WorldWideScience

Sample records for pulp fiber residue

  1. Pulping and papermaking properties of the leaf fiber and fibrous residue from Agave tequilana

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, T.; Mitsuhashi, S.; Kanetsuna, H.; Iguchi, M.; Shirota, T.; Trujillo, J.J.; Herrera, T.

    1981-01-01

    The leaves and fibrous residue of A. tequilana had fibriles with parallel orientation and helical arrangement to the fiber axis and contained fibers in average length and width of 1.7 mm and 10.3 mu m and 0.8 mm and 25.5 mu m, respectively. The cell wall in leaves was thicker and narrower than those in fibrous residue, and leaves contained cellulose and lignin lower than fibrous residue did. Alkali sulfite cooking of leaves gave pulp, the yield of which was lower than that from fibrous residue. The H/sub 2/On retention and bulk density of leaf pulps increased rapidly on beating suggesting that an internal fibrillation in pulp occurs easily during beating. The breaking length and burst and tear factors of paper from leaf pulp were higher than those from fibrous residue.

  2. Preparation nanowhiskers pulp from residue of palm fiber Attalea funifera Martius

    International Nuclear Information System (INIS)

    Silva, J.B.A. da; Miranda, C.S.; Jose, N.M.; Vargas, F.P.; Druzian, J.I.

    2010-01-01

    The residue from piassava fiber is higher in cellulose and lignin. This study aimed to extract the pulp and the development of methodology for preparation nanowhiskers from residue fiber. The first step extraction of cellulose, the second step to obtain the nanoparticles by acid hydrolysis (H 2 SO 4 ). The samples were characterized by: SEM, chemical composition, TGA, FTIR and XRD. The XRD result shows that cellulose is of type I and TGA shows two events at 54 deg C and 370 deg C attributed to mass loss of water and cellulose, respectively. After hydrolysis, X-ray diffraction showed an intense reflection 2θ= 22.3 deg and an increase in the degree of crystallinity to 70% which is an indication of the formation of nanowhiskers. (author)

  3. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    Science.gov (United States)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  4. Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp.

    Science.gov (United States)

    Gao, Wenhua; Xiang, Zhouyang; Chen, Kefu; Yang, Rendang; Yang, Fei

    2015-01-01

    Commercial bleached softwood kraft pulp was mechanically fibrillated by a PFI-mill with beating revolution from 5000 to 30,000 r. The extent of fibrillating on the pulp was evaluated by beating degree, fiber morphological properties (fiber length, width, coarseness and curls index), water retention value (WRV) and physical properties of paper made from the pulp. Depth beating process significantly affected the pulp fibrillations as showed by the decreased fiber length and width as well as the SEM analysis, but the effects were limited after beating revolution of 15,000. Depth beating process also improved the total internal pore and inter-fibril surface areas as shown by the increased WRV values. Substrate enzymatic digestibility (SED) of beaten pulp at 5000 revolutions could reach 95% at cellulase loading of 15 FPU/g of glucan. After the enzymatic hydrolysis, the size of the pulp residues was reduced to micro-scale, and a relative uniform size distribution of the residues appeared at 10,000 r beating revolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  6. Basic effects of pulp refining on fiber properties--a review.

    Science.gov (United States)

    Gharehkhani, Samira; Sadeghinezhad, Emad; Kazi, Salim Newaz; Yarmand, Hooman; Badarudin, Ahmad; Safaei, Mohammad Reza; Zubir, Mohd Nashrul Mohd

    2015-01-22

    The requirement for high quality pulps which are widely used in paper industries has increased the demand for pulp refining (beating) process. Pulp refining is a promising approach to improve the pulp quality by changing the fiber characteristics. The diversity of research on the effect of refining on fiber properties which is due to the different pulp sources, pulp consistency and refining equipment has interested us to provide a review on the studies over the last decade. In this article, the influence of pulp refining on structural properties i.e., fibrillations, fine formation, fiber length, fiber curl, crystallinity and distribution of surface chemical compositions is reviewed. The effect of pulp refining on electrokinetic properties of fiber e.g., surface and total charges of pulps is discussed. In addition, an overview of different refining theories, refiners as well as some tests for assessing the pulp refining is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Method and apparatus for assaying wood pulp fibers

    Science.gov (United States)

    Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  8. Improvement of Pulping Uniformity by Measurement of Single Fiber Kappa Number

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Gustafson; James B. Callis

    2001-11-20

    A method to measure the kappa of single fibers by staining with a fluorescent dye, Acridine Orange (AO), has been developed. This method is now applied to develop and automated flow-through instrument that permits routine kappa analysis on thousands of images of AO stained fibers to give the fiber kappa number distribution of a pulp sample in a few minutes. The design and operation of the instrument are similar to that of a flow cytometer but with the addition of extensive fiber imaging capability. Fluorescence measurements in the flow-through instrument are found to be consistent with those made with fluorescence microscope provided the signal processing in the flow-thou instrument is handled propertly. The kappa distributions of pulps that were analyzed by means of a density gradient column are compared to those measured with the flow-through instrument with good results. The kappa distributions of various laboratory pulps and commercial pulps have been measured. It has been found that all pulps are non-uniform but that ommercial pulps generally have broader kappa distributions thatn their laboratory counterparts. The effects of different pulping methods and chip pretreatments on pulp uniformity are discussed in the report. Finally, the application of flow-through fluorescence technology to other single fiber measurements are presented.

  9. Pulping and paper properties of Palmyra palm fruit fibers

    Directory of Open Access Journals (Sweden)

    Waranyou Sridach

    2010-05-01

    Full Text Available Palmyra palm fruit fibers have the properties to be used as an alternative raw material of cellulosic pulps for papermaking.Acid and alkali pulping were investigated by using nitric acid and caustic soda on a laboratory scale, with the purpose of producing printing or writing grade pulp. The chemical composition of fiber strands from palmyra palm fruits were examined, such as holocellulose, cellulose, pentosan, lignin and extractives. The yields of acid and soda pulps were below 40%. The main physical and mechanical properties of hand sheets produced from acid and soda processes were evaluated on 80 g/m2 test sheets as functions of the following parameters: tensile index, tear index, and brightness. The mechanical properties of soda pulps were developed by twin-roll press while it was not necessary to fibrillate acidic pulps through the beating step. The soda pulp sheets presented a lower brightness than that of acidic pulp sheets. The mechanicaland physical properties of the acidic and alkaline pulps verified that they were of an acceptable quality for papermaking.

  10. Investigation Characteristics Of Pulp Fibers AS Green Potential Polymer Reinforcing Agents

    OpenAIRE

    Masruchin, Nanang; Subyakto

    2012-01-01

    Three kinds of pulp fiber (i.e. kenaf, pineapple and coconut fiber)were characterized as reinforcing agents in compositematerials to be applied at automotive interior industry.Abetter understanding on characteristics of fiber will lead to enhance interface adhesion between fiber and matrices. Furthermore, it will improve the properties of polymer significantly. Chemical, surface compositions as well as morphology of pulp fiber were investigated using TAPPI standard test method, Fourier Transf...

  11. Preparation nanowhiskers pulp from residue of palm fiber Attalea funifera Martius; Preparacao de nanowhiskers de celulose a partir do residuo da fibra de piacava da palmeira Attalea funifera Martius

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.B.A. da; Miranda, C.S.; Jose, N.M.; Vargas, F.P.; Druzian, J.I., E-mail: janiabet@yahoo.com.b [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2010-07-01

    The residue from piassava fiber is higher in cellulose and lignin. This study aimed to extract the pulp and the development of methodology for preparation nanowhiskers from residue fiber. The first step extraction of cellulose, the second step to obtain the nanoparticles by acid hydrolysis (H{sub 2}SO{sub 4}). The samples were characterized by: SEM, chemical composition, TGA, FTIR and XRD. The XRD result shows that cellulose is of type I and TGA shows two events at 54 deg C and 370 deg C attributed to mass loss of water and cellulose, respectively. After hydrolysis, X-ray diffraction showed an intense reflection 2{theta}= 22.3 deg and an increase in the degree of crystallinity to 70% which is an indication of the formation of nanowhiskers. (author)

  12. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.

    Science.gov (United States)

    Ai, Jun; Tschirner, Ulrike

    2010-01-01

    Switchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.78 mm, a very narrow fiber length distribution and high fines content. Willow and hybrid poplar have lower fines content but a very low average fiber length (0.42 and 0.48 mm LWW). In addition, the four biomass species showed distinctly different chemical compositions. Switchgrass was defibered successfully using Soda and Soda Anthraquinone (AQ) pulping and demonstrated good paper properties. Both fast-growing wood species pulped well using the Kraft process, and showed acceptable tensile strength, but low tear strength. Alfalfa stems reacted very poorly to Soda and Soda AQ pulping but responded well to Kraft and Kraft AQ. Pulps with tensile and tear strength considerably higher than those found for commercial aspen pulps were observed for alfalfa. All four biomass species examined demonstrated low pulp yield. The highest yields were obtained with poplar and switchgrass (around 43%). Considering the short fibers and low yields, all four biomass types will likely only be used in paper manufacturing if they offer considerable economic advantage over traditional pulp wood.

  13. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  14. Understanding the Nature and Reactivity of Residual Lignin for Improved Pulping and Bleaching Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yuan-Zong Lai

    2001-11-30

    One of the most formidable challenges in kraft pulping to produce bleached chemical pulps is how to effectively remove the last 5-10% of lignin while maintaining the fiber quality. To avoid a severe fiber degradation, kraft pulping is usually terminated in the 25-30 kappa number range and then followed by an elementally chlorine free (ECF) or a totally chlorine free (TCF) bleaching sequence to reduce the environmental impacts.

  15. Determining the minimum conditions for soda-anthraquinone pulping of kenaf bast, core, and whole stalk fibers

    Science.gov (United States)

    James S. Han; Thomas A. Rymsza

    1999-01-01

    Chemical pulping of kenaf fiber is comparatively new. In this study, bast, core, and whole stalk kenaf fibers were pulped using a soda-AQ pulping process and various pulping conditions. Handsheets were evaluated for density, Canadian standard freeness, brightness, opacity, smoothness, and tensile, burst, and tear indexes and strength. The results indicate that...

  16. Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal.

    Science.gov (United States)

    Lacerda, Talita M; Zambon, Márcia D; Frollini, Elisabete

    2013-03-01

    The influence of sulfuric acid concentration (H2SO4 5-25%, 100°C), crystallinity and fibers size on the hydrolysis reaction of sisal pulps were investigated, with the goal of evaluating both the liquor composition, as an important step in the production of bioethanol, and the residual non-hydrolyzed pulp, to determine its potential application as materials. Aliquots were withdrawn from the reaction media, and the liquor composition was analyzed by HPLC. The residual non-hydrolyzed pulps were characterized by SEM, their average molar mass and crystallinity index, and their size distribution was determined using a fiber analyzer. Sulfuric acid 25% led to the highest glucose content (approximately 10gL(-1)), and this acid concentration was chosen to evaluate the influence of both the fiber size and crystallinity of the starting pulp on hydrolysis. The results showed that fibers with higher length and lower crystallinity favored glucose production in approximately 12%, with respect to the highly crystalline shorter fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Understanding the Nature and Reactivity of Residual Lignin for Improved Pulping and Bleaching Efficiency; FINAL

    International Nuclear Information System (INIS)

    Yuan-Zong Lai

    2001-01-01

    One of the most formidable challenges in kraft pulping to produce bleached chemical pulps is how to effectively remove the last 5-10% of lignin while maintaining the fiber quality. To avoid a severe fiber degradation, kraft pulping is usually terminated in the 25-30 kappa number range and then followed by an elementally chlorine free (ECF) or a totally chlorine free (TCF) bleaching sequence to reduce the environmental impacts

  18. Mesta/Kenaf as raw material for Kraft pulping

    Energy Technology Data Exchange (ETDEWEB)

    Saraf, V. P.; Shiveshwar, R. M.; Meshramkar, P. M.; Deb, U. K.; Jaspal, N. S.; Biyani, B. P.

    1980-03-15

    In recent years, the shortage of conventional raw materials for pulping has intensified a world-wide search for alternate raw materials. Among other cellulosic materials, attention has focused on agricultural residues and annual plants. In this category, Kenaf, also called Mesta, has been studied as a fiber source in many countries including the USA, Phillippines and India. A comprehensive study on kraft pulping of mesta was carried out where the fiber morphology, pulping, bleaching and papermaking characteristics were investigated. Black liquor properties were also determined. The results of this study are reported and compared to the conventional raw material bamboo. The investigation has shown that mesta is easily pulped and bleached and forms sheets of excellent strength properties, comparable to or better than bamboo pulps. The black liquor from mesta is similar to bamboo in calorific value but is very low in silica, which is highly desirable from the chemical recovery point of view. As with all agricultural residues and annual plants, mesta has a high bulk per unit weight. The problems arising from this, e.g., baling, transportation, proper utilization of digester capacity, have to be studied before mesta can be widely accepted in the paper industry.

  19. Physicochemical and functional characteristics of residual pulp of potato

    Directory of Open Access Journals (Sweden)

    Webber Tavares de CARVALHO

    Full Text Available Abstract Starch-rich liquid effluent is generated after peeling, cutting and washing of tubers during the fries processing. After sedimentation of this effluent is recovered a wet residual pulp, and after drying is obtained dry residual pulp or simply named in this study residual pulp of potato (RPP. In order to convert the effluent into a material easy to store for long periods (such as the potato starch, which would make it suitable for various applications. The aim of this study was to evaluate the effect of the drying conditions, specifically variables temperature and air flow on the drying time and water activity, pH, titratable acidity, instrumental colour parameters, water absorption index, water solubility index and oil absorption capacity of dry RPP. Central Composite Design was used, with temperature levels from 50.0 to 70.0 °C and air flow from 0.06 to 0.092 m3 m–2 s–1. Temperature and airflow affected the study characteristics, except for lightness (L*, water solubility index and oil absorption capacity. It was concluded that milder conditions (lower temperatures and intermediate air flow resulted in higher-quality final products (lighter, less acidic, although requiring higher drying time. Therefore, depending on the product application, different drying conditions can be used.

  20. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  1. Application of cellulosic nanofibers to replace with imported long- fiber pulps in paper made from bagasse

    Directory of Open Access Journals (Sweden)

    Reza ghofran

    2017-02-01

    Full Text Available In this research, different additives of cellulose nanofibers, cationic starch and polyacrylamide to bagasse pulp and their impact on the handsheet strengths were investigated aiming to replace with imported long-fiber softwood pulp in Pars paper factory. For this purpose, first 3% bleached bagasse cellulose nanofibers, 3% unbleached nano-lignocellulosic fibers, 0.5, 0.7 and 1% cationic starch, and 0.03, 0.05 and 0.1% cationic polyacrylamide were added separately to bagasse pulp. In the next stage,3% bleached bagasse cellulose nanofibers and 3% unbleached nano-lignocellulosic fibers along with 0.5% cationic starch or 0.05% cationic polyacrylamide were used. The results showed, adding nano-cellulose fibers along with cationic polyacrylamide or starch have increased handsheet strengths significantly. Yet, the best treatment was the addition of 3% nano-lignocellulose along with 0.5% cationic starch which resulted in the higher tensile and burst strengths and lower tear and fold strengths than that of adding 12.5% long fibers to bagasse pulp. So that, comparing with paper made from pure bagasse pulp it showed the increase of 16.57% in tensile index, 8.47% in burst index, 9.77% in tear index, and 168.85% in folding strength.

  2. Modeling fiber motion in a pulp pressure screen: the effect of slot shape

    International Nuclear Information System (INIS)

    Dong, S.; Salcudean, M.; Gartshore, I.

    2003-01-01

    A pressure screen is a piece of equipment in the pulp and paper industry used either to remove contaminants from the pulp suspension or to separate fibers having different properties. Contaminants such as fiber bundles, bark and plastic specks are introduced when fibers are separated from the wood by mechanical or chemical pulping processes. Contaminants significantly affect the strength and smoothness of the paper and must be removed before the final paper is produced. The screen plate is a critical part of the pressure screen and its design is the key to screen performance. This paper uses a new and comprehensive CFD simulation tool to examine the flow and fiber behavior in a single slot screen having any reasonable slot shape. -This simulation tool includes three coupled models: first, the flow model solves the Reynolds Averaged Navier-Stokes (RANS) equation using the standard k - ε turbulence model to predict the flow field in the equipment. Second, a three-dimensional flexible fiber model is used to track the fiber trajectory in the screen. Third, a very general wall model is used to deal with the case when a fiber touches the equipment wall. The simulated results show that the slot shape has a critical influence on fiber behavior and screen performance. Three general slot shapes were investigated: the smooth slot, the step-step contour slot and slope-slope contour slot. Of these the slope-slope contour slot provides the best passage for the fibers with a length of 1mm and 3mm. (author)

  3. Studies on the utilization of agricultural residues in the manufacture of pulp and paper, and industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, V.S.; Kamath, G.P.; Basu, S.

    1980-03-15

    While demand for pulp and paper products in India is increasing at the annual rate of 7 to 8%, availability of cellulosic raw material to meet the ever increasing demand is becoming a serious problem. It has been estimated that bamboo, the traditional source of cellulosic raw material in India, even after ensuring the most scientific and best possible exploitation, could provide less than 50% of the requirement. In a big agricultural country like India, agri-residues like straws and bagasse, along with jute sticks, available in huge quantity, could provide substantial amount of cellulosic resources to the pulp and paper industry. Realizing the importance of agri-residue utilization in Indian economy, a series of research projects have been initiated and completed during the last 15 years to study the techno-economic feasibility of manufacturing pulp, paper, and industrial chemicals, based on rice and wheat straws, bagasse, and jute sticks. The economic advantages of the mechano-chemical pulping process, as compared to the conventional pressure, pulping process, for the conversion of agri-residues into pulp and paer is evaluated. For highlighting the importance of agri-residues in the field of useful chemical recovery possibilities, experimental data are given on the saccarification of agri-residues into reducing sugars by the simple acid hydrolysis method with the help of concentrated sulfuric acid.

  4. Properties of Enzyme Pretreated Wikstroemia sikokiana and Broussonetia papyrifera Bast Fiber Pulps

    Directory of Open Access Journals (Sweden)

    Lang-Dong Lin

    2015-04-01

    Full Text Available Xylanase, pectinase complex, and BL11 pectinase were employed for the pretreatment of gampi and paper mulberry bast fiber pulps prior to chlorine dioxide bleaching. The bleaching efficiencies of the pulps with different enzymatic pretreatments were investigated. Accelerated aging by heat-humidity treatment was also conducted to evaluate yellowing phenomena and to estimate the prevention of brightness reversion (brightness retention by enzymatic pretreatment. The order of active chlorine required with respect to pretreatment was pectinase complex > xylanase > BL11 pectinase for soda and soda/oxalate gampi pulps and pectinase complex > BL11 pectinase > xylanase for soda and soda/oxalate paper mulberry pulps. Higher brightness retention values were observed for soda/oxalate pulps compared to soda pulps. The brightness retention levels for gampi pulps and mulberry pulps after ClO2 bleaching with enzymatic pretreatment were higher than the levels of ClO2 and NaClO bleaching pulps. Enzymatic treatments were thus able to reduce the usage of ClO2 and to assist in producing photo-stable paper materials for art and artifact-repairing applications. Thus, enzymatic pretreatment of the pulp has the potential to meet world trends and environmental sustainability for pulp and paper industries.

  5. In vitro fermentation characteristics of novel fibers, coconut endosperm fiber and chicory pulp, using canine fecal inoculum.

    Science.gov (United States)

    de Godoy, M R C; Mitsuhashi, Y; Bauer, L L; Fahey, G C; Buff, P R; Swanson, K S

    2015-01-01

    The objective of this experiment was to determine the effects of in vitro fermentation of coconut endosperm fiber (CEF), chicory pulp (CHP), and selective blends of these substrates on SCFA production and changes in microbiota using canine fecal inocula. A total of 6 individual substrates, including short-chain fructooligosaccharide (scFOS; a well-established prebiotic source), pectin (PEC; used as a positive control), pelletized cellulose (PC; used as a negative control), beet pulp (BP; considered the gold standard fiber source in pet foods), CEF, and CHP, and 3 CEF:CHP blends (75:25% CEF:CHP [B1], 50:50% CEF:CHP [B2], and 25:75% CEF:CHP [B3]) were tested. Triplicate samples of each substrate were fermented for 0, 8, and 16 h after inoculation. A significant substrate × time interaction (P fiber substrates. Future research should investigate the effects of CEF, CHP, and their blends on gastrointestinal health and fecal quality in dogs.

  6. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: part 2. effect of increased fiber charge on refining, wet-end application, and hornification

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Jeffery S. Hsieh; Arthur J. Ragauskas

    2007-01-01

    The effect of increased fiber charge on refining, cationic starch adsorption, and hornification was examined. Two pulps were investigated: (1) a softwood (SW) kraft pulp (KP) which was bleached elementally chlorine-free (ECF) and sewed as control; and (2) a control pulp treated with alkaline peroxide, which had a higher fiber charge. It was shown that increased fiber...

  7. Modification of NSSC pulp broke fibers using layering method and investigating its effect on paper properties

    Directory of Open Access Journals (Sweden)

    hamidreza rudi

    2016-12-01

    Full Text Available In the current study, modification of NSSC pulp broke fibers was done by forming starch polymeric multilayers, using Layer-by-Layer (LbL layering method. After fiber slushing and preparation of pulp suspension with 0.5% consistency and conductivity formation of about 437 µS/cm, adding water solution of 1 mM NaCl, the experiments of fibers treatment were conducted to build the polymeric layers (up to 5 consecutive layers. Afterward, water retention value (WRV of fibers was calculated in samples to evaluate the influence of this method on fibers hydrophilicity. The fibers were then used to prepare standard handsheets (60±3g/m2 and the physical and strength properties of sheets were evaluated as a function of the number of layers deposited on the fibers. The results showed that the WRV index of the fibers was improved by the LbL treatment of NSSC broke pulp fibers, due to the increase in starch electrostatic absorption. Successive variation in paper apparent density increase and paper thickness decrease confirmed the construction of starch multilayers on the surface of broke fibers. Formation of such multilayers on broke fibers has led to considerable improvement in tensile index (from 13.21 N.m/g to 30.65 N.m/g and burst index (from 1.23 kPa.m2/g to 2.36 kPa.m2/g. Also, the prepared SEM micrographs approve the sheet web compaction and paper mechanical improvement resulted due to an increase in inter-fiber bonding.

  8. REPLACEMENT OF SOFTWOOD KRAFT PULP WITH ECF-BLEACHED BAMBOO KRAFT PULP IN FINE PAPER

    Directory of Open Access Journals (Sweden)

    Guanglei Zhao

    2010-06-01

    Full Text Available Non-wood fibers such as bamboo and wheat straw have been playing important roles in the pulp and paper industry in China. In this study an ECF-bleached bamboo kraft pulp was compared with a bleached softwood kraft pulp (NBSK as the reinforcement pulp in fine paper production. Areas that were examined include the refining of pure fibers, influence of bamboo on dewatering, retention, and sizing. The influence of bamboo kraft pulp as a part of a furnish replacing NBSK was compared as well. Results show that fiber shortening was more prominent with bamboo when refined. This resulted in a higher amount of fines, and addition wet-end chemicals may be required to compensate. Handsheets with bamboo as a reinforcement fiber showed similar mechanical and optical properties to handsheets containing NBSK.

  9. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions.

    Science.gov (United States)

    Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre

    2016-11-20

    1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Radiation -adsorption treatment of pesticides by using wood pulp and bagasse pulp

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, S.S.; Dessooki, A.M.

    2005-01-01

    Alkaline pulping of pulp wood and bagasse using sodium hydroxide resulted in the reduction of lignin from the wood and bagasse fibers and consequently increase adsorption of the pesticide pollutants to these fibers. Three different types of pesticides were used in this study namely, metalaxyl, dicloran and arelon. which were irradiated at a dose of 4 kGy before adsorption treatment.The results show that moderate adsorption was observed for all pesticides when adsorption was carried out without alkaline pulping and irradiation. This is due to the presence of lignin which retard the adsorption process. Batch sorption experiments at different pH values (3, 7, 9) for the retention of these pesticides by pulp wood and pulp bagasse fibers indicated that sorption is governed by the interaction of the ionized form of these compounds with the polyhydroxyl structure of cellulose. The study shows that alkaline pulping of pulpwood and bagasse improves its ability towards adsorption of the radiation degraded pesticide molecules

  11. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joabel Raabe

    2015-01-01

    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  12. Flax fibers as a raw material: How to bleach efficiently a non-woody plant to obtain high-quality pulp

    International Nuclear Information System (INIS)

    Fillat, Ursula; Pepio, Montserrat; Vidal, Teresa; Roncero, M. Blanca

    2010-01-01

    Fiber crops constitute a good alternative to wood fiber for manufacturing pulp and paper. In fact, fiber plants like flax surpass wood fiber in some technical respects and also in the environmental benignity of their processing. In this work, flax fiber was subjected to environmentally friendly bleaching sequences in order to obtain a high-quality pulp. The totally chlorine-free sequences (TCF) used for this purpose (LE and LRE) included an enzyme treatment with laccase in the presence of HBT as mediator (L stage), an alkaline extraction (E stage) and a reductive treatment with NaBH 4 (R stage). The operating conditions for the L stage (laccase and HBT doses, reaction time and oxygen pressure) were optimised by using a sequential statistical plan to assess their influence on pulp properties after the E stage. Mathematical models accurately predicting brightness and kappa number in terms of the previous four variables were developed based on which the most influential factors were the laccase and HBT rates, and treatment time. By contrast, oxygen pressures of 0.2-0.6 MPa in the reactor had no effect on brightness or kappa number. The flax pulp obtained contained some oxidized cellulose that was partially degraded in the alkaline extraction step and reduced viscosity as a result. The viscosity loss associated with the presence of oxidized cellulose in the control and enzyme-treated pulp samples was efficiently recovered by using a reductive stage with sodium borohydride. Effluent was also analysed in order to assess the environmental impact of the process.

  13. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    Science.gov (United States)

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-07-01

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Peel and pulp of baru (Dipteryx Alata Vog. provide high fiber, phenolic content and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Gabriela de Lima SANTIAGO

    2018-03-01

    Full Text Available Abstract Baru (Dipteryx alata Vog. is a native fruit of the Brazilian Savannah that can be used in the food industry and may contribute to the economy of the Brazilian Midwest. The proximate composition, the phenolic content and the antioxidant capacity of the peel, pulp and raw and roasted baru almond were examined and compared. Peel showed higher concentrations of dietary fibers (24.1 g/100 g followed by pulp and roasted almond (18 g/100 g and 16 g/100 g, respectively, and raw almond (12.0 g/100 g. However, the almonds presented the highest lipid and protein concentrations compared to baru peel and pulp. In addition, raw almond showed the highest total phenolic contents (1,107.0 mg GAE/100 g and antioxidant capacity, but the roasted almond, and baru peel with its pulp, also presented high phenolic contents. The correlation coefficients between phenolic content and antioxidant capacity (via ABTS and FRAP were strong and significant. The chemical composition of baru peel has not previously been reported. The results showed promising prospects for the consumption of baru pulp with its peel, the fruit component richest in fiber, whose phenolic content and antioxidant capacity are comparable to those of the baru almond.

  15. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  16. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  17. Pulp nerve fibers distribution of human carious teeth: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2010-12-01

    Full Text Available Background: Human dental pulp is richly innervated by trigeminal afferent axons that subserve nociceptive function. Accordingly, they respond to stimuli that induce injury to the pulp tissue. An injury to the nerve terminals and other tissue components in the pulp stimulate metabolic activation of the neurons in the trigeminal ganglion which result in morphological changes in the peripheral nerve terminals. Purpose: The aim of the study was to observe caries-related changes in the distribution of human pulpal nerve. Methods: Under informed consents, 15 third molars with caries at various stages of decay and 5 intact third molars were extracted because of orthodontic or therapeutic reasons. All samples were observed by micro-computed tomography to confirm the lesion condition 3-dimensionally, before decalcifying with 10% EDTA solution (pH 7.4. The specimens were then processed for immunohistochemistry using anti-protein gene products (PGP 9.5, a specific marker for the nerve fiber. Results: In normal intact teeth, PGP 9.5 immunoreactive nerve fibers were seen concentrated beneath the odontoblast cell layer. Nerve fibers exhibited an increased density along the pulp-dentin border corresponding to the carious lesions. Conclusion: Neural density increases throughout the pulp chamber with the progression of caries. The activity and pathogenicity of the lesion as well as caries depth, might influence the degree of neural sprouting.Latar belakang: Pulpa gigi manusia diinervasi oleh serabut saraf trigeminal yang berespon terhadap stimuli penyebab perlukaan dengan menimbulkan rasa sakit. Perlukaan pada akhiran saraf dan komponen lain dari pulpa akan menstimulasi aktivasi metabolik dari neuron pada ganglion trigeminal sehingga mengakibatkan perubahan morfologi pada akhiran saraf perifer. Tujuan: Penelitian ini bertujuan untuk mengamati perubahan distribusi saraf pada pulpa gigi manusia yang disebabkan oleh proses karies. Metode: Penelitian ini menggunakan

  18. Cornstalk as a source of fiber and energy

    Science.gov (United States)

    Aziz Ahmed; J. Y. Zhu

    2006-01-01

    Wood is the major source of fiber supply. Non-wood fibers are mainly used in papermaking where there is a lack of forest resource such as in China and India. Cornstalk, among the agricultural residues and other non-wood fiber, is the most promising source of fiber. However, The usage of cornstalks is very limited in pulp and paper industry, although nearly 284 million...

  19. Absorption of carbohydrate-derived nutrients in sows as influenced by types and contents of dietary fiber

    DEFF Research Database (Denmark)

    Serena, A; Jørgensen, H; Bach Knudsen, K E

    2009-01-01

    crossover design. Variations in dietary concentration and solubility of dietary fiber were obtained by substituting starch-rich wheat and barley in the LF diet with dietary fiber-rich co-products (sugar beet pulp, potato pulp, pectin residue, brewers spent grain, pea hulls, and seed residue, which have......The current investigation was undertaken to study the absorption and plasma concentration of carbohydrate-derived nutrients [glucose, short-chain fatty acids (SCFA), and lactate] and the apparent insulin production in sows fed diets containing contrasting types and contents of dietary fiber. Six...... sows were fed 3 experimental diets, low fiber (LF; 177 g of dietary fiber and 44 g of soluble fiber/kg of DM), high soluble fiber (HF-S; 429 g of dietary fiber and 111 g of soluble fiber/kg of DM), and high insoluble fiber (HF-I; 455 g of dietary fiber and 74 g of soluble fiber/kg of DM), in a repeated...

  20. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  1. Application of Alkaline Ionic Liquids in the Pretreatment Process of Eucalyptus Kraft Pulping

    Directory of Open Access Journals (Sweden)

    Yi Hou

    2016-09-01

    Full Text Available In order to explore the potential application of green solvent ionic liquids (ILs in the kraft pulping process, eucalyptus wood was pretreated by [Mmim]DMP before normal pulping. The results showed that materials pretreated shortly by the ionic liquid had a higher yield and viscosity coupled with a lower potassium permanganate value and residual lignin content in the pulp, as a result of the cooking process. It was also inferred that alkaline [Mmim]DMP pretreatment could dissolve lignin effectively from fiber to result in a stronger binding force and more entangled properties. Paper tensile and burst strength were improved by about 40% and 60%, respectively. These results provide a new way for eucalyptus to be utilized in the kraft pulping process.

  2. STARCH/PULP-FIBER BASED PACKAGING FOAMS AND CAST FILMS CONTAINING ALASKAN FISH BY-PRODUCTS (WASTE)

    OpenAIRE

    Syed H. Imam; Bor-Sen Chiou; Delilah Woods; Justin Shey; Gregory M. Glenn; William J. Orts; Rajnesh Narayan; Robert J. Avena-Bustillos; Tara H. McHugh; Alberto Pantoja; Peter J. Bechtel

    2008-01-01

    Baked starch/pulp foams were prepared from formulations containing zero to 25 weight percent of processed Alaskan fish by-products that consisted mostly of salmon heads, pollock heads, and pollock frames (bones and associated remains produced in the filleting operation). Fish by-products thermoformed well along with starch and pulp fiber, and the foam product (panels) exhibited useful mechanical properties. Foams with all three fish by-products, ranging between 10 and 15 wt%, showed the highe...

  3. Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger

    Science.gov (United States)

    Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan

    2018-03-01

    Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.

  4. STUDIES ON HIBISCUS CANNABINUS, HIBISCUS SABDARIFFA, AND CANNABINUS SATIVA PULP TO BE A SUBSTITUTE FOR SOFTWOOD PULP- PART 1: AS-AQ DELIGNIFICATION PROCESS

    OpenAIRE

    Dharm Dutt; J. S. Upadhyaya; C. H. Tyagi

    2010-01-01

    Hibiscus cannabinus, Hibiscus sabdariffa, and Cannabinus sativa, which are renewable non-woody fiber resources having characteristics similar to that of softwood (bast fibers), when used together with hardwood (core fibers), gave higher pulp yield with good mechanical strength properties when using an alkaline sulphite-anthraquinone (AS-AQ) pulping process rather than a conventional kraft pulping process and bleached more readily than kraft and soda pulps with a CEHH bleaching sequence. A com...

  5. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    Directory of Open Access Journals (Sweden)

    Ahmad Azizi Mossello

    2010-06-01

    Full Text Available Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ pulp of kenaf fibers versus old corrugated container (OCC and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the highest strength properties, except for tear resistance. The OCC gave paper with the lowest strength properties. In the case of kenaf fractions, bast pulp with high freeness needed less beating than softwood and produced paper with high tear resistance. Core fiber, which had the lowest freeness and highest drainage time, led to paper with high strength but very low tear resistance. Kenaf whole stem pulp showed intermediate properties between core and bast and close to those of unbleached softwood pulp, but with very lower beating requirement. Finally, kenaf whole stem, due to its strength properties, moderate separation cost, and simple pulping process, was judged to be more suitable for commercialization for linerboard production in Malaysia.

  8. Outlook for U.S. paper and paperboard sector and wood fiber supply in North America

    Science.gov (United States)

    Peter J. Ince

    2000-01-01

    Consumption of wood fiber in pulp, paper and paperboard increased in the United States over the past century and is projected to increase well into the next century at a decelerating rate of growth. Harvest of pulpwood on forest land is the single largest source of wood fiber, followed by recycled paper and wood residues. In the past decade, wood residues declined in...

  9. PEMUTIHAN PULP DENGAN HIDROGEN PEROKSIDA

    Directory of Open Access Journals (Sweden)

    Ahmad M. Fuadi

    2012-01-01

    Full Text Available The use of bleaching agent has increased as the result of increasing of paper consumption. The conventional bleaching agent that commonly used is material containing of chlorine. This material is not environmentally friendly and should be replaced by environmentally benign chemical, such as H2O2. About 40 gram of dry Akasia pulp was mixed with 600 ml of distilled water was put into plastic bag heated in a water bath. When the temperature reached 630C, a solution of 4 % of H2O2 and distilled water was added to obtain 5 % consistency. This mixture was put into water bath and was heated for 2 hours. The same procedure was conducted with various concentration of H2O2, time and pH. At the end of the process, the pulp was dewatered and washed. The filtrate obtained from the initial dewatering was used to determine the residual of H2O2. The pulp was analyzed to determine brightness, fiber strength and kappa number. The maximum achievement of brightness was 62,1 % ISO, 6.86 of kappa number and 1.02 kg/15 mm of fiber strength, which are reached at16 % of the use of H2O2, pH 11 and 5 hours of bleaching time. This achievement is similar to bleaching result by the additional of 4% H2O2. Inefficient usage of H2O2 was caused by some metal ions in the pulp which facilitate the decomposition of H2O2 to produce oxygen and water which has not effect on increasing the brightness. To improve the bleach ability of H2O2, initial treatment to remove metal ions from pulp should be done. Seiring dengan meningkatnya kebutuhan kertas, kebutuhan bahan pemutih juga mengalami kenaikan. Saat ini bahan pemutih yang banyak digunakan adalah senyawa yang mengandung khlor. Senyawa ini sangat tidak ramah lingkungan, oleh karena itu, perlu dicari bahan yang ramah lingkungan untuk menggantikannya. Salah satunya adalah hidrogen peroksida. Pulp dari pohon akasia sebanyak 40 gram kering dicampur dengan 600 ml aquadest dimasukkan dalam kantung plastik dipanaskan dalam water bath

  10. EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    OpenAIRE

    Ahmad Azizi Mossello; Jalaluddin Harun; Rushdan Ibrahim; Hossien Resalati; Seyed Rashid Fallah Shamsi; Paridah Md Tahir; Mohd Nor Mohad Yusoff

    2010-01-01

    Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ) pulp of kenaf fibers versus old corrugated container (OCC) and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the h...

  11. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  12. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Science.gov (United States)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  13. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  14. Combined HPLC analysis of organic acids and furans formed during organosolv pulping of fiber hemp

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Dam, van J.E.G.; Zomers, F.H.A.

    1995-01-01

    During organosolv pulping of fiber hemp (Cannabis sativa L) with a mixture of ethanol/water, delignification is catalyzed by released acetic acid and formic acid in the effluent. The major sources of acetic acid are the acetyl groups, as determined by means of the acetyl balance, whereas formic acid

  15. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  16. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes.

    Science.gov (United States)

    Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang

    2015-09-01

    Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Viabilidade do aproveitamento de resíduos de fibras vegetais para fins de obtenção de material de construção Suitability of vegetable fiber residues as construction material

    Directory of Open Access Journals (Sweden)

    Holmer Savastano Junior

    2000-04-01

    Full Text Available O presente estudo abordou a existência e as principais características de vinte resíduos de fibras vegetais, resultantes de processos agroindustriais, voltados para a obtenção de oito diferentes tipos de fibras comerciais. Com base em critérios de seleção inicialmente estabelecidos, foram identificados seis resíduos de maior interesse. Os resultados indicaram a potencialidade do seu emprego, no reforço de matrizes frágeis, à base de cimento Portland, para aumento de sua ductilidade. Telhas produzidas a partir de compósitos reforçados com fibras residuais de sisal "baler twine", coco, polpa de eucalipto, malva e banana, além de combinação entre fibras de coco e polpa de eucalipto, resistiram a cargas na flexão, superiores a 680 N, em conformidade com especificações internacionais.Twenty vegetable fiber by-products from agro-industrial production of eight different commercial fibers were analyzed in this study. Based on previously established selection criteria, six main types of residue were identified. Results showed that the selected by-products may be used as reinforcement of fragile cementitious matrices, for ductility improvement. Tiles produced with composites reinforced by residual fibers of sisal baler twine, coir, eucalyptus pulp, malva, banana, or a mixture of coir fibers and eucalyptus pulp, supported flexural loads in excess of 680N in keeping with international specifications.

  18. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper.

    Science.gov (United States)

    Ferrer, Ana; Filpponen, Ilari; Rodríguez, Alejandro; Laine, Janne; Rojas, Orlando J

    2012-12-01

    Different cellulose pulps were produced from sulfur-free chemical treatments of Empty Palm Fruit Bunch Fibers (EPFBF), a by-product from palm oil processing. The pulps were microfluidized for deconstruction into nanofibrillated cellulose (NFC) and nanopaper was manufactured by using an overpressure device. The morphological and structural features of the obtained NFCs were characterized via atomic force and scanning electron microscopies. The physical properties as well as the interactions with water of sheets from three different pulps were compared with those of nanopaper obtained from the corresponding NFC. Distinctive chemical and morphological characteristics and ensuing nanopaper properties were generated by the EPFBF fibers. The NFC grades obtained compared favorably with associated materials typically produced from bleached wood fibers. Lower water absorption, higher tensile strengths (107-137 MPa) and elastic modulus (12-18 GPa) were measured, which opens the possibility for valorization of such widely available bioresource. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Science.gov (United States)

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  20. Characterization of natural fiber from agricultural-industrial residues

    International Nuclear Information System (INIS)

    Prado, Karen S.; Spinace, Marcia A.S.

    2011-01-01

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  1. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.

    Science.gov (United States)

    Baptista, C; Robert, D; Duarte, A P

    2008-05-01

    This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.

  2. PRODUCTION OF DISSOLVING GRADE PULP FROM ALFA

    Directory of Open Access Journals (Sweden)

    Baya Bouiri

    2010-02-01

    Full Text Available Alfa, also known as Stipa tenacissimaI or “halfa”, is grown in North Africa and south Spain. Due to its short fiber length, paper made from alfa pulp retains bulk and takes block letters well. In this study alfa was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were pulped by a conventional kraft process. One sample was taken from the original alfa material and another from alfa that had been pretreated by diluted acid. The pulp produced from the pretreated alfa was bleached by the elemental-chlorine-free sequences DEPD and DEDP. The yield, Kappa number, brightness, and α- cellulose content of bleached and unbleached pulps were evaluated. The results showed that during the chemical pulping process, treated alfa cooked more easily than the original alfa. The treated alfa pulp also showed very good bleaching, reaching a brightness level of 94.8% ISO with a yield of 93.6% at an α-cellulose content 96.8(% with a DEDP bleaching sequence, compared to 83.2% ISO brightness level, 92.8% yield, and 95.1% α-cellulose content for bleached pulp with a DEPD bleaching sequence. Therefore, this alfa material could be considered as a worthwhile choice for cellulosic fiber supply.

  3. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  4. Cassava Pulp as a Biofuel Feedstock of an Enzymatic Hydrolysis Proces

    Directory of Open Access Journals (Sweden)

    Djuma’ali Djuma’ali

    2013-03-01

    Full Text Available Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12% w/v, particle size <320 μm hydrolyzed by both commercial pectinolytic (1 and amylolytic (2 enzymes cocktail, yielded 70.06% DE. Hydrothermal treatment of cassava pulp enhanced its susceptibility to enzymatic cleavageas compared to non-hydrothermal treatment raw cassava pulp. Hydrothermal pretreatment has shown that a glucoamylase (3 was the most effective enzyme for hydrolysis process of cassava pulp at temperature 65 °C or 95 °C for 10 min and yielded approximately 86.22% and 90.18% DE, respectively. Enzymatic pretreatment increased cassava pulp vulnerability to cellulase attacks. The optimum conditions for enzymatic pretreatment of 30% (w/v cassava pulp by a potent cellulolytic/ hemicellulolytic enzyme (4 was achieves at 50 °C for 3, meanwhile for liquefaction and saccharification by a thermo-stable α-amylase (5 was achieved at 95 °C for 1 and a glucoamylase (3 at 50 °C for 24 hours, respectively, yielded a reducing sugar level up to 94,1% DE. The high yield of glucose indicates the potential use of enzymatic-hydrothermally treated cassava pulp as a cheap substrate for ethanol production.

  5. Experimental investigation of different refining stages influences on optical and ultrasonic signals in paper pulp suspensions

    International Nuclear Information System (INIS)

    Jan, Niemi

    2010-01-01

    An important parameter to control in papermaking is the fiber mass fraction in the pulp suspension. Poor control to an unstable process that compromises the production, quality and the energy efficiency in the pulp mill. Using optical or ultrasound measurement techniques can obtain estimation of the mass fraction. Refining is an important operation in preparing the fibers for the paper machine. Refining influence the properties of the fiber by crushing the fiber, roughens the fiber surface and occasionally cut fibers and removes parts of the outer fiber wall leading to an increasing amount of short fibers (fines). A freeness tester was used for verify the changes in fiber properties at four different refining levels. The result shows that for unbleached softwood pulp the used measurement techniques either were not observable or minor. The results indicate that refining can potentially influence accurate consistency estimation for unbleached softwood pulp but for bleached hardwood pulp the influence is believed to be minor using the investigating measurement techniques

  6. Conversion of agricultural waste, sludges and pulp residues into nanofibers for innovative polymer composites

    OpenAIRE

    Samyn, Pieter; Carleer, Robert

    2017-01-01

    Agricultural waste fractions from seasonal crops (corn stover, bagasse, flax), sludges and paper pulp residues contain an important source of lignocellulosic materials that can be recovered and used as material fractions instead of being burnt for energy recovery. Due to the heterogeneity of named products, however, novel processing routes should be developed for the recovery of the lignocellulosic materials at nanoscale. Therefore, we will use nanotechnological routes to transform the res...

  7. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    RyoheiTanaka; LehCheuPeng; WanRosliWanDaud

    2004-01-01

    Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world's largest producer and exporter of the oil, so that the country's economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10-15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia. Here we would like to introduce recent situation of palm oil and oil palm lignocellulosic residues at the first part of this paper. In the second part, our recent studies on the preparation of pulps for different purposes will be summarized.

  8. Organosolv pulping and test paper characterization of fiber hemp

    NARCIS (Netherlands)

    Zomers, F.H.A.; Gosselink, R.J.A.; Dam, van J.E.G.; Tjeerdsma, B.F.

    1995-01-01

    The autocatalyzed ethanol pulping of hemp to produce chemical-grade pulp was examined. Batch delignification conditions were developed for hemp core, hemp bast, and hemp whole stem. Although successful pulping of both hemp core and bast fibre is possible, further research is necessary.

  9. Investigation on anatomical, chemical and pulping characteristics of Silybum marianum stem

    Directory of Open Access Journals (Sweden)

    Rahim Yadollahi

    2013-11-01

    Full Text Available To study the possibility of using plant Silybum marianum in paper industry, its stem yield potential, chemical properties, fiber indices and pulping was evaluated. Mean value of fiber length and diameter of Silybum marianumstem harvested in early June, were calculated 178 and 3.5 cm, respectively. Dry weight of whole stem determined 4710 kg per hectar. Mean value of fiber length, diameter, cavity diameter and wall thickness were obtained 1194, 16.06, 9.06, and 3.66 μm, respectively. Raunkel, flexibility, and slenderness ratios of its fibers were determined 80.83, 56.39, and 74.37, respectively. Results of chemical analysis showed that the stem comprises %70.35 holocellulose, %39.25 cellulose, %13.13 lignin, %3.09 acetone-soluble, %18 hot water-soluble extractives, and %11/85 ash. Soda pulp was obtained at 165 °C pulping time, 25% alkaline and 10:1 ratio of liquor to chips. Results of pulping showed that with increasing of pulping time from 30 to 210 minutes, the kappa number and yield decreased from 77.32 to 32.13 and 43.6 to 36.5, respectively; whereas accepted pulp yield (passed from 20 mesh increased from 17.4 to 35.5% paper made of pulp with kappa number 32 had 36.82 Nm/g tensile index, 3.76 km breaking length and 1.75 Kpa.m2/g burst strength. In general, achieved results have shown that the present studied species could be regarded more for papermaking because of the suitable fiber biometrical and chemical properties as compared to other non-woody plants.

  10. Effect of Partial Pre-Extraction of Hemicelluloses on the Properties of Pinus radiata Chemimechanical Pulps

    Directory of Open Access Journals (Sweden)

    Pablo Reyes

    2015-09-01

    Full Text Available Extraction of hemicelluloses prior to pulping and conversion of the extracted hemicelluloses to other bioproducts could provide additional revenue to traditional pulp and paper industries. The effect of hemicelluloses pre-extraction with a hydrothermal (HT process on Pinus radiata chemimechanical pulp (CMP properties was investigated in this study. The HT extraction resulted in a release of 7% to 58% of the initial amount of hemicelluloses from the wood. The extraction yield increased with temperature and extraction time. This hemicellulosic fraction was in the form of low molar mass oligomers with molecular weights varying from 1.5 to 100 kDa. Compared with the control (unextracted CMP pulp, the HT pre-extraction significantly reduced the refining energy to obtain a given fibrillation degree (freeness. The pulp yield with the HT/CMP process was in the range of 56% to 75%. Fiber properties of the pulps from pre-extracted wood, such as fiber length, were reduced, while increases in fiber width, fines content, fiber coarseness, and kink index were observed in comparison with the control pulps. The strength properties of CMP pulps decreased with increasing amounts of hemicellulose removal during the stage prior to pulping.

  11. FIBER QUALITIES OF PRETREATED BETUNG BAMBOO (Dendrocalamusasper BY MIXED CULTURE OF WHITE-ROT FUNGI WITH RESPECT TO ITS USE FOR PULP/PAPER

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2013-10-01

    Full Text Available Previous research on anatomical structures of pretreated large (betung bamboo (Dendrocalamusasper using single culture of white-rot fungi has been investigated, which revealed that the pretreatment caused the decrease in the Runkel ratioas well as the coefficient rigidity and the increase in the flexibility ratio of their corresponding bamboo fibers. However, there is no study reported on the anatomical structure changes of them caused by pretreatment using mixed culture of white-rot fungi. This paper reports the results of the research on paper/pulp quality after different treatments. Pretreatment that used Trametes versicolor fungi and lasted for 45 days inflicted intensive fiber damages compared with those of untreated bamboo (control. Fresh and barkless large (betung bamboo chips of 2 year's old, and 1.6 cm in length, were inoculated by 10% of mixed culture of white-rot fungi inoculums stock for 30 and 45 days in room temperature. There were four treatment groups of mixed culture, i.e T. versi color and P. ostreatus (TVPO; P. ostreatus and P. chrysosporium (POPC; P. chrysosporium and T.versi color (PCTV; and P.chrysosporium,  T.versicolorand  P.ostreatus  (TVPCPO.After  the  inoculation  period,  the  chips  weremacerated into separate fibers using Scultze method to analyze the fiber dimension and its derived values. The fibers were then observed regarding their macro and microscopic structures by optical microscope. Mixed culture pretreatment of white-rot fungi accelerated improvement of fiber morphology and fiber derived value characteristics, except for Muhlsteph ratio. The fiber derived values oftreated bamboo tended to improve compared to those of untreated bamboo, there by requiring milder pulping conditions. Accordingly, the treated bamboo would indicatively produce a good quality pulp (grade I based on FAO and LPHH (Forest Product Research Report requirements. Co-culture treatment using P. chrysosporium and P. ostreatus for

  12. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  13. EFFECTS OF ALKALINE PRE-IMPREGNATION AND PULPING ON MALAYSIA CULTIVATED KENAF (HIBISCUS CANNABINUS

    Directory of Open Access Journals (Sweden)

    Lin Suan Ang

    2010-05-01

    Full Text Available This study was carried out to identify an appropriate alkaline pulping condition for Malaysia cultivated kenaf (Hibiscus cannabinus L.. The chemical composition of the kenaf bast and core fibers, and also whole stalk with different growing time were examined prior to pulping attempts. The results of various soda-AQ pulping showed that the degree of carbohydrate degradation and delignification increased with the increase of active alkali and cooking temperature, but decreased with the increase of liquor to material (L:M ratio. The most satisfactory properties of pulp and handsheets from bast could be attained by employing soda-AQ pulping with 19.4% active alkali, 0.10% AQ, and L:M ratio of 7:1 cooked for 2 hours at 160˚C. Besides, it was also found that a mild alkaline pre-impregnation prior pulping improved the pulp viscosity and handsheets’ strength properties, especially the tensile index and folding endurance effectively. Moreover, among the three alkaline pulping processes—kraft, kraft-AQ, and soda-AQ—the results of pulp and handsheet properties showed that the soda-AQ pulp was comparable or even slightly of higher quality than the kraft pulps. Between the unbeaten bast and core soda-AQ handsheets, the strength properties of the core were higher than the bast, as the thin-walled core fibers exhibited much better conformability than the thick-walled bast fibers.

  14. Pemanfaatan Limbah Pulp Buah Semangka (Citrullus vulgaris, Schard) Untuk Pembuatan Nata De Watermelon Pulp Dengan Menggunakan Bakteri Acetobacter xylinum

    OpenAIRE

    Mawaddah

    2011-01-01

    This research done to know can or not the waste of watermelon pulp use to produce nata and how the effect of mass variation using to nata’s quality. This research was done with mass variation of watermelon pulp that is 10 g, 20 g, 30 g, 40 g, 50 g, 60 g, and watermelon pulp without adding sugar as control. Statistical analysis count the thickness, water content, ash content, fiber content and organoleptic test of texture, color, aroma, and taste of nata de watermelon pulp. The result show...

  15. Characterization and treatment of sisal fiber residues for cement-based composite application

    OpenAIRE

    Lima,Paulo R. L.; Santos,Rogério J.; Ferreira,Saulo R.; Toledo Filho,Romildo D.

    2014-01-01

    Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the rein...

  16. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  17. Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps.

    Science.gov (United States)

    Shatalov, A A; Pereira, H

    2005-05-01

    A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.

  18. Effect of Cellulases and Xylanases on Refining Process and Kraft Pulp Properties.

    Directory of Open Access Journals (Sweden)

    Kamila Przybysz Buzała

    Full Text Available Samples of bleached kraft pine cellulosic pulp, either treated with an enzyme preparation (a Thermomyces lanuginosus xylanase, an Aspergillus sp. cellulase, and a multienzyme preparation NS-22086 containing both these activities or untreated, were refined in a laboratory PFI mill. The treatment with cellulases contained in the last two preparations significantly improved the pulp's susceptibility to refining (the target freeness value of 30°SR was achieved in a significantly shorter time, increased water retention value (WRV and fines contents while the weighted average fiber length was significantly reduced. These changes of pulp parameters caused deterioration of paper strength properties. The treatment with the xylanase, which partially hydrolyzed xylan, small amounts of which are associated with cellulose fibers, only slightly loosened the structure of fibers. These subtle changes positively affected the susceptibility of the pulp to refining (refining energy was significantly reduced and improved the static strength properties of paper. Thus, the treatment of kraft pulps with xylanases may lead to substantial savings of refining energy without negative effects on paper characteristics.

  19. Kinetic modeling of formic acid pulping of bagasse.

    Science.gov (United States)

    Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A

    2008-05-14

    Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.

  20. Pulp quality from small-diameter trees.

    Science.gov (United States)

    G.C. Myers; S. Kumar; R.R. Gustafson; R.J. Barbour; S.M. Abubakr

    1997-01-01

    Kraft and thermomechanical (TMP) pulps were prepared and evaluated from lodgepole pine and mixed Douglas-fir/western larch sawmill residue chips; lodgepole pine, Douglas-fir, and western larch submerchantable logs; and lodgepole pine, Douglas-fir, and western larch small trees and tops. Kraft pulp from small trees and tops was identical to that from submerchantable...

  1. Soluble fiber extracted from potato pulp is highly fermentable but hasno effect on risk markers of diabetes and cardiovasculardisease in Goto-Kakizaki rats

    DEFF Research Database (Denmark)

    Lærke, Helle Nygaard; Meyer, Anne S; Kaack, Karl Viggo

    2007-01-01

    The cholesterol-lowering and hypoglycemic effect of dietary fiber are commonly attributed to soluble fiber fractions. By enzymatic treatment of potato pulp, which is rich in cellulose and pectin, we prepared 3 fractions with different chemical composition and solubility, and compared their effects...... with commercially available crystalline cellulose (negative control) on central parameters related to risk factors of diabetes mellitus and cardiovascular disease in diabetic prone Goto-Kakizaki rats. Forty male rats were fed a semisynthetic Western-type diet containing 5% dietary fiber in the form of concentrated...

  2. Chemi-thermomechanical pulping of para rubber waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T.; Hosokawa, J.; Kobayashi, T.; Kobayashi, Y.

    1981-01-01

    The addition of NaOH to Na/sub 2/SO/sub 3/-treated waste wood chips (Hevea brasiliensis) increased long fiber fraction, Klason lignin content and bulk density, improved breaking length and tear factor, and decreased energy consumption in refining and brightness of resulting chemithermomechanical pulp. Lowering in brightness by alkali treatment was recovered by H/sub 2/O/sub 2/ bleaching, and bleaching with 8% H/sub 2/O/sub 2/ on pulp gave pulp with 61.3% brightness.

  3. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  4. Evaluation of Pentachlorophenol Residues in Some Hygienic Papers Prepared from Virgin and Secondary Pulp by Electron Capture Gas Chromatographic Method

    Directory of Open Access Journals (Sweden)

    Behrouz Akbari-adergani

    2016-01-01

    Full Text Available In this study, residual amount of pentachlorophenol (PCP as the most important paper preservative, which is extremely hazardous pollutant, was determined in some tissue papers and napkins. Twenty-five samples of two producing hygienic paper factories prepared from virgin and secondary pulp were analyzed for the presence of trace amount of PCP. The analytical procedure involved direct extraction of PCP from hygienic paper and its determination by gas chromatography with electron capture detection. The statistical results for the analysis of all samples revealed that there were significant differences between mean of PCP in hygienic papers prepared from virgin and secondary pulp (P<0.05. This method gave recoveries of 86-98% for hygienic paper made from virgin pulp and 79-92% for hygienic paper made from secondary pulp. The limit of detection (LOD and limit of quantification (LOQ for PCP were 6.3 and 21.0 mg/kg, respectively. The analytical method has the requisite sensitivity, accuracy, precision and specificity to assay PCP in hygienic papers. This study demonstrates a concern with exposition to PCP considering that hygienic paper is largely consumed in the society.

  5. Water requirements of the pulp and paper industry

    Science.gov (United States)

    Mussey, Orville D.

    1955-01-01

    Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills

  6. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  7. Hard tissue deposition in dental pulp canal by {alpha}-tricalcium phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Toda, T. [Osaka Dental Univ. (Japan). Dept. of Endodontics; Mandai, Y. [Bio-Chemical Lab. of Nitta Gelatin Inc., Yao (Japan); Oonishi, H. [Osaka Minami National Hospital, Kawachi (Japan). Dept. of Orthopaedic Surgery

    2001-07-01

    Canal closure by hard tissue proliferation in the pulp canal and/or apical foramen is the most ideal healing after pulp removal. Generally, Ca(OH){sub 2} may induce secondary dentine or dentine-bridge on the amputated pulp surface. However, Ca(OH){sub 2} shows strong alkalinity and may cause severe inflammatory responses in the residual pulp. Moreover, completely formed dentine-bridge at the orifice will disturb further treatment of residual pulp because of the difficulty in localizing the pathway. The purpose of this study was to see hard tissue induction using newly developed {alpha}-tricalcium phosphate cement and to recognize the morphological difference of hard tissue from that of Ca(OH){sub 2}. (orig.)

  8. CENTRAL KALIMANTAN’S FAST GROWING SPECIES: SUITABILITY FOR PULP AND PAPER

    Directory of Open Access Journals (Sweden)

    Danang Sudarwoko Adi

    2015-04-01

    Full Text Available Recent studies of fast growing species grown in PT. Sari Bumi Kusuma, Central Kalimantan, show that based on their fiber dimensions there are five species, namely Endospermum diadenum, Dillenia spp., Adinandra dumosa, Adiandra sp., and Nauclea junghuhnii with good potential for pulp and paper production. The fiber length of those five wood species are was more than 2,200 µm on average. This paper studies the physical properties, fiber dimensions and their chemical contents to predict the paper and pulp quality. The result shows that all of the species were classified in the medium to high density category. All species were classified into the first class quality for pulp and paper. Based on chemical contents, Dillenia sp. is the most suitable species due to its high value of holocellulose and a-cellulose, low lignin content, and its fiber length is about 3,119 µm on average. A. dumosa also has good opportunities because it had the longest fiber lengths (3,137 µm on average and high value of holocellulose, even though it has the highest lignin content. While Nuclea junghuhnii is less suitable due to low values of holocellulose and a-cellulose.

  9. Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp.

    Science.gov (United States)

    Duan, Chao; Wang, Xinqi; Zhang, YanLing; Xu, Yongjian; Ni, Yonghao

    2017-01-01

    The aim of this study was to investigate a combined process involving pulp fractionation and cellulase treatment of each fraction for improving the molecular weight distribution (MWD) and reactivity of a kraft-based dissolving pulp. Three pulp fractions, namely long-fiber, mid-fiber and short-fiber fractions (LF, MF and SF, respectively), were used as the substrates. The results showed that the SF had the highest accessibility, lowest viscosity, and highest cellulase adsorption capacity, while the opposite was true for the LF. At a given viscosity, the combined process led to a lower polydispersity index (3.71 vs 4.98) and a higher Fock reactivity (85.6% vs 76.3%), in comparison to the conventional single-stage cellulase treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. PRODUCTION OF PRINTING AND WRITING PAPER GRADE PULP FROM ELEPHANT GRASS

    Directory of Open Access Journals (Sweden)

    Marcela Freitas Andrade

    2016-09-01

    Full Text Available The main goal of this study was to characterize chemically and morphologically elephant grass (Pennisetum purpureum, and evaluate the potential of its fibers for production of printing and writing paper grade pulp. The elephant grass was chemically and morphologically characterized and cooked by the soda process to two different degrees of delignification (kappa 17.5 and 10.6. The resulting pulps were fully bleached by the O-D*-(EP-D sequence and characterized for their beatability, drainability and physical-mechanical properties. The lignin content (20.2% was low, indicating that this grass should be easier to pulp. The morphological analyses of the elephant grass indicated a short fiber material, similar to hardwoods. The soda pulp from elephant grass cooked to kappa number 17.5 presented higher screened yield than 10.6 kappa pulp, with alkali demands of 15.0% and 20.0%, respectively. The total active chlorine required by the 17.5 and 10.6 kappa pulps, were 42.1 and 35.1 kg/odt pulp, respectively, to achieve an ISO brightness of approximately 90.0%. The bleached soda pulps cooked to 17.5 and 10.6 kappa number showed similar refinability and resistance to drainage, but the tensile and burst index were highest for the 17.5 kappa pulp at beating energy consumptions in the range of 0-6 Wh. It was concluded that both 10.6 and 17.5 kappa pulps from elephant grass are suitable for the production of printing and writing paper grade pulps, but the highest kappa 17.5 pulp is more economically attractive given its highest pulping yield, despite the significantly increased of chemical demand for bleaching A produção de papel para impressão e escrita Grau de celulose a partir de capim-elefante.

  11. An experimental study on the effect of irradiation on deciduous dental pulp and periodontal membrane

    International Nuclear Information System (INIS)

    Nagayama, Takehiko

    1986-01-01

    Left mandibular third deciduous molars of young dogs were irradiated for 3,000 R with 200 kVp X-ray and the effect on the dental pulp and periodontal membrane was investigated histopathologically. 1. From 3rd to 7th days after irradiation, localized inflammatory cell infiltration was observed in part in the dental pulp tissue. No abnormal findings were observed in the periodontal membrane. 2. On 14th day after irradiation in the coronal dental pulp, cells decreased; karyopycnosis occurred; cells were connected only by cellular processes, and large and small reticular networks were formed. In the periodontal membrane, fibers ran irregularly although in part and findings of atrophy were seen. Fibroblasts showed a decreasing tendency. 3. In the cases from 1 to 2 months after irradiation, the pulp tissue showed marked atrophy of odontoblasts and the dental pulp showed hyalinization-like changes. In the periodontal membrane, Sharpey's fibers ran irregularly or became indistinct, and fibroblasts decreased extensively. The periodontal membrane in general showed hyalinization. 4. In the cases of 4 months after irradiation, the pulp tissue on the whole showed marked atrophy and disappearance of odontoblast layers. In the periodontal membrane, inflammatory cell infiltration was seen in part and membrane fibers, as those in 2nd month, showed marked atrophy, became enlarged, and presented findings of hyalinization. 5. At 8th month, the necleoli nearly disappeared in the pulp tissue from the crown to the root and the cells were connected like filaments by cellular processes. Nearly all the blood vessels and fibers disappeared. In the periodontal membrane, most of Sharpey's fibers disappeared. Fibroblasts showed marked atrophy and disappearance, and few normal fibloblasts could be found. (J.P.N.)

  12. The nonlinear relationship between paper recycling and primary pulp requirements : modeling paper production and recycling in Europe

    NARCIS (Netherlands)

    Schenk, Niels J.; Moll, Henri C.; Potting, Josepha

    Waste paper is suitable for recycling back into paper or for incineration for energy recovery. If waste paper is used for recycling, secondary pulp replaces virgin pulp. Fiber recycling is limited, however, because of physical constraints—particularly the breakage of fiber in the recycling

  13. The impact of kappa number composition on eucalyptus kraft pulp bleachability

    Directory of Open Access Journals (Sweden)

    M. M. Costa

    2007-03-01

    Full Text Available Consumption of chemicals during ECF bleaching of kraft pulp correlates reasonably well with kappa number, which measures with KMnO4 the total amount of oxidizable material in the pulp. However, the method does not distinguish between the oxidizable material in residual lignin and other structures susceptible to oxidation, such as hexenuronic acids (HexAs, extractives and carbonyl groups in the pulp. In this study an attempt is made to separate the main contributors to the kappa number in oxygen - delignified eucalyptus Kraft pulps and evaluate how these fractions behave during ECF bleaching using chlorine dioxide as the sole oxidant (DEDD sequence. Residual lignin and HexAs proved to be the main fractions contributing to the kappa number and chlorine dioxide consumption in ECF bleaching. Pulp bleachability with chlorine dioxide increases with increasing HexAs content of the pulp but chlorine dioxide per se does not react with HexAs. Reduction of pulp with sodium borohydride under conditions for removing carbonyl groups has no impact on bleachability. No correlation was found between the pulp of the extractive content and pulp bleachability. The removal of HexAs prior to ECF bleaching significantly decreases the formation of chlorinated organics in the pulp (OX and filtrates (AOX as well as of oxalic acids in the filtrates.

  14. RESIDUAL PROPERTIES OF FIBER-REINFORCED REFRACTORY COMPOSITES WITH A FIRECLAY FILLER

    Directory of Open Access Journals (Sweden)

    Marcel Jogl

    2016-02-01

    Full Text Available The aim of our study was to develop a composite material for industrial use that is resistant to the effect of high temperatures. The binder system based on aluminous cement was modified by adding finely-ground ceramic powder and metakaolin to reduce costs and also to reduce adverse effects on the environment due to high energy consumption for cement production. Additives were applied as a partial aluminous cement replacement in doses of 10, 20 and 30% by weight. The composites were evaluated on the basis of their mechanical properties and their bulk density after gradual temperature loading. The influence of basalt fibers and modifications to the binder system were studied at the same time. Basalt fibers were applied in doses of 0.5% and 2.0% by volume. The results confirmed the potential of the mineral additives studied here for practical applications, taking into account the residual mechanical parameters after thermal loading. The addition of ceramic powder reduced the bulk density by 5% for each 10% of cement substitution, but the residual values were very similar. The bulk density and the compressive strength were reduced when basalt fibers were applied, and the flexural strength was significantly increased in proportion to the fiber dosages. Metakaolin seems to be a more suitable additive than the ceramic powder that was applied here, because there was a significant increase in the mechanical parameters and also in the residual values of all properties that were studied.

  15. Studies of lignin transformation in polyoxometalate (POM) bleaching of kraft pulp

    Science.gov (United States)

    Biljana Bujanovic; Richard S. Reiner; Kolby C. Hirth; Sally A. Ralph; Rajai H. Atalla

    2005-01-01

    In order to elucidate changes occurring in lignin during polyoxometalate delignification of kraft pulp, residual lignins of a series of POM- delignified kraft pulps of decreasing kappa number were isolated and characterized. Oxidative treatment of commercial unbleached kraft pulp was performed using complex POM solutions containing the active [SiVW11O40]anion. For...

  16. Pulp and paper from blue agave waste from tequila production.

    Science.gov (United States)

    Idarraga, G; Ramos, J; Zuñiga, V; Sahin, T; Young, R A

    1999-10-01

    Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.

  17. Lightweight, high-opacity Bible paper by fiber loading

    Science.gov (United States)

    Klaus Doelle; Oliver Heise; John H. Klungness; Said M. AbuBakr

    2000-01-01

    This paper has been prepared in order to discuss Fiber Loading™ for lightweight, high-opacity bible paper. Incorporating fillers within pulp fibers has been subject to research since 1960 (Green et al. 1962, Scallan et al. 1985, Allen et al. 1992). Fiber Loading™ is a method for manufacturing precipitated calcium carbonate (PCC) directly within the pulp processing...

  18. The Use of Mg(OH2 in the Final Peroxide Bleaching Stage of Wheat Straw Pulp

    Directory of Open Access Journals (Sweden)

    Yan-Lan Liu

    2013-11-01

    Full Text Available Magnesium-based alkali is an attractive alkaline source for the peroxide bleaching of high-yield pulp. However, little information is available on Mg(OH2 application in the final peroxide bleaching stage of wheat straw pulp. The use of Mg(OH2 was demonstrated as a partial replacement for NaOH in the peroxide bleaching of a chelated oxygen-delignified wheat straw pulp. The yield, viscosity, and strength properties of bleached pulp significantly increased with increasing replacement ratio of Mg(OH2, while the chemical oxygen demand load (COD of filtrate was decreased. For similar brightness of bleached pulp at a 24% replacement ratio of Mg(OH2, the tensile and tear indices were higher, by 2.1 Nm.g-1 and 1.75 mN*m2.g-1, respectively, than that of control pulp bleached with NaOH as the sole alkaline source. When the MgSO4 was eliminated and the dosage of Na2SiO3 was decreased in the bleaching process, the tear and burst indices of the bleached pulp were also enhanced, with the brightness maintained. Scanning electron microscopy (SEM showed that more swelling occurred in the fibers of bleached pulp from the Mg(OH2-based bleaching process. Fiber analysis indicated that peroxide bleaching with Mg(OH2 increased the proportion of fiber lengths between 0.20 to 1.20 mm and 1.20 to 7.60 mm.

  19. 40 CFR 180.176 - Mancozeb; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... Asparagus (negligible residue) 0.1 Banana 4.0 Banana, pulp 0.5 Barley, bran 20 Barley, flour 20 Barley..., straw 25 Onion, bulb 0.5 Papaya (whole fruit with no residue present in the edible pulp after the peel...

  20. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

    2006-01-01

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

  1. [Chemical characteristics of the pulp and oil of the annona tree (Annona coriaceae)].

    Science.gov (United States)

    Agostini, T da S; Cecchi, H M; Barrera-Arellano, D

    1995-09-01

    Belonging to the Annonaceae family, marolo (Annona coriaceae) is a native species of the Brazilian "cerrado" región (Minas Gerais, Goiás and Distrito Federal) and can be found in South American tropical zones. Its fruits are highly consumed by local people and commercialized in markets or street stalls. There is, however, a tendency for the extinction of marolo due to deforestation and the large scale plantation of monocultures instead of native plants. The literature still offers no data on the chemical composition of the proximate composition and vitamin C, A and tannin contents were carried out on the yellow marolo pulp as well as the determination of the physico-chemical characteristics of the seed oil. Five batches of fruit from the Alfenas region--south of Minas Gerais State--were analysed in this work and their average composition were: humidity 77%, total sugar 15%, reducing sugar 11%, crude protein 1%, lipids 3%, fiber 5% and fixed mineral residue 1%. The contents of vitamin C and A were 8.2 mg/100g and 117.5 RE/100g, respectively, and the tannin content was 245 mg/100g. The results showed high fiber and lipid contents of marolo pulp in comparison with many other tropical fruit pulps. The vitamin C contents were equivalent to those found in avocado, pineapple and watermelon, while the vitamin A contents were equivalent to papaya, peach, guava and several other tropical fruits. Marolo seed contains 45% of oil on a dry basis. Its composition and physico-chemical characteristics showed the possibility of producing a good quality oil, with great potential for the fine oil market. However the presence of alkaloids in the oil needs to be further studied. Their elimination could be done by refining or extraction in a continuous press. The results exalt the high quality of marolo pulp, showing that the preservation of native species should be stimulated.

  2. Selection of Bacillus species for targeted in situ release of prebiotic galacto-rhamnogalacturonan from potato pulp in piglets

    DEFF Research Database (Denmark)

    Jers, Carsten; Strube, Mikael Lenz; Cantor, Mette D

    2017-01-01

    We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this s......We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs....... In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase...... of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets....

  3. Performance of Schizolobium amazonicum Wood in Bleached Kraft Pulp Production

    Directory of Open Access Journals (Sweden)

    Camila Sarto

    2015-05-01

    Full Text Available This study aimed to evaluate the characteristics of Schizolobium amazonicum wood, specifically its performance in bleached kraft pulp production and the characteristics of its pulp. Chips of Schizolobium amazonicum and Eucalyptus grandis x Eucalyptus urophylla (reference were used. The following parameters were evaluated in the wood: basic density, total extractives, total lignin, holocellulose, and fiber morphology. The pulping simulations were carried out in a laboratory digester, with parameters set to obtain pulp with kappa number 19 ± 0.5. Both pulps were bleached in a PFI mill and submitted to physical-mechanical tests. The results showed that S. amazonicum wood has low basic density and higher content of extractives when compared to E. grandis x E. urophylla wood. For pulping, S. amazonicum required higher alkali charge and H factor to achieve the same delignification level of E. grandis x E. urophylla, resulting in a lower yield, pulp with lower viscosity, and higher wood specific consumption. During bleaching, the brightness gain and final viscosity of S. amazonicum pulp were lower than E. grandis x E. urophylla pulp. Moreover, S. amazonicum pulp had worse physical-mechanical characteristics than E. grandis x E. urophylla.

  4. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  5. Biogas generation apple pulp.

    Science.gov (United States)

    Llaneza Coalla, H; Blanco Fernández, J M; Morís Morán, M A; López Bobo, M R

    2009-09-01

    In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit. The anaerobic digestion of apple pulp was investigated for biogas production. This paper presents the results where apple pulp was co-digested with slaughterhouse waste (pig intestine and bovine stomach content) in a biogas laboratory unit (10 l CSTR reactor). The production of biogas has reached very satisfactory values during the whole test (0.8m(3)kg(-1)OTS), verifying that the process is kept in stable conditions of pH (near 8.0), and the volatile fatty acids was always underneath 3000 mg/l, when the pulp amount was lower than 100g in mesophilic conditions. The fat concentration into the digester remained always below the value that causes inhibition of the methanogenic bacteria, 500 mg/l. Finally, methane concentration (77-80%) and H(2)S concentration (400 ppm) in the biogas, they were similar to those obtained when the test was run out in the absence of apple pulp. The process efficiency with respect to COD removal was high, near 80% of the total COD. Finally, inhibitory effects of methanogenic bacteria were observed when pulp concentration was around 10% in the input material.

  6. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  7. Action of nitric oxide on healthy and inflamed human dental pulp tissue.

    Science.gov (United States)

    da Silva, Leopoldo Penteado Nucci; Issa, João Paulo Mardegan; Del Bel, Elaine Aparecida

    2008-10-01

    Irreversible pulpitis has been associated with pain and an increase in the number of pulp inflammatory cells. Based on the action of nitric oxide (NO) elsewhere, NO may possibly participate in the sensory and autonomic innervation of the dental pulp, and may influence local inflammatory responses. The purpose of this study was to analyze normal and inflamed human dental pulp for the presence of NADPH-diaphorase (NADPH-d), as an index of NO system activity. Six non-carious second premolar pulp tissue samples were obtained from young patients who required extractions for orthodontic reasons and six inflamed samples were obtained from symptomatic carious second premolars clinically diagnosed with irreversible pulpitis. Pulp tissue was carefully removed, fixed by immersion in a cold 4% PFA buffered solution for 120 min, rinsed in cold phosphate buffer, and quickly-frozen for cryostat sectioning. Pulp tissue was sectioned perpendicularly to the vertical axis of the tooth at 20 microm and processed for histochemistry. Sections of each specimen were stained with hematoxylin-eosin and other sections were subjected to histochemical NADPH-d detection. Results indicated the presence of NADPH reactivity within the pulps of both normal and carious teeth. In the normal teeth NADPH-d activity was detected in a small number of vascular endothelial cells and fibroblasts. The inflammatory response of the pulp from carious premolars was detected in connective tissue by the presence of an increased number of fibroblasts, angioblasts and collagen fibers. It was possible to determine the extent of odontoblast reactivity since the odontoblast layer was usually absent in these split-peel preparations. There were no obvious signs of stained pulpal nerve fibers. Overall NADPH-d staining was significantly more intense within inflamed pulp tissues compared to normal healthy samples (Mann-Whitney test, pfunctions of NO in human dental pulp in pathophysiological situations.

  8. Isolation and characterization of pulp from sugarcane bagasse and rice straw

    International Nuclear Information System (INIS)

    Saiful Azhari, S.; Suhardy, D.; Kasim, F.H; Nazry Saleh, M.

    2007-01-01

    The amount of sugarcane bagasse and rice straw in the state of Perlis (Malaysia) is abundant while its utilization is still limited. One of the alternatives for the bagasse and straw utilization is as pulp raw material. This paper reviews on pulp from sugarcane bagasse and rice straw and its suitability for paper production. In this study, the pulp was extracted by the Soxhlet extraction method. The objective of this study was to investigate the cellulose, lignin and silica content of the pulp from sugarcane bagasse and rice straw. For rice straw, the presence of large amount of pentosanes in the pulp and black liquors, which also contain silica were decreased the using of straw in the paper industry. Therefore, formic acid pulping and NaOH treatment are studied to reduce or prevent silica. The isolated pulp samples were further characterized by Scanning Electron Microscope (SEM) to investigate their fiber dimensions. (Author)

  9. EFFECTS OF ALKALINE PRE-IMPREGNATION AND PULPING ON MALAYSIA CULTIVATED KENAF (HIBISCUS CANNABINUS

    OpenAIRE

    Lin Suan Ang; Cheu Peng Leh; Chong Chat Lee

    2010-01-01

    This study was carried out to identify an appropriate alkaline pulping condition for Malaysia cultivated kenaf (Hibiscus cannabinus L.). The chemical composition of the kenaf bast and core fibers, and also whole stalk with different growing time were examined prior to pulping attempts. The results of various soda-AQ pulping showed that the degree of carbohydrate degradation and delignification increased with the increase of active alkali and cooking temperature, but decreased with the increas...

  10. Residual stress effects on the impact resistance and strength of fiber composites

    Science.gov (United States)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  11. Pulp stem cells: implication in reparative dentin formation.

    Science.gov (United States)

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Strategies for characterizing compositions of industrial pulp and paper sludge

    Science.gov (United States)

    Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.

    2018-01-01

    The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.

  13. Statistically designed optimisation of enzyme catalysed starch removal from potato pulp

    DEFF Research Database (Denmark)

    Thomassen, Lise Vestergaard; Meyer, Anne S.

    2010-01-01

    to obtain dietary fibers is usually accomplished via a three step, sequential enzymatic treatment procedure using a heat stable alpha-amylase, protease, and amyloglucosidase. Statistically designed experiments were performed to investigate the influence of enzyme dose, amount of dry matter, incubation time...... and temperature on the amount of starch released from the potato pulp. The data demonstrated that all the starch could be released from potato pulp in one step when 8% (w/w) dry potato pulp was treated with 0.2% (v/w) (enzyme/substrate (E/S)) of a thermostable Bacillus licheniformis alpha-amylase (Termamyl(R) SC...

  14. Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution.

    Science.gov (United States)

    Gonçalves, Maraisa; Guerreiro, Mário César; Ramos, Paulize Honorato; de Oliveira, Luiz Carlos Alves; Sapag, Karim

    2013-01-01

    The processing of coffee beans generates large amounts of solid and liquid residues. The solid residues (pulp, husk and parchment) represent a serious environmental problem and do not have an adequate disposal mechanism. In this work, activated carbons (ACs) for adsorption of organic compounds were prepared from coffee pulp by controlled temperature at different pulp/Na2HPO4 ratios (4:1, 2:1, 5:4 and 1:1). The N2 adsorption/desorption isotherms showed ACs with high quantities of mesopores and micropores and specific surface areas of 140, 150, 450 and 440 m(2)g(-1) for AC 4:1, AC 2:1, AC 5:4 and AC 1:1, respectively. The prepared material AC 5:4 showed a higher removal capacity of the organic contaminants methylene blue (MB), direct red (DR) and phenol than did a Merck AC. The maximum capacities for this AC are approximately 150, 120 and 120 mg g(-1) for MB, DR and phenol, respectively. Thus, a good adsorbent was obtained from coffee pulp, an abundant Brazilian residue.

  15. Mechanical and physical properties of wood fiber-reinforced, sulfur-based wood composites

    Science.gov (United States)

    Chung-Yun Hse; Ben S. Bryant

    1993-01-01

    Sulfur-based composite was made from sulfur impregnated, oven dried, wet-formed fiber mats. The fiber mats consisted of a 50/50 mixture of recycled newsprint pulp and mechanical hardwood pulp from several species made from chips in a laboratory refiner. The thickness of the composites was 0.125 inch and the specific gravity of the unimpregnated fiber mat was 0.2. The...

  16. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  17. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  18. Western Canadian wood residue production and consumption trends

    International Nuclear Information System (INIS)

    McCloy, B.

    2006-01-01

    This presentation considered various trends in western Canadian wood residue production and consumption. Potential markets for wood residue products were also discussed. Trends were reviewed by province for the years 2000-2004. British Columbia (BC) is currently the largest producer of residue in the country, and also retains the largest surpluses of bark, sawdust and shavings. Wood residues in BC are used in pulp and plywood mill production, as well as in the creation of particleboard and MDF. Surplus mill wood residue production in the province has greatly increased due to the Mountain Pine Beetle (MPB) infestation, which has in turn spurred expansion of the BC interior sawmill industry. The infestation has also resulted in a glut of pulp chips. Current wood residue products in Alberta are mostly used in pulp mill combined heat and power (CHP) systems, as well as for wood pellet production and the creation of particleboard and MDF. It was noted that surplus residues are rapidly declining in the province. Saskatchewan's wood residue storage piles are estimated to contain 2,900,000 BDt, while Manitoba surpluses are relatively minor. It was suggested that high natural gas prices have increased the payback on wood energy systems to approximately 2 years. The value of wood residue is now greater than $100/BDt as a substitute for natural gas once the wood energy system has been fully depreciated. Sawmills may now wish to consider equipping themselves to sell wood residue products, as most sawmills only require 20 per cent of their residues for heating purposes. It was concluded that markets for hog fuel wood pellets should be developed in Canada and internationally. Future markets may also develop if natural gas currently used in pulp mill power boilers and lime kilns is replaced with wood residue energy systems. refs., tabs., figs

  19. Secretoneurin and PE-11 immunoreactivity in the human dental pulp.

    Science.gov (United States)

    Steiner, René; Fischer-Colbrie, Reiner; Bletsa, Athanasia; Laimer, Johannes; Troger, Josef

    2018-02-01

    To explore whether there are differences in the concentration of the secretogranin II-derived peptide secretoneurin and the chromogranin B-derived peptide PE-11 between the healthy and inflamed human dental pulps. Furthermore, colocalization studies with calcitonin gene-related peptide were performed to confirm the sensory origin of the peptidergic nerves in the dental pulp. The concentrations of secretoneurin and PE-11 were determined by highly sensitive radioimmunoassays in extracts of dental pulps, the molecular form of secretoneurin immunoreactivities by RP-HPLC with subsequent radioimmunoassay and colocalization studies with calcitonin gene-related peptide were performed by double immunofluorescence. Only secretoneurin but not PE-11 was detectable by radioimmunoassays whereas nerve fibers could be made visible for both secretoneurin and PE-11. Furthermore, there was a full colocalization of secretoneurin and PE-11 with calcitonin gene-related peptide in immunohistochemical experiments. There were no differences in the concentration of secretoneurin between the healthy and inflamed human dental pulp and moreover, the characterization of the secretoneurin immunoreactivities revealed that only authentic secretoneurin was detected with the secretoneurin antibody. There is unequivocal evidence that secretoneurin and PE-11 are constituents of the sensory innervation of the human dental pulp and although not exclusively but are yet present in unmyelinated C-fibers which transmit predominantly nociceptive impulses. Secretoneurin might be involved in local effector functions as well, particularly in neurogenic inflammation, given that this is the case despite of unaltered levels in inflamed tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Isolation and characterization of microcrystalline cellulose from roselle fibers.

    Science.gov (United States)

    Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Alothman, Othman Y

    2017-10-01

    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization and sensory preference of fermented dairy beverages prepared with different concentrations of whey and araticum pulp

    Directory of Open Access Journals (Sweden)

    Alexsandra Valéria Sousa Costa de Lima

    2016-12-01

    Full Text Available The objective of this study was to develop a fermented dairy beverage flavored with araticum pulp, assess its physicochemical characteristics, microbiological quality, and sensory preference by the consumer. Araticum pulp was prepared using two different methods: with or without bleaching (50 ºC/5 minutes. Formulations of fermented dairy beverages consisting of whey (50%, standardized pasteurized milk (50%, and seven different concentrations of bleached araticum pulp (5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0% w/v were prepared. In addition, seven formulations of fermented dairy beverage, without adding araticum pulp, and consisting of varying proportions of whey (40, 50, 60, 70, 80, 90, and 100% were developed. In all formulations, thickeners/stabilizers were added. All araticum pulp samples (with and without bleach and fermented dairy beverages (with and without araticum pulp were analyzed for the relevant physicochemical properties: pH, titratable acidity, acidity of pulp, acidity of fermented beverage, moisture, ash, fat, protein, crude fiber, ascorbic acid, carbohydrates, total solids, and caloric values. Microbiological counts of coliforms at 35 °C and 45 °C in the pulp and beverage, and molds and yeasts and Salmonella sp. in the pulp were obtained. Additionally, sensory analysis regarding preferences of the different fermented dairy beverage formulations was also performed. The araticum pulp samples without bleach, showed higher values of pH, moisture, protein, total fiber, and ascorbic acid, as compared to bleached pulp samples, while bleached araticum pulp showed higher values for other physicochemical parameters. Microbiological results showed that all pulps and fruit-dairy beverages were suitable for consumption. It was found that there was no significant consumer preference between different fermented beverage formulations, according to the different percentages of pulp. However, the formulations consisting of 40, 50, 60, and 70

  2. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  3. Characterization of natural fiber from agricultural-industrial residues; Caracterizacao de fibras naturais provenientes de residuos agroindustriais

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Karen S.; Spinace, Marcia A.S., E-mail: marcia.spinace@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, CCNH, Universidade Federal do ABC - UFABC, Campus de Santo Andre, SP (Brazil)

    2011-07-01

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  4. HYDROGEN PEROXIDE BLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Farhad Zeinaly

    2009-11-01

    Full Text Available Conventional bleaching of hardwood CMP pulp with magnesium hydroxide (Mg(OH2 show significant benefits over bleaching with sodium hydroxide (NaOH under various conditions. Magnesium hydroxide bleaching generate higher optical properties, higher pulp yield and lower effluent COD at the same chemical charge, but the physical properties were found to be similar for both processes. The initial freeness of the bleached pulps and refining value to reach a target freeness (about 350 ml. CSF were more for the Mg(OH2-based process. The residual peroxide of filtrate from the Mg(OH2-based process was very high as compared to conventional bleaching.

  5. Plasma enhanced modification of TMP fiber and its effect on tensile strength of wood fiber/PP composite

    Science.gov (United States)

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2009-01-01

    Plasma-assisted surface treatment on thermomechanical pulp (TMP) fiber and polypropylene (PP) film was investigated to obtain interfacial adhesion at the wood fiber and PP interface. A metal plate between electrodes prevented thermal damage to the TMP fiber handsheets and PP film. Oxygen-plasma treatment provided better surface activation on the TMP fiber and...

  6. Alkaline Pulping and Bleaching of Acacia auriculiformis Grown in Bangladesh

    OpenAIRE

    JAHAN, M. Sarwar; SABINA, Rowshan; RUBAIYAT, Arjumand

    2014-01-01

    The physical, chemical, and morphological characteristics of Acacia auriculiformis were evaluated in terms of its suitability for papermaking. The fiber length (1.1 mm) of A. auriculiformis in this study was within the range of tropical hardwoods. The lignin content in A. auriculiformis was 19.4% and a-cellulose 44.1%, which was within the range of other acacias, but that of extractives was higher. Soda, soda-AQ, and kraft processes were studied in pulping. Screened pulp yield was increased w...

  7. Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Wenhan Ren

    2014-05-01

    Full Text Available The purpose of this study was to investigate the mechanical and thermal properties of high-density polyethylene (HDPE composites reinforced by bamboo pulp fibers (BPF. Using a twin-screw extruder, polymer composites were fabricated using BPF and bamboo flour (BF as the reinforcement and HDPE as the matrix. Tensile and flexural tests of the HDPE composites were performed to determine the mechanical properties under different conditions. The thermal properties of HDPE composites were characterized by thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA. The results showed that BPF improved the mechanical and thermal properties of the polymer composites more than did BF. The tensile and flexural strength of composites with 30 wt% BPF were increased by 61.46% and 22.94%, respectively, while the tensile and flexural modulus were increased by 84.52% and 27.30%, respectively. Compared to composites with 50 wt% BF, the T5% of composites with 50 wt% BPF increased by 20.18 °C. As the BPF content increased, the storage modulus (E’ and loss modulus (E” initially increased, followed by a decrease. Compared to the BF/HDPE composites, BPF/HDPE composites reinforced at 30 wt% had a higher storage modulus (E’ and loss modulus (E” and lower damping parameter (tanδ.

  8. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  9. Immunocytochemical localization of the neurokinin 1 receptor in rat dental pulp.

    Science.gov (United States)

    Kido, Mizuho A; Ibuki, Teiichi; Danjo, Atsushi; Kondo, Teruyoshi; Zhang, Jing-Qi; Yamaza, Takayoshi; Yamashita, Yoshio; Higuchi, Yoshinori; Tanaka, Teruo

    2005-12-01

    The dentin-pulp complex is a peripheral end-organ supplied by dense sensory nerve fibers. Substance P, a representative neuropeptide widely distributed in the dental pulp, has been reported to play roles in pain transmission and the amplification of inflammation. We analyzed here the expression of the neurokinin 1 (NK1) receptor, preferentially activated by substance P, using immunocytochemistry in rat dental pulp at both the light and electron microscopic levels. Conspicuous NK1 receptor immunoreactivity was found in the odontoblasts; immunolabelings were present at their plasma membrane and endosomal structures, especially in their cytoplasmic processes. Immunoreactions for NK1 receptor were also detectable in a part of the nerve terminals associated with the cytoplasmic processes of the odontoblasts. Furthermore, the endothelial cells of capillaries and post-capillary venules and the fibroblasts were labeled with the NK1 receptor in the subodontoblast layer. These findings suggest that pulpal cells and nerve fibers are targets for substance P that mediate multiple functions, including a vasoactive function and the regulation of vascular permeability as well as the modulation of pain transmission.

  10. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  11. Wood-plastic composites using thermomechanical pulp made from oxalic acid-pretreated red pine chips

    Science.gov (United States)

    J.E. Winandy; N.M. Stark; E. Horn

    2008-01-01

    The characteristics and properties of wood fiber is one of many factors of critical importance to the performance of wood-plastic composites. In commercial thermo-mechanical pulping (TMP) of wood chips to produce fibers, high temperatures (>100°C) are used to separate the fibers during TMP refining. These mechanical pressures and temperatures are usually modulated...

  12. Fibre Morphological Characteristics of Kraft Pulps of Acacia melanoxylon Estimated by NIR-PLS-R Models

    Directory of Open Access Journals (Sweden)

    Helena Pereira

    2015-12-01

    Full Text Available In this paper, the morphological properties of fiber length (weighted in length and of fiber width of unbleached Kraft pulp of Acacia melanoxylon were determined using TECHPAP Morfi® equipment (Techpap SAS, Grenoble, France, and were used in the calibration development of Near Infrared (NIR partial least squares regression (PLS-R models based on the spectral data obtained for the wood. It is the first time that fiber length and width of pulp were predicted with NIR spectral data of the initial woodmeal, with high accuracy and precision, and with ratios of performance to deviation (RPD fulfilling the requirements for screening in breeding programs. The selected models for fiber length and fiber width used the second derivative and first derivative + multiplicative scatter correction (2ndDer and 1stDer + MSC pre-processed spectra, respectively, in the wavenumber ranges from 7506 to 5440 cm−1. The statistical parameters of cross-validation (RMSECV (root mean square error of cross-validation of 0.009 mm and 0.39 μm and validation (RMSEP (root mean square error of prediction of 0.007 mm and 0.36 μm with RPDTS (ratios of performance to deviation of test set values of 3.9 and 3.3, respectively, confirmed that the models are robust and well qualified for prediction. This modeling approach shows a high potential to be used for tree breeding and improvement programs, providing a rapid screening for desired fiber morphological properties of pulp prediction.

  13. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  14. The Effects of Ensiled Berseem Clover and Citrus Pulp Mixture on Performance of Zel Fattened Lambs

    Directory of Open Access Journals (Sweden)

    maedeh feyz

    2016-08-01

    Full Text Available Introduction Feed contributes about 75% of the total cost of animal production, therefore utilizing of by-products such as Berseem clover and citrus pulp, as nutritive and low cost components of rations would decrease the production cost. In north of Iran over autumn and winter, utilizing of these by-products in making of silage as feed for ruminants provides good feed ingredient especially in feedlot operations, also eliminates pathogens, and reduces the effect of drugs and pesticides that are used locally without a serious control or discipline. However, little information available on utilizing silage made from these local by-products. The objectives of this research were to investigate the effects of ensiled Berseem clover and orange peels mixture on intake, digestibility, chewing behavior and performance of Zel fattening lambs. Materials and methods Twenty male Zel lambs fed with five experimental rations containing basal concentrate and 35% Berseem clover silage as: 1 without additives, 2 supplemented with 40% dried orange peels, 3 supplemented with 40% dried tangerine peel, 4 supplemented with 35% dried tangerine peel and 5% ground barley and 5 supplemented with 35% dried orange peels and 5% ground barley. Lambs were housed in individual box and fed ad libitum, twice daily at 09:00 and 21:00 h with total mixed rations as experimental treatments, allowing for at least 10% residuals (as-fed basis. Water and mineralized salt stone were available throughout the experiment. Feed particle size distribution, geometric mean and the standard deviation of geometric mean were determined by dry sieving in four replicates, using two set of Penn State particle separator. Feed, feces and orts were analyzed for dry matter, Kjeldahl N, ether extract, organic matter and ash at 605°C, neutral and acid detergent fiber (NDF and ADF when α-amylase being added for concentrates during NDF extraction; sodium sulfite was not added. Neutral detergent fiber was

  15. Polpa de fruta congelada: efeito do processamento sobre o conteúdo de fibra alimentar Frozen fruit pulps: effects of the processing on dietary fiber contents

    Directory of Open Access Journals (Sweden)

    Silvana Magalhães Salgado

    1999-12-01

    Full Text Available Avaliou-se os efeitos do processo utilizado na obtenção de polpa de frutas congelada sobre o teor de fibras alimentares, empregando-se acerola, caju, goiaba, graviola, manga, pinha, pitanga, sapoti e uva no estágio maduro. Demonstrou-se que o processo tecnológico empregado reduziu significativamente o percentual de fibras alimentares das frutas, determinadas por método gravimétrico não enzimático, principalmente da goiaba, seguida da uva, graviola, sapoti, caju, pinha e acerola; com exceção da manga e pitanga, as demais polpas congeladas não substituem, em termos quantitativos, a fibra alimentar dos frutos in natura na dieta de indivíduos sadios. Considerando que essas perdas são variáveis face às características dos frutos processados, a inclusão de polpas congeladas na dieta em substituição às frutas dependerá de estudos qualitativos que permitam esclarecer os constituintes da referida fração.The effects of the process utilized to obtain frozen fruit pulp on the quality of dietary fibers were evaluated, using ripe samples of acerola, cashew, guava, soursop, mango, sweetsop, pitanga, sapoti and grapes. The results obtained showed that the technological process used reduced significantly the fiber percentual of the fruit, determined by gravimetric non-ensymatic method particularly the guava, followed by the grapes, soursop, saoti, cashew, sweetsop and acerola. With the exception of mango and pitanga, all the frozen pulps tested do not seem to substitute, in terms of quantity of dietary fiber, the in natura fruit in the diet of healthy individuals. Considering the fact that these losses are variable, depending on the characteristics of the fruit which was processed, the inclusion of frozen pulps in the human diet in substitution to fruits will depend on quality control studies which may lead to a classification of the components of the mentioned fraction.

  16. Influence of Heartwood on Wood Density and Pulp Properties Explained by Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Carla Iglesias

    2017-01-01

    Full Text Available The aim of this work is to develop a tool to predict some pulp properties e.g., pulp yield, Kappa number, ISO brightness (ISO 2470:2008, fiber length and fiber width, using the sapwood and heartwood proportion in the raw-material. For this purpose, Acacia melanoxylon trees were collected from four sites in Portugal. Percentage of sapwood and heartwood, area and the stem eccentricity (in N-S and E-W directions were measured on transversal stem sections of A. melanoxylon R. Br. The relative position of the samples with respect to the total tree height was also considered as an input variable. Different configurations were tested until the maximum correlation coefficient was achieved. A classical mathematical technique (multiple linear regression and machine learning methods (classification and regression trees, multi-layer perceptron and support vector machines were tested. Classification and regression trees (CART was the most accurate model for the prediction of pulp ISO brightness (R = 0.85. The other parameters could be predicted with fair results (R = 0.64–0.75 by CART. Hence, the proportion of heartwood and sapwood is a relevant parameter for pulping and pulp properties, and should be taken as a quality trait when assessing a pulpwood resource.

  17. New process for the simultaneous manufacture of sugar alcohol, and paper pulp from sugar cane fiber in a self-sufficient factory: soda, potash, silica, and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, E A

    1960-01-01

    Details of the process of bagasse digestion with potash to form paper pulp are discussed. The pulp is washed, after digestion, with a small quantity of warm water and after separation of the pulp vinasse residues from the alcohol fermentation of molasses are added. Silica is precipitated as silicates by the addition of Ca and Mg hydroxides; this prevents difficulties due to incrustration in further processing. The black liquor is concentrated in a sextuple-effect evaporator from 15 to 20% solids to 50 to 60% solids. The mass is mixed with bagacillo, cane leaves, etc., and burned in a furnace with a movable gridiron. The temperature in the furnace should be under 1000/sup 0/ to prevent fusion of the ash. The ash, containing mainly potash and some soluble silicates, is mixed with lime and recycled. The use of silica in cane growing is briefly discussed.

  18. [Vital pulp therapy of damaged dental pulp].

    Science.gov (United States)

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  19. Development of Circular Disk Model for Polymeric Nanocomposites and Micromechanical Analysis of Residual Stresses in Reinforced Fibers with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    A. R. Ghasemi

    2017-02-01

    Full Text Available In this study, Circular Disk Model (CDM has been developed to determine the residual stresses in twophase and three- phase unit cell. The two-phase unit cell is consisting of carbon fiber and matrix. The three-phase unit cell is consisting of carbon fiber, carbon nanotubes and matrix in which the carbon fiber is reinforced with the carbon nanotube using electrophoresis method. For different volume fractions of carbon nanotubes, thermal properties of the carbon fiber and carbon nanotube in different linear and lateral directions and also different placement conditions of carbon nanotubes have been considered. Also, residual stresses distribution in two and three phases has been studied, separately. Results of micromechanical analysis of residual stresses obtained from Finite Element Method and CDM, confirms the evaluation and development of three dimensional CDM.

  20. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  1. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  2. Residual strain evolution during the deformation of single fiber metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, J.C.; Uestuendag, E.; Clausen, B. [Dept. of Materials Science, California Inst. of Tech., Pasadena, CA (United States); Sivasambu, M.; Beyerlein, I.J. [Theoretical Div., Los Alamos National Lab., Los Alamos, NM (United States); Brown, D.W.; Bourke, M.A.M. [Materials Science and Technology Div., Los Alamos National Lab., Los Alamos, NM (United States)

    2002-07-01

    Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each phase. Yet, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. An approach is presented that quantifies the deformation parameters of each phase using neutron diffraction measurements before, during, and after failure under tensile loading in model composites consisting of a single alumina fiber embedded in an aluminum matrix. The evolution of residual strains after loading was examined including the effects of fiber failure. (orig.)

  3. [Structural features of the pulp ground substance and its significance for acute and chronic pulpitis].

    Science.gov (United States)

    Davarashvili, Capital Ka Cyrillich; Dgebuadze, M; Melikadze, E; Zhvitiashvili, T; Jandieri, K

    2012-12-01

    The goal of the research study is an analysis of amorphous material, fibers and cellular elements of the dental pulp and evaluation of their interactions with a variety of fibrouse structures in the norm and inflammation. To solve this problem used dental pulp tissue bioptats (10 cases) of patients with acute and chronic pulpitis and 10 control specimens (orthodontic operations). The material was studied by histological and electron microscopic methods of research. It was determined that in acute pulpitis develope changes promoting dissociation of fibrouse and cellular structures of pulp components, and thus, loss the cementing binding role of the ground substance. Acute pulpitis characterized by the recruitment of mast cells. ; The reorganization and remodeling of ground substance associated with neoangiogenesis, especially capillaries, and the replacement of collagen fibers by the fibrouse structures are major points in chronic pulpitis.

  4. Nutritional composition of Annona crassiflora pulp and acceptability of bakery products prepared with its flour

    Directory of Open Access Journals (Sweden)

    Paula Villela

    2013-09-01

    Full Text Available Annona crassiflora offers an edible fruit native to the Savanna. This study aimed to develop a flour meal from Annona crassiflora pulp; analyze the chemical composition of the fresh pulp and its flour; develop and verify the acceptance of formulations with different concentrations of the flour of Annona crassiflora pulp. Fruit used were selected and processed. The pulp was dried in an oven at 60-65 ºC/48h. We analyzed the chemical composition, and two formulations of breads were prepared with 10 and 20% Annona crassiflora pulp. The results showed that the drying of Annona crassiflora pulp enriched its nutritional value. The Annona crassiflora pulp showed important chemical components, as insoluble fibers (pulp and flour, minerals (potassium, calcium, manganese and others and antioxidant compounds. The formulations were well-accepted in a sensory point of view and proved to be a good alternative to the exploitation of the fruit.

  5. Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs.

    Science.gov (United States)

    Kröger, S; Vahjen, W; Zentek, J

    2017-04-01

    Lignocellulose is an alternative fiber source for dogs; however, it has not yet been studied as a feed ingredient for the nutrition of dogs. Eight adult Beagles were involved in the study, which consisted of 3 feeding periods of 8 to 12 wk each. All dogs received 3 different diets, which either had the same concentration of fiber sources (2.7% sugar beet pulp or lignocellulose) or were formulated for a similar concentration of approximately 3% crude fiber: 12% sugar beet pulp (highSBP; 3.1% crude fiber), 2.7% sugar beet pulp (lowSBP; 0.96% crude fiber), or 2.7% lignocellulose (LC; 2.4% crude fiber). Feces samples were collected at the end of each feeding period, and the apparent nutrient digestibility, daily amount, and DM content of feces and fecal cell numbers of relevant bacteria were analyzed. The daily feces amount was lower and the feces DM was higher when dogs were fed the LC diet and the lowSBP diet compared with the highSBP diet ( dogs fed LC and lowSBP had lower concentrations of acetate ( dogs fed highSBP. The concentration of -butyrate was higher in the feces of dogs fed with LC compared with dogs fed high and low sugar beet pulp (SBP; dogs was highest followed by lowSBP- and highSBP-fed dogs ( dog feed has different impacts on the fecal microbiota and the apparent digestibility of nutrients. Therefore, different areas of application should be considered.

  6. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue.

    Science.gov (United States)

    Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing

    2015-11-05

    Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Residues of 14C-paclobutrazol in mangoes

    International Nuclear Information System (INIS)

    Costa, Maria A.; Tornisielo, Valdemar L.; Castanho, Giuliane M.

    2009-01-01

    Paclobutrazol (PBZ) is a growth regulator used in agricultural systems whose purpose is the control of vegetative growth, stimulating the reproductive capacity of plants. This growth regulator remains active in soil for a long time and its half-life varies with the type of soil and climatic conditions, can severely affect the development of crops. This work aimed to study the residues / metabolites of 14 C-PBZ in mango pulp Tommy Atkins. The tests were performed with mangoes grown in pots stainless steel and application of 14 C-PBZ was performed by the soil projection of the crown, and the mangoes tested in two periods, one year and two years after application. To evaluate the levels of residues of 14 C-PBZ was realize the burning of 200 mg of pulp on biological oxidized and detached 14 CO 2 was detected by liquid scintillation spectrophotometer. The results were 1.65 % of residue of PBZ on fruit collected after two years of application and 4.30 % of residue of PBZ collected on fruit after a year of application and also can see that the product remained in the soil for more than one year, is translocated to the plant and reach the edible part, the pulp fruit. The identification of residual 14 C- PBZ/metabolites by thin-layer chromatography did not reveal any pattern of PBZ / metabolites due to the low activity detected in the samples. Therefore, another procedure was performed for extraction and then analyzed by high performance liquid chromatography (HPLC) for detection of metabolites in the PBZ of mango pulp. (author)

  8. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  9. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  10. Extraction and characterization of cellulose microfibrils from agricultural residue –Cocos nucifera L

    International Nuclear Information System (INIS)

    Uma Maheswari, C.; Obi Reddy, K.; Muzenda, E.; Guduri, B.R.; Varada Rajulu, A.

    2012-01-01

    The aim of this study was to extract cellulose microfibrils from the agricultural residue of coconut palm leaf sheath using chlorination and alkaline extraction process. Chemical characterization of the cellulose microfibrils confirmed that the α-cellulose mass fraction increased from 0.373 kg kg −1 to 0.896 kg kg −1 after application of several treatments including dewaxing, chlorite delignification and alkaline extraction of hemicelluloses. Similarly, the crystallinity index obtained from X-ray diffraction for leaf sheath and extracted cellulose microfibrils was found to be 42.3 and 47.7 respectively. The morphology of the cellulose microfibrils was investigated by scanning electron microscopy. The cellulose microfibrils had diameters in the range of 10–15 μm. Fourier transform infrared and Nuclear magnetic resonance spectroscopy showed that the chemical treatments removed most of the hemicellulose and lignin from the leaf sheath fibers. The thermal stability of the fibers was analyzed using thermogravimetric analysis, which demonstrated that this thermal stability was enhanced noticeably for cellulose microfibrils. This work provides a new approach for more effective utilization of coconut palm leaf sheaths to examine their potential use as pulp and paper and reinforcement fibers in biocomposite applications. -- Highlights: ► Utilization of Coconut palm leaf sheath as an alternate material for cellulose extraction. ► Using an abundant natural waste for paper pulp, biofilms and composite applications. ► Cellulose microfibrils have higher cellulose content than the leaf sheath. ► FTIR and NMR were used to study fiber structural changes during several treatments. ► Thermal stability of microfibrils is higher than their respective leaf sheath.

  11. Characteristics and utilization of non-wood pulp and paper; Himokuzai pulp / kami no tokucho to sono riyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mishima Paper Co. Ltd., Shizuoka (Japan)

    1998-09-01

    The reasons, difficulty in the usage, and the methods of use of non-wood papers are discussed. Non-wood papers sold in Japan are arranged basing on published data. The type of non-wood paper classified as special printing paper makes up the majority, and there are a variety of other products such as printing board, coated paper, thin paper, wrapping paper, functional paper, and watercolor paper. Kenaf and cotton are used in large quantities as non-wood plants for paper production, and use of bagasse and bamboo is increasing. Non-wood paper are used in consideration of environmental and resources problems and for utilizing the special features of non-wood fiber, and the characteristics of non-wood pulp and the effect of non-wood paper are discussed in this report. It is expected that papers utilizing the characteristics of non-wood paper will be developed. Non-wood papers are substitutions for various papers produced from wood pulp, and the fundamental point is the method of improving the original quality and paper quality by combining with non-wood pulp. 11 refs., 4 figs., 3 tabs.

  12. Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Nzambe Ta keki, Jean Kerim; Ouk, Tan-Sothéa [Laboratoire de chimie des substances naturelles, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Zerrouki, Rachida [Laboratoire de chimie des substances naturelles, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Centre de Recherche sur les Matériaux Lignocellulosiques, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7 (Canada); Faugeras, Pierre-Antoine; Sol, Vincent [Laboratoire de chimie des substances naturelles, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Brouillette, François [Centre de Recherche sur les Matériaux Lignocellulosiques, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7 (Canada)

    2016-05-01

    Photodynamic antimicrobial chemotherapy (PACT), as one of the promising alternative antimicrobial treatment, has received great attention in recent years. In this work, a new antimicrobial material has been elaborated by grafting a neutral porphyrin, the metallated 5-(4-azidophenyl)-10,15,20-triphenylporphyrin, onto lignocellulosic fibers by using the Copper (I)-Catalyzed Alkyne-Azide 1,3-dipolar Cycloaddition (CuAAC) reaction. The cross-linked porphyrin-Kraft pulp material was characterized by infrared and by XPS spectroscopy analyses, which proved the covalent linkage between the porphyrin and propargylated Kraft pulp fibers. The antimicrobial activity of this material was tested under visible light irradiation with a low light dose (9.5 J/cm{sup 2}) against Staphylococcus aureus and Pseudomonas aeruginosa. The two bacterial strains deposited on the resulting photosensitizing Kraft pulp are efficiently killed after illumination. Such materials could find applications in industrial, household and medical environments as an alternative to overcome the widespread microbial multiresistance to classical treatments. - Highlights: • Elaboration of new antimicrobial paper • Grafting of porphyrin on lignocellulosic fibers using click chemistry • Modification of Kraft pulp fibers, using water as solvent.

  13. A Method for Producing Microcrystalline Cellulose from Hemp Fibers

    Directory of Open Access Journals (Sweden)

    Valerii A. Barbash

    2018-03-01

    Conclusions. The proposed technology for the MCC production from hemp fibers reduces the cost of finished products by eliminating the bleaching stage of pulp as well as due to the use of domestic renewable plant raw materials, in particular hemp fibers compared with imported cotton or softwood pulp. The obtained MCC meets the requirements of technical conditions and can be used in the chemical industry as a sorbent or filler in the production of plastics and a water stabilizer for paints and emulsions.

  14. Environmental performance of straw-based pulp making: A life cycle perspective.

    Science.gov (United States)

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    Science.gov (United States)

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Effect of Different Moisture Absorbents on Silage Fermentation Quality of Wet Potato Pulp

    Directory of Open Access Journals (Sweden)

    Daryoush Alipour

    2016-11-01

    Full Text Available Introduction Using agricultural-industrial waste is one way to overcome the shortage of animal feed. Potato is one of the most important products in the world after rice, wheat and maize. Potato pulp is a by-product which remains after extraction of starch, and can be used as animal feed. Because of the high moisture content of the potato pulp, silage is the best way to maintain it. However, its high moisture content leads to inappropriate ensilage. Adding of moisture absorbents (MA not only reduce the effluents, but also improve the silage quality. Materials with high content of cell wall are suitable candidates to be used as MA. Agro-industrial co-products including raisin wastes and pomegranate seed pulp have high cell wall and no report was found for their usage as MA. The purpose of this study was to assess the effect of different absorbents on potato pulp silage fermentation quality. Materials and Methods Fresh potato pulp was obtained from Alvand potato processing company (Hamedan, Iran. After transfer, the potato pulps were immediately ensiled with MAs including wheat bran, raisin pedicles, rejected raisins, pomegranate peel, wheat straw and raisin rachis. The treatments were: 100% potato pulp (control, 80% potato pulp and 20% wheat bran, 80% potato pulp and 20% raisin pedicles, 71% potato pulp and 29% rejected raisin, 80% potato pulp and 20% pomegranate peel, 80% potato pulp and 20% wheat straw and 80% potato pulp and 20% rachis. After 74 days, the silos were opened for investigation. Chemical composition (i.e., dry matter, crude protein, neutral detergent fiber, acid detergent fiber, Fleig point, pH and lactic acid concentration were determined. In vitro gas production was used to assess fermentation parameters of treatments. Therefore, volume of gas production after 24 hours of incubation, rate of gas production, asymptotic gas production, lag phase, organic matter digestibility, metabolizable energy, partitioning factor, microbial

  17. The Effect of Wood Alignment on Wood Grinding – Part 1: Properties of Pulp and Fines Revealed in the Grinding Mechanism

    Directory of Open Access Journals (Sweden)

    Erkki Tapani Saharinen

    2016-03-01

    Full Text Available In industrial wood grinding, logs are pressed against a rotating stone, with the logs and fiber axis parallel to the axis of the stone. The objective of this study is to clarify how the wood alignment affects the process and pulp properties. In this research, wood blocks were fed into a laboratory grinder with various alignments in relation to the surface of the grinding stone. The effects of the alignment on the properties of the pulp and the amount and quality of fines were measured. A grinding mechanism was proposed. The results show that the pulp quality is very sensitive to the angle between the stone surface and the log. In gentle refining, the fiber structure is loosened by fatigue before it is bent on the surface; pressure pulses produce fibrillar material, and fibers develop toward having good bonding ability. In forced grinding, the process is “violent”, and the fiber wears and becomes crushed immediately on the surface into small particles with low bonding ability.

  18. Physicochemical characteristics of the coconut pulp (Acrocomia aculeata) for use as support of proteins and metal material

    Energy Technology Data Exchange (ETDEWEB)

    Yubero, F.; Ayala, J.; Lopez, M.; Valdovinos, V.; Monteiro, M.; Gonzalez, Y., E-mail: fyubero@qui.una.py [National University of Asunción (Paraguay); Thompson, W. [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Arguello, J. [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil). Instituto de Quimica

    2016-07-01

    The fruit of the Acrocomia aculeata, native palm tree typical of the tropical region, is exploited mainly for the manufacture of oils and animal consumption. This study was aimed to determine the physicochemical characteristics of the residue of the Acrocomia aculeata coconut pulp in order to apply it in the development of new materials. Therefore fruits collected for the production of pulp were drying and pulverized, the chemical and mineral compositions were studied by GAFTA standardized techniques for the analysis of crude fiber, protein, fat and calories and INAA respectively. Subsequently, the initial material was chemically modified and assessed the solubilities of the native material and the obtained modified material proving to be completely insoluble in solvents organic and aqueous (water, ethanol, terbutanol, isobutanol and hexane), the materials were analyzed by IR with Transformed Fourier and the results showed the existence of changes in the double link lengthening conjugated and aromatic; and link double nitrogen C=N/N=O. EPR analysis indicated that the materials obtained are not paramagnetic at room temperature, however can incorporate magnetite and Fe{sup 0}. These preliminary studies concluded that this eco material could be applied as support of proteins and metals. (author)

  19. Physicochemical characteristics of the coconut pulp (Acrocomia aculeata) for use as support of proteins and metal material

    International Nuclear Information System (INIS)

    Yubero, F.; Ayala, J.; Lopez, M.; Valdovinos, V.; Monteiro, M.; Gonzalez, Y.; Thompson, W.; Arguello, J.

    2016-01-01

    The fruit of the Acrocomia aculeata, native palm tree typical of the tropical region, is exploited mainly for the manufacture of oils and animal consumption. This study was aimed to determine the physicochemical characteristics of the residue of the Acrocomia aculeata coconut pulp in order to apply it in the development of new materials. Therefore fruits collected for the production of pulp were drying and pulverized, the chemical and mineral compositions were studied by GAFTA standardized techniques for the analysis of crude fiber, protein, fat and calories and INAA respectively. Subsequently, the initial material was chemically modified and assessed the solubilities of the native material and the obtained modified material proving to be completely insoluble in solvents organic and aqueous (water, ethanol, terbutanol, isobutanol and hexane), the materials were analyzed by IR with Transformed Fourier and the results showed the existence of changes in the double link lengthening conjugated and aromatic; and link double nitrogen C=N/N=O. EPR analysis indicated that the materials obtained are not paramagnetic at room temperature, however can incorporate magnetite and Fe 0 . These preliminary studies concluded that this eco material could be applied as support of proteins and metals. (author)

  20. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    Science.gov (United States)

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  2. Effect of process parameters on the dryness of molded pulp products

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    2016-01-01

    Molded pulp products are made from cellulose fibers dispersed in water then formed, drained and dried. As in the conventional papermaking process, the most energ yintensive operation (including time) is drying. To gain a better understanding of the process parameters involved and to investigate...

  3. Efeito do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio Effect of residual lignin content and nature on the efficiency and selectivity of ozone bleaching

    Directory of Open Access Journals (Sweden)

    Elenice Pereira Maia

    2003-04-01

    Full Text Available Neste estudo foram avaliados os efeitos do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio de polpa kraft convencional (kraft e pré-deslignificada com oxigênio (kraft-O. Constatou-se que a eficiência do branqueamento com ozônio se eleva com o aumento do conteúdo de lignina residual da polpa. O tratamento com ozônio é mais seletivo para polpas kraft-O, mas para um mesmo tipo de polpa a seletividade de branqueamento com ozônio se eleva com o aumento de lignina residual. A eficiência do branqueamento com ozônio aumenta com o teor de lignina fenólica na polpa, entretanto a seletividade é negativamente afetada pela presença destas estruturas.This study aimed to evaluate the effect of residual lignin content and nature on the efficiency and selectivity of ozone bleaching of conventional (kraft and oxygen delignified (kraft-O pulps. Ozone bleaching efficiency was found to be enhanced by increasing pulp residual lignin content. Ozone treatment is more selective for kraft-O pulps, but for a given type of pulp (kraft or kraft-O, ozone bleaching selectivity increases with increasing pulp lignin content. Ozone bleaching efficiency increases with increasing pulp lignin phenolic hydroxyl content whereas selectivity is negatively affected by these structures.

  4. Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic Starch Matrix

    Directory of Open Access Journals (Sweden)

    Aline Cobut

    2014-04-01

    Full Text Available To facilitate melt compounding of cellulose nanofibrils (CNF based composites, wood pulp fibers were subjected to a chemical treatment whereby the fibers were oxidized using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO. This treatment introduced negatively charged carboxylate groups to the fibers. TEMPO-treated fibers (TempoF were added to a mixture of amylopectin starch, glycerol, and water. Granules were prepared from this mixture and processed into CNF composites by extrusion. TempoF were easier to process into composites as compared with non-treated pulp fibers (PF. SEM revealed partial disintegration of TempoF during melt processing. Consequently, TempoF gave composites with much better mechanical properties than those of conventional composites prepared from pulp fibers and TPS. Particularly, at 20 wt% TempoF content in the composite, the modulus and strength were much improved. Such a continuous melt processing route, as an alternative to laboratory solvent casting techniques, may promote large-scale production of CNF-based composites as an environmentally friendly alternative to synthetic plastics/composites.

  5. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J., E-mail: rosemarymj@lifecarehll.com

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  6. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    International Nuclear Information System (INIS)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J.

    2016-01-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  7. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  8. Characterisation and application of NovaFiber lignin

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Snijder, M.H.B.; Kranenbarg, A.; Keijsers, E.R.P.; Jong, de E.; Stigsson, L.L.

    2004-01-01

    Sulphur-free lignin coming from a novel alkaline-pulping process called NovaFiber, which has been developed by KIRAM AB, has been characterised and evaluated for potential applications. A Kraft lignin has been used for comparison. Considering the characterisation results of a NovaFiber softwood and

  9. The effects of apple pulp and probiotic on performance, egg quality traits and blood parameters of laying hens

    Directory of Open Access Journals (Sweden)

    Shabaz Noranian

    2016-11-01

    Full Text Available Introduction Apple is one of the most important fruits that is produced in the large amount in Iran. It is a good source of vitamins and minerals and active fiber. Most of the apples that product in Iran are use in food industry for producing different kinds of apple juices. After Juicing, more than 20% of apple, remain as waste. The remained matter contain considerable amount of vitamins and minerals that usually found in fresh apple, moreover it is rich source of pectin and crude fiber. Generally this byproduct discharge to environment and cause some serious environmental problems. It is thought that use of apple pulp as a part of apple waste in laying hens diets not only prevent some environmental problems, but also can improve their performance, egg quality traits, and blood biochemical parameters and reduce the production cost. The current study has been designed to investigate these traits. Materials and Methods This experiment was carried out on 192 Hi-line (W36 laying hens in a completely randomized design as (2*2 factorial arrangement with two levels of apple pulp (0 and 4% and two levels of probiotic (protexin (0 and 0.005% in 4 treatments, 4 replicates and 12 birds per replicate for 12 weeks (65-76 weeks. Results and Discussion Using apple pulp and probiotic in diets improved the egg production performance, egg quality traits and blood parameters of laying hens (P0.05. Probiotic improved egg weight, egg production percentage, egg mass, feed conversion ratio and Haugh unit. In interaction effects, using apple pulp and probiotic improved the performance and egg quality traits of laying hens. The highest egg weight, egg production, egg mass and the best feed conversion were obtained with diet containing 4% apple pulp and 0.005% probiotic. Also the highest amount of albumin, eggshell thickness and Haugh unit were observed with 4% apple pulp and 0.05% probiotic. Apple pulp decreased the blood levels of triglyceride, cholesterol and albumin

  10. Residues of {sup 14}C-paclobutrazol in mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Maria A.; Tornisielo, Valdemar L.; Castanho, Giuliane M., E-mail: macosta@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Ecotoxicologia

    2009-07-01

    Paclobutrazol (PBZ) is a growth regulator used in agricultural systems whose purpose is the control of vegetative growth, stimulating the reproductive capacity of plants. This growth regulator remains active in soil for a long time and its half-life varies with the type of soil and climatic conditions, can severely affect the development of crops. This work aimed to study the residues / metabolites of {sup 14}C-PBZ in mango pulp Tommy Atkins. The tests were performed with mangoes grown in pots stainless steel and application of {sup 14}C-PBZ was performed by the soil projection of the crown, and the mangoes tested in two periods, one year and two years after application. To evaluate the levels of residues of {sup 14}C-PBZ was realize the burning of 200 mg of pulp on biological oxidized and detached {sup 14}CO{sub 2} was detected by liquid scintillation spectrophotometer. The results were 1.65 % of residue of PBZ on fruit collected after two years of application and 4.30 % of residue of PBZ collected on fruit after a year of application and also can see that the product remained in the soil for more than one year, is translocated to the plant and reach the edible part, the pulp fruit. The identification of residual {sup 14}C- PBZ/metabolites by thin-layer chromatography did not reveal any pattern of PBZ / metabolites due to the low activity detected in the samples. Therefore, another procedure was performed for extraction and then analyzed by high performance liquid chromatography (HPLC) for detection of metabolites in the PBZ of mango pulp. (author)

  11. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    Science.gov (United States)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-05-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.

  12. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    International Nuclear Information System (INIS)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-01-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance

  13. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murdy, Rachel Campbell; Mak, Michelle [Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri; Mohanty, Amar K. [Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, ON N1G 2W1 (Canada)

    2015-05-22

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.

  14. FATE OF ENDOSULFAN AND DELTAMETHRIN RESIDUES DURING TOMATO PASTE PRODUCTION

    Directory of Open Access Journals (Sweden)

    CIGDEM UYSAL-PALA

    2006-12-01

    Full Text Available In this study, the effects of tomato paste processing steps on pesticides with active ingredient endosulfan and deltamethrin were investigated in Biga/Canakkale. Residue data were obtained by analyzing samples taken during harvesting, taken after washing and chopping, taken after pulping (pulp and pomace and taken from the tomato paste with GC-ECD. In the process of making tomato paste, washing decreased endosulfan and deltamethrin, 30.62% and 47.58%, respectively. Pre-heating, pulping, evaporation and half-pasteurization increased deltamethrin 2.33% while decreasing endosulfan 66.5% after washing. The whole process decreased endosulfan and deltamethrin, 76.8% and 46.3%, respectively. The residues were mostly collected in pomace.

  15. Characterizing Green Fiber Bottle Prototypes Using Computed Tomography

    DEFF Research Database (Denmark)

    Saxena, Prateek; Bissacco, Giuliano; Stolfi, Alessandro

    2017-01-01

    Due to ever increasing demand of sustainability and biodegradability, there arises a need to develop environmental friendly packaging products. Green fiber bottle is a packaging product for carbonated beverages, made out of cellulose fibers. The production process accounts for moulding paper pulp...

  16. Microstructural changes and residual properties of fiber reinforced cement composites exposed to elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Vejmelková, E.; Švarcová, Silvie; Bezdička, Petr; Černý, R.

    2012-01-01

    Roč. 17, č. 2 (2012), s. 77-89 ISSN 1425-8129 Institutional research plan: CEZ:AV0Z40320502 Keywords : fiber reinforced cementcomposites * high temperatures * mineralodical composition * microstructure * residual strength * apparent moisture diffusivity Subject RIV: JI - Composite Materials Impact factor: 0.385, year: 2012

  17. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID.

    Science.gov (United States)

    Lourenço, Ana; Gominho, Jorge; Marques, António Velez; Pereira, Helena

    2012-11-01

    Eucalyptus globulus sapwood and heartwood showed no differences in lignin content (23.0% vs. 23.7%) and composition: syringyl-lignin (17.9% vs. 18.0%) and guaiacyl-lignin (4.8% vs. 5.2%). Delignification kinetics of S- and G-units in heartwood and sapwood was investigated by Py-GC-MS/FID at 130, 150 and 170°C and modeled as double first-order reactions. Reactivity differences between S and G-units were small during the main pulping phase and the higher reactivity of S over G units was better expressed in the later pulping stage. The residual lignin composition in pulps was different from wood or from samples in the initial delignification stages, with more G and H-units. S/G ratio ranged from 3 to 4.5 when pulp residual lignin was higher than 10%, decreasing rapidly to less than 1. The S/H was initially around 20 (until 15% residual lignin), decreasing to 4 when residual lignin was about 3%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Performance and efficiency of old newspaper deinking by combining cellulase/hemicellulase with laccase-violuric acid system

    International Nuclear Information System (INIS)

    Xu Qinghua; Fu Yingjuan; Gao Yang; Qin Menghua

    2009-01-01

    Performance and efficiency of old newspaper (ONP) deinking by combining cellulase/hemicellulase with laccase-violuric acid system (LVS) were investigated in this study. Brightness, effective residual ink concentration (ERIC) and physical properties were evaluated for the deinked pulp. Fiber length, coarseness, specific surface area and specific volume were also tested. The changes of dissolved lignin during the deinking processes were measured with UV spectroscopy. The fiber morphology was observed with environmental scanning electronic microscopy (ESEM). Experimental results showed that, compared to the pulp deinked with each individual enzyme, ERIC was lower for the cellulase/hemicellulase-LVS-deinked pulp. This indicated that a synergy existed in ONP deinking using a combination of enzymes. After being bleached by H 2 O 2 , enzyme-combining deinked pulp gave higher brightness and better strength properties. Compared with individual enzyme deinked pulp, average fiber length and coarseness decreased a little for the enzyme-combining deinked pulps. A higher specific surface area and specific volume of the pulp fibers were achieved. UV analysis proved that more lignin was released during the enzyme-combining deinking process. ESEM images showed that more fibrillation was observed on the fiber surface due to synergistic treatment

  19. Chemical pulping of waste pineapple leaves fiber for kraft paper production

    Directory of Open Access Journals (Sweden)

    Waham Ashaier Laftah

    2015-07-01

    Full Text Available The main objective of this study is to evaluate the implementation of acetone as a pulping agent for pineapple leaves. Mixtures of water and acetone with concentration of 1%, 3%, 5%, 7%, and 10% were used. The effects of soaking and delignification time on the paper properties were investigated. Thermal and physical properties of paper sheet were studied using thermogravimetric analysis (TGA and tearing resistance test respectively. The morphological properties were observed using microscope at 200× magnification. The paper sheet produced from pulping with 3% acetone concentration shows the highest mechanical properties. Papers strength was improved by increasing the delignification time. The delignification time was reduced by cooking the pineapple leaves at a temperature of 118 °C under applied pressure of 80 kPa which has remarkable effect on paper strength.

  20. APROVEITAMENTO DA CASCA DO COCO-VERDE (Cocos nucifera L. PARA PRODUÇÃO DE POLPA CELULÓSICA

    Directory of Open Access Journals (Sweden)

    Mahalia Sojo Cardoso

    2016-01-01

    Full Text Available The coconut husk is a residue from consumption of coconut water. In coastal cities this residue has already become a big problem, because it is difficult to decompose. The present study aimed to evaluate the husk of the coconut ( Cocos nucifera L. for production of kraft pulp. The raw material was characterized and had its basic density, chemical composition, fiber size and proportion of anatomical elements analyzed. Pulping tests were conducted and one of them was chosen for repetition. In each pulping the alkali charge was variable in order to prepare an alkaline curve. The results from the pulping process show high levels of kappa number, low yields and low rejects content. The following characteristics of the material, low basic density (0.128 g/cm ³, high amount of extractives (33.68% and low proportion of fibers (22.11%, corroborate to these results. Thus, the production of pulp from the coconut husk by the kraft process, it is not an alternative technically feasible.

  1. Effects of the bleaching sequence on the optical brighteners action in eucalyptus kraft pulp

    Directory of Open Access Journals (Sweden)

    Mauro Manfredi

    2014-06-01

    Full Text Available During the bleaching process the pulp is treated with chemical reagents that can be retained in the pulp and interfere in the action of the optical brighteners. Different bleaching sequences can produce pulps at the same brightness but with different potential to whiteness increase when treated with optical brighteners. The objective of this study was to evaluate the influence of the bleaching sequence on the efficiency of disulphonated and tetrasulphonated optical brighteners. Eucalyptus kraft pulp was bleached using four different bleaching sequences. For each pulp three brightness targets were aimeds. For each bleaching sequence mathematical model was generated for predicting the final pulp whiteness according to the initial brightness and the optical brightener charge applied. The presence of organochlorine residues in the pulp reduced the effectiveness of the optical brighteners. Therefore, bleaching sequences that use low chlorine dioxide charge favors for greater gains in whiteness with the application of optical brighteners. The replacement of the final chlorine dioxide bleaching stage with a hydrogen peroxide one in the sequence increased the efficiency of the optical brightening agents.

  2. HS-SPME optimization and extraction of volatile compounds from soursop (Annona muricata L. pulp with emphasis on their characteristic impact compounds

    Directory of Open Access Journals (Sweden)

    Karen Leticia de SANTANA

    Full Text Available Abstract Aroma and taste are decisive factors in the selection of any food. The aim of this study was to extract the volatile compounds present in soursop (Annona muricata L. pulp by Solid-phase microextraction (SPME technique using 3 different fibers (DVB/CAR/ PDMS, CAR/PDMS and PDMS/DVB. An experimental design was set up to evaluate the best extraction conditions wherein the variables were adsorption temperature, ionic strength and pulp concentration. The separation of volatiles was performed in chromatographic columns of different polarity (polar and non-polar while volatile compounds were identified by analysis in high resolution gas chromatography system coupled with mass spectrometry. The results obtained using 3 different fibers revealed the capture of about 40 compounds. The CAR/PDMS fiber was more efficient for the capture of esters and DVB/CAR/PDMS fiber for terpenes. The optimum conditions for capture of higher number of volatiles for polar column were 45 °C for extraction, 15% of ionic strength and 50% of pulp concentration which resulted in separation of 87 compounds. Among the principal character impact compounds from soursop are (E-2-hexenoate, methyl hexenoate and linalool.

  3. Innovations in papermaking: An LCA of printing and writing paper from conventional and high yield pulp

    International Nuclear Information System (INIS)

    Manda, B.M. Krishna; Blok, Kornelis; Patel, Martin K.

    2012-01-01

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO 2 ) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO 2 coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10–35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13 GJ/ton paper) and GHG emission reduction by 75% (0.6 ton CO 2 eq./ton paper). Micro TiO 2 coated CTMP paper offered NREU savings by 25% (3 GJ/ton paper) and savings of GHG emissions by 10% (0.1 ton CO 2 eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then

  4. Residual stress analysis in carbon fiber-reinforced SiC ceramics; Eigenspannungsanalyse in kohlenstoffaserverstaerkten SiC-Keramiken

    Energy Technology Data Exchange (ETDEWEB)

    Broda, M.

    1998-12-31

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C{sub fiber}/SiC{sub matrix} specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface ({mu}m) have been measured using characteristic X-radiation and applying the sin {sup 2}{psi} method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250{mu}m) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [Deutsch] Im Rahmen der Arbeit werden systematische Eigenspannungsanalysen an langfaserverstaerkten SiC-Keramiken durchgefuehrt. Hierbei werden polymerpyrolytisch abgeleitete, laminierte C{sub Faser}/SiC{sub Matrix} Proben und Bauteile untersucht, welche industriell gefertigt wurden. Fuer die zerstoerungsfreie Eigenspannungsermittlung kommen verschiedene Beugungsverfahren zum Einsatz. Dadurch kann die Eigenspannungsverteilung in diesen Proben vollstaendig erfasst werden, d.h. der Eigenspannungszustand im Oberflaechenbereich ({mu}m) wird mit Hilfe charakteristischer Roentgenstrahlung unter Nutzung der sin{sup 2}{psi}-Methode als auch der Streuvektor-Methode beschrieben. Fuer die Analyse der Eigenspannungen im Volumen (cm) wird die Neutronenbeugung herangezogen. Um den Spannungszustand in den einzelnen Fasermatten (ca. 250 {mu}m) in Abhaengigkeit ihrer Lage

  5. Green fiber bottle: Towards a sustainable package

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido; Howard, Thomas J.

    The Green Fiber Bottle is a fully biodegradable bottle made from molded paper pulp.Its development depends on the establishment of the manufacturing technology. Impulse drying, an innovative way of drying, has the potential to improve significantly the manufacturing process of the Green Fiber Bot...... Bottle, towards a sustainable packaging...

  6. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    OpenAIRE

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluen...

  7. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations

    DEFF Research Database (Denmark)

    Haagensen, Frank Drøscher; Skiadas, Ioannis V.; Gavala, Hariklia N.

    2009-01-01

    potential of the olive pulp, which is the semi solid residue generated from the two-phase processing of the olives for olive oil production. Wet oxidation and enzymatic hydrolysis have been applied aiming at the enhancement of carbohydrates' bioavailability. Different concentrations of enzymes and enzymatic......, implying that wet oxidation is not a recommended pre-treatment process for olive pulp at the conditions tested. It was also showed that increased dry matter concentration did not have a negative effect on the release of sugars, indicating that the cellulose and xylan content of the olive pulp is relatively...

  8. Properties of foam and composite materials made o starch and cellulose fiber

    Science.gov (United States)

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  9. Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment.

    Science.gov (United States)

    Chen, Liheng; Fu, Shiyu

    2013-04-03

    Pretreatment combining FeCl3 and Tween80 was performed for cellulose-to-ethanol conversion of eucalyptus alkaline peroxide mechanical pulping waste fibers (EAWFs). The FeCl3 pretreatment alone showed a good effect on the enzymatic hydrolysis of EAWFs, but inhibited enzyme activity to some extent. A surfactant, Tween80, added during FeCl3 pretreatment was shown to significantly enhance enzyme reaction by eluting enzymatic inhibitors such as iron(III) that are present at the surface of the pretreated biomass. Treatment temperature, liquid-solid ratio, treatment time, FeCl3 concentration, and Tween80 dosage for pretreatment were optimized as follows: 180 °C, 8:1, 30 min, 0.15 mol/L, and 1% (w/v). Pretreated EAWFs under such optimal conditions provided enzymatic glucose (based on 100 g of oven-dried feedstock) and substrate enzymatic digestibility of EAWFs of 34.8 g and 91.3% after 72 h of enzymatic hydrolysis, respectively, with an initial cellulase loading of 20 FPU/g substrate.

  10. Nutritional and sensory quality evaluation of sponge cake prepared by incorporation of high dietary fiber containing mango (Mangifera indica var. Chokanan) pulp and peel flours.

    Science.gov (United States)

    Aziah, A A Noor; Min, W Lee; Bhat, Rajeev

    2011-09-01

    Sponge cake prepared by partial substitution of wheat flour with mango pulp and mango peel flours (MPuF and MPeF, respectively) at different concentrations (control, 5%, 10%, 20% or 30%) were investigated for the physico-chemical, nutritional and organoleptic characteristics. Results showed sponge cake incorporated with MPuF and MPeF to have high dietary fiber with low fat, calorie, hydrolysis and predicted glycemic index compared with the control. Increasing the levels of MPuF and MPeF in sponge cake had significant impact on the volume, firmness and color. Sensory evaluation showed sponge cake formulated with 10% MPuF and 10% MPeF to be the most acceptable. MPeF and MPuF have high potential as fiber-rich ingredients and can be utilized in the preparation of cake and other bakery products to improve the nutritional qualities.

  11. Maximal release of highly bifidogenic soluble dietary fibers from industrial potato pulp by minimal enzymatic treatment

    DEFF Research Database (Denmark)

    Thomassen, Lise Vestergaard; Vigsnæs, Louise Kristine; Licht, Tine Rask

    2011-01-01

    Potato pulp is a poorly utilized, high-volume co-processing product resulting from industrial potato starch manufacturing. Potato pulp mainly consists of the tuber plant cell wall material and is particularly rich in pectin, notably galactan branched rhamnogalacturonan I type pectin which has...

  12. Kraft pulping and ECF bleaching of Eucalyptus globulus pretreated by the white-rot fungus Ceriporiopsis subvermispora - doi: 10.4025/actascitechnol.v34i3.12410

    Directory of Open Access Journals (Sweden)

    Claudio Salazar

    2012-05-01

    Full Text Available Eucalyptus globulus wood chips were decayed by the lignin-degrading fungus Ceriporiopsis subvermispora as a pretreatment step before kraft pulping. Weight and component losses of wood after the biotreatment were the following: weight (5%, glucans (1.5%, xylans (4.3%, lignin (5.7% and extractives (57.5%. The residual amount of lignin (expressed by the kappa number in pulps from biotreated wood chips was lower than that of pulps from the undecayed control. Depending on the delignification degree, kraft biopulps presented similar or up to 4% increase in pulp yield and 20% less hexenuronic acids (HexA than control pulps. The extended delignification with O2 decreases approximately 50% of the kappa number of the pulps and increases brightness, but had no effect in HexA reduction. The bleaching steps with chlorine dioxide (D0ED1 sequence decreased the kappa number up to 97%, increased pulp brightness up to 84% ISO and decreased HexA amount up to 91%. The use of C. subvermispora in biopulping of E. globulus generated important benefits during the production of kraft pulps that are reflected in a high pulp yield, low residual lignin content, low HexA amount, high brightness and viscosity of the biopulps as compared with pulps produced from untreated wood chips.

  13. Resíduo de polpas de frutas desidratadas na alimentação de leitões em fase de creche Powdered fruits pulp residue in the piglets feeding in the nursery phase

    Directory of Open Access Journals (Sweden)

    Messias Alves da Trindade Neto

    2004-10-01

    Full Text Available Avaliou-se química e biologicamente o resíduo de polpa de frutas desidratadas destinadas à indústria de alimentos enriquecidos. No estudo de digestibilidade, foram utilizados 12 leitões castrados, híbridos comerciais, com peso inicial de 12,2 ± 1,6 kg, distribuídos individualmente em gaiolas. Os tratamentos foram dieta basal e dieta-teste, com substituição de 30% da matéria seca na dieta basal. Os resultados da composição química foram: matéria seca, 89,54%; amido, 71,1%; glicose, 5,4%; frutose, 2,2%; proteína bruta, 5,33%; energia bruta, 3771 kcal/kg; matéria seca digestível, 96,01%; energia digestível, 3448 kcal/kg; energia metabolizável, 3389 kcal/kg. O estudo de metabolismo e a análise bromatológica indicaram o resíduo de polpas como alternativa a ser avaliada em dietas de leitões. No ensaio de desempenho, foram utilizados 90 leitões com peso inicial de 6,60 ± 0,76 kg, distribuídos em blocos casualizados, com seis repetições e três animais por unidade experimental. Os tratamentos consistiram de níveis de inclusão do resíduo de polpa (0, 25, 50, 75 e 100% em substituição ao milho da dieta-controle. As fases estudadas foram inicial-1(14 dias, inicial-2 (21 dias e período total. Não houve diferenças entre os níveis de inclusão estudados sobre as variáveis de desempenho. Em dieta farelada, o resíduo de polpa de frutas desidratadas pode substituir totalmente o milho.It was evaluated chemically and biologically the powdered fruits pulp residue, used in human food industry. In the digestibility study it was used 12 commercial hybrids barrows piglets, with initial weight 12,2 ± 1,6 kg, allotted in individual cages. The treatments were a basal and a test diet. In the test diet the fruits pulp residue replaced 30% of the basal dry matter. The following values were obtained: dry matter 89,54%, starch 71,1%, glucose 5,4%, fructose 2,2%, crude protein 5,33%, gross energy 3771 kcal/kg, apparent digestible dry

  14. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    Science.gov (United States)

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652

  15. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery.

    Science.gov (United States)

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin

    2017-12-01

    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R 2  = 0.963, P film FOTCs increases exponentially with adjusted R 2  = 0.959 in continuous wave mode, while in pulsed mode with adjusted R 2  = 0.934. The temperature was elevated up to about 210 °C and eventually to be a stable state. Film FOTCs centralized approximately 50% of laser energy on the fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  16. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  17. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    Science.gov (United States)

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill.

  19. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    Science.gov (United States)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  20. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-03-02

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  1. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  2. Nutritional variation in baobab (Adansonia digitata L.) fruit pulp and seeds based on Africa geographical regions.

    Science.gov (United States)

    Muthai, Kinuthia U; Karori, Mbuthia S; Muchugi, Alice; Indieka, Abwao S; Dembele, Catherine; Mng'omba, Simon; Jamnadass, Ramni

    2017-11-01

    Baobab ( Adansonia digitata L.) is an indigenous fruit tree associated with the Savannah drylands of sub-Saharan Africa. Local communities mainly utilize the leaves, pulp, and seeds of baobab as a source of food and for income generation. The present study was conducted to determine the nutritive attributes of baobab fruit pulp and seeds across provenances in east, west, and southern Africa and to determine whether the nutrient content varied with the provenance of origin. Pulp and seed proximate composition and mineral element concentration were determined using the AOAC 1984 methods and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The results showed that there exist significant variation ( p  < .05) in pulp moisture, protein, fiber, ash, and elemental content among provenances. The highest mean pulp crude fiber (8.68 g 100 g -1 dw) was recorded in Kenya. At country level, Malawi had the highest mean pulp potassium (22.2 mg g -1 ), calcium (4,300 mg kg -1 ), magnesium (2,300 mg kg -1 ), sodium (1,000 mg kg -1 ), and phosphorus (1,100 mg kg -1 ) levels. Kenya had the highest mean pulp iron (57.4 μg g -1 ) and manganese (27.2 μg g -1 ) content, while Mali had the lowest iron (13.1 μg g -1 ) and manganese (8.6 μg g -1 ). At country level, the mean seed calcium content was highest (3,200 mg kg -1 ) in Malawi and lowest (2,000 mg kg -1 ) in Kenya. The highest mean iron content of 63.7 μg g -1 was recorded in seeds from Kenya, while the lowest (25.8 μg g -1 ) was in Mali. Baobab seed mineral and proximate content varied significantly ( p  < .001) among the selected countries. Overall, baobab fruit pulp and seeds contain significant amounts of nutritionally essential minerals and proximate components but the amounts varied significantly among the selected countries. This variation offers opportunities for selecting provenances to concentrate on during germplasm collection for conservation and

  3. Resultados experimentais com a cultura da Crotalaria juncea L. L., como planta produtora de celulose para papel Results from field trials with Crotalaria juncea L. as fiber plant for paper pulp

    Directory of Open Access Journals (Sweden)

    Júlio César Medina

    1961-01-01

    Full Text Available São apresentados e discutidos os resultados de vários experimentos de campo realizados na Estação Experimental de Tatuí, do Instituto Agronômico, com a Crotalaria juncea L. como planta produtora de celulose para papel. Êsses resultados permitem fazer recomendações úteis sôbre o melhoramento técnico da cultura e da produção, no concernente às questões de variedades, espaçamento, densidade de semeação, época de semeação e época de colheita dos caules.This paper reports the results obtained in sunn hemp (Crotalaria juncea L. field trials carried out at the Tatui Experiment Station, São Paulo State. The trials were designed to study the effect of varieties, spacing x rate of seeding, time of sowing and time of harvesting on sunn hemp fiber production as a raw material for paper pulp. From the results achieved in these trials, the following recommendations can be made for growing sunn hemp as a fiber plant for paper pulp in the State of São Paulo. VARIETY: to use the common variety that is normally sowed for green manuring. TIME OF SOWING: to sow the seeds during october. RATE OF SEED SOWING AND SPACING: to sow the seeds at the rate of 100 lbs/ acre in rows spaced 8 inches apart. TIME OF HARVESTING: to harvest the stalks for mechanical fiber extraction when the seed pods are in the mature stage.

  4. Characterizing Cellulosic Fibers from Ulex europaeus

    OpenAIRE

    Richard Celis; Marco Torres; Paulina Valenzuela; Rolando Rios; William Gacitúa; Héctor Pesenti

    2014-01-01

    Information on the morphological and physical properties of biofibers is necessary to support the mechanical understanding of the biological design of plants, as well as for the development of new technology that adds value to non-traditional bioresources, such as those based on Ulex europaeus fibers. Ulex europaeus fibers were extracted through a chemical pulping process at 170 °C and with 40 g/L NaOH. The dimensions of the fibers produced were 0.97 ± 0.1 mm in length and 13 ± 2 μm in diamet...

  5. Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks.

    Science.gov (United States)

    Cortés, R Nallely Falfán; Guzmán, Iñigo Verdalet; Martínez-Bustos, Fernando

    2014-12-01

    The aim of this work was to study the effect of the addition of passion fruit pulp (PFP: 0-7%), the variation of barrel temperature in the third zone extruder (BT: 80-140 °C) and feed moisture (FM:16-30%) in a blend of corn starch and passion fruit pulp on different physicochemical characteristics of directly expanded snacks by extrusion technology. Single-screw laboratory extruder and a central, composite, rotatable experimental design were used. Expansion index of extrudates ranged between 1.0 and 1.8. Decreasing of feed moisture (18%), passion fruit pulp concentration (1.42%) and the increasing of barrel temperature (127 °C) resulted in higher expansion index. The increasing of feed moisture and passion fruit pulp concentration resulted in higher penetration force values of extrudates. The passion fruit pulp concentration showed a highly significant effect (p ≤ 0.01) on the L *, a * and b * parameters. Passion fruit pulp has a reasonable source of β-carotene, proteins and dietary fibers that can be added to expanded snacks.

  6. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Directory of Open Access Journals (Sweden)

    Michel Goldberg

    2015-01-01

    Full Text Available The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  7. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2010-01-01

    Full Text Available Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.

  8. Methods And Apparatus For Acoustic Fiber Fractionation

    Science.gov (United States)

    Brodeur, Pierre

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  9. Morphological and Chemical Characterization of Green Bamboo (Dendrocalamopsis oldhami (Munro Keng f. for Dissolving Pulp Production

    Directory of Open Access Journals (Sweden)

    Shilin Cao

    2014-06-01

    Full Text Available With the sustained growth of dissolving pulp demand all over the world, the search for alternative bamboo materials has come into focus in China due to the shortage of wood and the abundance of bamboo resources. In this study, to obtain updated information concerning green bamboo growing in southeastern China and to develop its processing technologies for dissolving pulp, the fiber morphology, chemical composition, elemental composition, degree of polymerization (DP of cellulose, and crystallinity index (CrI of cellulose were investigated. The experimental results show that green bamboo has potential for use as dissolving pulp because it has a lower Runkel ratio and fines content than moso bamboo, and a much lower lignin content and similar α-cellulose and hemicellulose contents compared to softwoods and hardwoods. Compared to the cortex and culm, the node had the shortest fibers and more than 30% of fines, the highest content of extractives and lignin, and the lowest α-cellulose content. As a result, a de-knotting operation prior to cooking can contribute to the production of high-grade dissolving pulp. The DP and CrI of cellulose from the node were much lower than that of cellulose from the culm and cortex. Moreover, green bamboo had the high content of ash, primarily distributed in the cortex. The concentration of Si was 4487 ppm in the cortex, nearly five times higher than that in the culm and node.

  10. Ethanol extraction of phytosterols from corn fiber

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  11. Effect of inclusion of citrus pulp inxaraés grass silage

    Directory of Open Access Journals (Sweden)

    Júnior Issamu Yasuoka

    2016-01-01

    Full Text Available The objective of this study was to evaluate the effect of inclusion of different levels of pelleted citrus pulp (PCP on the quality of xaraés grass silage. Xaraés grass was ensiled at 54 days of growth with 0, 10, 20 and 30% PCP and divided into 20 experimental silos (five repetitions/treatment. A completely randomized design was adopted. The silos were opened after 67 days for the determination of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF, pH, and titratable acidity of the silages. The inclusion of PCP did not influence DM content, but reduced CP content. NDF and ADF content decreased with the addition of citrus pulp. Regarding pH, a significant difference was only observed for the inclusion of 30% PCP. Titratable acidity in the silage was lower in the absence of PCP (0% compared to the treatment with 30% (P<0.05. The inclusion of 30% PCP in xaraés grass silage is indicated since it improves the quality of the fibrous fraction, while maintaining acceptable pH values.

  12. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    International Nuclear Information System (INIS)

    El-Sakhawy, M.M.; Hassan, M.L.

    2005-01-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested

  13. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sakhawy, M M; Hassan, M L [Cellulose and Paper Dept., National Research Center, Dokki, Cairo (Egypt)

    2005-07-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested.

  14. CHEMICAL COMPOSITION, CRYSTALLINITY, AND THERMAL DEGRADATION OF BLEACHED AND UNBLEACHED KENAF BAST (Hibiscus cannabinus PULP AND NANOFIBERS

    Directory of Open Access Journals (Sweden)

    Mehdi Jonoobi

    2009-05-01

    Full Text Available Kenaf (Hibiscus cannabinus nanofibers were isolated from unbleached and bleached pulp by a combination of chemical and mechanical treatments. The chemical methods were based on NaOH-AQ (anthraquinone and three-stage bleaching (DEpD processes, whereas the mechanical techniques involved refining, cryo-crushing, and high-pressure homogenization. The size and morphology of the obtained fibers were characterized by environmental scanning electron microscopy (ESEM and transmission electron microscopy (TEM, and the studies showed that the isolated nanofibers from unbleached and bleached pulp had diameters between 10-90 nm, while their length was in the micrometer range. Fourier transform infrared (FTIR spectroscopy demonstrated that the content of lignin and hemicellulose decreased in the pulping process and that lignin was almost completely removed during bleaching. Moreover, thermogravimetric analysis (TGA indicated that both pulp types as well as the nanofibers displayed a superior thermal stability as compared to the raw kenaf. Finally, X-ray analyses showed that the chemo-mechanical treatments altered the crystallinity of the pulp and the nanofibers: the bleached pulp had a higher crystallinity than its unbleached counterpart, and the bleached nanofibers presented the highest crystallinity of all the investigated materials.

  15. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  16. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Kukielka, A.; Mikolajczyk, W.; Starostka, P.; Stupinska, H.

    2002-01-01

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  17. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process

  18. Review on Bamboo Utilization as Biocomposites, Pulp and Bioenergy

    Science.gov (United States)

    Yusuf, Sulaeman; Syamani, F. A.; Fatriasari, W.; Subyakto

    2018-03-01

    One of potential non wood bioresources utilized in industrial application is bamboos. Bamboos are include in graminae family which have high biomass productivity, easy and rapid production, wide avability and high holocellulose content. Indonesia has a huge potential of bamboos, more than 162 bamboo species are found however only some of them are planted that have a high economic value. Bamboos have some advantages such as can be harvested at 3 years, straight culm, high strength, easy to be processed, and relatively cheap. Research Center for Biomaterials has developed utilization of bamboo culm for ply bamboo product as alternative of plywood since 1995, using gombong bamboo, tali bamboo, sembilang bamboo, andong bamboo with PF resin as adhesive. Other biocomposite products from bamboos include particle board, cement board and polymer-bamboo fiber composites. In term of processing technique and final product quality, bamboo composites from ply bamboo are the most prospectable material to be utilized in industrial application. Yellow bamboo and betung bamboo have also been developed as pulp and paper. Biopulping using soda and kraft pulping after biological pretreatment using white rot fungi to remove lignin was used as pulping method in this conversion. Biokraft pulping with Trametes versicolor for 45 days with inoculum loading of 10% resulted better pulp quality compared to the other fungi. Betung bamboo had good morphological characteristics and chemical component content to be converted into bioenergy such as bioethanol. Several pretreatment methods have been developed in order to result high sugar yield. Microwave assisted acid hydrolysis was preferedin producing higher yield from the pretreated bamboo compared to enzymatic hydrolysis. By using this method, the bamboo pretreated by biological-microwave pretreatment results higher improvement to increase sugar yield.

  19. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    Science.gov (United States)

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).

  20. Evaluation of a value prior to pulping-thermomechanical pulp business concept. Part 2.

    Science.gov (United States)

    Ted Bilek; Carl Houtman; Peter Ince

    2011-01-01

    Value Prior to Pulping (VPP) is a novel biorefining concept for pulp mills that includes hydrolysis extraction of hemicellulose wood sugars and acetic acid from pulpwood prior to pulping. The concept involves conversion of wood sugars via fermentation to fuel ethanol or other chemicals and the use of remaining solid wood material in the pulping process. This paper...

  1. ANTIOXIDANT ACTIVITY AND PHYSICOCHEMICAL CHARACTERISTICS OF BURITI PULP (Mauritia flexuosa COLLECTED IN THE CITY OF DIAMANTINO – MTS1

    Directory of Open Access Journals (Sweden)

    DAYANE DE OLIVEIRA SANDRI

    Full Text Available ABSTRACT Buriti is a fruit with potential for economic exploitation due to its nutritional components; however, there are few studies about their post-harvest characteristics. Thus, the aim of this study was to determine the physicochemical characteristics and analyze the antioxidant activity of Buriti pulp. Fruits were harvested at full maturity stage, sanitized, pulped and stored under refrigeration until freezing. Then, pulp was submitted to the following analyses: moisture, protein, total carbohydrates and reducing carbohydrates, ashes, lipids, crude fiber, water activity, titratable acidity (TA, pH, color, ß-carotene, a-carotene, antioxidant activity and total energy value (TEV. Analyses were performed in triplicate, and the mean, standard deviation and variation coefficient were determined. Fruit pulp presented 0.98 of water activity, TA of 8.82g/100 g of citric acid, pH 3.78, 59.69% of moisture, 20.92% of fat, 8.56 % of crude fiber, 1.04% of ash, 7.28% of total carbohydrates, 4.50% of reducing carbohydrates, 9098µg/100g of ß carotene and 10086µg/100g of a-carotene. TEV found was 228.28 kcal/100g, the color analysis showed that the pulp has an average light tint value of L * = 59.69, with high hue H * = 68.36 and vivid color with C *= 62.03. Regarding the antioxidant activity, it was observed that Buriti is a fruit that can be used to combat oxidation, as it reduced by 82.42% the amount DPPH reagent used.

  2. Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria.

    Science.gov (United States)

    Ozer, Aysegul; Uzuner, Ugur; Guler, Halil Ibrahim; Ay Sal, Fulya; Belduz, Ali Osman; Deniz, Ilhan; Canakci, Sabriye

    2017-12-29

    A chemical bleaching process of paper pulps gives off excessive amount of chlorinated organic wastes mostly released to environment without exposing complete bioremediaton. Recent alternative and eco-friendly approaches toward pulp bleaching appear more responsive to environmental awareness. Here we report, direct use of a recombinant Bacillus subtilis bacterium for pulp bleaching, endowed with three ligninolytic enzymes from various bacteria. In addition, efficient bleaching performance from glutathione-S-transferase (GST) biocatalyst tested for the first time in pulp bleaching applications was also achieved. Simultaneous and extracellular overproduction of highly active GST, laccase, and lignin peroxidase catalysts were also performed by Bacillus cells. Both enhanced bleaching success and improved delignification rates were identified when enzyme combinations tested on both pine kraft and waste paper pulps, ranging from 69.75% to 79.18% and 60.89% to 74.65%, respectively. Furthermore, when triple enzyme combination applied onto the papers from pine kraft and waste pulps, the best ISO brightness values were identified as 66.45% and 64.67%, respectively. The delignification rates of pulp fibers exposed to various enzymatic bleaching sequences were comparatively examined under SEM. In conclusion, the current study points out that in near future, a more fined-tuned engineering of pulp-colonizing bacteria may become a cost-effective and environmentally friendly alternative to chemical bleaching. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  3. Chemical pulping of waste pineapple leaves fiber for kraft paper production

    OpenAIRE

    Laftah, Waham Ashaier; Abdul Rahaman, Wan Aizan Wan

    2015-01-01

    The main objective of this study is to evaluate the implementation of acetone as a pulping agent for pineapple leaves. Mixtures of water and acetone with concentration of 1%, 3%, 5%, 7%, and 10% were used. The effects of soaking and delignification time on the paper properties were investigated. Thermal and physical properties of paper sheet were studied using thermogravimetric analysis (TGA) and tearing resistance test respectively. The morphological properties were observed using microscope...

  4. The Effect of Straw Fibers in Printing Papers on Dot Reproduction Attributes, as Realized by UV Inkjet Technology

    Directory of Open Access Journals (Sweden)

    Ivana Plazonic

    2016-04-01

    Full Text Available Paper performance qualities strongly depend on the origin of cellulose fibers. Awareness of environmental issues and sustainable development has led to the increase in the use of recycled printing papers. Recovered fibers are often used as a substitute for virgin wood fibers in the production of certain types of papers. As recovered fibers cannot provide the same quality level of paper products as virgin wood fibers, alternative sources of virgin cellulose fibers need to be identified. The aim of this research was to analyze the printability of laboratory papers made of different contents of straw pulp. Therefore, the printing papers were formed using straw pulp of three different cereal species (wheat, barley, and triticale and mixing them with recycled newsprint in different weight ratios. The printability of these laboratory papers was analyzed by classifying dot reproduction quality based on four dot reproduction attributes. Printed dot reproduction greatly affects the quality of reproduction in graphic products, as dots are the most important element in multi-color reproduction of texts and images. It was confirmed that laboratory papers containing straw pulp provide the same or even better dot reproduction quality than laboratory control papers formed only of recycled newsprint.

  5. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling.

    Science.gov (United States)

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-07-14

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35-45 °C and 35-55 °C. The maximum number of cycles was 10³ cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35-45 °C, tensile strength of composite at 10³ cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35-55 °C, tensile strength and Young's modulus of composite at 10³ cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 10³ cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  6. Celulose monossulfito a partir de Bambusa vulgaris schrad Alkaline monosulphite pulping of Bambusa vulgaris schrad

    Directory of Open Access Journals (Sweden)

    Anísio Azzini

    1979-01-01

    Full Text Available Em condições de laboratório foram produzidas pastas celulósicas pelo processo alcalino monossulfito, com várias concentrações dos reagentes químicos, sulfito de sódio e licor-verde sulfato. As propriedades dessas celuloses foram comparadas com aquelas da celulose obtida pelo processo sulfato (kraft de uso generalizado pela indústria de celulose e papel. As características físico-mecânicas e ópticas das celuloses monossulfito e sulfato foram satisfatórias e semelhantes, com exceção da resistência ao rasgo, que na celulose sulfato foi maior. Os cavacos utilizados, nas dimensões de 5,5 x 0,8 x 0,5cm, respectivamente para comprimento, largura e espessura, foram adequados ao processo sulfato e inadequados às condições do processo monossulfito, que produziu celulose com menor rendimento depurado, maior porcentagem de rejeitos e maior teor de lignina residual nas fibras, determinado pelo número kappa. A densidade básica e as dimensões das fibras variaram no sentido radial do colmo, principalmente a densidade básica, cujos valores decresceram acentuadamente da camada externa para a interna.Pulps in laboratory conditions were obtained from Bambusa vulgaris Schrad by the alkaline monosulphite process, with various concentrations of the cooking chemicals. The strength properties of these pulps were compared to those obtained by the sulphate process. The results showed that both pulps were similar, excepting the tear resistance that was higher in the sulphate one. It was observed that chips with 5.5 x 0.8 x 0.5cm, respectively to the length, width and thickness were appropriated to the sulphate process but not to the conditions of the alkaline monosulphate process, which produced pulps with low values in terms of screening yield, percentage of screenings and kappa number. The variability of bamboo culm in the radial direction was also determined regarding basic density and fiber dimensions. The results showed variations in those

  7. High-speed double-disc TMP [thermomechanical pulp] from northern and southern softwoods: One or two refining stages

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.J. (Andritz Sprout-Bauer, Inc., Springfield, OH (United States)); Cort, J.B.; Musselman, R.L. (Andritz Sprout-Bauer, Inc., Muncy, PA (United States))

    1994-01-01

    Pilot-plant studies were carried out to evaluate one- and two-stage high-speed refining processes for production of thermomechanical pulp (TMP) at minimal energy consumption. Both northern (black spruce/balsam fir) and southern (lobolly pine) wood species were tested. Preliminary results indicate both one- and two-stage high-speed refining are suitable for the production of TMP from spruce and fir. Single-stage, high-speed refining of spruce/fir resulted in over 25% energy savings compared to conventional TMP production. The resulting TMP had improved optical and shive content properties, with slightly reduced pulp strength and long fiber content. Two stages of refining were necessary to optimize pulp quality from the lobolly pine furnish. A 15% energy reduction was obtained when comparing high-speed and conventional TMP pulping of lobolly pine at similar operating conditions. The high-speed pine TMP had comparable bonding strength, shive content, and lower tear than conventional two-stage lobolly pine TMP. 14 refs., 11 figs., 6 tabs.

  8. Influence of Polyaniline Coated Kenaf Fiber on Kenaf Paper Sheet

    OpenAIRE

    Abdullah Hisham Nur Syafiqah; Abd Razak Saiful Izwan; Mat Nayan Nadirul Hasraf; Wan Abdul Rahman Wan Aizan

    2015-01-01

    This paper reports the properties of newly developed electrically conductive natural fiber paper sheet made up of kenaf fiber (KF) incorporated with polyaniline coated kenaf fiber (KF-PANI). This study proposed on dispersion of conductive filler in different amount (wt %) into kenaf pulp for developing different electrical conductivity. The conductive sheet (KF/KF-PANI) revealed a percolation concentration at 25 wt% of KF-PANI. Its scanning electron micrograph showed good paper formation with...

  9. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    Science.gov (United States)

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  11. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    Science.gov (United States)

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  12. Residues of acephate and its metabolite methamidophos in/on mango fruit (Mangifera indica L.).

    Science.gov (United States)

    Mohapatra, Soudamini; Ahuja, A K; Deepa, M; Sharma, Debi

    2011-01-01

    Mango, the major fruit crop of India is affected by stone weevil, which can cause serious damage to the fruits. Acephate gives good control of mango stone weevil. Residues of acephate and its major metabolite, methamidophos were evaluated on mango fruits following repeated spray applications at the recommended dose (0.75 kg a.i. ha⁻¹) and double the recommended dose (1.5 kg a.i. ha⁻¹). Acephate residues mostly remained on the fruit peel which persisted up to 30 days. Movement of residues to the fruit pulp was detected after 1 day of application, increased to maximum of 0.14 and 0.26 mg kg⁻¹ after 3 days and reached to below detectable level (BDL) after 20 days. Methamidophos, a metabolite of acephate, was detected from 3rd day onwards in both peel and pulp and persisted up to 15 days. The residues (acephate + methamidophos) dissipated with the half-life of 5 days in peel and pulp. A safe pre-harvest interval of 30 days is recommended for consumption of mango fruits following treatment of acephate at the recommended dose of 0.75 kg a.i. ha⁻¹.

  13. Formulation and characterization of bread using coconut-pulp flour and wheat flour composite with addition of xanthan-gum

    Science.gov (United States)

    Erminawati; Sidik, W.; Listanti, R.; Zulfakar, H.

    2018-01-01

    Coconut-pulp flour is coconut flour made from by-product of coconut-milk based food products. The flour contains no gluten and high fibre, which can be considered as functional potential food. Bread made from composite-flour of coconut-pulp flour and wheat flour was studied for its physic-chemical and sensory characteristics. Addition of hydrocolloid, like xanthan-gum, was aimed to provide viscoelasticity for the dough which is essential for baked product. Composite-flour proportion used in this study was; 10CPF/90WF, 15CPF/85WF and 20CPF/80WF; and xanthan gum to total flour of 0,1% and 0,4%. Variable observed were; crumb-texture, crumb-colour, taste of coconut, preference and flavour; moisture, ash, fiber and soluble-protein contents. The research showed that addition of coconut-pulp flour in the composite-flour decreased specific volume value and increased the bread texture produced. It also increased the bread moisture-content, ash-content, fibre-content and soluble protein-content. Moreover, the xanthan-gum addition resulted in decreased specific-volume value and increased texture and fiber-content of the bread produced. Overall, the sensory characteristic of crumb colour, flavour and panellist preference revealed better than control bread made from wheat flour, however its crumb texture harder compare to control bread made from wheat flour. This study showed that coconut-pulp flour potential to be developed for production of functional food.

  14. Effect of inclusion of citrus pulp in the diet of finishing swines

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Watanabe

    2010-06-01

    Full Text Available The aim of this work was to study the effect of inclusion of citrus pulp in the diet of finishing pigs. In the first trial, 16 Topigs barrows with 80.5±4.7 kg of initial BW were used to evaluate the digestibility of citrus pulp. Having 18.85% of neutral detergent fiber and 41.18% of neutral detergent soluble fiber, citrus pulp showed as a feasible alternative ingredient to be added in the diets of feed restricted finishing pigs. Second trial tested the use of 0, 10, 20, 30% of citrus pulp in the diets of 36-feed-restricted barrows with initial BW of 83.7±5.1 kg. A quadratic trend (P0.05, but a quadratic trend existed on cholesterol serological content.No primeiro ensaio foram utilizados 16 suínos machos castrados da linhagem Topigs, com peso inicial de 80,5±4,7 kg, para a avaliação biológica da polpa cítrica. Por apresentar 18,85% de fibra em detergente neutro e 41,18% de fibra solúvel em detergente neutro, a polpa cítrica mostrou-se como um ingrediente viável a ser utilizado em programas de restrição alimentar qualitativa. No segundo ensaio foram utilizados 36 suínos machos castrados, com peso inicial de 83,7±5,1 kg, recebendo rações com níveis de 0, 10, 20 e 30% de polpa cítrica. Os animais foram abatidos com peso próximo de 130 kg, sendo avaliados quanto ao desempenho e parâmetros séricos. Houve resposta quadrática (P0,05 dos níveis de polpa cítrica sobre a uréia e triacilgliceróis, porém houve resposta quadrática (P<0,05 para o colesterol em função dos níveis de polpa cítrica.

  15. Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique.

    Science.gov (United States)

    Magaia, Telma; Uamusse, Amália; Sjöholm, Ingegerd; Skog, Kerstin

    2013-12-01

    The harvesting, utilization and marketing of indigenous fruits and nuts have been central to the livelihoods of the majority of rural communities in African countries. In this study we report on the content of dietary fiber, minerals and selected organic acids in the pulps and kernels of the wild fruits most commonly consumed in southern Mozambique. The content of soluble fiber in the pulps ranged from 4.3 to 65.6 g/100 g and insoluble fiber from 2.6 to 45.8 g/100 g. In the kernels the content of soluble fiber ranged from 8.4 to 42.6 g/100 g and insoluble fiber from 14.7 to 20.9 g/100 g. Citric acid was found in all fruits up to 25.7 g/kg. The kernels of Adansonia digitata and Sclerocarya birrea were shown to be rich in calcium, iron, magnesium and zinc. The data may be useful in selecting wild fruit species appropriate for incorporation into diets.

  16. Influence of Polyaniline Coated Kenaf Fiber on Kenaf Paper Sheet

    Directory of Open Access Journals (Sweden)

    Abdullah Hisham Nur Syafiqah

    2015-01-01

    Full Text Available This paper reports the properties of newly developed electrically conductive natural fiber paper sheet made up of kenaf fiber (KF incorporated with polyaniline coated kenaf fiber (KF-PANI. This study proposed on dispersion of conductive filler in different amount (wt % into kenaf pulp for developing different electrical conductivity. The conductive sheet (KF/KF-PANI revealed a percolation concentration at 25 wt% of KF-PANI. Its scanning electron micrograph showed good paper formation with no significant damages.

  17. Residual liquors of the pulp industries. 1. Lignohemicelluloses and silica from soda black liquors used as adjuvants in the manufacture of compact paper board

    Energy Technology Data Exchange (ETDEWEB)

    El-Saied, H; Nada, A A.M.; Ibrahem, A A

    1982-01-01

    Lignohemicellulosic materials and SiO/sub 2/ were recovered from black liquors from the pulping of rice straw. The lignohemicellulose improved the properties of compact cardboard from cotton stalk pulp more effectively than those of cardboard from rice straw pulp, while the effectiveness of the SiO/sub 2/ was in the opposite direction. The water resistance of cardboard from cotton stalk pulp made it suitable for both outdoor and indoor use, while cardboard from rice straw pulp could be used only indoors. The lignohemicellulose and SiO/sub 2/ could effectively replace more expensive phenolic resins in cardboard manufacture.

  18. Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa and patawa (Oenocarpus bataua fruit pulp from the amazon region

    Directory of Open Access Journals (Sweden)

    Sylvain Henri Darnet

    2011-06-01

    Full Text Available Buriti and patawa are two endemic palm trees from the Amazon region. Their pulps are traditionally consumed by the local population, but are underused and lesser known worldwide. Nutritional composition, fatty acid and tocopherol contents of the two palm pulps were determined by modern analytical methods: Gas Chromatography (CG and High Performance Liquid Chromatography (HPLC, based on the standards of AOCS (AMERICAN..., 2002 and AOAC (ASSOCIATION..., 1997, respectively. Buriti and patawa fruit pulps are highly nutritive, with respectively, high fat content (38.4% and 29.1% of dry matter (DM, protein content (7.6% and 7.4% of DM and dietary fibers (46% and 44.7% of DM. Buriti pulp can be considered healthy food due its high content of vitamin E (1169 µg.g-1 DM. Patawa pulp is highly oleaginous and its fatty acid composition is very similar to the ones of healthy oils, such as olive oil.

  19. INFLUENCE OF BLEACHING WITH OZONE AND PEROXIDO OF HYDROGEN IN THE YIELD AND QUALITY OF SECONDARY FIBERS

    Directory of Open Access Journals (Sweden)

    Gustavo Ventorim

    2010-08-01

    Full Text Available In this study, Total Chlorine Free (TCF bleaching processes were evaluated for bleaching a secondary fiber of different origens. The samples were bleached to a target brightness of 78 % ISO. The results were interpreted on the basis of chemical cost to reach the target brightness, bleaching yield and bleached pulp quality as measured by viscosity, fluorescence and b* color coordinate. The ozone stage was responsible for improve TCF bleaching performance. The pulp bleached by sequences contained a ozone stage followed by chelation, without interstage washing (ZQ, and a final hydrogen peroxide stage unpressurized (P or pressurized with oxygen (PO, designed as (ZQ(PO showed good results. These sequences decreased pulp b* coordinate significantly and fluorescence slightly. For  all three bleaching processes, it was determined that process yield is negatively affected by hot alkaline stages such as oxygen, O, peroxide, P, and peroxide pressurized with oxygen, (PO and also for the origin of the pulps of secondary fibers.

  20. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  1. Formação de biofilme em gotejadores aplicando água residuária da despolpa dos frutos do cafeeiro = Formation of biofilm in drippers applying wastewater from pulping of the coffee fruits

    Directory of Open Access Journals (Sweden)

    Rafael Oliveira Batista

    2007-07-01

    Full Text Available Este trabalho teve por objetivo analisar a formação de biofilme em sistemas de irrigação por gotejamento aplicando água residuária da despolpa dos frutos do cafeeiro (ARC submetidas ou não à passagem em filtro orgânico. Para isso, foi montada uma estrutura hidráulica de avaliação, constituída de fitas gotejadores, não autocompensantes e posicionados no espaçamento de 0,3 m. Diante dos resultados obtidos, pode-se concluir que: águas residuárias da despolpa de frutos do cafeeiro apresentaram severo risco de entupimento de gotejadores, mesmo quando submetidas a tratamento prévio em filtros orgânicos.This work objectified to analyze the formation of biofilm in drip irrigation systems applying wastewater from pulping of the coffee fruits (ARC with and without ticket in organic filter. For that, a hydraulic structure of evaluation, constituted of drip tape, non pressure compensating, positioned in the spacing of 0,3 m. In accordance with the results obtained can be concluded that: wastewater from pulping of the coffee fruits presented severe risk of clogging of emitters, same when submitted the treatment in organic filters.

  2. Study on the Modification of Bleached Eucalyptus Kraft Pulp Using Birch Xylan

    Science.gov (United States)

    Wenjia Han; Chuanshan Zhao; Thomas Elder; Rendang Yang; Dongho Kim; Yunqiao Pu; Jeffery Hsieh; Arthur J. Ragauskas

    2012-01-01

    In this study, birch xylan was deposited onto elementally chlorine free (ECF) bleached eucalyptus kraft pulp, and the corresponding changes in physical properties were determined. An aqueous 5% birch xylan solution at pH 9 was added to 5 wt% slurry of bleached kraft eucalyptus fibers, with stirring at 70 C for 15 min after which the pH was adjusted to 5–6. The xylan...

  3. Effects of Soda-Anthraquinone Pulping Variables on the Durian Rind Pulp and Paper Characteristics: A Preliminary Test

    Science.gov (United States)

    Rizal Masrol, Shaiful; Irwan Ibrahim, Mohd Halim; Adnan, Sharmiza; Rahmad Talib, Mohd; Sian, Lau Lee

    2017-08-01

    Good combination of pulping variables is required to obtain the quality pulp and paper characteristics. Thus, in this preliminary work, naturally dried durian rind were pulped under Soda-Anthraquinone (Soda-AQ) pulping process with 18% to 22% alkali charge, 0% to 0.1% Anthraquinone (AQ) charge, 90 minutes to 150 minutes of cooking time and 150°C to 170°C to investigate the effect of pulping variables on the characteristics of the pulp and paper. Pulping condition with 0% of AQ charge was also conducted for comparison. Results indicated that the best screen yield percentage, reject yield percentage, freeness, drainage time, tear index, number of folds and optical properties were shown by the pulp produced with combination of the highest active alkali (22%), AQ charge (0.1%), cooking time (150 minutes) and cooking temperature (170°C) except apparent density, tensile index and burst index. This preliminary result shows that the optimum quality of durian rind pulp as a potential papermaking raw material pulp could be produced by selecting the good combination of pulping variables which influences the pulp and paper characteristics.

  4. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    Science.gov (United States)

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.

    Science.gov (United States)

    Honda, Masaki; Sato, Momoko; Toriumi, Taku

    2017-09-01

    Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Energy conservation in pulp and paper industry: some thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Sadawarte, N. S.; Prasad, A. K.; Khanolkar, V. D.; Shenoy, S. C.

    1980-03-15

    The pulp and paper industry is highly energy intensive. In view of the spiralling fuel prices and rising power costs, there is an urgent need to conserve energy through better management of various operations in the industry, from the optimal utilization of the forest residues to the shipment of the final product. The total energy concept, e.g., energy generation, distribution and utilization in Indian paper industry is discussed. The need for an energy audit is emphasized and the formats of energy reporting forms are included. Short and long term measures to be enforced to achieve energy savings in the pulp and paper mills are outlined. Some important energy conservation approaches are also discussed. Factors affecting energy efficiency in a pulp and paper mill are reviewed. Some areas where sustained R and D efforts should be focused to make the paper industry nearly self-sufficient in energy generation and utilization are also given. It is essential to have a National Energy Policy clearly defining achievable targets of energy conservation for industry. The Indian paper industry could advantageously form its own committee to review the operation of the various mills in the country and come out with concrete solutions for higher energy efficiency and more effective conservation of energy.

  7. Histological transformations of the dental pulp as possible indicator of post mortem interval: a pilot study.

    Science.gov (United States)

    Carrasco, Patricio A; Brizuela, Claudia I; Rodriguez, Ismael A; Muñoz, Samuel; Godoy, Marianela E; Inostroza, Carolina

    2017-10-01

    The correct estimation of the post mortem interval (PMI) can be crucial on the success of a forensic investigation. Diverse methods have been used to estimate PMI, considering physical changes that occur after death, such as mortis algor, livor mortis, among others. Degradation after death of dental pulp is a complex process that has not yet been studied thoroughly. It has been described that pulp RNA degradation could be an indicator of PMI, however this study is limited to 6 days. The tooth is the hardest organ of the human body, and within is confined dental pulp. The pulp morphology is defined as a lax conjunctive tissue with great sensory innervation, abundant microcirculation and great presence of groups of cell types. The aim of this study is to describe the potential use of pulp post mortem alterations to estimate PMI, using a new methodology that will allow obtainment of pulp tissue to be used for histomorphological analysis. The current study will identify potential histological indicators in dental pulp tissue to estimate PMI in time intervals of 24h, 1 month, 3 months and 6 months. This study used 26 teeth from individuals with known PMI of 24h, 1 month, 3 months or 6 months. All samples were manipulated with the new methodology (Carrasco, P. and Inostroza C. inventors; Universidad de los Andes, assignee. Forensic identification, post mortem interval estimation and cause of death determination by recovery of dental tissue. United State patent US 61/826,558 23.05.2013) to extract pulp tissue without the destruction of the tooth. The dental pulp tissues obtained were fixed in formalin for the subsequent generation of histological sections, stained with Hematoxylin Eosin and Masson's Trichrome. All sections were observed under an optical microscope using magnifications of 10× and 40×. The microscopic analysis of the samples showed a progressive transformation of the cellular components and fibers of dental pulp along PMI. These results allowed creating a

  8. Forestry and fiber crop production in the higher rainfall areas of tropical Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wood, I.M.; Volck, H.E.; Cameron, D.M.; Thomson, N.J.

    1981-01-01

    An analysis of the nearly 1 million square km of higher rainfall area shows that less than 4% has potential for arable agriculture or commercial forestry. Except for rain forest on the eastern Queensland coast (now largely protected), native forest has little potential for timber or pulp. Plantations of Pinus caribaea var. hondurensis offer the best potential for forest production in Queensland and Northern Territory. The most promising agricultural fiber crops for paper pulp are bagasse, which could be upgraded by mixing with pine mill wastes, and kenaf (Hibiscus cannabinus). The freight costs involved in a forestry and fiber project in northern Australia are analyzed and the possibility of some local processing is considered. (Refs. 33).

  9. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.

    Science.gov (United States)

    Jiménez, L; Ramos, E; Rodríguez, A; De la Torre, M J; Ferrer, J L

    2005-06-01

    The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.

  10. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    Science.gov (United States)

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Determination of pesticides in coconut (Cocos nucifera Linn.) water and pulp using modified QuEChERS and LC-MS/MS.

    Science.gov (United States)

    Ferreira, Jordana Alves; Ferreira, Joana Maria Santos; Talamini, Viviane; Facco, Janice de Fátima; Rizzetti, Tiele Medianeira; Prestes, Osmar Damian; Adaime, Martha Bohrer; Zanella, Renato; Bottoli, Carla Beatriz Grespan

    2016-12-15

    The use of pesticides is directly linked to improvements in productivity and to the preservation of coconut palms. However pesticide analysis is necessary to determine whether pesticide residues in the food products containing coconut are within the maximum residue limits (MRLs), ensuring the quality of these products. This work aimed to develop a method for multiresidue determination of ten pesticides in coconut water and pulp using QuEChERS and LC-MS/MS. The method was effective in terms of selectivity, linearity, matrix effect, accuracy and precision, providing LOD of 3μgkg(-1), LOQ of 10μgkg(-1) and recoveries between 70 and 120% with RSD lower than 20%. The developed method was applied to 36 samples in which residues of carbendazim, carbofuran, cyproconazole and thiabendazole were found below the LOQ in coconut water and pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Swedish Pulp Mill Biorefineries. A vision of future possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Thore (Chamers Univ. of Technology, Goeteborg (Sweden)); Axegaard, Peter; Backlund, Birgit; Samuelsson, Aasa; Berglin, Niklas; Lindgren, Karin (STFI-Packforsk, Stockholm (Sweden))

    2008-07-01

    Today, modern science could make it possible to develop techniques for refining almost the whole wood-matter, pulp mill side streams and bark compounds into platform chemicals, electricity, high quality fuels and structured feed-stock for chemicals and materials. The major challenge is to convert the state of basic scientific knowledge into industrial practise. Our definition of an integrated biorefinery is: 'Full utilization of the incoming biomass and other raw materials for simultaneous and economically optimized production of fibres, chemicals and energy'. Examples of products from a pulp mill biorefinery are: Chemicals and Materials (Phenols, adhesives, carbon fibres, activated carbon, binders, barriers, adhesives, antioxidants, surfactants, chelants, solvents, adhesives surfactants, descaling agents, specialty polymers, pharmaceuticals, nutraceuticals, cosmetics etc., Biofuels (pellets, lignin fuel, methanol, DME, ethanol etc), Electricity (BLGCC, condensing power etc.). The new or increased amounts of traditional products can be made from internal and/or external biomass. Three different levels can be identified: A high degree of energy saving in future mills, especially chemical pulp mills, will lead to large amounts of excess internal biomass which can be transferred to products mentioned above, Components in e.g. the black liquor, forest residues and bark can be upgraded to more valuable ones and the energy balance of the mill is kept through fuel import, wholly or partly depending on the level of mill energy efficiency. This imported fuel can be biomass or other types. External (imported) biomass (in some cases together with excess internal biomass) can be upgraded using synergy effects of docking this upgrading to a pulp mill. Electricity has been included as one of the possible biorefinery products. The electricity production in a mill can be increased in several ways which cannot be directly considered as biorefineries, e.g. recovery boiler

  13. Air-Cured Fiber-Cement Composite Mixtures with Different Types of Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Ali Murat Soydan

    2018-01-01

    Full Text Available This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA. The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp., which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR and modulus of elasticity (MOE values as virgin cellulose (ViC, are very usable for production of the fiber-cement in industrial scale.

  14. Green Fiber Bottle

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    has to have an inner coating barrier. The most reliable solution proposed is to coat the inner walls with silicon dioxide, which is not biodegradable but rather environmentally inert. To enhance the environmental footprint and sustainability of the bottle, and to be competitive with the existing...... technologies, the manufacturing technology for the production of the bottle has to offer the possibility of significant energy savings. Molded pulp products are made from wood fibers dispersed in water, and then they are formed, drained and dried. A relatively large quantity of resources (i.e. energy and time......) is consumed during the drying process. It is in this process stage that an innovative way of drying the products can be exploited by using the concept of impulse drying. Impulse drying is an advance drying technique in which water is removed from a wet paper pulp by the combination of mechanical pressure...

  15. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  16. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  17. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    Science.gov (United States)

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  19. AVALIAÇÃO DA SENSIBILIDADE DAS ANÁLISES DA LIGNINA RESIDUAL PELOS MÉTODOS DE NITROBENZENO, ÓXIDO DE COBRE E ACIDÓLISE

    Directory of Open Access Journals (Sweden)

    Gustavo Ventorim

    2014-01-01

    Full Text Available This study aimed to evaluate the sensitiveness of the information obtained for the residual lignin from Eucalyptus grandis kraft pulps analyzed through the nitrobenzene oxidation, copper oxide (CuO reduction and acidolysis techniques. The chips were cooked, resulting pulps of kappa number 14,5 and 16,9, respectively. Both lignins’ pulps were evaluated through three methods (nitrobenzene oxidation, copper oxide oxidation and acidolysis. Then, they were subjected to an oxygen delignification stage. The 16,9 kappa number pulp resulted in higher levels of non-condensed lignin structures by the acidolysis method, higher syringyl/vanillin ratios (S/V by the nitrobenzene and copper oxide methods and better performance in the oxygen delignification stage. The different methods allowed to differ the residual lignin pulps with kappa number 14,5 and 16,9, and the nitrobenzene oxidation method showed the highest sensitiveness in this study results.

  20. Enhancing forest value productivity through fiber quality

    Science.gov (United States)

    D. Briggs

    2010-01-01

    Developing markets for carbon storage and bioenergy, shifting of the pulp and paper industry to biorefineries, and the potential of new technologies present the forest sector with exciting transformative opportunities and challenges. One of these challenges will be to understand the implications for fiber (wood) quality. This article provides a definitional context for...

  1. Evaluating chemical-, mechanical-, and bio-pulping processes and their sustainability characterization using life cycle assessment

    Science.gov (United States)

    Tapas K. Das; Carl Houtman

    2004-01-01

    Pulp and paper manufacturing constitutes one of the largest industry segments in the United States in term of water and energy usage and total discharges to the environment. More than many other industries, however, this industry plays an important role in sustainable development because its chief raw material— wood fiber—is renewable. This industry provides an example...

  2. Thermal performance of sisal fiber-cement roofing tiles for rural constructions

    OpenAIRE

    Tonoli,Gustavo Henrique Denzin; Santos,Sérgio Francisco dos; Rabi,José Antonio; Santos,Wilson Nunes dos; Savastano Junior,Holmer

    2011-01-01

    Roofing provides the main protection against direct solar radiation in animal housing. Appropriate thermal properties of roofing materials tend to improve the thermal comfort in the inner ambient. Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers. Nonasbestos tiles were evaluated and compared with commercially available asbestos-cement sheet...

  3. Enzymes improve ECF bleaching of pulp

    Directory of Open Access Journals (Sweden)

    Lachenal, D.

    2006-07-01

    Full Text Available The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. An appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an acid treatment after the extraction stage followed by the DEPD sequence. Elemental-chlorine free bleaching was also performed using the xylanase-laccase treated pulp. Xylanase treatment was incorporated to the laccase mediator system in the elemental-chlorine free bleaching both sequentially and simultaneously. The bleaching sequence DEPD followed and in both the cases, the reduction in chlorine dioxide consumption was greater in comparison to the control. The chlorine dioxide consumption was reduced further when xylanase-laccase treated pulp was given an additional acid treatment. The final pulp properties of the treated pulps were comparable to the control pulp.

  4. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  5. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  6. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    International Nuclear Information System (INIS)

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  7. Quantification of dislocations in hemp fibers using acid hydrolysis and fiber segment length distributions

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht

    2008-01-01

    Natural fibers such as flax or hemp may be used in composite materials. However, their use for this purpose is hampered by the large natural variation in tensile strength and other quality parameters. The first step in managing these variations is to develop methods for fast and reliable determin......Natural fibers such as flax or hemp may be used in composite materials. However, their use for this purpose is hampered by the large natural variation in tensile strength and other quality parameters. The first step in managing these variations is to develop methods for fast and reliable...... determination of relevant parameters. One quality parameter of the fibers is the amount of structural distortions known as dislocations or kink bands. Here, a method developed for the quantification of dislocations in pulp fibers was adapted and tested successfully for hemp yarn segments. The method is based...... was correct, and furthermore results showed that fibers broke more often in large dislocations than in small ones. However, it was also found that the hemp fiber segments did not break in all dislocations, and strict standardization of the procedure for acid hydrolysis is therefore necessary if results from...

  8. Immunohistochemical Expression of TGF-β1 and Osteonectin in engineered and Ca(OH2-repaired human pulp tissues

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre CHISINI

    Full Text Available Abstract The aim of the present study was to evaluate the expression of transforming growth factor-β1 (TGF-β1 and osteonectin (ON in pulp-like tissues developed by tissue engineering and to compare it with the expression of these proteins in pulps treated with Ca(OH2 therapy. Tooth slices were obtained from non-carious human third molars under sterile procedures. The residual periodontal and pulp soft tissues were removed. Empty pulp spaces of the tooth slice were filled with sodium chloride particles (250–425 µm. PLLA solubilized in 5% chloroform was applied over the salt particles. The tooth slice/scaffold (TS/S set was stored overnight and then rinsed thoroughly to wash out the salt. Scaffolds were previously sterilized with ethanol (100–70° and washed with phosphate-buffered saline (PBS. TS/S was treated with 10% EDTA and seeded with dental pulp stem cells (DPSC. Then, TS/S was implanted into the dorsum of immunodeficient mice for 28 days. Human third molars previously treated with Ca(OH2 for 90 days were also evaluated. Samples were prepared and submitted to histological and immunohistochemical (with anti-TGF-β1, 1:100 and anti-ON, 1:350 analyses. After 28 days, TS/S showed morphological characteristics similar to those observed in dental pulp treated with Ca(OH2. Ca(OH2-treated pulps showed the usual repaired pulp characteristics. In TS/S, newly formed tissues and pre-dentin was colored, which elucidated the expression of TGF-β1 and ON. Immunohistochemistry staining of Ca(OH2-treated pulps showed the same expression patterns. The extracellular matrix displayed a fibrillar pattern under both conditions. Regenerative events in the pulp seem to follow a similar pattern of TGF-β1 and ON expression as the repair processes.

  9. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

    Science.gov (United States)

    Wangxia Wang; Ronald C. Sabo; Michael D. Mozuch; Phil Kersten; J. Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number...

  10. PULP DEMAND IN THE INTERNATIONAL MARKET

    Directory of Open Access Journals (Sweden)

    Edmilson Santos Cruz

    2003-01-01

    Full Text Available This study aimed at analyzing the international pulp market, taking into account themain exporting countries and importing regions, with the objective of estimating, for each market, theown-price and cross-price elasticity in relation to the demand of the pulp, differentiated for country oforigin. The model considers that imports are differentiated by origin; therefore they are not perfect substitutes. The demand from Europe, North America and the Rest of the World for the pulp from theUnited States,Canada, Sweden, Finland, Portugal and Brazil was inelastic. The Asian demand for thissome pulp was elastic. Europe and the Rest of the World showed negative cross-price elasticity, i. e.,and the imported pulp from other countries are complementary products. North America and Asiashowed positive crow-price elasticity, i. e., they consider the pulp produced in other countries assubstitute products. The net effect of the variation on the price of pulp in a country h, over the amountof pulp that goes to the region i depends on the matching of values related to the elasticity ofsubstitution and the price elasticity of the total demand.

  11. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  12. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  13. Effect of controlling recrystallization from the melt on the residual stress and structural properties of the Silica-clad Ge core fiber

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun

    2017-09-01

    Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.

  14. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin [VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhang, Chi [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Chunyan [VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China (China); Weir, Michael D. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Ping, E-mail: pwang@umaryland.edu [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Reynolds, Mark A. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhao, Liang, E-mail: lzhaonf@126.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 (China); Xu, Hockin H.K. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250 (United States)

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. - Highlights: • The osteogenic differentiation of hiPSC-MSCs from different origins, hDPSCs and hBMSCs were first investigated and compared in this study. • hDPSCs and hiPSC-MSCs from bone marrow represented viable alternatives to hBMSCs in bone tissue engineering. • hi

  15. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    International Nuclear Information System (INIS)

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2016-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. - Highlights: • The osteogenic differentiation of hiPSC-MSCs from different origins, hDPSCs and hBMSCs were first investigated and compared in this study. • hDPSCs and hiPSC-MSCs from bone marrow represented viable alternatives to hBMSCs in bone tissue engineering. • hi

  16. Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-05-01

    Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  18. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  19. Citrus pulp pellets as an additive for orange bagasse silage

    Directory of Open Access Journals (Sweden)

    R. K. Grizotto

    2017-03-01

    Full Text Available This study evaluated the fermentation profile of orange bagasse ensiled with three levels of dry matter (DM using citrus pulp pellets as a moisture-absorbing additive. Thirty experimental silos (3 treatments, 5 storage times, 2 replicates were prepared using 25-liter plastic buckets containing orange bagasse and three levels of pelleted citrus pulp (0, 6% and 20% as additive. A completely randomized design with repeated measures over time was used. The periods of anaerobic storage were 3, 7, 14, 28 and 56 days. Natural orange bagasse contained 13.9% DM, which increased to 19.1% and 25.5% with the inclusion of 6% and 20% citrus pulp pellets, respectively. The apparent density was inversely correlated with DM content and a higher level of compaction (982 kg/m3 was observed in the mass ensiled with the lowest DM level (13.9%. Additionally, lower compaction (910 kg/m3 was found in the mass ensiled with the additive. The chemical composition of the mass ensiled with or without citrus pulp pellets did not differ significantly in terms of protein, ether extract, neutral detergent fiber, lignin or in vitro DM digestibility (P≥0.05, as expected. Thus, it was possible to analyze only the effect of the inclusion of citrus pulp pellets on the increase in DM content. The inclusion of 20% of the additive reduced (P<0.01 losses due to effluent (98% less and gas production (81% less compared to the control treatment at the end of the anaerobic storage period. In this treatment, a higher (P≤0.05 log number of lactic acid bacteria (4.61 log CFU/g was also observed compared to the other treatments, indicating that the increase in DM favored the growth of these bacteria. In addition, the low yeast count (about 1 log CFU/g sample and the pH below 4.0, which were probably due to the production of lactic and acetic acids, show that the orange bagasse is rich in fermentable soluble carbohydrates and is indicated for ensiling. In conclusion, orange bagasse can be

  20. Low Temperature Soda-Oxygen Pulping of Bagasse

    OpenAIRE

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  1. Age estimation by pulp/tooth ratio in lower premolars by orthopantomography.

    Science.gov (United States)

    Cameriere, Roberto; De Luca, Stefano; Alemán, Inmaculada; Ferrante, Luigi; Cingolani, Mariano

    2012-01-10

    Accurate age estimation has always been a problem for forensic scientists, and apposition of secondary dentine is often used as an indicator of age. Since 2004, in order to examine patterns of secondary dentine apposition, Cameriere et al. have been extensively studying the pulp/tooth area ratio of the canines by panoramic and peri-apical X-ray images. The main aim of this paper is to examine the relationship between age and age-related changes in the pulp/tooth area ratio in monoradicular teeth, with the exception of canines, by orthopantomography. A total of 606 orthopantomograms of Spanish white Caucasian patients (289 women and 317 men), aged between 18 and 75 years and coming from Bilbao and Granada (Spain), was analysed. Regression analysis of age of monoradicular teeth indicated that the lower premolars were the most closely correlated with age. An ANCOVA did not show significant differences between men and women. Multiple regression analysis, with age as dependent variable and pulp/tooth area ratio as predictor, yielded several formulae. R(2) ranged from 0.69 to 0.75 for a single lower premolar tooth and from 0.79 to 0.86 for multiple lower premolar teeth. Depending on the available number of premolar teeth, the mean of the absolute values of residual standard error, at 95% confidence interval, ranged between 4.34 and 6.02 years, showing that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Biotechnological applications of pectinases in textile processing and bioscouring of cotton fibers

    OpenAIRE

    Mojsov, Kiro

    2012-01-01

    This work represents a review of applications of alkaline pectinases in textile processing and bioscouring of cotton fibers, the nature of pectin and pectic supstances, and production of alkaline pectinases from various microorganisms. Over the years alkaline pectinases have been used in several industrial processes, such as textile and plant fiber processing, paper and pulp industry, oil extraction, coffee and tea fermentations,poultry feed and treatment of industrial wastewater containing p...

  3. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    Science.gov (United States)

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  4. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Science.gov (United States)

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  5. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Murakami, Masashi; Nakamura, Hiroshi; Sato, Yayoi; Ariji, Yoshiko; Matsushita, Kenji

    2017-03-09

    Experiments have previously demonstrated the therapeutic potential of mobilized dental pulp stem cells (MDPSCs) for complete pulp regeneration. The aim of the present pilot clinical study is to assess the safety, potential efficacy, and feasibility of autologous transplantation of MDPSCs in pulpectomized teeth. Five patients with irreversible pulpitis were enrolled and monitored for up to 24 weeks following MDPSC transplantation. The MDPSCs were isolated from discarded teeth and expanded based on good manufacturing practice (GMP). The quality of the MDPSCs at passages 9 or 10 was ascertained by karyotype analyses. The MDPSCs were transplanted with granulocyte colony-stimulating factor (G-CSF) in atelocollagen into pulpectomized teeth. The clinical and laboratory evaluations demonstrated no adverse events or toxicity. The electric pulp test (EPT) of the pulp at 4 weeks demonstrated a robust positive response. The signal intensity of magnetic resonance imaging (MRI) of the regenerated tissue in the root canal after 24 weeks was similar to that of normal dental pulp in the untreated control. Finally, cone beam computed tomography demonstrated functional dentin formation in three of the five patients. Human MDPSCs are safe and efficacious for complete pulp regeneration in humans in this pilot clinical study.

  6. ANTIOXIDANT CAPACITY OF PEQUI (Caryocar brasiliense Camb. PULP IS PRESERVED BY FREEZE-DRYING AND LIGHT-RESISTANT PACKAGING

    Directory of Open Access Journals (Sweden)

    NARA RÚBIA RODRIGUES DO NASCIMENTO

    Full Text Available ABSTRACT Pequi (Caryocar brasiliense Camb. pulp is rich in bioactive compounds. However, seasonality and perishability limit its availability in the market. This work aimed to determine the physicochemical characteristics, including phenolic compounds and carotenoid concentrations, as well as the antioxidant capacity of lyophilized pequi pulp during storage in various packaging materials for 180 days. Pequi fruits were pulped, ground, freeze-dried and then vacuum packaged in transparent polyethylene (TP, polyethylene coated by aluminum foil (PA and laminated foil (LA, respectively. The samples were stored under controlled temperature, humidity and luminosity. Proximate composition, phenolic compounds and carotenoids concentrations, and antioxidant capacity (DPPH• assay were determined at the beginning of the study and the end of each month, during 180 days. Lyophilized pequi pulp had 48.87, 6.17, and 4.20 g.100 g-1 lipids, proteins, and total dietary fiber, respectively, and 556.79 kcal.100 g-1 energy. PA and LA had similar effects against light-induced carotenoid oxidation. Negative correlations between the phenolic compound concentration and storage period, and antioxidant capacity and storage period; and a positive correlation between antioxidant capacity and phenolic compound content were observed. Light-resistant packaging decreased the carotenoid loss. Among the packaging, LA preserved the phenolic compounds and antioxidant capacity most effectively.

  7. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.

    Science.gov (United States)

    Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J

    2015-10-01

    A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    Science.gov (United States)

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are

  9. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  10. Energy and raw material potentials of wood residue in the Pacific Coast States: a summary of a preliminary feasibility investigation.

    Science.gov (United States)

    John B. Grantham; Eldon Estep; John M. Pierovich; Harold Tarkow; Thomas C. Adams

    1974-01-01

    Results are reported of a preliminary investigation of feasibility of using wood residue to meet energy and raw material needs in the Pacific Coast States. Magnitude of needs was examined and volume of logging-residue and unused mill residue was estimated. Costs of obtaining and preprocessing logging residue for energy and pulp and particle board raw material were...

  11. Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts

    Science.gov (United States)

    T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries

    2013-01-01

    Although the term “integrateed biorefinery” is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...

  12. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    International Nuclear Information System (INIS)

    Zhang, Xufang; Jiang, Hongwei; Gong, Qimei; Fan, Chen; Huang, Yihua; Ling, Junqi

    2014-01-01

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration

  13. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  14. Pulp mill as an energy producer

    International Nuclear Information System (INIS)

    Kaulamo, O.

    1998-01-01

    The recovery boilers of pulp mills are today the most significant producers of wood energy. The power-to-heat ratio of the power plant process, i.e., power yield, is poor in existing applications. In the study, an alternative of improving the power yield of conventional pulp mills significantly was studied by applying solutions used in power plants to a pulp mill. Extensive conversion of wood energy into electricity is possible only in the recovery boiler of the pulp mill and in a large combustion boiler of bark, wood waste and wood chips integrated to this boiler. Hence, the harvest and transports of wood raw materials, i.e. pulp wood and energy wood, are integrated, and the fraction going to cook and the energy wood fraction are separated at the pulp mill. The method guarantees competitive supply of energy wood. As a result a SELLUPOWER mill was designed, where the recovery boiler combusting black liquor and the large power plant boiler combusting energy wood are integrated to one unit and constructed to a power plant process with a high power-to-heat ratio. Necessary technical solutions, project costs and economical feasibility compared to a conventional pulp mill were determined, and the effect of different production-economical parameters was also studied. (orig.)

  15. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    Science.gov (United States)

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  16. Physiochemical Properties of the Pulp and Almonds of TUCUMÃ (Astrocaryum vulgare Mart) for Oil Production

    Science.gov (United States)

    Longo, R. M.; Ribeiro, A. I.; Melo, W. J.; Queiroz, M. R.; Russo, A. C.; Amaral, J. B.

    2009-04-01

    Tucumã (Astrocaryum vulgare Mart) it is a palm tree commonly found at the Amazonian forest of firm earth, it produces nutritious fruits, quite appreciated by the local population. The seeds are for the obtaining of eatable olive oil and soap, the endocarp is employee for the local population in the making of earrings, rings, bracelets, necklaces and other workmanships. This species has occurrence also in Acre, Rondônia, Pará, Mato Grosso, Roraima, Trindad, Guyana and Bolivia. The objective of this work was to accomplish mechanical tests on the fruits with the purpose of studying the rupture of the shell and the whole income almonds and to obtain the impact loads in tucumã fruits. It was also characterized biochemical compositions of the pulp and the almond seeking the use for the other ends. The physiochemical parameters analyzed were: moisture content, fats gray, total protein, fiber, carbohydrate, calorie, fats acids and vitamins, just in the pulp: vitamin E, vitamin B1, vitamin B2, vitamin B5, vitamin B3, vitamin B6, vitamin B12, vitamin C, vitamin D3 and vitamin E. The obtained results revealed that the maximum force of rupture was of approximately 6200 N for the direction apex-insert and 7200 N for the perpendicular direction; then this the tucumã fruit with high shell hardness when compared to the other types of chestnuts, being necessary studies to design machines capable to promote mechanical breaking and thus facilitating, its commercial exploration. The pulp of the tucumã fruits, presented a significant amount of fats (32%), following by carbohydrates (19,7%) and fibers (18,4). The caloric value was of 380 Kcal/g. Also the pulp presented good amount of vitamin B3 (niacin - 76,7%) and C (acid ascorbic - 23,6%). In relation to the fat acids the pulp presents contents of acid oleic (C18.1) about 72,8% following for linoléico (C18.2), being a good product for the human and animal feeding,. In the almond 24,2% of fiber, 10,7% of fats, 17,0% of

  17. Evaluating pulp stiffness from fibre bundles by ultrasound

    Science.gov (United States)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  18. Enhanced extraction of phenolic compounds from coffee industry’s residues through solid state fermentation by Penicillium purpurogenum

    Directory of Open Access Journals (Sweden)

    Lady Rossana PALOMINO García

    2015-01-01

    Full Text Available Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.

  19. Diabetes induces metabolic alterations in dental pulp.

    Science.gov (United States)

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.

  20. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks.

    Science.gov (United States)

    Sadeghi, Amin; Toghyani, Majid; Gheisari, Abasali

    2015-11-01

    Two experiments were conducted to investigate the effect of fibrous materials with one single diet or by choice feeding on performance, intestinal morphology, immunity, and fiber preference in broiler chicks. In experiment 1, 240-day-old chicks (Ross 308) were assigned to one of 4 treatments, comprising 5 replicates per treatment in a completely randomized design. Dietary treatments included: a basal diet (control) or 30 g/kg sugar beet pulp (SBP), 30 g/kg rice hull (RH), or 30 g/kg equal combination of them (SBP/RH) added to the basal diet. Results showed SBP and SBP/RH impaired daily weight gain (DWG) in the growing period compared with control (P immunity. In addition, broilers had a tendency to use separate sources of fiber. © 2015 Poultry Science Association Inc.

  1. On quantification of residual ink content and deinking efficiency in recycling of mixed office waste paper

    Science.gov (United States)

    Bo Li; Gaosheng Wang; Kefu Chen; David W. Vahey; Junyong Zhu

    2011-01-01

    Although (flotation) deinking has been a common industry practice for several decades, true residual ink content and deinking efficiency have never been quantified. Paper brightness and ERIC (Effective Residual Ink Concentration), based on measurements of the absorption coefficient of deinked pulp, have been used to determine performance of flotation deinking processes...

  2. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  3. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Science.gov (United States)

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  5. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  6. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  7. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Haagensen, Frank [Bioprocess Science and Technology group, Biocentrum-DTU, Building 227, Technical University of Denmark, 2800 Lyngby (Denmark); Skiadas, Ioannis V.; Gavala, Hariklia N.; Ahring, Birgitte K. [Bioprocess Science and Technology group, Biocentrum-DTU, Building 227, Technical University of Denmark, 2800 Lyngby (Denmark); Copenhagen Institute of Technology (Aalborg University Copenhagen), Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Lautrupvang 15, DK 2750 Ballerup (Denmark)

    2009-11-15

    Renewable energy sources have received increased interest from the international community with biomass being one of the oldest and the most promising ones. In the concept of exploitation of agro-industrial residues, the present study investigates the pre-treatment and ethanol fermentation potential of the olive pulp, which is the semi solid residue generated from the two-phase processing of the olives for olive oil production. Wet oxidation and enzymatic hydrolysis have been applied aiming at the enhancement of carbohydrates' bioavailability. Different concentrations of enzymes and enzymatic durations have been tested. Both wet oxidation and enzymic treatment were evaluated based on the ethanol obtained in a subsequent fermentation step by Saccharomyces cerevisiae and Thermoanaerobacter mathranii. It was found that a four-day hydrolysis time was adequate for a satisfactory release of glucose and xylose. The combination of wet oxidation and enzymatic hydrolysis resulted in the glucose and xylose concentration increase of 138 and 444%, respectively, compared to 33 and 15% with only enzymes added. However, the highest ethanol production was obtained when only enzymic pre-treatment was applied, implying that wet oxidation is not a recommended pre-treatment process for olive pulp at the conditions tested. It was also showed that increased dry matter concentration did not have a negative effect on the release of sugars, indicating that the cellulose and xylan content of the olive pulp is relatively easily available. The results of the experiments in batch processes clearly emphasize that the simultaneous saccharification and fermentation (SSF) mode is advantageous in comparison with the separate hydrolysis and fermentation (SHF) mode concerning process contamination. (author)

  8. Stone-ground wood pulp-reinforced polypropylene composites: Water uptake and thermal properties

    Directory of Open Access Journals (Sweden)

    Joan Pere López

    2012-11-01

    Full Text Available Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC.

  9. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  10. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  11. Uptake of Radionuclide Metals by SPME Fibers

    International Nuclear Information System (INIS)

    Duff, M; S Crump, S; Robert Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection

  12. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  13. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Science.gov (United States)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  14. Nanofibrillated cellulose as paper additive in Eucalyptus pulps

    Directory of Open Access Journals (Sweden)

    Israel González

    2012-11-01

    Full Text Available In this work, the physical and mechanical properties of bleached Eucalyptus pulp reinforced with nanofibrillated cellulose (NFC are compared with those of traditional beaten pulp used in the making of writing/printing and offset printing papers. For this purpose, three different types of hardwood slurries were prepared: beaten pulps, unbeaten pulps reinforced with NFC, and slightly beaten pulps also reinforced with NFC. Physical and mechanical tests were performed on handsheets from these different slurries. The results showed that adding NFC to unbeaten pulps results in physical and mechanical properties similar to those in pulps used for printing/writing papers. Nevertheless, the best results were obtained in slurries previously beaten at slight conditions and subsequently reinforced with NFC. These results demonstrate that the addition of NFC allows a reduction in beating intensity without decreasing the desired mechanical properties for this specific purpose.

  15. A novel role for Twist-1 in pulp homeostasis.

    Science.gov (United States)

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  16. Evaluation of bleachability on pine and eucalyptus kraft pulps

    Directory of Open Access Journals (Sweden)

    Marcela Freitas Andrade

    2013-09-01

    Full Text Available In recent decades, the pulp industry has been changing and improving its manufacturing processes in order to enhance production capacity, product quality and environmental performance. The aim of this study was to evaluate the bleachability effect on the efficient washing and alkaline leaching in eucalyptus and pine Kraft pulps using three different bleaching sequences: AD(EPD, A/D(EPDP and DHT(EPDP. This study was carried out in two stages. In the first part, the optimum conditions for pulp bleaching in order to achieve a brightness of 90% ISO were established. The second step was a comparative study between the pulps that received alkaline leaching and efficient washing with reference pulp (without treatment. The brightness, viscosity, kappa number and HexA in pulp were analyzed. The three sequences studied reached the desired brightness, but the sequence AD(EPD produced a lower reagent consumption for the same brightness. In the three sequences studied, the efficient washing of the pulp after oxygen delignification has contributed significantly to the removal of dissolved organic and inorganic materials in the pulp and the alkaline leaching decreased significantly the pulp kappa number due to a higher pulp delignification and bleachability.

  17. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  18. Association between dental pulp stones and calcifying nanoparticles.

    Science.gov (United States)

    Zeng, Jinfeng; Yang, Fang; Zhang, Wei; Gong, Qimei; Du, Yu; Ling, Junqi

    2011-01-07

    The etiology of dental pulp stones, one type of extraskeletal calcification disease, remains elusive to date. Calcifying nanoparticles (CNPs), formerly referred to as nanobacteria, were reported to be one etiological factor in a number of extraskeletal calcification diseases. We hypothesized that CNPs are involved in the calcification of the dental pulp tissue, and therefore investigated the link between CNPs and dental pulp stones. Sixty-five freshly collected dental pulp stones, each from a different patient, were analyzed. Thirteen of the pulp stones were examined for the existence of CNPs in situ by immunohistochemical staining (IHS), indirect immunofluorescence staining (IIFS), and transmission electron microscope (TEM). The remaining 52 pulp stones were used for isolation and cultivation of CNPs; the cultured CNPs were identified and confirmed via their shape and growth characteristics. Among the dental pulp stones examined in situ, 84.6% of the tissue samples staines positive for CNPs antigen by IHS; the corresponding rate by IIFS was 92.3 %. In 88.2% of the cultured samples, CNPs were isolated and cultivated successfully. The CNPs were visible under TEM as 200-400 nm diameter spherical particles surrounded by a compact crust. CNPs could be detected and isolated from a high percentage of dental pulp stones, suggesting that CNPs might play an important role in the calcification of dental pulp.

  19. Analytical and Experimental Study of Residual Stresses in CFRP

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available Fiber Bragg Grating sensors (FBGs have been utilized in various engineering and photoelectric fields because of their good environment tolerance. In this research, residual stresses of carbon fiber reinforced polymer composites (CFRP were studied using both experimental and analytical approach. The FBGs were embedded inside middle layers of CFRP to study the formation of residual stress during curing process. Finite element analysis was performed using ABAQUS software to simulate the CFRP curing process. Both experimental and simulation results showed that the residual stress appeared during cooling process and the residual stresses could be released when the CFRP was machined to a different shape.

  20. Free toe pulp flap for finger pulp and volar defect reconstruction

    Directory of Open Access Journals (Sweden)

    Jyoshid R Balan

    2016-01-01

    Full Text Available Background: Fingertip injury requiring flap cover is very common in the modern era. The ideal cover should fulfill both functional and aesthetic improvement. Materials and Methods: From June 2015 to April 2016, we performed seven free toe pulp flaps for finger defect reconstruction. All patients were males. Five flaps were done in emergency post-traumatic cases, and two were done in elective set up. The cases included reconstruction of three thumbs, one index and one ring finger in an emergency set up and two ring fingers in the elective. Thumb reconstruction was done with great toe lateral pulp and the other digits reconstructed with second toe pulp flap. Follow-up evaluation included both functional and aesthetic assessment. Results: Five flaps survived completely, one suffered partial loss, and one flap failed completely. The median follow-up period was 9 months. The median duration of surgery was 255 min (range 210 to 300 min. The median two-point discrimination was 6.5 mm (range 4–8 mm. There was the return of temperature sensation in all patients; two had cold intolerance. The Semmes-Weinstein monofilament score varied from 3.61 to 5.07 (median filament index value 4.31/pressure value of 2 g/mm2. Three patients had delayed donor site wound healing. Conclusions: The free toe pulp flap is an efficient choice for fingertip and volar finger defects reconstruction with an excellent tissue match.

  1. Effect of Filament Fineness on Composite Yarn Residual Torque

    Directory of Open Access Journals (Sweden)

    Sarıoğlu Esin

    2018-03-01

    Full Text Available Yarn residual torque or twist liveliness occurs when the twist is imparted to spin the fibers during yarn formation. It causes yarn snarling, which is an undesirable property and can lead the problems for further processes such as weaving and knitting. It affects the spirality of knitted fabrics and skewness of woven fabrics. Generally, yarn residual torque depends on yarn twist, yarn linear density, and fiber properties used. Composite yarns are widely produced to exploit two yarns with different properties such on optimum way at the same time and these yarns can be produced by wrapping sheath fibers around filament core fiber with a certain twist. In this study, the effect of filament fineness used as core component of composite yarn on residual torque was analyzed. Thus, the false twist textured polyester filament yarns with different filament fineness were used to produce composite yarns with different yarn count. The variance analysis was performed to determine the significance of twist liveliness of filament yarns and yarn count on yarn twist liveliness. Results showed that there is a statistically significant differences at significance level of α=0.05 between filament fineness and yarn residual torque of composite yarns.

  2. Evaluation of Pulp and Paper Properties obtained from Maple Juvenile Wood through Organosolv Alcohol Method Catalyzed by Calcium and Magnesium Salts

    Directory of Open Access Journals (Sweden)

    Reza Naghdi

    2015-05-01

    Full Text Available The properties of catalyzed organosolv pulp obtained from maple juvenile wood were studied. The physical properties of fiber (e.g. length, width, and cell membrane thickness and chemical composition of maple juvenile wood (e.g. average cellulose, lignin, extractives, and ash content were determined. The variables were cooking temperature (190 and 200 ºC and time (40, 60, and 80 minutes. Chemical charge ( 280 ml methanol, 70 ml water, and 0.025 mols of Calcium Chloride and Magnesium Nitrate was kept constant. Pulp screen yields (54.9 to 60.91% and Kappa No. (15.5 to 18.4 were measured. Pulp freeness was reduced to 350 ml CSF in PFI mill, and ten 60 g/m2 handsheets were made from the selected pulps. The strength properties of catalyzed organosolv handsheets including tear length (3.83 to 4.25 km, tear index (10.22 to 12.81 mN.m2/g, and burst index (1.74 to 2.15 kPa.m2/g were compared with those of the conventional Kraft handsheets of maple juvenile wood. The least allowed values of the mentioned properties in the Indian (IS and Japanese international standards (JIS reveal that while the tear length value is slightly below that of the standards, the values of tear and burst indices are well beyond the given standards, and the environmentally-friendly catalyzed organosolv pulping process (higher yield and lower Kappa No. compared to Kraft can be recommended to produce paper pulp from maple juvenile wood.

  3. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    Science.gov (United States)

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  4. Epigenetic regulation in dental pulp inflammation

    Science.gov (United States)

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  5. Yield-increasing additives in kraft pulping: Effect on carbohydrate retention, composition and handsheet properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaaler, David Andre Grimsoeen

    2008-07-01

    In this thesis, increased hemicellulose retention during kraft pulping has been studied. The work has been divided into three parts: i) Development of an accessible and reliable method for determination of carbohydrate composition of kraft pulps ii) Investigation of the composition and molecular mass distributions of the carbohydrates in kraft pulps with increased hemicellulose content iii) Investigation of the effect of increased hemicellulose content on the sheet properties of kraft pulps with increased hemicellulose content. A method for carbohydrate determination was developed. In this method, enzymes are used to hydrolyse the pulp into monosaccharides. A relatively mild acid hydrolysis is performed prior to detection on an HPLC with an RI-detector. The pulp is not derivatized and no pre-treatment (mechanical or chemical) is needed to determine the carbohydrate composition using the method developed here. Peak deconvolution software is used to improve the accuracy. Polysulphide and H2S primarily increase the glucomannan yield, which can be boosted by up to 7 % on o.d. wood. However, the cellulose yield is more affected by the cooking time and the maximum yield increase of cellulose is approximately 2 % on o.d. wood compared to an ordinary kraft pulp. The cooking time is influenced by sulphide ion concentration, AQ addition and the final Kappa number. The xylan yield is remarkably stable, however the alkali profile during the cook may influence the xylan yield. Surface xylan content of the fibres depends on residual alkali concentration in the black liquor. The molecular mass distributions of cellulose and hemicellulose were determined for pulps with increased hemicellulose content using size exclusion chromatography. Deconvolution by peak separation software is used to gain information about the degree of polymerization for cellulose and hemicellulose. The average DP of glucomannan in the kraft fibre was found to be 350 +- 30 and the average DP of xylan in the

  6. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adriaan van Heiningen

    2007-06-30

    agglomeration problems of the conversion of Na{sub 2}CO{sub 3} to (high sodium) titanates during gasification of black liquor in the presence of (low sodium) titanates or TiO{sub 2} (Task 2). MTCI/ThermoChem tested the performance and operability of the combined technology of steam reforming and direct causticization in their Process Development Unit (PDU) (Task 3). The specific objectives were: (1) to investigate how split sulfidity and polysulfide (+ AQ) pulping can be used to increase pulp fiber yield and properties compared to conventional kraft pulping; (2) to determine the economics of black liquor gasification combined with these pulping technologies in comparison with conventional kraft pulping and black liquor recovery; (3) to determine the effect of operating conditions on the kinetics of the titanate-based direct causticization reaction during black liquor gasification at relatively low temperatures ({le} 750 C); (4) to determine the mechanism of particle agglomeration during gasification of black liquor in the presence of titanates at relatively low temperatures ({le} 750 C); and (5) to verify performance and operability of the combined technology of steam reforming and direct causticization of black liquor in a pilot scale fluidized bed test facility.

  7. Improvement in rice straw pulp bleaching effluent quality by incorporating oxygen delignification stage prior to elemental chlorine-free bleaching.

    Science.gov (United States)

    Kaur, Daljeet; Bhardwaj, Nishi K; Lohchab, Rajesh Kumar

    2017-10-01

    Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD 3 , COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources. Graphical abstract ᅟ.

  8. Dental pulp stone formation during orthodontic treatment: A ...

    African Journals Online (AJOL)

    2015-06-21

    Jun 21, 2015 ... the presence of dental pulp stone, gender, age, tooth type and arches. Results: Dental pulp ... primary and permanent dentition.[1] Dental pulp stones .... interpretation provided training to familiarize the other observer with the ...

  9. Organo mercurials in pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Bouveng, H O

    1967-01-01

    Today phenyl mercury acetate (PMA) is used in the paper and pulp industry for two purposes: slime control in paper machine systems and impregnation of wet mechanical pulp. PMA is a commonly used slimicide. It is used for slime control in such a way that a minor part (5-20% depending on mill operation) will reach the watercourse with the waste water and contaminate aquatic life. PMA used for impregnation concerns wet mechanical pulp produced for export as raw material, mostly for newsprint. Treatment of this pulp with PMA is necessary to avoid changes caused by molds and rot fungi.

  10. Bioconversion of Waste Fiber Sludge to Bacterial Nanocellulose and Use for Reinforcement of CTMP Paper Sheets

    Directory of Open Access Journals (Sweden)

    Genqiang Chen

    2017-09-01

    Full Text Available Utilization of bacterial nanocellulose (BNC for large-scale applications is restricted by low productivity in static cultures and by the high cost of the medium. Fiber sludge, a waste stream from pulp and paper mills, was enzymatically hydrolyzed to sugar, which was used for the production of BNC by the submerged cultivation of Komagataeibacter xylinus. Compared with a synthetic glucose-based medium, the productivity of purified BNC from the fiber sludge hydrolysate using shake-flasks was enhanced from 0.11 to 0.17 g/(L × d, although the average viscometric degree of polymerization (DPv decreased from 6760 to 6050. The cultivation conditions used in stirred-tank reactors (STRs, including the stirring speed, the airflow, and the pH, were also investigated. Using STRs, the BNC productivity in fiber-sludge medium was increased to 0.32 g/(L × d and the DPv was increased to 6650. BNC produced from the fiber sludge hydrolysate was used as an additive in papermaking based on the chemithermomechanical pulp (CTMP of birch. The introduction of BNC resulted in a significant enhancement of the mechanical strength of the paper sheets. With 10% (w/w BNC in the CTMP/BNC mixture, the tear resistance was enhanced by 140%. SEM images showed that the BNC cross-linked and covered the surface of the CTMP fibers, resulting in enhanced mechanical strength.

  11. Isolation and Characterization of Human Dental Pulp Stem Cells from Cryopreserved Pulp Tissues Obtained from Teeth with Irreversible Pulpitis.

    Science.gov (United States)

    Malekfar, Azin; Valli, Kusum S; Kanafi, Mohammad Mahboob; Bhonde, Ramesh R

    2016-01-01

    Human dental pulp stem cells (DPSCs) are becoming an attractive target for therapeutic purposes because of their neural crest origin and propensity. Although DPSCs can be successfully cryopreserved, there are hardly any reports on cryopreservation of dental pulp tissues obtained from teeth diagnosed with symptomatic irreversible pulpitis during endodontic treatment and isolation and characterization of DPSCs from such cryopreserved pulp. The aim of this study was to cryopreserve the said pulp tissues to propagate and characterize isolated DPSCs. A medium consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide was used for cryopreservation of pulp tissues. DPSCs were isolated from fresh and cryopreserved pulp tissues using an enzymatic method. Cell viability and proliferation were determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. DPSC migration and interaction were analyzed with the wound healing assay. Mesenchymal characteristics of DPSCs were verified by flow cytometric analysis of cell surface CD markers. The osteogenic and adipogenic potential of DPSCs was shown by von Kossa and oil red O staining methods, respectively, and the polymerase chain reaction method. We found no significant difference in CD marker expression and osteogenic and adipogenic differentiation potential of DPSCs obtained from fresh and cryopreserved dental pulp tissue. Our study shows that dental pulp can be successfully cryopreserved without losing normal characteristics and differentiation potential of their DPSCs, thus making them suitable for dental banking and future therapeutic purposes. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. The relationship between pulp calcifications and salivary gland calcifications

    OpenAIRE

    Kaswan, Sumita; Patil, Santosh; Maheshwari, Sneha; Rahman, Farzan; Khandelwal, Suneet

    2014-01-01

    Aim: Pulp stones are discrete calcified bodies found in the dental pulp. Sialolithasis is the most common salivary gland disease. The aim of the present study was to determine the relationship between the pulp stones and salivary gland stones. Material and Methods: 196 patients were randomly selected from the out patient department for the study. The periapical radiographs for all patients were evaluated for the presence or absence of the narrowing of dental pulp chambers and pulp canals. The...

  13. Evaluation of Variation in Residual Strength of Carbon Fiber Reinforced Plastic Plate with a Hole Subjected to Fatigue Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Young; Kang, Min Sung; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-10-15

    CFRP (Carbon Fiber Reinforced Plastic) has received considerable attention in various fields as a structural material, because of its high specific strength, high specific stiffness, excellent design flexibility, favorable chemical properties, etc. Most products consisting of several parts are generally assembled by mechanical joining methods (using rivets, bolts, pins, etc.). Holes must be drilled in the parts to be joined, and the strength of the components subjected to static and fatigue loads caused by stress concentration must be decreased. In this study, we experimentally evaluated the variation in the residual strength of a holenotched CFRP plate subjected to fatigue load. We repeatedly subjected the hole-notched specimen to fatigue load for a certain number of cycles, and then we investigated the residual strength of the hole-notched specimen by performing the fracture test. From the results of the test, we can observe the initiation of a directional crack caused by the applied fatigue load. Further, we observed that the residual strength increases with a decrease in the notch effect due to this crack. It was evaluated that the residual strength increases to a certain level and subsequently decreases. This variation in the residual strength was represented by a simple equation by using a model of the decrease in residual strength for plain plate, which was developed by Reifsnider and a stress redistribution model for hole-notched plate, which was developed by Yip.

  14. 2009 Wood and Fiber Product Seminar : VTT and USDA joint activity

    Science.gov (United States)

    Ali Harlin; Minna Vikman

    2010-01-01

    Foward -- The development of high-value wood and fiber products is one of the most important challenges currently facing the forest industry. Traditional pulp and paper products are on a critical path in developed countries with prices and markets decreasing. Finland and the USA have faced the same problem, which is a fundamental reason for Industrial Biomaterials...

  15. Impact of fat source and dietary fibers on feed intake, plasma metabolites, litter gain and the yield and composition of milk in sows

    DEFF Research Database (Denmark)

    Larsen, Uffe Krogh; Bruun, Thomas S; Poulsen, Jesper

    2017-01-01

    replace cereals in lactation diets. Thus, a standard lactation diet low in dietary fiber, and two high-fiber diets based on sugar beet pulp (SBP) or alfalfa meal (ALF) were formulated. The SBP diet was high in soluble non-starch polysaccharides (NSP), whereas ALF being high in insoluble NSP. Each diet...

  16. Effects of transportation time after extraction on the magnetic cryopreservation of pulp cells of rat dental pulp

    Directory of Open Access Journals (Sweden)

    Mao-Suan Huang

    2011-03-01

    Conclusions: The freezing technique used in this animal study provided positive effects on pulp cell storage. In addition, the storage time before the freezing procedure is an important issue for cryopreserving pulp cells in intact teeth.

  17. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  18. Effects of diets with increasing levels of citrus pulp on the blood parameters linked to energy metabolism in horses

    Directory of Open Access Journals (Sweden)

    Madalena Lima Menezes

    2014-12-01

    Full Text Available Currently, the use of alternative energy ingredients for horses has increased because these foods contain "superfibers", making safer diet for these animals. To study the influence of diets containing increasing levels of citrus pulp on albumin, triglycerides, cholesterol, glucose, insulin and short chain fatty acid (SCFA concentrations in the blood, five animals were used, with an average age of 3.5 years and a live weight of 460.66±76.86 kg, they were fed twice a day, at 7:00 am and 4:00 pm. The diets were formulated to meet the requirements of the animals at maintenance. 60% of the energy was obtained from forage, and 40% from concentrate, containing the following inclusion levels of citrus pulp (0, 7, 14, 21 and 28%. The area under the curve (AUC and the glucose and insulin peaks were calculated, and no differences were observed between the treatments. There was no effect of diet on the blood concentrations of the evaluated parameters tested, and there was no effect of the time of collection on the following variables: SCFAs, cholesterol, triglycerides and albumin. However, the diet did have quadratic effect on the glucose (Ŷ =-0.5327X²+4.2130X+84.5276 and insulin (Ŷ=-0.1002X² +0.8233X + 1.6336 concentrations. Up to 28% of the concentrate can be composed of citrus pulp in horse diets without causing any alterations on the concentrations of the parameters analyzed in the blood. High-fiber diets with easily fermentable fibers are beneficial because they maintain the glucose and insulin curves close to the baseline levels.

  19. Influence of Soda Pulping Variables on Properties of Pineapple (Ananas comosus Merr. Leaf Pulp and Paper Studied by Face-Centered Composite Experimental Design

    Directory of Open Access Journals (Sweden)

    Jantharat Wutisatwongkul

    2016-01-01

    Full Text Available Face-centered composite design (FCC was used to study the effect of pulping variables: soda concentration (4-5 wt%, temperature (90–130°C, and pulping time (20–60 min on the properties of pineapple leaf pulp and paper employing soda pulping. Studied pulp responses were screened yield and lignin content (kappa number. Paper properties, which include tensile index, burst index, and tear index, were also investigated. Effects of the pulping variables on the properties were statistically analyzed using Minitab 16. The optimum conditions to obtain the maximum tensile index were soda concentration of 4 wt%, pulping temperature of 105°C, and pulping time of 20 min. The predicted optimum conditions provided tensile index, burst index, tear index, screened yield, and kappa number of 44.13 kN·m/kg, 1.76 kPa·m2, 1.68 N·m2/kg, 21.29 wt%, and 28.12, respectively, and were experimentally confirmed.

  20. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  1. Corn fiber hulls as a food additive or animal feed

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Cecava, Michael J.; Doane, Perry H.

    2010-12-21

    The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

  2. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    James, M.R.; Bourke, M.A.; Goldstone, J.A.; Lawson, A.C.

    1993-01-01

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  3. 78 FR 31315 - Kraft Pulp Mills NSPS Review

    Science.gov (United States)

    2013-05-23

    ... Kraft Pulp Mills NSPS Review; Proposed Rule #0;#0;Federal Register / Vol. 78 , No. 100 / Thursday, May...-OAR-2012-0640; FRL-9815-9] RIN 2060-AR64 Kraft Pulp Mills NSPS Review AGENCY: Environmental Protection... performance standards for kraft pulp mills. These revised standards include particulate matter emission limits...

  4. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.

    Science.gov (United States)

    Tinoi, Jidapha; Rakariyatham, Nuansri

    2016-08-01

    The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.

  5. Characterization and Degradation of Pectic Polysaccharides in Cocoa Pulp.

    Science.gov (United States)

    Meersman, Esther; Struyf, Nore; Kyomugasho, Clare; Jamsazzadeh Kermani, Zahra; Santiago, Jihan Santanina; Baert, Eline; Hemdane, Sami; Vrancken, Gino; Verstrepen, Kevin J; Courtin, Christophe M; Hendrickx, Marc; Steensels, Jan

    2017-11-08

    Microbial fermentation of the viscous pulp surrounding cocoa beans is a crucial step in chocolate production. During this process, the pulp is degraded, after which the beans are dried and shipped to factories for further processing. Despite its central role in chocolate production, pulp degradation, which is assumed to be a result of pectin breakdown, has not been thoroughly investigated. Therefore, this study provides a comprehensive physicochemical analysis of cocoa pulp, focusing on pectic polysaccharides, and the factors influencing its degradation. Detailed analysis reveals that pectin in cocoa pulp largely consists of weakly bound substances, and that both temperature and enzyme activity play a role in its degradation. Furthermore, this study shows that pulp degradation by an indigenous yeast fully relies on the presence of a single gene (PGU1), encoding for an endopolygalacturonase. Apart from their basic scientific value, these new insights could propel the selection of microbial starter cultures for more efficient pulp degradation.

  6. Production and evaluation of recycled polymers from açaí fibers

    Directory of Open Access Journals (Sweden)

    Clívia Danúbia Pinho da Costa Castro

    2010-06-01

    Full Text Available The possibility of recycling and the favorable mechanical properties of the products have encouraged the study and production of thermoplastic composites from natural fibrous waste. Açaí (cabbage palm fiber, which is removed from the seed, has been slightly investigated, as compared to what is already known about the fruit pulp. In this study, the influence of açaí fiber as an element of reinforcement in recycled everyday usage thermoplastics using simple, low cost methodology was evaluated. Recycled matrixes of high impact polystyrene and polypropylene were molded by hot compression from which the fiber composites were obtained. The FTIR technique showed that the process was efficient in preventing degradation of the açaí fibers. The influence of the fiber on the mechanical behavior of the recycled matrixes was investigated by microscopic images of compression and impact tests. The results showed better impact performance for the fiber combined with the polymeric matrixes.

  7. Ranking mechanical pulps for their potential to photoyellow

    Science.gov (United States)

    Umesh P. Agarwal

    2000-01-01

    Recently found experimental evidence has provided strong support for an alternative photoyellowing mechanism that suggests that pulp- photoyellowing occurs due to direct photooxidation of hydroquinones (present in mechanical pulps) top-quinones. Because hydroquinones were found to be present in pulps, it may be possible to quantify them. Quantification of mechanical-...

  8. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration.

    Science.gov (United States)

    Zhang, Xuexin; Li, Hui; Sun, Jingjing; Luo, Xiangyou; Yang, Hefeng; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2017-10-01

    The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction. © 2017 John Wiley & Sons Ltd.

  9. Histological evaluation of pulp tissue from second primary molars correlated with clinical and radiographic caries findings

    Directory of Open Access Journals (Sweden)

    Vellore Kannan Gopinath

    2014-01-01

    Full Text Available Background: Managing dental caries in young children is demanding due to the elusions present on the right diagnostic criteria for treatment. The present study evaluated the histological status of pulp tissues extracted from primary second molar with caries involvement. Histological findings are correlated with clinical and radiographic assessment. Materials and Methods: Simple experimental study was conducted on upper or lower second primary molars with occlusal (22 teeth or proximal (22 teeth dental caries. Selected children were below 6 years of age. Percentage of caries involvement, residual dentin thickness (RDT, radiographic assessment of interradicular and periapical areas, clinical caries depth and signs and symptoms are the parameters considered for comparing with the histological findings. The specimens were grouped based on the nature of the inflammatory process as acute or chronic. The data were analyzed by Student t-test to compare histological types of inflammation with clinical parameters. P value < 0.05 was considered as significant. Results: Four cases revealed severe acute inflammation in coronal and relatively mild acute inflammation in radicular pulp. In the rest of the specimen coronal and radicular pulp had similar acute or chronic inflammatory changes. Histological evidence of pulpitis correlated with dental caries depth of ≥80%, RDT of ≤1 mm, radiographic rarefactions in the interradicular regions and symptoms of pain. Conclusion: Primary second molars with more than two-third caries involvement with symptoms of pain histologically showed inflammation of both coronal and radicular pulp tissues in all cases.

  10. Feeding livestock food residue and the consequences for the environmental impact of meat

    NARCIS (Netherlands)

    Elferink, E.V.; Nonhebel, S.; Moll, H.C.

    2008-01-01

    The environmental impact of meat is high mainly due to the feed required by livestock in combination with the impacts of cultivating, transporting and processing of feed crops such as tapioca and grains. Like regular feed crops, livestock also feed on residue from the food industry, such as pulp,

  11. Feeding motivation and plasma metabolites in pregnant sows fed diets rich in dietary fiber either once or twice daily.

    Science.gov (United States)

    Jensen, M B; Pedersen, L J; Theil, P K; Yde, C C; Bach Knudsen, K E

    2012-06-01

    The present study investigated the effects of source and level of dietary fiber (DF) and feeding frequency (once vs. twice daily) on feeding motivation and plasma metabolites at 4 different time points post feeding. Sixty pregnant sows (Sus scrofa, 4 blocks of 15 sows) were allocated to 1 of 5 diets within blocks. Four diets were restricted (approximately 35 MJ ME/d): a barley and wheat control diet (171 g DF/kg DM; 12 g DF/MJ ME), and 3 fiber diets formulated to contain 35% DF by including pectin residue (323 g DF/kg DM; 25 g DF/MJ ME), potato pulp (404 g DF/kg DM; 29 g DF/MJ ME), or sugar beet pulp (367 g DF/kg DM; 25 g DF/MJ ME). The fifth diet was a mixture including an equal amount of the 3 fiber diets offered semi ad libitum (ad libitum access to feed during 6 periods of 1 h starting at 0300, 0600, 1100, 1500, 1800, and 2300; 354 g DF/kg DM; 25 g DF/MJ ME). The experimental period included 2 periods of 4 wk each. Restricted-fed sows were fed once daily (0800 h) during the first period and twice daily (0800 and 1500 h) during the second period, or vice versa. Semi ad libitum fed sows had access to feed 6 times a day in both periods. In each period, the feeding motivation was assessed in an operant conditioning test, and samples of peripheral blood were taken in a balanced design, at 0900, 1200, 1900, and 0700 h, corresponding to 1, 4, 11, and 23 h after feeding for restricted sows fed once daily. No differences in the feeding motivation were found between the 4 restricted diets at any of the time points post feeding, but semi ad libitum fed sows had a decreased feeding motivation (P motivation at 1900 h (P motivation during the night compared with feeding once daily. Among restricted-fed sows, plasma concentrations of short-chain fatty acids (SCFA) were greater in sows fed high-fiber diets compared with the control (P = 0.02). Nonesterified fatty acid was least in sows on the control diet and greatest in sows on the potato diet, whereas sows on the pectin and

  12. [Application of Raman spectroscopy to investigation of CVD-SIC fiber].

    Science.gov (United States)

    Liu, Bin; Yang, Yan-Qing; Luo, Xian; Huang, Bin

    2011-11-01

    The CVD-SiC fiber was studied by using laser Raman spectra. It was found that the sharp TO peak exists in the first SiC deposit layer, indicating the larger SiC grains. But the second SiC deposit layer is with small grains. Raman peak of carbon and silicon was detected respectively in the first and second layer. Compared with that of the single SiC fiber, the TO peaks move to the high wave number for the SiC fiber in SiC(f)/Ti-6Al-4V composite. It indicates that the compressive thermal residual stress is present in the SiC fiber during the fabrication of the composite because of the mismatched coefficient of thermal expansion between Ti-6Al-4V matrix and SiC fiber. The average thermal residual stress of the SiC fiber in SiC(f)/Ti-6Al-4V composite was calculated to be 318 MPa and the residual stress in first deposit layer is 436 MPa which is much higher than that in the second layer.

  13. Investigation on the Influence of Chemical Treatment Time and Temperature on the Properties of CMP from Colza Stem

    Directory of Open Access Journals (Sweden)

    Reza Hosseinpour

    2012-01-01

    Full Text Available The influence of chemical treatment time and temperature on production of chemi-mechanical pulp from Colza stem is studied. Three treatment times (15, 30 and 45 minutes and two treatment temperatures (125 and 145 °C were investigated. Chemical charge as 4% NaOH and 8% Na2SO3 as was kept constant. Accepted pulp yield varied between 53.8%  and 63% and the total yield was measured between 57.6% and 68.9%. The residual lignin in lower yield pulp was 19% and higher yield pulp was 20.4%. Holocellulose content of pulps varied between 72.5%- 74% and freeness was between 520-590 ml CSF. Fiber classification using Bauer-McNett procedure showed that the average fiber length of unrefined pulp is between 0.6-0.7 mm, and the fine content (P100 is between 9% and 10.4%, Pulp freeness was reduced from original value of 520 to 590 ml CSF to about 300 ml CSF as pulps were refined in PFI mill applying 500 revolutions. The unrefined pulp strength including tensile index, burst index and tear index were measured as 15.48- 26.13 N.m/g, lower than 1 kPa.m2/g and 2.91- 4.34 mNm2/g respectively. All the indices after refining in PFI mill using 500 revolution were increased to 19.74-35.19 N.m/g, Max. 1.70 kPa.m2/g and 3.21- 4.68 mNm2/g respectively

  14. Nutrient contents of the fresh pulps and dried pulp cakes of vitellaria paradoxa of Gulu District, Uganda

    DEFF Research Database (Denmark)

    Oryema, Christine; Oryem-Origa, Hannington; Roos, Nanna

    2016-01-01

    Vitellaria paradoxa Gaertn locally known as ‘Yaa’ in Acholi is a valuable edible indigenous wild fruit in Gulu District, northern Uganda. It is a multipurpose fruit tree and highly favoured by the inhabitants of this district. Its fruit pulps are eaten when fresh and/or made into cakes and dried....... This study determined the nutrient compositions of the fresh pulps and dried pulp cakes of V. paradoxa. Laboratory analyses were undertaken to determine the micro and macro nutrients in the samples on fresh (FM) and dry matter (DM) basis following standard procedures and protocols. The potassium, sodium...

  15. PULP OBTAINING METHOD FOR PACKAGE PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. V. Kuzmich

    2015-01-01

    Full Text Available The paper presents a new method for obtaining pulp which is used for production of cardboard, paper and package while using carbon dioxide and hydrazine hydrate and neutral-sulfite  shive cooking. Output increase of  the desired product can be explained by reduction in destruction of plant raw material carbohydrates during its cooking process. Quality improvement of the desired product (improvement in bleaching and output is attributed to the fact that usage of carbon dioxide and hydrazine contributes to provision of polysaccharide chain resistance to destruction due to the presence of  end links having structure of metasaccharinic and aldonic acids.The author has developed a new method for pulp obtaining on the basis of the executed investigations  and literature data.  СО2 and hydrazine hydrate have been used for obtaining pulp. Method invention concerns pulp obtaining and it can be used for paper and cardboard package manufacturing in pulp and paper industry.The method is to be carried in the following way: pulp-containing plant raw material is loaded into an autoclave and then aqua solution of sodium monosulfite containing hydrazine hydrate that constitutes 4–5 % of absolute dry pulp-containing raw material mass with liquid module 1:6–1:8 is supplied into the autoclave. The autoclave is closed for operation under pressure and the solution is carbonated under pressure which constitutes 5–8 % of absolute dry plant raw material (shover. Temperature is subsequently raised up to 180 °С in the space of 2 hours and cooking is carried out in the course of 4 hours. Usage of  the proposed method for shover cooking makes it possible to reduce monosulfite cooking process and improve qualitative characteristics and output of the desired product.  In addition to above mentioned fact there is a possibility to improve bleaching and final product output. 

  16. Functionalized scaffolds to control dental pulp stem cell fate

    Science.gov (United States)

    Piva, Evandro; Silva, Adriana F.; Nör, Jacques E.

    2014-01-01

    Emerging understanding about interactions between stem cells, scaffolds and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a sub-population of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic signals give rise to a pulp-like tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells, despite the well known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals, where access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled release device for angiogenic factors. The aim of this manuscript is to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. PMID:24698691

  17. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  18. Licuri fibers characterization after treatment to produce cellulose nanocrystals

    International Nuclear Information System (INIS)

    Castro, E.G.; Oliveira, J.C.; Miranda, C.S.; Jose, N.M.

    2014-01-01

    Cellulose nanocrystals have been widely studied in the materials area due to their high aspect ratio, which is directly related to a good performance as mechanical reinforcement. Obtaining this nanocrystals from commercial bleached pulps, as eucalyptus, or microcrystalline cellulose is well studied. Trying to find new extraction sources, exploring better the huge variety of Brazil’s natural fibers and giving the opportunity of development to small communities, the present work verifies the influence of two bleaching methodologies, sodium hypochlorite or hydrogen peroxide, on licuri fibers. Previous washing and mercerization steps were performed before bleaching. The product of each step was analysed by: DSC, TGA, XRD, SEM and FTIR. The yield of each step was also calculated. (author)

  19. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    Science.gov (United States)

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Science.gov (United States)

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  1. Semaphorin 3A Induces Odontoblastic Phenotype in Dental Pulp Stem Cells.

    Science.gov (United States)

    Yoshida, S; Wada, N; Hasegawa, D; Miyaji, H; Mitarai, H; Tomokiyo, A; Hamano, S; Maeda, H

    2016-10-01

    In cases of pulp exposure due to deep dental caries or severe traumatic injuries, existing pulp-capping materials have a limited ability to reconstruct dentin-pulp complexes and can result in pulpectomy because of their low potentials to accelerate dental pulp cell activities, such as migration, proliferation, and differentiation. Therefore, the development of more effective therapeutic agents has been anticipated for direct pulp capping. Dental pulp tissues are enriched with dental pulp stem cells (DPSCs). Here, the authors investigated the effects of semaphorin 3A (Sema3A) on various functions of human DPSCs in vitro and reparative dentin formation in vivo in a rat dental pulp exposure model. Immunofluorescence staining revealed expression of Sema3A and its receptor Nrp1 (neuropilin 1) in rat dental pulp tissue and human DPSC clones. Sema3A induced cell migration, chemotaxis, proliferation, and odontoblastic differentiation of DPSC clones. In addition, Sema3A treatment of DPSC clones increased β-catenin nuclear accumulation, upregulated expression of the FARP2 gene (FERM, RhoGEF, and pleckstrin domain protein 2), and activated Rac1 in DPSC clones. Furthermore, in the rat dental pulp exposure model, Sema3A promoted reparative dentin formation with dentin tubules and a well-aligned odontoblast-like cell layer at the dental pulp exposure site and with novel reparative dentin almost completely covering pulp tissue at 4 wk after direct pulp capping. These findings suggest that Sema3A could play an important role in dentin regeneration via canonical Wnt/β-catenin signaling. Sema3A might be an alternative agent for direct pulp capping, which requires further study. © International & American Associations for Dental Research 2016.

  2. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    Science.gov (United States)

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  3. The crop-residue of fiber hemp cv. Futura 75: from a waste product to a source of botanical insecticides.

    Science.gov (United States)

    Benelli, Giovanni; Pavela, Roman; Lupidi, Giulio; Nabissi, Massimo; Petrelli, Riccardo; Ngahang Kamte, Stephane L; Cappellacci, Loredana; Fiorini, Dennis; Sut, Stefania; Dall'Acqua, Stefano; Maggi, Filippo

    2018-04-01

    In the attempt to exploit the potential of the monoecious fiber hemp cv. Futura 75 in new fields besides textile, cosmetics and food industry, its crop-residue given by leaves and inflorescences was subjected to hydrodistillation to obtain the essential oils. These are niche products representing an ideal candidate for the development of natural insecticides for the control and management of mosquito vectors, houseflies and moth pests. After GC-MS analysis highlighting a safe and legal chemical profile (THC in the range 0.004-0.012% dw), the leaf and inflorescence essential oils were investigated for the insecticidal potential against three insect targets: the larvae of Culex quinquefasciatus and Spodoptera littoralis and the adults of Musca domestica. The essential oil from inflorescences, showing (E)-caryophyllene (21.4%), myrcene (11.3%), cannabidiol (CBD, 11.1%), α-pinene (7.8%), terpinolene (7.6%), and α-humulene (7.1%) as the main components, was more effective than leaf oil against these insects, with LD 50 values of 65.8 μg/larva on S. littoralis, 122.1 μg/adult on M. domestica, and LC 50 of 124.5 μl/l on C. quinquefasciatus larvae. The hemp essential oil moderately inhibited the acetylcholinesterase (AChE), which is a target enzyme in pesticide science. Overall, these results shed light on the future application of fiber hemp crop-residue for the development of effective, eco-friendly and sustainable insecticides.

  4. Whole tree chips for fuel and pulp can cut mill energy costs

    Energy Technology Data Exchange (ETDEWEB)

    Morey, J

    1979-01-01

    Wood that is decaying and going to waste amounts to over 5 billion tons, enough to replace the present oil consumption of the United States. Environmental thinning--removal of dead, dying, and less desirable trees--leaves room for other trees to grow. Environmental thinning should be acceptable to private landowners, making almost every stand of timber available for energy harvest. Environmental thinning uses a small feller buncher shear, a small to medium grapple skidder, and a whole tree chipper. Five or six men, two or three feller bunchers, two grapple skidders, and a whole tree chipper can produce 250 to 300 green tons of whole tree chips per day and deliver it to an energy plant for $10 to $12 per ton. Demand for wood for energy will raise pulpwood prices unless industry adopts whole tree utilization and environmental thinning. Wood energy provides a market for low grade wood. The whole tree chipper can separate stem chips for pulping and top chips, with bark and foliage, for energy uses. A dirt separator available on the Morbark total Chiparvestor helps remove sand, about 40% of the bark, and about 50% of twigs and foliage. Because the fiber has a value as energy, it will be economical to build better screening systems, providing cleaner pulp chips. After screening, bark will remain, but some mills are converting to 100% bark chips. A study indicates that converting from oil to wood and from roundwood to whole tree chips can result in a savings of $4 to $8 million per year for a 1,000 tpd pulp and paper mill.

  5. Substance P and CGRP expression in dental pulps with irreversible pulpitis.

    Science.gov (United States)

    Sattari, Mandana; Mozayeni, Mohammad Ali; Matloob, Arash; Mozayeni, Maryam; Javaheri, Homan H

    2010-08-01

    The purpose of this study was to compare substance P (SP) and calcitonin gene-related peptide (CGRP) expression in pulp tissue with clinically diagnosed symptomatic and asymptomatic irreversible pulpitis. Healthy pulps acted as controls. Five normal pulps and 40 with irreversible pulpitis (20 symptomatic and 20 asymptomatic) were obtained from 45 different patients. SP and CGRP expression was determined by competition binding assays using enzyme immunoassay. anova and Mann-Whitney tests were used to ascertain if there were statistically significant differences between the groups. The results showed that neuropeptides were found in all pulp samples. The highest and the lowest expressions for SP and CGRP were found in symptomatic irreversible pulpitis and healthy pulps groups, respectively. The differences between healthy pulps and the groups of pulps having irreversible pulpitis were significant (P pulpitis groups (P pulpitis groups were not significant. This study demonstrated that the expression of CGRP and SP is significantly higher in pulps with irreversible pulpitis compared with healthy pulps.

  6. Investigation of pulping and paper making potential of weeds

    Directory of Open Access Journals (Sweden)

    omid Ghaffarzadeh Mollabashi

    2017-08-01

    Full Text Available Increasing use of wood products accompanying with resource constraint has revealed the importance of nonwood based material. In this study, pulping and papermaking potential of three varieties of weeds including Xanthium spinosum, Carthamus tinctorius and Cyperus papyrus have been considered. At first, chemical components of the samples i.e. cellulose, lignin and extractives have been measured following TAPPI standard test methods. Afterwards, pulping process based as soda and Kraft has been carried out and the pulp properties i.e. screen yield and reject, kappa number, caliper, bust index, tear index, brightness have been considered. According to the results, the amount cellulose, lignin and extractives have been measured for the Xanthium spinosum %38.15, %13.5 and 4.72, respectively. Theses parameters have been estimated about %38.25, %10.3 and % 2.95 for Carthamus tinctorius and %38.8, %19.2 and 4.4 in case of papyrus. The yield of soda and Kraft pulp of the papyrus was more than Xanthium spinosum and Carthamus tinctorius. Among all treatments, the highest screen yield related to soda pulping of Cyperus papyrus by %39.8 which has been obtained by 175 centigrade as a maximum temperature, L/W: 6/1, active alkaline: %30 and 90 minutes as the time at temperature. The lowest and highest amounts of the tear index were related to soda pulp sample of the Carthamus tinctorius and Kraft pulp sample of Xanthium spinosum by 2.49 and 8.1, respectively. In addition, the lowest and highest amounts of the bursting index were related to soda pulp sample of the Cyperus papyrus and Kraft pulp sample of Xanthium spinosum by 0.61and 2.48, respectively. Meanwhile, soda pulp sample of the Cyperus papyrus showed the highest amount of brightness with %45 ISO.

  7. Effect of Urea Addition on Soda Pulping of Oak Wood

    OpenAIRE

    Cho, Nam-Seok; Matsumoto, Yuji; Cho, Hee-Yeon; Shin, Soo-Jeong; Oga, Shoji

    2008-01-01

    Many studies have been conducted to find a sulfur-free additive for alkaline pulping liquors that would have an effect similar to that of sulfide in kraft pulping. Some reagents that partially fulfill this role have been found, but they are too expensive to be used in the quantities required to make them effective. As an alternative method to solve air pollution problem and difficulty of pulp bleaching of kraft pulping process, NaOH-Urea pulping was applied. The properties of NaOH-Urea pul...

  8. A modified efficient method for dental pulp stem cell isolation.

    Science.gov (United States)

    Raoof, Maryam; Yaghoobi, Mohammad Mehdi; Derakhshani, Ali; Kamal-Abadi, Ali Mohammadi; Ebrahimi, Behnam; Abbasnejad, Mehdi; Shokouhinejad, Noushin

    2014-03-01

    Dental pulp stem cells can be used in regenerative endodontic therapy. The aim of this study was to introduce an efficient method for dental pulp stem cells isolation. In this in-vitro study, 60 extracted human third molars were split and pulp tissue was extracted. Dental pulp stem cells were isolated by the following three different methods: (1) digestion of pulp by collagenase/dispase enzyme and culture of the released cells; (2) outgrowth of the cells by culture of undigested pulp pieces; (3) digestion of pulp tissue pieces and fixing them. The cells were cultured in minimum essential medium alpha modification (αMEM) medium supplemented with 20% fetal bovine serum(FBS) in humid 37°C incubator with 5% CO 2. The markers of stem cells were studied by reverse transcriptase polymerase chain reaction (PCR). The student t-test was used for comparing the means of independent groups. P third method, we obtained stem cells successfully with about 60% efficiency after 2 days. The results of RT-PCR suggested the expression of Nanog, Oct-4, and Nucleostemin markers in the isolated cells from dental pulps. This study proposes a new method with high efficacy to obtain dental pulp stem cells in a short time.

  9. [Correlation between dental pulp demyelination degree and pain visual analogue scale scores data under acute and chronic pulpitis].

    Science.gov (United States)

    Korsantiia, N B; Davarashvili, X T; Gogiashvili, L E; Mamaladze, M T; Tsagareli, Z G; Melikadze, E B

    2013-05-01

    The aim of study is the analysis of pulp nerve fibers demyelination degree and its relationship with Visual Analogue Scale (VAS) score that may be measured as objective criteria. Material and methods of study. Step I: electron micrografs of dental pulp simples with special interest of myelin structural changes detected in 3 scores system, obtained from 80 patients, displays in 4 groups: 1) acute and 2) chronic pulpitis without and with accompined systemic deseases, 20 patients in each group. Dental care was realized in Kutaisi N1 Dental clinic. Step II - self-reported VAS used for describing dental pain. All data were performed by SPSS 10,0 version statistics including Spearmen-rank and Mann-Whitny coefficients for examine the validity between pulp demyelination degree and pain intensity in verbal, numbered and box scales. Researched Data were shown that damaged myelin as focal decomposition of membranes and Schwann cells hyperthrophia correspond with acute dental pain intensity as Spearman index reported in VAS numbered Scales, myelin and axoplasm degeneration as part of chronic gangrenous pulpitis disorders are in direct correlation with VAS in verbal, numbered and behavioral Rating Scales. In fact, all morphological and subjective data, including psychomotoric assessment of dental painin pulpitis may be used in dental practice for evaluation of pain syndrome considered personal story.

  10. Fiber sources for complete calf starter rations.

    Science.gov (United States)

    Murdock, F R; Wallenius, R W

    1980-11-01

    Complete calf starter rations containing either 1) alfalfa hay, 2) cottonseed hulls, or 3) alfalfa-beet pulp as sources of fiber were fed to Holstein heifer calves at two locations on a limited milk program from 3 days to 12 wk of age. Rations were isonitrogenous and similar in content of crude fiber and acid detergent fiber. Although growth and development were normal on all rations, calves fed the cottonseed hull ration consumed more starter and gained more body weight than calves fed the other sources of fiber. The similarity of feed efficiencies, rumen pH, and molar ratios of volatile fatty acids between rations indicated no appreciable differences in rumen development or function. The growth response of calves fed the cottonseed hull ration appeared to be a result of better ration acceptability for which no reason was evident. Calves raised at Puyallup gained more body weight than calves at Pullman, and these gains were made more efficiently. These location effects may be related to seasonal differences and greater demands for production of body heat. Although the incidence of scours was less for calves fed alfalfa hay starter, the incidence and severity of bloat were higher for that ration.

  11. Method for rapidly determining a pulp kappa number using spectrophotometry

    Science.gov (United States)

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  12. Etude du séchage de la pulpe de safou ; résultats préliminaires

    Directory of Open Access Journals (Sweden)

    Silou, T.

    1991-01-01

    Full Text Available Survey on solar drying of safou pulp. Preliminary results. The consumption of safou, the fruit of Dacryodes edulis is very common in the entire Gulf of Guinea and is subject to a large trade in countries such as Cameroon, Congo, Gabon and Zaire. The fruit is very fragile with a post haverest loss of more than 50 % in the Congo. Solar dring is the only conservation method well managed by the local population but the resulting products have doubious hygenic quality. In order to appreciate the effect of drying on the product quality and in order to improve the traditional processes we have studied both the variation of residual water in the pulp and the acid index and the color of the oil. Drying with a stove (between 70 to 90°C and the solar drying give identical products in spite of some small differences in the dehydration mechanism. The resulting products have satisfying qualities : less than 1 % water content, acide index less than 4, optical density around 0, 3 at 400 nm in 25 g/1 cyclohexane. The product can be directly eaten after rehydration or reused as raw material for the extraction of oil from pulp.

  13. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  14. Pulp-Capping with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peycheva Kalina

    2015-11-01

    Full Text Available There are two considerations for direct pulp capping - accidental mechanical pulp exposure and exposure caused by caries. Mineral trioxide aggregate (MTA was used as pulp-capping material to preserve the vitality of the pulpal tissues. Follow-up examinations revealed that treatment was successful in preserving pulpal vitality and continued development of the tooth. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. Material and methods: Cases 18 - 8 teeth with grey MTA, 10 teeth with white MTA; diagnose: Pulpitis chronica ulcerosa, Electro pulpal test (EOD - 30-35 μA, pre-clinical X-ray - without changes in the structures, follow ups for 4 years. Successful treatments: without clinical symptoms and changes in the X-rays: 5 teeth with grey MTA, 8 teeth with white MTA for period of 4 years. Unsuccessful treatments: Clinical symptoms and sometimes changes in the X-ray: 3 with grey MTA, 2 with white MTA. MTA is an appropriate material for pulp-capping and follow-up examinations revealed that the treatment was successful in preserving pulpal vitality.

  15. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    International Nuclear Information System (INIS)

    Nilsson, L.J.

    1995-01-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co

  16. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L J [Department of Environmental and Energy Systems Studies, Lund University, Lund (Sweden)

    1995-12-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co

  17. Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    2016-01-01

    biomass, environmental savings from fossil fuel displacement can be completely out-balanced by iLUC, depending on the feed value of the biomass residues. This was the case of industrial residues brewer's grain, beet residues, potato pulp, and whey. Overall, the GHGs from iLUC impacts were quantified to 4...... pathway, in a short-term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro-industrial residues cannot be considered burden-free simply because they are a residual biomass and careful...

  18. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly.

    Science.gov (United States)

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2014-04-01

    Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.

  19. Positive and negative aspects of soda/anthraquinone pulping of hardwoods.

    Science.gov (United States)

    Francis, R C; Bolton, T S; Abdoulmoumine, N; Lavrykova, N; Bose, S K

    2008-11-01

    The positive aspects of the non-sulfur soda/anthraquinone (SAQ) process are mostly tied to improved energy efficiency while lower pulp brightness after bleaching is its most significant drawback. A credible method that quantifies bleachability as well as an approach that solves the problem for SAQ pulps from hardwoods will be described. A straight line correlation (R2=0.904) was obtained between O2 kappa number and final light absorption coefficient (LAC) value after standardized OD0EpD1 bleaching of nine hardwood kraft pulps from three laboratories and one pulp mill. The bleachability of pulps from four different soda processes catalyzed by anthraquinone (AQ) and 2-methylanthraquinone (MAQ) was compared to that of conventional kraft pulps by comparing O2 kappa number decrease and final LAC values. It was observed that a mild hot water pre-hydrolysis improved the bleachability of SAQ pulps to a level equal to that of kraft.

  20. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  1. Paleoproteomics of the Dental Pulp: The plague paradigm.

    Science.gov (United States)

    Barbieri, Rémi; Mekni, Rania; Levasseur, Anthony; Chabrière, Eric; Signoli, Michel; Tzortzis, Stéfan; Aboudharam, Gérard; Drancourt, Michel

    2017-01-01

    Chemical decomposition and fragmentation may limit the detection of ancient host and microbial DNA while some proteins can be detected for extended periods of time. We applied paleoproteomics on 300-year-old dental pulp specimens recovered from 16 individuals in two archeological funeral sites in France, comprising one documented plague site and one documented plague-negative site. The dental pulp paleoproteome of the 16 teeth comprised 439 peptides representative of 30 proteins of human origin and 211 peptides representative of 27 proteins of non-human origin. Human proteins consisted of conjunctive tissue and blood proteins including IgA immunoglobulins. Four peptides were indicative of three presumable Yersinia pestis proteins detected in 3/8 dental pulp specimens from the plague-positive site but not in the eight dental pulp specimens collected in the plague-negative site. Paleoproteomics applied to the dental pulp is a new and innovative approach to screen ancient individuals for the detection of blood-borne pathogens and host inflammatory response.

  2. Pulp-dentin Regeneration: Current State and Future Prospects.

    Science.gov (United States)

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  3. BLEACHING EUCALYPTUS PULPS WITH SHORT SEQUENCES

    Directory of Open Access Journals (Sweden)

    Flaviana Reis Milagres

    2011-03-01

    Full Text Available Eucalyptus spp kraft pulp, due to its high content of hexenuronic acids, is quite easy to bleach. Therefore, investigations have been made attempting to decrease the number of stages in the bleaching process in order to minimize capital costs. This study focused on the evaluation of short ECF (Elemental Chlorine Free and TCF (Totally Chlorine Free sequences for bleaching oxygen delignified Eucalyptus spp kraft pulp to 90% ISO brightness: PMoDP (Molybdenum catalyzed acid peroxide, chlorine dioxide and hydrogen peroxide, PMoD/P (Molybdenum catalyzed acid peroxide, chlorine dioxide and hydrogen peroxide, without washing PMoD(PO (Molybdenum catalyzed acid peroxide, chlorine dioxide and pressurized peroxide, D(EPODP (chlorine dioxide, extraction oxidative with oxygen and peroxide, chlorine dioxide and hydrogen peroxide, PMoQ(PO (Molybdenum catalyzed acid peroxide, DTPA and pressurized peroxide, and XPMoQ(PO (Enzyme, molybdenum catalyzed acid peroxide, DTPA and pressurized peroxide. Uncommon pulp treatments, such as molybdenum catalyzed acid peroxide (PMo and xylanase (X bleaching stages, were used. Among the ECF alternatives, the two-stage PMoD/P sequence proved highly cost-effective without affecting pulp quality in relation to the traditional D(EPODP sequence and produced better quality effluent in relation to the reference. However, a four stage sequence, XPMoQ(PO, was required to achieve full brightness using the TCF technology. This sequence was highly cost-effective although it only produced pulp of acceptable quality.

  4. The caries process and its effect on the pulp

    DEFF Research Database (Denmark)

    Bjørndal, Lars

    2008-01-01

    The understanding of the caries process and its effect on the pulp is presented in the context that caries does develop in various rates of progression. Early in the caries process, the pulp reflects changes within lesion activity. Thus, the early pulp response is reversible. Later, the rate...... of caries progression is reflected by the quality of the tertiary dentin. Slowly progressing lesions create tertiary dentin resembling normal tubular dentin. Rapidly progressing lesions lead to the production of a tubular dentin or complete absence of tertiary dentin, as well as pulp necrosis and apical...

  5. Catalase activity in healthy and inflamed pulp tissues of permanent ...

    African Journals Online (AJOL)

    2015-11-02

    Nov 2, 2015 ... pulps, which is due to pulpitis in comparison to healthy dental pulp. Key words: .... human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide. J Endod ... Biology of disease: Free radicals and tissue injury.

  6. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    Science.gov (United States)

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  7. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Farges

    2015-01-01

    Full Text Available Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  8. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment

  9. Pulp and paper production from Spruce wood with kraft and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... optical properties of resultant paper were included to determine the properties of these pulp samples. ... pulping compounds in the kraft method are Na2S and .... Scanning electron microscope (SEM) measurement of pulp.

  10. Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration.

    Science.gov (United States)

    Dissanayaka, W L; Zhu, L; Hargreaves, K M; Jin, L; Zhang, C

    2014-12-01

    Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. © International & American Associations for Dental Research.

  11. Pulp and paper from oil palm fronds: Wavelet neural networks modeling of soda-ethanol pulping

    OpenAIRE

    Zarita Zainuddin; Wan Rosli Wan Daud; Pauline Ong; Amran Shafie

    2012-01-01

    Wavelet neural networks (WNNs) were used to investigate the influence of operational variables in the soda-ethanol pulping of oil palm fronds (viz. NaOH concentration (10-30%), ethanol concentration (15-75%), cooking temperature (150-190 ºC), and time (60-180 min)) on the resulting pulp and paper properties (viz. screened yield, kappa number, tensile index, and tear index). Performance assessments demonstrated the predictive capability of WNNs, in that the experimental results of the dependen...

  12. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    Science.gov (United States)

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-04-01

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146 + ) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146 - ) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146 + and CD146 - cells, as well as mixtures composed of 25% CD146 + cells and 75% CD146 - cells (CD146 +/- ). Cell growth assays indicated that CD146 + cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146 - cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146 + cells' DNA content in G 0 /G 1 phase were compared with CD146 - and non-separated cells. In contrast to CD146 - and non-separated cells, prompt mineralization was observed in CD146 + cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146 + cells. CD146 + cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146 + cells, compared with CD146 - and CD146 +/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146 + cells. CD146 + cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  13. Characterization of sugar beet pulp derived oligosaccharides

    NARCIS (Netherlands)

    Leijdekkers, M.

    2015-01-01

    Abstract

    This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp.

    Hydrophilic interaction chromatography with on-line evaporative

  14. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Science.gov (United States)

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  15. Influence of moderate to severe chronic periodontitis on dental pulp.

    Science.gov (United States)

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A; Boostani, H R

    2012-10-01

    The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended.

  16. Dental pulp stem cells in regenerative dentistry.

    Science.gov (United States)

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  17. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.

    Science.gov (United States)

    Sánchez, Rafael; Espinosa, Eduardo; Domínguez-Robles, Juan; Loaiza, Javier Mauricio; Rodríguez, Alejandro

    2016-11-01

    Wheat straw was cooked under different pulping processes: Soda (100°C, 7% NaOH, 150min), Kraft (170°C, 16% alkalinity, 25% sulfidity, 40min) and Organosolv (210°C, 60% ethanol, 60min). Once the pulps were obtained, lignocellulose nanofibers (LCNF) were isolated by mechanical process and TEMPO-mediated oxidation followed by a high pressure homogenization. After pulping process, the different pulps were characterized and its chemical composition was determined. The pulps characterization indicates that the Soda process is the process that, despite producing less delignification, retains much of the hemicelluloses in the pulp, being this content a key factor in the nanofibrillation process. Regarding the LCNF obtained by mechanical process, those nanofibers isolated from Organosolv wheat pulp (OWP) and Kraft wheat pulp (KWP) show low values for nanofibrillation yield, specific surface area and greater diameter. However, those nanofibers isolated from Soda wheat pulp (SWP) reach much higher values for these parameters and presents a diameter of 14nm, smaller than those obtained by TEMPO-mediated oxidation from OWP. Smaller diameters are generally obtained in TEMPO-oxidized LCNF. This work concludes that the lignin content does not affect greatly to obtain LCNF as does the hemicellulose content, so it is accurate to use a soft pulping process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Lignin Biodegradation in Pulp-and-Paper Mill Wastewater by Selected White Rot Fungi

    Directory of Open Access Journals (Sweden)

    Stefania Costa

    2017-12-01

    Full Text Available An investigation has been carried out to explore the lignin-degrading ability of white rot fungi, as B. adusta and P. crysosporium, grown in different media containing (i glucose and mineral salts; (ii a dairy residue; (iii a dairy residue and mineral salts. Both fungi were then used as inoculum to treat synthetic and industrial pulp-and-paper mill wastewater. On synthetic wastewater, up to 97% and 74% of lignin degradation by B. adusta and P. crysosporium, respectively, have been reached. On industrial wastewater, both fungal strains were able to accomplish 100% delignification in 8–10 days, independent from pH control, with a significant reduction of total organic carbon (TOC of the solution. Results have confirmed the great biotechnological potential of both B. adusta and P. crysosporium for complete lignin removal in industrial wastewater, and can open the way to next industrial applications on large scale.

  19. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Science.gov (United States)

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  20. On the possibility of separation of valuable components from chloride pulps by filtration

    International Nuclear Information System (INIS)

    Chub, A.V.; Zelenkov, B.N.; Zakharov, V.F.; Drobot, D.V.

    1977-01-01

    The possibility has been studied of extracting MCl 5 (M=Nb, Ta) from technical products (chloride pulps in TiCl 4 ) by filtration. It has been established that in a low temperature range (( 5 . With increasing temperature a mutual presence of niobium and tantalum chlorides decreases the total content of MCl 5 in the solution. It has also been found that the filtration rate is proportional to pressure; besides, ''the aged'' precipitates possess worse filtrating properties due to particle destruction. Materials of the fiber glass fabric type are a good base for applying the precipitate. At a layer thickness of the chloride (MCl 5 ) precipitate about 20 mm a sufficiently high filtration rate is ensured

  1. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  2. TESTING OF PULP VITALITY BY PULSOXIMETRY

    Directory of Open Access Journals (Sweden)

    Gabriela CIOBANU

    2012-06-01

    Full Text Available The methods applied for diagnosing the health condition of the pulp tissue are numerous, however, nowadays, an increasingly higher number of conventional tests are replaced by some objective, non-invasive, painless and reliable tests. Among them, pulse oximetry is a method for the investigation of pulp vitality based on oxygen saturation (SaO2 of the hemoglobin from the blood present in the pulp vascular bed, as a means of differentiating among the vital and the non-vital teeth. In the present study, registrations were made on a group of 120 frontal maxillary teeth, in patients with ages between 20 and 40 years, on using a digital sensor modified by the pulse oximeter with which the pulse and the values of oxygen saturation were measured at the level of both teeth and right hand finger. The mean SaO2 value in the pulp blood of the vital teeth was of 83.30% for the central incisor, of 78.51% for the lateral one and of 84.56%, respectively, for the canine; the value recorded at finger level was of 97%. In the non-vital teeth, the SaO2 value measured on the pulse oximeter was of 0%. Pulse registration showed mean values of 70.56 beatings/min at tooth level and of 70.88 beatings/min, respectively, at finger level. The results of the present study may confirm that pulse oximetry represents a simple, non-traumatic, efficient and objective method for testing the vitality condition of the dental pulp.

  3. Performance of a Horizontal Triple Cylinder Type Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2011-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  4. Prospect of trema orientalis as a pulping raw material in bangladesh

    International Nuclear Information System (INIS)

    Jahan, M.S.

    2013-01-01

    The pulp and paper industry in Bangladesh is looking for new raw materials with high productivity per hectare. Currently, bamboo and Gmelina arborea are the main pulping raw materials for the pulp and paper industry of the country. Trema orientalis is one of the fastest growing woods in the tropical region. This paper reviews the literature on the topic, in particular, related to the chemical, morphological and physical properties of T. orientalis and its suitability for pulping. In addition, the advantages and disadvantages of various ulping processes proposed in the literature were critically analyzed. It was concluded that T. orientalis is a potential pulp wood for the Bangladesh pulp and paper industry. (author)

  5. Factors affecting the optimal performance of a high-yield pulping operation

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Technology Centre, Pointe-Claire, PQ (Canada); Paris, J [Ecole Polytechnique, Montreal, PQ (Canada); Valada, J L [Quebec Univ., Trois-Rivieres, PQ (Canada)

    1995-06-01

    Strategies for operating a chemical-mechanical pulp mill were investigated from data based on process models from some one hundred pilot scale pulping runs. Optimal values for 55 process and pulp quality variables have been calculated by applying a genetic algorithm search to a fuzzy model of the overall system. Best pulp quality was achieved and maintained when the chemical pretreatment was conducted at moderately low temperatures using a high SO{sub 2} concentration, which produced high sulphonation and high yield at the same time. By characterizing the quality of the pulp at the fibre level, optimization results were said to be more easily transferable to other high yield pulping systems. 19 refs., 6 tabs.

  6. Proceedings of the 8. biennial residual wood conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference highlighted practical strategies for managing and utilizing residual wood as a true industry resource. Examples of successful wood energy projects were presented along with the technology and products of more than 30 companies involved in the residual wood business. The topics of discussion ranged from biomass supplies, quality issues, and harvesting guidelines to emerging biomass technologies, project overviews, and financing. The presentations outlined the many opportunities that exist for the forest industry to produce energy from biostock, such as healthy and diseased trees, underbrush, sawdust, wood chips, wood pulp and black liquor. Increasing fuel and energy costs along with advances in technology are improving the economy of forest-based biorefineries. The presentations showed how the industry can gain revenue from residual wood, which is steadily becoming a more valuable resource for pellet production and energy generation The conference featured 20 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  7. A Histopathological Study of Direct Pulp Capping with Adhesive Resins

    Directory of Open Access Journals (Sweden)

    J. Salhenejad

    2004-12-01

    Full Text Available Statement of Problem: Recently, it has been proposed that different adhesive materials can be used for direct pulp capping. Previous studies have demonstrated that multi steps dentin adhesives could form reparative dentin similar to calcium hydroxide (CH.Purpose: The aim of this study was to evaluate the histological pulp response of ninety mechanically exposed cat pulps to two adhesive resins (Scotch Bond MP and Single Bond 3M were compared with a calcium hydroxide cement (Dycal, Dentsply.Materials and Methods : Class V facial cavities with similar pulpal exposures were prepared in canines. In the experimental groups phosphoric acid was used to etch the enamel and dentin and pulp exposure, and after it dentin adhesives was applied. The exposure point of the control group was capped with Dycal then the remainder of the cavities was etched and a dentin adhesive (single bond was applied. All of the cavities were restored with a composite resin (Z 100 in usual manner. The animals were scarified after 7, 30 and 60 days (n=30, and the pulp evaluated histologically, statistical analysis was carried out with Kruskal- Wallis test (a=0.05.Results: The data showed that most of the cases had mild inflammation of pulp tissue.There was no significant difference in inflammatory reaction of pulp by Dycal and two adhesive systems, severe inflammatory reaction of pulp was observed only in most of the 30- day Single Bond group. Soft tissue organization of dentin bridge was less than ScotchBond and Dycal groups, the differentiation of dentin bridge was less than Scotch Bond group after 7 days.Conclusion: Slight inflammatory cell infiltration was the main reaction of exposed pulp when two commercially available adhesive resins were placed directly on the exposed pulp.There was no significant difference in inflammatory reaction of pulp between Dycal and two adhesive systems after 7 days and 60 days. After 7 days most of the specimens showed an amount of predentin

  8. Effects of Bacterial Inoculants and Absorbents on Fermentation Properties and Chemical Composition of Fresh Sugar Beet Pulp Silage Using Laboratory silos

    Directory of Open Access Journals (Sweden)

    Saeid Seidali Dolat-Abad

    2016-04-01

    treatment after mixing the fresh sugar beet pulp with absorbents or inoculants. Ensilages were filled in laboratory silos and packed and then were kept for 90 d in room temperature at dark. After opening the concentration of volatile and non-volatile fatty acids, crude protein, fibers, total and ammonia-N and the values of pH were measured in final produced silages. Results and Discussion In the experiment 1, concentration of dry matter (DM, neutral detergent insoluble fibers (NDF and acid detergent insoluble fibers were higher in absorbents treated silage (P>0.01 when compared with untreated one. Application of absorbents resulted in silages with lower seepages (P>0.01 production compared to the control. However, application of the absorbents to the beet pulp produced silages with lower in vitro DM digestibility (P>0.05. Straw treated silage had the highest NDF concentration and the lowest apparent and true in vitro DM digestibility. Application of absorbents produced silages with lower lactic acid (P>0.01 and higher pH (P> 0.05 and ammonia-N (P>0.01 concentration. Adding straw to sugar beet pulp produced silages with higher acetate concentration, total volatile fatty acids concentrations (VFA (P> 0.01, the ratio of ammonia-N from total N (P>0.01 but lower ratios of lactate to acetate (P>0.01, lactate to acetate + propionate (P>0.01 and lactate to VFA (P>0.05 when compared with control group. In contrast, adding pith to sugar beet pulp produced silages with lower acetate concentration (P>0.01, propionate concentration (P>0.01, total VFA (P> 0.01 but higher ratios of lactate to acetate (P> 0.01, lactate to acetate + propionate (P> 0.01 and lactate to VFA (P>0.05 when compared with control group. The Fleig point was not affected by the different treatments. Application of bacterial inoculant resulted in silages with higher DM concentration (P>0.01, water soluble carbohydrates concentration (P> 0.01 and in vitro DM digestibility (P>0.05 but lower crude protein concentration

  9. The physical properties, lignin distribution, chemical composition of fibers and gas exchange rate of kenaf (Hibiscus cannabinus L.) varieties under prolonged water deficiency

    OpenAIRE

    Khalatbari, A.M; Jaafar, Z.E; Khalatbari, A. A; Hazandy, A.H; Mohd Ridzwan, A. H

    2016-01-01

    The fundamental characteristics and physical properties of kenaf (Hibiscus cannabinus L.) fibers cultivated and subjected to three different water frequencies in Universiti Putra Malaysia, were analyzed. For deep analysis, which includes micro-scale viewing for identification of kenaf cell wall structure, fibers were viewed in order to study the physical characteristics, anatomy, and lignin distribution. The chemical composition was determined considering Technical Association of Pulp and Pap...

  10. De-pulping and Seed Separation from Tumba ( Citrullus colocynthis) Fruit

    Science.gov (United States)

    Mudgal, Vishvambhar Dayal

    2017-09-01

    Tumba ( Citrullus colocynthis) contains spongy pulp in which seeds are embedded unevenly. Seeds contain about 26% fats and 13% protein. The process of seed separation is highly time consuming and labour intensive. Two weeks are required to separate its seeds with traditional methods. The developed prototype, for separating tumba seeds, mainly consists of chopper, de-pulping screw, barrel assembly and seed separation unit. The de-pulping screw and barrel assembly was divided in two sections i.e. conveying (feeding zone) and compression sections (de-pulping zone). The performance of developed machine was evaluated at different screw speed in the range of 40-100 rpm. Maximum pulp removal efficiency of 78.1% was achieved with screw speed of 60 rpm. Seed separation from the pulp was carried out by adding different chemicals. Use of sodium hydroxide and potassium hydroxide produced seed separation up to 99%.

  11. Comparative pulping of sunflower stalks

    Directory of Open Access Journals (Sweden)

    Valerii Barbash

    2016-03-01

    Full Text Available The procedure of holocellulose content determination in non-wood plant raw materials was developed. The strength properties of pulp obtained from sunflower stalks by neutral-sulphite, soda, alkaline sulphite-anthraquinone-ethanol and peracetic methods of delignification were studied. Methodology of comparison of plant materials delignification methods using new lignin-carbohydrate diagram was proposed. It was shown, that the alkaline sulphite-anthraquinone-ethanol method of pulping is characterized by the highest delignification degree and is the most efficient among the studied methods

  12. Proteomic analysis of human tooth pulp: proteomics of human tooth.

    Science.gov (United States)

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-12-01

    The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. The effect of lemon grape and apple pulps on performance, carcass traits, digestive tract characteristic, intestinal morphology and immune status of broilers

    Directory of Open Access Journals (Sweden)

    kivan Sadighi

    2016-04-01

    Full Text Available Introduction Iran has good condition in fruit production among all countries in the world. Lemon, grape and apple are fruits that are produced in large scale in our country. For economical use of these fruits, there are different factories which produce fruit juices. Pulps are the main waste that remain after juicing fruits. Pulps contain some nutrients such as vitamins and minerals and secondary substances, also in contrast to common diets ingredients, there are very cheap and using them in diets may reduce the production price. As pulps contain high level of fiber, can be easily used without any adverse effects in ruminant, but in poultry, especially in broilers using higher level of pulps may be not possible. However, using low level of pulps do not have any adverse effects on performance and blood parameters and can improve the meat quality and blood biochemical and immune parameters. Moreover discharge of these wastes to environment can cause serious environmental problems. This experiment was conducted to evaluate the effects of lemon, grape and apple pulps on performance, carcass traits, digestive tract characteristic, intestinal morphology and immune status of broilers. Materials and Methods In this experiment 240 Ross-308 broilers were used in 5 treatments, 4 replicates and 12 chicks in each replicate in a completely randomized design. Experimental groups included: 1 control group (without using pulp, 2 group with 150 mg/kg vitamin E (as positive control group, 3 group with 3% lemon pulp, 4 group with 3% grape pulp, 5 group with 3% apple pulp. Grower diets from 11 to 24 days and finisher diets from 25 to 42 days were used by broilers. In the experimental periods all chickens in experimental groups had free accsess to feed and water. The lighting program included: 23 h light and 1 h darkness in all the experimental period.Feed intake and weight gain were measured at the end of growing and finishing and whole periods. Feed conversion

  14. Influence of moderate to severe chronic periodontitis on dental pulp

    Science.gov (United States)

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A.; Boostani, H. R

    2012-01-01

    Background: The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Materials and Methods: Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Results: Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Conclusions: Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended. PMID:23493524

  15. Seeking optimality in fruit pulping schedules: A case study*

    Directory of Open Access Journals (Sweden)

    J.H. Van Vuuren

    2014-01-01

    Full Text Available The process of scheduling fruit pulping for the production of fruit juices is of great importance in the beverage industry. Decisions have to be made regarding available processing time, the disposal of fruit that will not be pulped before stock loss due to spoilage, the fulfilment of customer demand and an optimal financial position. Sheduling depends on the capacity of the work force, pulping machine limitations and delivery deadlines. However, the situation is often encountered where the plant manager has to decide which fruit batches (usually from stock piles of overwhelming proportions during the harvesting season are to be pulped in order to minimize losses due to fruit deterioration. Such decisions are usually done manually, based on intuition and experience. A mathematical model is presented here which constructs a pulping strategy while minimising cascading financial losses associated with fruit grade drops within the stock pile. It is shown in particular that a minimisation of fruit losses is not a good criterion for optimality, and that substantial financial gains may be accomplished when minimising financial losses in stead of fruit losses, which is currently standard practice at most fruit pulping plants.

  16. Sugar cane leaf: a potential raw material for cheap grades of paper and board

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, K. N.; Kulkarni, A. Y.

    1980-03-15

    About 6 to 7 million tons of sugar cane leaves are available per year as agricultural residue and can be utilized for manufacture of cheap grades of paper and board. An unbleached yield of 56% could be obtained using 10% NaOH at a temperature of 170/sup 0/C with a bath ratio of 1 to 4 and cooking time of 10 min. Sulfate pulping with equivalent conditions gave a bleached pulp with comparatively higher brightness values, other properties remaining almost same. Bleaching of 10% soda pulp with 10 and 12% chlorine have given 42 and 40% yields at 71 to 72 and 77 to 78% Elrepho brightness, respectively. In case of 9% sulfate pulp the yields are 36 to 37% at 77 to 79% brightness when bleached with the same sequence as above with 10 to 10.5% chlorine. The pulps are strong for preparation of cheap grades of bleached as well as unbleached varieties of paper. Double fold and tear are however medium to low and hence need long fibered pulp blending to improve these characteristics.

  17. Opportunities in utilization of agricultural residues in bio-composite ...

    African Journals Online (AJOL)

    In this paper, corn stalk as an agricultural residue was mixed with oak wood fiber to produce medium density fiberboards (MDF). Urea formaldehyde resin was used as binder. Hygroscopic and mechanical properties were evaluated according to the commercial standards in MDF production. Partial substitution of wood fiber ...

  18. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    International Nuclear Information System (INIS)

    Norman, J.C.; Sell, N.J.; Ciriacks, J.C.

    1990-01-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia

  19. Microarray evaluation of gene expression profiles in inflamed and healthy human dental pulp: the role of IL1beta and CD40 in pulp inflammation.

    Science.gov (United States)

    Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S

    2012-01-01

    Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.

  20. A modified efficient method for dental pulp stem cell isolation

    Directory of Open Access Journals (Sweden)

    Maryam Raoof

    2014-01-01

    Full Text Available Background: Dental pulp stem cells can be used in regenerative endodontic therapy. The aim of this study was to introduce an efficient method for dental pulp stem cells isolation. Materials and Methods: In this in-vitro study, 60 extracted human third molars were split and pulp tissue was extracted. Dental pulp stem cells were isolated by the following three different methods: (1 digestion of pulp by collagenase/dispase enzyme and culture of the released cells; (2 outgrowth of the cells by culture of undigested pulp pieces; (3 digestion of pulp tissue pieces and fixing them. The cells were cultured in minimum essential medium alpha modification (αMEM medium supplemented with 20% fetal bovine serum(FBS in humid 37°C incubator with 5% CO 2 . The markers of stem cells were studied by reverse transcriptase polymerase chain reaction (PCR. The student t-test was used for comparing the means of independent groups. P <0.05 was considered as significant. Results: The results indicated that by the first method a few cell colonies with homogenous morphology were detectable after 4 days, while in the outgrowth method more time was needed (10-12 days to allow sufficient numbers of heterogeneous phenotype stem cells to migrate out of tissue. Interestingly, with the improved third method, we obtained stem cells successfully with about 60% efficiency after 2 days. The results of RT-PCR suggested the expression of Nanog, Oct-4, and Nucleostemin markers in the isolated cells from dental pulps. Conclusion: This study proposes a new method with high efficacy to obtain dental pulp stem cells in a short time.

  1. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    Science.gov (United States)

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  2. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    Science.gov (United States)

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations

  3. Degradation kinetics and assessment of the prediction equation of indigestible fraction of neutral detergent fiber from agroindustrial byproducts

    Directory of Open Access Journals (Sweden)

    José Gilson Louzada Regadas Filho

    2011-09-01

    Full Text Available This study aimed at estimating the kinetic parameters of ruminal degradation of neutral detergent fiber from agroindustrial byproducts of cashew (pulp and cashew nut, passion fruit, melon, pineapple, West Indian cherry, grape, annatto and coconut through the gravimetric technique of nylon bag, and to evaluate the prediction equation of indigestible fraction of neutral detergent fiber suggested by the Cornell Net Carbohydrate and Protein System. Samples of feed crushed to 2 mm were placed in 7 × 14 cm nylon bags with porosity of 50 µm in a ratio of 20 g DM/cm² and incubated in duplicate in the rumen of a heifer at 0, 3, 6, 9, 12, 16, 24, 36, 48, 72, 96 and 144 hours. The incubation residues were analyzed for NDF content and evaluated by a non-linear logistic model. The evaluation process of predicting the indigestible fraction of NDF was carried out through adjustment of linear regression models between predicted and observed values. There was a wide variation in the degradation parameters of NDF among byproducts. The degradation rate of NDF ranged from 0.0267 h-1 to 0.0971 h-1 for grape and West Indian cherry, respectively. The potentially digestible fraction of NDF ranged from 4.17 to 90.67%, respectively, for melon and coconut byproducts. The CNCPS equation was sensitive to predict the indigestible fraction of neutral detergent fiber of the byproducts. However, due to the high value of the mean squared error of prediction, such estimates are very variable; hence the most suitable would be estimation by biological methods.

  4. California’s forest products industry and timber harvest, 2006

    Science.gov (United States)

    Todd A. Morgan; Jason P. Brandt; Kathleen E. Songster; Charles E. Keegan; Glenn A. Christensen

    2012-01-01

    This report traces the flow of California’s 2006 timber harvest through the primary wood products industry (i.e., firms that process timber into manufactured products such as lumber, as well as facilities such as pulp mills and particleboard plants, which use the wood fiber or mill residue directly from timber processors) and provides a description of the structure,...

  5. Rice straw pulp obtained by using various methods.

    Science.gov (United States)

    Rodríguez, Alejandro; Moral, Ana; Serrano, Luis; Labidi, Jalel; Jiménez, Luis

    2008-05-01

    Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).

  6. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  7. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    Science.gov (United States)

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that

  8. Gamma ray induced chromophore modification of softwood thermomechanical pulp

    International Nuclear Information System (INIS)

    Robert, S.; Daneault, C.; Viel, C.; Lepine, F.

    1992-01-01

    This study focuses on bleaching a softwood (black spruce, balsam fur) thermomechanical pulp with gamma rays. Gamma rays are known for their enormous penetrating power, along with their ionizing properties. They can generate highly energetic radicals capable of oxidizing lignin chromophores. The authors studied the influence of isopropyl alcohol, sodium borohydride, oxygen, hydrogen peroxide, nitrogen dioxide and water along with gamma ray irradiation of the pulps. The authors measured the optimal dose and dose rate, along with the influence of the radical scavengers like oxygen on the bleaching effect of gamma irradiated pulps. They observe various degrees of bleaching of these pulps. Evidence relates this bleaching to the generation of perhydroxyl anions upon irradiation of water. Also, they were able to pinpoint the influence of the dose rate on the rate of formation and disappearance of these perhydroxyl anions and their influence on bleaching kinetics. Stability toward photoyellowing, and photoyellowing's kinetic of papers from these pulps was also studied

  9. Holdup time measurement by radioactive tracers in pulp production

    International Nuclear Information System (INIS)

    Roetzer, H.; Donhoffer, D.

    1988-12-01

    A batch of pulp was to be labelled before passing two bleaching towers of a pulp plant. Activated glass fibres were used as a tracer, which contained 24-Na with a half-life of 15 hours. It was shown in laboratory tests, that the glass fibres were suitable for transport studies of wood pulp. For use in the tests the fibres were activated and suspended in water. Due to the small diameter of the fibres (2-5 micrometers) this suspension shows physical properties very similar to the pulp. For detection six scintillation probes were mounted at different positions outside the bleaching tower. Radiation protection during the test was very easy due to the low total activity of the tracer material. Residence time distributions for both towers were measured. The successful tracer experiments show, that the method of labelling is suited for investigations of material transport in the pulp and paper industry. 3 figs., 11 refs., 2 tabs. (Author)

  10. Microarray evaluation of age-related changes in human dental pulp.

    Science.gov (United States)

    Tranasi, Michelangelo; Sberna, Maria Teresa; Zizzari, Vincenzo; D'Apolito, Giuseppe; Mastrangelo, Filiberto; Salini, Luisa; Stuppia, Liborio; Tetè, Stefano

    2009-09-01

    The dental pulp undergoes age-related changes that could be ascribed to physiological, defensive, or pathological irritant-induced changes. These changes are regulated by pulp cell activity and by a variety of extracellular matrix (ECM) macromolecules, playing important roles in growth regulation, tissue differentiation and organization, formation of calcified tissue, and defense mechanisms and reactions to inflammatory stimuli. The aim of this research was to better understand the genetic changes that underlie the histological modification of the dental pulp in aging. The gene expression profile of the human dental pulp in young and older subjects was compared by RNA microarray analysis that allowed to simultaneously analyze the expression levels of thousands of genes. Data were statistically analyzed by Significance Analysis of Microarrays (SAM) Ingenuity Pathway Analysis (IPA) software. Semiquantitative and real-time reverse-transcriptase polymerase chain reaction analyses were performed to confirm the results. Microarray analysis revealed several differentially expressed genes that were categorized in growth factors, transcription regulators, apoptosis regulators, and genes of the ECM. The comparison analysis showed a high expression level of the biological functions of cell and tissue differentiation, development, and proliferation and of the immune, lymphatic, and hematologic system in young dental pulp, whereas the pathway of apoptosis was highly expressed in older dental pulp. Expression profile analyses of human dental pulp represent a sensible and useful tool for the study of mechanisms involved in differentiation, growth and aging of human dental pulp in physiological and pathological conditions.

  11. Utilization of corn residues for production of the polysaccharide schizophyllan

    Science.gov (United States)

    Abundant corn residues include fiber from wet milling operations and distillers' dried grains from dry grind ethanol plants. Biorefineries of the future will utilize such residues for the production of valuable bioproducts, particularly those traditionally produced from fossil fuels. Schizophyllan...

  12. Proceedings of the 3. Canadian organic residuals and biosolids management conference[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The management of organic residuals in Canada is becoming more challenging and complex, both socially and politically. This conference provided a forum to exchange the latest information on technical legislative and public awareness issues associated with organic residuals and biosolids management in Canada. It was attended by producers, managers, practitioners and regulators from across Canada who discussed various initiatives regarding the production, management use and disposal of organic residuals including municipal wastewater treatment biosolids, animal manures and pulp and paper sludges. The sessions of the conference were entitled: biosolids management; quality issues; public perception and health issues; composting; treatment technologies; waste to energy; technology; and, land application. The conference featured 50 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. Integrated chemical plants at the pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  14. Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production.

    Science.gov (United States)

    Abrantes, S; Amaral, M E; Costa, A P; Duarte, A P

    2007-11-01

    The pulping of Cynara cardunculus L. (cardoon) was performed under conditions for kraft, kraft-AQ and soda-AQ processes. The best results in terms of delignification degree, expressed as kappa number, pulp viscosity and screened yield, were obtained for the kraft-AQ process with 0.20% of anthraquinone (AQ). The papermaking potential of the selected pulp was studied attending to biometric fibre characterisation, refining aptitude, optical and strength properties. All properties were compared against a Eucalyptus globulus pulp at different refining degrees. The cardoon pulp was also evaluated concerning its potential to board manufacture, alone and in mixtures with pine pulp, giving rise to promising results for liner manufacture.

  15. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.

    Science.gov (United States)

    Paananen, Markus; Sixta, Herbert

    2015-10-01

    High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  17. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    OpenAIRE

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and red...

  18. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  19. Scaffolds to Control Inflammation and Facilitate Dental Pulp Regeneration

    Science.gov (United States)

    Colombo, John S.; Moore, Amanda N.; Hartgerink, Jeffrey D.; D’Souza, Rena N.

    2014-01-01

    In dentistry, the maintenance of a vital dental pulp is of paramount importance, as teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. While the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis due to their ability to switch to a pro-resolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a pro-resolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented. PMID:24698696

  20. Idiopathic dental pulp calcifications in a tertiary care setting in South India.

    Science.gov (United States)

    Satheeshkumar, P S; Mohan, Minu P; Saji, Sweta; Sadanandan, Sudheesh; George, Giju

    2013-01-01

    Dental pulp calcifications are unique and represent the dental pulp regenerative process. Dental pulp calcifications are sometimes routine findings in oral radiographs and may later serve as an important diagnostic criterion for a hidden aspect of systemic illness. The purpose of this study was to assess the patterns and prevalence of idiopathic dental pulp calcifications in a tertiary care setting in South India. A total of 227 patients were included in the study fulfilling the inclusion criteria. Age range of the study population was from 15 to 70 years. Teeth were examined under digital panoramic radiograph. The presence or absence of pulp stones was recorded. The presence of pulp stone were categorized according to the types classified as Type I, Type IA, Type II, Type IIA, Type II B, and Type III. The frequency of occurrence of pulp stones with sex, tooth type, dental arches, and types were compared with the types of calcification. Total no. of patients with pulpal calcification were 227 [females 133 (58.59%) and males 94 (41.40%)]. The most common type between both sexes was Type I (48%). Total no. of teeth with calcification was 697; maxilla (48%), mandible (52%). The prevalence of pulp stone was found to be higher in the molars in both the arches. Most no. of pulp stones are reported at the third and fourth decade of life. Idiopathic dental pulp calcifications are incidental radiographic findings of the pulp tissue and also may be an indicator of underlying disease.

  1. Partial pulp necrosis caused by excessive orthodontic force

    Directory of Open Access Journals (Sweden)

    Min-Young Kim

    2011-03-01

    Full Text Available As the dental pulp is encased with a rigid, noncompliant shell, changes in pulpal blood flow or vascular tissue pressure can have serious implication for the health of pulp. Numerous studies have demonstrated that orthodontic force application may influence both blood flow and cellular metabolism, leading degenerative and/or inflammatory responses in the dental pulp. The aim of this case report is to present a case about tooth with chronic periapical abscess which showed normal vital responses. Excessive orthodontic force is thought to be the prime cause of partial pulp necrosis. Owing to remaining vital tissue, wrong dianosis can be made, and tooth falsely diagnosed as vital may be left untreated, causing the necrotic tissue to destroy the supporting tissuses. Clinician should be able to utilize various diagnostic tools for the precise diagnosis, and be aware of the endodontic-orthodontic inter-relationship.

  2. Pretreatment and processing of field biomasses for production of precious, bulk and energy fiber fractions; Peltobiomassojen esikaesittely ja prosessointi arvo-, bulkki- ja energiakuitujakeiden tuottamiseksi

    Energy Technology Data Exchange (ETDEWEB)

    Vilppunen, P.; Sohlo, J. [Oulu Univ., Oulu (Finland). Dept. of Process Engineering

    1995-12-31

    The objective of the research was to make a preliminary study on pretreatment and processing possibilities of different field biomasses for production of specific product fractions with dry and wet separation methods. Pretreatment processes and possible combinations, before pulping and energy production, were studied in the dry-fraction part of the research. Sieving technology, air-classifier and a collision separator were tested. Additionally, the fuel processing systems of present power/thermal plants were studied in practice. A new type of separation system, based on removal of fines with collision-separator, was designed in the sub-project. The results of the sub-project are now utilized in other researches of the Bioenergy Research Programme. Separation processes for energy and fiber fractions, predominantly those for seed flax, using traditional pulp classifiers and the new pressure classifier process were studied in the wet-separation part of the project. A combined plant fiber further-refining process, based on mechanical and biotechnical separation, operating on the basis of fiber length, was developed on the basis of dry and wet frection tests

  3. Pretreatment and processing of field biomasses for production of precious, bulk and energy fiber fractions; Peltobiomassojen esikaesittely ja prosessointi arvo-, bulkki- ja energiakuitujakeiden tuottamiseksi

    Energy Technology Data Exchange (ETDEWEB)

    Vilppunen, P; Sohlo, J [Oulu Univ., Oulu (Finland). Dept. of Process Engineering

    1996-12-31

    The objective of the research was to make a preliminary study on pretreatment and processing possibilities of different field biomasses for production of specific product fractions with dry and wet separation methods. Pretreatment processes and possible combinations, before pulping and energy production, were studied in the dry-fraction part of the research. Sieving technology, air-classifier and a collision separator were tested. Additionally, the fuel processing systems of present power/thermal plants were studied in practice. A new type of separation system, based on removal of fines with collision-separator, was designed in the sub-project. The results of the sub-project are now utilized in other researches of the Bioenergy Research Programme. Separation processes for energy and fiber fractions, predominantly those for seed flax, using traditional pulp classifiers and the new pressure classifier process were studied in the wet-separation part of the project. A combined plant fiber further-refining process, based on mechanical and biotechnical separation, operating on the basis of fiber length, was developed on the basis of dry and wet frection tests

  4. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    user

    also other applications like in the chemical industry. (Biermann, 1993). Therefore pulp is a very .... digester was maintained at an operating condition of. 170°C, pressure of 2 bars, with liquor to wood ratio of 4:1. Cooking ... The effects of different concentrations of pulping liquor on the yield of pulp from the wood species are ...

  5. Alkaline pulping with additives of date palm rachis and leaves from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Khider, T

    2005-01-01

    Soda-anthraquinone (soda-AQ), alkaline sulphite-anthraquinone (AS-AQ) and alkaline sulphite-anthraquinone-methanol (ASAM) pulping of date palm rachis and leaves from Sudan was carried under different conditions, and pulps with variable yields and mechanical properties were obtained. The date palm rachis gave best yields and mechanical properties with the AS-AQ or the ASAM process, while the leaves were best pulped with the soda method with low yield, but very good strength properties. Blending with 10% and 30% kenaf bark pulp was beneficial, especially for the AS-AQ pulps. Totally chlorine free (TCF) bleached rachis pulps were obtained of high brightness and strength properties suitable for use in writing and printing papers.

  6. Method of increasing efficiency of uranium sorption from acid pulp

    International Nuclear Information System (INIS)

    Parobek, P.; Hinterholzinger, O.; Baloun, S.; Homolka, V.; Vanek, J.; Vebr, Z.

    1989-01-01

    Acid pulp containing uranium is adjusted to pH 2.5 to 4 with alkaline agents, such as alkaline pulp, lime milk, finely ground limestone or soda, or a combination thereof. The treated pulp is put into contact with an ion exchanger whose pH has been adjuste to a range of 2.5 to 4. Partial pulp neutralization causes the hydrolysis of the iron present and an overall reduction in salt contents and a significant increase in the ion exchanger sorptio capacity and thus the overall sorption efficiency. The quality o the eluate and of the uranium concentrate improves. (B.S.)

  7. Path analysis for selection of feijoa with greater pulp weight

    Directory of Open Access Journals (Sweden)

    Joel Donazzolo

    Full Text Available ABSTRACT: The objective of this paper was to identify the direct and indirect effects of feijoa fruits (Acca sellowiana traitson pulp weight, in order to use these traits in indirect genotypes selection. Fruits of five feijoa plants were collected in Rio Grande do Sul, in the years of 2009, 2010 and 2011. Six traits were evaluated: diameter, length, total weight, pulp weight, peel thickness and number of seeds per fruit. In the path analysis, with or without ridge regression, pulp weight was considered as the basic variable, and the other traits were considered as explanatory variables. Total weight and fruit diameter had high direct effect, and are the main traits associated with pulp weight. These traits may serve as criteria for indirect selection to increase feijoa pulp weight, since they are easy to be measured.

  8. Microarray expression profiling of human dental pulp from single subject.

    Science.gov (United States)

    Tete, Stefano; Mastrangelo, Filiberto; Scioletti, Anna Paola; Tranasi, Michelangelo; Raicu, Florina; Paolantonio, Michele; Stuppia, Liborio; Vinci, Raffaele; Gherlone, Enrico; Ciampoli, Cristian; Sberna, Maria Teresa; Conti, Pio

    2008-01-01

    Microarray is a recently developed simultaneous analysis of expression patterns of thousand of genes. The aim of this research was to evaluate the expression profile of human healthy dental pulp in order to find the presence of genes activated and encoding for proteins involved in the physiological process of human dental pulp. We report data obtained by analyzing expression profiles of human tooth pulp from single subjects, using an approach based on the amplification of the total RNA. Experiments were performed on a high-density array able to analyse about 21,000 oligonucleotide sequences of about 70 bases in duplicate, using an approach based on the amplification of the total RNA from the pulp of a single tooth. Obtained data were analyzed using the S.A.M. system (Significance Analysis of Microarray) and genes were merged according to their molecular functions and biological process by the Onto-Express software. The microarray analysis revealed 362 genes with specific pulp expression. Genes showing significant high expression were classified in genes involved in tooth development, protoncogenes, genes of collagen, DNAse, Metallopeptidases and Growth factors. We report a microarray analysis, carried out by extraction of total RNA from specimens of healthy human dental pulp tissue. This approach represents a powerful tool in the study of human normal and pathological pulp, allowing minimization of the genetic variability due to the pooling of samples from different individuals.

  9. Anti-inflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp

    Directory of Open Access Journals (Sweden)

    Danieli Z. Viscardi

    Full Text Available ABSTRACT Guavira fruits have antimicrobial, antioxidant, antinociceptive, and anti-inflammatory activities. Spray drying has been widely used in the food industry presenting good retention in bioactive compounds used to transform the pulp/fruit juice into powder form. Therefore, the present study has evaluated the anti-inflammatory and antinociceptive activities of the microencapsulated pulp of Campomanesia adamantium (Cambess. O.Berg, Myrtaceae, by spray drying. Different groups of mice were treated with the doses of 100 and 300 mg/kg of microencapsulated "guavira" pulp and inflammatory parameters were assessed in a carrageenan paw edema-model and leukocyte migration with pleurisy model, while the antinociceptive activity was assessed using the formalin method and CFA-induced hyperalgesia model. A significant reduction in leukocyte migration and in paw edema was observed in rodents in all time after carrageenan injection for both doses of microencapsulated pulp of C. adamantium when compared with control group. Microencapsulated pulp of C. adamantium also reduced licking time at the first (nociceptive and second (inflammatory phases in the formalin model. In CFA-induced cold and mechanical hyperalgesia, depressive behavior, and knee edema, all parameters analyzed were significantly inhibited by microencapsulated pulp of C. adamantium. Microencapsulation by spray drying proved to be a technique that promotes bioavailability and the preservation of bioactive components in guavira pulp.

  10. Assessment of oxygen saturation in dental pulp of permanent teeth with periodontal disease.

    Science.gov (United States)

    Giovanella, Larissa Bergesch; Barletta, Fernando Branco; Felippe, Wilson Tadeu; Bruno, Kely Firmino; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2014-12-01

    In individuals with periodontal disease, dental pulp status should be determined before a treatment plan is made. Pulse oximeters are promising diagnostic tools to evaluate pulp vascularization. This study used pulse oximetry to determine the level of oxygen saturation in dental pulp of intact permanent teeth with periodontal attachment loss (PAL) and gingival recession (GR) and to evaluate the correlation between periodontal disease and level of oxygen saturation in the pulp. This study included 67 anterior teeth of 35 patients; all teeth showed intact crowns, PAL, a periodontal pocket (PP), and GR. The teeth underwent periodontal examination, cold and electric pulp testing, and pulse oximetry measurements. The Pearson correlation coefficient and a linear regression coefficient were calculated to evaluate the degree of correlation between periodontal disease markers (PAL, PP, and GR) and the level of oxygen saturation in dental pulp. These tests also evaluated possible associations between oxygen saturation and cold and electric pulp testing. PAL, PP, and GR had negative correlations with oxygen saturation in dental pulp. Conversely, no statistically significant association was found between oxygen saturation in dental pulp and the response to electric sensibility testing. Oxygen saturation was lower in the pulp of permanent teeth with PAL, PP, and GR, indicating that periodontal disease correlates with the level of oxygen saturation in the pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Vital pulp therapy in symptomatic immature permanent molars: Report of 3 cases

    Directory of Open Access Journals (Sweden)

    SheikhRezaie MS.

    2009-11-01

    Full Text Available "nEndodontic treatment of immature permanent teeth accompanies with several issues. The primary goal when treating such teeth is to maintain pulp vitality so that root development can occur normally. Indications and requirements for vital pulp therapy include asymptomatic and reversible pulpitis. Also there are controversial opinions regarding the ultimate clinical treatment of the vital pulp therapy techniques. In this manuscript we report 3 cases of immature symptomatic permanent molars with irreversible pulpitis caused by caries exposure of the pulp that have been undergone vital pulp therapy successfully.

  12. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  13. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin.

    Science.gov (United States)

    Chen, Yong-Jin; Zhao, Yin-Hua; Zhao, Ya-Juan; Liu, Nan-Xia; Lv, Xin; Li, Qiang; Chen, Fa-Ming; Zhang, Min

    2015-08-01

    Our aim is to investigate the cytobiological effects of autologous platelet-rich fibrin (PRF) on dental pulp stem cells (DPSCs) and to explore the ectopic and orthotopic possibilities of dental pulp revascularization and pulp-dentin complex regeneration along the root canal cavities of the tooth by using a novel tissue-engineered transplant composed of cell-sheet fragments of DPSCs and PRF granules. Canine DPSCs were isolated and characterized by assaying their colony-forming ability and by determining their cell surface markers and osteogenic/adipogenic differentiation potential. The biological effects of autologous PRF on DPSCs, including cell proliferation, alkaline phosphatase (ALP) activity and odonto-/osteogenic gene expression, were then investigated and quantified. A novel transplant consisting of cell-sheet fragments of DPSCs and PRF granules was adopted to regenerate pulp-dentin-like tissues in the root canal, both subcutaneously in nude mice and in the roots of canines. PRF promoted the proliferation of DPSCs in a dose- and time-dependent manner and induced the differentiation of DPSCs to odonto-/osteoblastic fates by increasing the expression of the Alp, Dspp, Dmp1 and Bsp genes. Transplantation of the DPSC/PRF construct led both to a favorable regeneration of homogeneous and compact pulp-like tissues with abundantly distributed blood capillaries and to the deposition of regenerated dentin along the intracanal walls at 8 weeks post-operation. Thus, the application of DPSC/PRF tissue constructs might serve as a potential therapy in regenerative endodontics for pulp revitalization or revascularization.

  14. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration.

    Science.gov (United States)

    Keller, Laetitia; Offner, Damien; Schwinté, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence

    2015-11-05

    The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration.

  15. Characterization of Human Dental Pulp Tissue Under Oscillatory Shear and Compression.

    Science.gov (United States)

    Ozcan, Burak; Bayrak, Ece; Erisken, Cevat

    2016-06-01

    Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1-100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1 ± 20.4 kPa and 5.5 ± 2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.

  16. Factors affecting ANKOM™ fiber analysis of forage and browse varying in condensed tannin concentration.

    Science.gov (United States)

    Terrill, Thomas H; Wolfe, Richard M; Muir, James P

    2010-12-01

    Browse species containing condensed tannins (CTs) are an important source of nutrition for grazing/browsing livestock and wildlife in many parts of the world, but information on fiber concentration and CT-fiber interactions for these plants is lacking. Ten forage or browse species with a range of CT concentrations were oven dried and freeze dried and then analyzed for ash-corrected neutral detergent fiber (NDFom) and corrected acid detergent fiber (ADFom) using separate samples (ADFSEP) and sequential NDF-ADF analysis (ADFSEQ) with the ANKOM™ fiber analysis system. The ADFSEP and ADFSEQ residues were then analyzed for nitrogen (N) concentration. Oven drying increased (P < 0.05) fiber concentrations with some species, but not with others. For high-CT forage and browse species, ADFSEP concentrations were greater (P < 0.05) than NDFom values and approximately double the ADFSEQ values. Nitrogen concentration was greater (P < 0.05) in ADFSEP than ADFSEQ residues, likely due to precipitation with CTs. Sequential NDF-ADF analysis gave more realistic values and appeared to remove most of the fiber residue contaminants in CT forage samples. Freeze drying samples with sequential NDF-ADF analysis is recommended in the ANKOM™ fiber analysis system with CT-containing forage and browse species. Copyright © 2010 Society of Chemical Industry.

  17. A prospective study of the incidence of asymptomatic pulp necrosis following crown preparation.

    Science.gov (United States)

    Kontakiotis, E G; Filippatos, C G; Stefopoulos, S; Tzanetakis, G N

    2015-06-01

    To determine the incidence of asymptomatic pulp necrosis following crown preparation as well as the positive predictive value of the electric pulp testing. A total of 120 teeth with healthy pulps scheduled to receive fixed crowns (experimental teeth) were included. Teeth were divided into two groups according to the preoperative crown condition (intact teeth and teeth with preoperative caries, restorations or crowns) and into four groups according to tooth type (maxillary anterior teeth, maxillary posterior teeth, mandibular anterior teeth and mandibular posterior teeth). Experimental and control teeth were submitted to electric pulp testing on three different occasions before treatment commencement (stage 0), at the impression making session (stage 1) and just before the final cementation of the crown (stage 2). Teeth that were considered to contain necrotic pulps were submitted to root canal treatment. Upon access, absence of bleeding was considered as a confirmation of pulp necrosis. Data were analysed using bivariate (chi-square) and multivariate analysis (logistic regression). All reported probability values (P-values) were based on two-sided tests and compared to a significance level of 5%. The overall incidence of pulp necrosis was 9%. Intact teeth had a significantly lower incidence of pulp necrosis (5%) compared with preoperatively structurally compromised teeth (13%) [(OR: 9.113, P = 0.035)]. No significant differences were found amongst the four groups with regard to tooth type (P = 0.923). The positive predictive value of the electric pulp testing was 1.00. The incidence of asymptomatic pulp necrosis of teeth following crown preparation is noteworthy. The presence of preoperative caries, restorations or crowns of experimental teeth correlated with a significantly higher incidence of pulp necrosis. Electric pulp testing remains a useful diagnostic instrument for determining the pulp condition. © 2014 International Endodontic Journal. Published by

  18. Wheat Bread with Pumpkin (Cucurbita maxima L. Pulp as a Functional Food Product

    Directory of Open Access Journals (Sweden)

    Renata Różyło

    2014-01-01

    Full Text Available In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20 % (converted to dry matter caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory characteristics of the bread showed that a partial replacement of wheat fl our with up to 10 % of pumpkin pulp gave satisfactory results. The taste, aroma and overall acceptability of control bread and bread containing 5 or 10 % of pulp had the highest degree of liking. The addition of higher levels of pumpkin pulp caused an unpleasant aroma and taste. Pumpkin pulp is a good material to complement the bread with potentially bioaccessible phenolics (including flavonoids and, especially, with peptides. The highest antioxidant activity was observed, in most cases, of the samples with added 10 and 15 % of pumpkin pulp. The addition of the pulp significantly enriched the bread with potentially bioaccessible angiotensin-converting enzyme (ACE inhibitors. The highest activity was determined in the bread with 15 and 20 % pumpkin pulp. ACE inhibitors from the tested bread were highly bioaccessible in vitro. Pumpkin pulp seems to be a valuable source of active compounds to complement the wheat bread. Adding the pulp directly to the wheat flour gives satisfactory baking results and reduces the cost of production. Additionally, pumpkin pulp is sometimes treated as waste material after the acquisition of seeds, thus using it as bread supplement also has environmental and economic benefi ts.

  19. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    Science.gov (United States)

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Alternative Fiber Sources from Gracilaria Sp and Eucheuma Cottonii for Papermaking

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Private sectors have invested in the technology to grow some Gelidialian red algae families and also tried to convert the algae to pulp and paper over the last few years in order to replace raw materials from wood. Several modern systems with their all complexities which are similar to the wood pulp-based papermaking technology have been offered to overcome any recent issues settle in the converting process. Chemical bleaching agents have even been still a standard treatment that must be established for properly converting the algae pulp to a sheet of paper. In this present work, the two genus of red algae, called Gracilaria and Eucheuma, were simply processed to make pulps without use of any bleaching chemical agents. The potential use of pulps made of the red algae as raw materials for papermaking was mechanically studied by testing the sheets made of the red algae through a tensile test at a room temperature under 20 mm/min according to ASTM D 828-97 (2002. Tensile properties of the proposed algae-based paper sheets obtained under the constant rate are discussed. Tensile properties of the selected wood-based paper sheets obtained under the same condition are also presented in this paper. The results showed that pulps made of the red algae would be the alternative to those of the wood and other natural fibers as raw materials for papermaking. Doi: 10.12777/ijse.6.1.1-10 [How to cite this article: Arham, N.A., Mohamad, N.A.N., Jai, J., Krishnan, J., Noorsuhana Mohd Yusof, N.M. (2013. Application of Response Surface Methodology in Extraction of Bioactive Component from Palm Leaves (Elaeis guineensis. International Journal of Science and Engineering, 6(1,1-10. Doi: 10.12777/ijse.6.1.1-10

  1. Can Acceptable Pulp be Obtained from Eucalyptus globulus Wood Chips after Hemicellulose Extraction?

    OpenAIRE

    Francisco López; M. Trinidad García; Vicente Mena; J. Mauricio Loaiza; Minerva A. M. Zamudio; Juan C. García

    2014-01-01

    This study investigates the operating conditions used in the soda-anthraquinone pulping of Eucalyptus globulus wood after autohydrolysis pretreatment on the yield, kappa number, and brightness of the resulting unbleached pulp. Moreover, strength-related properties of the resulting handsheets was examined to identify the best pulping conditions and compare the outcome with that of a conventional soda-anthraquinone pulping process. The paper strength properties of the pulp were similar to or be...

  2. Solid phase microextraction sampling of high explosive residues in the presence of radionuclides and radionuclide surrogate metals

    International Nuclear Information System (INIS)

    Duff, M.C.; Crump, S.L.; Ray, R.J.; Beals, D.; Cotham, W.E.; Mount, K.; Koons, R.D.; Leggitt, J.

    2008-01-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction (SPME) fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection. (author)

  3. Tropical Fruit Pulps: Processing, Product Standardization and Main Control Parameters for Quality Assurance

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2017-05-01

    Full Text Available ABSTRACT Fruit pulp is the most basic food product obtained from fresh fruit processing. Fruit pulps can be cold stored for long periods of time, but they also can be used to fabricate juices, ice creams, sweets, jellies and yogurts. The exploitation of tropical fruits has leveraged the entire Brazilian fruit pulp sector due mainly to the high acceptance of their organoleptic properties and remarkable nutritional facts. However, several works published in the last decades have pointed out unfavorable conditions regarding the consumption of tropical fruit pulps. This negative scenario has been associated with unsatisfactory physico-chemical and microbiological parameters of fruits pulps as outcomes of little knowledge and improper management within the fruit pulp industry. There are protocols for delineating specific identity and quality standards (IQSs and standardized good manufacturing practices (GMP for fruit pulps, which also embrace standard operating procedures (SOPs and hazard analysis and critical control points (HACCP, although this latter is not considered mandatory by the Brazilian legislation. Unfortunately, the lack of skilled labor, along with failures in complying established protocols have impaired quality of fruit pulps. It has been necessary to collect all information available with the aim to identify the most important hazards within fruit pulp processing lines. Standardizing methods and practices within the Brazilian fruit pulp industry would assurance high quality status to tropical fruit pulps and the commercial growth of this vegetal product towards international markets.

  4. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linghui [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Guo, Ronghui, E-mail: ronghuiguo214@126.com [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Lan, Jianwu [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Jiang, Shouxiang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Lin, Shaojian [Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg (Germany)

    2016-11-15

    Highlights: • Silver nanoparticles were synthesized on bamboo pulp fabric using dopamine as an adhesive and reducing agent under microwave radiation. • Silver coated bamboo pulp fabric modified with dopamine has good UV protection and hydrophobic property. • Silver nanoparticles can be strongly fixed on dopamine modified bamboo pulp fabric. - Abstract: Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  5. ON THE RECOVERY OF HEMICELLULOSE BEFORE KRAFT PULPING

    Directory of Open Access Journals (Sweden)

    Carlos Vila,

    2012-07-01

    Full Text Available To assess the feasibility of implementing hemicellulose recovery stages in kraft mills, Eucalyptus globulus wood samples were subjected to aqueous treatments with hot, compressed water (autohydrolysis processing to achieve partial dissolution of xylan. Autohydrolyzed solids were subjected to kraft pulping under selected conditions to yield a pulp of low kappa number, and to an optimized TCF bleaching sequence made up of three stages (alkaline oxygen delignification, chelating, and pressurized hydrogen peroxide, with minimized additions of pulping and bleaching chemicals. The final product had a relatively low kappa number (1.4, 641 mL/g ISO intrinsic viscosity, and 86.4% brightness.

  6. Enzyme Enhanced Protein Recovery from Green Biomass Pulp

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Lange, Lene

    2017-01-01

    of local protein resources based on upgrade from e.g. green plant biomass. In present work we consider different strategies for protein recovery from white clover and ryegrass screw press pulps, using aqueous extraction, as well as carbohydrases and proteases enhanced extraction. Protein recovery...... in these studies was determined as a yield of solubilized protein with regard to the total protein in a screw press pulp. Aqueous extraction at pH 8.0 resulted in approx. 40 % protein recovery, while proteases application (Savinase 16.0L, Novozymes) enabled twice higher protein yield. Application of plant cell...... pulp proteolyzates, generated by Savinase 16.0L protease....

  7. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw.

    Science.gov (United States)

    Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki

    2018-03-13

    This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p energy excretion in the urine (p energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

  8. 78 FR 38877 - Kraft Pulp Mills NSPS Review

    Science.gov (United States)

    2013-06-28

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 60 [EPA-HQ-OAR-2012-0640] FRL-9829-3 RIN 2060-AR64 Kraft Pulp Mills NSPS Review AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... comments on the May 23, 2013, proposed rule titled, ``Kraft Pulp Mills NSPS Review'' is being extended by...

  9. Using renewable sources in the pulp and paper mills

    International Nuclear Information System (INIS)

    Hazi, Aneta; Hazi, Gheorghe

    2007-01-01

    The pulp and paper industry is a major consumer of natural sources (wood) and energy (fossil fuels, electricity) and a significant contributor of pollutant discharges to the environment. In this paper there are presented pulp and paper making process and steam and power generation using renewable sources. This paper includes also an exergy analysis of the steam and power generation process for a pulp and paper mill. Based on the analysis, two sustainability indicators were calculated: the exergetic efficiency and the exergy renewability. (authors)

  10. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers...

  11. Characterization of Cypress Wood for Kraft Pulp Production

    Directory of Open Access Journals (Sweden)

    António J. A. Santos

    2014-06-01

    Full Text Available Wood samples of Cupressus arizonica, C. lusitanica, and C. sempervirens were evaluated for chemical, anatomical, and pulp characteristics as raw material for pulp production. Two 17-year-old trees per species were harvested, and wood samples were taken at a height of 2 m. Wood chips from Pinus pinaster (Portugal and P. sylvestris (Finland were used as references. C. arizonica differed from C. lusitanica and C. sempervirens with significantly lower (p < 0.05 tracheid diameter and wall thickness in the earlywood. The total extractives contents were 3.9%, 3.3%, and 2.5% for C. lusitanica, C. sempervirens, and C. arizonica, respectively, lower than the 5.1% for P. pinaster and 4.5% for P. sylvestris. Klason lignin content ranged from 33.0 to 35.6%, higher than the 28.0 to 28.7% for the pinewoods. The kraft pulp yields for C. arizonica, C. lusitanica, and C. sempervirens were 37.7%, 36.7%, and 38.7%, respectively, with kappa numbers of 32.0, 31.6, and 28.7, respectively; the yield values were 40.8% and 42.8%, with kappa numbers of 23.4 and 21.0, for P. pinaster and P. sylvestris, respectively. The cypress species are clearly different from pine in relation to wood pulping behavior. Among the cypress, C. sempervirens provided the best pulping results.

  12. Lipophilic extracts from banana fruit residues: a source of valuable phytosterols.

    Science.gov (United States)

    Oliveira, Lúcia; Freire, Carmen S R; Silvestre, Armando J D; Cordeiro, Nereida

    2008-10-22

    The chemical composition of the lipophilic extracts of unripe pulp and peel of banana fruit 'Dwarf Cavendish' was studied by gas chromatography-mass spectrometry. Fatty acids, sterols, and steryl esters are the major families of lipophilic components present in banana tissues, followed by diacylglycerols, steryl glucosides, long chain fatty alcohols, and aromatic compounds. Fatty acids are more abundant in the banana pulp (29-90% of the total amount of lipophilic extract), with linoleic, linolenic, and oleic acids as the major compounds of this family. In banana peel, sterols represent about 49-71% of the lipophilic extract with two triterpenic ketones (31-norcyclolaudenone and cycloeucalenone) as the major components. The detection of high amounts of steryl esters (469-24405 mg/kg) and diacylglycerols (119-878 mg/kg), mainly present in the banana peel extract, explains the increase in the abundance of fatty acids and sterols after alkaline hydrolysis. Several steryl glucosides were also found in significative amounts (273-888 mg/kg), particularly in banana pulp (888 mg/kg). The high content of sterols (and their derivatives) in the 'Dwarf Cavendish' fruit can open new strategies for the valorization of the banana residues as a potential source of high-value phytochemicals with nutraceutical and functional food additive applications.

  13. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    Directory of Open Access Journals (Sweden)

    Wei Song

    2016-12-01

    Full Text Available In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulose. Additionally, the SEM image illustrates that there are many fine fibres in the pulp and the spaces between the fibres are large.

  14. An approach to industrial application: influence of black liquor and pH on xylanase efficiency in bleaching of eucalyptus kraft pulp

    OpenAIRE

    Fillat Latorre, Úrsula; Roncero Vivero, María Blanca; Bassa, Alexandre; Sacón, Vera Maria

    2010-01-01

    To obtain a more realistic appraisal of the potential efficiency of xylanases in the industrial bleaching, the influence of pH and the presence of black liquor (measured as COD) on the bleaching efficiency of two commercial xylanases was studied at high temperature. These pH’s, CODs, and temperatures are close to those used in the storage tower of the B fiber line in Jacareı´ unit of Fibria (Brazil). The pulp samples obtained after each bleaching stage were analyzed for kappa number, brigh...

  15. Nemesia root hair response to paper pulp substrate for micropropagation.

    Science.gov (United States)

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  16. EXTRACELLULAR PROTEINS PRODUCED BY DIFFERENT SPECIES OF THE FUNGUS TRICHODERMA ON SECONDARY PAPER MILL SLUDGE SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Ida Vaskova,

    2012-01-01

    Full Text Available Kraft pulping is the most commonly used pulping process in the pulp and paper industry. In this process wood chips are chemically delignified using sodium sulfide and sodium hydroxide. Delignification is usually followed by mechanical fiberization and a bleaching process of the resulting wood pulp. In addition to lignin-free wood pulp, this process also produces waste that contains residues of used chemicals, lignin, cellulose, hemicelluloses, and small amounts of other wood components. Because of the worldwide large-scale production of paper, the sludge from paper mills contributes significantly to environmental pollution. Although there have been great efforts being made to utilize this lignin-rich material, sludge is mostly disposed in landfills or incinerated in a boiler. This research project used secondary sludge as a substrate for 7 wood-decay fungi taxonomically belonging to the genus Trichoderma. The examined fungi expressed the capability of consuming sludge components as a carbon source to produce extracellular proteins. The proteins were separated by gel electrophoresis. Before and after fungi cultivation, the sludge was analyzed by Fourier transform infrared spectroscopy (FTIR.

  17. The Kraft Pulp And Paper Properties of Sweet Sorghum Bagasse (Sorghum bicolor L Moench

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2015-05-01

    Full Text Available This study investigated the potency of sweet sorghum (Sorghum bicolor bagasse as raw material for pulp and paper using kraft pulping. The effects of alkali and sulfidity loading on kraft pulp and paper properties were also investigated. The pulping condition of the kraft pulp consisted of three levels of alkali loading (17, 19 and 22% and sulfidity loading (20, 22 and 24%. The maximum cooking temperature was 170°C for 4 h with a liquid to wood ratio of 10:1. Kraft pulping of this Numbu bagasse produced good pulp indicated by high screen yield and delignification selectivity with a low Kappa number (< 10. The unbleached pulp sheet produced a superior brightness level and a high burst index. The increase of active alkali loading tended to produce a negative effect on the pulp yield, Kappa number and paper sheet properties. Therefore, it is suggested to use a lower active alkaline concentration.

  18. Pulp tissue in sex determination: A fluorescent microscopic study

    Science.gov (United States)

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  19. In vitro penetration of bleaching agents into the pulp chamber

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Valera, M C; Mancini, M N G

    2004-01-01

    To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures.......To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures....

  20. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  1. Claustral single cell reactions to tooth pulp stimulation in cats.

    Science.gov (United States)

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  2. An overview of the dental pulp: its functions and responses to injury.

    Science.gov (United States)

    Yu, C; Abbott, P V

    2007-03-01

    The dental pulp is a unique tissue and its importance in the long-term prognosis of the tooth is often ignored by clinicians. It is unique in that it resides in a rigid chamber which provides strong mechanical support and protection from the microbial rich oral environment. If this rigid shell loses its structural integrity, the pulp is under the threat of the adverse stimuli from the mouth, such as caries, cracks, fractures and open restoration margins, all of which provide pathways for micro-organisms and their toxins to enter the pulp. The pulp initially responds to irritation by becoming inflamed and, if left untreated, this will progress to pulp necrosis and infection. The inflammation will also spread to the surrounding alveolar bone and cause periapical pathosis. The magnitude of pulp-related problems should not be underestimated since their most serious consequence is oral sepsis, which can be life threatening, and hence correct diagnosis and management are essential. Clinicians must have a thorough understanding of the physiological and pathological features of the dental pulp as well as the biological consequences of treatment interventions.

  3. Agricultural residues based composites part II: Hydration characteristics of cement- cellulosic fibers composites

    International Nuclear Information System (INIS)

    Hekal, E.E.; Kishar, E.A.; Abd-El-Khader, A.H.; Ibrahim, A.A.; Mobarak, F.M.

    2005-01-01

    The aim of this study is the utilization of the local agricultural wastes, such as ice straw bagasse, cotton stalks and linen fibers, which cause a big environmental problem. Different cement-fiber composites were prepared using 1.5, 3, 4.5 and 6% fibers by weight of cement. The lengths of the fibers used were 0.5, 0.8, and 1.25 mm. Hydration of the different, composites was carried out at room temperature for various lime intervals namely, 1.3,7 .28 and 90 days. Combined water contents, compressive strength and phase composition of the different prepared composites were examined

  4. The resin-in-pulp process and its application to ores from Brosses ''BRS 10''; Le procede resin in pulp et son application aux minerais des Brosses ''BRS 10''

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M

    1959-03-01

    The resin-in-pulp process is a technical variant of the recovery process of uranium in dilute solution by means of ion exchanger resins. An anion resin, XE 123, of a well-defined grain size is placed in direct contact with the pulp produced by sulfuric acid attack on ore with a low uranium content. This process is of particular value in the treatment of pulps that cannot be filtered or decanted, such as those obtained with ore from Brosses. The preparation of the pulp, the elution of the uranium, and its fixation, as well as the various factors encountered in these operations, are discussed. (author) [French] Le procede ''resin in pulp'' est une variante technique du procede de recuperation de l'uranium en solution diluee par les resines echangeuses d'ions. Une resine anionique, la 'XE 123' a granulometrie bien determinee, est mise en contact direct avec la pulpe provenant de l'attaque a l'acide sulfurique d'un minerai d'uranium a faible teneur. Ce procede est particulierement interessant dans le cas de pulpes infiltrables ou indecantables, telles que celles obtenues dans l'attaque du minerai des Brosses. La preparation de la pulpe, la fixation et l'elution de l'uranium, ainsi que les facteurs intervenant dans ces diverses operations sont etudies dans le present rapport. (auteur)

  5. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Laetitia Keller

    2015-11-01

    Full Text Available The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration.

  6. The Relix process for the resin-in-pulp recovery of uranium

    International Nuclear Information System (INIS)

    Cloete, F.L.D.

    1981-01-01

    The Relix process is based on direct contact between an ion-exchange resin and undiluted pulp, thus avoiding prior solid-liquid separation. The resin particles float near the surface of the pulp, forming an inverted fluidized bed with the pulp flowing downwards. The basic idea was demonstrated on a full-scale pachuca tank at Stilfontein Gold Mine in 1970, followed by a small-scale demonstration run in a laboratory at the National Institute for Metallurgy. A pilot plant based on a throughput of 60 tons of ore per day was subsequently operated at West Driefontein Gold Mine for several periods over two years. Although the plant proved operable from a mechanical point of view, the metallurgical performance was not up to expectation. The basic cause of the poor metallurgical performance was shown to be backmixing of both the resin and the pulp between stages. The values obtained for resin losses were inconclusive. Further development of resin-in-pulp processes for the recovery of uranium should be focused on the performance of various techniques for the screening of resin from pulp [af

  7. Catalase activity in healthy and inflamed pulp tissues of permanent teeth in young people.

    Science.gov (United States)

    Topcu, Kmc; Kırıcı, D Ö; Evcil, M S

    2016-01-01

    To evaluate catalase (CAT, EC 1.11.1.6) activity in healthy and inflamed dental pulp of young patient's teeth and to investigate if an active defense system oxidizing agents is present as a response to bacterial invasion. Twenty young patients between 15 and 25 ages, who were diagnosed to be healthy, were the source of the pulp tissue. The situation of the dental pulps was evaluated using clinical and radiographic assessments. The patients were divided two groups from healthy, and inflamed pulp tissues were obtained; each participant provided one pulp tissue specimens. The specimens were collected during endodontic treatment or by longitudinally grooving and splitting the teeth (if extracted). Catalase activity was determined through spectrophotometric methods and an independent sample t-test assessed the significance of differences between the groups. There was statistically a difference between healthy pulp tissue and inflamed pulp tissue (P catalase activity of healthy group was significantly lower than inflamed pulp groups. The present study has shown that a significant increase in catalase activity is determined in inflamed dental pulps, which is due to pulpitis in comparison to healthy dental pulp.

  8. Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks

    Directory of Open Access Journals (Sweden)

    Hendroko Setyobudi Roy

    2018-01-01

    Full Text Available The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.

  9. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.

    Science.gov (United States)

    Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E

    2017-10-01

    No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Human dental pulp stem cells derived from cryopreserved dental pulp tissues of vital extracted teeth with disease demonstrate hepatic-like differentiation.

    Science.gov (United States)

    Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M

    2016-06-01

    Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  12. Simultaneous production of bio-ethanol and bleached pulp from red algae.

    Science.gov (United States)

    Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum

    2012-12-01

    The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  14. Dentin and pulp sense cold stimulus.

    Science.gov (United States)

    Tokuda, Masayuki; Tatsuyama, Shoko; Fujisawa, Mari; Morimoto-Yamashita, Yoko; Kawakami, Yoshiko; Shibukawa, Yoshiyuki; Torii, Mistuso

    2015-05-01

    Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp

    Directory of Open Access Journals (Sweden)

    Kátia Maria Morais Eiras

    2009-01-01

    Full Text Available Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.

  16. Short communication: Growth performance, nutrient digestibility and blood parameters of fattening lambs fed diet replacing corn with orange pulp

    DEFF Research Database (Denmark)

    Lashkari, Saman; Taghizadeh, Akbar; Paya, Hamid

    2017-01-01

    The objective of the present study was to evaluate the effect of replacing corn with orange pulp (OP) on growth performance, rumen fermentation, nutrient digestibility and blood parameters of fattening lambs. Twenty male lambs were placed in individual pens and fed with four levels of replacement...... fiber showed a quadratic effect with the level of replacement. The results of the present study showed that replacement of corn by OP improves DMI of fattening lambs, leading to an enhancement in ADG at the replacement level of 40.3%. Also, total replacement of corn by OP did not have any adverse effect...

  17. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  18. Competitiveness of wood pulp production in different Brazilian states

    Directory of Open Access Journals (Sweden)

    Naisy Silva Soares

    2013-06-01

    Full Text Available This work aimed to analyze the competitiveness of wood pulp production in different Brazilian states, in May, 2008 (Minas Gerais, São Paulo, Espírito Santo and Bahia, using the Policy Analysis Matrix (PAM. The results obtained indicated that the private and social profitability of wood pulp production and commercialization was positive and greater in Bahia. The Brazilian companies were penalized by public policies adopted for the sector; the wood pulp production in São Paulo and Bahia were more competitive and less exposed to the negative effects of public policies that reduce the national company profits.

  19. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  20. Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Zakaria, S.; Ong, B.H.; Ahmad, S.H.; Abdullah, M.; Yamauchi, T.

    2005-01-01

    Magnetic pulps were prepared from unbleached kenaf (hibiscus cannabinus L.) kraft pulps. Fe 3 O 4 or magnetite powder was used to load into the pulp's lumen and pit. Aluminum sulphate [Al 2 (SO 4 ) 3 ] (alum) and polyethylenimine (PEI), both mainly function as retention aid were used throughout the experiment and found to be beneficial in the preparation of this magnetic pulps. The ash content method was used to determine the amount of magnetite retained in the lumen and pit. The utilization of PEI up to 2% per pulp fibres was found to be the best result on lumen loading. The deposition of magnetite powder in lumen and pit is found decrease as the addition of PEI used is more than 2% per pulp fibres. Scanning electron microscope (SEM) clearly shows the distribution of magnetite deposited in the lumen. Tensile index and folding endurance of the loaded fibre decreased slightly as the percentage of loading pigment increased