Harding, Alice K.

    2000-01-01

    The absence of radio pulsars with long periods has lead to the popular notion of a high P ``death line.'' In the standard picture, beyond this boundary, pulsars with low spin rates cannot accelerate particles above the stellar surface to high enough energies to initiate pair cascades, and the pair creation needed for radio emission is strongly suppressed. In this paper we explore the possibility of another pulsar ``death line'' in the context of polar cap models, corresponding to high magnetic fields B in the upper portion of the period-period derivative diagram, a domain where few radio pulsars are observed. The origin of this high B boundary, which may occur when B becomes comparable to or exceeds $B_{\\rm cr} = 4.4 \\times 10^{13}$ Gauss, is also due to the suppression of magnetic pair creation, but primarily because of ineffective competition with magnetic photon splitting. Threshold pair creation also plays a prominent role in the suppression of cascades. We present Monte Carlo calculations of the pair yie...

  8. A free-electron laser in the pulsar magnetosphere

    NARCIS (Netherlands)

    Fung, P.K.; Kuijpers, J.M.E.

    2004-01-01

    We have studied systematically the free-electron laser in the context of high brightness pulsar radio emission. In this paper, we have numerically examined the case where a transverse electromagnetic wave is distorting the motion of a relativistic electron beam while travelling over one stellar radi

  9. Local Pulsars; A note on the Birth-Velocity Distribution

    NARCIS (Netherlands)

    Blaauw, A.; Ramachandran, R.

    1998-01-01

    Submitted to: Astron. Astrophys. Abstract: We explore a simple model for the representation of the observed distributions of the motions, and the characteristic ages of the local population of pulsars. The principal difference from earlier models is the introduction of a unique value, S, for the kic

  10. A puzzling millisecond pulsar companion in NGC 6266

    CERN Document Server

    Cocozza, G; Possenti, A; Beccari, G; Lanzoni, B; Ranson, S; Rood, R T; D'Amico, N

    2008-01-01

    We report on the optical identification of the companion to the eclipsing millisecond pulsar PSR J1701$-$3006B in the globular cluster NGC 6266. A relatively bright star with an anomalous red colour and an optical variability ($\\sim$ 0.2 mag) that nicely correlates with the orbital period of the pulsar ($\\sim$ 0.144 days) has been found nearly coincident with the pulsar nominal position. This star is also found to lie within the error box position of an X-ray source detected by Chandra observations, thus supporting the hypothesis that some interaction is occurring between the pulsar wind and the gas streaming off the companion. Although the shape of the optical light curve is suggestive of a tidally deformed star which has nearly completely filled its Roche lobe, the luminosity ($\\sim 1.9 L_\\odot$) and the surface temperature ($\\sim 6000$ K) of the star, deduced from the observed magnitude and colours, would imply a stellar radius significantly larger than the Roche lobe radius. Possible explanations for this...

  11. A study of microglitches in Hartebeesthoek radio pulsar

    Science.gov (United States)

    Onuchukwu, C. C.; Chukwude, A. E.

    2016-09-01

    We carried out a statistical analysis of microglitch events on a sample of radio pulsars. The distributions of microglitch events in frequency (ν) and first frequency derivative ({ν'}) indicate that the size of a microglitch and sign combinations of events in ν and {ν'} are purely randomized. Assuming that the probability of a given size of a microglitch event occurring scales inversely as the absolute size of the event in both ν and {ν'}, we constructed a cumulative distribution function (CDF) for the absolute sizes of microglitches. In most of the pulsars, the theoretical CDF matched the observed values. This is an indication that microglitches in pulsar may be interpreted as an avalanche process in which angular momentum is transferred erratically from the flywheel-like superfluid interior to the slowly decelerating solid crust. Analysis of the waiting time indicates that it is purely Poisson distributed with mean microglitch rate spin down rate (r˜-0.6) and the characteristic age of the pulsar (τ) with (r˜-0.4/{-}0.5).

  12. Hunting for Orphaned Central Compact Objects among Radio Pulsars

    CERN Document Server

    Luo, J; Ho, W C G; Bogdanov, S; Kaspi, V M; He, C

    2015-01-01

    Central compact objects (CCOs) are a handful of young neutron stars found at the center of supernova remnants (SNRs). They show high thermal X-ray luminosities but no radio emission. Spin-down rate measurements of the three CCOs with X-ray pulsations indicate surface dipole fields much weaker than those of typical young pulsars. To investigate if CCOs and known radio pulsars are objects at different evolutionary stages, we carried out a census of all weak-field (<1e11 G) isolated radio pulsars in the Galactic plane to search for CCO-like X-ray emission. None of the 12 candidates is detected at X-ray energies, with luminosity limits of 1e32-1e34 erg/s. We consider a scenario in which the weak surface fields of CCOs are due to rapid accretion of supernova materials and show that as the buried field diffuses back to the surface, a CCO descendant is expected to leave the P-Pdot parameter space of our candidates at a young age of a few times 10kyr. Hence, the candidates are likely to be just old ordinary pulsar...

  13. Verification of f(R-gravity in binary pulsars

    Directory of Open Access Journals (Sweden)

    Dyadina Polina

    2016-01-01

    Full Text Available We develop the parameterized post-Keplerian approach for class of analytic f (R-gravity models. Using the double binary pulsar system PSR J0737-3039 data we obtain restrictions on the parameters of this class of f (R-models and show that f (R-gravity is not ruled out by the observations in strong field regime.

  14. Modified pulsar current analysis: probing magnetic field evolution

    CERN Document Server

    Igoshev, A P

    2014-01-01

    We use a modified pulsar current analysis to study magnetic field decay in radio pulsars. In our approach we analyse the flow, not along the spin period axis as has been performed in previous studies, but study the flow along the direction of growing characteristic age, $\\tau=P/(2\\dot P)$. We perform extensive tests of the method and find that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars. However, precise determination of the magnetic field decay timescale is not possible at present. The estimated timescale may differ by a factor of few for different sets of initial distributions of neutron star parameters. In addition, some combinations of initial distributions and/or selection effects can also mimic enhanced field decay. We apply our method to the observed sample of radio pulsars at distances $<10$ kpc in the range of characteristi...

  15. Pulsar Kicks With Sterile Neutrinos and Landau Levels

    CERN Document Server

    Kisslinger, Leonard S; Johnson, Mikkel B

    2007-01-01

    We use a model with two sterile neutrinos obtained by fits to the MiniBoone and LSND experiments. Using formulations with neutrinos created by URCA Processes in a strong magnetic field, so the lowest Landau level has a sizable probability, we find that with known paramenters the assymetric sterile neutrino emissivity might account for large pulsar kicks.

  16. The Pulsar Search Collaboratory: Three Years of Discovery

    Science.gov (United States)

    McLaughlin, Maura; Heatherly, S.; Rosen, R.

    2011-01-01

    The Pulsar Search Collaboratory (PSC) is a joint partnership between the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) to improve the quality of science education in West Virginia high schools. The ultimate goal of the PSC is to engage students in science, technology, engineering, mathematics (STEM), and related fields by using information technology to conduct current scientific research, specifically searching for new pulsars. We expect to discover roughly 30 new pulsars in the PSC data. The PSC has had several scientific and educational successes. To date, the PSC students have made two astronomical discoveries: a 4.8-s pulsar and bright radio burst of astrophysical origin, most likely from a sporadic neutron star. We have 21 new high schools this year, bringing the number of PSC schools to 43. Ten of these schools are part of PSC West, a trial scale-up of our original PSC program. Of the 33 schools in the original PSC program, 13 come from rural school districts; one third of these are from schools where over 50% participate in the Free/Reduced School Lunch program. We are reaching first generation college-goers. For students, the program succeeds in building confidence in students, rapport with the scientists involved in the project, and team-work ability. We see additional gains in girls, who see themselves as scientists after participating in the PSC program. This is an important predictor of success in STEM fields.

  17. Unusual Braking Indices in Young X-ray Pulsars

    Science.gov (United States)

    Frederic Archibald, Robert; Kaspi, Victoria M.; Beardmore, Andrew P.; Gehrels, Neil; Kennea, Jamie; Gotthelf, Eric V.; Ferdman, Robert; Guillot, Sebastien; Harrison, Fiona; Keane, Evan; Pivovaroff, Michael; Stern, Daniel; Tendulkar, Shriharsh P.; Tomsick, John

    2016-04-01

    Pulsars spin down over time. By measuring braking indices of pulsars, effectively the change in the spin-down rate over time, we can probe the underlying driving engine of the spin-down. For a magnetic dipole in a vacuum, n is predicted to be 3. To date, all measured braking indices are less than 3, which can be explained, e.g. by particle winds, changes in the magnetic field. In all models of braking indices, n should be nearly constant on year time-scales. Here, I will discuss two recent observation results that challenge this model, interestingly both coming from young X-ray pulsars with no detected radio emission. The first, a long-lived decrease in the braking index of PSR J1846-0258 following a burst of magnetar-like activity, and secondly, the first stationary braking index greater than three. Understanding neutron-star spin evolution is key to constraining these objects' long-term energy output and has relevance to topics ranging from pulsar wind nebulae and supernova remnants to core-collapse supernova rates, physics, and expected outcomes.

  18. Versatile Directional Searches for Gravitational Waves with Pulsar Timing Arrays

    CERN Document Server

    Madison, D R; Hobbs, G; Coles, W; Shannon, R M; Wang, J; Tiburzi, C; Manchester, R N; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Dempsey, J; Keith, M; Kerr, M; Lasky, P; Levin, Y; Oslowski, S; Ravi, V; Reardon, D; Rosado, P; Spiewak, R; van Straten, W; Toomey, L; Wen, L; You, X

    2015-01-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straight-forward technique by which a PTA can be "phased-up" to form time series of the two polarisation modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodeled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power fr...

  19. 17 and 24 GHz observations of southern pulsars

    CERN Document Server

    Keith, M J; Levin, L; Bailes, M

    2011-01-01

    We present observations of PSRs J0437-4715, J0738-4042, J0835-4510, J0908-4913, J1048-5832, J1622-4950, J1644-4559, J1721-3532 and J1740-3015 at 17 GHz using the Parkes radio telescope. All 9 were detected at 17 GHz, additionally, we detected PSR J0835-4510 and J1622-4950 at 24 GHz. Polarisation profiles of each pulsar and the variation with frequency are discussed. In general, we find that the highly polarised edge components of young pulsars continue to dominate their profiles at 17 GHz. Older pulsars (>10^5 years) appear to be almost completely depolarised. Our detection of PSR J0437-4715 is the highest frequency observation of a millisecond pulsar to date, and implies a luminosity at 17 GHz of 14 {\\mu}Jy kpc^2, and a mean spectral index of 2.2. We find that the spectral index of the magnetar PSR J1622-4950 is flat between 1.4 and 24 GHz, similar to the other known radio magnetars XTE J1810-197 and 1E 1547.0-5408. The profile is similar to that at 3.1 GHz, and is highly linearly polarised. Analysis of the ...

  20. Effectiveness of Null Signal Sky Localization in Pulsar Timing Arrays

    Science.gov (United States)

    Shafiq Hazboun, Jeffrey

    2017-01-01

    A null stream is constructed from the timing residuals of three pulsars by noting that the same source polarization amplitudes appear in the data stream from each pulsar. Linear combinations of a set of individual pulsar data streams can be shown to be a two-parameter family (the two sky position angles of the source) that can be minimized to determine the location of the source on the sky. Taking the product of a number of null streams allows for an even stronger localization of the gravitational wave's source; a large advantage in a PTA where there are more independent signals than other gravitational wave detectors. While a null stream contains the same information as any other data stream with the same number of pulsars, the statistics of a product of noisy signals is inherently different than for a sum of those same signals.A comparison of how null signal searches compare to other techniques for sky localization of PTA sources will be discussed, as well as an assessment of the types of searches for which the method may be useful.