WorldWideScience

Sample records for pulmonary host response

  1. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  2. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  3. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    Directory of Open Access Journals (Sweden)

    Grassian Vicki H

    2011-09-01

    Full Text Available Abstract Background Human exposure to nanoparticles (NPs and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p. in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3 and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse. Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH activity, and inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse. Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection.

  4. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Directory of Open Access Journals (Sweden)

    Sivakumar Periasamy

    2016-03-01

    Full Text Available Inhalation of Francisella tularensis (Ft causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  5. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    Science.gov (United States)

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  6. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Derrick R Samuelson

    2017-06-01

    Full Text Available Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis. To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein

  7. Allopatric tuberculosis host-pathogen relationships are associated with greater pulmonary impairment.

    Science.gov (United States)

    Pasipanodya, Jotam G; Moonan, Patrick K; Vecino, Edgar; Miller, Thaddeus L; Fernandez, Michel; Slocum, Philip; Drewyer, Gerry; Weis, Stephen E

    2013-06-01

    Host pathogen relationships can be classified as allopatric, when the pathogens originated from separate, non-overlapping geographic areas from the host; or sympatric, when host and pathogen shared a common ancestral geographic location. It remains unclear if host-pathogen relationships, as defined by phylogenetic lineage, influence clinical outcome. We sought to examine the association between allopatric and sympatric phylogenetic Mycobacterium tuberculosis lineages and pulmonary impairment after tuberculosis (PIAT). Pulmonary function tests were performed on patients 16 years of age and older who had received ≥20 weeks of treatment for culture-confirmed M. tuberculosis complex. Forced Expiratory Volume in 1 min (FEV1) ≥80%, Forced Vital Capacity (FVC) ≥80% and FEV1/FVC >70% of predicted were considered normal. Other results defined pulmonary impairment. Spoligotype and 12-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were used to assign phylogenetic lineage. PIAT severity was compared between host-pathogen relationships which were defined by geography and ethnic population. We used multivariate logistic regression modeling to calculate adjusted odds ratios (aOR) between phylogenetic lineage and PIAT. Self-reported continental ancestry was correlated with Mycobacterium. tuberculosis lineage (pallopatric host-pathogen relationships and PIAT was 1.8 (95% confidence interval [CI]: 1.1, 2.9) compared to sympatric relationships. Smoking >30 pack-years was also associated with PIAT (aOR: 3.2; 95% CI: 1.5, 7.2) relative to smoking allopatric-host-pathogen relationship were more likely to have PIAT than patients with disease from sympatric-host-pathogen relationship infection. Further study of this association may identify ways that treatment and preventive efforts can be tailored to specific lineages and racial/ethnic populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Improved Detection of Invasive Pulmonary Aspergillosis Arising during Leukemia Treatment Using a Panel of Host Response Proteins and Fungal Antigens.

    Directory of Open Access Journals (Sweden)

    Allan R Brasier

    Full Text Available Invasive pulmonary aspergillosis (IPA is an opportunistic fungal infection in patients undergoing chemotherapy for hematological malignancy, hematopoietic stem cell transplant, or other forms of immunosuppression. In this group, Aspergillus infections account for the majority of deaths due to mold pathogens. Although early detection is associated with improved outcomes, current diagnostic regimens lack sensitivity and specificity. Patients undergoing chemotherapy, stem cell transplantation and lung transplantation were enrolled in a multi-site prospective observational trial. Proven and probable IPA cases and matched controls were subjected to discovery proteomics analyses using a biofluid analysis platform, fractionating plasma into reproducible protein and peptide pools. From 556 spots identified by 2D gel electrophoresis, 66 differentially expressed post-translationally modified plasma proteins were identified in the leukemic subgroup only. This protein group was rich in complement components, acute-phase reactants and coagulation factors. Low molecular weight peptides corresponding to abundant plasma proteins were identified. A candidate marker panel of host response (9 plasma proteins, 4 peptides, fungal polysaccharides (galactomannan, and cell wall components (β-D glucan were selected by statistical filtering for patients with leukemia as a primary underlying diagnosis. Quantitative measurements were developed to qualify the differential expression of the candidate host response proteins using selective reaction monitoring mass spectrometry assays, and then applied to a separate cohort of 57 patients with leukemia. In this verification cohort, a machine learning ensemble-based algorithm, generalized pathseeker (GPS produced a greater case classification accuracy than galactomannan (GM or host proteins alone. In conclusion, Integration of host response proteins with GM improves the diagnostic detection of probable IPA in patients

  9. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  10. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    2011-12-01

    Full Text Available Hantavirus pulmonary syndrome (HPS, also referred to as hantavirus cardiopulmonary syndrome (HCPS, is a rare but frequently fatal disease caused by New World hantaviruses. In humans HPS is associated with severe pulmonary edema and cardiogenic shock; however, the pathogenesis of this disease remains unclear largely due to a lack of suitable animal models for the study of disease progression. In this study we monitored clinical, virological, pathophysiological parameters and host immunological responses to decipher pathological factors and events in the lethal Syrian hamster model of HPS following intranasal inoculation of Andes virus. Transcriptional profiling of the host gene responses demonstrated a suppression of innate immune responses in most organs analyzed during the early stage of infection, except for in the lung which had low level activation of several pro-inflammatory genes. During this phase Andes virus established a systemic infection in hamsters, with viral antigen readily detectable in the endothelium of the majority of tissues analyzed by 7-8 days post-inoculation. Despite wide-spread infection, histological analysis confirmed pathological abnormalities were almost exclusively found in the lungs. Immediately preceding clinical signs of disease, intense activation of pro-inflammatory and Th1/Th2 responses were observed in the lungs as well as the heart, but not in peripheral organs, suggesting that localized immune-modulations by infection is paramount to pathogenesis. Throughout the course of infection a strong suppression of regulatory T-cell responses was noted and is hypothesized to be the basis of the aberrant immune activations. The unique and comprehensive monitoring of host immune responses to hantavirus infection increases our understanding of the immuno-pathogenesis of HPS and will facilitate the development of treatment strategies targeting deleterious host immunological responses.

  11. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses.

    Science.gov (United States)

    McConnell, Kevin W; McDunn, Jonathan E; Clark, Andrew T; Dunne, W Michael; Dixon, David J; Turnbull, Isaiah R; Dipasco, Peter J; Osberghaus, William F; Sherman, Benjamin; Martin, James R; Walter, Michael J; Cobb, J Perren; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2010-01-01

    Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. Prospective, randomized controlled study. Animal laboratory in a university medical center. Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a

  12. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo.

    Directory of Open Access Journals (Sweden)

    Paula E Beaumont

    Full Text Available Cathelicidins are multifunctional cationic host-defence peptides (CHDP; also known as antimicrobial peptides and an important component of innate host defence against infection. In addition to microbicidal potential, these peptides have properties with the capacity to modulate inflammation and immunity. However, the extent to which such properties play a significant role during infection in vivo has remained unclear. A murine model of acute P. aeruginosa lung infection was utilised, demonstrating cathelicidin-mediated enhancement of bacterial clearance in vivo. The delivery of exogenous synthetic human cathelicidin LL-37 was found to enhance a protective pro-inflammatory response to infection, effectively promoting bacterial clearance from the lung in the absence of direct microbicidal activity, with an enhanced early neutrophil response that required both infection and peptide exposure and was independent of native cathelicidin production. Furthermore, although cathelicidin-deficient mice had an intact early cellular inflammatory response, later phase neutrophil response to infection was absent in these animals, with significantly impaired clearance of P. aeruginosa. These findings demonstrate the importance of the modulatory properties of cathelicidins in pulmonary infection in vivo and highlight a key role for cathelicidins in the induction of protective pulmonary neutrophil responses, specific to the infectious milieu. In additional to their physiological roles, CHDP have been proposed as future antimicrobial therapeutics. Elucidating and utilising the modulatory properties of cathelicidins has the potential to inform the development of synthetic peptide analogues and novel therapeutic approaches based on enhancing innate host defence against infection with or without direct microbicidal targeting of pathogens.

  13. Falciparum malaria infection with invasive pulmonary aspergillosis in immunocompetent host – case report

    Science.gov (United States)

    Andriyani, Y.

    2018-03-01

    Invasive pulmonary aspergillosis is an extraordinary rare in the immunocompetent host. Falciparum malaria contributes to high morbidity and mortality of malaria infection cases in the world. The impairments of both humoral and cellular immunity could be the reason of invasive pulmonary aspergillosis in falciparum malaria infection. Forty-nine years old patient came with fever, jaundice, pain in the right abdomen, after visiting a remote area in Africa about one month before admission. Blood films and rapid test were positive for Plasmodium falciparum. After malaria therapy in five days, consciousness was altered into somnolence and intubated with respiratory deterioration. Invasive pulmonary aspergillosis after falciparum malaria infection is life-threatening. There should be awareness of physicians of invasive pulmonary aspergillosis in falciparum malaria infection.

  14. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages.

    Science.gov (United States)

    Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank

    2016-04-01

    Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.

  15. The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Simon Blankley

    Full Text Available Mycobacterium tuberculosis infection is a leading cause of infectious death worldwide. Gene-expression microarray studies profiling the blood transcriptional response of tuberculosis (TB patients have been undertaken in order to better understand the host immune response as well as to identify potential biomarkers of disease. To date most of these studies have focused on pulmonary TB patients with gene-expression profiles of extra-pulmonary TB patients yet to be compared to those of patients with pulmonary TB or sarcoidosis.A novel cohort of patients with extra-pulmonary TB and sarcoidosis was recruited and the transcriptional response of these patients compared to those with pulmonary TB using a variety of transcriptomic approaches including testing a previously defined 380 gene meta-signature of active TB.The 380 meta-signature broadly differentiated active TB from healthy controls in this new dataset consisting of pulmonary and extra-pulmonary TB. The top 15 genes from this meta-signature had a lower sensitivity for differentiating extra-pulmonary TB from healthy controls as compared to pulmonary TB. We found the blood transcriptional responses in pulmonary and extra-pulmonary TB to be heterogeneous and to reflect the extent of symptoms of disease.The transcriptional signature in extra-pulmonary TB demonstrated heterogeneity of gene expression reflective of symptom status, while the signature of pulmonary TB was distinct, based on a higher proportion of symptomatic individuals. These findings are of importance for the rational design and implementation of mRNA based TB diagnostics.

  16. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  17. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  18. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  19. Biofilms and host response - helpful or harmful

    DEFF Research Database (Denmark)

    Moser, Claus; Pedersen, Hannah Trøstrup; Lerche, Christian Johann

    2017-01-01

    infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response...

  20. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit

    Science.gov (United States)

    Liu, Qiu-Yue; Han, Fen; Pan, Li-Ping; Jia, Hong-Yan; Li, Qi; Zhang, Zong-De

    2018-01-01

    Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU. PMID:29456674

  1. Role and contribution of pulmonary CD103+ dendritic cells in the adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Koh, Vanessa Hui Qi; Ng, See Liang; Ang, Michelle Lay Teng; Lin, Wenwei; Ruedl, Christiane; Alonso, Sylvie

    2017-01-01

    Despite international control programmes, the global burden of tuberculosis remains enormous. Efforts to discover novel drugs have largely focused on targeting the bacterium directly. Alternatively, manipulating the host immune response may represent a valuable approach to enhance immunological clearance of the bacilli, but necessitates a deeper understanding of the immune mechanisms associated with protection against Mycobacterium tuberculosis infection. Here, we examined the various dendritic cells (DC) subsets present in the lung and draining lymph nodes (LN) from mice intra-tracheally infected with M. tuberculosis. We showed that although limited in number, pulmonary CD103 + DCs appeared to be involved in the initial transport of mycobacteria to the draining mediastinal LN and subsequent activation of T cells. Using CLEC9A-DTR transgenic mice enabling the inducible depletion of CD103 + DCs, we established that this DC subset contributes to the control of mycobacterial burden and plays a role in the early activation of T cells, in particular CD8 + T cells. Our findings thus support a previously unidentified role for pulmonary CD103 + DCs in the rapid mobilization of mycobacteria from the lungs to the draining LN soon after exposure to M. tuberculosis, which is a critical step for the development of the host adaptive immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Proteomic Characterization of Host Response to Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Chromy, B; Perkins, J; Heidbrink, J; Gonzales, A; Murhpy, G; Fitch, J P; McCutchen-Maloney, S

    2004-05-11

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.

  3. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis.

    Science.gov (United States)

    Shaler, Christopher R; Horvath, Carly; Lai, Rocky; Xing, Zhou

    2012-01-01

    Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.

  4. Pneumocystis jirovecii colonization in chronic pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gutiérrez S.

    2011-05-01

    Full Text Available Pneumocystis jirovecii causes pneumonia in immunosuppressed individuals. However, it has been reported the detection of low levels of Pneumocystis DNA in patients without signs and symptoms of pneumonia, which likely represents colonization. Several studies performed in animals models and in humans have demonstrated that Pneumocystis induces a local and a systemic response in the host. Since P. jirovecii colonization has been found in patients with chronic pulmonary diseases it has been suggested that P. jirovecii may play a role in the physiopathology and progression of those diseases. In this report we revise P. jirovecii colonization in different chronic pulmonary diseases such us, chronic obstructive pulmonary disease, interstitial lung diseases, cystic fibrosis and lung cancer.

  5. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Harkema, J.R.; Sun, J.D.; Henderson, R.F.

    1988-01-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O 3 for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O 3 had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O 3 had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O 3 had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O 3 concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  6. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Harkema, J R; Sun, J D; Henderson, R F

    1988-12-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O{sub 3} for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O{sub 3} had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O{sub 3} had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O{sub 3} had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O{sub 3} concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  7. Cardio–Pulmonary Response Of Patients With Sickle Cell Anaemia ...

    African Journals Online (AJOL)

    Cardio–Pulmonary Response Of Patients With Sickle Cell Anaemia ... any risk of adverse cardio-respiratory response during the course of physical rehabilitation. A total of 70 subjects participated in the study; 30 of these had Haemoglobin ...

  8. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Sawyer, Brooke; Pun, Emma; Tay, Huilee; Kron, Tomas; Bressel, Mathias; Ball, David; Siva, Shankar; Samuel, Michael

    2015-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20–0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.

  9. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  10. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  11. Polymorphisms of SP110 are associated with both pulmonary and extra-pulmonary tuberculosis among the Vietnamese.

    Directory of Open Access Journals (Sweden)

    Gregory J Fox

    Full Text Available Tuberculosis (TB is an infectious disease that remains a major cause of morbidity and mortality worldwide, yet the reasons why only 10% of people infected with Mycobacterium tuberculosis go on to develop clinical disease are poorly understood. Genetically determined variation in the host immune response is one factor influencing the response to M. tuberculosis. SP110 is an interferon-responsive nuclear body protein with critical roles in cell cycling, apoptosis and immunity to infection. However association studies of the gene with clinical TB in different populations have produced conflicting results.To examine the importance of the SP110 gene in immunity to TB in the Vietnamese we conducted a case-control genetic association study of 24 SP110 variants, in 663 patients with microbiologically proven TB and 566 unaffected control subjects from three tertiary hospitals in northern Vietnam.Five SNPs within SP110 were associated with all forms of TB, including four SNPs at the C terminus (rs10208770, rs10498244, rs16826860, rs11678451 under a dominant model and one SNP under a recessive model, rs7601176. Two of these SNPs were associated with pulmonary TB (rs10208770 and rs16826860 and one with extra-pulmonary TB (rs10498244.SP110 variants were associated with increased susceptibility to both pulmonary and extra-pulmonary TB in the Vietnamese. Genetic variants in SP110 may influence macrophage signaling responses and apoptosis during M. tuberculosis infection, however further research is required to establish the mechanism by which SP110 influences immunity to tuberculosis infection.

  12. Polymorphisms of SP110 are associated with both pulmonary and extra-pulmonary tuberculosis among the Vietnamese.

    Science.gov (United States)

    Fox, Gregory J; Sy, Dinh Ngoc; Nhung, Nguyen Viet; Yu, Bing; Ellis, Magda K; Van Hung, Nguyen; Cuong, Nguyen Kim; Thi Lien, Luu; Marks, Guy B; Saunders, Bernadette M; Britton, Warwick J

    2014-01-01

    Tuberculosis (TB) is an infectious disease that remains a major cause of morbidity and mortality worldwide, yet the reasons why only 10% of people infected with Mycobacterium tuberculosis go on to develop clinical disease are poorly understood. Genetically determined variation in the host immune response is one factor influencing the response to M. tuberculosis. SP110 is an interferon-responsive nuclear body protein with critical roles in cell cycling, apoptosis and immunity to infection. However association studies of the gene with clinical TB in different populations have produced conflicting results. To examine the importance of the SP110 gene in immunity to TB in the Vietnamese we conducted a case-control genetic association study of 24 SP110 variants, in 663 patients with microbiologically proven TB and 566 unaffected control subjects from three tertiary hospitals in northern Vietnam. Five SNPs within SP110 were associated with all forms of TB, including four SNPs at the C terminus (rs10208770, rs10498244, rs16826860, rs11678451) under a dominant model and one SNP under a recessive model, rs7601176. Two of these SNPs were associated with pulmonary TB (rs10208770 and rs16826860) and one with extra-pulmonary TB (rs10498244). SP110 variants were associated with increased susceptibility to both pulmonary and extra-pulmonary TB in the Vietnamese. Genetic variants in SP110 may influence macrophage signaling responses and apoptosis during M. tuberculosis infection, however further research is required to establish the mechanism by which SP110 influences immunity to tuberculosis infection.

  13. Polymorphisms of SP110 Are Associated with both Pulmonary and Extra-Pulmonary Tuberculosis among the Vietnamese

    Science.gov (United States)

    Fox, Gregory J.; Sy, Dinh Ngoc; Nhung, Nguyen Viet; Yu, Bing; Ellis, Magda K.; Van Hung, Nguyen; Cuong, Nguyen Kim; Thi Lien, Luu; Marks, Guy B.; Saunders, Bernadette M.; Britton, Warwick J.

    2014-01-01

    Background Tuberculosis (TB) is an infectious disease that remains a major cause of morbidity and mortality worldwide, yet the reasons why only 10% of people infected with Mycobacterium tuberculosis go on to develop clinical disease are poorly understood. Genetically determined variation in the host immune response is one factor influencing the response to M. tuberculosis. SP110 is an interferon-responsive nuclear body protein with critical roles in cell cycling, apoptosis and immunity to infection. However association studies of the gene with clinical TB in different populations have produced conflicting results. Methods To examine the importance of the SP110 gene in immunity to TB in the Vietnamese we conducted a case-control genetic association study of 24 SP110 variants, in 663 patients with microbiologically proven TB and 566 unaffected control subjects from three tertiary hospitals in northern Vietnam. Results Five SNPs within SP110 were associated with all forms of TB, including four SNPs at the C terminus (rs10208770, rs10498244, rs16826860, rs11678451) under a dominant model and one SNP under a recessive model, rs7601176. Two of these SNPs were associated with pulmonary TB (rs10208770 and rs16826860) and one with extra-pulmonary TB (rs10498244). Conclusion SP110 variants were associated with increased susceptibility to both pulmonary and extra-pulmonary TB in the Vietnamese. Genetic variants in SP110 may influence macrophage signaling responses and apoptosis during M. tuberculosis infection, however further research is required to establish the mechanism by which SP110 influences immunity to tuberculosis infection. PMID:25006821

  14. Vasovagal response secondary to permanent contraception device in pulmonary arterial hypertension

    Science.gov (United States)

    Cope, Jessica; Alnuaimat, Hassan

    2015-01-01

    Abstract Adequate contraception is an essential component of managing pulmonary hypertension in women of childbearing age. Intrauterine devices are a popular contraceptive choice for many women but are associated with a risk of vagal response upon placement in certain patients with pulmonary hypertension, which may not be well tolerated. More recently, newer permanent contraception devices have emerged in the market, such as the Essure. We describe the first case, to our knowledge, of vagal-associated response due to an Essure device placement. PMID:26697184

  15. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto V. Reyes

    2018-05-01

    Full Text Available The pulmonary arteries are exquisitely responsive to oxygen changes. They rapidly and proportionally contract as arterial PO2 decrease, and they relax as arterial PO2 is re-established. The hypoxic pulmonary vasoconstriction (HPV is intrinsic since it does not require neural or endocrine factors, as evidenced in isolated vessels. On the other hand, pulmonary arteries also respond to sustained hypoxia with structural and functional remodeling, involving growth of smooth muscle medial layer and later recruitment of adventitial fibroblasts, secreted mitogens from endothelium and changes in the response to vasoconstrictor and vasodilator stimuli. Hypoxic pulmonary arterial vasoconstriction and remodeling are relevant biological responses both under physiological and pathological conditions, to explain matching between ventilation and perfusion, fetal to neonatal transition of pulmonary circulation and pulmonary artery over-constriction and thickening in pulmonary hypertension. Store operated channels (SOC and receptor operated channels (ROC are plasma membrane cationic channels that mediate calcium influx in response to depletion of internal calcium stores or receptor activation, respectively. They are involved in both HPV and pathological remodeling since their pharmacological blockade or genetic suppression of several of the Stim, Orai, TRP, or ASIC proteins in SOC or ROC complexes attenuate the calcium increase, the tension development, the pulmonary artery smooth muscle proliferation, and pulmonary arterial hypertension. In this Mini Review, we discussed the evidence obtained in in vivo animal models, at the level of isolated organ or cells of pulmonary arteries, and we identified and discussed the questions for future research needed to validate these signaling complexes as targets against pulmonary hypertension.

  16. Proteomic characterization of host response to Yersinia pestis and near neighbors

    International Nuclear Information System (INIS)

    Chromy, Brett A.; Perkins, Julie; Heidbrink, Jenny L.; Gonzales, Arlene D.; Murphy, Gloria A.; Fitch, J. Patrick; McCutchen-Maloney, Sandra L.

    2004-01-01

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Yersinia pseudotuberculosis and Yersinia enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague

  17. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  18. The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis

    Science.gov (United States)

    Caws, Maxine; Thwaites, Guy; Dunstan, Sarah; Hawn, Thomas R.; Thi Ngoc Lan, Nguyen; Thuong, Nguyen Thuy Thuong; Stepniewska, Kasia; Huyen, Mai Nguyet Thu; Bang, Nguyen Duc; Huu Loc, Tran; Gagneux, Sebastien; van Soolingen, Dick; Kremer, Kristin; van der Sande, Marianne; Small, Peter; Thi Hoang Anh, Phan; Chinh, Nguyen Tran; Thi Quy, Hoang; Thi Hong Duyen, Nguyen; Quang Tho, Dau; Hieu, Nguyen T.; Torok, Estee; Hien, Tran Tinh; Dung, Nguyen Huy; Thi Quynh Nhu, Nguyen; Duy, Phan Minh; van Vinh Chau, Nguyen; Farrar, Jeremy

    2008-01-01

    The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis) are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM) and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and Toll-like receptor-2 (TLR-2). We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR) for causing TBM 0.395, 95% confidence intervals (C.I.) 0.193–0.806, P = 0.009), suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15–2.15]) than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis. PMID:18369480

  19. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Maxine Caws

    2008-03-01

    Full Text Available The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP and Toll-like receptor-2 (TLR-2. We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR for causing TBM 0.395, 95% confidence intervals (C.I. 0.193-0.806, P = 0.009, suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15-2.15] than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis.

  20. Morphologic characteristics of central pulmonary thromboemboli predict haemodynamic response in massive pulmonary embolism.

    Science.gov (United States)

    Podbregar, Matej; Voga, Gorazd; Krivec, Bojan

    2004-08-01

    On hospital admission, the morphology of the central pulmonary artery thromboemboli is an independent predictor of 30-day mortality in patients with massive pulmonary embolism (MPE). This may be due to the differential susceptibility of thromboemboli to thrombolysis. The aim of this study was to assess haemodynamic response to treatment in patients with MPE and morphologically different thromboemboli. Prospective observational study. An 11-bed closed medical ICU at a 860-bed community general hospital. Twelve consecutive patients with shock or hypotension due to MPE and central pulmonary thromboemboli detected by transesophageal echocardiography who were treated with thrombolysis between January 2000 through April 2002. Patients were divided into two groups according to the characteristics of detected central pulmonary thromboemboli: group 1, thrombi with one or more long, mobile parts; and group 2, immobile thrombi. Urokinase infusion was terminated when mixed venous oxygen saturation was stabilized above 60% for 15 min. At 2 h, the total pulmonary vascular resistance index was reduced more in group 1 than group 2 [from 27+/-12 mmHg/(l.min.m(2)) to 14+/-6 mmHg/(l.min.m(2)) (-52%) vs 27+/-8 mmHg/(l.min.m(2)) to 23+/-10 mmHg/(l.min.m(2)) (-15%), respectively, P=0.04]. In group 1 thrombolysis was terminated earlier than group 2 (89+/-40 min vs 210+/-62 min, respectively, P= 0.0024). The cumulative dose of urokinase used in group 1 was lower than group 2 (1.7+/-0.3 M i.u. vs 2.7+/-0.5 M i.u., respectively, P= 0.023). Haemodynamic stabilization is achieved faster in patients with mobile central thromboemboli detected by transesophageal echocardiography during MPE.

  1. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  2. Defective pulmonary innate immune responses post-stem cell transplantation; review and results from one model system

    Directory of Open Access Journals (Sweden)

    Racquel eDomingo-Gonzalez

    2013-05-01

    Full Text Available Infectious pulmonary complications limit the success of hematopoietic stem cell transplantation (HSCT as a therapy for malignant and nonmalignant disorders. Susceptibility to pathogens in both autologous and allogeneic HSCT recipients persists despite successful immune reconstitution. As studying the causal effects of these immune defects in the human population can be limiting, a bone marrow transplant (BMT mouse model can be used to understand the defect in mounting a productive innate immune response post-transplantation. When syngeneic BMT is performed, this system allows the study of BMT-induced alterations in innate immune cell function that are independent of the confounding effects of immunosuppressive therapy and graft-versus-host disease. Studies from several laboratories, including our own show that pulmonary susceptibility to bacterial infections post-BMT are largely due to alterations in the lung alveolar macrophages. Changes in these cells post-BMT include cytokine and eicosanoid dysregulations, scavenger receptor alterations, changes in micro RNA profiles, and alterations in intracellular signaling molecules that limit bacterial phagocytosis and killing. The changes that occur highlight mechanisms that promote susceptibility to infections commonly afflicting HSCT recipients and provide insight into therapeutic targets that may improve patient outcomes post-HSCT.

  3. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    Science.gov (United States)

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  4. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection.

    Directory of Open Access Journals (Sweden)

    Yongsheng Huang

    2011-08-01

    Full Text Available Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.

  5. Imaging of pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Van Dyck, P.; De Schepper, A.M.; Vanhoenacker, F.M.; Van den Brande, P.

    2003-01-01

    Tuberculosis, more than any other infectious disease, has always been a challenge, since it has been responsible for a great amount of morbidity and mortality in humans. After a steady decline in the number of new cases during the twentieth century, due to improved social and environmental conditions, early diagnosis, and the development of antituberculous medication, a stagnation and even an increase in the number of new cases was noted in the mid-1980s. The epidemiological alteration is multifactorial: global increase in developing countries; minority groups (HIV and other immunocompromised patients); and elderly patients due to an altered immune status. Other factors that may be responsible are a delayed diagnosis, especially in elderly patients, incomplete or inadequate therapy, and the emergence of multidrug-resistant tuberculosis. The course of the disease and its corresponding clinicoradiological pattern depends on the interaction between the organism and the host response. Classically, pulmonary tuberculosis has been classified in primary tuberculosis, which occurred previously in children, and postprimary tuberculosis, occurring in adult patients. In industrialized countries, however, there seems to be a shift of primary tuberculosis towards adults. Furthermore, due to an altered immunological response in certain groups, such as immunocompromised and elderly patients, an atypical radioclinical pattern may occur. The changing landscape, in which tuberculosis occurs, as well as the global resurgence, and the changed spectrum of the clinical and radiological presentation, justify a renewed interest of radiologists for the imaging features of pulmonary tuberculosis. This article deals with the usual imaging features of pulmonary tuberculosis as well as the atypical patterns encountered in immunodepressed and elderly patients. (orig.)

  6. Etanercept on steroid-refractary acute graft-versus-host disease

    Directory of Open Access Journals (Sweden)

    Silvia González Munguía

    2015-02-01

    Full Text Available Objetive: To describe etanercept use and effectiveness on steroid- refractary acute graft-versus-host disease after hematopoietic cell transplantation. Method: Patients treated with etanercept as off label use for steroid-refractary acute graft-versus-host disease were selected and each patient’s medical history was reviewed to assess the clinical response. Results: The study included five patients: four presented with digestive manifestations and one presented pulmonary and liver manifestations. 80% of patients showed a clinical response: 60% a partial response and 20% a total response. In four cases etanercept 25mg was administered twice a week with variable duration of treatment, achieving no response in 1 case (3 weeks, partial response in two 2 cases (4 weeks and 8 weeks and a complete response in 1 case (8 week period. Only one case was treated with etanercept 50mg administered twice a week for 5 weeks with a partial treatment response. Conclusions: The clinical response rate is consistent with the previously published data. This updates the scarce bibliographic information about etanecept use in steroid-refractary acute graft-versus-host disease. Due to clinical design limitations and the small patient population, future clinical studies should be conducted to assess the efficacy and security of etanercept in these patients.

  7. Interferon-gamma response to the treatment of active pulmonary and extra-pulmonary tuberculosis.

    Science.gov (United States)

    Liang, L; Shi, R; Liu, X; Yuan, X; Zheng, S; Zhang, G; Wang, W; Wang, J; England, K; Via, L E; Cai, Y; Goldfeder, L C; Dodd, L E; Barry, C E; Chen, R Y

    2017-10-01

    Interferon-gamma (IFN-γ) release assays (IGRAs) are used to diagnose tuberculosis (TB) but not to measure treatment response. To measure IFN-γ response to active anti-tuberculosis treatment. Patients from the Henan Provincial Chest Hospital, Henan, China, with TB symptoms and/or signs were enrolled into this prospective, observational cohort study and followed for 6 months of treatment, with blood and sputum samples collected at 0, 2, 4, 6, 8, 16 and 24 weeks. The QuantiFERON® TB-Gold assay was run on collected blood samples. Participants received a follow-up telephone call at 24 months to determine relapse status. Of the 152 TB patients enrolled, 135 were eligible for this analysis: 118 pulmonary (PTB) and 17 extra-pulmonary TB (EPTB) patients. IFN-γ levels declined significantly over time among all patients (P = 0.002), with this decline driven by PTB patients (P = 0.001), largely during the initial 8 weeks of treatment (P = 0.019). IFN-γ levels did not change among EPTB patients over time or against baseline culture or drug resistance status. After 6 months of effective anti-tuberculosis treatment, IFN-γ levels decreased significantly in PTB patients, largely over the initial 8 weeks of treatment. IFN-γ concentrations may offer some value for monitoring anti-tuberculosis treatment response among PTB patients.

  8. Effects of age, socioeconomic status, and menstrual cycle on pulmonary response to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Seal, E. Jr.; McDonnell, W.F.; House, D.E. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-03-01

    The purpose of this study was to investigate the effects of age, socioeconomic status, and menstrual cycle phase on the pulmonary response to ozone exposure. Three hundred seventy-two healthy white and black young adults, between the ages of 18 and 35 y, were exposed only once to 0.0, 0.12, 0.18, 0.24, 0.30, or 0.40 ppm ozone for 2.3 h. Prior to and after exposure, pulmonary function tests were obtained. Prior to exposure, each subject completed a personal and family-history questionnaire. The response to this questionnaire were used to investigate age, socioeconomic status, and menstrual cycle phase effects on pulmonary responsiveness to ozone. We concluded that the ages of subjects, within the age range studied, had an effect on responsiveness (i.e., decrements in forced expiratory volume in 1 s decreased as the subjects` ages decreased). Socioeconomic status, as reflected by education of fathers, also appeared to affect forced expiratory volume in 1-s responsiveness to ozone, with the middle socioeconomic group being the most responsive. The phase of menstrual cycle did not have an impact on individual responsiveness to ozone. 14 refs., 4 figs.

  9. An Analysis of Responses to Defibrotide in the Pulmonary Vascular Bed of the Cat.

    Science.gov (United States)

    Kaye, Alan D; Skonieczny, Brendan D; Kaye, Aaron J; Harris, Zoey I; Luk, Eric J

    2016-01-01

    Defibrotide is a polydisperse mixture of single-stranded oligonucleotides with many pharmacologic properties and multiple actions on the vascular endothelium. Responses to defibrotide and other vasodepressor agents were evaluated in the pulmonary vascular bed of the cat under conditions of controlled pulmonary blood flow and constant left atrial pressure. Lobar arterial pressure was increased to a high steady level with the thromboxane A2 analog U-46619. Under increased-tone conditions, defibrotide caused dose-dependent decreases in lobar arterial pressure without altering systemic arterial and left atrial pressures. Responses to defibrotide were significantly attenuated after the administration of the cyclooxygenase inhibitor sodium meclofenamate. Responses to defibrotide were also significantly attenuated after the administration of both the adenosine 1 and 2 receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine and 8-(3-chlorostyryl)caffeine. Responses to defibrotide were not altered after the administration of the vascular selective adenosine triphosphate-sensitive potassium channel blocker U-37883A, or after the administration of the nitric oxide synthase inhibitor L-N-(1-iminoethyl)-ornithine. These data show that defibrotide has significant vasodepressor activity in the pulmonary vascular bed of the cat. They also suggest that pulmonary vasodilator responses to defibrotide are partially dependent on both the activation of the cyclooxygenase enzyme and adenosine 1 and 2 receptor pathways and independent of the activation of adenosine triphosphate-sensitive potassium channels or the synthesis of nitric oxide in the pulmonary vascular bed of the cat.

  10. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia.

    Science.gov (United States)

    Zhao, Lan; Oliver, Eduardo; Maratou, Klio; Atanur, Santosh S; Dubois, Olivier D; Cotroneo, Emanuele; Chen, Chien-Nien; Wang, Lei; Arce, Cristina; Chabosseau, Pauline L; Ponsa-Cobas, Joan; Frid, Maria G; Moyon, Benjamin; Webster, Zoe; Aldashev, Almaz; Ferrer, Jorge; Rutter, Guy A; Stenmark, Kurt R; Aitman, Timothy J; Wilkins, Martin R

    2015-08-20

    The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.

  11. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  12. Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Poyin Chen

    2017-12-01

    Full Text Available Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO pretreatment of colonic epithelial cells (Caco-2 led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses.

  13. Increased IgD milk antibody responses in a patient with Down's syndrome, pulmonary hemosiderosis and cor pulmonale.

    Science.gov (United States)

    Galant, S; Nussbaum, E; Wittner, R; DeWeck, A L; Heiner, D C

    1983-10-01

    IgD antibody responses to cow's milk were investigated in a two-year-old black boy with evidence of pulmonary hemosiderosis and pulmonary hypertension. Initially a broad spectrum of immunologic responses to cow's milk were observed including IgD, IgE, and precipitin antibodies. Specific IgD antibody responses to cow's milk could be modulated in terms of challenge or elimination and correlated with the clinical course. It is possible that IgD antibodies may be important in milk-related pulmonary hemosiderosis.

  14. Host Defence to Pulmonary Mycosis

    Directory of Open Access Journals (Sweden)

    Christopher H Mody

    1999-01-01

    Full Text Available OBJECTIVE: To provide a basic understanding of the mechanisms of host defense to pathogenic fungi. This will help physicians understand why some patients are predisposed to fungal infections and update basic scientists on how microbial immunology applies to fungal disease.

  15. Identification of host response signatures of infection.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to the pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for

  16. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice.

    Science.gov (United States)

    Ganguly, Koustav; Ettehadieh, Dariusch; Upadhyay, Swapna; Takenaka, Shinji; Adler, Thure; Karg, Erwin; Krombach, Fritz; Kreyling, Wolfgang G; Schulz, Holger; Schmid, Otmar; Stoeger, Tobias

    2017-06-20

    The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Equivalent surface area CNP doses in the blood (30mm 2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm 2 ; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m 2 /g specific surface area] for inhalation and IAI respectively. Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Our findings indicate that extra-pulmonary effects due to CNP

  17. Virus evolution in the face of the host response

    International Nuclear Information System (INIS)

    Domingo, E.

    2005-01-01

    Microbial infections are highly dynamic. Viruses have evolved two main strategies against the host response: interaction or evasion. Interaction is typical of complex DNA viruses. Their genomes encode a number of proteins that exert modulatory functions that alter the immune response of the host. Evasion strategy is used mainly by RNA viruses, and is based on high mutation rates and quasispecies dynamics. The complexity of viral populations demands research on new antiviral strategies that take into consideration the adaptive potential of viruses, in particular RNA viruses. (author)

  18. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  19. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  20. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  1. Host response to Brucella infection: review and future perspective.

    Science.gov (United States)

    Elfaki, Mohamed G; Alaidan, Alwaleed Abdullah; Al-Hokail, Abdullah Abdulrahman

    2015-07-30

    Brucellosis is a zoonotic and contagious infectious disease caused by infection with Brucella species. The infecting brucellae are capable of causing a devastating multi-organ disease in humans with serious health complications. The pathogenesis of Brucella infection is influenced largely by host factors, Brucella species/strain, and the ability of invading brucellae to survive and replicate within mononuclear phagocytic cells, preferentially macrophages (Mf). Consequently, the course of human infection may appear as an acute fatal or progress into chronic debilitating infection with periodical episodes that leads to bacteremia and death. The existence of brucellae inside Mf represents one of the strategies used by Brucella to evade the host immune response and is responsible for treatment failure in certain human populations treated with anti-Brucella drugs. Moreover, the persistence of brucellae inside Mf complicates the diagnosis and may affect the host cell signaling pathways with consequent alterations in both innate and adaptive immune responses. Therefore, there is an urgent need to pursue the development of novel drugs and/or vaccine targets against human brucellosis using high throughput technologies in genomics, proteomics, and immunology.

  2. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis

    NARCIS (Netherlands)

    Juffermans, N. P.; Florquin, S.; Camoglio, L.; Verbon, A.; Kolk, A. H.; Speelman, P.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Interleukin (IL)-1 signaling is required for the containment of infections with intracellular microorganisms, such as Listeria monocytogenes and Leishmania major. To determine the role of IL-1 in the host response to tuberculosis, we infected IL-1 type I receptor-deficient (IL-1R(-/-)) mice, in

  3. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  4. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    International Nuclear Information System (INIS)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA 1 receptor, ADA 1 R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA 1 R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein changes in

  5. Review of osteoimmunology and the host response in endodontic and periodontal lesions

    Directory of Open Access Journals (Sweden)

    Dana T. Graves

    2011-01-01

    Full Text Available Both lesions of endodontic origin and periodontal diseases involve the host response to bacteria and the formation of osteolytic lesions. Important for both is the upregulation of inflammatory cytokines that initiate and sustain the inflammatory response. Also important are chemokines that induce recruitment of leukocyte subsets and bone-resorptive factors that are largely produced by recruited inflammatory cells. However, there are differences also. Lesions of endodontic origin pose a particular challenge since that bacteria persist in a protected reservoir that is not readily accessible to the immune defenses. Thus, experiments in which the host response is inhibited in endodontic lesions tend to aggravate the formation of osteolytic lesions. In contrast, bacteria that invade the periodontium appear to be less problematic so that blocking arms of the host response tend to reduce the disease process. Interestingly, both lesions of endodontic origin and periodontitis exhibit inflammation that appears to inhibit bone formation. In periodontitis, the spatial location of the inflammation is likely to be important so that a host response that is restricted to a subepithelial space is associated with gingivitis, while a host response closer to bone is linked to bone resorption and periodontitis. However, the persistence of inflammation is also thought to be important in periodontitis since inflammation present during coupled bone formation may limit the capacity to repair the resorbed bone.

  6. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  7. Do host species evolve a specific response to slave-making ants?

    Directory of Open Access Journals (Sweden)

    Delattre Olivier

    2012-12-01

    Full Text Available Abstract Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections towards parasite

  8. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2009-01-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays...

  9. Circulating microRNAs in patients with active pulmonary tuberculosis.

    Science.gov (United States)

    Fu, Yurong; Yi, Zhengjun; Wu, Xiaoyan; Li, Jianhua; Xu, Fuliang

    2011-12-01

    Emerging evidence shows that microRNAs (miRNAs) play an important role in pathogen-host interactions. Circulating miRNAs have been repeatedly and stably detected in blood and hold promise to serve as molecular markers for diverse physiological and pathological conditions. To date, the relationship between circulating miRNAs and active pulmonary tuberculosis (TB) has not been reported. Using microarray-based expression profiling followed by real-time quantitative PCR validation, the levels of circulating miRNAs were compared between patients with active pulmonary tuberculosis and matched healthy controls. The receiver operating characteristic curve was used to evaluate the diagnostic effect of selected miRNA. Bioinformatic analysis was used to explore the potential roles of these circulating miRNAs in active pulmonary tuberculosis infection. Among 92 miRNAs significantly detected, 59 miRNAs were downregulated and 33 miRNAs were upregulated in the TB serum compared to their levels in the control serum. Interestingly, only two differentially expressed miRNAs were increased not only in the serum but also in the sputum of patients with active pulmonary tuberculosis compared to the levels for the healthy controls. Upregulated miR-29a could discriminate TB patients from healthy controls with reasonable sensitivity and specificity. A number of significantly enriched pathways regulated by these circulating miRNAs were predicted, and most of them were involved in acute-phase response, inflammatory response, and the regulation of the cytoskeleton. In all, for the first time our results revealed that a number of miRNAs were differentially expressed during active pulmonary tuberculosis infection, and circulating miR-29a has great potential to serve as a marker for the detection of active pulmonary tuberculosis infection.

  10. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  11. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies.

    Science.gov (United States)

    Krall, Jenna R; Ladva, Chandresh N; Russell, Armistead G; Golan, Rachel; Peng, Xing; Shi, Guoliang; Greenwald, Roby; Raysoni, Amit U; Waller, Lance A; Sarnat, Jeremy A

    2018-01-03

    Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.

  12. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    Science.gov (United States)

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  13. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice

    DEFF Research Database (Denmark)

    Poulsen, Sarah Søs; Knudsen, Kristina Bram; Jackson, Petra

    2017-01-01

    of acute phase proteins to the blood. We identified physicochemical determinants of MWCNT-induced systemic acute phase response by analyzing effects of pulmonary exposure to 14 commercial, well-characterized MWCNTs in female C57BLI6J mice pulmonary exposed to 0, 6, 18 or 54 lag MWCNT/mouse. Plasma levels...... of acute phase response proteins serum amyloid A1/2 (SAA1/2) and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saal and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater...... limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length...

  14. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Lee, Lu-Yuan [Department of Physiology, University of Kentucky, Lexington, KY (United States); Xu, Fadi, E-mail: fxu@lrri.org [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Department of Physiology, University of Kentucky, Lexington, KY (United States)

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA{sub 1} receptor, ADA{sub 1}R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA{sub 1}R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein

  15. Pulmonary microRNA profiling: implications in upper lobe predominant lung disease.

    Science.gov (United States)

    Armstrong, David A; Nymon, Amanda B; Ringelberg, Carol S; Lesseur, Corina; Hazlett, Haley F; Howard, Louisa; Marsit, Carmen J; Ashare, Alix

    2017-01-01

    Numerous pulmonary diseases manifest with upper lobe predominance including cystic fibrosis, smoking-related chronic obstructive pulmonary disease, and tuberculosis. Zonal hypoxia, characteristic of these pulmonary maladies, and oxygen stress in general is known to exert profound effects on various important aspects of cell biology. Lung macrophages are major participants in the pulmonary innate immune response and regional differences in macrophage responsiveness to hypoxia may contribute in the development of lung disease. MicroRNAs are ubiquitous regulators of human biology and emerging evidence indicates altered microRNA expression modulates respiratory disease processes. The objective of this study is to gain insight into the epigenetic and cellular mechanisms influencing regional differences in lung disease by investigating effect of hypoxia on regional microRNA expression in the lung. All studies were performed using primary alveolar macrophages ( n  = 10) or bronchoalveolar lavage fluid ( n  = 16) isolated from human subjects. MicroRNA was assayed via the NanoString nCounter microRNA assay. Divergent molecular patterns of microRNA expression were observed in alternate lung lobes, specifically noted was disparate expression of miR-93 and miR-4454 in alveolar macrophages along with altered expression of miR-451a and miR-663a in bronchoalveolar lavage fluid. Gene ontology was used to identify potential downstream targets of divergent microRNAs. Targets include cytokines and matrix metalloproteinases, molecules that could have a significant impact on pulmonary inflammation and fibrosis. Our findings show variant regional microRNA expression associated with hypoxia in alveolar macrophages and BAL fluid in the lung-upper vs lower lobe. Future studies should address whether these specific microRNAs may act intracellularly, in a paracrine/endocrine manner to direct the innate immune response or may ultimately be involved in pulmonary host-to-pathogen trans

  16. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  17. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  18. Murine respiratory mycoplasmosis (MRM) in C57BL/6N and C3H/HeN mice: strain differences in early host responses and exacerbation by nitrogen dioxide

    International Nuclear Information System (INIS)

    Parker, R.F.

    1987-01-01

    The studies reported here used genetic differences in susceptibility of C57BL/6N and C3H/HeN mice and exacerbation of the disease by nitrogen dioxide (NO 2 ) as tools in assessing the role of early host responses in the pathogenesis of MRM. The two strains did not differ in susceptibility to infection, but C3H/HeN mice were more susceptible to and had increased severity of lung lesions 14 days after intranasal inoculation as determined by 50% biological endpoints and morphometric analysis of tissues. Exposure to NO 2 for 4 hours prior to exposure to infectious aerosols exacerbated murine respiratory mycoplasmosis (MRM) by 7 days after exposure in both mouse strains. NO 2 appeared to affect host lung defense mechanisms responsible for limiting mycoplasmal growth in the lungs. The NO 2 exposure concentration required for this effect varied with the genetic background of the host, the dose of mycoplasmas administered, and the endpoint measured. Pulmonary clearance of radiolabeled M. pulmonis was determined in both mouse strains, and in C57BL/6N mice exposed to NO 2

  19. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  20. Antibiotics and Host Responses in the Pathogenesis of Staphylococcus Aureus Infection

    NARCIS (Netherlands)

    J.W. Swierstra (Jasper)

    2017-01-01

    textabstractThe primary aim of the research described in this thesis was to gain more insight into host pathogen interaction between Staphylococcus aureus and the human host by specifically studying the IgG (subclass specific) humoral response against staphylococcal virulence factors in humans

  1. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach.

    Science.gov (United States)

    Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval

    2018-01-05

    It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.

  2. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    Science.gov (United States)

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  3. Acute radiation syndrome (ARS – treatment of the reduced host defense

    Directory of Open Access Journals (Sweden)

    Heslet L

    2012-01-01

    GM-CSF ~ 300 mcg per day for at least 14–21 days.Conclusion: The present United States standard for prevention and treatment of ARS standard intervention should consequently be modified into the combined systemic administration of growth factors and inhaled GM-CSF to ensure the sustained systemic and pulmonary host defense and thus prevent pulmonary dysfunction.Keywords: inhaled and systemically administered GM-CSF, ARS, host defense, orchestration of pulmonary host response

  4. Quantotypic Properties of QconCAT Peptides Targeting Bovine Host Response to Streptococcus uberis

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    2012-01-01

    with host response to pathogens remains a challenging task. In this paper we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope labeled variants of two concordant proteotypic...

  5. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Albert, Paul; Agusti, Alvar; Edwards, Lisa

    2012-01-01

    Bronchodilator responsiveness is a potential phenotypic characteristic of chronic obstructive pulmonary disease (COPD). We studied whether change in lung function after a bronchodilator is abnormal in COPD, whether stable responder subgroups can be identified, and whether these subgroups experience...

  6. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.

    Science.gov (United States)

    MacKay, Colin A; Sweeney, Jon D; Hillier, N Kirk

    2015-12-01

    Longhorn wood-boring beetles (Coleoptera: Cerambycidae) use olfactory cues to find mates and hosts for oviposition. Tetropium fuscum (Fabr.) is an invasive longhorned wood-boring beetle originating from Europe that has been established in Nova Scotia, Canada, since at least 1990. This study used single sensillum recordings (SSR) to determine the response of olfactory receptor neurons (ORNs) in the antennal sensilla of male and female T. fuscum to different kinds of olfactory cues, namely host volatiles, non-host volatiles, the aggregation pheromone of T. fuscum (fuscumol), and an aggregation pheromone emitted by other species of longhorn beetles (3-hydroxyhexan-2-one). Each compound had been previously shown to elicit antennal activity in T. fuscum using electroantennography or had been shown to elicit behavioral activity in T. fuscum or other cerambycids. There have been very few SSR studies done on cerambycids, and ours is the first to compare response profiles of pheromone components as well as host and non-host volatiles. Based on SSR studies with other insects, we predicted we would find ORNs that responded to the pheromone alone (pheromone-specialists), as well as ORNs that responded only to host or non-host volatiles, i.e., separation of olfactory cue perception at the ORN level. Also, because male T. fuscum emerge earlier than females and are the pheromone-emitting sex, we predicted that the number of pheromone-sensitive ORNs would be greater in females than males. We found 140 ORNs housed within 97 sensilla that responded to at least one of the 13 compounds. Fuscumol-specific ORNs made up 15% (21/140) of all recordings, but contrary to our prediction, an additional 22 ORNs (16%) responded to fuscumol plus at least one other compound; in total, fuscumol elicited a response from 43/140 (31%) of ORNs with fuscumol-specific ORNs accounting for half of these. Thus, our prediction that pheromone reception would be segregated on specialist ORNs was only partially

  7. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  8. Multispecies Biofilms and Host Responses: “Discriminating the Trees from the Forest”

    Science.gov (United States)

    Peyyala, R.; Ebersole, J.L.

    2014-01-01

    Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the 3-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into thes- processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms. PMID:23141757

  9. Exercise physiological responses to drug treatments in chronic thromboembolic pulmonary hypertension

    Science.gov (United States)

    Charalampopoulos, Athanasios; Gibbs, J. Simon R.; Davies, Rachel J.; Gin-Sing, Wendy; Murphy, Kevin; Sheares, Karen K.; Pepke-Zaba, Joanna; Jenkins, David P.

    2016-01-01

    We tested the hypothesis that patients with chronic thromboembolic pulmonary hypertension (CTEPH) that was deemed to be inoperable were more likely to respond to drugs for treating pulmonary arterial hypertension (PAH) by using cardiopulmonary exercise (CPX) testing than those with CTEPH that was deemed to be operable. We analyzed CPX testing data of all patients with CTEPH who were treated with PAH drugs and had undergone CPX testing before and after treatment at a single pulmonary hypertension center between February 2009 and March 2013. Suitability for pulmonary endarterectomy (PEA) was decided by experts in PEA who were associated with a treatment center. The group with inoperable CTEPH included 16 patients, the operable group included 26 patients. There were no differences in demographics and baseline hemodynamic data between the groups. Unlike patients in the operable group, after drug treatment patients with inoperable CTEPH had a significantly higher peak V̇o2 (P < 0.001), work load (P = 0.002), and oxygen pulse (P < 0.001). In terms of gas exchange, there was an overall net trend toward improved V̇e/V̇co2 in the group with inoperable CTEPH, with an increased PaCO2 (P = 0.01), suggesting reduced hyperventilation. No changes were observed in patients with operable CTEPH. In conclusion, treatment with PAH drug therapy reveals important pathophysiological differences between inoperable and operable CTEPH, with significant pulmonary vascular and cardiac responses in inoperable disease. Drug effects on exercise function observed in inoperable CTEPH cannot be translated to all forms of CTEPH. PMID:27418685

  10. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice.

    Directory of Open Access Journals (Sweden)

    Sarah S Poulsen

    Full Text Available Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs has been linked to an increased risk of developing cardiovascular disease in addition to the well-documented physicochemical-dependent adverse lung effects. A proposed mechanism is through a strong and sustained pulmonary secretion of acute phase proteins to the blood. We identified physicochemical determinants of MWCNT-induced systemic acute phase response by analyzing effects of pulmonary exposure to 14 commercial, well-characterized MWCNTs in female C57BL/6J mice pulmonary exposed to 0, 6, 18 or 54 μg MWCNT/mouse. Plasma levels of acute phase response proteins serum amyloid A1/2 (SAA1/2 and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saa1 and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater and lasted longer than hepatic Saa1 mRNA expression. Plasma SAA1/2 and SAA3 protein levels were related to time and physicochemical properties using adjusted, multiple regression analyses. SAA3 and SAA1/2 plasma protein levels were increased after exposure to almost all of the MWCNTs on day 1, whereas limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length resulted in lowered SAA1/2 plasma levels. Increased SAA3 protein levels were positively related to dose and content of Mn, Mg and Co on day 1, whereas oxidation and diameter of the MWCNTs were protective on day 28 and 92, respectively. The results of this study reveal very differently controlled pulmonary and hepatic acute phase responses after MWCNT exposure. As the responses were influenced by the physicochemical properties of the MWCNTs, this study provides the first step

  11. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection

    Directory of Open Access Journals (Sweden)

    Maxime Pichon

    2017-11-01

    Full Text Available Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs. The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.

  12. Global analysis of host response to induction of a latent bacteriophage

    Directory of Open Access Journals (Sweden)

    Keasling Jay D

    2007-08-01

    Full Text Available Abstract Background The transition from viral latency to lytic growth involves complex interactions among host and viral factors, and the extent to which host physiology is buffered from the virus during induction of lysis is not known. A reasonable hypothesis is that the virus should be evolutionarily selected to ensure host health throughout induction to minimize its chance of reproductive failure. To address this question, we collected transcriptional profiles of Escherichia coli and bacteriophage lambda throughout lysogenic induction by UV light. Results We observed a temporally coordinated program of phage gene expression, with distinct early, middle and late transcriptional classes. Our study confirmed known host-phage interactions of induction of the heat shock regulon, escape replication, and suppression of genes involved in cell division and initiation of replication. We identified 728 E. coli genes responsive to prophage induction, which included pleiotropic stress response pathways, the Arc and Cpx regulons, and global regulators crp and lrp. Several hundred genes involved in central metabolism, energy metabolism, translation and transport were down-regulated late in induction. Though statistically significant, most of the changes in these genes were mild, with only 140 genes showing greater than two-fold change. Conclusion Overall, we observe that prophage induction has a surprisingly low impact on host physiology. This study provides the first global dynamic picture of how host processes respond to lambda phage induction.

  13. Patho-radiologic correlation of invasive pulmonary aspergillosis in the compromised host.

    Science.gov (United States)

    Orr, D P; Myerowitz, R L; Dubois, P J

    1978-05-01

    The autopsy findings and antemortem radiographic abnormalities were correlated in 20 patients with invasive pulmonary aspergillosis to define typical radiographic patterns, their progression and anatomic basis. Sixteen (80%) patients had radiographic abnormalities due to aspergillosis. Fifty-nine percent of the specific radiographic abnormalities seen in these patients were caused by anatomic lesions of asperigillosis and 67% of such anatomic lesions were radiographically definable. The most common initial radiographic pattern was a patchy density (single or multifocal) or a well defined nodule. The densities remained stable in half the patients but progressed, over several weeks to either diffuse consolidation or cavitation in the others. Most anatomic lesions were categorized as either nodular ("target") lesions (1-3 cm in diameter) or hemorrhagic infarctions (5-10 cm in diameter), both due to vascular invasion causing thrombosis and ischemic necrosis. Unlike pulmonary candidiasis, which is usually radiographically undetectable, invasive pulmonary asperigillosis frequently caused radiographically visible lesions.

  14. Personalized Medicine for Chronic Respiratory Infectious Diseases: Tuberculosis, Nontuberculous Mycobacterial Pulmonary Diseases, and Chronic Pulmonary Aspergillosis.

    Science.gov (United States)

    Salzer, Helmut J F; Wassilew, Nasstasja; Köhler, Niklas; Olaru, Ioana D; Günther, Gunar; Herzmann, Christian; Kalsdorf, Barbara; Sanchez-Carballo, Patricia; Terhalle, Elena; Rolling, Thierry; Lange, Christoph; Heyckendorf, Jan

    2016-01-01

    Chronic respiratory infectious diseases are causing high rates of morbidity and mortality worldwide. Tuberculosis, a major cause of chronic pulmonary infection, is currently responsible for approximately 1.5 million deaths per year. Although important advances in the fight against tuberculosis have been made, the progress towards eradication of this disease is being challenged by the dramatic increase in multidrug-resistant bacilli. Nontuberculous mycobacteria causing pulmonary disease and chronic pulmonary aspergillosis are emerging infectious diseases. In contrast to other infectious diseases, chronic respiratory infections share the trait of having highly variable treatment outcomes despite longstanding antimicrobial therapy. Recent scientific progress indicates that medicine is presently at a transition stage from programmatic to personalized management. We explain current state-of-the-art management concepts of chronic pulmonary infectious diseases as well as the underlying methods for therapeutic decisions and their implications for personalized medicine. Furthermore, we describe promising biomarkers and techniques with the potential to serve future individual treatment concepts in this field of difficult-to-treat patients. These include candidate markers to improve individual risk assessment for disease development, the design of tailor-made drug therapy regimens, and individualized biomarker-guided therapy duration to achieve relapse-free cure. In addition, the use of therapeutic drug monitoring to reach optimal drug dosing with the smallest rate of adverse events as well as candidate agents for future host-directed therapies are described. Taken together, personalized medicine will provide opportunities to substantially improve the management and treatment outcome of difficult-to-treat patients with chronic respiratory infections. © 2016 S. Karger AG, Basel.

  15. The host immunological response to cancer therapy: An emerging concept in tumor biology

    International Nuclear Information System (INIS)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval

    2013-01-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome

  16. The host immunological response to cancer therapy: An emerging concept in tumor biology

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, Tali [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel); Voest, Emile E. [Department of Medical Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel)

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.

  17. Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Weissmann Norbert

    2005-07-01

    Full Text Available Abstract Inhaled prostanoids and phosphodiesterase (PDE inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor, motapizone (PDE3 inhibitor or 8-Methoxymethyl-IBMX (PDE1 inhibitor synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor.

  18. Respiratory dysfunction in swine production facility workers: dose-response relationships of environmental exposures and pulmonary function.

    Science.gov (United States)

    Donham, K J; Reynolds, S J; Whitten, P; Merchant, J A; Burmeister, L; Popendorf, W J

    1995-03-01

    Human respiratory health hazards for people working in livestock confinement buildings have been recognized since 1974. However, before comprehensive control programs can be implemented, more knowledge is needed of specific hazardous substances present in the air of these buildings, and at what concentrations they are harmful. Therefore, a medical epidemiological and exposure-response study was conducted on 207 swine producers using intensive housing systems (108 farms). Dose-response relationships between pulmonary function and exposures are reported here. Positive correlations were seen between change in pulmonary function over a work period and exposure to total dust, respirable dust, ammonia, respirable endotoxin, and the interactions of age-of-producer and dust exposure and years-of-working-in-the-facility and dust exposure. Relationships between baseline pulmonary function and exposures were not strong and therefore, not pursued in this study. The correlations between exposure and response were stronger after 6 years of exposure. Multiple regression models were used to identify total dust and ammonia as the two primary environmental predictors of pulmonary function decrements over a work period. The regression models were then used to determine exposure concentrations related to pulmonary function decrements suggestive of a health hazard. Total dust concentrations > or = 2.8 mg/m3 were predictive of a work period decrement of > or = 10% in FEV1. Ammonia concentrations of > or = 7.5 ppm were predictive of a > or = 3% work period decrement in FEV1. These predictive concentrations were similar to a previous dose-response study, which suggested 2.5 mg/m3 of total dust and 7 ppm of NH3 were associated with significant work period decrements. Therefore, dust > or = 2.8 mg/m3 and ammonia > or = 7.5 ppm should be considered reasonable evidence for guidelines regarding hazardous exposure concentrations in this work environment.

  19. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress.

    Science.gov (United States)

    Cui, Kui; Kou, Jian-Qun; Gu, Jin-Hua; Han, Rong; Wang, Guanghui; Zhen, Xuechu; Qin, Zheng-Hong

    2014-12-02

    Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.

  20. One stimulus-Two responses: Host and parasite life-history variation in response to environmental stress.

    Science.gov (United States)

    Gleichsner, Alyssa M; Cleveland, Jessica A; Minchella, Dennis J

    2016-11-01

    Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life-history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life-history parameters in unstressed and drought-stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought-stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought-stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  2. Microphallids in Gammarus insensibilis Stock, 1966 from a Black Sea lagoon: host response to infection.

    Science.gov (United States)

    Kostadinova, A; Mavrodieva, R S

    2005-09-01

    We examined the patterns of parasite melanization in Gammarus insensibilis using data on microphallids from Pomorie Lagoon (Black Sea) in the light of 3 predictions associated with host survival: (i) hosts invest more in defence in an environment where the likelihood for infection is higher; (ii) multiple immune challenges exhaust host reserves and result in decreased melanization rates in older hosts; (iii) host immune response is directed against the cerebral metacercariae of Microphallus papillorobustus that alter amphipod behaviour and are most detrimental to the host. G. insensibilis was capable of melanizing the metacercariae of all four species of trematodes found to be hosted by the amphipods. The frequency of melanization and mean abundance of melanized metacercariae were substantially higher than those observed in the same amphipod-gammarid system on the French Mediterranean coast. However, the rate of melanization was low and showed a significant decrease with amphipod size. Although the 4 species were differentially melanized, the host response was largely directed against Microphallus hoffmanni and M. subdolum. We suggest that (i) the lower melanization efficiency with age is due to the mode of infection, probably leading to loss of haemolymph and monopolization of the defence resources for wound healing and (ii) in the French system, host response focuses on the most prevalent and abundant species.

  3. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    Directory of Open Access Journals (Sweden)

    Cristian R. Astorga

    2018-03-01

    Full Text Available Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN, a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs.Methods: Twelve lambs (Ovis aries gestated and born at highlands (3,600 m were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1 during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations.Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05. This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05 and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05. Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05. Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05.Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia.

  4. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    Science.gov (United States)

    Astorga, Cristian R.; González-Candia, Alejandro; Candia, Alejandro A.; Figueroa, Esteban G.; Cañas, Daniel; Ebensperger, Germán; Reyes, Roberto V.; Llanos, Aníbal J.; Herrera, Emilio A.

    2018-01-01

    Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia. PMID:29559926

  5. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  6. Pulmonary leukocytic responses are linked to the acquired immunity of mice vaccinated with irradiated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Wilson, R.A.

    1988-01-01

    Pulmonary cellular responses in C57BL/6 mice exposed to Schistosoma mansoni have been investigated by sampling cells from the respiratory airways with bronchoalveolar lavage. Mice exposed to cercariae attenuated with 20 krad gamma-radiation developed stronger and more persistent pulmonary leukocytic responses than animals exposed to equal numbers of normal parasites. Although vaccination with irradiated cercariae also stimulated T cell responses of greater magnitude and duration than normal infection, the lymphocytic infiltrate elicited by each regimen did not differ substantially in its composition, 5 wk after exposure. Studies with cercariae attenuated by different treatments established that a link exists between the recruitment of leukocytes to the lungs of vaccinated mice and resistance to reinfection. There was a strong association between pulmonary leukocytic responses and the elimination of challenge infections by vaccinated mice. Animals exposed to irradiated cercariae of S. mansoni were resistant to homologous challenge infection but were not protected against Schistosoma margrebowiei. Homologous challenge of vaccinated mice stimulated anamnestic leukocytic and T lymphocytic responses in the lungs, 2 wk postinfection, but exposure of immunized animals to the heterologous species failed to trigger an expansion in these populations of cells. Our studies indicate that pulmonary leukocytes and T lymphocytes are intimately involved in the mechanism of vaccine-induced resistance to S. mansoni. It remains unclear whether these populations of cells initiate protective inflammatory reactions against challenge parasites in the lungs, or accumulate in response to the activation of the protective mechanism by other means

  7. Repeatability and responsiveness of exercise tests in pulmonary arterial hypertension.

    Science.gov (United States)

    Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Bonnet, Sébastien; Maltais, François; Saey, Didier; Provencher, Steeve

    2013-08-01

    Exercise tolerance in pulmonary arterial hypertension (PAH) is most commonly assessed by the 6-min walk test (6MWT). Whether endurance exercise tests are more responsive than the 6MWT remains unknown. 20 stable PAH patients (mean±sd age 53±15 years and mean pulmonary arterial pressure 44±16 mmHg) already on PAH monotherapy completed the 6MWT, the endurance shuttle walk test (ESWT) and the cycle endurance test (CET) before and after the addition of sildenafil citrate 20 mg three times daily or placebo for 28 days in a randomised double-blind crossover setting. Pre- or post-placebo tests were used to assess repeatability of each exercise test, whereas pre- or post-sildenafil citrate tests were used to assess their responsiveness. Sildenafil citrate led to placebo-corrected changes in exercise capacity of 18±25 m (p = 0.02), 58±235 s (p = 0.58) and 29±77 s (p = 0.09) for the 6MWT, the ESWT and the CET, respectively. The 6MWT was associated with a lower coefficient of variation between repeated measures (3% versus 18% versus 13%), resulting in a higher standardised response mean compared with endurance tests (0.72, 0.25 and 0.38 for the 6MWT, the ESWT and the CET, respectively). The 6MWT had the best ability to capture changes in exercise capacity when sildenafil citrate was combined with patients' baseline monotherapy, supporting its use as an outcome measure in PAH.

  8. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    Science.gov (United States)

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  9. DMPD: The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10669111 The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Qur...e The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Authors Qur

  10. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response

    Directory of Open Access Journals (Sweden)

    Adriano Queiroz

    Full Text Available Abstract: The lipid-rich cell wall of Mycobacterium tuberculosis is a dynamic structure that is involved in the regulation of the transport of nutrients, toxic host-cell effector molecules, and anti-tuberculosis drugs. It is therefore postulated to contribute to the long-term bacterial survival in an infected human host. Accumulating evidence suggests that M. tuberculosis remodels the lipid composition of the cell wall as an adaptive mechanism against host-imposed stress. Some of these lipid species (trehalose dimycolate, diacylated sulphoglycolipid, and mannan-based lipoglycans trigger an immunopathologic response, whereas others (phthiocerol dimycocerosate, mycolic acids, sulpholipid-1, and di-and polyacyltrehalose appear to dampen the immune responses. These lipids appear to be coordinately expressed in the cell wall of M. tuberculosis during different phases of infection, ultimately determining the clinical fate of the infection. This review summarizes the current state of knowledge on the metabolism, transport, and homeostatic or immunostatic regulation of the cell wall lipids, and their orchestrated interaction with host immune responses that results in bacterial clearance, persistence, or tuberculosis.

  11. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease.

    Science.gov (United States)

    Britto, Clemente J; Cohn, Lauren

    2015-05-01

    Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.

  12. Genetic variants in MARCO are associated with the susceptibility to pulmonary tuberculosis in Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Mai-Juan Ma

    Full Text Available BACKGROUND: Susceptibility to tuberculosis is not only determined by Mycobacterium tuberculosis infection, but also by the genetic component of the host. Macrophage receptor with a collagenous structure (MARCO is essential components required for toll like receptor-signaling in macrophage response to Mycobacterium tuberculosis, which may contribute to tuberculosis risk. PRINCIPAL FINDINGS: To specifically investigated whether single nucleotide polymorphisms (SNPs in MARCO gene are associated with pulmonary tuberculosis in Chinese Han population. By selecting tagging SNPs in MARCO gene, 17 tag SNPs were identified and genotyped in 923 pulmonary tuberculosis patients and 1033 healthy control subjects using a hospital based case-control association study. Single-point and haplotype analysis revealed an association in intron and exon region of MARCO gene. One SNP (rs17009726 was associated with susceptibility to pulmonary tuberculosis, where the carriers of the G allele had a 1.65 fold (95% CI = 1.32-2.05, p(corrected = 9.27E-5 increased risk of pulmonary tuberculosis. Haplotype analysis revealed that haplotype GC containing G allele of 17009726 and haplotype TGCC (rs17795618T/A, rs1371562G/T, rs6761637T/C, rs2011839C/T were also associated with susceptibility to pulmonary tuberculosis (p(corrected = 0.0001 and 0.029, respectively. CONCLUSIONS: Our study suggested that genetic variants in MARCO gene were associated with pulmonary tuberculosis susceptibility in Chinese Han population, and the findings emphasize the importance of MARCO mediated immune responses in the pathogenesis of tuberculosis.

  13. Host response in bovine mastitis experimentally induced with Staphylococcus chromogenes.

    Science.gov (United States)

    Simojoki, H; Orro, T; Taponen, S; Pyörälä, S

    2009-02-16

    An experimental infection model was developed to study host response to intramammary infection in cows caused by Staphylococcus chromogenes. CNS intramammary infections have become very common in modern dairy herds, and they can remain persistent in the mammary gland. More information would be needed about the pathophysiology of CNS mastitis, and an experimental mastitis model is a means for this research. Six primiparous Holstein-Friesian cows were challenged with S. chromogenes 4 weeks after calving. One udder quarter of each cow was inoculated with 2.1 x 10(6)cfu of S. chromogenes. All cows became infected and clinical signs were mild. Milk production of the challenged quarter decreased on average by 16.3% during 7 days post-challenge. Cows eliminated bacteria in a few days, except for one cow which developed persistent mastitis. Milk indicators of inflammation, SCC and N-acetyl-beta-D-glucosaminidase (NAGase) returned to normal within a week. Milk NAGase activity increased moderately, which reflects minor tissue damage in the udder. Concentrations of serum amyloid A (SAA) and milk amyloid A (MAA) were both elevated at 12h PC. MAA was affected by the milking times, and was at its highest before the morning milking. In our experimental model, systemic acute phase protein response with SAA occurred as an on-off type reaction. In conclusion, this experimental model could be used to study host response in CNS mastitis caused by the main CNS species and also for comparison of the host response in a mild intramammary infection and in more severe mastitis models.

  14. The Host Response in Patients with Sepsis Developing Intensive Care Unit-acquired Secondary Infections.

    Science.gov (United States)

    van Vught, Lonneke A; Wiewel, Maryse A; Hoogendijk, Arie J; Frencken, Jos F; Scicluna, Brendon P; Klein Klouwenberg, Peter M C; Zwinderman, Aeilko H; Lutter, Rene; Horn, Janneke; Schultz, Marcus J; Bonten, Marc M J; Cremer, Olaf L; van der Poll, Tom

    2017-08-15

    Sepsis can be complicated by secondary infections. We explored the possibility that patients with sepsis developing a secondary infection while in the intensive care unit (ICU) display sustained inflammatory, vascular, and procoagulant responses. To compare systemic proinflammatory host responses in patients with sepsis who acquire a new infection with those who do not. Consecutive patients with sepsis with a length of ICU stay greater than 48 hours were prospectively analyzed for the development of ICU-acquired infections. Twenty host response biomarkers reflective of key pathways implicated in sepsis pathogenesis were measured during the first 4 days after ICU admission and at the day of an ICU-acquired infection or noninfectious complication. Of 1,237 admissions for sepsis (1,089 patients), 178 (14.4%) admissions were complicated by ICU-acquired infections (at Day 10 [6-13], median with interquartile range). Patients who developed a secondary infection showed higher disease severity scores and higher mortality up to 1 year than those who did not. Analyses of biomarkers in patients who later went on to develop secondary infections revealed a more dysregulated host response during the first 4 days after admission, as reflected by enhanced inflammation, stronger endothelial cell activation, a more disturbed vascular integrity, and evidence for enhanced coagulation activation. Host response reactions were similar at the time of ICU-acquired infectious or noninfectious complications. Patients with sepsis who developed an ICU-acquired infection showed a more dysregulated proinflammatory and vascular host response during the first 4 days of ICU admission than those who did not develop a secondary infection.

  15. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    International Nuclear Information System (INIS)

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-01-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver

  16. Multimodality imaging of pulmonary infarction

    International Nuclear Information System (INIS)

    Bray, T.J.P.; Mortensen, K.H.; Gopalan, D.

    2014-01-01

    Highlights: • A plethora of pulmonary and systemic disorders, often associated with grave outcomes, may cause pulmonary infarction. • A stereotypical infarct is a peripheral wedge shaped pleurally based opacity but imaging findings can be highly variable. • Multimodality imaging is key to diagnosing the presence, aetiology and complications of pulmonary infarction. • Multimodality imaging of pulmonary infarction together with any ancillary features often guide to early targeted treatment. • CT remains the principal imaging modality with MRI increasingly used alongside nuclear medicine studies and ultrasound. - Abstract: The impact of absent pulmonary arterial and venous flow on the pulmonary parenchyma depends on a host of factors. These include location of the occlusive insult, the speed at which the occlusion develops and the ability of the normal dual arterial supply to compensate through increased bronchial arterial flow. Pulmonary infarction occurs when oxygenation is cut off secondary to sudden occlusion with lack of recruitment of the dual supply arterial system. Thromboembolic disease is the commonest cause of such an insult but a whole range of disease processes intrinsic and extrinsic to the pulmonary arterial and venous lumen may also result in infarcts. Recognition of the presence of infarction can be challenging as imaging manifestations often differ from the classically described wedge shaped defect and a number of weighty causes need consideration. This review highlights aetiologies and imaging appearances of pulmonary infarction, utilising cases to illustrate the essential role of a multimodality imaging approach in order to arrive at the appropriate diagnosis

  17. Multimodality imaging of pulmonary infarction

    Energy Technology Data Exchange (ETDEWEB)

    Bray, T.J.P., E-mail: timothyjpbray@gmail.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); Mortensen, K.H., E-mail: mortensen@doctors.org.uk [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); University Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Box 318, Cambridge CB2 0QQ (United Kingdom); Gopalan, D., E-mail: deepa.gopalan@btopenworld.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom)

    2014-12-15

    Highlights: • A plethora of pulmonary and systemic disorders, often associated with grave outcomes, may cause pulmonary infarction. • A stereotypical infarct is a peripheral wedge shaped pleurally based opacity but imaging findings can be highly variable. • Multimodality imaging is key to diagnosing the presence, aetiology and complications of pulmonary infarction. • Multimodality imaging of pulmonary infarction together with any ancillary features often guide to early targeted treatment. • CT remains the principal imaging modality with MRI increasingly used alongside nuclear medicine studies and ultrasound. - Abstract: The impact of absent pulmonary arterial and venous flow on the pulmonary parenchyma depends on a host of factors. These include location of the occlusive insult, the speed at which the occlusion develops and the ability of the normal dual arterial supply to compensate through increased bronchial arterial flow. Pulmonary infarction occurs when oxygenation is cut off secondary to sudden occlusion with lack of recruitment of the dual supply arterial system. Thromboembolic disease is the commonest cause of such an insult but a whole range of disease processes intrinsic and extrinsic to the pulmonary arterial and venous lumen may also result in infarcts. Recognition of the presence of infarction can be challenging as imaging manifestations often differ from the classically described wedge shaped defect and a number of weighty causes need consideration. This review highlights aetiologies and imaging appearances of pulmonary infarction, utilising cases to illustrate the essential role of a multimodality imaging approach in order to arrive at the appropriate diagnosis.

  18. Differential kinetics of response and toxicity using stereotactic radiation and interventional radiological coiling for pulmonary arterio-venous shunting from metastatic leiomyosarcoma

    International Nuclear Information System (INIS)

    Wong, Annie Ngai Man; Siva, Shankar; Chin, Kwang; Manser, Renee; Antippa, Phillip; Dowling, Richard; Mileshkin, Linda Rose

    2015-01-01

    Case report demonstrating the differential kinetics of response and toxicity using stereotactic radiation and interventional radiological coiling for pulmonary arterio-venous shunting from leiomyosarcoma pulmonary metastases.

  19. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    Science.gov (United States)

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  20. Mechanistic and dose considerations for supporting adverse pulmonary physiology in response to formaldehyde

    International Nuclear Information System (INIS)

    Thompson, Chad M.; Subramaniam, Ravi P.; Grafstroem, Roland C.

    2008-01-01

    Induction of airway hyperresponsiveness and asthma from formaldehyde inhalation exposure remains a debated and controversial issue. Yet, recent evidences on pulmonary biology and the pharmacokinetics and toxicity of formaldehyde lend support for such adverse effects. Specifically, altered thiol biology from accelerated enzymatic reduction of the endogenous bronchodilator S-nitrosoglutathione and pulmonary inflammation from involvement of Th2-mediated immune responses might serve as key events and cooperate in airway pathophysiology. Understanding what role these mechanisms play in various species and lifestages (e.g., child vs. adult) could be crucial for making more meaningful inter- and intra-species dosimetric extrapolations in human health risk assessment

  1. Host Recognition Responses of Western (Family: Chrysomelidae) Corn Rootworm Larvae to RNA Interference and Bt Corn.

    Science.gov (United States)

    Zukoff, Sarah N; Zukoff, Anthony L

    2017-01-01

    Western corn rootworm Diabrotica virgifera virgifera LeConte is an important pest of corn whose larvae exhibit particular quantifiable patterns of locomotion after exposure to, and removal from, host roots and nonhost roots. Using EthoVision software, the behavior and locomotion of the western corn rootworm larvae was analyzed to determine the level of host recognition to germinated roots of differing corn hybrids containing either rootworm targeted Bt genes, RNA interference (RNAi) technology, the stack of both Bt and RNAi, or the isoline of these. The behavior of the rootworm larvae indicated a significant host preference response to all corn hybrids (with or without insecticidal traits) compared to the filter paper and oat roots. A weaker host response to the RNAi corn roots was observed in the susceptible larvae when compared to the resistant larvae, but not for the Bt + RNAi vector stack. Additionally, the resistant larvae demonstrated a weaker host response to the isoline corn roots when compared to the susceptible larvae. Although weaker, these host responses were significantly different from those observed in the negative controls, indicating that all hybrids tested do contain the contact cues necessary to elicit a host preference response by both Cry3Bb1-resistant and Cry3Bb1-susceptible larvae that would work to hinder resistance development in refuge in a bag fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  2. The Impact of Immunosenescence on Pulmonary Disease.

    LENUS (Irish Health Repository)

    Murray, Michelle A

    2015-08-01

    The global population is aging with significant gains in life expectancy particularly in the developed world. Consequently, greater focus on understanding the processes that underlie physiological aging has occurred. Key facets of advancing age include genomic instability, telomere shortening, epigenetic changes, and declines in immune function termed immunosenescence. Immunosenescence and its associated chronic low grade systemic "inflamm-aging" contribute to the development and progression of pulmonary disease in older individuals. These physiological processes predispose to pulmonary infection and confer specific and unique clinical phenotypes observed in chronic respiratory disease including late-onset asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. Emerging concepts of the gut and airway microbiome further complicate the interrelationship between host and microorganism particularly from an immunological perspective and especially so in the setting of immunosenescence. This review focuses on our current understanding of the aging process, immunosenescence, and how it can potentially impact on various pulmonary diseases and the human microbiome.

  3. Case report: Pulmonary syphilis mimicking pulmonary hematogenous metastases on chest CT and integrated PET/CT

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Seon, Hyun Ju; Shin, Hyo Hyun; Choi, Yoo-Duk

    2011-01-01

    We report a case of syphilis with pulmonary involvement. Chest CT scan and 18 F-fluorodeoxyglucose (FDG) PET/CT showed multiple pulmonary nodules mimicking pulmonary hematogenous metastases. This was confirmed on follow-up images that showed therapeutic response to penicillin

  4. Bronchial arterial infusion versus bronchial combined pulmonary arterial infusion for pulmonary metastatic tumors

    International Nuclear Information System (INIS)

    Dong Sheng; Dong Weihua; Jia Ningyang; Zhang Dianbo; Xiao Xiangsheng

    2008-01-01

    Objective: To evaluate the pulmonary metastatic tumor response to different ways of transcatheter arterial infusion. Methods: Thirty-five patients with pulmonary metastatic tumors were randomized divided into two groups: 15 patients with 49 lesions treated with bronchial arterial infusion (BAI) and 20 patients with 65 lesions treated with bronchial arterial infusion (BM)combined with pulmonary arterial infusion (PAI). The therapeutic response was assessed by the WHO evaluation criteria. Results: The total effective rate(CR + PR) of BAI was 65.3% (32/49), PAI + BAI was 61.5%(40/65) showing no statistical difference. The median survival time of BAI was 9 mo, BAI + PAI was 11.5 mo, demonstrating no statistical significance. Conclusions: BAI should be the primary treatment for pulmonary metastatic tumor. (authors)

  5. Shigella flexneri infection in Caenorhabditis elegans: cytopathological examination and identification of host responses.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.

  6. Case report: Pulmonary syphilis mimicking pulmonary hematogenous metastases on chest CT and integrated PET/CT

    Directory of Open Access Journals (Sweden)

    Hyung Jun Kim

    2011-01-01

    Full Text Available We report a case of syphilis with pulmonary involvement. Chest CT scan and 18 F-fluorodeoxyglucose (FDG PET/CT showed multiple pulmonary nodules mimicking pulmonary hematogenous metastases. This was confirmed on follow-up images that showed therapeutic response to penicillin.

  7. Pulmonary radio-responses to surface field radiotherapy of Morbus Hodgkin using a 4 MeV linear accelerator

    International Nuclear Information System (INIS)

    Krueger, H.U.

    1982-01-01

    In 119 patients suffering from Morbus Hodgkin who were treated between 1974 and 1979, the pulmonary radioresponse was retroperspectively investigated. Besides incidence and degree of severity also the course over the time of the individual stages of radio-response where investigated. 14 patients showed no paramediastinal irradiation fibrosis as lasting stationary change, 52 showed a light one, 34 a medium-sized and 19 a severe one. Each fibrosis had been preceded by the radiomorphologic sign of pneumonitis of always the same degree of severity. The course over the time of the radiomorphologically subdivided stages determined that on the average the signs of a beginning pneumonitis occurred 11.6 weeks after onset of radiotherapy. An active pneumonitis was detectable after 14.8 weeks (on the average) and 20.4 weeks after radiotherapy had been started, a still florid pneumonitis with beginning shrinkage of the paramediastinal regions was found. The stage of stationary pulmonary fibrosis was reached 34.1 weeks (averaged value) after surface field irradiation had been started. Correlative relations to different individual diseasedependent and radiotherapeutic factors were detected, which are considered to be responsible for the intensity and character of the floride radio-response and the remaining pulmonary fibrosis. Considered from the radiomorphologic course of pulmonary irradiation reaction and its intensity and character, no significant advantage of tumor-reducing chemotherapy compared to irradiation or of split-course-technique compared to continuous fractioning was found. The introduction of individually adjustable shields helped to reduce the degree of severity of radio-response. (orig./MG) [de

  8. Sepsis in HIV-infected patients; epidemiology and host response

    NARCIS (Netherlands)

    Huson, M.A.M.

    2016-01-01

    In this thesis, we examined the impact of HIV infection on the epidemiology (Part I) of sepsis, and host response (Part II) to sepsis. We studied sepsis patients in Gabon, a setting with a high prevalence of HIV, and in Dutch intensive care units (ICUs). In Part I, we found that HIV positive

  9. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection.

    Science.gov (United States)

    Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A

    2017-09-01

    In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.

  10. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  11. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    Science.gov (United States)

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  12. CT halo sign as an imaging marker for response to adoptive cell therapy in metastatic melanoma with pulmonary metastases

    Energy Technology Data Exchange (ETDEWEB)

    Shrot, Shai; Apter, Sara [Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer (Israel); Schachter, Jacob; Shapira-Frommer, Ronnie [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Besser, Michal J. [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Sackler School of Medicine, Tel Aviv University, Department of Clinical Microbiology and Immunology, Tel Aviv (Israel)

    2014-06-15

    The halo sign refers to a zone of ground-glass attenuation surrounding a pulmonary nodule. Pulmonary metastatic nodules exhibiting a halo sign are seen mainly in hypervascular tumours. We describe the appearance of a halo sign following treatment of adoptive transfer of autologous tumour-infiltrating lymphocytes (TIL) to melanoma patients with lung metastases. The study included 29 melanoma patients with pulmonary metastases who received TIL therapy. Pre- and post-treatment chest CTs were retrospectively reviewed for the presence of a halo sign and its correlation with therapeutic response. A pulmonary halo sign was not seen in any pre-treatment CT. It was observed in four of 12 patients who responded to the therapy but not in those who failed to respond. Significant differences were found between response ratio in patients in whom post-TIL halo sign appeared compared with those without the halo sign (p = 0.02). The appearance of a CT halo sign in melanoma with lung metastases following TIL therapy may indicate antitumoral effect and a good response to therapy. Our findings emphasize the importance of applying new assessment criteria for immunological anticancer therapies. (orig.)

  13. Pulmonary Sporotrichosis: An Evolving Clinical Paradigm.

    Science.gov (United States)

    Aung, Ar K; Spelman, Denis W; Thompson, Philip J

    2015-10-01

    In recent decades, sporotrichosis, caused by thermally dimorphic fungi Sporothrix schenckii complex, has become an emerging infection in many parts of the world. Pulmonary infection with S. schenckii still remains relatively uncommon, possibly due to underrecognition. Pulmonary sporotrichosis presents with distinct clinical and radiological patterns in both immunocompetent and immunocompromised hosts and can often result in significant morbidity and mortality despite treatment. Current understanding regarding S. schenckii biology, epidemiology, immunopathology, clinical diagnostics, and treatment options has been evolving in the recent years with increased availability of molecular sequencing techniques. However, this changing knowledge has not yet been fully translated into a better understanding of the clinical aspects of pulmonary sporotrichosis, as such current management guidelines remain unsupported by high-level clinical evidence. This article examines recent advances in the knowledge of sporotrichosis and its application to the difficult challenges of managing pulmonary sporotrichosis. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Ex Vivo Host and Parasite Response to Antileishmanial Drugs and Immunomodulators

    Science.gov (United States)

    McMahon-Pratt, Diane; Saravia, Nancy Gore

    2015-01-01

    Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine

  15. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    DEFF Research Database (Denmark)

    Taylor, Bryan J; Kjaergaard, Jesper; Snyder, Eric M

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ∼ 15 min) or 17-h normobaric hypoxia ( [FIO2 = 12.5%). Cardiac output (Q) and pulmonary...... capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q......Ppa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment....

  16. Cellular immune responses to ESAT-6 discriminate between patients with pulmonary disease due to Mycobacterium avium complex and those with pulmonary disease due to Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Lein, A D; von Reyn, C F; Ravn, P

    1999-01-01

    ESAT-6 (for 6-kDa early secreted antigenic target) is a secreted antigen found almost exclusively in organisms of the Mycobacterium tuberculosis complex. We compared in vitro gamma interferon (IFN-gamma) responses by peripheral blood mononuclear cells to this antigen in patients with pulmonary...... disease due to either Mycobacterium avium complex (MAC) or Mycobacterium tuberculosis with those in healthy, skin test-negative, control subjects. Significant IFN-gamma responses to ESAT-6 were detected in 16 (59%) of 27 M. tuberculosis pulmonary disease patients, 0 (0%) of 8 MAC disease patients, and 0...... (0%) of 8 controls. Significant IFN-gamma responses to M. tuberculosis purified protein derivative were detected in 23 (85%) of 27 M. tuberculosis disease patients, 2 (25%) of 8 MAC disease patients, and 5 (63%) of 8 healthy controls. M. avium sensitin was recognized in 24 (89%) of 27 M. tuberculosis...

  17. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  18. Inflammasome genetics contributes to the development and control of active pulmonary tuberculosis.

    Science.gov (United States)

    Souza de Lima, D; Ogusku, M M; Sadahiro, A; Pontillo, A

    2016-07-01

    Tuberculosis (TB) continues to be a major public health problem. An estimated one-third of the world's population is infected with Mycobacterium tuberculosis (Mtb) but remains asymptomatic (latent TB) and only 5% to 10% of these latent individuals will develop active pulmonary TB. Factors affecting the balance between latent and active TB are mostly unknown, even if host genome has been shown to contribute to the outcome of Mtb response. Acute inflammation and Th1 response are important in the early clearance of the bacteria as it was emphasized by the association between immune genes (i.e.: HLA, IFNG, TNF, NRPAM1, IL10) variants and the development of active pulmonary TB. Recently, the role of the inflammasome in experimental TB has been demonstrated, however, to our knowledge, no data still exist about the contribution of inflammasome genetics to Mtb susceptibility and/or to the development of active TB. For this reason, selected polymorphisms in inflammasome genes were analysed in a case/control cohort of individuals with active pulmonary TB from an endemic area of Brazil Amazon. Our data evidence the novel association between polymorphisms in NLRP3-inflammasome encoding genes and active pulmonary TB, and replicated the association between P2X7 and TB observed in other populations. These results emphasize the role of NLRP3-inflammasome also in human TB, and contribute to our knowledge about pathways involved in the development of active TB, even if deeper investigation are needed to fully elucidate the role of the complex in Mtb infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor.

    Science.gov (United States)

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By

  20. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor

    Directory of Open Access Journals (Sweden)

    Roi Ben-David

    2018-02-01

    Full Text Available The biotroph wheat powdery mildew, Blumeria graminis (DC. E.O. Speer, f. sp. tritici Em. Marchal (Bgt, has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant. Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host. Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance. By

  1. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  2. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    Science.gov (United States)

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  3. Development of pulmonary vascular response to oxygen

    International Nuclear Information System (INIS)

    Morin, F.C. III; Egan, E.A.; Ferguson, W.; Lundgren, C.E.

    1988-01-01

    The ability of the pulmonary circulation of the fetal lamb to respond to a rise in oxygen tension was studied from 94 to 146 days of gestation. The unanesthetized ewe breathed room air at normal atmospheric pressure, followed by 100% oxygen at three atmospheres absolute pressure in a hyperbaric chamber. In eleven near-term lambs, fetal arterial oxygen tension (Pa O 2 ) increased from 25 to 55 Torr, which increased the proportion or right ventricular output distributed to the fetal lungs from 8 to 59%. In five very immature lambs fetal Pa O 2 increased from 27 to 174 Torr, but the proportion of right ventricular output distributed to the lung did not change. In five of the near-term lambs, pulmonary blood flow was measured. For each measurement of the distribution of blood flow, approximately 8 x 10 5 spheres of 15-μm diameter, labeled with either 153 Gd, 113 Sn, 103 Ru, 95 Nb, or 46 Sc were injected. It increased from 34 to 298 ml · kg fetal wt -1 · min -1 , an 8.8-fold increase. The authors conclude that the pulmonary circulation of the fetal lamb does not respond to an increase in oxygen tension before 101 days of gestation; however, near term an increase in oxygen tension alone can induce the entire increase in pulmonary blood flow that normally occurs after the onset of breathing at birth

  4. Host responses to concurrent combined injuries in non-human primates.

    Science.gov (United States)

    Bradley, Matthew J; Vicente, Diego A; Bograd, Benjamin A; Sanders, Erin M; Leonhardt, Crystal L; Elster, Eric A; Davis, Thomas A

    2017-01-01

    Multi-organ failure (MOF) following trauma remains a significant cause of morbidity and mortality related to a poorly understood abnormal inflammatory response. We characterized the inflammatory response in a non-human primate soft tissue injury and closed abdomen hemorrhage and sepsis model developed to assess realistic injury patterns and induce MOF. Adult male Mauritan Cynomolgus Macaques underwent laparoscopy to create a cecal perforation and non-anatomic liver resection along with a full-thickness flank soft tissue injury. Treatment consisted of a pre-hospital phase followed by a hospital phase after 120 minutes. Blood counts, chemistries, and cytokines/chemokines were measured throughout the study. Lung tissue inflammation/apoptosis was confirmed by mRNA quantitative real-time PCR (qPCR), H&E, myeloperoxidase (MPO) and TUNEL staining was performed comparing age-matched uninjured controls to experimental animals. Twenty-one animals underwent the protocol. Mean percent hepatectomy was 64.4 ± 5.6; percent blood loss was 69.0 ± 12.1. Clinical evidence of end-organ damage was reflected by a significant elevation in creatinine (1.1 ± 0.03 vs. 1.9 ± 0.4, p=0.026). Significant increases in systemic levels of IL-10, IL-1ra, IL-6, G-CSF, and MCP-1 occurred (11-2986-fold) by 240 minutes. Excessive pulmonary inflammation was evidenced by alveolar edema, congestion, and wall thickening (H&E staining). Concordantly, amplified accumulation of MPO leukocytes and significant pulmonary inflammation and pneumocyte apoptosis (TUNEL) was confirmed using qRT-PCR. We created a clinically relevant large animal multi-trauma model using laparoscopy that resulted in a significant systemic inflammatory response and MOF. With this model, we anticipate studying systemic inflammation and testing innovative therapeutic options.

  5. Host responses to concurrent combined injuries in non-human primates

    Directory of Open Access Journals (Sweden)

    Matthew J. Bradley

    2017-11-01

    Full Text Available Abstract Background Multi-organ failure (MOF following trauma remains a significant cause of morbidity and mortality related to a poorly understood abnormal inflammatory response. We characterized the inflammatory response in a non-human primate soft tissue injury and closed abdomen hemorrhage and sepsis model developed to assess realistic injury patterns and induce MOF. Methods Adult male Mauritan Cynomolgus Macaques underwent laparoscopy to create a cecal perforation and non-anatomic liver resection along with a full-thickness flank soft tissue injury. Treatment consisted of a pre-hospital phase followed by a hospital phase after 120 minutes. Blood counts, chemistries, and cytokines/chemokines were measured throughout the study. Lung tissue inflammation/apoptosis was confirmed by mRNA quantitative real-time PCR (qPCR, H&E, myeloperoxidase (MPO and TUNEL staining was performed comparing age-matched uninjured controls to experimental animals. Results Twenty-one animals underwent the protocol. Mean percent hepatectomy was 64.4 ± 5.6; percent blood loss was 69.0 ± 12.1. Clinical evidence of end-organ damage was reflected by a significant elevation in creatinine (1.1 ± 0.03 vs. 1.9 ± 0.4, p=0.026. Significant increases in systemic levels of IL-10, IL-1ra, IL-6, G-CSF, and MCP-1 occurred (11-2986-fold by 240 minutes. Excessive pulmonary inflammation was evidenced by alveolar edema, congestion, and wall thickening (H&E staining. Concordantly, amplified accumulation of MPO leukocytes and significant pulmonary inflammation and pneumocyte apoptosis (TUNEL was confirmed using qRT-PCR. Conclusion We created a clinically relevant large animal multi-trauma model using laparoscopy that resulted in a significant systemic inflammatory response and MOF. With this model, we anticipate studying systemic inflammation and testing innovative therapeutic options.

  6. Biochemical response and host-pathogen relation of stalk rot fungi ...

    African Journals Online (AJOL)

    Stalk rot is a destructive disease in maize caused by Fusarium and Macrophomina species. A study was carried out to understand the mode of infection, host biochemical response and comparison of inoculation techniques in Fusarium verticillioides and Macrophomina phaseolina in maize. In seed inoculation experiment, ...

  7. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    Science.gov (United States)

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  8. Efficacy of multiple anticancer therapies may depend on host immune response

    Directory of Open Access Journals (Sweden)

    Kritika Karri

    2017-06-01

    Full Text Available The host immune system is a key player in anticancer therapy response and resistance. Although the impact of host immune response in the ‘war against cancer’ has been studied and it has been the basis for immunotherapy, understanding of its role in attenuating the action of conventional anticancer therapies is an area that has not been fully explored. In spite of advances in systemic therapy, the 5-year survival rate for adenocarcinoma is still a mere 13% and the primary reason for treatment failure is believed to be due to acquired resistance to therapy. Hence, there is a need for identifying reliable biomarkers for guided treatment of lung and colon adenocarcinoma and to better predict the outcomes of specific anticancer therapies. In this work, gene expression data were analyzed using public resources and this study shows how host immune competence underscores the efficacy of various anticancer therapies. Additionally, the result provides insight on the regulation of certain biochemical pathways relating to the immune system, and suggests that smart chemotherapeutic intervention strategies could be based on a patient’s immune profile.

  9. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Saber, Anne T.; Mortensen, Alicja

    2015-01-01

    has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18,54 or 162 mu...... levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater...... response following CNTLarge exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk...

  10. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    Science.gov (United States)

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    Apples are subjected to both abiotic and biotic stresses during the postharvest period, which lead to large economic losses worldwide. To obtain biochemical insights into apple defense response, we monitored the protein abundance changes (proteome), as well as the protein carbonyls (oxi-proteome) formed by reactive oxygen species (ROS) in 'Golden Smoothee' apple in response to wounding, Penicillium expansum (host) and Penicillium digitatum (non-host) pathogens with select transcriptional studies. To examine the biological relevance of the results, we described quantitative and oxidative protein changes into the gene ontology functional categories, as well as into de KEGG pathways. We identified 26 proteins that differentially changed in abundance in response to wounding, P. expansum or P. digitatum infection. While these changes showed some similarities between the apple responses and abiotic and biotic stresses, Mal d 1.03A case, other proteins as Mal d 1.03E and EF-Tu were specifically induced in response to P. digitatum infection. Using a protein carbonyl detection method based on fluorescent Bodipy, we detected and identified 27 oxidized proteins as sensitive ROS targets. These ROS target proteins were related to metabolism processes, suggesting that this process plays a leading role in apple fruit defense response against abiotic and biotic stresses. ACC oxidase and two glutamine synthetases showed the highest protein oxidation level in response to P. digitatum infection. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. Possible mechanisms by which these modified proteins are involved in fruit defense response are discussed. Mechanical damage in apple fruits is linked annually to large economic losses due to opportunistic infection by postharvest pathogens, such as P. expansum. Despite the current use

  11. Neutrophil depletion causes a fatal defect in murine pulmonary Staphylococcus aureus clearance.

    Science.gov (United States)

    Robertson, Charles M; Perrone, Erin E; McConnell, Kevin W; Dunne, W Michael; Boody, Barrett; Brahmbhatt, Tejal; Diacovo, M Julia; Van Rooijen, Nico; Hogue, Lisa A; Cannon, Carolyn L; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2008-12-01

    Staphylococcus aureus is the most common cause of healthcare-associated pneumonia. Despite the significant morbidity and mortality associated with the disease, animal models of S. aureus pneumonia are rare. We examined the pathogenicity of four different strains of S. aureus (both methicillin-sensitive and -resistant as well as Panton-Valentine leukocidin-positive and -negative) in four strains of immunocompetent inbred and outbred mice (FVB/N, C57Bl/6, BALB/c, ND4; n = 148). The immunological basis for the development of murine S. aureus pneumonia was then determined by selectively depleting neutrophils, lymphocytes, or pulmonary macrophages prior to the onset of infection. An additional cohort of animals was rendered immunosuppressed by induction of abdominal sepsis via cecal ligation and puncture 2, 4, or 7 d prior to the onset of pneumonia. Nearly all immunocompetent mice survived, regardless of which strain of S. aureus was used or which strain of mouse was infected. Among animals with immune depletion or prior immunosuppression, survival was decreased only following neutrophil depletion (26% versus 90% alive at 7 d, P < 0.0001). Compared to immunocompetent animals, neutrophil-depleted mice with S. aureus pneumonia had delayed pulmonary bacterial clearance at 16 and 40 h but had no difference in levels of bacteremia. Neutrophil-depleted mice also had elevated levels of pulmonary monocyte chemotactic protein-1 (822 pg/mL versus 150 pg/mL, P < 0.05). In contrast, pulmonary histological appearance was similar in both groups as was dry/wet lung weight. These results suggest that neutrophils play a critical role in the host response to S. aureus pneumonia, and the survival differences observed in neutrophil-depleted mice are associated with alterations in bacterial clearance and pulmonary cytokine response.

  12. Persistence of host response against glochidia larvae in Micropterus salmoides.

    Science.gov (United States)

    Dodd, Benjamin J; Barnhart, M Christopher; Rogers-Lowery, Constance L; Fobian, Todd B; Dimock, Ronald V

    2006-11-01

    Host fish acquire resistance to the parasitic larvae (glochidia) of freshwater mussels (Unionidae). Glochidia metamorphose into juvenile mussels while encysted on host fish. We investigated the duration of acquired resistance of largemouth bass, Micropterus salmoides (Lacepède, 1802) to glochidia of the broken rays mussel, Lampsilis reeveiana (Call, 1887). Fish received three successive priming infections with glochidia to induce an immune response. Primed fish were held at 22-23 degrees C and were challenged (re-infected) at intervals after priming. Metamorphosis success was quantified as the percent of attached glochidia that metamorphosed to the juvenile stage and were recovered alive. Metamorphosis success at 3, 7, and 12 months after priming was significantly lower on primed fish (26%, 40%, and 68% respectively) than on control fish (85%, 93%, and 92% respectively). A second group of largemouth bass was similarly primed and blood was extracted. Immunoblotting was used to detect host serum antibodies to L. reeveiana glochidia proteins. Serum antibodies were evident in primed fish, but not in naive control fish. Acquired resistance of host fish potentially affects natural reproduction and artificial propagation of unionids, many of which are of conservation concern.

  13. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  14. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    Science.gov (United States)

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles.

    Science.gov (United States)

    Roberts, Jenny R; McKinney, Walter; Kan, Hong; Krajnak, Kristine; Frazer, David G; Thomas, Treye A; Waugh, Stacey; Kenyon, Allison; MacCuspie, Robert I; Hackley, Vincent A; Castranova, Vincent

    2013-01-01

    Exposure to wet aerosols generated during use of spray products containing silver (Ag) has not been evaluated. The goal was to assess the potential for cardiopulmonary toxicity following an acute inhalation of wet silver colloid. Rats were exposed by inhalation to a low concentration (100 μg/m(3) ) using an undiluted commercial antimicrobial product (20 mg/L total silver; approximately 33 nm mean aerodynamic diameter [MAD]) or to a higher concentration (1000 μg/m(3)) using a suspension (200 mg/L total silver; approximately 39 nm MAD) synthesized to possess a similar size distribution of Ag nanoparticles for 5 h. Estimated lung burdens from deposition models were 0, 1.4, or 14 μg Ag/rat after exposure to control aerosol, low, and high doses, respectively. At 1 and 7 d postexposure, the following parameters were monitored: pulmonary inflammation, lung cell toxicity, alveolar air/blood barrier damage, alveolar macrophage activity, blood cell differentials, responsiveness of tail artery to vasoconstrictor or vasodilatory agents, and heart rate and blood pressure in response to isoproterenol or norepinephrine, respectively. Changes in pulmonary or cardiovascular parameters were absent or nonsignificant at 1 or 7 d postexposure with the exceptions of increased blood monocytes 1 d after high-dose Ag exposure and decreased dilation of tail artery after stimulation, as well as elevated heart rate in response to isoproterenol 1 d after low-dose Ag exposure, possibly due to bioavailable ionic Ag in the commercial product. In summary, short-term inhalation of nano-Ag did not produce apparent marked acute toxicity in this animal model.

  16. Host control of malaria infections: constraints on immune and erythropoeitic response kinetics.

    Directory of Open Access Journals (Sweden)

    Philip G McQueen

    2008-08-01

    Full Text Available The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection to those with compensatory erythropoiesis (boosted RBC production or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating clinically, this suggests that P

  17. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    Science.gov (United States)

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  18. Association of Gender With Outcome and Host Response in Critically Ill Sepsis Patients.

    Science.gov (United States)

    van Vught, Lonneke A; Scicluna, Brendon P; Wiewel, Maryse A; Hoogendijk, Arie J; Klein Klouwenberg, Peter M C; Ong, David S Y; Cremer, Olaf L; Horn, Janneke; Franitza, Marek; Toliat, Mohammad R; Nürnberg, Peter; Bonten, Marc M J; Schultz, Marcus J; van der Poll, Tom

    2017-11-01

    To determine the association of gender with the presentation, outcome, and host response in critically ill patients with sepsis. A prospective observational cohort study in the ICU of two tertiary hospitals between January 2011 and January 2014. All consecutive critically ill patients admitted with sepsis, involving 1,815 admissions (1,533 patients). The host response was evaluated on ICU admission by measuring 19 plasma biomarkers reflecting organ systems implicated in sepsis pathogenesis (1,205 admissions) and by applying genome-wide blood gene expression profiling (582 admissions). Sepsis patients admitted to the ICU were more frequently males (61.0%; p < 0.0001 vs females). Baseline characteristics were not different between genders. Urosepsis was more common in females; endocarditis and mediastinitis in men. Disease severity was similar throughout ICU stay. Mortality was similar up to 1 year after ICU admission, and gender was not associated with 90-day mortality in multivariate analyses in a variety of subgroups. Although plasma proteome analyses (including systemic inflammatory and cytokine responses, and activation of coagulation) were largely similar between genders, females showed enhanced endothelial cell activation; this difference was virtually absent in patients more than 55 years old. More than 80% of the leukocyte blood gene expression response was similar in male and female patients. The host response and outcome in male and female sepsis patients requiring ICU admission are largely similar.

  19. Differential responses of the coral host and their algal symbiont to thermal stress.

    Directory of Open Access Journals (Sweden)

    William Leggat

    Full Text Available The success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium. During an experimental bleaching event significant up-regulation of genes involved in stress response (HSP90 and HSP70 and carbon metabolism (glyceraldehyde-3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, glycogen synthase and glycogen phosphorylase from the coral host were observed. In contrast in the symbiont, HSP90 expression decreased, while HSP70 levels were increased on only one day, and only the α-ketoglutarate dehydrogenase expression levels were found to increase. In addition the changes seen in expression patterns of the coral host were much larger, up to 10.5 fold, compared to the symbiont response, which in all cases was less than 2-fold. This targeted study of the expression of key metabolic and stress genes demonstrates that the response of the coral and their symbiont vary significantly, also a response in the host transcriptome was observed prior to what has previously been thought to be the temperatures at which thermal stress events occur.

  20. Effect of cage vs. floor litter environments on the pulmonary hypertensive response to intravenous endotoxin and on blood-gas values in broilers.

    Science.gov (United States)

    Wang, W; Erf, G F; Wideman, R F

    2002-11-01

    Intravenous endotoxin has been shown to trigger a delayed pulmonary hypertensive response that varies widely in magnitude and duration among individual broilers. It was proposed that this individual variability may reflect immunological differences acquired during previous respiratory challenges that might have subsequently altered the endotoxin-initiated biochemical cascade. In Experiment 1, we tested the hypothesis that, when compared with broilers reared in clean stainless steel cages (Cage group), broilers reared on floor litter (Floor group) should experience a greater respiratory challenge and therefore may consistently exhibit a more enhanced pulmonary hypertensive response to intravenous endotoxin. Birds in the Cage group were grown in stainless steel cages at a low density (72 birds/8 m2 chamber), and fecal and dander materials were removed daily. Birds in the Floor group were reared on wood-shavings litter at a higher density (110 birds/8 m2 chamber). Pulmonary and systemic mean arterial pressures and blood-gas values were evaluated prior to and following the intravenous administration of 1 mg Salmonella typhimurium endotoxin. Broilers in the Floor and Cage groups exhibited pulmonary hypertensive responses to endotoxin that were very similar in terms of time of onset, duration, and magnitude, as well as variability in the response among individuals. Systemic hypotension also developed similarly in both groups following endotoxin injection. Blood-gas values indicated that the partial pressure of CO2 and the HCO3- concentration in arterial blood were higher (P broilers, and confirmed the negative impact of floor rearing on blood-gas values. We conclude that broilers reared on the floor inhaled litter dust and noxious fumes, which impaired pulmonary gas exchange and increased the arterial partial pressure of CO2 when compared with broilers reared in clean stainless steel cages. Nevertheless, the pulmonary hypertensive response to endotoxin did not differ

  1. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection.

    Directory of Open Access Journals (Sweden)

    Lulin Huang

    Full Text Available Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between pathogens and their hosts. Bacillus bombysepticus (Bb which can produces spores and parasporal crystals was firstly separated from the corpses of the infected silkworms (Bombyx mori. Bb naturally infects the silkworm can cause an acute fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt, Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also triggered the host immune responses, including cellular immune response and serine protease cascade melanization response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll pathway. Anti-microorganism peptides (AMPs, including of Attacin, Lebocin, Enbocin, Gloverin

  2. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Sarah S., E-mail: spo@nrcwe.dk [National Research Centre for the Working Environment, DK-2100 Copenhagen (Denmark); Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Saber, Anne T., E-mail: ats@nrcwe.dk [National Research Centre for the Working Environment, DK-2100 Copenhagen (Denmark); Mortensen, Alicja, E-mail: almo@food.dtu.dk [National Food Institute, Technical University of Denmark, Søborg (Denmark); Szarek, Józef, E-mail: szarek@uwm.edu.pl [Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn (Poland); Wu, Dongmei, E-mail: dongmei.wu@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Williams, Andrew, E-mail: andrew.williams@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Andersen, Ole, E-mail: oa@ruc.dk [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Jacobsen, Nicklas R., E-mail: nrj@nrcwe.dk [National Research Centre for the Working Environment, DK-2100 Copenhagen (Denmark); Yauk, Carole L., E-mail: carole.yauk@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Wallin, Håkan, E-mail: hwa@nrcwe.dk [National Research Centre for the Working Environment, DK-2100 Copenhagen (Denmark); Department of Public Health, University of Copenhagen, DK-1014 Copenhagen K (Denmark); Halappanavar, Sabina, E-mail: sabina.halappanavar@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Vogel, Ulla, E-mail: ubv@nrcwe.dk [National Research Centre for the Working Environment, DK-2100 Copenhagen (Denmark); Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-03-15

    Adverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of small, entangled (CNT{sub Small}, 0.8 ± 0.1 μm long) or large, thick MWCNTs (CNT{sub Large}, 4 ± 0.4 μm long). Liver tissues and plasma were harvested 1, 3 and 28 days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater response following CNT{sub Large} exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk of cardiovascular disease. - Highlights: • Systemic and hepatic alterations were evaluated in female mice following MWCNT instillation. • Despite being physicochemically

  3. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    Science.gov (United States)

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  4. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  5. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Mani Harika eVemula

    2016-03-01

    Full Text Available Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis (M.tb, the tuberculosis (TB causing bacilli in human is cleared by cell-mediated immunity (CMI with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches towards vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M.tb Zinc metalloprotease-1 (Zmp1, a secretory protein essential for intracellular survival and pathogenesis of M.tb. We observed that Zmp1 was secreted by in vitro grown M.tb under granuloma-like stress conditions (acidic, oxidative, iron deficiency and nutrient deprivation and generated Th2 cytokine microenvironment upon exogenous treatment of Peripheral Blood Mononulear Cells (PBMCs with recombinant Zmp1 (rZmp1. This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n=121 as against healthy control (n=62, household contacts (n=89 and non-specific infection controls (n=23. A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL to paucibacillary smear-negative pulmonary tuberculosis (PTB cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen

  6. Host-to-host variation of ecological interactions in polymicrobial infections

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  7. Host-to-host variation of ecological interactions in polymicrobial infections.

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-12-04

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  8. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.

    Science.gov (United States)

    Irazoqui, Javier E; Troemel, Emily R; Feinbaum, Rhonda L; Luhachack, Lyly G; Cezairliyan, Brent O; Ausubel, Frederick M

    2010-07-01

    The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with

  9. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.

    Directory of Open Access Journals (Sweden)

    Javier E Irazoqui

    2010-07-01

    Full Text Available The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs. Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C

  10. Host-to-host variation of ecological interactions in polymicrobial infections

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Das, Jayajit; Weimer, Kristin E; Swords, W Edward

    2015-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host–microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. (paper)

  11. New insights about host response to smallpox using microarray data

    Directory of Open Access Journals (Sweden)

    Dias Rodrigo A

    2007-08-01

    Full Text Available Abstract Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules, and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.

  12. Does exercise pulmonary hypertension exist?

    Science.gov (United States)

    Lau, Edmund M; Chemla, Denis; Whyte, Kenneth; Kovacs, Gabor; Olschewski, Horst; Herve, Philippe

    2016-09-01

    The exercise definition of pulmonary hypertension using a mean pulmonary artery pressure threshold of greater than 30 mmHg was abandoned following the 4th World Pulmonary Hypertension Symposium in 2008, as this definition was not supported by evidence and healthy individuals frequently exceed this threshold. Meanwhile, the clinical value of exercise pulmonary hemodynamic testing has also been questioned. Recent data support the notion that an abnormal pulmonary hemodynamic response during exercise (or exercise pulmonary hypertension) is associated with symptoms and exercise limitation. Pathophysiologic mechanisms accounting for the development of exercise pulmonary hypertension include increased vascular resistance, excessive elevation in left atrial pressure and/or increased volume of trapped air during exercise, resulting in a steep rise in pulmonary artery pressure relative to cardiac output. Recent evidence suggests that exercise pulmonary hypertension may be defined by a mean pulmonary artery pressure surpassing 30 mmHg together with a simultaneous total pulmonary resistance exceeding 3 WU. Exercise pulmonary hypertension is a clinically relevant entity and an improved definition has been suggested based on new evidence. Exercise pulmonary hemodynamics may help unmask early or latent disease, particularly in populations that are at high risk for the development of pulmonary hypertension.

  13. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension.

    Science.gov (United States)

    Castelain, V; Hervé, P; Lecarpentier, Y; Duroux, P; Simonneau, G; Chemla, D

    2001-03-15

    The purpose of this time-domain study was to compare pulmonary artery (PA) pulse pressure and wave reflection in chronic pulmonary thromboembolism (CPTE) and primary pulmonary hypertension (PPH). Pulmonary artery pressure waveform analysis provides a simple and accurate estimation of right ventricular afterload in the time-domain. Chronic pulmonary thromboembolism and PPH are both responsible for severe pulmonary hypertension. Chronic pulmonary thromboembolism and PPH predominantly involve proximal and distal arteries, respectively, and may lead to differences in PA pressure waveform. High-fidelity PA pressure was recorded in 14 patients (7 men/7 women, 46 +/- 14 years) with CPTE (n = 7) and PPH (n = 7). We measured thermodilution cardiac output, mean PA pressure (MPAP), PA pulse pressure (PAPP = systolic - diastolic PAP) and normalized PAPP (nPAPP = PPAP/MPAP). Wave reflection was quantified by measuring Ti, that is, the time between pressure upstroke and the systolic inflection point (Pi), deltaP, that is, the systolic PAP minus Pi difference, and the augmentation index (deltaP/PPAP). At baseline, CPTE and PPH had similar cardiac index (2.4 +/- 0.4 vs. 2.5 +/- 0.5 l/min/m2), mean PAP (59 +/- 9 vs. 59 +/- 10 mm Hg), PPAP (57 +/- 13 vs. 53 +/- 13 mm Hg) and nPPAP (0.97 +/- 0.16 vs. 0.89 +/- 0.13). Chronic pulmonary thromboembolism had shorter Ti (90 +/- 17 vs. 126 +/- 16 ms, p PPAP (0.26 +/- 0.01 vs. 0.09 +/- 0.07, p < 0.01). Our study indicated that: 1) CPTE and PPH with severe pulmonary hypertension had similar PA pulse pressure, and 2) wave reflection is elevated in both groups, and CPTE had increased and anticipated wave reflection as compared with PPH, thus suggesting differences in the pulsatile component of right ventricular afterload.

  14. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  15. Biomaterials and host versus graft response: A short review

    Science.gov (United States)

    Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija

    2016-01-01

    Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284

  16. DMXAA: An antivascular agent with multiple host responses

    International Nuclear Information System (INIS)

    Baguley, Bruce C.; Ching, L.-M.

    2002-01-01

    Purpose: To measure host responses to the antivascular agent DMXAA (5,6-dimethylxanthenone-4-acetic acid) and to compare them with those of other antivascular agents. Methods: Induction of tumor necrosis was measured in s.c. murine Colon 38 carcinomas growing in normal or tumor necrosis factor (TNF) receptor-1 knockout mice. Plasma and tumor tissue TNF concentrations were measured by ELISA. Plasma concentrations of 5-hydroxyindoleacetic acid (as a measure of serotonin release) and nitrite (as a measure of nitric oxide release) were measured by high-performance liquid chromatography. Results: Administration of DMXAA to tumor-bearing mice increased plasma and tumor tissue-associated TNF, in addition to increasing plasma nitric oxide, distinguishing its action from that of mitotic poisons that had an antivascular action. Results from TNF receptor-1 knockout mice showed that TNF played an important role in both its antitumor action and its host toxicity. Release of serotonin occurred in response to mitotic poisons, as well as to DMXAA. Conclusions: The antivascular action of DMXAA involves in situ production in tumor tissue of a cascade of vasoactive events, including a direct effect on vascular endothelial cells and indirect vascular effects involving TNF, other cytokines, serotonin, and nitric oxide. Now that Phase I clinical trials of DMXAA are completed, the optimization of this cascade in cancer patients is a major challenge. Plasma 5-hydroxyindoleacetic acid concentrations may provide a useful surrogate marker for the antivascular effects of DMXAA and other antivascular agents

  17. Identification of microRNAs Involved in the Host Response to Enterovirus 71 Infection by a Deep Sequencing Approach

    Directory of Open Access Journals (Sweden)

    Lunbiao Cui

    2010-01-01

    Full Text Available Role of microRNA (miRNA has been highlighted in pathogen-host interactions recently. To identify cellular miRNAs involved in the host response to enterovirus 71 (EV71 infection, we performed a comprehensive miRNA profiling in EV71-infected Hep2 cells through deep sequencing. 64 miRNAs were found whose expression levels changed for more than 2-fold in response to EV71 infection. Gene ontology analysis revealed that many of these mRNAs play roles in neurological process, immune response, and cell death pathways, which are known to be associated with the extreme virulence of EV71. To our knowledge, this is the first study on host miRNAs expression alteration response to EV71 infection. Our findings supported the hypothesis that certain miRNAs might be essential in the host-pathogen interactions.

  18. The host response in critically ill sepsis patients on statin therapy: a prospective observational study.

    Science.gov (United States)

    Wiewel, Maryse A; Scicluna, Brendon P; van Vught, Lonneke A; Hoogendijk, Arie J; Zwinderman, Aeilko H; Lutter, René; Horn, Janneke; Cremer, Olaf L; Bonten, Marc J; Schultz, Marcus J; van der Poll, Tom

    2018-01-18

    Statins can exert pleiotropic anti-inflammatory, vascular protective and anticoagulant effects, which in theory could improve the dysregulated host response during sepsis. We aimed to determine the association between prior statin use and host response characteristics in critically ill patients with sepsis. We performed a prospective observational study in 1060 patients admitted with sepsis to the mixed intensive care units (ICUs) of two hospitals in the Netherlands between January 2011 and July 2013. Of these, 351 patients (33%) were on statin therapy before admission. The host response was evaluated by measuring 23 biomarkers providing insight into key pathways implicated in sepsis pathogenesis and by analyzing whole-blood leukocyte transcriptomes in samples obtained within 24 h after ICU admission. To account for indication bias, a propensity score-matched cohort was created (N = 194 in both groups for protein biomarkers and N = 95 in both groups for gene expression analysis). Prior statin use was not associated with an altered mortality up to 90 days after admission (38.0 vs. 39.7% in the non-statin users in the propensity-matched analysis). Statin use did not modify systemic inflammatory responses, activation of the vascular endothelium or the coagulation system. The blood leukocyte genomic response, characterized by over-expression of genes involved in inflammatory and innate immune signaling pathways as well as under-expression of genes associated to T cell function, was not different between patients with and without prior statin use. Statin therapy is not associated with a modified host response in sepsis patients on admission to the ICU.

  19. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection

    DEFF Research Database (Denmark)

    Schreiner, Sabrina; Kinkley, Sarah; Bürck, Carolin

    2013-01-01

    , and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its...... viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host...

  20. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    Directory of Open Access Journals (Sweden)

    Zhen-Jian Chu

    Full Text Available Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI and of control (hptC for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.

  1. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection.

    Directory of Open Access Journals (Sweden)

    Piotr Mydel

    2006-07-01

    Full Text Available The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.

  2. Dissecting the host response to a gamma-herpesvirus

    DEFF Research Database (Denmark)

    Doherty, P C; Christensen, Jan Pravsgaard; Belz, G T

    2001-01-01

    The murine gamma-herpesvirus 68 (MHV-68) provides a unique experimental model for dissecting immunity to large DNA viruses that persist in B lymphocytes. The analysis is greatly facilitated by the availability of genetically disrupted (-/-) mice that lack key host-response elements, and by the fact...... cells, which is apparently MHC independent, could represent some sort of 'smoke screen' used by MHV-68 to subvert immunity. Although MHV-68 is neither Epstein-Barr virus nor human herpesvirus-8, the results generated from this system suggest possibilities that may usefully be addressed with these human...

  3. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Diego L. Costa

    2016-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX, a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  4. The association between the Th-17 immune response and pulmonary complications in a trauma ICU population.

    Science.gov (United States)

    Holloway, Travis L; Rani, Meenakshi; Cap, Andrew P; Stewart, Ronald M; Schwacha, Martin G

    2015-12-01

    The overall immunopathology of the T-helper cell (Th)-17 immune response has been implicated in various inflammatory diseases including pulmonary inflammation; however its potential role in acute respiratory distress syndrome (ARDS) is not defined. This study aimed to evaluate the Th-17 response in bronchoalveolar lavage fluid (BALF) and blood and from trauma patients with pulmonary complications. A total of 21 severely injured intensive care unit (ICU) subjects, who were mechanically ventilated and undergoing bronchoscopy, were enrolled. BALF and blood were collected and analyzed for Th-1 (interferon [IFN]γ), Th-2 (interleukin [IL]-4, -10), Th-17 (IL-17A, -17F, -22, 23) and pro-inflammatory (IL-1β, IL-6, tumor necrosis factor [TNF]α) cytokine levels. Significant levels of the Th-17 cytokines IL-17A, -17F and -21 and IL-6 (which can be classified as a Th-17 cytokine) were observed in the BALF of all subjects. There were no significant differences in Th-17 cytokines between those subjects with ARDS and those without, with the exception of plasma and BALF IL-6, which was markedly greater in ARDS subjects, as compared with controls and non-ARDS subjects. Trauma patients with pulmonary complications exhibited a significant Th-17 response in the lung and blood, suggesting that this pro-inflammatory milieu may be a contributing factor to such complications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Endogenous and exogenously-induced immunomodulation of tumour-host responsiveness

    Directory of Open Access Journals (Sweden)

    Richard J. Ablin

    1987-01-01

    Full Text Available In spite of the availability of multiple effector mechanisms of the immune system to combat tumour growth and metastases, their impairment frequently accompanies the appearance of cancer. Factors contributing to this impairment may be related to properties of the host and/or the tumour itself and may be with respect to their origin -endogenous or exogenour. Based on the unique biological behavior of prostate cancer (PCa, and its apparent escape from immune surveillance in the presence of tumour immuno genicity, continuing investigation of endogenous and exogenous factors thought to be relevant to its pathogenesis have been made. For this purpose further studies of the suggested role of human seminal plasma (SePl and the synthetic oestrogen, diethylstiboestrol (DES, as representative endogenous and exogenous immunomodulatory factors (IMF of tumour-host responsiveness, together with evaluation of human prostatic tissue extracts and leuprolide (the luteinizing-hormone-releasing-hormone proposed as an alternate to DES therapy have been made by evaluating their effect on the lytic activity of natural killer (NK cells. SePl and prostate extracts significantly suppressed NK cell lysis. Physicochemical studies suggest SePl and prostate IMF to be associated with high and low molecular weight macromolecules; and implicate the participation of transglutaminase and prostaglandins. Comparative study of therapeutic levels of DES vs. leuprolide on NK cell lysis demonstrated significant suppression by DES vs. a negligible effect of leuprolide. Metastases are highly prevalent in PCa, and contribute significantly to its morbidity and mortality. Further knowledge of the range of effects of endogenous and exogenous IMF on effector mechanisms of tumour-host responsiveness, to include suppression of NK cells, and elucidation of their nature, may contribute toward our understanding of the unique biological behavior of tumours of the prostate, in addition to

  6. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Paun, Alexandra; Kunwar, Amit; Haston, Christina K

    2015-01-01

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10–23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R = −0.80, p = 0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R = 0.81, p = 0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains. The online version of this

  7. Dose-dependent pulmonary response of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    International Nuclear Information System (INIS)

    Oyabu, Takako; Morimoto, Yasuo; Hirohashi, Masami; Horie, Masanori; Kambara, Tatsunori; Lee, Byeong Woo; Hashiba, Masayoshi; Mizuguchi, Yohei; Myojo, Toshihiko; Kuroda, Etsushi

    2013-01-01

    In order to investigate the relationship between pulmonary inflammation and particle clearance of nanoparticles, and also their dose dependency, we performed an instillation study of well-dispersed TiO 2 nanoparticles and examined the pulmonary inflammations, the particle clearance rate and histopathological changes. Wistar rats were intratracheally administered 0.1 mg (0.33 mg/kg), 0.2 mg (0.66 mg/kg), 1 mg (3.3 mg/kg), and 3 mg (10 mg/kg) of well-dispersed TiO 2 nanoparticles (diameter of agglomerates: 25 nm), and the pulmonary inflammation response and the amount of TiO 2 in the lung were determined from 3 days up to 12 months sequentially after the instillation. There were no increases of total cell or neutrophil counts in bronchoalveolar lavage fluid (BALF) in the 0.1 and the 0.2 mg-administered groups. On the other hand, mild infiltration of neutrophils was observed in the 1 and 3 mg-administered groups. Histopathological findings showed infiltration of neutrophils in the 1 and 3 mg-administered groups. Of special note, a granulomatous lesion including a local accumulation of TiO 2 was observed in the bronchioli-alveolar space in the 3 mg-administered group. The biological half times of the TiO 2 in the lung were 4.2, 4.4, 6.7, and 10.8 months in the 0.1, 0.2, 1, and 3 mg-administered groups, respectively. Neutrophil infiltration was observed as the particle clearance was delayed, suggesting that an excessive dose of TiO 2 nanoparticles may induce pulmonary inflammation and clearance delay.

  8. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    Science.gov (United States)

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  9. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    Science.gov (United States)

    Powell, Joshua D.; Waters, Katrina M.

    2017-01-01

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes. PMID:28604586

  10. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  11. Development of an experimental model of neutrophilic pulmonary response induction in mice

    Directory of Open Access Journals (Sweden)

    Leonardo Araújo Pinto

    2003-08-01

    Full Text Available BACKGROUND: Several lung diseases are characterized by a predominantly neutrophilic inflammation. A better understanding of the mechanisms of action of some drugs on the airway inflammation of such diseases may bring advances to the treatment. OBJECTIVE: To develop a method to induce pulmonary neutrophilic response in mice, without active infection. METHODS: Eight adult Swiss mice were used. The study group (n = 4 received an intranasal challenge with 1 x 10(12 CFU/ml of Pseudomonas aeruginosa (Psa, frozen to death. The control group (n = 4 received an intranasal challenge with saline solution. Two days after the intranasal challenge, a bron­choalveolar lavage (BAL was performed with total cell and differential cellularity counts. RESULTS: The total cell count was significantly higher in the group with Psa, as compared to the control group (median of 1.17 x 10(6 and 0.08 x 10(6, respectively, p = 0.029. In addition to this, an absolute predominance of neutrophils was found in the differential cellularity of the mice that had received the Psa challenge. CONCLUSIONS: The model of inducing a neutrophilic pulmonary disease using frost-dead bacteria was successfully developed. This neutrophilic inflammatory response induction model in Swiss mice lungs may be an important tool for testing the anti-inflammatory effect of some antimicrobial drugs on the inflammation of the lower airways.

  12. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Barbara C. Mindt

    2018-04-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  13. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    Science.gov (United States)

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  14. The host immunological response to cancer therapy: An emerging concept in tumor biology.

    Science.gov (United States)

    Voloshin, Tali; Voest, Emile E; Shaked, Yuval

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Plant surface wax affects parasitoid's response to host footprints

    Science.gov (United States)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  16. Dose-dependent pulmonary response of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    Energy Technology Data Exchange (ETDEWEB)

    Oyabu, Takako [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Environmental Health Engineering (Japan); Morimoto, Yasuo, E-mail: yasuom@med.uoeh-u.ac.jp; Hirohashi, Masami; Horie, Masanori; Kambara, Tatsunori [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Occupational Pneumology (Japan); Lee, Byeong Woo [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Environmental Health Engineering (Japan); Hashiba, Masayoshi [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Occupational Pneumology (Japan); Mizuguchi, Yohei; Myojo, Toshihiko [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Environmental Health Engineering (Japan); Kuroda, Etsushi [Osaka University, Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (Japan)

    2013-04-15

    In order to investigate the relationship between pulmonary inflammation and particle clearance of nanoparticles, and also their dose dependency, we performed an instillation study of well-dispersed TiO{sub 2} nanoparticles and examined the pulmonary inflammations, the particle clearance rate and histopathological changes. Wistar rats were intratracheally administered 0.1 mg (0.33 mg/kg), 0.2 mg (0.66 mg/kg), 1 mg (3.3 mg/kg), and 3 mg (10 mg/kg) of well-dispersed TiO{sub 2} nanoparticles (diameter of agglomerates: 25 nm), and the pulmonary inflammation response and the amount of TiO{sub 2} in the lung were determined from 3 days up to 12 months sequentially after the instillation. There were no increases of total cell or neutrophil counts in bronchoalveolar lavage fluid (BALF) in the 0.1 and the 0.2 mg-administered groups. On the other hand, mild infiltration of neutrophils was observed in the 1 and 3 mg-administered groups. Histopathological findings showed infiltration of neutrophils in the 1 and 3 mg-administered groups. Of special note, a granulomatous lesion including a local accumulation of TiO{sub 2} was observed in the bronchioli-alveolar space in the 3 mg-administered group. The biological half times of the TiO{sub 2} in the lung were 4.2, 4.4, 6.7, and 10.8 months in the 0.1, 0.2, 1, and 3 mg-administered groups, respectively. Neutrophil infiltration was observed as the particle clearance was delayed, suggesting that an excessive dose of TiO{sub 2} nanoparticles may induce pulmonary inflammation and clearance delay.

  17. Effects of triclosan on host response and microbial biomarkers during experimental gingivitis.

    Science.gov (United States)

    Pancer, Brooke A; Kott, Diana; Sugai, James V; Panagakos, Fotinos S; Braun, Thomas M; Teles, Ricardo P; Giannobile, William V; Kinney, Janet S

    2016-05-01

    This exploratory randomized, controlled clinical trial sought to evaluate anti-inflammatory and -microbial effects of triclosan during experimental gingivitis as assessed by host response biomarkers and biofilm microbial pathogens. Thirty participants were randomized to triclosan or control dentifrice groups who ceased homecare for 21 days in an experimental gingivitis (EG) protocol. Plaque and gingival indices and saliva, plaque, and gingival crevicular fluid (GCF) were assessed/collected at days 0, 14, 21 and 35. Levels and proportions of 40 bacterial species from plaque samples were determined using checkerboard DNA-DNA hybridization. Ten biomarkers associated with inflammation, matrix degradation, and host protection were measured from GCF and saliva and analysed using a multiplex array. Participants were stratified as "high" or "low" responders based on gingival index and GCF biomarkers and bacterial biofilm were combined to generate receiver operating characteristic curves and predict gingivitis susceptibility. No differences in mean PI and GI values were observed between groups and non-significant trends of reduction of host response biomarkers with triclosan treatment. Triclosan significantly reduced levels of A. actinomycetemcomitans and P. gingivalis during induction of gingivitis. Triclosan reduced microbial levels during gingivitis development (ClinicalTrials.gov NCT01799226). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Host response mechanisms in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Nora SILVA

    2015-06-01

    a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.

  19. Host response mechanisms in periodontal diseases

    Science.gov (United States)

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors. PMID:26221929

  20. Surfactant protein A and surfactant protein D variation in pulmonary disease

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe

    2007-01-01

    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding...... lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential...... in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic...

  1. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria

    International Nuclear Information System (INIS)

    Marten, Katharina; Auer, Florian; Schmidt, Stefan; Rummeny, Ernst J.; Engelke, Christoph; Kohl, Gerhard

    2006-01-01

    The purpose of this study was to compare relative values of manual unidimensional measurements (MD) and automated volumetry (AV) for longitudinal treatment response assessment in patients with pulmonary metastases. Fifty consecutive patients with pulmonary metastases and repeat chest multidetector-row CT (median interval=2 months) were independently assessed by two radiologists for treatment response using Response Evaluation Criteria In Solid Tumours (RECIST). Statistics included relative measurement errors (RME), intra-/interobserver correlations, limits of agreement (95% LoA), and kappa. A total of 202 metastases (median volume=182.22 mm 3 ; range=3.16-5,195.13 mm 3 ) were evaluated. RMEs were significantly higher for MD than for AV (intraobserver RME=2.34-3.73% and 0.15-0.22% for MD and AV respectively; P 3 for AV. The interobserver 95% LoA were -1.46 to 1.92 mm for MD and -11.17 to 9.33 mm 3 for AV. There was total intra-/interobserver agreement on response using AV (κ=1). MD intra- and interobserver agreements were 0.73-0.84 and 0.77-0.80 respectively. Of the 200 MD response ratings, 28 (14/50 patients) were discordant. Agreement using MD dropped significantly from total remission to progressive disease (P<0.05). We therefore conclude that AV allows for better reproducibility of response evaluation in pulmonary metastases and should be preferred to MD in these patients. (orig.)

  2. Inflammatory Response Mechanisms Exacerbating Hypoxemia in Coexistent Pulmonary Fibrosis and Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Ayodeji Adegunsoye

    2015-01-01

    Full Text Available Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1, interleukin- (IL- 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG-1, macrophage inflammatory protein- (MIP- 1α, MIP-3α, and nuclear factor- (NF- κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH, alkaline phosphatase (ALP, and tumor necrosis factor alpha (TNF-α; pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies.

  3. Successful treatment of Rhodococcus equi pulmonary infection in a renal transplant recipient.

    OpenAIRE

    Marsh, H. P.; Bowler, I. C.; Watson, C. J.

    2000-01-01

    The rhodococcus is a mycobacterium-like organism which is normally a pathogen in foals. It usually spreads by direct contact or by aerosol from horse faeces and causes pyogranulomatous pulmonary infections. Occasionally, it acts opportunistically to infect immuno-compromised human hosts, most commonly those with the acquired immune deficiency syndrome (AIDS). Here we report a pulmonary infection by Rhodococcus equi in a renal transplant recipient who was successfully treated. The literature o...

  4. Pulmonary microRNA profiling: implications in upper lobe predominant lung disease

    OpenAIRE

    Armstrong, David A.; Nymon, Amanda B.; Ringelberg, Carol S.; Lesseur, Corina; Hazlett, Haley F.; Howard, Louisa; Marsit, Carmen J.; Ashare, Alix

    2017-01-01

    Background Numerous pulmonary diseases manifest with upper lobe predominance including cystic fibrosis, smoking-related chronic obstructive pulmonary disease, and tuberculosis. Zonal hypoxia, characteristic of these pulmonary maladies, and oxygen stress in general is known to exert profound effects on various important aspects of cell biology. Lung macrophages are major participants in the pulmonary innate immune response and regional differences in macrophage responsiveness to hypoxia may co...

  5. Host responses in life-history traits and tolerance to virus infection in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    2008-08-01

    Full Text Available Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host-parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV. Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues.

  6. [Tuberculosis in compromised hosts].

    Science.gov (United States)

    2003-11-01

    in poorly-controlled DM patients than that in well-controlled DM patients and healthy subjects. Thus, these clinical data suggest that the high incidence of tuberculosis in DM patients is due to the impaired production of Th1-related cytokines. However, direct evidences to prove this possibility remain to be obtained. In 1980, Saiki and co-workers reported that host defense and delayed-type hypersensitivity response to M. tuberculosis was hampered in a mouse DM model established by injecting streptozotocin (Infect Immun. 1980; 28: 127-131). We followed their investigation with the similar observations. Interestingly, levels of IFN-gamma and IL-12 in serum, lung, liver and spleen after infection were significantly reduced in DM mice when compared with those in control mice. Considered collectively, these results strongly suggest that the reduced production of Th1-related cytokines leads to the susceptibility of DM to mycobacterial infection. However, it remains to be understood how DM hampers the synthesis of Th1-related cytokines. In our preliminary study, the production of these cytokines by PBMC from DM patients and healthy subjects was not affected under a high glucose condition. Thus, it is not likely that the increased level of glucose directly suppresses the cell-mediated immune responses. Further investigations are needed to make these points clear. 2. A study of gastrectomy cases in pulmonary tuberculosis patients: Takenori YAGI (Division of Thoracic Disease, National Chiba-Higashi Hospital). Patients who have undergone gastric resection are considered at increased risk of developing pulmonary tuberculosis. I have investigated the role played by gastrectomy in giving rise to pulmonary tuberculosis. Of 654 pulmonary tuberculosis patients admitted to National Chiba-Higashi Hospital from January 1999 to December 2001, 55 patients (31-84 years old, mean 63.5 +/- 12.5 years, 48 males and 7 females) had the history of gastric resection. The incidence of gastrectomy

  7. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    Science.gov (United States)

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  8. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals.

    Science.gov (United States)

    Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J

    2017-01-01

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed ( p 1.25 or expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with

  9. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals

    Directory of Open Access Journals (Sweden)

    Jarlath E. Nally

    2017-08-01

    Full Text Available Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE. Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p < 0.05, fold change >1.25 or < −1.25 across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30

  10. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages.

    Science.gov (United States)

    Frellstedt, Linda; Waldschmidt, Ingrid; Gosset, Philippe; Desmet, Christophe; Pirottin, Dimitri; Bureau, Fabrice; Farnir, Frédéric; Franck, Thierry; Dupuis-Tricaud, Marie-Capucine; Lekeux, Pierre; Art, Tatiana

    2014-07-01

    In humans, strenuous exercise causes increased susceptibility to respiratory infections associated with down-regulated expression of Toll-like receptors (TLRs) and costimulatory and antigen-presenting molecules. Lower airway diseases are also a common problem in sport and racing horses. Because innate immunity plays an essential role in lung defense mechanisms, we assessed the effect of acute exercise and training on innate immune responses in two different compartments. Blood monocytes and pulmonary alveolar macrophages (PAMs) were collected from horses in untrained, moderately trained, intensively trained, and deconditioned states before and after a strenuous exercise test. The cells were analyzed for TLR messenger ribonucleic acid (mRNA) expression by real-time PCR in vitro, and cytokine production after in vitro stimulation with TLR ligands was measured by ELISA. Our results showed that training, but not acute exercise, modified the innate immune responses in both compartments. The mRNA expression of TLR3 was down-regulated by training in both cell types, whereas the expression of TLR4 was up-regulated in monocytes. Monocytes treated with LPS and a synthetic diacylated lipoprotein showed increased cytokine secretion in trained and deconditioned subjects, indicating the activation of cells at the systemic level. The production of TNF-α and IFN-β in nonstimulated and stimulated PAMs was decreased in trained and deconditioned horses and might therefore explain the increased susceptibility to respiratory infections. Our study reports a dissociation between the systemic and the lung response to training that is probably implicated in the systemic inflammation and in the pulmonary susceptibility to infection.

  11. Acrolein Causes TRPA1-Mediated Sensory Irritation and Indirect Potentiation of TRPV1-Mediated Pulmonary Chemoreflex Response

    Science.gov (United States)

    We previously demonstrated that acute exposure to acrolein causes immediate sensory irritation, with rapid decrease in heart rate (HR) and increase in inspiratory time (Ti), and potentiation of pulmonary chemoreflex response 24hrs later; of these effects only the latter is mediat...

  12. Effects of asphalt fume condensate exposure on acute pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.Y.C.; Barger, M.W.; Castranova, V. [Health Effects Lab. Div., National Inst. for Occupational Safety and Health, Morgantown, WV (United States); Kriech, A.J. [Heritage Research Group, Indianapolis, IN (United States)

    2000-10-01

    The present study was carried out to characterize the effects of in vitro exposure to paving asphalt fume condensate (AFC) on alveolar macrophage (AM) functions and to monitor acute pulmonary responses to in vivo AFC exposure in rats. Methods: For in vitro studies, rat primary AM cultures were incubated with various concentrations of AFC for 24 h at 37 C. AM-conditioned medium was collected and assayed for lactate dehydrogenase (LDH) as a marker of cytotoxicity. Tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-1 (IL-1) production were assayed in AM-conditioned medium to monitor AM function. The effect of AFC on chemiluminescence (CL) generated by resting AM or AM in response to zymosan or PMA stimulation was also determined as a marker of AM activity. For in vivo studies, rats received either (1) a single intratracheal (IT) instillation of saline, or 0.1 mg or 0.5 mg AFC and were killed 1 or 3 days later; or (2) IT instillation of saline, or 0.1, 0.5, or 2 mg AFC for three consecutive days and were killed the following day. Differential counts of cells harvested by bronchoalveolar lavage were measured to monitor inflammation. Acellular LDH and protein content in the first lavage fluid were measured to monitor damage. CL generation, TNF-{alpha} and IL-1 production by AM were assayed to monitor AM function. Results: In vitro AFC exposure at <200 {mu}g/ml did not induce cytotoxicity, oxidant generation, or IL-1 production by AM, but it did cause a small but significant increase in TNF-{alpha} release from AM. In vitro exposure of AM to AFC resulted in a significant decline of CL in response to zymosan or PMA stimulation. The in vivo studies showed that AFC exposure did not induce significant neutrophil infiltration or alter LDH or protein content in acellular lavage samples. Macrophages obtained from AFC-exposed rats did not show significant differences in oxidant production or cytokine secretion at rest or in response to LPS in comparison with control

  13. Assessing response to therapy in idiopathic pulmonary arterial hypertension: a consensus survey of Canadian pulmonary hypertension physicians.

    Science.gov (United States)

    Borrie, Adrienne E; Ostrow, David N; Levy, Robert D; Swiston, John R

    2011-01-01

    Many treatment options are now available for patients with idiopathic pulmonary arterial hypertension (IPAH). Data regarding the optimal combination of therapies are lacking, as is consensus on how to assess response to therapy and when to change therapeutic regimens. To gather the opinions of Canadian pulmonary hypertension (PH) experts regarding standard practice in the care of IPAH patients after therapy is initiated. Canadian PH physicians were surveyed using short questionnaires to assess their opinions and practices in the care of IPAH patients. A Delphi forecasting approach was used to gain consensus among Canadian physicians on the most important clinical parameters to consider when assessing patients after the initiation of therapy. Twenty-six of 37 Canadian PH experts who were invited to participate completed the study. All endorsed the use of combination therapy for IPAH patients despite the lack of universal provincial coverage for this approach. By consensus, WHO functional class, 6 min walk distance and hospitalization for right heart failure were the most important clinical parameters. The most highly rated physical examination parameters were jugular venous pressure, peripheral edema, the presence of ascites and body weight. The overall approach to care of IPAH patients is similar across PH centres in Canada. A limited number of clinical and physical examination parameters were considered to be most important to reassess patients after therapy is initiated. These parameters, along with definition of threshold values, will facilitate the development of standard practice guidelines for IPAH patients in Canada.

  14. Prostacyclin and milrinone by aerosolization improve pulmonary hemodynamics in newborn lambs with experimental pulmonary hypertension.

    Science.gov (United States)

    Kumar, Vasanth H; Swartz, Daniel D; Rashid, Nasir; Lakshminrusimha, Satyan; Ma, Changxing; Ryan, Rita M; Morin, Frederick C

    2010-09-01

    Aerosolized prostacyclin (PGI2) produces selective pulmonary vasodilation in patients with pulmonary hypertension (PH). The response to PGI2 may be increased by phosphodiesterase type 3 inhibitors such as milrinone. We studied the dose response effects of aerosolized PGI2 and aerosolized milrinone both alone and in combination on pulmonary and systemic hemodynamics in newborn lambs with Nomega-nitro-L-arginine methyl ester (L-NAME)-induced PH. We hypothesized that coaerosolization of PGI2 with milrinone would additively decrease pulmonary vascular resistance (PVR), prolong the duration of action of PGI2, and selectively dilate the pulmonary vasculature. Near-term lambs were delivered by C-section and instrumented and PH was induced by L-NAME (bolus 25 mg/kg; infusion 10 mg.kg(-1).h(-1)) and indomethacin. In the first set of experiments, PGI2 was aerosolized at random doses of 2, 20, 100, 200, 500, and 1,000 ng.kg(-1).min(-1) followed by milrinone at doses of 0.1, 1, and 10 microg.kg(-1).min(-1) over 10 min. In the second set of experiments, milrinone at 1 microg.kg(-1).min(-1) was aerosolized in combination with PGI2 at doses of 20, 100, and 200 ng.kg(-1).min(-1) over 10 min. Pulmonary arterial pressures (PAP) and PVR decreased significantly with increasing doses of aerosolized PGI2 and milrinone. The combination of PGI2 and milrinone significantly reduced PAP and PVR more than either of the drugs aerosolized alone. Addition of milrinone significantly increased the duration of action of PGI2. When aerosolized independently, PGI2 and milrinone selectively dilated the pulmonary vasculature but the combination did not. Milrinone enhances the vasodilatory effects of PGI2 on the pulmonary vasculature but caution must be exercised regarding systemic hypotension.

  15. Pulmonary Immune-Compartment-Specific Interferon Gamma Responses in HIV-Infected Individuals with Active Tuberculosis (TB in an Area of High TB Prevalence

    Directory of Open Access Journals (Sweden)

    S. Buldeo

    2012-01-01

    Full Text Available There is a paucity of data on the pulmonary immune-compartment interferon gamma (IFNγ response to M. tuberculosis, particularly in settings of high tuberculosis (TB prevalence and in HIV-coinfected individuals. This data is necessary to understand the diagnostic potential of commercially available interferon gamma release assays (IGRAs in both the pulmonary immune-compartment and peripheral blood. We used intracellular cytokine staining by flow cytometry to assess the IFNγ response to purified protein derivative (PPD and early secretory antigen 6 (ESAT6 in induced sputa (ISp and blood samples from HIV-infected, smear-negative, TB suspects. We found that individuals with active TB disease produced significantly less IFNγ in response to PPD in their induced sputa samples than individuals with non-active TB (control group. This difference was not reflected in the peripheral blood, even within the CD27− CD4+ memory T lymphocyte population. These findings suggest that progression to active TB disease may be associated with the loss of IFNγ secretion at the site of primary infection. Our findings highlight the importance of studying pulmonary immune-compartment M. tuberculosis specific responses to elucidate IFNγ secretion across the spectrum of TB disease.

  16. The Role of IL-33 in Host Response to Candida albicans

    Directory of Open Access Journals (Sweden)

    C. Rodríguez-Cerdeira

    2014-01-01

    Full Text Available Background. Interleukin (IL 33 is a recently identified pleiotropic cytokine that influences the activity of multiple cell types and orchestrates complex innate and adaptive immune responses. Methods. We performed an extensive review of the literature published between 2005 and 2013 on IL-33 and related cytokines, their functions, and their regulation of the immune system following Candida albicans colonization. Our literature review included cross-references from retrieved articles and specific data from our own studies. Results. IL-33 (IL-1F11 is a recently identified member of the IL-1 family of cytokines. Accumulating evidence suggests a pivotal role of the IL-33/ST2 axis in host immune defense against fungal pathogens, including C. albicans. IL-33 induces a Th2-type inflammatory response and activates both innate and adaptive immunity. Studies in animal models have shown that Th2 inflammatory responses have a beneficial role in immunity against gastrointestinal and systemic infections by Candida spp. Conclusions. This review summarizes the most important clinical studies and case reports describing the beneficial role of IL-33 in immunity and host defense mechanisms against pathogenic fungi. The finding that the IL-33/ST2 axis is involved in therapeutic target has implications for the prevention and treatment of inflammatory diseases, including acute or chronic candidiasis.

  17. Categorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Naoki Hashizume

    Full Text Available A potentially useful means of predicting the pulmonary risk posed by new forms of nano-structured titanium dioxide (nano-TiO2 is to use the associations between the physicochemical properties and pulmonary toxicity of characterized forms of TiO2. In the present study, we conducted intratracheal administration studies in rats to clarify the associations between the physicochemical characteristics of seven characterized forms of TiO2 and their acute or subacute pulmonary inflammatory toxicity. Examination of the associations between the physicochemical characteristics of the TiO2 and the pulmonary inflammatory responses they induced revealed (1 that differences in the crystallinity or shape of the TiO2 particles were not associated with the acute pulmonary inflammatory response; (2 that particle size was associated with the acute pulmonary inflammatory response; and (3 that TiO2 particles coated with Al(OH3 induced a greater pulmonary inflammatory response than did non-coated particles. We separated the seven TiO2 into two groups: a group containing the six TiO2 with no surface coating and a group containing the one TiO2 with a surface coating. Intratracheal administration to rats of TiO2 from the first group (i.e., non-coated TiO2 induced only acute pulmonary inflammatory responses, and within this group, the acute pulmonary inflammatory response was equivalent when the particle size was the same, regardless of crystallinity or shape. In contrast, intratracheal administration to rats of the TiO2 from the second group (i.e., the coated TiO2 induced a more severe, subacute pulmonary inflammatory response compared with that produced by the non-coated TiO2. Since alteration of the pulmonary inflammatory response by surface treatment may depend on the coating material used, the pulmonary toxicities of coated TiO2 need to be further evaluated. Overall, the present results demonstrate that physicochemical properties may be useful for predicting the

  18. The Unfolded Protein Response in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Kelsen, Steven G

    2016-04-01

    Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the "unfolded protein response" (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation. Several studies have suggested that the UPR contributes to lung cell apoptosis and lung inflammation in at least some subjects with human COPD. However, information on the prevalence of the UPR in subjects with COPD, the lung cells that manifest a UPR, and the role of the UPR in the pathogenesis of COPD is extremely limited and requires additional study.

  19. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R.; Zhang, Hao; Schwarz, Toni; Leung, Daisy W.; Basler, Christopher F.; Gross, Michael L.; Amarasinghe, Gaya K.

    2016-08-04

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.

  20. Role of mobile passenger lymphocytes in the rejection of renal and cardiac allografts in the rat. A passenger lymphocyte-mediated graft-versus-host reaction amplifies the host response

    International Nuclear Information System (INIS)

    van Vrieshilfgaarde, R.; Hermans, P.; Terpstra, J.L.; van Breda Viresman, P.J.

    1980-01-01

    It is demonstrated that passenger lymphocytes migrate out of rat renal allografts into host spleens in a radioresistant fashion. These mobile passenger lymphocytes within BN kidney and heart transplants are immunocompetent, since they elicit a graft-versus-host (GVH) reaction in the spleens of (LEW x BN)F2 hybrid hosts. The greater GVH reaction in (LEW x BN)F1 recipients of BN kidneys reflects the greater number of mobile passenger lymphocytes in the kidney when compared to the heart. The mobile passenger lymphocytes within BN renal allografts also cause a proliferative response in the spleens of the LEW hosts as well as an accelerated rejection of BN renal allografts when compared to BN cardiac allografts, for the differences between BN kidney and heart, both in terms of splenomegaly elicited in LEW as well as tempo of rejection, are abolished by total body x-irradiation of the donor with 900 rad. Results indicate that a mobile passenger lymphocyte mediated GVH reaction in the central lymphoid organs of the host augments the host response to allogenic kidneys and contributes materially to first-set renal allograft rejection; this GVH reaction on the other hand is not conspicuously present in LEW recipients of BN cardiac allografts and has therefore little effect on first-set cardiac allograft rejection

  1. Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant.

    Science.gov (United States)

    Murugappan, Senthil; Frijlink, Henderik W; Petrovsky, Nikolai; Hinrichs, Wouter L J

    2015-01-23

    Vaccination is the primary intervention to contain influenza virus spread during seasonal and pandemic outbreaks. Pulmonary vaccination is gaining increasing attention for its ability to induce both local mucosal and systemic immune responses without the need for invasive injections. However, pulmonary administration of whole inactivated influenza virus (WIV) vaccine induces a Th2 dominant systemic immune response while a more balanced Th1/Th2 vaccine response may be preferred and only induces modest nasal immunity. This study evaluated immunity elicited by pulmonary versus intramuscular (i.m.) delivery of WIV, and tested whether the immune response could be improved by co-administration of delta (δ)-inulin, a novel carbohydrate-based particulate adjuvant. After pulmonary administration both unadjuvanted and δ-inulin adjuvanted WIV induced a potent systemic immune response, inducing higher serum anti-influenza IgG titers and nasal IgA titers than i.m. administration. Moreover, the addition of δ-inulin induced a more balanced Th1/Th2 response and induced higher nasal IgA titers versus pulmonary WIV alone. Pulmonary WIV alone or with δ-inulin induced hemagglutination inhibition (HI) titers>40, titers which are considered protective against influenza virus. In conclusion, in this study we have shown that δ-inulin adjuvanted WIV induces a better immune response after pulmonary administration than vaccine alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach.

    Science.gov (United States)

    Leisching, Gina; Pietersen, Ray-Dean; Mpongoshe, Vuyiseka; van Heerden, Carel; van Helden, Paul; Wiid, Ian; Baker, Bienyameen

    2016-01-01

    During Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in

  3. The Rho Kinases: Critical Mediators of Multiple Profibrotic Processes and Rational Targets for New Therapies for Pulmonary Fibrosis

    Science.gov (United States)

    Knipe, Rachel S.; Tager, Andrew M.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond. PMID:25395505

  4. Commercial air travel and in-flight pulmonary hypertension.

    Science.gov (United States)

    Smith, Thomas G; Chang, Rae W; Robbins, Peter A; Dorrington, Keith L

    2013-01-01

    It has recently been shown that commercial air travel triggers hypoxic pulmonary vasoconstriction and modestly increases pulmonary artery pressure in healthy passengers. There is large interindividual variation in hypoxic pulmonary vasoreactivity, and some passengers may be at risk of developing flight-induced pulmonary hypertension, with potentially dangerous consequences. This study sought to determine whether it is possible for a susceptible passenger to develop pulmonary hypertension in response to a routine commercial flight. Using in-flight echocardiography, a passenger was studied during a 6-h commercial flight from London to Dubai. The passenger was generally well and frequently traveled by air, but had been diagnosed with Chuvash polycythemia, a genetic condition that is associated with increased hypoxic pulmonary vasoreactivity. Hematocrit had been normalized with regular venesection. During the flight, arterial oxygen saturation fell to a minimum of 96% and systolic pulmonary artery pressure (sPAP) rapidly increased into the pulmonary hypertensive range. The in-flight increase in sPAP was 50%, reaching a peak of 45 mmHg. This study has established that an asymptomatic but susceptible passenger can rapidly develop in-flight pulmonary hypertension even during a medium-haul flight. Prospective passengers at risk from such responses, including those who have cardiopulmonary disease or increased hypoxic pulmonary vasoreactivity, could benefit from preflight evaluation with a hypoxia altitude simulation test combined with simultaneous echocardiography (HAST-echo). The use of in-flight supplementary oxygen should be considered for susceptible individuals, including all patients diagnosed with Chuvash polycythemia.

  5. Admission Hyperglycemia in Critically Ill Sepsis Patients: Association With Outcome and Host Response

    NARCIS (Netherlands)

    van Vught, Lonneke A.; Wiewel, Maryse A.; Klein Klouwenberg, Peter M. C.; Hoogendijk, Arie J.; Scicluna, Brendon P.; Ong, David S. Y.; Cremer, Olaf L.; Horn, Janneke; Bonten, Marc M. J.; Schultz, Marcus J.; van der Poll, Tom; de Beer, FrisoM; Bos, LieuweD J.; Frencken, JosF; Glas, GerieJ; van Hooijdonk, RoosmarijnT M.; Huson, Michaë laA M.; Schouten, LauraR A.; Straat, Marleen; Witteveen, Esther; Wieske, Luuk

    2016-01-01

    To investigate whether admission hyperglycemia is associated with the presentation and/or outcome of sepsis, what the influence of hyperglycemia is on key host responses to sepsis, and whether hyperglycemia differentially affects patients with diabetes mellitus. A substudy of a prospective

  6. Fundamentals of management of acute postoperative pulmonary hypertension.

    Science.gov (United States)

    Taylor, Mary B; Laussen, Peter C

    2010-03-01

    In the last several years, there have been numerous advancements in the field of pulmonary hypertension as a whole, but there have been few changes in the management of children with pulmonary hypertension after cardiac surgery. Patients at particular risk for postoperative pulmonary hypertension can be identified preoperatively based on their cardiac disease and can be grouped into four broad categories based on the mechanisms responsible for pulmonary hypertension: 1) increased pulmonary vascular resistance; 2) increased pulmonary blood flow with normal pulmonary vascular resistance; 3) a combination of increased pulmonary vascular resistance and increased blood flow; and 4) increased pulmonary venous pressure. In this review of the immediate postoperative management of pulmonary hypertension, various strategies are discussed including medical therapies, monitoring, ventilatory strategies, and weaning from these supports. With early recognition of patients at particular risk for severe pulmonary hypertension, management strategies can be directed at preventing or minimizing hemodynamic instability and thereby prevent the development of ventricular dysfunction and a low output state.

  7. The post-pulmonary infarction syndrome.

    Science.gov (United States)

    Sklaroff, H J

    1979-12-01

    Following pulmonary infarction, three patients developed the classical signs and symptoms of the Dressler syndrome associated with persistent left pleural effusion. Each responded dramatically to corticosteroid therapy. While the pathogenesis of this "Post-Pulmonary Infarction syndrome," like the Dressler syndrome, is unclear, the response to corticosteroid therapy is both dramatic and diagnostic and may spare the patient prolonged discomfort and unnecessary diagnostic procedures.

  8. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice

    DEFF Research Database (Denmark)

    Poulsen, Sarah Søs; Knudsen, Kristina Bram; Jackson, Petra

    2017-01-01

    of acute phase response proteins serum amyloid A1/2 (SAA1/2) and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saal and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater...... and lasted longer than hepatic Saal mRNA expression. Plasma SAA1/2 and SAA3 protein levels were related to time and physicochemical properties using adjusted, multiple regression analyses. SAA3 and SAA1/2 plasma protein levels were increased after exposure to almost all of the MWCNTs on day 1, whereas...... limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length...

  9. Altered microRNA Signatures in Sputum of Patients with Active Pulmonary Tuberculosis

    OpenAIRE

    Yi, Zhengjun; Fu, Yurong; Ji, Rui; Li, Ruifang; Guan, Zhiyu

    2012-01-01

    Role of microRNA (miRNA) has been highlighted in pathogen-host interactions recently. At present, their role in active pulmonary tuberculosis is unknown. The aim of the study was to delineate miRNA expression in sputum supernatant of patients with active pulmonary tuberculosis. Expression of miRNAs was evaluated by microarray analysis and differentially expressed miRNAs were validated by RT-qPCR. Secreted cytokines TNF-α and IL-6 were measured by ELISA. We found that 95 miRNAs were differenti...

  10. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  11. Infectious diseases of marine molluscs and host responses as revealed by genomic tools

    Science.gov (United States)

    Ford, Susan E.

    2016-01-01

    More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance. PMID:26880838

  12. The Role of the Pulmonary Embolism Response Team: How to Build One, Who to Include, Scenarios, Organization, and Algorithms.

    Science.gov (United States)

    Galmer, Andrew; Weinberg, Ido; Giri, Jay; Jaff, Michael; Weinberg, Mitchell

    2017-09-01

    Pulmonary embolism response teams (PERTs) are multidisciplinary response teams aimed at delivering a range of diagnostic and therapeutic modalities to patients with pulmonary embolism. These teams have gained traction on a national scale. However, despite sharing a common goal, individual PERT programs are quite individualized-varying in their methods of operation, team structures, and practice patterns. The tendency of such response teams is to become intensely structured, algorithmic, and inflexible. However, in their current form, PERT programs are quite the opposite. They are being creatively customized to meet the needs of the individual institution based on available resources, skills, personnel, and institutional goals. After a review of the essential core elements needed to create and operate a PERT team in any form, this article will discuss the more flexible feature development of the nascent PERT team. These include team planning, member composition, operational structure, benchmarking, market analysis, and rudimentary financial operations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Proteome analysis of Radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song, Jie Young; Lim, Hee Soon; Kim, Hyung Doo; Shim, Ji Young; Han, Young Soo; Son, Hyeog Jin Son; Yun, Yeon Sook

    2005-01-01

    Pulmonary fibrosis is perhaps the most universal late effect of organ damage after both chemical insult and irradiation in the treatment of lung cancer. The use chemotherapy and radiation therapy, alone or combined, can be associated with clinically significant pulmonary toxicity, which leads to pneumonia and pulmonary fibrosis. It is also reported that about 100,000 people in the United States are suffered from pulmonary fibrosis. Therefore, pulmonary fibrosis will be more focused by medicinal researchers. Because current therapies, aimed at inhibiting pulmonary inflammation that often precedes fibrosis, are effective only in a minority of suffered patients, novel therapeutic methods are highly needed. Some researchers have used bleomycininduced pulmonary fibrosis as a basis for looking at the molecular mechanisms of fibrosis, and total gene expression was monitored using genomics method. However, radiation-induced pulmonary fibrosis has not been fully focused and investigated. Here, we have analyzed changes in gene expression in response to γ- irradiation by using proteomic analysis

  14. Pulmonary Hypertension and Pulmonary Vasodilators.

    Science.gov (United States)

    Keller, Roberta L

    2016-03-01

    Pulmonary hypertension in the perinatal period can present acutely (persistent pulmonary hypertension of the newborn) or chronically. Clinical and echocardiographic diagnosis of acute pulmonary hypertension is well accepted but there are no broadly validated criteria for echocardiographic diagnosis of pulmonary hypertension later in the clinical course, although there are significant populations of infants with lung disease at risk for this diagnosis. Contributing cardiovascular comorbidities are common in infants with pulmonary hypertension and lung disease. It is not clear who should be treated without confirmation of pulmonary vascular disease by cardiac catheterization, with concurrent evaluation of any contributing cardiovascular comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Host immune response and acute disease in a zebrafish model of francisella pathogenesis

    Science.gov (United States)

    Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D.

    2009-01-01

    Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebraflsh were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebraflsh following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebraflsh mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-l?? (IL-1??), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebraflsh to heat-killed bacteria demonstrated that the significant induction of IL-?? was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebraflsh share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  16. Neurogenic Pulmonary Edema (A Case Report

    Directory of Open Access Journals (Sweden)

    Funda Gümüş

    2012-08-01

    Full Text Available Neurogenic pulmonary edema is a life threatening complication of severe central nervous system injury. The most common cause of neurogenic pulmonary edema is subarachnoid hemorrhage followed by head trauma and epilepsy. The rare causes are cervical spine trauma, multiplesclerosis, cerebellar hemorrhage and intracranial tumors. Neurogenic pulmonary edema is characterized by an increase in extravascular lung water in patients who have sustained a sudden change in neurologic condition. The exact pathophysiology is unclear but it probably involves an adrenergic response to the central nervous system injury which leads to increased catecholamine, pulmonary hydrostatic pressure and increased lung capillary permeability. The presenting symptoms are nonspecific and often include dyspnea, tachypnea, tachycardia, hypoxemia, pinkfroty secretion, bilateral pulmonary infiltrates and crackles. These symptoms start within minutes or hours and resolves 48-72 hours that typically for neurogenic pulmonary edema. Basic principles of treatment, surgical decompression, reduce intracranial pressure, controlled ventilation with suplemental oxygen, positive end expiratory pressure and diuresis. We report a case with neurogenic pulmonary edema that occured after head trauma. (Journal of the Turkish Society Intensive Care 2012; 10: 59-62

  17. Coxiella burnetii: host and bacterial responses to infection.

    Science.gov (United States)

    Waag, David M

    2007-10-16

    Designation as a Category B biothreat agent has propelled Coxiella burnetii from a relatively obscure, underappreciated, "niche" microorganism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study of this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be manipulated under biosafety level-3 conditions. The dogged determination of past and current C. burnetii researchers and the application of modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is intended to provide a basic introduction to C. burnetii and Q fever, while emphasizing immunomodulatory properties, both positive and negative, of Q fever vaccines and C. burnetii infections.

  18. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  19. IgM response to a human Pneumocystis carinii surface antigen in HIV-infected patients with pulmonary symptoms

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Kovacs, J A; Mathiesen, Lars Reinhardt

    1993-01-01

    We have developed an ELISA to detect IgM antibodies to a major human Pneumocystis carinii surface antigen (gp95), and investigated the IgM response in 128 HIV-infected patients who underwent bronchoscopy for evaluation of pulmonary symptoms. Only 5 (4%) patients had IgM antibodies to P. carinii g...

  20. Lung clearance index to monitor treatment response in pulmonary exacerbations in preschool children with cystic fibrosis.

    Science.gov (United States)

    Rayment, Jonathan H; Stanojevic, Sanja; Davis, Stephanie D; Retsch-Bogart, George; Ratjen, Felix

    2018-05-01

    Antibiotic treatment for pulmonary symptoms in preschool children with cystic fibrosis (CF) varies among clinicians. The lung clearance index (LCI) is sensitive to early CF lung disease, but its utility to monitor pulmonary exacerbations in young children has not been assessed. We aim to (1) understand how LCI changes during lower respiratory tract symptoms relative to a recent clinically stable measurement, (2) determine whether LCI can identify antibiotic treatment response and (3) compare LCI changes to changes in spirometric indices. LCI and spirometry were measured at quarterly clinic visits over a 12-month period in preschool children with CF. Symptomatic visits were identified and classified as treated or untreated. Treatment response was estimated using propensity score matching methods. 104 symptomatic visits were identified in 78 participants. LCI increased from baseline in both treated (mean relative change +23.8% (95% CI 16.2 to 31.4)) and untreated symptomatic visits (mean relative change +11.2% (95% CI 2.4 to 19.9)). A significant antibiotic treatment effect was observed when LCI was used as the outcome measure (average treatment effect -15.5% (95% CI -25.4 to -5.6)) but not for z-score FEV 1 . LCI significantly deteriorated with pulmonary symptoms relative to baseline and improved with antibiotic treatment. These data suggest that LCI may have a role in the routine clinical care of preschool children with CF. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Tomographic findings of acute pulmonary toxoplasmosis in immunocompetent patients.

    Science.gov (United States)

    de Souza Giassi, Karina; Costa, Andre Nathan; Apanavicius, Andre; Teixeira, Fernando Bin; Fernandes, Caio Julio Cesar; Helito, Alfredo Salim; Kairalla, Ronaldo Adib

    2014-11-25

    , lymphangitis, atypical pneumonia and pneumocystosis. This is the largest series of CT findings of acute toxoplasmosis in immunocompetent hosts, and the diagnosis should be considered as patients that present with acute respiratory failure in the context of a subacute febrile illness with bilateral and diffuse interstitial infiltrates with marked peribronchovascular thickening. If promptly treated, pulmonary toxoplasmosis can result in complete clinical and radiological recovery in immunocompetent hosts.

  2. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response

    Directory of Open Access Journals (Sweden)

    Jaden S. Lee

    2018-01-01

    Full Text Available Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling has been strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.

  3. The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach.

    Directory of Open Access Journals (Sweden)

    Gina Leisching

    Full Text Available During Mycobacterium tuberculosis (M.tb infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T, or in detergent-free medium (R179NT. RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14 were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not

  4. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  5. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model.

    Science.gov (United States)

    Wang, Fengyuan; Zhang, Caiyun; Jiang, Yuan; Kou, Caixia; Kong, Qingtao; Long, Nanbiao; Lu, Ling; Sang, Hong

    2017-10-01

    The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.

  6. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    Science.gov (United States)

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema.

    Directory of Open Access Journals (Sweden)

    Ulf Gehrmann

    Full Text Available BACKGROUND: Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE. Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. OBJECTIVE: To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. METHODS: Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. RESULTS: We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. CONCLUSIONS: Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for

  8. Carbon monoxide is not responsible for the cigarette smokeinduced changes in the pulmonary metabolism of arachidonic acid and prostaglandin E2

    International Nuclear Information System (INIS)

    Maennistoe, J.; Puustinen, T.; Uotila, P.

    1985-01-01

    Cigarette smoke is known to interfere with the pulmonary metabolism of arachidomic acid and prostaglandin E 2 (PGE 2 ). We investigated the possible role of carbon monoxide in these cigarette smoke-infuced alterations. 4 C-Arachidonic acid (50 nmol) was indused into the pulmonary circulation of isolated perfused hamster lungs and the radioactive metabolites in the perfusion effluent, as well as the distribution of incorporated radioactive arachidonic acid within the lung lipids, were analysed. Carbon monoxide, added into the ventilatory air, had no effect on the oxidative metabolism of arachidonic acid or on the distribution of radioactive arachidonic acid within the lung. In addition, carbon monoxide had no effect on the metabolism of PGE 2 following infusion of 100 nmol of 14 C-PGE 2 into the rat pulmonary circulation. The present study suggests that carbon monoxide is not responsible for the cigarette smoke-induced changes in the pulmonary metabolism of arachidonic acid and PGE 2 . (author)

  9. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  10. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    Science.gov (United States)

    Chotirmall, Sanjay H.; Al-Alawi, Mazen; Logan, P. Mark; Greene, Catherine M.; McElvaney, Noel G.

    2013-01-01

    Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit. PMID:23971044

  11. comparison of cardio-pulmonary responses to forward and ...

    African Journals Online (AJOL)

    GOAL REALITY

    rehabilitation an injured athlete may continue to exercise using backward walking/running at an intensity sufficient enough to maintain cardiovascular fitness levels. KEY WORDS: Exercise, cardiovascular, pulmonary, backward walking, running. INTRODUCTION1. Backward running, a training technique prevalent in football ...

  12. Multiple Resource Host Architecture (MRHA) for the Mobile Detection Assessment Response System (MDARS) Revision A

    National Research Council Canada - National Science Library

    Everett, H

    2000-01-01

    The Mobile Detection Assessment and Response System (MDARS) program employs multiple robotic security platforms operating under the high level control of a remote host, with the direct supervision of a human operator...

  13. Genome-wide association study for host response to bovine leukemia virus in Holstein cows.

    Science.gov (United States)

    Brym, P; Bojarojć-Nosowicz, B; Oleński, K; Hering, D M; Ruść, A; Kaczmarczyk, E; Kamiński, S

    2016-07-01

    The mechanisms of leukemogenesis induced by bovine leukemia virus (BLV) and the processes underlying the phenomenon of differential host response to BLV infection still remain poorly understood. The aim of the study was to screen the entire cattle genome to identify markers and candidate genes that might be involved in host response to bovine leukemia virus infection. A genome-wide association study was performed using Holstein cows naturally infected by BLV. A data set included 43 cows (BLV positive) and 30 cows (BLV negative) genotyped for 54,609 SNP markers (Illumina Bovine SNP50 BeadChip). The BLV status of cows was determined by serum ELISA, nested-PCR and hematological counts. Linear Regression Analysis with a False Discovery Rate and kinship matrix (computed on the autosomal SNPs) was calculated to find out which SNP markers significantly differentiate BLV-positive and BLV-negative cows. Nine markers reached genome-wide significance. The most significant SNPs were located on chromosomes 23 (rs41583098), 3 (rs109405425, rs110785500) and 8 (rs43564499) in close vicinity of a patatin-like phospholipase domain containing 1 (PNPLA1); adaptor-related protein complex 4, beta 1 subunit (AP4B1); tripartite motif-containing 45 (TRIM45) and cell division cycle associated 2 (CDCA2) genes, respectively. Furthermore, a list of 41 candidate genes was composed based on their proximity to significant markers (within a distance of ca. 1 Mb) and functional involvement in processes potentially underlying BLV-induced pathogenesis. In conclusion, it was demonstrated that host response to BLV infection involves nine sub-regions of the cattle genome (represented by 9 SNP markers), containing many genes which, based on the literature, could be involved to enzootic bovine leukemia progression. New group of promising candidate genes associated with the host response to BLV infection were identified and could therefore be a target for future studies. The functions of candidate genes

  14. [Cardiac catheterization and pulmonary vasoreactivity testing in children with idiopathic pulmonary arterial hypertension].

    Science.gov (United States)

    Zhang, Chen; Li, Qiangqiang; Liu, Tianyang; Gu, Hong

    2014-06-01

    As an important method of hemodynamic assessment in idiopathic pulmonary arterial hypertension (IPAH), cardiac catheterization combined with pulmonary vasoreactivity testing remains with limited experience in children, and the acute pulmonary vasodilator agents as well as response criteria for vasoreactivity testing remain controversial. The aim of this study was to investigate the clinical importance, agent selection, and responder definition of cardiac catheterization combined with pulmonary vasoreactivity testing in pediatric IPAH. The patients admitted to Department of Pediatric Cardiology of Beijing Anzhen Hospital between April 2009 and September 2013 with suspected IPAH, under 18 years of age, with WHO functional class II or III, were enrolled. All the patients were arranged to receive left and right heart catheterization and pulmonary vasoreactivity testing with inhalation of pure oxygen and iloprost (PGI2) respectively. Hemodynamic changes were analyzed, and two criteria, the European Society of Cardiology recommendation criteria (Sitbon criteria) and traditional application criteria (Barst criteria), were used to evaluate the test results. Thirty-nine cases of children with suspected IPAH underwent cardiac catheterization. In 4 patients IPAH was excluded; 4 patients developed pulmonary hypertension crisis. The other 31 patients received standard cardiac catheterization and pulmonary vasoreactivity testing. Baseline mean pulmonary artery pressure (mPAP) was (66 ± 16) mmHg (1 mmHg = 0.133 kPa), and pulmonary vascular resistance index (PVRI) (17 ± 8) Wood U · m². After inhalation of pure oxygen, mPAP fell to (59 ± 16) mmHg, and PVRI to (14 ± 8) Wood U · m² (t = 4.88 and 4.56, both P hypertension crisis is an important complication of cardiac catheterization in pediatric IPAH. Younger age, general anesthesia, crisis history, and poor heart function are important risk factors for pulmonary hypertension crisis. PGI2 is a relatively ideal agent for

  15. Genome-wide host responses against infectious laryngotracheitis virus vaccine infection in chicken embryo lung cells

    Directory of Open Access Journals (Sweden)

    Lee Jeongyoon

    2012-04-01

    Full Text Available Abstract Background Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1 infection causes high mortality and huge economic losses in the poultry industry. To protect chickens against ILTV infection, chicken-embryo origin (CEO and tissue-culture origin (TCO vaccines have been used. However, the transmission of vaccine ILTV from vaccinated- to unvaccinated chickens can cause severe respiratory disease. Previously, host cell responses against virulent ILTV infections were determined by microarray analysis. In this study, a microarray analysis was performed to understand host-vaccine ILTV interactions at the host gene transcription level. Results The 44 K chicken oligo microarrays were used, and the results were compared to those found in virulent ILTV infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 and 4 days post infection (dpi, compared to 0 dpi, were subjected to microarray assay using the two color hybridization method. Data analysis using JMP Genomics 5.0 and the Ingenuity Pathway Analysis (IPA program showed that 213 differentially expressed genes could be grouped into a number of functional categories including tissue development, cellular growth and proliferation, cellular movement, and inflammatory responses. Moreover, 10 possible gene networks were created by the IPA program to show intermolecular connections. Interestingly, of 213 differentially expressed genes, BMP2, C8orf79, F10, and NPY were expressed distinctly in vaccine ILTV infection when compared to virulent ILTV infection. Conclusions Comprehensive knowledge of gene expression and biological functionalities of host factors during vaccine ILTV infection can provide insight into host cellular defense mechanisms compared to those of virulent ILTV.

  16. Mechanical stress is associated with right ventricular response to pulmonary valve replacement in patients with repaired tetralogy of Fallot.

    Science.gov (United States)

    Tang, Dalin; Yang, Chun; Del Nido, Pedro J; Zuo, Heng; Rathod, Rahul H; Huang, Xueying; Gooty, Vasu; Tang, Alexander; Billiar, Kristen L; Wu, Zheyang; Geva, Tal

    2016-03-01

    Patients with repaired tetralogy of Fallot account for a substantial proportion of cases with late-onset right ventricular failure. The current surgical approach, which includes pulmonary valve replacement/insertion, has yielded mixed results. Therefore, it may be clinically useful to identify parameters that can be used to predict right ventricular function response to pulmonary valve replacement. Cardiac magnetic resonance data before and 6 months after pulmonary valve replacement were obtained from 16 patients with repaired tetralogy of Fallot (8 male, 8 female; median age, 42.75 years). Right ventricular ejection fraction change from pre- to postpulmonary valve replacement was used as the outcome. The patients were divided into group 1 (n = 8, better outcome) and group 2 (n = 8, worst outcome). Cardiac magnetic resonance-based patient-specific computational right ventricular/left ventricular models were constructed, and right ventricular mechanical stress and strain, wall thickness, curvature, and volumes were obtained for analysis. Our results indicated that right ventricular wall stress was the best single predictor for postpulmonary valve replacement outcome with an area under the receiver operating characteristic curve of 0.819. Mean values of stress, strain, wall thickness, and longitudinal curvature differed significantly between the 2 groups with right ventricular wall stress showing the largest difference. Mean right ventricular stress in group 2 was 103% higher than in group 1. Computational modeling and right ventricular stress may be used as tools to identify right ventricular function response to pulmonary valve replacement. Large-scale clinical studies are needed to validate these preliminary findings. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction.

    Science.gov (United States)

    Upadhyaya, Jasbir D; Singh, Nisha; Sikarwar, Anurag S; Chakraborty, Raja; Pydi, Sai P; Bhullar, Rajinder P; Dakshinamurti, Shyamala; Chelikani, Prashen

    2014-01-01

    Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.

  18. Response of pulmonary artery intimal sarcoma to surgery, radiotherapy and chemotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Long Hong-qing

    2008-06-01

    Full Text Available Abstract Introduction Pulmonary artery intimal sarcoma is a rare disease with no characteristic symptoms. It is difficult to diagnose early and is frequently misdiagnosed as a pulmonary embolism. Case presentation Here we report a case of pulmonary artery intimal sarcoma in a 54-year-old woman presenting with complaints of shortness of breath on exertion. Echocardiography and a computed tomography scan showed that the right pulmonary artery trunk was blocked by a low-density mass. The patient was diagnosed with pulmonary artery intimal sarcoma by pathology and a complete mass resection was performed. After experiencing 10 months of disease-free survival, she was re-admitted because of the recurrence and metastasis of the tumor. Radiotherapy and chemotherapy were performed; however, only limited success was achieved. The patient died 15 months after the initial onset of symptoms. Conclusion Some patients with intimal sarcoma of the pulmonary artery can benefit from radiotherapy and chemotherapy as well as surgery.

  19. Pulmonary alveolar microlithiasis

    International Nuclear Information System (INIS)

    Vallejo, Franco Javier; Vallejo, Alejandro; Parra, Maximiliano

    2007-01-01

    Pulmonary alveolar microlithiasis (PAM) is a rare disease characterized by the diffuse and bilateral presence of calcium phosphate microlite in the alveolar spaces. The progression of this potentially lethal disease is show and most of the patients remain asymptomatic during years or decades, resulting in a show deterioration of the pulmonary function. The typical finding of the sand storm in the chest X-ray is characteristic of this entity. Mutations in the SLC34A2 gene that does the coding for the type II co-transporter of sodium phosphate were identified as responsible for this disease. Of the almost 600 cases, only 6 have been reported in Colombia. We are presenting a case of pulmonary alveolar microlite in a 27 year old man, with progressive respiratory distress whose diagnosis was made by the X-ray findings and confirmed by trans bronchial biopsy. In the 2 years follow-up, shows evolution towards deterioration of his respiratory function making him a candidate for lung transplantation.

  20. Clinical and radiological characteristics of central pulmonary adenocarcinoma: a comparison with central squamous cell carcinoma and small cell lung cancer and the impact on treatment response

    Directory of Open Access Journals (Sweden)

    Wang Z

    2018-05-01

    Full Text Available Zhe Wang,1,2 Minghuan Li,2 Yong Huang,3 Li Ma,3 Hui Zhu,2 Li Kong,2 Jinming Yu2 1School of Medicine, Shandong University, Jinan, Shandong, China; 2Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China; 3Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China Purpose: The proportion of central pulmonary adenocarcinoma (ADC in central-type lung cancer has been gradually increasing due to the overall increasing incidence of pulmonary ADC. But the clinical and radiological characteristics of central ADCs remain unclear. In this study, we compared the clinical and radiological characteristics of central ADCs with those of small cell lung cancers (SCLCs and squamous cell carcinomas (SQCCs and investigated the impact of these characteristics on patients’ treatment response. Patients and methods: The medical records of 302 consecutive patients with central lung cancer from July 2014 to September 2016 were retrospectively reviewed. There were 99 patients with ADC, 95 with SQCC and 108 with SCLC. Computed tomography images were interpreted by two radiologists. Treatment response was determined by Response Evaluation Criteria In Solid Tumors 1.1. Results: Univariate analyses found that younger age, female sex, no history of smoking, higher levels of carcinoembryonic antigen (CEA, contralateral hilum lymphadenopathy, contralateral lung metastasis, pleural nodules and pleural metastasis to the interlobular fissure were significantly correlated with central ADC. Multivariate logistic regression analyses revealed that compared with central SQCC, female sex, younger age, no history of smoking, higher levels of CEA and contralateral hilum lymphadenopathy were the significantly independent indicators of central pulmonary ADC. Furthermore, compared with central SCLC, younger age, higher levels of CEA and cytokeratin 19 fragment (Cyfra21-1, lower

  1. Proteomic analyses of host and pathogen responses during bovine mastitis.

    Science.gov (United States)

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  2. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers

    NARCIS (Netherlands)

    Greeff, de A.; Zadoks, R.N.; Ruuls, L.; Toussaint, M.; Nguyen, T.K.; Downing, A.; Rebel, J.M.J.; Stockhofe-Zurwieden, N.; Smith, H.E.

    2013-01-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in

  3. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes

    NARCIS (Netherlands)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S.; Lozano-Torres, Jose L.; Grundler, Florian M.W.; Siddique, Shahid

    2017-01-01

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in

  4. Irritant and repellent responses of Anopheles harrisoni and Anopheles minimus upon exposure to bifenthrin or deltamethrin using an excito-repellency system and a live host.

    Science.gov (United States)

    Kongmee, Monthathip; Boonyuan, Wasana; Achee, Nicole L; Prabaripai, Atchariya; Lerdthusnee, Kriangkrai; Chareonviriyaphap, Theeraphap

    2012-03-01

    Feeding responses of Anopheles harrisoni and An. minimus were evaluated following exposure to 2 pyrethroid insecticides, bifenthrin or deltamethrin, using an excito-repellency test system in the presence and absence of live host cues. The results demonstrated that contact irritancy was the primary action of bifenthrin or deltamethrin in both mosquito species. There was no noncontact repellency effect elicited by either insecticide. Anopheles minimus showed rapid escape response with high mortality rates following direct contact with deltamethrin in the absence of a host and delayed escape responses when a host was present. Similarly, exposure of An. minimus to bifenthrin also elicited a delayed escape response in the presence of a host but with lower mortality rates. In experiments using An. harrisoni, the presence or absence of a host had no significant effect on behavioral responses to either insecticide (P > 0.05). We conclude that deltamethrin elicited stronger irritant chemical effects than bifenthrin but that behavioral responses in vector populations are dampened in the presence of an available host. This information is useful for estimating probability of pathogen transmission when using irritant chemicals in proximity to a blood-meal source.

  5. Percutaneous balloon dilation of pulmonary stenosis

    International Nuclear Information System (INIS)

    Hua Yangde; Huang Ming; Li Jinkang; Qian Jinqing; Chen Xiuyu; Yang Siyuan

    2003-01-01

    Objective: Review our experience of balloon dilation of valvular pulmonary stenosis in 32 cases. Methods: Totally 32 cases of pulmonary stenosis admitted from 1995-2001 with age of 1.5-13 yrs mean 6.8. Diagnosis was made by clinical manifestations, EKG, ECHO and angiocardiography. Results: Before dilation, the mean systolic pressure of right ventricle was (93.5 ± 28.5) mmHg, after the procedure it reduced to (42 ± 9.0) mmHg. The pressure gradient between right ventricle and pulmonary artery before dilation was (76 ± 30) mmHg and become (24.5 ± 8.5) mmHg after dilation. The gradient pressure after dilation was less than 25 mmHg in 90.6% cases. A case of Noonan syndrome showed no response to balloon dilation and died during valvulectomy from accompanying left ventricular cardiomyopathy. Conclusions: Balloon dilation of valvular pulmonary stenosis is effective and safe. The selection of proper diameter of pulmonary valvular rings and sized of the balloon are the major factors

  6. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    Science.gov (United States)

    Babayan, Simon A; Read, Andrew F; Lawrence, Rachel A; Bain, Odile; Allen, Judith E

    2010-10-19

    Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  7. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    Directory of Open Access Journals (Sweden)

    Simon A Babayan

    Full Text Available Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  8. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    Science.gov (United States)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  9. [Pulmonary hypertension: definition, classification and treatments].

    Science.gov (United States)

    Jutant, Etienne-Marie; Humbert, Marc

    2016-01-01

    Pulmonary hypertension (PH) is a cardio-pulmonary disorder that may involve multiple clinical conditions and can complicate the majority of cardiovascular and respiratory diseases. Its definition is an increase in mean pulmonary artery pressure (mPAP) \\hbox{$\\geqslant $} ⩾ 25 mmHg at rest, leading to right heart failure and ultimately death. The clinical classification of pulmonary hypertension (PH) categorizes PH into groups which share similar pathophysiological and hemodynamic characteristics and treatments. Five groups of disorders that cause PH are identified: pulmonary arterial hypertension (Group 1) which is a pre-capillary PH, defined by a normal pulmonary artery wedge pressure (PAWP) \\hbox{$\\leqslant $} ⩽ 15 mmH, due to remodelling of the small pulmonary arteries (15 mmHg; pulmonary hypertension due to chronic lung disease and/or hypoxia (Group 3); chronic thrombo-embolic pulmonary hypertension (Group 4); and pulmonary hypertension due to unclear and/or multifactorial mechanisms (Group 5). PAH (PH group 1) can be treated with agents targeting three dysfunctional endothelial pathways of PAH: nitric oxide (NO) pathway, endothelin-1 pathway and prostacyclin pathway. Patients at low or intermediate risk can be treated with either initial monotherapy or initial oral combination therapy. In patients at high risk initial combination therapy including intravenous prostacyclin analogues should be considered. Patients with inadequate clinical response to maximum treatment (triple therapy with an intravenous prostacyclin) should be assessed for lung transplantation. Despite progresses, PAH remains a fatal disease with a 3-year survival rate of 58%. Treatment of group 2, group 3 and group 5 PH is the treatment of the causal disease and PAH therapeutics are not recommended. Treatment of group 4 PH is pulmonary endarteriectomy if patients are eligible, otherwise balloon pulmonary angioplasty and/or medical therapy can be considered. © Société de Biologie

  10. Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5.

    Directory of Open Access Journals (Sweden)

    Kurt J Williams

    Full Text Available Gammaherpesviruses (γHV are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF, a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg was significantly increased compared to control horses (26 µg/mg (p < 0.5, as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4% (mean ± SEM; p < 0.001. Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host.

  11. Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5.

    Science.gov (United States)

    Williams, Kurt J; Robinson, N Edward; Lim, Ailam; Brandenberger, Christina; Maes, Roger; Behan, Ashley; Bolin, Steven R

    2013-01-01

    Gammaherpesviruses (γHV) are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF), a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg) was significantly increased compared to control horses (26 µg/mg) (p < 0.5), as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4%) (mean ± SEM; p < 0.001). Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host.

  12. Blood neutrophil counts in HIV-infected patients with pulmonary tuberculosis: association with sputum mycobacterial load.

    Directory of Open Access Journals (Sweden)

    Andrew D Kerkhoff

    Full Text Available Increasing evidence suggests that neutrophils play a role in the host response to Mycobacterium tuberculosis. We determined whether neutrophil counts in peripheral blood are associated with tuberculosis (TB and with mycobacterial load in sputum in HIV-infected patients.Adults enrolling in an antiretroviral treatment (ART clinic in a Cape Town township were screened for TB regardless of symptoms. Paired sputum samples were examined using liquid culture, fluorescence microscopy, and the Xpert MTB/RIF assay. Absolute neutrophil counts (ANC were measured in blood samples. Of 602 HIV-infected patients screened, 523 produced one or more sputum samples and had complete results available for analysis. Among these 523 patients, the median CD4 count was 169×10(9/L (IQR, 96-232 and median ANC was 2.6×10(9/L (IQR, 1.9-3.6. Culture-positive pulmonary tuberculosis was diagnosed in 89 patients. Patients with TB had a median ANC of 3.4×10(9/L (IQR, 2.4-5.1 compared to 2.5×10(9/L (IQR, 1.8-3.4 among those who were culture negative (p7.5×10(9/L; p = 0.0005. Patients were then classified into four mutually exclusive groups with increasing sputum mycobacterial load as defined by the results of culture, Xpert MTB/RIF and sputum smear microscopy. Multivariable analyses demonstrated that increasing sputum mycobacterial load was positively associated with blood ANC ≥2.6×10(9/L and with neutrophilia.Increased blood neutrophil counts were independently associated with pulmonary TB and sputum mycobacterial burden in this HIV-infected patient group. This observation supports the growing body of literature regarding the potential role for neutrophils in the host response to TB.

  13. Pulmonary artery-to-pulmonary artery anastomoses: angiographic demonstration in patients with chronic thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Hodson, J.; Graham, A.; Hughes, J.M.B.; Gibbs, J.S.R.; Jackson, J.E.

    2006-01-01

    AIM: To describe direct pulmonary artery-to-pulmonary artery anastomoses seen at pulmonary angiography in patients with chronic thromboembolic pulmonary hypertension and discuss their possible significance. MATERIALS AND METHODS: Between 1 August 2000 and 31 July 2004 43 patients (male-to-female ratio 25:18) with a diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH) underwent selective pulmonary angiography to assess the extent of disease and suitability for surgical pulmonary endarterectomy. The mean pulmonary artery pressure ranged from 27-84 mmHg (average of 51 mmHg). Selective bilateral digital subtraction pulmonary angiograms performed in all individuals were reviewed for the presence of intrapulmonary collaterals. RESULTS: In 15 of the 43 patients (male-to-female ratio =7:8) definite (n=12) or probable (n=3) pulmonary artery-to-pulmonary artery anastomoses were demonstrated. Of the remaining 28 patients in whom intrapulmonary collaterals were not seen it was felt that in 16 the angiograms were of insufficient diagnostic quality (grades 4-5) to exclude their presence. Twelve patients, eight of whom had angiograms of sufficient diagnostic quality (grades 1-3), demonstrated one or more areas of luxury perfusion but intrapulmonary collaterals were not seen. CONCLUSION: Direct pulmonary artery-to-pulmonary artery anastomoses were demonstrated in patients with chronic thromboembolic pulmonary hypertension, which to our knowledge have not been previously described. The importance of these collateral vessels is unclear but they may play a role in the maintenance of pulmonary parenchymal viability in patients with chronic pulmonary embolic disease. The rate of development of these collaterals and their prognostic significance in patients with chronic thromboembolic pulmonary hypertension are areas worthy of further study

  14. Pulmonary artery-to-pulmonary artery anastomoses: angiographic demonstration in patients with chronic thromboembolic pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Hodson, J. [Department of Imaging, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London (United Kingdom); Graham, A. [Department of Imaging, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London (United Kingdom); Hughes, J.M.B. [Department of Respiratory Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London (United Kingdom); Gibbs, J.S.R. [Department of Cardiology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London (United Kingdom); Jackson, J.E. [Department of Imaging, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London (United Kingdom)]. E-mail: jejackson@hhnt.org

    2006-03-15

    AIM: To describe direct pulmonary artery-to-pulmonary artery anastomoses seen at pulmonary angiography in patients with chronic thromboembolic pulmonary hypertension and discuss their possible significance. MATERIALS AND METHODS: Between 1 August 2000 and 31 July 2004 43 patients (male-to-female ratio 25:18) with a diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH) underwent selective pulmonary angiography to assess the extent of disease and suitability for surgical pulmonary endarterectomy. The mean pulmonary artery pressure ranged from 27-84 mmHg (average of 51 mmHg). Selective bilateral digital subtraction pulmonary angiograms performed in all individuals were reviewed for the presence of intrapulmonary collaterals. RESULTS: In 15 of the 43 patients (male-to-female ratio =7:8) definite (n=12) or probable (n=3) pulmonary artery-to-pulmonary artery anastomoses were demonstrated. Of the remaining 28 patients in whom intrapulmonary collaterals were not seen it was felt that in 16 the angiograms were of insufficient diagnostic quality (grades 4-5) to exclude their presence. Twelve patients, eight of whom had angiograms of sufficient diagnostic quality (grades 1-3), demonstrated one or more areas of luxury perfusion but intrapulmonary collaterals were not seen. CONCLUSION: Direct pulmonary artery-to-pulmonary artery anastomoses were demonstrated in patients with chronic thromboembolic pulmonary hypertension, which to our knowledge have not been previously described. The importance of these collateral vessels is unclear but they may play a role in the maintenance of pulmonary parenchymal viability in patients with chronic pulmonary embolic disease. The rate of development of these collaterals and their prognostic significance in patients with chronic thromboembolic pulmonary hypertension are areas worthy of further study.

  15. Characterization of proximal pulmonary arterial cells from chronic thromboembolic pulmonary hypertension patients

    Directory of Open Access Journals (Sweden)

    Quarck Rozenn

    2012-03-01

    Full Text Available Abstract Background Chronic thromboembolic pulmonary hypertension (CTEPH is associated with proximal pulmonary artery obstruction and vascular remodeling. We hypothesized that pulmonary arterial smooth muscle (PASMC and endothelial cells (PAEC may actively contribute to remodeling of the proximal pulmonary vascular wall in CTEPH. Our present objective was to characterize PASMC and PAEC from large arteries of CTEPH patients and investigate their potential involvement in vascular remodeling. Methods Primary cultures of proximal PAEC and PASMC from patients with CTEPH, with non-thromboembolic pulmonary hypertension (PH and lung donors have been established. PAEC and PASMC have been characterized by immunofluorescence using specific markers. Expression of smooth muscle specific markers within the pulmonary vascular wall has been studied by immunofluorescence and Western blotting. Mitogenic activity and migratory capacity of PASMC and PAEC have been investigated in vitro. Results PAEC express CD31 on their surface, von Willebrand factor in Weibel-Palade bodies and take up acetylated LDL. PASMC express various differentiation markers including α-smooth muscle actin (α-SMA, desmin and smooth muscle myosin heavy chain (SMMHC. In vascular tissue from CTEPH and non-thromboembolic PH patients, expression of α-SMA and desmin is down-regulated compared to lung donors; desmin expression is also down-regulated in vascular tissue from CTEPH compared to non-thromboembolic PH patients. A low proportion of α-SMA positive cells express desmin and SMMHC in the neointima of proximal pulmonary arteries from CTEPH patients. Serum-induced mitogenic activity of PAEC and PASMC, as well as migratory capacity of PASMC, were increased in CTEPH only. Conclusions Modified proliferative and/or migratory responses of PASMC and PAEC in vitro, associated to a proliferative phenotype of PASMC suggest that PASMC and PAEC could contribute to proximal vascular remodeling in CTEPH.

  16. Brood size and sex ratio in response to host quality and wasp traits in the gregarious parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae

    Directory of Open Access Journals (Sweden)

    Xianwei Li

    2017-01-01

    Full Text Available This laboratory study investigated whether the larval-pupal parasitoid Oomyzus sokolowskii females adjust their brood size and sex ratio in response to body size and stage of Plutella xylostella larval hosts, as well as to their own body size and the order of oviposition. These factors were analyzed using multiple regression with simultaneous entry of them and their two-way interactions. Parasitoids brood size tended to increase with host body size at parasitism when the 4th instar larval host was attacked, but did not change when the 2nd and 3rd instar larvae were attacked. Parasitoids did not vary in brood size according to their body size, but decreased with their bouts of oviposition on a linear trend from 10 offspring adults emerged per host in the first bout of oviposition down to eight in the third. Parasitoid offspring sex ratio did not change with host instar, host body weight, wasp body size, and oviposition bout. Proportions of male offspring per brood were from 11% to 13% from attacking the 2nd to 4th instar larvae and from 13% to 16% across three successive bouts of oviposition, with a large variation for smaller host larvae and wasps. When fewer than 12 offspring were emerged from a host, one male was most frequently produced; when more than 12 offspring were emerged, two or more males were produced. Our study suggests that O. sokolowskii females may optimize their clutch size in response to body size of mature P. xylostella larvae, and their sex allocation in response to clutch size.

  17. IgM response to a human Pneumocystis carinii surface antigen in HIV-infected patients with pulmonary symptoms

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Kovacs, J A; Mathiesen, Lars Reinhardt

    1993-01-01

    We have developed an ELISA to detect IgM antibodies to a major human Pneumocystis carinii surface antigen (gp95), and investigated the IgM response in 128 HIV-infected patients who underwent bronchoscopy for evaluation of pulmonary symptoms. Only 5 (4%) patients had IgM antibodies to P. carinii gp...... response to gp95. These patients also showed an increase in IgG antibodies to gp95 and had microbiologically proven PCP. Prior to the development of the IgM response, IgG antibodies to gp95 were detectable in all 3 patients. Thus, HIV-infected patients with PCP seldom produce IgM antibodies to the major...

  18. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  19. Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers.

    Science.gov (United States)

    Piccart, Kristine; Verbeke, Joren; De Visscher, Anneleen; Piepers, Sofie; Haesebrouck, Freddy; De Vliegher, Sarne

    2016-05-12

    Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated from a heifer's teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 1.0 × 10(6) colony forming units of each bacterial strain (one strain per udder quarter), whereas the remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the strain was eliminated within 12 h. The two S. chromogenes strains were shed in larger numbers for a longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, not all S. chromogenes strains induce the same local host response.

  20. Exhaled volatile organic compounds in individuals with a history of high altitude pulmonary edema and varying hypoxia-induced responses.

    Science.gov (United States)

    Figueroa, Jennifer A; Mansoor, Jim K; Allen, Roblee P; Davis, Cristina E; Walby, William F; Aksenov, Alexander A; Zhao, Weixiang; Lewis, William R; Schelegle, Edward S

    2015-04-20

    With ascent to altitude, certain individuals are susceptible to high altitude pulmonary edema (HAPE), which in turn can cause disability and even death. The ability to identify individuals at risk of HAPE prior to ascent is poor. The present study examined the profile of volatile organic compounds (VOC) in exhaled breath condensate (EBC) and pulmonary artery systolic pressures (PASP) before and after exposure to normobaric hypoxia (12% O2) in healthy males with and without a history of HAPE (Hx HAPE, n = 5; Control, n = 11). In addition, hypoxic ventilatory response (HVR), and PASP response to normoxic exercise were also measured. Auto-regression/partial least square regression of whole gas chromatography/mass spectrometry (GC/MS) data and binary logistic regression (BLR) of individual GC peaks and physiologic parameters resulted in models that separate individual subjects into their groups with variable success. The result of BLR analysis highlights HVR, PASP response to hypoxia and the amount of benzyl alcohol and dimethylbenzaldehyde dimethyl in expired breath as markers of HAPE history. These findings indicate the utility of EBC VOC analysis to discriminate between individuals with and without a history of HAPE and identified potential novel biomarkers that correlated with physiological responses to hypoxia.

  1. Splenic Infarct and Pulmonary Embolism as a Rare Manifestation of Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Prashanth Rawla

    2017-01-01

    Full Text Available Cytomegalovirus (CMV is a type of herpes infection that has a characteristic feature of maintaining lifelong latency within the host cell. CMV manifestations can cover a broad spectrum from fever to as severe as pancytopenia, hepatitis, retinitis, meningoencephalitis, Guillain-Barre syndrome, pneumonia, and thrombosis. Multiple case reports of thrombosis associated with CMV have been reported. Deep vein thrombosis or pulmonary embolism is more common in immunocompetent patients while splenic infarct is more common in immunocompromised patients. However, here we report a female patient on low-dose methotrexate for rheumatoid arthritis who presented with both pulmonary embolism and splenic infarct.

  2. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction.

    Directory of Open Access Journals (Sweden)

    Jasbir D Upadhyaya

    Full Text Available Activation of bitter taste receptors (T2Rs in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.

  3. Postoperative Pulmonary Dysfunction and Mechanical Ventilation in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Rafael Badenes

    2015-01-01

    Full Text Available Postoperative pulmonary dysfunction (PPD is a frequent and significant complication after cardiac surgery. It contributes to morbidity and mortality and increases hospitalization stay and its associated costs. Its pathogenesis is not clear but it seems to be related to the development of a systemic inflammatory response with a subsequent pulmonary inflammation. Many factors have been described to contribute to this inflammatory response, including surgical procedure with sternotomy incision, effects of general anesthesia, topical cooling, and extracorporeal circulation (ECC and mechanical ventilation (VM. Protective ventilation strategies can reduce the incidence of atelectasis (which still remains one of the principal causes of PDD and pulmonary infections in surgical patients. In this way, the open lung approach (OLA, a protective ventilation strategy, has demonstrated attenuating the inflammatory response and improving gas exchange parameters and postoperative pulmonary functions with a better residual functional capacity (FRC when compared with a conventional ventilatory strategy. Additionally, maintaining low frequency ventilation during ECC was shown to decrease the incidence of PDD after cardiac surgery, preserving lung function.

  4. Allopatric tuberculosis host–pathogen relationships are associated with greater pulmonary impairment

    Science.gov (United States)

    Pasipanodya, Jotam G.; Moonan, Patrick K.; Vecino, Edgar; Miller, Thaddeus L.; Fernandez, Michel; Slocum, Philip; Drewyer, Gerry; Weis, Stephen E.

    2015-01-01

    Background Host pathogen relationships can be classified as allopatric, when the pathogens originated from separate, non-overlapping geographic areas from the host; or sympatric, when host and pathogen shared a common ancestral geographic location. It remains unclear if host–pathogen relationships, as defined by phylogenetic lineage, influence clinical outcome. We sought to examine the association between allopatric and sympatric phylogenetic Mycobacterium tuberculosis lineages and pulmonary impairment after tuberculosis (PIAT). Methods Pulmonary function tests were performed on patients 16 years of age and older who had received ≥20 weeks of treatment for culture-confirmed M. tuberculosis complex. Forced Expiratory Volume in 1 min (FEV1) ≥80%, Forced Vital Capacity (FVC) ≥80% and FEV1/FVC >70% of predicted were considered normal. Other results defined pulmonary impairment. Spoligotype and 12-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were used to assign phylogenetic lineage. PIAT severity was compared between host–pathogen relationships which were defined by geography and ethnic population. We used multivariate logistic regression modeling to calculate adjusted odds ratios (aOR) between phylogenetic lineage and PIAT. Results Self-reported continental ancestry was correlated with Mycobacterium. tuberculosis lineage (p allopatric host–pathogen relationships and PIAT was 1.8 (95% confidence interval [CI]: 1.1, 2.9) compared to sympatric relationships. Smoking >30 pack-years was also associated with PIAT (aOR: 3.2; 95% CI: 1.5, 7.2) relative to smoking allopatric–host–pathogen relationship were more likely to have PIAT than patients with disease from sympatric–host–pathogen relationship infection. Further study of this association may identify ways that treatment and preventive efforts can be tailored to specific lineages and racial/ethnic populations. PMID:23501297

  5. Effects of juvenile host density and food availability on adult immune response, parasite resistance and virulence in a Daphnia-parasite system.

    Directory of Open Access Journals (Sweden)

    Corine N Schoebel

    Full Text Available Host density can increase infection rates and reduce host fitness as increasing population density enhances the risk of becoming infected either through increased encounter rate or because host condition may decline. Conceivably, potential hosts could take high host density as a cue to up-regulate their defence systems. However, as host density usually covaries with food availability, it is difficult to examine the importance of host density in isolation. Thus, we performed two full-factorial experiments that varied juvenile densities of Daphnia magna (a freshwater crustacean and food availability independently. We also included a simulated high-density treatment, where juvenile experimental animals were kept in filtered media that previously maintained Daphnia at high-density. Upon reaching adulthood, we exposed the Daphnia to their sterilizing bacterial parasite, Pasteuria ramosa, and examined how the juvenile treatments influenced the likelihood and severity of infection (Experiment I and host immune investment (Experiment II. Neither juvenile density nor food treatments affected the likelihood of infection; however, well-fed hosts that were well-fed as juveniles produced more offspring prior to sterilization than their less well-fed counterparts. By contrast, parasite growth was independent of host juvenile resources or host density. Parasite-exposed hosts had a greater number of circulating haemocytes than controls (i.e., there was a cellular immune response, but the magnitude of immune response was not mediated by food availability or host density. These results suggest that density dependent effects on disease arise primarily through correlated changes in food availability: low food could limit parasitism and potentially curtail epidemics by reducing both the host's and parasite's reproduction as both depend on the same food.

  6. Pulmonary inflammation and crystalline silica in respirable coal ...

    Indian Academy of Sciences (India)

    Unknown

    This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. [Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J and Castranova V 2003 Pulmonary inflammation and ...

  7. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  8. Data set of Aspergillus flavus induced alterations in tear proteome: Understanding the pathogen-induced host response to fungal infection

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi Kandhavelu

    2016-12-01

    Full Text Available Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled “Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]” (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.

  9. The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension

    Science.gov (United States)

    Prins, Kurt W.; Pritzker, Marc R.; Scandurra, John; Volmers, Karl; Weir, E. Kenneth

    2016-01-01

    The normal pulmonary circulation is a low-pressure, high-compliance system. Pulmonary arterial compliance decreases in the presence of pulmonary hypertension because of increased extracellular matrix/collagen deposition in the pulmonary arteries. Loss of pulmonary arterial compliance has been consistently shown to be a predictor of increased mortality in patients with pulmonary hypertension, even more so than pulmonary vascular resistance in some studies. Decreased pulmonary arterial compliance causes premature reflection of waves from the distal pulmonary vasculature, leading to increased pulsatile right ventricular afterload and eventually right ventricular failure. Evidence suggests that decreased pulmonary arterial compliance is a cause rather than a consequence of distal small vessel proliferative vasculopathy. Pulmonary arterial compliance decreases early in the disease process even when pulmonary artery pressure and pulmonary vascular resistance are normal, potentially enabling early diagnosis of pulmonary vascular disease, especially in high-risk populations. With the recognition of the prognostic importance of pulmonary arterial compliance, its impact on right ventricular function, and its contributory role in the development and progression of distal small-vessel proliferative vasculopathy, pulmonary arterial compliance is an attractive target for the treatment of pulmonary hypertension. PMID:26848601

  10. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol

    Directory of Open Access Journals (Sweden)

    Flores Rhonda

    2011-04-01

    Full Text Available Abstract Background The periplasmic High Temperature Requirement protein A (HtrA plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.

  11. TLR-dependent control of Francisella tularensis infection and host inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Allison L Abplanalp

    2009-11-01

    Full Text Available Francisella tularensis is the causative agent of tularemia and is classified as a Category A select agent. Recent studies have implicated TLR2 as a critical element in the host protective response to F. tularensis infection, but questions remain about whether TLR2 signaling dominates the response in all circumstances and with all species of Francisella and whether F. tularensis PAMPs are predominantly recognized by TLR2/TLR1 or TLR2/TLR6. To address these questions, we have explored the role of Toll-like receptors (TLRs in the host response to infections with F. tularensis Live Vaccine Strain (LVS and F. tularensis subspecies (subsp. novicida in vivo.C57BL/6 (B6 control mice and TLR- or MyD88-deficient mice were infected intranasally (i.n. or intradermally (i.d. with F. tularensis LVS or with F. tularensis subsp. novicida. B6 mice survived >21 days following infection with LVS by both routes and survival of TLR1(-/-, TLR4(-/-, and TLR6(-/- mice infected i.n. with LVS was equivalent to controls. Survival of TLR2(-/- and MyD88(-/- mice, however, was significantly reduced compared to B6 mice, regardless of the route of infection or the subspecies of F. tularensis. TLR2(-/- and MyD88(-/- mice also showed increased bacterial burdens in lungs, liver, and spleen compared to controls following i.n. infection. Primary macrophages from MyD88(-/- and TLR2(-/- mice were significantly impaired in the ability to secrete TNF and other pro-inflammatory cytokines upon ex vivo infection with LVS. TNF expression was also impaired in vivo as demonstrated by analysis of bronchoalveolar lavage fluid and by in situ immunofluorescent staining.We conclude from these studies that TLR2 and MyD88, but not TLR4, play critical roles in the innate immune response to F. tularensis infection regardless of the route of infection or the subspecies. Moreover, signaling through TLR2 does not depend exclusively on TLR1 or TLR6 during F. tularensis LVS infection.

  12. Apyrase Elicits Host Antimicrobial Responses and Resolves Infection in Burns.

    Science.gov (United States)

    Bayliss, Jill M; Levi, Benjamin; Wu, Jianfeng; Wang, Stewart C; Su, Grace L; Xi, Chuanwu

    The authors previously reported that adenosine triphosphate (ATP) stimulates biofilm formation and removal of the ATP could reduce biofilm formation. The main objective of this study was to evaluate the effects of the ATP-hydrolyzing enzyme, apyrase, on control of Acinetabacter baumannii infection in the burn wound as well as to assess host skin antimicrobial responses. The authors found that apyrase stimulated nitric oxide formation at the wound site and reduced CD55 expression, thereby inducing the assembly of membrane attack complexes. Apyrase treatment nearly eradicated multidrug-resistant A. baumannii from burn wounds in the absence of antibiotics. Apyrase may be an effective therapy against antibiotic-resistant bacterial infections in burns.

  13. Co-infection of visceral leishmaniasis and pulmonary tuberculosis: a case study

    Directory of Open Access Journals (Sweden)

    Shweta

    2014-02-01

    Full Text Available Co-infection of visceral leishmaniasis and pulmonary tuberculosis are increasing public health problem in eastern region of country. A large number of clinical cases of leishmaniasis and tuberculosis have been reported in Sudan. Such type of co-infections lead to decreased host ’s immune system. This is a case report of 48 years old male with visceral leishmaniasis and pulmonary tuberculosis. He arrived at hospital with complaints of fever with rigor, abdominal pain, weakness, loss of appetite, yellowish discoloration of urine and sclerosis at lower back. Bone marrow aspiration cytology revealed the presence of Leishmania donovani bodies (2+. His treatment was initiated with amphotericin B deoxycholate (inj. Fungizone 15 infusions on alternate days with 5% dextrose. He had 20 years past history of pulmonary tuberculosis. His chest X-ray showed increased bronchovascular marking encysted pleural effusion on lower segment of right lung. Ultrasonography guided fine needle aspiration cytology of pleural fluid for protein, sugar, lactate dehydrogenase, adenosine deaminase, cell type and cell count. Cytological reports confirmed pulmonary tuberculosis. Antitubercular therapy (four drug regimen: rifampicin, isoniazid, ethambutal, and pyrazinamide was started. Co-infection of visceral leishmaniasis and pulmonary tuberculosis is a real threat in developing countries. There is a need of cost effective diagnostic and therapeutic facilities for these co-infections.

  14. Host genetic variation influences gene expression response to rhinovirus infection.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    2015-04-01

    Full Text Available Rhinovirus (RV is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs, namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5 and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3. The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  15. Host genetic variation influences gene expression response to rhinovirus infection.

    Science.gov (United States)

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  16. Pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Jin; Goo, Jin Mo E-mail: jmgoo@plaza.snu.ac.kr; Im, Jung-Gi

    2004-11-01

    Objectives: Patients with idiopathic pulmonary fibrosis (IPF) have an increased risk of pulmonary tuberculosis. However, detecting pulmonary tuberculosis may be difficult due to the underlying fibrosis. The aim of this report is to describe the radiological and clinical findings of pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis. Materials and methods: We reviewed 143 consecutive patients in whom IPF was diagnosed by either the histological or radio-clinical criteria. Among them, nine patients were histologically (n=2) or bacteriologically (n=7) confirmed to have active pulmonary tuberculosis. The location and patterns of pulmonary tuberculosis were examined on a thin section CT scan. Results: The most common thin section CT findings were subpleural nodules (n=6; mean diameter, 3.2 cm) and a lobar or segmental consolidation (n=3). The lesions were located most commonly in the right lower lobe (n=4). The incidence of tuberculosis in patients with idiopathic pulmonary fibrosis was more than five times higher than that of the general population. Conclusion: The atypical manifestation of pulmonary tuberculosis is common in patients with idiopathic pulmonary fibrosis, which may mimic lung cancer or bacterial pneumonia.

  17. Pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Chung, Myung Jin; Goo, Jin Mo; Im, Jung-Gi

    2004-01-01

    Objectives: Patients with idiopathic pulmonary fibrosis (IPF) have an increased risk of pulmonary tuberculosis. However, detecting pulmonary tuberculosis may be difficult due to the underlying fibrosis. The aim of this report is to describe the radiological and clinical findings of pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis. Materials and methods: We reviewed 143 consecutive patients in whom IPF was diagnosed by either the histological or radio-clinical criteria. Among them, nine patients were histologically (n=2) or bacteriologically (n=7) confirmed to have active pulmonary tuberculosis. The location and patterns of pulmonary tuberculosis were examined on a thin section CT scan. Results: The most common thin section CT findings were subpleural nodules (n=6; mean diameter, 3.2 cm) and a lobar or segmental consolidation (n=3). The lesions were located most commonly in the right lower lobe (n=4). The incidence of tuberculosis in patients with idiopathic pulmonary fibrosis was more than five times higher than that of the general population. Conclusion: The atypical manifestation of pulmonary tuberculosis is common in patients with idiopathic pulmonary fibrosis, which may mimic lung cancer or bacterial pneumonia

  18. Postnatal Age Is a Critical Determinant of the Neonatal Host Response to Sepsis

    Science.gov (United States)

    Wynn, James L; Guthrie, Scott O; Wong, Hector R; Lahni, Patrick; Ungaro, Ricardo; Lopez, M Cecilia; Baker, Henry V; Moldawer, Lyle L

    2015-01-01

    Neonates manifest a unique host response to sepsis even among other children. Preterm neonates may experience sepsis soon after birth or during often-protracted birth hospitalizations as they attain physiologic maturity. We examined the transcriptome using genome-wide expression profiling on prospectively collected peripheral blood samples from infants evaluated for sepsis within 24 h after clinical presentation. Simultaneous plasma samples were examined for alterations in inflammatory mediators. Group designation (sepsis or uninfected) was determined retrospectively on the basis of clinical exam and laboratory results over the next 72 h from the time of evaluation. Unsupervised analysis showed the major node of separation between groups was timing of sepsis episode relative to birth (early, <3 d, or late, ≥3 d). Principal component analyses revealed significant differences between patients with early or late sepsis despite the presence of similar key immunologic pathway aberrations in both groups. Unique to neonates, the uninfected state and host response to sepsis is significantly affected by timing relative to birth. Future therapeutic approaches may need to be tailored to the timing of the infectious event based on postnatal age. PMID:26052715

  19. Rapid host immune response and viral dynamics in herpes simplex virus-2 infection

    Science.gov (United States)

    Schiffer, Joshua T; Corey, Lawrence

    2014-01-01

    Herpes Simplex Virus-2 (HSV-2) is episodically shed throughout the human genital tract. While high viral load correlates with development of genital ulcers, shedding also commonly occurs even when ulcers are not present, allowing for silent transmission during coitus and contributing to high seroprevalence of HSV-2 worldwide. Frequent viral reactivation occurs despite diverse and complementary host and viral mechanisms within ganglionic tissue that predispose towards latency, suggesting that viral replication may be constantly occurring in a small minority of neurons within the ganglia. Within genital mucosa, the in vivo expansion and clearance rates of HSV-2 are extremely rapid. Resident dendritic cells and memory HSV-specific T cells persist at prior sites of genital tract reactivation, and in conjunction with prompt innate recognition of infected cells, lead to rapid containment of infected cells. Shedding episodes vary greatly in duration and severity within a single person over time: this heterogeneity appears best explained by variation in the densities of host immunity across the genital tract. The fact that immune responses usually control viral replication in genital skin prior to development of lesions provides optimism that enhancing such responses could lead to effective vaccines and immunotherapies. PMID:23467247

  20. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Sanjay H. Chotirmall

    2013-01-01

    Full Text Available Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit.

  1. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    Science.gov (United States)

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  2. Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia

    Directory of Open Access Journals (Sweden)

    I-Chun Chuang

    2011-08-01

    Full Text Available There is now increasing evidence from the experimental and clinical setting that therapeutic hypercapnia from intentionally inspired carbon dioxide (CO2 or lower tidal volume might be a beneficial adjunct to the strategies of mechanical ventilation in critical illness. Although previous reports indicate that CO2 exerts a beneficial effect in the lungs, the pulmonary vascular response to hypercapnia under various conditions remains to be clarified. The purpose of the present study is to characterize the pulmonary vascular response to CO2 under the different conditions of pulmonary hypertension secondary to increased pulmonary blood flow and secondary to hypoxic pulmonary vasoconstriction. Isolated rat lung (n = 32 was used to study (1 the vasoactive action of 5% CO2 in either N2 (hypoxic-hypercapnia or air (normoxic-hypercapnia at different pulmonary arterial pressure levels induced by graded speed of perfusion flow and (2 the role of nitric oxide (NO in mediating the pulmonary vascular response to hypercapnia, hypoxia, and flow-associated pulmonary hypertension. The results indicated that inhaled CO2 reversed pulmonary hypertension induced by hypoxia but not by flow alteration. Endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not augment the CO2-induced vasodilatation. Acute change in blood flow does not alter the endogenous NO production.

  3. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice

    NARCIS (Netherlands)

    Amorij, J-P.; Saluja, V.; Petersen, A.H.; Hinrichs, W.L.J.; Huckriede, A.; Frijlink, H.W.

    2007-01-01

    In this study pulmonary vaccination with a new influenza subunit vaccine powder was evaluated. Vaccine powder was produced by spray-freeze drying (SFD) using the oligosaccharide inulin as stabilizer. Immune responses after pulmonary vaccination of BALB/c mice with vaccine powder were determined and

  4. Pulmonary capillary haemangiomatosis: a rare cause of pulmonary hypertension.

    Science.gov (United States)

    Babu, K Anand; Supraja, K; Singh, Raj B

    2014-01-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder of unknown aetiology, characterised by proliferating capillaries that invade the pulmonary interstitium, alveolar septae and the pulmonary vasculature. It is often mis-diagnosed as primary pulmonary hypertension and pulmonary veno-occlusive disease. Pulmonary capillary haemangiomatosis is a locally aggressive benign vascular neoplasm of the lung. We report the case of a 19-year-old female who was referred to us in the early post-partum period with severe pulmonary artery hypertension, which was diagnosed as PCH by open lung biopsy.

  5. The management of neonatal pulmonary hypertension.

    Science.gov (United States)

    Dhillon, Rami

    2012-05-01

    Most neonates with clinically significant pulmonary hypertension (PH) will have either persistent PH of the newborn (PPHN) or bronchopulmonary dysplasia. Cyanotic congenital heart disease must be actively ruled out as part of the differential diagnosis of PPHN. The maintenance of ductal patency with prostaglandins E1 or E2 in cases of doubt is safe and potentially beneficial given their pulmonary vasorelaxant properties. Specific tools in the treatment of PPHN include modern ventilatory strategies, inhaled nitric oxide, sildenafil, prostacyclin and extracorporeal membrane oxygenation. Rarely will a cardiac lesion be primarily responsible for neonatal PH although pulmonary vein stenosis and the persistence of an arterial duct must be considered, particularly in the older preterm baby with bronchopulmonary dysplasia.

  6. An Integrated Omics Analysis: Impact of Microgravity on Host Response to Lipopolysaccharide in vitro

    Science.gov (United States)

    2014-08-07

    on host response to lipopolysaccharide in vitro 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Nabarun Chakraborty...49. Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre Garau X, Mechta Grigoriou F: miR 141

  7. Quantification of the host response proteome after mammalian reovirus T1L infection.

    Directory of Open Access Journals (Sweden)

    Alicia R Berard

    Full Text Available All viruses are dependent upon host cells for replication. Infection can induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays to measure the cellular "transcriptome." We used SILAC (stable isotope labeling by amino acids in cell culture, combined with high-throughput 2-D HPLC/mass spectrometry, to determine relative quantitative differences in host proteins at 6 and 24 hours after infecting HEK293 cells with reovirus serotype 1 Lang (T1L. 3,076 host proteins were detected at 6 hpi, of which 132 and 68 proteins were significantly up or down regulated, respectively. 2,992 cellular proteins, of which 104 and 49 were up or down regulated, respectively, were identified at 24 hpi. IPA and DAVID analyses indicated proteins involved in cell death, cell growth factors, oxygen transport, cell structure organization and inflammatory defense response to virus were up-regulated, whereas proteins involved in apoptosis, isomerase activity, and metabolism were down-regulated. These proteins and pathways may be suitable targets for intervention to either attenuate virus infection or enhance oncolytic potential.

  8. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  9. The granuloma in tuberculosis: Dynamics of a host-pathogen collusion

    Directory of Open Access Journals (Sweden)

    Stefan eEhlers

    2013-01-01

    Full Text Available A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e. its survival, propagation and transmission.

  10. Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    Directory of Open Access Journals (Sweden)

    Dominique Angèle Vuitton

    2010-01-01

    Full Text Available Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.

  11. Pulmonary endarterectomy outputs in chronic thromboembolic pulmonary hypertension.

    Science.gov (United States)

    López Gude, María Jesús; Pérez de la Sota, Enrique; Pérez Vela, Jose Luís; Centeno Rodríguez, Jorge; Muñoz Guijosa, Christian; Velázquez, María Teresa; Alonso Chaterina, Sergio; Hernández González, Ignacio; Escribano Subías, Pilar; Cortina Romero, José María

    2017-07-07

    Pulmonary thromboendarterectomy surgery is the treatment of choice for patients with chronic thromboembolic pulmonary hypertension; extremely high pulmonary vascular resistance constitutes a risk factor for hospital mortality. The objective of this study was to analyze the immediate and long-term results of the surgical treatment of chronic thromboembolic pulmonary hypertension in patients with very severe pulmonary hypertension. Since February 1996, we performed 160 pulmonary thromboendarterectomies. We divided the patient population in 2 groups: group 1, which included 40 patients with pulmonary vascular resistance≥1090dyn/sec/cm -5 , and group 2, which included the remaining 120 patients. Hospital mortality (15 vs. 2.5%), reperfusion pulmonary edema (33 vs. 14%) and heart failure (23 vs. 3.3%) were all higher in group 1; however, after one year of follow-up, there were no significant differences in the clinical, hemodynamic and echocardiographic conditions of both groups. Survival rate after 5 years was 77% in group 1 and 92% in group 2 (P=.033). After the learning curve including the 46 first patients, there was no difference in hospital mortality (3.8 vs. 2.3%) or survival rate after 5 years (96.2% in group 1 and 96.2% in group 2). Pulmonary thromboendarterectomy is linked to significantly higher morbidity and mortality rates in patients with severe chronic thromboembolic pulmonary hypertension. Nevertheless, these patients benefit the same from the procedure in the mid-/long-term. In our experience, after the learning curve, this surgery is safe in severe pulmonary hypertension and no level of pulmonary vascular resistance should be an absolute counter-indication for this surgery. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    Science.gov (United States)

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of

  13. Population Ecology of Hantavirus Rodent Hosts in Southern Brazil

    Science.gov (United States)

    Teixeira, Bernardo R.; Loureiro, Nathalie; Strecht, Liana; Gentile, Rosana; Oliveira, Renata C.; Guterres, Alexandro; Fernandes, Jorlan; Mattos, Luciana H. B. V.; Raboni, Sonia M.; Rubio, Giselia; Bonvicino, Cibele R.; Duarte dos Santos, Claudia N.; Lemos, Elba R. S.; D'Andrea, Paulo S.

    2014-01-01

    In this study we analyze population dynamics of hantavirus rodent hosts and prevalence of infection over a 2-year period in Southern Brazil, a region with a high incidence of hantavirus pulmonary syndrome. The 14 small mammal species captured were composed of 10 rodents and four marsupials, the six most abundant species being Akodon serrensis, Oxymycterus judex, Akodon montensis, Akodon paranaensis, Oligoryzomys nigripes, and Thaptomys nigrita. These species displayed a similar pattern with increasing population sizes in fall/winter caused by recruitment and both, increase in reproductive activity and higher hantavirus prevalence in spring/summer. Specific associations between A. montensis/Jaborá Virus (JABV) and O. nigripes/Juquitiba-like Virus (JUQV-like) and spillover infections between A. paranaensis/JABV, A. serrensis/JABV, and A. paranaensis/JUQV-like were observed. Spillover infection in secondary hosts seems to play an important role in maintaining JABV and JUQV-like in the hantavirus sylvatic cycle mainly during periods of low prevalence in primary hosts. PMID:24935954

  14. The interferon response circuit in antiviral host defense.

    Science.gov (United States)

    Haller, O; Weber, F

    2009-01-01

    Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.

  15. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease--friends or foes?

    Science.gov (United States)

    Balan, A; Lucchini, G; Schmidt, S; Schneider, A; Tramsen, L; Kuçi, S; Meisel, R; Bader, P; Lehrnbecher, T

    2014-10-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.

  16. The Impact of “Omic” and Imaging Technologies on Assessing the Host Immune Response to Biodefence Agents

    Directory of Open Access Journals (Sweden)

    Julia A. Tree

    2014-01-01

    Full Text Available Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.

  17. Dose-Response Head-to-Head Comparison of Inodilators Dobutamine, Milrinone, and Levosimendan in Chronic Experimental Pulmonary Hypertension.

    Science.gov (United States)

    Tavares-Silva, Marta; Alaa, Mohamed; Leite, Sara; Oliveira-Pinto, José; Lopes, Lucas; Leite-Moreira, Adelino F; Lourenço, André P

    2017-09-01

    The choice of inodilator drug in the acute management of patients with pulmonary hypertension (PH) having right ventricular (RV) failure remains unsettled and challenging. Comprehensive experimental evaluations may provide further insight and fundamental translational research clues to support inodilator selection and clinical trial design. Our aim was to compare acute dose-response hemodynamic effects of inodilators dobutamine (DOB), milrinone (MIL), and levosimendan (LEV) in chronic experimental PH. Seven-week-old male Wistar rats were randomly injected with 60 mg·kg -1 monocrotaline (MCT) or vehicle (Ctrl, n = 7) and underwent systemic and pulmonary artery (PA) pressure and RV pressure-volume (PV) hemodynamic evaluation under halogenate anesthesia 24 to 30 days after injection. The MCT-injected animals (n = 7 each) randomly received dose-response infusions of DOB (1, 3, 6 and 12 μg·kg -1 ·min -1 ), MIL (MIL: 1, 3, 6 and 12 μg·kg -1 ·min -1 ), or LEV (0.3, 0.6, 1.2 and 2.4 μg·kg -1 ·min -1 ). Load-independent indexes were obtained by inferior vena cava occlusion at baseline and after the last dose. All inodilators increased RV ejection fraction, preload recruitable stroke work, and ventricular-vascular coupling without jeopardizing perfusion pressure. Dobutamine raised heart rate and PA pressure. Only LEV increased cardiac index and decreased PA elastance and pulmonary vascular resistance (PVR). Moreover, only LEV downward-shifted the end-diastolic PV relationship, thereby improving RV compliance. Adding sildenafil to LEV further decreased PVR. Levosimendan had beneficial acute systolic and diastolic functional effects in experimental chronic PH and RV afterload compared to DOB and MIL. It should be further tested in clinical trials enrolling patients with PH in the perioperative and critical care settings.

  18. Partial anomalous pulmonary venous return in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Sung, Won-kyung; Au, Virginia; Rose, Anand

    2012-01-01

    Anomalous pulmonary venous return is an uncommon congenital malformation, and may be partial or total. Partial anomalous pulmonary venous return (PAPVR) is more common than total anomalous pulmonary venous return, and is often associated with other congenital cardiac anomalies. Whilst many patients with PAPVR remain asymptomatic, some may present in later age with symptoms related to left-to-right shunt, right heart failure and pulmonary hypertension. We report two cases of PAPVR detected on Computed Tomography Pulmonary Angiogram (CTPA) for the work up of pulmonary hypertension. The cases demonstrate that, although uncommon, partial anomalous pulmonary venous return can be a contributing factor to pulmonary hypertension and pulmonary veins should be carefully examined when reading a CTPA study.

  19. Immune response CC Chemokines, CCL2 and CCL5 are associated with Pulmonary Sarcoidosis

    LENUS (Irish Health Repository)

    Palchevskiy, Vyacheslav

    2011-04-04

    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  20. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    Science.gov (United States)

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  1. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide.

    Science.gov (United States)

    McNamara, Patrick J; Shivananda, Sandesh P; Sahni, Mohit; Freeman, David; Taddio, Anna

    2013-01-01

    milrinone led to better oxygenation and improvements in pulmonary and systemic hemodynamics in patients with suboptimal response to inhaled nitric oxide. These data support the need for a randomized controlled trial in neonates.

  2. Pulmonary Hypertension

    Science.gov (United States)

    Kim, John S.; McSweeney, Julia; Lee, Joanne; Ivy, Dunbar

    2015-01-01

    Objective Review the pharmacologic treatment options for pulmonary arterial hypertension (PAH) in the cardiac intensive care setting and summarize the most-recent literature supporting these therapies. Data Sources and Study Selection Literature search for prospective studies, retrospective analyses, and case reports evaluating the safety and efficacy of PAH therapies. Data Extraction Mechanisms of action and pharmacokinetics, treatment recommendations, safety considerations, and outcomes for specific medical therapies. Data Synthesis Specific targeted therapies developed for the treatment of adult patients with PAH have been applied for the benefit of children with PAH. With the exception of inhaled nitric oxide, there are no PAH medications approved for children in the US by the FDA. Unfortunately, data on treatment strategies in children with PAH are limited by the small number of randomized controlled clinical trials evaluating the safety and efficacy of specific treatments. The treatment options for PAH in children focus on endothelial-based pathways. Calcium channel blockers are recommended for use in a very small, select group of children who are responsive to vasoreactivity testing at cardiac catheterization. Phosphodiesterase type 5 inhibitor therapy is the most-commonly recommended oral treatment option in children with PAH. Prostacyclins provide adjunctive therapy for the treatment of PAH as infusions (intravenous and subcutaneous) and inhalation agents. Inhaled nitric oxide is the first line vasodilator therapy in persistent pulmonary hypertension of the newborn, and is commonly used in the treatment of PAH in the Intensive Care Unit (ICU). Endothelin receptor antagonists have been shown to improve exercise tolerance and survival in adult patients with PAH. Soluble Guanylate Cyclase Stimulators are the first drug class to be FDA approved for the treatment of chronic thromboembolic pulmonary hypertension. Conclusions Literature and data supporting the

  3. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  4. Pulmonary biomarkers in chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Barnes, Peter J.; Chowdhury, Badrul; Kharitonov, Sergei A.; Magnussen, Helgo; Page, Clive P.; Postma, Dirkje; Saetta, Marina

    2006-01-01

    There has been increasing interest in using pulmonary biomarkers to understand and monitor the inflammation in the respiratory tract of patients with chronic obstructive pulmonary disease (COPD). In this Pulmonary Perspective we discuss the merits of the various approaches by reviewing the current

  5. Airway reactivity in chronic obstructive pulmonary disease. Failure of in vivo methacholine responsiveness to correlate with cholinergic, adrenergic, or nonadrenergic responses in vitro.

    Science.gov (United States)

    Taylor, S M; Paré, P D; Armour, C L; Hogg, J C; Schellenberg, R R

    1985-07-01

    This study aimed to determine whether in vivo airways hyperreactivity was manifested by either enhanced bronchial smooth muscle responses to contractile stimuli or by deficient responses to relaxant stimuli in vitro. Quantitative responses to nebulized methacholine were obtained in 12 human subjects prior to pulmonary resection. The provocative concentration of methacholine producing a 20% reduction in FEV1 (PC20) was calculated, and these values were compared with in vitro responses of bronchial smooth muscle strips from the surgical specimens. Both contractile cholinergic responses and relaxant nonadrenergic noncholinergic dose-response data were obtained for the in vitro bronchial specimens by electrical field stimulation. In addition, cumulative dose responses were obtained to exogenously added methacholine, the beta-adrenergic agonist salbutamol, and the adenylate cyclase activator forskolin. Despite a wide range of PC20 values, the in vivo airway responsiveness did not correlate with any of the in vitro responses examined, suggesting that airway reactivity is not due solely to the responsiveness of smooth muscle to contractile agonists nor to a localized deficiency in the nonadrenergic inhibitory system, beta-adrenergic inhibition, or abnormal cyclic-AMP-mediated pathways of relaxation.

  6. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  7. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell’s Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects

    Directory of Open Access Journals (Sweden)

    Adit Naor

    2018-04-01

    Full Text Available The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5 and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma, we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT, RHΔmyr1, and RHΔasp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, “hidden” responses arising in RHΔmyr1- but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite’s ability to co-opt host cell functions.

  8. Long-term effect of bosentan in adults versus children with pulmonary arterial hypertension associated with systemic-to-pulmonary shunt : Does the beneficial effect persist?

    NARCIS (Netherlands)

    van Loon, Rosa Laura E.; Hoendermis, Elke S.; Duffels, Marielle G. J.; Vonk-Noordegraaf, Anton; Mulder, Barbara J. M.; Hillege, Hans L.; Berger, Rolf M. F.

    2007-01-01

    BACKGROUND: Data on long-term response to bosentan in adults and especially children with pulmonary arterial hypertension (PAH) associated with systemic-to-pulmonary shunt are scarce. METHODS: We studied bosentan efficacy in 30 patients (20 adults, 10 children) with the disease at short- (4 months),

  9. Long-term effect of bosentan in adults versus children with pulmonary arterial hypertension associated with systemic-to-pulmonary shunt: Does the beneficial effect persist?

    NARCIS (Netherlands)

    van Loon, Rosa Laura E.; Hoendermis, Elke S.; Duffels, Marielle G. J.; Vonk-Noordegraaf, Anton; Mulder, Barbara J. M.; Hillege, Hans L.; Berger, Rolf M. F.

    2007-01-01

    Background Data on long-term response to bosentan in adults and especially children with pulmonary arterial hypertension (PAH) associated with systemic-to-pulmonary shunt are scarce. Methods We studied bosentan efficacy in 30 patients (20 adults, 10 children) with the disease at short- (4 months),

  10. Pulmonary venous remodeling in COPD-pulmonary hypertension and idiopathic pulmonary arterial hypertension

    DEFF Research Database (Denmark)

    Andersen, Kasper Hasseriis; Andersen, Claus Bøgelund; Gustafsson, Finn

    2017-01-01

    Pulmonary vascular arterial remodeling is an integral and well-understood component of pulmonary hypertension (PH). In contrast, morphological alterations of pulmonary veins in PH are scarcely described. Explanted lungs (n = 101) from transplant recipients with advanced chronic obstructive...... pulmonary disease (COPD) and idiopathic pulmonary arterial hypertension (IPAH) were analyzed for venous vascular involvement according to a pre-specified, semi-quantitative grading scheme, which categorizes the intensity of venous remodeling in three groups of incremental severity: venous hypertensive (VH......) grade 0 = characterized by an absence of venous vascular remodeling; VH grade 1 = defined by a dominance of either arterialization or intimal fibrosis; and VH grade 2 = a substantial composite of arterialization and intimal fibrosis. Patients were grouped according to clinical and hemodynamic...

  11. Shoshin beriberi-thiamine responsive pulmonary hypertension in exclusively breastfed infants: A study from northern India.

    Science.gov (United States)

    Bhat, Javeed Iqbal; Rather, Hilal Ahmad; Ahangar, Ambreen Ali; Qureshi, Umar Amin; Dar, Parvez; Ahmed, Qazi Iqbal; Charoo, Bashir Ahmed; Ali, Syed Wajid

    To study the effect of thiamine administration on the resolution of pulmonary hypertension in exclusively breastfed infants. Prospective cohort study. Hospital based study of a tertiary care hospital. A total of 29 infants with 17 males (58.6%) and 12 females (41.4%) were included in the study. In addition to the management of shock, right heart failure and renal failure, patients received intravenous thiamine 100mg/kg IV followed by 10mg/day till introduction of supplementary feeds. Resolution of shock, metabolic complications and pulmonary hypertension. Mean age at presentation was 78.45±30.7 days. All infants were exclusively breastfed. 86.2% of mothers were on customary dietary restrictions. Biventricular failure and tachycardia was commonly present. There were four deaths in our series. Acute metabolic acidosis was a universal feature with a mean pH of 7.21±0.15. Pulmonary hypertension was present in all patients on admission. Intravenous thiamine 100mg/kg IV stat was given immediately after documenting pulmonary hypertension. Repeat echocardiography showed complete resolution of pulmonary hypertension. Many infants present to us with Shoshin beriberi with unusually high pulmonary pressures. These patients respond to thiamine challenge with prompt resolution of metabolic complications and reversal of pulmonary hypertension. We believe this is first of its kind from the region, which is reported. Copyright © 2016. Published by Elsevier B.V.

  12. Receptor for advanced glycation endproducts (RAGE maintains pulmonary structure and regulates the response to cigarette smoke.

    Directory of Open Access Journals (Sweden)

    Lisa Wolf

    Full Text Available The receptor for advanced glycation endproducts (RAGE is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/- mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.

  13. Pulmonary Cryptococcosis: Imaging Findings in 23 Non-AIDS Patients

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyoung Doo; Lee, Kyung Soo; Kim, Tae Sung; Yi, Chin A; Chung, Myung Jin [Samsung Medical Center, Seoul (Korea, Republic of); Man Pyo Chung; O Jung Kwon [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-08-15

    We aimed to review the patterns of lung abnormalities of pulmonary cryptococcosis on CT images, position emission tomography (PET) findings of the disease, and the response of lung abnormalities to the therapies in non-AIDS patients. We evaluated the initial CT (n = 23) and 18F-fluorodeoxyglucose (FDG) PET (n = 10), and follow-up (n = 23) imaging findings of pulmonary cryptococcosis in 23 non-AIDS patients. Lung lesions were classified into five patterns at CT: single nodular, multiple clustered nodular, multiple scattered nodular, mass-like, and bronchopneumonic patterns. The CT pattern analyses, PET findings, and therapeutic responses were recorded. A clustered nodular pattern was the most prevalent and was observed in 10 (43%) patients. This pattern was followed by solitary pulmonary nodular (n = 4, 17%), scattered nodular (n = 3, 13%), bronchopneumonic (n = 2, 9%), and single mass (n = 1, 4%) patterns. On PET scans, six (60%) of 10 patients showed higher FDG uptake and four (40%) demonstrated lower FDG uptake than the mediastinal blood pool. With specific treatment of the disease, a complete clearance of lung abnormalities was noted in 15 patients, whereas a partial response was noted in seven patients. In one patient where treatment was not performed, the disease showed progression. Pulmonary cryptococcosis most commonly appears as clustered nodules and is a slowly progressive and slowly resolving pulmonary infection. In two-thirds of patients, lung lesions show high FDG uptake, thus simulating a possible malignant condition

  14. Measurement of regional pulmonary blood volume in patients with increased pulmonary blood flow or pulmonary arterial hypertension

    International Nuclear Information System (INIS)

    Wollmer, P.; Rozcovek, A.; Rhodes, C.G.; Allan, R.M.; Maseri, A.

    1984-01-01

    The effects of chronic increase in pulmonary blood flow and chronic pulmonary hypertension on regional pulmonary blood volume was measured in two groups of patients. One group of patients had intracardiac, left-to-right shunts without appreciable pulmonary hypertension, and the other consisted of patients with Eisenmenger's syndrome or primary pulmonary hypertension, i.e. patients with normal or reduced blood flow and severe pulmonary hypertension. A technique based on positron tomography was used to measure lung density (by transmission scanning) and regional pulmonary blood volume (after inhalation of /sup 11/CO). The distribution of pulmonary blood volume was more uniform in patients with chronic increase in pulmonary blood flow than in normal subjects. There were also indications of an absolute increase in intrapulmonary blood volume by about 15%. In patients with chronic pulmonary arterial hypertension, the distribution of pulmonary blood volume was also abnormally uniform. There was, however, no indication that overall intrapulmonary blood volume was substantially different from normal subjects. The abnormally uniform distribution of pulmonary blood volume can be explained by recruitment and/or dilatation of vascular beds. Intrapulmonary blood volume appears to be increased in patients with intracardiac, left-to-right shunts. With the development of pulmonary hypertension, intrapulmonary blood volume falls, which may be explained by reactive changes in the vasculature and/or obliteration of capillaries

  15. When a pulmonary embolism is not a pulmonary embolism: a rare case of primary pulmonary leiomyosarcoma

    Directory of Open Access Journals (Sweden)

    Nargiz Muganlinskaya

    2015-12-01

    Full Text Available Arterial leiomyosarcomas account for up to 21% of vascular leiomyosarcomas, with 56% of arterial leiomyosarcomas occurring in the pulmonary artery. While isolated cases of primary pulmonary artery leiomyosarcoma document survival up to 36 months after treatment, these uncommon, aggressive tumors are highly lethal, with 1-year survival estimated at 20% from the onset of symptoms. We discuss a rare case of a pulmonary artery leiomyosarcoma that was originally diagnosed as a pulmonary embolism (PE. A 72-year-old Caucasian female was initially diagnosed with ‘saddle pulmonary embolism’ based on computerized tomographic angiography of the chest 2 months prior to admission and placed on anticoagulation. Dyspnea escalated, and serial computed tomography scans showed cardiomegaly with pulmonary emboli involving the right and left main pulmonary arteries with extension into the right and left upper and lower lobe branches. An echocardiogram on admission showed severe pulmonary hypertension with a pulmonary artery pressure of 82.9 mm Hg, and a severely enlarged right ventricle. Respiratory distress and multiorgan failure developed and, unfortunately, the patient expired. Autopsy showed a lobulated, yellow mass throughout the main pulmonary arteries measuring 13 cm in diameter. The mass extended into the parenchyma of the right upper lobe. On microscopy, the mass was consistent with a high-grade primary pulmonary artery leiomyosarcoma. Median survival of patients with primary pulmonary artery leiomyosarcoma without surgery is one and a half months, and mortality is usually due to right-sided heart failure. Pulmonary artery leiomyosarcoma is a rare but highly lethal disease commonly mistaken for PE. Thus, we recommend clinicians to suspect this malignancy when anticoagulation fails to relieve initial symptoms. In conclusion, early detection and suspicion of pulmonary artery leiomyosarcoma should be considered in patients refractory to anticoagulation

  16. Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N; Kanwar, S S

    2017-02-01

    In the present study, different transcripts of Trichoderma harzianum ThHP-3 were evaluated for their response against four fungal pathogens Fusarium oxysporum, Colletotrichum capsici, Colletotrichum truncatum and Gloesercospora sorghi using RT-qPCR. The time course study of T. harzianum transcripts related to signal transduction, lytic enzymes, secondary metabolites and various transporters revealed variation in expression against four fungal pathogens. In a broader term, the transcripts were upregulated at various time intervals but the optimum expression of cyp3, abc, nrp, tga1, pmk, ech42 and glh20 varied with respect to host fungi. Additionally, the expression of transcripts related to transporters/cytochromes was also observed against Fusarium oxysporum after 96h whereas transcripts related to secondary metabolites and lytic enzymes showed significant difference in expression against Colletotrichum spp. from 72 to 96h. This is first study on transcriptomic response of T. harzianum against pathogenic fungi which shows their host specific response. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  18. Pulmonary histiocytosis X - imaging aspects of pulmonary involvement

    International Nuclear Information System (INIS)

    Sabedotti, Ismail Fernando; Maeda, Lucimara; Ferreira, Daniel Miranda; Montandon, Cristiano; Marins, Jose Luiz C.

    1999-01-01

    Pulmonary histiocytosis X is an idiopathic disease which is and uncommon but important cause of pulmonary fibrosis in young adults. Chest radiographs and high resolution computed tomographic (HRCT) scans of the lungs of 7 patients diagnosed as pulmonary histiocytosis X were examined retrospectively. The authors reviewed the pathologic, clinical and radiographic features of pulmonary histiocytosis X, focusing on differential diagnosis and disease progression. Pulmonary histiocytosis X can be suspected on the basis of chest radiographic findings; predominantly upper lobe nodules and cysts present an increased sensitivity and are virtually pathognomonic of this disorder. Chest HRCT allows good assessment of the evolution of pulmonary histiocytosis X and is also valuable in distinguishing histiocytosis from other disorders that produces nodules or cysts. (author)

  19. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects.

    Science.gov (United States)

    Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C

    2018-04-03

    The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1

  20. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury.

    Science.gov (United States)

    Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco

    2013-11-01

    The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.

  1. Complexity of the Microglial Activation Pathways that Drive Innate Host Responses During Lethal Alphavirus Encephalitis in Mice

    Directory of Open Access Journals (Sweden)

    Nilufer Esen

    2012-04-01

    Full Text Available Microglia express multiple TLRs (Toll-like receptors and provide important host defence against viruses that invade the CNS (central nervous system. Although prior studies show these cells become activated during experimental alphavirus encephalitis in mice to generate cytokines and chemokines that influence virus replication, tissue inflammation and neuronal survival, the specific PRRs (pattern recognition receptors and signalling intermediates controlling microglial activation in this setting remain unknown. To investigate these questions directly in vivo, mice ablated of specific TLR signalling molecules were challenged with NSV (neuroadapted Sindbis virus and CNS viral titres, inflammatory responses and clinical outcomes followed over time. To approach this problem specifically in microglia, the effects of NSV on primary cells derived from the brains of wild-type and mutant animals were characterized in vitro. From the standpoint of the virus, microglial activation required viral uncoating and an intact viral genome; inactivated virus particles did not elicit measurable microglial responses. At the level of the target cell, NSV triggered multiple PRRs in microglia to produce a broad range of inflammatory mediators via non-overlapping signalling pathways. In vivo, disease survival was surprisingly independent of TLR-driven responses, but still required production of type-I IFN (interferon to control CNS virus replication. Interestingly, the ER (endoplasmic reticulum protein UNC93b1 facilitated host survival independent of its known effects on endosomal TLR signalling. Taken together, these data show that alphaviruses activate microglia via multiple PRRs, highlighting the complexity of the signalling networks by which CNS host responses are elicited by these infections.

  2. Pharmacogenetics of steroid-responsive acute graft-versus-host disease.

    Science.gov (United States)

    Arora, Mukta; Weisdorf, Daniel J; Shanley, Ryan M; Thyagarajan, Bharat

    2017-05-01

    Glucocorticoids are central to effective therapy of acute graft-versus-host disease (GVHD). However, only about half of the patients respond to steroids in initial therapy. Based on postulated mechanisms for anti-inflammatory effectiveness, we explored genetic variations in glucocorticoid receptor, co-chaperone proteins, membrane transporters, inflammatory mediators, and variants in the T-cell receptor complex in hematopoietic cell transplant recipients with acute GVHD requiring treatment with steroids and their donors toward response at day 28 after initiation of therapy. A total of 300 recipient and donor samples were analyzed. Twenty-three SNPs in 17 genes affecting glucocorticoid pathways were included in the analysis. In multiple regression analysis, donor SNP rs3192177 in the ZAP70 gene (O.R. 2.8, 95% CI: 1.3-6.0, P=.008) and donor SNP rs34471628 in the DUSPI gene (O.R. 0.3, 95% CI: 0.1-1.0, P=.048) were significantly associated with complete or partial response. However, after adjustment for multiple testing, these SNPs did not remain statistically significant. Our results, on this small, exploratory, hypothesis generating analysis suggest that common genetic variation in glucocorticoid pathways may help identify subjects with differential response to glucocorticoids. This needs further assessment in larger datasets and if validated could help identify subjects for alternative treatments and design targeted treatments to overcome steroid resistance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  4. Acquired Antibody Responses against Plasmodium vivax Infection Vary with Host Genotype for Duffy Antigen Receptor for Chemokines (DARC)

    Science.gov (United States)

    Maestre, Amanda; Muskus, Carlos; Duque, Victoria; Agudelo, Olga; Liu, Pu; Takagi, Akihide; Ntumngia, Francis B.; Adams, John H.; Sim, Kim Lee; Hoffman, Stephen L.; Corradin, Giampietro; Velez, Ivan D.; Wang, Ruobing

    2010-01-01

    Background Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are ‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. Methodology/Findings We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. Conclusion/Significance Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the

  5. Acquired antibody responses against Plasmodium vivax infection vary with host genotype for duffy antigen receptor for chemokines (DARC.

    Directory of Open Access Journals (Sweden)

    Amanda Maestre

    2010-07-01

    Full Text Available Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1 and Duffy binding protein (PvDBP varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B. The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades

  6. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  7. Pulmonary arteriography by digital subtraction angiographic method in cyanotic heart disease with pulmonary stenosis or pulmonary atresia

    International Nuclear Information System (INIS)

    Kobayashi, Junjiro; Hirose, Hajime; Nakano, Susumu

    1985-01-01

    Pulmonary arteriography was performed by digital subtraction angiographic (DSA) method in 10 patients with cyanotic heart disease associated with pulmonary stenosis or pulmonary atresia. Ten patients consisted of five patients with tetralogy of Fallot, three with single ventricle and pulmonary stenosis, and two with pseudotruncus arteriosus. Hepato-clavicular position was taken in four patients. Pulmonary artery and its main branches were opacified and recognized clearly, and their diameter could be measured accurately with a small amount of contrast medium. There was a good correlation between the diameter of pulmonary artery measured by DSA and that measured by conventional pulmonary arteriography. DSA is a useful method for evaluating the size and the stenosis of pulmonary artery especially in small cyanotic infants. (author)

  8. Pulmonary alveolar proteinosis: Quantitative CT and pulmonary functional correlations

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yubao, E-mail: yubaoguan@163.com [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Zeng, Qingsi [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); Yang, Haihong; Zheng, Jinping; Li, Shiyue; Gao, Yi [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Deng, Yu [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); Mei, Jiang [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); He, Jianxing, E-mail: jianxing63@163.com [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Zhong, Nanshan, E-mail: nanshan@vip.163.com [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China)

    2012-09-15

    Objective: We assessed the relationship between quantitative computer tomography (qCT) and the pulmonary function test (PFT) or blood gas analysis in pulmonary alveolar proteinosis (PAP) patients, as well as the utility of these analyses to monitor responses to whole lung lavage (WLL) therapy. Methods: Thirty-eight PAP patients simultaneously received a CT scan and PFT. Fifteen of these patients, undergoing sequential WLL for a total of 20 lavages, also underwent chest CT scans and blood gas analysis before and after WLL, and 14 of 15 patients underwent simultaneous PFT analysis. Differences between the qCT and PFT results were analyzed by canonical correlation. Results: PAP patients with low predicted values for FVC, FEV1, D{sub LCO} and D{sub LCO}/VA indicated small airspace volume and mean lung inflation, low airspace volume/total lung volume ratio and high mean lung density. Correlation and regression analysis revealed a strong correlation between D{sub LCO} and PaO{sub 2} values with CT results. The qCT results indicated that WLL significantly decreased lung weights and mean lung densities, and improved the total airspace volume/total lung volume ratios and mean lung inflations. Conclusion: Quantitative CT may be a sensitive tool for measuring the response of PAP patients to medical interventions such as WLL.

  9. Non-infective pulmonary disease in HIV-positive children

    International Nuclear Information System (INIS)

    Theron, Salomine; Andronikou, Savvas; George, Reena; Plessis, Jaco du; Hayes, Murray; Mapukata, Ayanda; Goussard, Pierre; Gie, Robert

    2009-01-01

    It is estimated that over 90% of children infected with human immunodeficiency virus (HIV) live in the developing world and particularly in sub-Saharan Africa. Pulmonary disease is the most common clinical feature of acquired immunodeficiency syndrome (AIDS) in infants and children causing the most morbidity and mortality, and is the primary cause of death in 50% of cases. Children with lung disease are surviving progressively longer because of earlier diagnosis and antiretroviral treatment and, therefore, thoracic manifestations have continued to change and unexpected complications are being encountered. It has been reported that 33% of HIV-positive children have chronic changes on chest radiographs by the age of 4 years. Lymphocytic interstitial pneumonitis is common in the paediatric HIV population and is responsible for 30-40% of pulmonary disease. HIV-positive children also have a higher incidence of pulmonary malignancies, including lymphoma and pulmonary Kaposi sarcoma. Immune reconstitution inflammatory syndrome is seen after highly active antiretroviral treatment. Complications of pulmonary infections, aspiration and rarely interstitial pneumonitis are also seen. This review focuses on the imaging findings of non-infective chronic pulmonary disease. (orig.)

  10. Evolution of larval competitiveness and associated life-history traits in response to host shifts in a seed beetle.

    Science.gov (United States)

    Fox, C W; Messina, F J

    2018-02-01

    Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life-history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co-occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition-related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy

  11. The effects of balneotherapy on acute, process-related, and cumulative peripheral cardiac responses and pulmonary functions in patients with musculoskeletal disorders.

    Science.gov (United States)

    Şaş, Senem; Toprak Çelenay, Şeyda; Özer Kaya, Derya

    2016-12-20

    This study aimed to evaluate the effects of balneotherapy on acute, process-related, and cumulative peripheral cardiac responses and pulmonary functions in patients with musculoskeletal disorders. Ninety-eight patients with musculoskeletal disorders referred to physiotherapy with balneotherapy were recruited. The patients received balneotherapy for 20 min 5 times per week for 2 weeks. Blood pressure and pulse were measured at the 0th, 5th, 10th, 20th, and 30th minutes during the 1st and 10th sessions. All patients were subjected to pulmonary function testing before balneotherapy and after the 10th session. It was found that systolic blood pressure decreased between the 10th and 20th minutes of the 1st session and between the 10th and 20th minutes and the 20th and 30th minutes of the 10th session (P balneotherapy (P balneotherapy (P Balneotherapy may be effective for improving peripheral cardiopulmonary responses in patients with musculoskeletal disorders.

  12. Pathophysiology and treatment of pulmonary hypertension in sickle cell disease

    Science.gov (United States)

    Castro, Oswaldo L.; Machado, Roberto F.

    2016-01-01

    Pulmonary hypertension affects ∼10% of adult patients with sickle cell disease (SCD), particularly those with the homozygous genotype. An increase in pulmonary artery systolic pressure, estimated noninvasively by echocardiography, helps identify SCD patients at risk for pulmonary hypertension, but definitive diagnosis requires right-heart catheterization. About half of SCD-related pulmonary hypertension patients have precapillary pulmonary hypertension with potential etiologies of (1) a nitric oxide deficiency state and vasculopathy consequent to intravascular hemolysis, (2) chronic pulmonary thromboembolism, or (3) upregulated hypoxic responses secondary to anemia, low O2 saturation, and microvascular obstruction. The remainder have postcapillary pulmonary hypertension secondary to left ventricular dysfunction. Although the pulmonary artery pressure in SCD patients with pulmonary hypertension is only moderately elevated, they have a markedly higher risk of death than patients without pulmonary hypertension. Guidelines for diagnosis and management of SCD-related pulmonary hypertension were published recently by the American Thoracic Society. Management of adults with sickle-related pulmonary hypertension is based on anticoagulation for those with thromboembolism; oxygen therapy for those with low oxygen saturation; treatment of left ventricular failure in those with postcapillary pulmonary hypertension; and hydroxyurea or transfusions to raise the hemoglobin concentration, reduce hemolysis, and prevent vaso-occlusive events that cause additional increases in pulmonary pressure. Randomized trials have not identified drugs to lower pulmonary pressure in SCD patients with precapillary pulmonary hypertension. Patients with hemodynamics of pulmonary arterial hypertension should be referred to specialized centers and considered for treatments known to be effective in other forms of pulmonary arterial hypertension. There have been reports that some of these treatments

  13. DNA Damage and Pulmonary Hypertension

    Science.gov (United States)

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  14. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda.

    Science.gov (United States)

    Silva-Brandão, Karina Lucas; Horikoshi, Renato Jun; Bernardi, Daniel; Omoto, Celso; Figueira, Antonio; Brandão, Marcelo Mendes

    2017-10-16

    Our main purpose was to evaluate the expression of plastic and evolved genes involved in ecological speciation in the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW); and to demonstrate how host plants might influence lineage differentiation in this polyphagous insect. FAW is an important pest of several crops worldwide, and it is differentiated into host plant-related strains, corn (CS) and rice strains (RS). RNA-Seq and transcriptome characterization were applied to evaluate unbiased genetic expression differences in larvae from the two strains, fed on primary (corn) and alternative (rice) host plants. We consider that genes that are differently regulated by the same FAW strain, as a response to different hosts, are "plastic". Otherwise, differences in gene expression between the two strains fed on the same host are considered constitutive differences. Individual performance parameters (larval and pupal weight) varied among conditions (strains vs. hosts). A total of 3657 contigs was related to plastic response, and 2395 contigs were differentially regulated in the two strains feeding on preferential and alternative hosts (constitutive contigs). Three molecular functions were present in all comparisons, both down- and up-regulated: oxidoreductase activity, metal-ion binding, and hydrolase activity. Metabolization of foreign chemicals is among the key functions involved in the phenotypic variation of FAW strains. From an agricultural perspective, high plasticity in families of detoxifying genes indicates the capacity for a rapid response to control compounds such as insecticides.

  15. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  16. Red Turpentine Beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), Response to Host Semiochemicals in China

    Science.gov (United States)

    Jianghua Sun; Zhengwan Miao; Zhen Zhang; Zhongning Zhan; Nancy Gillette

    2004-01-01

    The response of the introduced red turpentine beetle, Dendroctonus valens LeConte, to host semiochemicals in Shanxi Province, China, was distinctly different from that reported in previous studies conducted in the western part of the native range of D. valens in the central Sierra Nevada, CA. This Þnding suggests either that...

  17. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    Science.gov (United States)

    2011-12-01

    by an additional gene. Of note, this model does not rule out the possibility that multiple or different genes contribute to the host response to MDP...Immunity 35: 34–44. 62. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflamma- some: a caspase-1-activation platform that regulates

  18. Pulmonary complication associated with head and neck cancer surgery

    International Nuclear Information System (INIS)

    Manzoor, T.; Ahmed, Z.; Sheikh, N.A.; Khan, M.M.

    2007-01-01

    To evaluate the frequency of short-term pulmonary complications in the patients undergoing various head and neck cancer surgeries in our setup and to assess possible risk factors responsible for these complications. Seventy patients of age group 20 to 80 years, regardless of gender, treated surgically for head and neck cancers were enrolled. Main outcome measures included development of pulmonary complications following 15 days of oncological surgery. The complications studied were pneumothorax, bronchopneumonia, atelectasis, pulmonary embolism and cardiopulmonary arrest. A total of 24.28% patients suffered from postoperative pulmonary complications; 17.14% developed bronchopneumonia, 5.71% pulmonary embolism, and 1.42% went into cardiopulmonary arrest, none developed pneumothorax or pulmonary atelectasis. A significant correlation of postoperative bronchopneumonia was seen with heavy smoking and assisted ventilation. Pulmonary embolism was associated with extended assisted ventilation and prolonged surgery. Cardiopulmonary arrest was associated with comorbidity and assisted ventilation after surgery. The frequency of bronchopneumonia supersedes all of the postoperative pulmonary complications in head and neck oncological surgery. Patients at risk of developing postoperative complications are heavy smokers, diabetics, those undergoing prolonged surgery, tracheostomy, and extended assisted ventilation. (author)

  19. Overexpression of stress-related genes in Cuscuta campestris in response to host defense reactions

    Directory of Open Access Journals (Sweden)

    Hamed Rezaei

    2017-07-01

    Full Text Available Herb dodder ( Cuscuta spp. is one of the most important parasitic plants that can severely affect crop yields in the world. So far, interactions of this parasitic plant with hosts were not investigated adequately. Here, we conducted a differential expression analyzes and identified a number of genes that were differentially expressed in haustorium tissue compared with the stem of Cuscuta campestris growing on Alfalfa. We obtained 439 cDNA fragments from haustoria (parasite-host connection zone and stems (25 cm away from connections zones using the cDNA-AFLP (Amplified Fragment Length Polymorphism method with eight different primer combinations. Of 439 transcript-derived fragments (TDFs that were detected, 145 fragments were identified as differentially expressed genes. Five TDF sequences were similar to known functional genes involved in signal transduction, metabolism, respiration, and stress responses. Genes encoding DEAD-box ATP-dependent RNA helicase, potential heme-binding protein, lysine-specific demethylase 5A were selected for qRT-PCR. The qRT-PCR analyzes confirmed the results obtained using cDNA-AFLP. Our findings shed light on the elicitation of dodder defense responses in the connection zone to overcome plant defense reactions.

  20. Rare case of Primary Pulmonary Extranodal Non-Hodgkin’s Lymphoma in a Patient with Sjogrens Syndrome: Role of FDG-PET/CT in the Initial Staging and Evaluating Response to Treatment

    Directory of Open Access Journals (Sweden)

    Gonca G. Bural

    2012-12-01

    Full Text Available A 64-year old woman with a long standing Sjogren’s syndrome was undergoing evaluation for renal transplant surgery when two pulmonary opacities were detected on chest CT. Subsequent biopsy revealed extranodal marginal B-cell non-Hodgkin’s lymphoma (NHL. An FDG-PET/CT scan was then performed which demonstrated isolated FDG avid pulmonary involvement. After therapy, FDG-PET/CT scans showed good response to treatment with near complete resolution of FDG avidity. This rare case illustrates the rare pulmonary manifestation of extranodal lymphoma in a patient with Sjogren’s syndrome and emphasizes the value of FDG PET/CT in the initial staging and evaluation of response to treatment, which has not previously been published. (MIRT 2012;21:117-120

  1. Aspergillus fumigatus melanins: Interference with the host endocytosis pathway and impact on virulence

    Directory of Open Access Journals (Sweden)

    Thorsten eHeinekamp

    2013-01-01

    Full Text Available The opportunistic human pathogenic fungus Aspergillus fumigatus produces at least two types of melanin, namely pyomelanin and dihydroxynaphthalene (DHN melanin. Pyomelanin is produced during tyrosine catabolism via accumulation of homogentisic acid. Although pyomelanin protects the fungus against reactive oxygen species and acts as a defense compound in response to cell wall stress, mutants deficient for pyomelanin biosynthesis do not differ in virulence when tested in a murine infection model for invasive pulmonary aspergillosis. DHN melanin is responsible for the characteristic grey-greenish color of A. fumigatus conidia. Mutants lacking a functional polyketide synthase PksP, the enzyme responsible for the initial step in DHN-melanin formation, i.e., the synthesis of naphthopyrone, produce white spores and are attenuated in virulence. The activity of PksP was found to be essential not only for inhibition of apoptosis of phagocytes by interfering with the host PI3K/Akt signaling cascade but also for effective inhibition of acidification of conidia-containing phagolysosomes. These features allow A. fumigatus to survive in phagocytes and thereby to escape from human immune effector cells and to become a successful pathogen.

  2. Pulmonary function responses to ozone in smokers with a limited smoking history

    International Nuclear Information System (INIS)

    Bates, Melissa L.; Brenza, Timothy M.; Ben-Jebria, Abdellaziz; Bascom, Rebecca; Eldridge, Marlowe W.; Ultman, James S.

    2014-01-01

    In non-smokers, ozone (O 3 ) inhalation causes decreases in forced expiratory volume (FEV 1 ) and dead space (V D ) and increases the slope of the alveolar plateau (S N ). We previously described a population of smokers with a limited smoking history that had enhanced responsiveness to brief O 3 boluses and aimed to determine if responsiveness to continuous exposure was also enhanced. Thirty smokers (19 M, 11 F, 24 ± 4 years, 6 ± 4 total years smoking,4 ± 2 packs/week) and 30 non-smokers (17 M, 13 F, 25 ± 6 years) exercised for 1 h on a cycle ergometer while breathing 0.30 ppm O 3 . Smokers and non-smokers were equally responsive in terms of FEV 1 (− 9.5 ± 1.8% vs − 8.7 ± 1.9%). Smokers alone were responsive in terms of V D (− 6.1 ± 1.2%) and S N (9.1 ± 3.4%). There was no difference in total delivered dose. Dead space ventilation (V D /V T ) was not initially different between the two groups, but increased in the non-smokers (16.4 ± 2.8%) during the exposure, suggesting that the inhaled dose may be distributed more peripherally in smokers. We also conclude that these cigarette smokers retain their airway responsiveness to O 3 and, uniquely, experience changes in V D that lead to heterogeneity in airway morphometry and an increase in S N . - Highlights: • We previously found lung function responses to O 3 bolus exposure in smokers. • Here, we describe their responsiveness to continuous O 3 exposure with exercise. • Spirometry and capnography were used to assess pulmonary function changes. • Enhanced bronchoconstriction in smokers increases parenchymal delivery of O 3

  3. Pulmonary function responses to ozone in smokers with a limited smoking history

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Melissa L., E-mail: mlbates@pediatrics.wisc.edu [Interdisciplinary Graduate Degree Program in Physiology, Pennsylvania State University, University Park, PA 16802 (United States); Department of Pediatrics, Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); Brenza, Timothy M. [Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Ben-Jebria, Abdellaziz [Interdisciplinary Graduate Degree Program in Physiology, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bascom, Rebecca [Division of Pulmonary, Allergy and Critical Care Medicine, Penn State College of Medicine, Hershey, PA 17033 (United States); Eldridge, Marlowe W. [Department of Pediatrics, Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 (United States); Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53792 (United States); Department of Bioengineering, University of Wisconsin-Madison, Madison, WI 53792 (United States); Ultman, James S. [Interdisciplinary Graduate Degree Program in Physiology, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-07-01

    In non-smokers, ozone (O{sub 3}) inhalation causes decreases in forced expiratory volume (FEV{sub 1}) and dead space (V{sub D}) and increases the slope of the alveolar plateau (S{sub N}). We previously described a population of smokers with a limited smoking history that had enhanced responsiveness to brief O{sub 3} boluses and aimed to determine if responsiveness to continuous exposure was also enhanced. Thirty smokers (19 M, 11 F, 24 ± 4 years, 6 ± 4 total years smoking,4 ± 2 packs/week) and 30 non-smokers (17 M, 13 F, 25 ± 6 years) exercised for 1 h on a cycle ergometer while breathing 0.30 ppm O{sub 3}. Smokers and non-smokers were equally responsive in terms of FEV{sub 1} (− 9.5 ± 1.8% vs − 8.7 ± 1.9%). Smokers alone were responsive in terms of V{sub D} (− 6.1 ± 1.2%) and S{sub N} (9.1 ± 3.4%). There was no difference in total delivered dose. Dead space ventilation (V{sub D}/V{sub T}) was not initially different between the two groups, but increased in the non-smokers (16.4 ± 2.8%) during the exposure, suggesting that the inhaled dose may be distributed more peripherally in smokers. We also conclude that these cigarette smokers retain their airway responsiveness to O{sub 3} and, uniquely, experience changes in V{sub D} that lead to heterogeneity in airway morphometry and an increase in S{sub N}. - Highlights: • We previously found lung function responses to O{sub 3} bolus exposure in smokers. • Here, we describe their responsiveness to continuous O{sub 3} exposure with exercise. • Spirometry and capnography were used to assess pulmonary function changes. • Enhanced bronchoconstriction in smokers increases parenchymal delivery of O{sub 3}.

  4. Prediction of therapeutic response in steroid-treated pulmonary sarcoidosis. Evaluation of clinical parameters, bronchoalveolar lavage, gallium-67 lung scanning, and serum angiotensin-converting enzyme levels

    International Nuclear Information System (INIS)

    Hollinger, W.M.; Staton, G.W. Jr.; Fajman, W.A.; Gilman, M.J.; Pine, J.R.; Check, I.J.

    1985-01-01

    To find a pretreatment predictor of steroid responsiveness in pulmonary sarcoidosis the authors studied 21 patients before and after steroid treatment by clinical evaluation, pulmonary function tests, bronchoalveolar lavage (BAL), gallium-67 lung scan, and serum angiotensin-converting enzyme (SACE) level. Although clinical score, forced vital capacity (FVC), BAL percent lymphocytes (% lymphs), quantitated gallium-67 lung uptake, and SACE levels all improved with therapy, only the pretreatment BAL % lymphs correlated with the improvement in FVC (r = 0.47, p less than 0.05). Pretreatment BAL % lymphs of greater than or equal to 35% predicted improvement in FVC of 10/11 patients, whereas among 10 patients with BAL % lymphs less than 35%, 5 patients improved and 5 deteriorated. Clinical score, pulmonary function parameters, quantitated gallium-67 lung uptake, and SACE level used alone, in combination with BAL % lymphs or in combination with each other, did not improve this predictive value. The authors conclude that steroid therapy improves a number of clinical and laboratory parameters in sarcoidosis, but only the pretreatment BAL % lymphs are useful in predicting therapeutic responsiveness

  5. Pulmonary capillary pressure in pulmonary hypertension.

    Science.gov (United States)

    Souza, Rogerio; Amato, Marcelo Britto Passos; Demarzo, Sergio Eduardo; Deheinzelin, Daniel; Barbas, Carmen Silvia Valente; Schettino, Guilherme Paula Pinto; Carvalho, Carlos Roberto Ribeiro

    2005-04-01

    Pulmonary capillary pressure (PCP), together with the time constants of the various vascular compartments, define the dynamics of the pulmonary vascular system. Our objective in the present study was to estimate PCPs and time constants of the vascular system in patients with idiopathic pulmonary arterial hypertension (IPAH), and compare them with these measures in patients with acute respiratory distress syndrome (ARDS). We conducted the study in two groups of patients with pulmonary hypertension: 12 patients with IPAH and 11 with ARDS. Four methods were used to estimate the PCP based on monoexponential and biexponential fitting of pulmonary artery pressure decay curves. PCPs in the IPAH group were considerably greater than those in the ARDS group. The PCPs measured using the four methods also differed significantly, suggesting that each method measures the pressure at a different site in the pulmonary circulation. The time constant for the slow component of the biexponential fit in the IPAH group was significantly longer than that in the ARDS group. The PCP in IPAH patients is greater than normal but methodological limitations related to the occlusion technique may limit interpretation of these data in isolation. Different disease processes may result in different times for arterial emptying, with resulting implications for the methods available for estimating PCP.

  6. No effect of continuous i.p. infusion of bupivacaine on postoperative analgesia, pulmonary function and the stress response to surgery

    DEFF Research Database (Denmark)

    Scott, N B; Mogensen, T; Greulich, A

    1988-01-01

    In a double-blind prospective study, 20 patients undergoing major abdominal surgery were allocated randomly to receive a continuous 8-h i.p. infusion of either physiological saline or 0.25% bupivacaine 20 ml h-1 (in saline) following a loading dose of saline 1 ml kg-1 or 0.25% bupivacaine 1 ml kg-1...... was without effect in the management of pain, postoperative pulmonary dysfunction and the stress response in this group of patients....... analogue scale). Postoperative pain, impairment in pulmonary function and increase in serum cortisol and glucose concentrations were not influenced by the i.p. infusion of bupivacaine when compared with saline. This study shows that the i.p. instillation of therapeutically safe doses of bupivacaine...

  7. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

    Directory of Open Access Journals (Sweden)

    McDermott Jason E

    2011-11-01

    Full Text Available Abstract Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.

  8. Pulmonary edema

    Science.gov (United States)

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  9. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Zhengjun Yi

    Full Text Available Role of microRNA (miRNA has been highlighted in pathogen-host interactions recently. At present, their role in active pulmonary tuberculosis is unknown. The aim of the study was to delineate miRNA expression in sputum supernatant of patients with active pulmonary tuberculosis. Expression of miRNAs was evaluated by microarray analysis and differentially expressed miRNAs were validated by RT-qPCR. Secreted cytokines TNF-α and IL-6 were measured by ELISA. We found that 95 miRNAs were differentially expressed between tuberculosis group and controls. More miRNAs (52 out of 95 miRNAs were underexpressed than overexpressed during tuberculosis infection. Overexpression of miR-3179, miR-147 and underexpression of miR-19b-2* in TB group compared with controls were confirmed in the validation cohort. TNF-α and IL-6 levels were not significantly altered between TB group and controls. For the first time, differential expression of miRNAs in sputum was found in active pulmonary tuberculosis. The study provides rationale for identifying the role of miRNAs in the pathogenesis of pulmonary tuberculosis and indicates potential for miRNA-based therapeutic strategies.

  10. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis.

    Science.gov (United States)

    Yi, Zhengjun; Fu, Yurong; Ji, Rui; Li, Ruifang; Guan, Zhiyu

    2012-01-01

    Role of microRNA (miRNA) has been highlighted in pathogen-host interactions recently. At present, their role in active pulmonary tuberculosis is unknown. The aim of the study was to delineate miRNA expression in sputum supernatant of patients with active pulmonary tuberculosis. Expression of miRNAs was evaluated by microarray analysis and differentially expressed miRNAs were validated by RT-qPCR. Secreted cytokines TNF-α and IL-6 were measured by ELISA. We found that 95 miRNAs were differentially expressed between tuberculosis group and controls. More miRNAs (52 out of 95 miRNAs) were underexpressed than overexpressed during tuberculosis infection. Overexpression of miR-3179, miR-147 and underexpression of miR-19b-2* in TB group compared with controls were confirmed in the validation cohort. TNF-α and IL-6 levels were not significantly altered between TB group and controls. For the first time, differential expression of miRNAs in sputum was found in active pulmonary tuberculosis. The study provides rationale for identifying the role of miRNAs in the pathogenesis of pulmonary tuberculosis and indicates potential for miRNA-based therapeutic strategies.

  11. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available Salmonella enterica serovar Typhimurium (ST is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux in the GIT of mice pretreated with streptomycin. Photonic emission (PE was measured in GIT extracts (stomach, small intestine, cecum and colon at various time periods post-infection (PI. PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1 the faster elimination of ST-lux in the feces, and (2 reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1 increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2 elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  12. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  13. Comparison Between the Acute Pulmonary Vascular Effects of Oxygen with Nitric Oxide and Sildenafil

    Directory of Open Access Journals (Sweden)

    Ronald W. Day

    2015-03-01

    Full Text Available Objective. Right heart catheterization is performed in patients with pulmonary arterial hypertension to determine the severity of disease and their pulmonary vascular reactivity. The acute pulmonary vascular effect of inhaled nitric oxide is frequently used to identify patients who will respond favorably to vasodilator therapy. This study sought to determine whether the acute pulmonary vascular effects of oxygen with nitric oxide and intravenous sildenafil are similar. Methods. A retrospective, descriptive study of 13 individuals with pulmonary hypertension who underwent heart catheterization and acute vasodilator testing was performed. The hemodynamic measurements during five phases (21% to 53% oxygen, 100% oxygen, 100% oxygen with 20 ppm nitric oxide, 21% to 51% oxygen, and 21% to 51% oxygen with 0.05 mg/kg to 0.29 mg/kg intravenous sildenafil of the procedures were compared.Results. Mean pulmonary arterial pressure and pulmonary vascular resistance acutely decreased with 100% oxygen with nitric oxide, and 21% to 51% oxygen with sildenafil. Mean pulmonary arterial pressure (mm Hg, mean ± standard error of the mean was 38 ± 4 during 21% to 53% oxygen, 32 ± 3 during 100% oxygen, 29 ± 2 during 100% oxygen with nitric oxide, 37 ± 3 during 21% to 51% oxygen, and 32 ± 2 during 21% to 51% oxygen with sildenafil. There was not a significant correlation between the percent change in pulmonary vascular resistance from baseline with oxygen and nitric oxide, and from baseline with sildenafil (r2 = 0.011, p = 0.738. Conclusions. Oxygen with nitric oxide and sildenafil decreased pulmonary vascular resistance. However, the pulmonary vascular effects of oxygen and nitric oxide cannot be used to predict the acute response to sildenafil. Additional studies are needed to determine whether the acute response to sildenafil can be used to predict the long-term response to treatment with an oral phosphodiesterase V inhibitor.

  14. Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein.

    Science.gov (United States)

    Blomström, Anne-Lie; Gu, Quan; Barry, Gerald; Wilkie, Gavin; Skelton, Jessica K; Baird, Margaret; McFarlane, Melanie; Schnettler, Esther; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2015-04-19

    Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.

  15. Pulmonary tuberculosis

    Science.gov (United States)

    TB; Tuberculosis - pulmonary; Mycobacterium - pulmonary ... Pulmonary TB is caused by the bacterium Mycobacterium tuberculosis (M tuberculosis) . TB is contagious. This means the bacteria is easily spread from an infected person ...

  16. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers.

    Science.gov (United States)

    de Greeff, Astrid; Zadoks, Ruth; Ruuls, Lisette; Toussaint, Mathilda; Nguyen, Thi Kim Anh; Downing, Alison; Rebel, Johanna; Stockhofe-Zurwieden, Norbert; Smith, Hilde

    2013-06-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in response to Strep. uberis was compared between infected and control quarters in 3 animals. All quarters (n=16) were sampled at 16 different locations. Microarray data showed that 239 genes were differentially expressed between infected and control quarters. No differences in gene expression were observed between the different locations. Microarray data were confirmed for several genes using quantitative PCR analysis. Genes differentially expressed due to early Strep. uberis mastitis represented several stages of the process of infection: (1) pathogen recognition; (2) chemoattraction of neutrophils; (3) tissue repair mechanisms; and (4) bactericidal activity. Three different pathogen recognition genes were induced: ficolins, lipopolysaccharide binding protein, and toll-like receptor 2. Calgranulins were found to be the most strongly upregulated genes during early inflammation. By histology and immunohistochemistry, we demonstrated that changes in gene expression in response to Strep. uberis were induced both in infiltrating somatic milk cells and in mammary epithelial cells, demonstrating that the latter cell type plays a role in milk production as well as immune responsiveness. Given the rapid development of inflammation or mastitis after infection, early diagnosis of (Strep. uberis) mastitis is required for prevention of disease and spread of the pathogen. Insight into host responses could help to design immunomodulatory therapies to dampen inflammation after (early) diagnosis of Strep. uberis mastitis. Future research should focus on development of these early diagnostics and immunomodulatory components for mastitis treatment. Copyright © 2013 American Dairy Science

  17. Mean pressure of pulmonary arteries in non-callous silicosis at states 1 to 2 as determined by radiology in comparison to parameters of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M; Konrad, A; Adam, P; Scharf, R

    1984-11-19

    Fifty coal miners suffering from reticulonodular silicosis underwent catheterization of the right heart and showed latent or manifest pulmonary hypertension. It has been found that the statistical relationship between pulmonary arterial pressure and pulmonary function was only a loose one. Thirty percent of the studied subjects presented no alterations of the lung function but an increased pulmonary artery mean pressure at rest and under exercise, indicating that the Euler-Liljestrand-mechanism could hardly be responsible for these pressure changes. Subjects with silicosis who presented impaired lung function showed statistically significant higher pulmonary artery pressures than those without alteration of the lung function. It is likely that an additional pressure increase occurs secondary to Euler-Liljestrand-mechanism, when restrictive or obstructive impairments of ventilation emerge from the pneumoconiosis.

  18. Characterization of early host responses in adults with dengue disease

    Directory of Open Access Journals (Sweden)

    Ling Ling

    2011-08-01

    Full Text Available Abstract Background While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. Methods In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on denguevirus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. Results In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut, while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1, CCL8 (MCP-2, CXCL10 (IP-10 and CCL3 (MIP-1α, antimicrobial peptide β-defensin 1 (DEFB1, desmosome/intermediate junction component plakoglobin (JUP and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1. Conclusions These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease.

  19. Molecular mimicry modulates plant host responses to pathogens.

    Science.gov (United States)

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers

    OpenAIRE

    Piccart , Kristine; Verbeke , Joren; De Visscher , Anneleen; Piepers , Sofie; Haesebrouck , Freddy; De Vliegher , Sarne

    2016-01-01

    International audience; AbstractCoagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococc...

  1. Balloon Pulmonary Angioplasty in Chronic Thromboembolic Pulmonary Hypertension: New Horizons in the Interventional Management of Pulmonary Embolism.

    Science.gov (United States)

    Rivers-Bowerman, Michael D; Zener, Rebecca; Jaberi, Arash; de Perrot, Marc; Granton, John; Moriarty, John M; Tan, Kong T

    2017-09-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is an underdiagnosed potential complication of acute or recurrent pulmonary thromboembolic disease. Multiple studies suggest that up to 5% of patients with acute pulmonary thromboembolic disease go on to develop CTEPH. The prognosis of untreated CTEPH is poor, but advances in medical and surgical treatments over the past few decades have improved patient outcomes. The gold standard and curative treatment for CTEPH is pulmonary endarterectomy; however, some patients are inoperable and others who have undergone pulmonary endarterectomy experience persistent or recurrent pulmonary hypertension despite medical therapy. In recent years, balloon pulmonary angioplasty has emerged as a primary and adjunctive treatment for these CTEPH patients at expert or specialized centers. This review outlines an approach to balloon pulmonary angioplasty for CTEPH, including clinical presentation and evaluation; patient selection and indications; treatment planning; equipment and technique; overcoming technical challenges; recognition and management of complications; postprocedural care and clinical follow-up; and expected outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pulmonary rehabilitation programs in lung transplant: a literature review

    Directory of Open Access Journals (Sweden)

    Juliana Maria de Sousa Pinto

    2015-09-01

    Full Text Available Objective: To analyze, using a literature review, Pulmonary Rehabilitation (RP Programs in lung transplant. Methods: A literature review in July 2014 in Ebsco Host, Periódicos Capes, BVS and Science Direct data bases using descriptors in English (“lung transplantation”, “lung transplant” AND/OR “rehabilitation” and Portuguese (“reabilitação” AND/OR “transplante pulmonar”. The eligibility criterions were interventional studies of PR before and/or after lung transplant; participants who were candidates to lung transplant or lung transplant recipients; studies that applied any kind of PR program (hospital-based, homebased or outpatient and articles published in English, Spanish or Portuguese. Literature reviews, guidelines and case reports were excluded. The search process yielded 46 articles of which two were duplicated. After title and abstract screening 13 articles remained for full text reading. Six studies met the inclusion eligibility and were included in the review. Results: The studies involved patients with Chronic Obstructive Pulmonary Disease, Cystic Fibrosis, Pulmonary Hypertension, Interstitial Lung Disease and Pulmonary Fibrosis. Pulmonary function, exercise capacity, quality of life (QoL and quadriceps force were evaluated. Most interventions were outpatient programs with three months duration, three times a week and session with at least one hour. Protocols included physical training, educational approach and just one included nutritional, psychiatric and social assistant follow-up. The studies presented significant change in the six-minute walking distance, QoL and quadriceps force after PR programs. Conclusion: This review showed the benefits of the PR in the QoL and exercise capacity contributing to the Health Promotion of the patients.

  3. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or

  4. Host-Associated Differentiation: The Gape-and-Pinch Model

    Directory of Open Access Journals (Sweden)

    Stephen B. Heard

    2012-01-01

    Full Text Available Ecological speciation via host shifting has contributed to the astonishing diversity of phytophagous insects. The importance for host shifting of trait differences between alternative host plants is well established, but much less is known about trait variation within hosts. I outline a conceptual model, the “gape-and-pinch” (GAP model, of insect response to host-plant trait variation during host shifting and host-associated differentiation. I offer four hypotheses about insect use of plant trait variation on two alternative hosts, for insects at different stages of host-associated differentiation. Collectively, these hypotheses suggest that insect responses to plant trait variation can favour or oppose critical steps in herbivore diversification. I provide statistical tools for analysing herbivore trait-space use, demonstrate their application for four herbivores of the goldenrods Solidago altissima and S. gigantea, and discuss their broader potential to advance our understanding of diet breadth and ecological speciation in phytophagous insects.

  5. Social Host Ordinances and Policies. Prevention Update

    Science.gov (United States)

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2011

    2011-01-01

    Social host liability laws (also known as teen party ordinances, loud or unruly gathering ordinances, or response costs ordinances) target the location in which underage drinking takes place. Social host liability laws hold noncommercial individuals responsible for underage drinking events on property they own, lease, or otherwise control. They…

  6. Pulmonary lymphangioleiomyomatosis as a pulmonary manifestation of tuberous sclerosis - a case report-

    International Nuclear Information System (INIS)

    Lee, Young Rahn; Kang, Eun Young; Lee, Nam Joon; Suh, Won Hyuck

    1991-01-01

    Pulmonary lymphangioleiomyomatosis is a very rare disease mainly arising in reproductive-aged women. Pulmonary lymphangioleiomyomatosis as a pulmonary involvement of tuberous sclerosis is found in only 1 out of 100 patients. Pulmonary involvement in pulmonary lymphangioleiomyomatosis itself and that as a pulmonary manifestation of tuberous sclerosis has been considered very similar with regard to clinical, radiologic, and pathologic manifestations. We report 1 case of pulmonary lymphangioleiomyomatosis as a pulmonary manifestation of tuberous sclerosis in a 39-year-old Korean woman

  7. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  8. Radiotherapy and pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Sone, S; Miyata, Y; Tachiiri, H [Osaka Univ. (Japan). Faculty of Medicine

    1975-04-01

    Clinical findings of radiation pneumonitis and pulmonary fibrosis were outlined, and the relationship between occurence of these disorders and radiotherapy, clinical findings and X-ray picture were studied. Standard radiation dose as cell lethal response of carcinoma of the lung were 4,500 to 5,500 rad in 4 to 5.5 weeks in undifferentiated carcinoma, 6,000 to 7,000 rad in 6 to 7 weeks in squamous cell carcinoma, 7,000 to 9,000 rad in 7 to 9 weeks in adenocarcinoma, 4,500 to 5,000 rad in 4 to 5 weeks in the large sized cancer of the esophagus, 6,500 to 7,000 rad in 5 to 7 weeks in the small sized cancer of the esophagus, and irradiation of these amount of dose caused hazards in pulmonary function. Pathological and clinical findings of pulmonary hazards within 6 month period after irradiation, factors causing them and changes in X-ray pictures before and after irradiation were observed and discussed in clinical cases: the case of breast cancer in which 3,000 R/6 times/18 days of 5.5 MeV Liniac electron was irradiated to the chest wall, and the case of pulmonary cancer in which 5,000 rad/25 times/34 days of 6 MeV Liniac X-ray was irradiated in opposite 2 ports radiation beam treatment. The former revealed alveolar lesion and interlobular pleuritis at 4 month later, and remarkable lesion of pulmonary fibrosis was followed at 9 month after radiotherapy. The later developed radiation pneumonitis 1 month after radiotherapy, of which lesion extended to the upper part by 3 months later, and cancer recurred 6.5 month later.

  9. Preliminary studies of pulmonary perfusion scanning in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Shi Rongfang; Liu Xiujie; Wang Yanqun

    1986-01-01

    A comparative analysis of pulmonary perfusion scanning through cardiac catheterization of 57 patients including 32 patients with congenital heart disease, 8 patients with chronic pulmonary thromboembolism and 7 patients with primary pulmonary hypertension is reported. The lung scintigram obtained with In-113m or Tc-99m-MAA represents the distribution of pulmonary blood. It has been found that the lung scintigram was abnormal in patients of congenital heart disease with pulmonary hypertension (i. e. pulmonary artery pressure between 41-80 mmHg) and the extent of radoiactive regional defects is proportional to the level of pulmonary hypertension. The results of the analysis indicated that pulmonary perfusion scanning being a noninvasive technique would be a useful method in evaluating the level of pulmonary hypertension in patients with left to right shunt before and after surgical operation

  10. Aberrant immune response with consequent vascular and connective tissue remodeling - causal to scleroderma and associated syndromes such as Raynaud phenomenon and other fibrosing syndromes?

    Science.gov (United States)

    Durmus, Nedim; Park, Sung-Hyun; Reibman, Joan; Grunig, Gabriele

    2016-11-01

    Scleroderma and other autoimmune-induced connective tissue diseases are characterized by dysfunctions in the immune system, connective tissue and the vasculature. We are focusing on systemic sclerosis (SSc)-associated pulmonary hypertension, which remains a leading cause of death with only a 50-60% of 2-year survival rate. Much research and translational efforts have been directed at understanding the immune response that causes SSc and the networked interactions with the connective tissue and the vasculature. One of the unexpected findings was that in some cases the pathogenic immune response in SSc resembles the immune response to helminth parasites. During coevolution, means of communication were developed which protect the host from over-colonization with parasites and which protect the parasite from excessive host responses. One explanation for the geographically clustered occurrence of SSc is that environmental exposures combined with genetic predisposition turn on triggers of molecular and cellular modules that were once initiated by parasites. Future research is needed to further understand the parasite-derived signals that dampen the host response. Therapeutic helminth infection or treatment with parasite-derived response modifiers could be promising new management tools for autoimmune connective tissue diseases.

  11. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection.

    Science.gov (United States)

    Ertl, Reinhard; Klein, Dieter

    2014-03-19

    Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.

  12. Heart disease in patients with pulmonary embolism.

    Science.gov (United States)

    Pesavento, Raffaele; Piovella, Chiara; Prandoni, Paolo

    2010-09-01

    Several heart diseases are promoters of left-side cardiac thrombosis and could lead to arterial embolism. The same mechanism may be responsible for right-side cardiac thrombosis and therefore be a direct source of pulmonary embolism. Yasuoka et al. showed a higher incidence of perfusion defects in lung scan in patients with spontaneous echocontrast in the right atrium than in those without it (40% and 7% respectively; P=0.006). We recently assessed the prevalence of heart diseases in 11.236 consecutive patients older than 60 years discharged from Venetian hospitals with a diagnosis of pulmonary embolism. We observed a higher prevalence of all-cause heart diseases (odds ratio 1.26; 95% confidence interval, 1.13-1.40) in patients with a diagnosis of pulmonary embolism alone (secondary or unprovoked) compared with those discharged with a diagnosis of pulmonary embolism associated with deep vein thrombosis, generating the hypothesis that some specific heart diseases in older patients could themselves be a possible source of pulmonary emboli. Further prospective studies are required to confirm these findings, which have the potential to open new horizons for the interpretation and management of venous thromboembolic disease.

  13. Solitary pulmonary nodule by pulmonary hematoma under warfarin therapy

    International Nuclear Information System (INIS)

    Scheppach, W.; Kulke, H.; Liebau, G.; Braun, H.; Wuerzburg Univ.

    1983-01-01

    Pulmonary hematoma is a rare cause of a pulmonary nodule. Mostly it results from penetrating or blunt chest injuries. The case of a patient is reported, whose chest X-ray showed a pulmonary nodule suspected of malignancy. This patient was maintained permanently on anticoagulants (warfarin derivates) after cardiac valve replacement with a prosthesis. A definite diagnosis could not be established by non-invasive methods. A needle biopsy of the lung was impracticable because of the location of the pulmonary lesion; an exploratory thoracotomy could not be carried out due to a general indication of nonoperability. Control examinations showed that the pulmonary nodule had vanished completely within four months. In consideration of the patient's clinical situation it can be concluded that the pulmonary lesion was caused by a hematoma of the lung. (orig.) [de

  14. Solitary pulmonary nodule by pulmonary hematoma under warfarin therapy

    Energy Technology Data Exchange (ETDEWEB)

    Scheppach, W.; Kulke, H.; Liebau, G.; Braun, H.

    1983-06-01

    Pulmonary hematoma is a rare cause of a pulmonary nodule. Mostly it results from penetrating or blunt chest injuries. The case of a patient is reported, whose chest X-ray showed a pulmonary nodule suspected of malignancy. This patient was maintained permanently on anticoagulants (warfarin derivates) after cardiac valve replacement with a prosthesis. A definite diagnosis could not be established by non-invasive methods. A needle biopsy of the lung was impracticable because of the location of the pulmonary lesion; an exploratory thoracotomy could not be carried out due to a general indication of nonoperability. Control examinations showed that the pulmonary nodule had vanished completely within four months. In consideration of the patient's clinical situation it can be concluded that the pulmonary lesion was caused by a hematoma of the lung.

  15. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    Science.gov (United States)

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  16. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    Science.gov (United States)

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  17. Host Adaptation of Staphylococcal Leukocidins

    NARCIS (Netherlands)

    Vrieling, M

    2016-01-01

    Staphylococcus aureus is a human and animal pathogen of global importance and has the capacity to cause disease in distinct host populations, using a large arsenal of secreted proteins to evade the host immune response. Amongst the immune evasion proteins of S. aureus, secreted cytotoxins play a

  18. Introduction to Pulmonary Fibrosis

    Science.gov (United States)

    ... page: Introduction to Pulmonary Fibrosis What Is Pulmonary Fibrosis? Pulmonary fibrosis is a disease where there is scarring ... of pulmonary fibrosis. Learn more How Is Pulmonary Fibrosis Diagnosed? Pulmonary fibrosis can be difficult to diagnose, so it ...

  19. Diesel exhaust alters the response of cultured primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD) to non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Zarcone, Maria C; van Schadewijk, Annemarie; Duistermaat, Evert; Hiemstra, Pieter S; Kooter, Ingeborg M

    2017-01-28

    Exacerbations constitute a major cause of morbidity and mortality in patients suffering from chronic obstructive pulmonary disease (COPD). Both bacterial infections, such as those with non-typeable Haemophilus influenzae (NTHi), and exposures to diesel engine emissions are known to contribute to exacerbations in COPD patients. However, the effect of diesel exhaust (DE) exposure on the epithelial response to microbial stimulation is incompletely understood, and possible differences in the response to DE of epithelial cells from COPD patients and controls have not been studied. Primary bronchial epithelial cells (PBEC) were obtained from age-matched COPD patients (n = 7) and controls (n = 5). PBEC were cultured at the air-liquid interface (ALI) to achieve mucociliary differentiation. ALI-PBECs were apically exposed for 1 h to a stream of freshly generated whole DE or air. Exposure was followed by 3 h incubation in presence or absence of UV-inactivated NTHi before analysis of epithelial gene expression. DE alone induced an increase in markers of oxidative stress (HMOX1, 50-100-fold) and of the integrated stress response (CHOP, 1.5-2-fold and GADD34, 1.5-fold) in cells from both COPD patients and controls. Exposure of COPD cultures to DE followed by NTHi caused an additive increase in GADD34 expression (up to 3-fold). Importantly, DE caused an inhibition of the NTHi-induced expression of the antimicrobial peptide S100A7, and of the chaperone protein HSP5A/BiP. Our findings show that DE exposure of differentiated primary airway epithelial cells causes activation of the gene expression of HMOX1 and markers of integrated stress response to a similar extent in cells from COPD donors and controls. Furthermore, DE further increased the NTHi-induced expression of GADD34, indicating a possible enhancement of the integrated stress response. DE reduced the NTHi-induced expression of S100A7. These data suggest that DE exposure may cause adverse health effects in part by

  20. Progenitor cells in pulmonary vascular remodeling

    Science.gov (United States)

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  1. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  2. Measurement of pulmonary vascular resistance of Fontan candidates with pulmonary arterial distortion by means of pulmonary perfusion imaging

    International Nuclear Information System (INIS)

    Park, In-Sam; Mizukami, Ayumi; Tomimatsu, Hirofumi; Kondou, Chisato; Nakanishi, Toshio; Nakazawa, Makoto; Momma, Kazuo

    1998-01-01

    We measured the distribution of blood flow to the right (R) and left lung (L) by means of pulmonary perfusion imaging and calculated pulmonary vascular resistance (Rp) in 13 patients, whose right and left pulmonary artery pressures were different by 2 to 9 mmHg due to pulmonary arterial distortion (5 interruption, 8 stenosis). The right lung/left lung blood flow ratio was determined and from the ratio and the total pulmonary blood flow, which was determined using the Fick's principle, the absolute values of right and left pulmonary blood flow were calculated. Using the right and left pulmonary blood flow and the right and left pulmonary arterial pressures, right and left pulmonary vascular resistance were calculated, separately. Vascular resistance of the whole lung (Rp) was then calculated using the following equation. 1/(Rp of total lung)=1/(Rp of right lung)+1/(Rp of left lung). Rp calculated from this equation was 1.8+/-0.8 U·m 2 and all values were less than 3 U·m 2 (range 0.3-2.8). Rp estimated from the conventional method using the total pulmonary blood flow and pulmonary arterial pressures, without using the right/left blood flow ratio, ranging from 0.4 to 3.8 U·m 2 and 5 of 13 patients showed Rp>3 U·m 2 . All patients underwent Fontan operation successfully. These data indicated that this method is useful to estimate Rp and to determine the indication of Fontan operation in patients with pulmonary arterial distortions. (author)

  3. Pulmonary Fibrosis Foundation

    Science.gov (United States)

    ... submissions. MORE We Imagine a World Without Pulmonary Fibrosis The Pulmonary Fibrosis Foundation mobilizes people and resources to provide ... its battle against the deadly lung disease, pulmonary fibrosis (PF). PULMONARY FIBROSIS WALK SURPASSES PARTICIPATION AND FUNDRAISING GOALS Nearly ...

  4. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Pulmonary agenesis

    OpenAIRE

    Oyola, Mercedes; Pontificia Universidad Javeriana; Gordillo, Gisel; Pontificia Universidad Javeriana; García, Carlos A.; Pontificia Universidad Javeriana; Torres, David; Pontificia Universidad Javeriana

    2009-01-01

    Pulmonary agenesis is an infrequent pathology which occurs predominantly among females with no lateral preference. We report on the case of a newborn male diagnosed with prenatal diaphragm hernia though at birth seemed more likely either to be a congenital cystic adenomatoid malformation (congenital pulmonary airway malformation) or pulmonary agenesis. The patient died six days after birth and necropsy confirmed pulmonary agenesis. La agenesia pulmonar es una alteración poco frecuente, con...

  6. Pulmonary Artery Dissection: A Fatal Complication of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Chuanchen Zhang

    2016-01-01

    Full Text Available Pulmonary artery dissection is extremely rare but it is a really life-threatening condition when it happens. Most patients die suddenly from major bleeding or tamponade caused by direct rupture into mediastinum or retrograde into the pericardial sac. What we are reporting is a rare case of a 46-year-old female patient whose pulmonary artery dissection involves both the pulmonary valve and right pulmonary artery. The patient had acute chest pain and severe dyspnea, and the diagnosis of pulmonary artery dissection was confirmed by ultrasonography and CT angiography. Moreover, its etiology, clinical manifestations, and management are also discussed in this article.

  7. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction.

    Science.gov (United States)

    Hudson, Jennifer; Gardiner, Melissa; Deshpande, Nandan; Egan, Suhelen

    2018-04-01

    Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae. © 2017 John Wiley & Sons Ltd.

  8. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. [The different manifestations of pulmonary aspergillosis: multidetector computed tomography findings].

    Science.gov (United States)

    Koren Fernández, L; Alonso Charterina, S; Alcalá-Galiano Rubio, A; Sánchez Nistal, M A

    2014-01-01

    Pulmonary aspergillosis is a fungal infection usually caused by inhaling Aspergillus fumigatus spores. However, when we talk about aspergillosis, we normally refer to the spectrum of clinical and radiological findings that depend directly on the patient's immune status, on the prior existence of lung disease, and on the virulence of the infective organism. There are four types of pulmonary aspergillosis (aspergilloma, allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, and invasive aspergillosis), and each type has its own distinct radiologic findings. We review the signs of pulmonary aspergillosis on multidetector computed tomography and we correlate them with patients' symptoms and immune responses. Likewise, we discuss the differential diagnoses. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  10. Pulmonary radio-responses to surface field radiotherapy of Morbus Hodgkin using a 4 MeV linear accelerator. Die pulmonale Strahlenreaktion nach Mantelfeldbestrahlung mit einem 4 MeV-Linearbeschleuniger bei Morbus Hodgkin

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, H.U.

    1982-05-05

    In 119 patients suffering from Morbus Hodgkin who were treated between 1974 and 1979, the pulmonary radio-response was retroperspectively investigated. Besides incidence and degree of severity, the course over the time of the individual stages of radio-response were also investigated. 14 patients showed no paramediastinal irradiation fibrosis as lasting stationary change, 52 showed a light one, 34 a medium-sized and 19 a severe one. Each fibrosis had been preceded by the radiomorphologic sign of pneumonitis of always the same degree of severity. The course over the time of the radiomorphologically subdivided stages determined that on the average the signs of a beginning pneumonitis occurred 11.6 weeks after onset of radiotherapy. An active pneumonitis was detectable after 14.8 weeks (on the average) and 20.4 weeks after radiotherapy had been started, a still florid pneumonitis with beginning shrinkage of the paramediastinal regions was found. The stage of stationary pulmonary fibrosis was reached 34.1 weeks (averaged value) after surface field irradiation had been started. Correlative relations to different individual disease-dependent and radiotherapeutic factors were detected, which are considered to be responsible for the intensity and character of the floride radio-response and the remaining pulmonary fibrosis. Considered from the radiomorphologic course of pulmonary irradiation reaction and its intensity and character, no significant advantage of tumor-reducing chemotherapy compared to irradiation or of split-course-technique compared to continuous fractioning was found. The introduction of individually adjustable shields helped to reduce the degree of severity of radio-response.

  11. Retrograde pulmonary arteriography

    International Nuclear Information System (INIS)

    Calcaterra, G.; Lam, J.; Losekoot, T.G.

    1984-01-01

    The authors performed retrograde pulmonary arteriography by means of a pulmonary venous wedge injection in 10 patients with no demonstrable intrapericardial pulmonary arteries by 'conventional' angiographic techniques. In all cases but one, the procedure demonstrated the feasibility of a further operation. No complications were observed. Retrograde pulmonary arteriography is an important additional method for determining the existence of surgically accessible pulmonary arteries when other techniques have failed. (Auth.)

  12. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  13. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  14. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  15. Evaluation of pulmonary artery flow in acute massive pulmonary thromboembolism with MRI

    International Nuclear Information System (INIS)

    Li Yongzhong; Li Kuncheng; Zhao Xigang; Zhao Hong

    2004-01-01

    Objective: To probe into the value of MR imaging in evaluating the pulmonary artery hemodynamics and pulmonary artery pressure in acute massive pulmonary embolism. Methods: MR studies were performed in 21 patients with acute massive pulmonary embolism (diagnosed by contrast enhanced MR pulmonary angiography) and 20 healthy volunteers. The pulmonary artery hemodynamic parameters, such as the diameters of main and right pulmonary artery, peak velocity, average velocity, flow volume, flow patterns, and ejection acceleration time in main pulmonary artery were measured. The findings in patients and volunteers were compared. The hemodynamic parameters in patients were correlated with mean pulmonary artery pressure acquired with right heart catheterization. Results: The diameters of main pulmonary artery (2.93 vs 2.52 cm) and right pulmonary artery (2.49 vs 1.92 cm) in patients and volunteers showed significant differences (t=3.55, P<0.01 and t=4.19, P<0.01, respectively); Peak velocity (85.29 vs 100.63 cm/s), average velocity (11.00 vs 17.12 cm/s), flow volume (89.15 vs 98.96 ml/s), and ejection acceleration time (105.09 vs 163.85 ms) in main pulmonary artery were significantly different between patients and volunteers (t values were 2.89, 6.37, 2.21, and 9.46, respectively; P values were 0.01, <0.01, 0.03, and <0.01, respectively). The peak velocity-time curve of main pulmonary artery acquired with velocity encoded cine of MR in patients demonstrated earlier and lower peak velocity as well as abnormal retrograde flow. In addition, linear correlations were seen between the mean pulmonary pressure and the diameter of main pulmonary artery (r=0.62, P=0.001), diameter of right pulmonary artery (r=0.63, P=0.001), and ejection acceleration time (r=-0.55, P=0.005). Conclusion: MR imaging is a promising technique not only for the detection of pulmonary thromboemboli but also for the evaluation of hemodynamic parameters in pulmonary hypertension. (author)

  16. Serial follow up V/P scanning in assessment of treatment response in high probability scans for pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, H; Elhaddad, SH; Wagih, SH; Ziada, G; Samy, A; Saber, R [Department of nuclear medicine and radiology, faculty of medicine, Cairo university, Cairo, (Egypt)

    1995-10-01

    138 patients proved with V/P scan to have different probabilities of pulmonary emboli event. Serial follow up scanning after 3 days, 2 weeks, 1 month and 3 months was done, with anticoagulant therapy. Out of the remaining 10 patients, 6 patients died with documented P.E. by P.M. study and lost follow up recorded in 4 patients. Complete response with disappearance of all perfusion defects after 2 weeks was detected in 37 patients (49.3%), partial improvement of lesions after 3 months was elicited in 32%. The overall incidence of response was (81.3%) such response was complete in low probability group (100%), (84.2%) in intermediate group and (79.3%) in high probability group with partial response in 45.3%. New lesions were evident in 18.7% of this series. To conclude that serial follow up V/P scan is mandatory for evaluation of response to anticoagulant therapy specially in first 3 months. 2 figs., 3 tabs.

  17. Assessment of pulmonary hypertension by CT and MR imaging

    International Nuclear Information System (INIS)

    Ley, Sebastian; Kreitner, Karl-Friedrich; Heussel, Claus P.; Fink, Christian; Kauczor, Hans-Ulrich; Borst, Mathias M.

    2004-01-01

    In the recent World Health Organization (WHO) classification the group of pulmonary arterial hypertension (PH) comprises the classic primary pulmonary hypertension and several conditions with definite or very high risk factors to develop pulmonary arterial hypertension. Therapeutic advances drive the need for a comprehensive pre-therapeutic evaluation for optimal treatment. Furthermore, follow-up examinations need to be performed to monitor changes in disease status and response to therapy. Up to now, the diagnostic imaging work-up of PH comprises mainly echocardiography, invasive right heart catheterization and ventilation/perfusion scintigraphy. Due to technical advances helical computed tomography (CT) and magnetic resonance imaging (MRI) became more important in the evaluation and for differential diagnosis of pulmonary arterial hypertension. Both modalities are reviewed and recommendations for clinical use are given. (orig.)

  18. Pulmonary allergic reactions impair systemic vascular relaxation in ragweed sensitive mice.

    Science.gov (United States)

    Hazarika, Surovi; Van Scott, Michael R; Lust, Robert M; Wingard, Christopher J

    2010-01-01

    Asthma is often associated with cardiovascular complications, and recent observations in animal models indicate that induction of pulmonary allergic inflammation increases susceptibility of the myocardium to ischemia and reperfusion injury. In this study, we used a murine model of allergen sensitization in which aspiration of allergen induces pulmonary and systemic inflammation, to test the hypothesis that pulmonary exposure to allergen alters vascular relaxation responses. BALB/C mice were sensitized by intraperitoneal injection of ragweed and challenged by intratracheal instillation of allergen. Airway hyperreactivity and pulmonary inflammation were confirmed, and endothelium-dependent and -independent reactivity of thoracic aorta rings were evaluated. Ragweed sensitization and challenge induced airway hyperreactivity to methacholine and pulmonary inflammation, but did not affect constrictor responses of the aortic rings to phenylephrine and K+ depolarization. In contrast, maximal relaxation of aortic rings to acetylcholine and sodium nitroprusside decreased from 87.6±3.9% and 97.7±1.2% to 32±4% and 51±6%, respectively (p<0.05). The sensitivity to acetylcholine was likewise reduced (EC₅₀=0.26±0.05 μM vs. 1.09±0.16 μM, p<0.001). The results demonstrate that induction of allergic pulmonary inflammation in mice depresses endothelium-dependent and -independent vascular relaxation, which can contribute to cardiovascular complications associated with allergic inflammation. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Pulmonary function in infants with swallowing dysfunction.

    Directory of Open Access Journals (Sweden)

    James D Tutor

    Full Text Available Swallowing dysfunction can lead to recurring aspiration and is frequently associated with chronic symptoms such as cough and wheezing in infants. Our objective was to describe the characteristics of infants with swallowing dysfunction, determine if pulmonary function abnormalities are detectable, and if they improve after therapy.We studied 38 infants with a history of coughing and wheezing who had pulmonary function tests performed within two weeks of their diagnosis of swallowing dysfunction. The raised lung volume rapid thoracoabdominal compression technique was used. After 6 months of therapy, 17 of the infants repeated the tests.Initially, 25 had abnormal spirometry, 18 had abnormal plethysmography, and 15 demonstrated bronchodilator responsiveness. Six months later test were repeated for seventeen patients. Ten patients had continued abnormal spirometry, two patients remained normal, three patients' abnormal spirometry had normalized, and two patients' previously normal studies became abnormal. Eight of the 17 patients had continued abnormal plethysmography, six had continued normal plethysmography, and three patients' normal plethysmography became abnormal. After 6 months of treatment, eight patients demonstrated bronchodilator responsiveness, of which five continued to demonstrate bronchodilator responsiveness and three developed responsiveness. The remainder either continued to be non- bronchodilator responsive (two or lost responsiveness (three. The findings of the abnormal tests in most infants tested is complicated by frequent occurrence of other co-morbidities in this population, including gastroesophageal reflux in 23 and passive smoke exposure in 13 of the infants.The interpretation of lung function changes is complicated by the frequent association of swallowing dysfunction with gastroesophageal reflux and passive smoke exposure in this population. Six months of medical therapy for swallowing dysfunction/gastroesophageal reflux

  20. Response of the pulmonary system to exercise in proliferative phase ...

    African Journals Online (AJOL)

    Background: The role of estrogen on pulmonary function test (PFT) was well known in the normal course of the menstrual cycle. Significant increase in both progesterone (37%) and estradiol (13.5%), whereas no change in plasma follicle stimulating hormone (FSH) & leutinizing hormone [LH] was observed in exercising ...

  1. Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.

    Science.gov (United States)

    Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M

    2018-01-15

    Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and

  2. Paradoxical upgrading reaction in extra-pulmonary tuberculosis: association with vitamin D therapy

    OpenAIRE

    Barr, D.A.; Coussens, A.K.; Irvine, S.; Ritchie, N.D.; Herbert, K.; Choo-Kang, B.; Raeside, D.; Bell, D.J.; Seaton, R.A.

    2017-01-01

    SETTING: Glasgow, Scotland, UK.\\ud \\ud BACKGROUND: Paradoxical reactions in tuberculosis (TB) are a notable example of our incomplete understanding of host-pathogen interactions during anti-tuberculosis treatment.\\ud \\ud OBJECTIVES: To determine risk factors for a TB paradoxical reaction, and specifically to assess for an independent association with vitamin D use.\\ud \\ud DESIGN: Consecutive human immunodeficiency virus (HIV) negative adult patients treated for extra-pulmonary TB were identif...

  3. A case of pulmonary hydatid cyst

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Yong; Choi, Young Chill; Park, Cheol Min; Kim, Jung Hyuck; Chung, Kyu Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    1988-08-15

    Hydatid disease is a parasitic infestation caused by the larval stage of the tapeworm genus Echinococcus. In man, the two main forms are due to E. granulosus and, lee frequently, E. multilocularis. Man becomes infected by contact with a definite host or by consuming contaminated water or vegetable. Hydatid disease is prevalent throughout much of the world such as the middle east, eastern Australia, central Europe, south America, Alaska, but it is very rare in Korea. We experienced one case of pulmonary hydatid disease. Chest films revealed ovoid mass in the left lower lobe and seen as unilocular water-density cystic lesion on chest CT, which was removed surgically, and then the pathology confirmed the diagnosis.

  4. A case of pulmonary hydatid cyst

    International Nuclear Information System (INIS)

    Park, Seung Yong; Choi, Young Chill; Park, Cheol Min; Kim, Jung Hyuck; Chung, Kyu Byung; Suh, Won Hyuck

    1988-01-01

    Hydatid disease is a parasitic infestation caused by the larval stage of the tapeworm genus Echinococcus. In man, the two main forms are due to E. granulosus and, lee frequently, E. multilocularis. Man becomes infected by contact with a definite host or by consuming contaminated water or vegetable. Hydatid disease is prevalent throughout much of the world such as the middle east, eastern Australia, central Europe, south America, Alaska, but it is very rare in Korea. We experienced one case of pulmonary hydatid disease. Chest films revealed ovoid mass in the left lower lobe and seen as unilocular water-density cystic lesion on chest CT, which was removed surgically, and then the pathology confirmed the diagnosis.

  5. Noninvasive assessment of pulmonary vascular and airway response to physiologic stimuli with high-resolution CT

    International Nuclear Information System (INIS)

    Herold, C.J.; Wetzel, R.C.; Herold, S.M.; Martin, L.; Zerhouni, E.A.; Robotham, J.

    1990-01-01

    This paper reports on reactivity of pulmonary vasculature under various stimuli studied invasively with perfused isolated lung models. We used high- resolution CT (HRCT) to demonstrate noninvasively the effects of hypoxia and volume variation on pulmonary circulation and airways. Five anesthetized and ventilated pigs were examined with HRCT (10 contiguous 2-mm sections through the lower lobes) during varying oxygen tensions and intravascular volume states. Blood pressures, pulmonary artery pressures, blood gas levels, and cardiac indexes (thermodilution) were measured. HRCT scans were digitized, and vessel and airway areas were determined with use of a computer edging process

  6. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia.

    Science.gov (United States)

    Schuijt, Tim J; Lankelma, Jacqueline M; Scicluna, Brendon P; de Sousa e Melo, Felipe; Roelofs, Joris J T H; de Boer, J Daan; Hoogendijk, Arjan J; de Beer, Regina; de Vos, Alex; Belzer, Clara; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2016-04-01

    Pneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections. We depleted the gut microbiota in C57BL/6 mice and subsequently infected them intranasally with S. pneumoniae. We then performed survival and faecal microbiota transplantation (FMT) experiments and measured parameters of inflammation and alveolar macrophage whole-genome responses. We found that the gut microbiota protects the host during pneumococcal pneumonia, as reflected by increased bacterial dissemination, inflammation, organ damage and mortality in microbiota-depleted mice compared with controls. FMT in gut microbiota-depleted mice led to a normalisation of pulmonary bacterial counts and tumour necrosis factor-α and interleukin-10 levels 6 h after pneumococcal infection. Whole-genome mapping of alveolar macrophages showed upregulation of metabolic pathways in the absence of a healthy gut microbiota. This upregulation correlated with an altered cellular responsiveness, reflected by a reduced responsiveness to lipopolysaccharide and lipoteichoic acid. Compared with controls, alveolar macrophages derived from gut microbiota-depleted mice showed a diminished capacity to phagocytose S. pneumoniae. This study identifies the intestinal microbiota as a protective mediator during pneumococcal pneumonia. The gut microbiota enhances primary alveolar macrophage function. Novel therapeutic strategies could exploit the gut-lung axis in bacterial infections. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. [Pulmonary function in patients with infiltrative pulmonary tuberculosis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2007-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, pulmonary residual volume (PRV), R(aw), R(in),, R(ex), DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 103 patients with infiltrative pulmonary tuberculosis. Pulmonary dysfunction was detected in 83.5% of the patients. Changes were found in lung volumes and capacities in 63.1%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 60.2 and 41.7%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC and FVC, and decreased and increased TGV and TLC; impaired bronchial patency presented as decreased PEF, MEF25, MEF50, MEF75, FEV1/VC% and increased R(aw) R(in), and R(ex); pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SB, DLCO-SS, and PaO2 and decreased and increased PaCO2. The magnitude of the observed functional changes was generally slight. Significant disorders were observed rarely and very pronounced ones were exceptional.

  8. [Pulmonary function in patients with disseminated pulmonary tuberculosis].

    Science.gov (United States)

    Nefedov, V B; Shergina, E A; Popova, L A

    2007-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25%, MEF50%, MEF75%, TLS, TGV, pulmonary residual volume (PRV), Raw, Rin, Rex, DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 29 patients with disseminated pulmonary tuberculosis. Pulmonary dysfunction was detected in 93.1% of the patients. Changes were found in lung volumes and capacities in 65.5%, impaired bronchial patency and pulmonary gas exchange dysfunction were in 79.3 and 37.9%, respectively. The changes in pulmonary volumes and capacities appeared as increased PRV, decreased VC, FVC, and TLS, decreased and increased TGV; impaired bronchial patency presented as decreased PEF, MEF25%, MEF50%, MEF75%, and FEV1/VC% and increased Raw, Rin, and Rex; pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SS and PaO2 and decreased and increased PaCO2. The observed functional changes varied from slight to significant and pronounced with a preponderance of small disorders, a lower detection rate of significant disorders, and rare detection of very pronounced ones.

  9. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles.

    Science.gov (United States)

    Reddy, G V P; Holopainen, J K; Guerrero, A

    2002-01-01

    The parasitoids Trichogramma chilonis (Hymenoptera: Trichogrammatidae) and Cotesia plutellae (Hymenoptera: Braconidae), and the predator Chrysoperla carnea (Neuroptera: Chrysopidae), are potential biological control agents for the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). We present studies on the interactions between these bioagents and various host-associated volatiles using a Y olfactometer. T chilonis was attracted to a synthetic pheromone blend (Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a 1:1:0.01 ratio), to Z11-16:Ac alone, and to a 1:1 blend of Z11-16:Ac and Z11-16:Ald. C. plutellae responded to the blend and to Z11-16:Ac and Z11-16:Ald. Male and female C. carnea responded to the blend and to a 1:1 blend of the major components of the pheromone, although no response was elicited by single compounds. Among the four host larval frass volatiles tested (dipropyl disulfide, dimethyl disulfide, allyl isothiocyanate, and dimethyl trisulfide), only allyl isothiocyanate elicited significant responses in the parasitoids and predator, but C. plutellae and both sexes of C. carnea did respond to all four volatiles. Among the green leaf volatiles of cabbage (Brassica oleracea subsp. capitata), only Z3-6:Ac elicited significant responses from T. chilonis, C. plutellae, and C. carnea, but C. plutellae also responded to E2-6:Ald and Z3-6:OH. When these volatiles were blended with the pheromone, the responses were similar to those elicited by the pheromone alone, except for C. carnea males, which had an increased response. The effect of temperature on the response of the biological agents to a mixture of the pheromone blend and Z3-6:Ac was also studied. T. chilonis was attracted at temperatures of 25-35 degrees C, while C. plutellae and C. carnea responded optimally at 30-35 degrees C and 20-25 degrees C, respectively. These results indicate that the sex pheromone and larval frass volatiles from the diamondback moth, as well as volatile compounds from

  10. Process of pulmonary rehabilitation and program organization.

    Science.gov (United States)

    Wouters, E F M; Augustin, I M L

    2011-09-01

    Pulmonary rehabilitation programs are highly directed to return patients suffering from chronic lung diseases to a state of self-help. These programs are largely organized as temporary interventions in a highly fragmented delivery care system for patients with chronic respiratory conditions. In an optimal health care organizational structure, pulmonary rehabilitation needs to be considered as an essential part of an individualized, integrated care process, organized from the vantage point of the patient and the patients'health continuum. Pulmonary rehabilitation programs need to become organized as patient-centered care, respectful of and responsive to individual patient preferences, needs and values. Partnering and communication skills are considered as drivers for successful rehabilitation. Assessment is considered as the cornerstone to evaluate the individual needs and problems in order to develop an individualized intervention. Pulmonary rehabilitation programs need to move away from a supply-driven functional organizational structure towards integrated structures, including the full range of medical expertise, technical skills and specialized facilities needed to compete on added value in the management of patients with chronic respiratory diseases.

  11. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  12. CT pulmonary angiography of adult pulmonary vascular diseases: Technical considerations and interpretive pitfalls

    International Nuclear Information System (INIS)

    Taslakian, Bedros; Latson, Larry A.; Truong, Mylene T.; Aaltonen, Eric; Shiau, Maria C.; Girvin, Francis; Alpert, Jeffrey B.; Wickstrom, Maj; Ko, Jane P.

    2016-01-01

    Highlights: • CTPA plays a key role in the evaluation of pulmonary vascular diseases. • Improvements in CT technology have improved visualization of pulmonary arteries. • Knowledge of the technical pitfalls is essential for accurate diagnosis. • Dual energy CT imaging enables parenchymal iodine evaluation. • An awareness of the entities affecting the pulmonary arteries is important. - Abstract: Computed tomography pulmonary angiography (CTPA) has become the primary imaging modality for evaluating the pulmonary arteries. Although pulmonary embolism is the primary indication for CTPA, various pulmonary vascular abnormalities can be detected in adults. Knowledge of these disease entities and understanding technical pitfalls that can occur when performing CTPA are essential to enable accurate diagnosis and allow timely management. This review will cover a spectrum of acquired abnormalities including pulmonary embolism due to thrombus and foreign bodies, primary and metastatic tumor involving the pulmonary arteries, pulmonary hypertension, as well as pulmonary artery aneurysms and stenoses. Additionally, methods to overcome technical pitfalls and interventional treatment options will be addressed.

  13. CT pulmonary angiography of adult pulmonary vascular diseases: Technical considerations and interpretive pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Taslakian, Bedros, E-mail: bedros.taslakian@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Latson, Larry A., E-mail: larry.latson@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Truong, Mylene T., E-mail: mtruong@mdanderson.org [Department of Radiology, University of Texas, MD Anderson Cancer Center, TX (United States); Aaltonen, Eric, E-mail: Eric.Aaltonen@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Shiau, Maria C., E-mail: Maria.Shiau@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Girvin, Francis, E-mail: Francis.Girvin@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Alpert, Jeffrey B., E-mail: Jeffrey.Alpert@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Wickstrom, Maj, E-mail: Maj.Wickstrom@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Ko, Jane P., E-mail: Jane.Ko@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States)

    2016-11-15

    Highlights: • CTPA plays a key role in the evaluation of pulmonary vascular diseases. • Improvements in CT technology have improved visualization of pulmonary arteries. • Knowledge of the technical pitfalls is essential for accurate diagnosis. • Dual energy CT imaging enables parenchymal iodine evaluation. • An awareness of the entities affecting the pulmonary arteries is important. - Abstract: Computed tomography pulmonary angiography (CTPA) has become the primary imaging modality for evaluating the pulmonary arteries. Although pulmonary embolism is the primary indication for CTPA, various pulmonary vascular abnormalities can be detected in adults. Knowledge of these disease entities and understanding technical pitfalls that can occur when performing CTPA are essential to enable accurate diagnosis and allow timely management. This review will cover a spectrum of acquired abnormalities including pulmonary embolism due to thrombus and foreign bodies, primary and metastatic tumor involving the pulmonary arteries, pulmonary hypertension, as well as pulmonary artery aneurysms and stenoses. Additionally, methods to overcome technical pitfalls and interventional treatment options will be addressed.

  14. Normal spectrum of pulmonary parametric response map to differentiate lung collapsibility: distribution of densitometric classifications in healthy adult volunteers

    International Nuclear Information System (INIS)

    Silva, Mario; Nemec, Stefan F.; Dufresne, Valerie; Occhipinti, Mariaelena; Heidinger, Benedikt H.; Bankier, Alexander A.; Chamberlain, Ryan

    2016-01-01

    Pulmonary parametric response map (PRM) was proposed for quantitative densitometric phenotypization of chronic obstructive pulmonary disease. However, little is known about this technique in healthy subjects. The purpose of this study was to describe the normal spectrum of densitometric classification of pulmonary PRM in a group of healthy adults. 15 healthy volunteers underwent spirometrically monitored chest CT at total lung capacity (TLC) and functional residual capacity (FRC). The paired CT scans were analyzed by PRM for voxel-by-voxel characterization of lung parenchyma according to 4 densitometric classifications: normal lung (TLC ≥ -950 HU, FRC ≥ -856 HU); expiratory low attenuation area (LAA) (TLC ≥ -950 HU, FRC < -856 HU); dual LAA (TLC<-950 HU, FRC < -856 HU); uncharacterized (TLC < -950 HU, FRC ≥ -856 HU). PRM spectrum was 78 % ± 10 % normal lung, 20 % ± 8 % expiratory LAA, and 1 % ± 1 % dual LAA. PRM was similar between genders, there was moderate correlation between dual LAA and spirometrically assessed TLC (R = 0.531; p = 0.042), and between expiratory LAA and Vol Exp/Insp ratio (R = -0.572; p = 0.026). PRM reflects the predominance of normal lung parenchyma in a group of healthy volunteers. However, PRM also confirms the presence of physiological expiratory LAA seemingly related to air trapping and a minimal amount of dual LAA likely reflecting emphysema. (orig.)

  15. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  16. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

    Science.gov (United States)

    Skovmand, Astrid; Jacobsen Lauvås, Anna; Christensen, Preben; Vogel, Ulla; Sørig Hougaard, Karin; Goericke-Pesch, Sandra

    2018-01-31

    Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels

  17. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Azad A Sulaiman

    2016-11-01

    Full Text Available The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs in their evasion of antibody-dependent cell cytotoxicity (ADCC by reducing the NO response of macrophages-again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow

  18. Helicobacter pylori Disrupts Host Cell Membranes, Initiating a Repair Response and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2012-08-01

    Full Text Available Helicobacter pylori (H. pylori, the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA and cytotoxin-associated gene A (CagA have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+, single mutant (ΔvacA or ΔcagA or double mutant (ΔvacA/ΔcagA strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.

  19. Pulmonary response to surface‐coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: A toxicogenomic study

    DEFF Research Database (Denmark)

    Halappanavar, Sabina; Jackson, Petra; Williams, Andrew

    2011-01-01

    with acute phase, inflammation and immune response 5 days post exposure with concomitant changes in several miRNAs. The role of these miRNAs in pulmonary response to inhaled particles is unknown and warrants further research. Environ. Mol. Mutagen., 2011. © 2011 Wiley‐Liss, Inc....... in increased levels of mRNA for acute phase markers serum amyloid A‐1 (Saa1) and serum amyloid A‐3 (Saa3), several C‐X‐C and C‐C motif chemokines, and cytokine tumor necrosis factor genes. Protein analysis of Saa1 and 3 showed selective upregulation of Saa3 in lung tissues. Sixteen miRNAs were induced by more...... than 1.2‐fold (adjusted P‐value changes in the expression of genes associated...

  20. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Moretto, Nadia; Volpi, Giorgia; Pastore, Fiorella; Facchinetti, Fabrizio

    2012-07-01

    Acrolein (2-propenal) is a highly reactive α,β-unsaturated aldehyde and a respiratory irritant that is ubiquitously present in the environment but that can also be generated endogenously at sites of inflammation. Acrolein is abundant in tobacco smoke, which is the major environmental risk factor for chronic obstructive pulmonary disease (COPD), and elevated levels of acrolein are found in the lung fluids of COPD patients. Its high electrophilicity makes acrolein notorious for its facile reaction with biological nucleophiles, leading to the modification of proteins and DNA and depletion of antioxidant defenses. As a consequence, acrolein results in oxidative stress as well as altered intracellular signaling and gene transcription/translation. In pulmonary cells, acrolein, at subtoxic concentrations, can activate intracellular stress kinases, alter the production of inflammatory mediators and proteases, modify innate immune response, induce mucus hypersecretion, and damage airway epithelium. A better comprehension of the mechanisms underlying acrolein effects in the airways may suggest novel treatment strategies in COPD. © 2012 New York Academy of Sciences.

  1. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rachael L Gerlach

    Full Text Available Replication, cell tropism and the magnitude of the host's antiviral immune response each contribute to the resulting pathogenicity of influenza A viruses (IAV in humans. In contrast to seasonal IAV in human cases, the 2009 H1N1 pandemic IAV (H1N1pdm shows a greater tropism for infection of the lung similar to H5N1. We hypothesized that host responses during infection of well-differentiated, primary human bronchial epithelial cells (wd-NHBE may differ between seasonal (H1N1 A/BN/59/07 and H1N1pdm isolates from a fatal (A/KY/180/10 and nonfatal (A/KY/136/09 case. For each virus, the level of infectious virus and host response to infection (gene expression and apical/basal cytokine/chemokine profiles were measured in wd-NHBE at 8, 24, 36, 48 and 72 hours post-infection (hpi. At 24 and 36 hpi, KY/180 showed a significant, ten-fold higher titer as compared to the other two isolates. Apical cytokine/chemokine levels of IL-6, IL-8 and GRO were similar in wd-NHBE cells infected by each of these viruses. At 24 and 36 hpi, NHBE cells had greater levels of pro-inflammatory cytokines including IFN-α, CCL2, TNF-α, and CCL5, when infected by pandemic viruses as compared with seasonal. Polarization of IL-6 in wd-NHBE cells was greatest at 36 hpi for all isolates. Differential polarized secretion was suggested for CCL5 across isolates. Despite differences in viral titer across isolates, no significant differences were observed in KY/180 and KY/136 gene expression intensity profiles. Microarray profiles of wd-NHBE cells diverged at 36 hpi with 1647 genes commonly shared by wd-NHBE cells infected by pandemic, but not seasonal isolates. Significant differences were observed in cytokine signaling, apoptosis, and cytoskeletal arrangement pathways. Our studies revealed differences in temporal dynamics and basal levels of cytokine/chemokine responses of wd-NHBE cells infected with each isolate; however, wd-NHBE cell gene intensity profiles were not significantly

  2. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes.

    Science.gov (United States)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S; Lozano-Torres, Jose L; Grundler, Florian M W; Siddique, Shahid

    2017-12-16

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Estimation of pulmonary water distribution and pulmonary congestion by computed tomography

    International Nuclear Information System (INIS)

    Morooka, Nobuhiro; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki

    1982-01-01

    Computed tomography (CT) of the lung in normal subjects and patients with congestive heart failure was performed in the supine position with deep inspiration to obtain pulmonary CT values and images. The mean CT value in normal subjects was higher in the posterior than anterior lung field, presumably because blood vessels were more dilated in the former than the latter due to the effects of gravity. The mean pulmonary CT value in patients with congestive heart failure was significantly increased possibly due to an increase in blood flow per unit lung volume arising from either pulmonary congestion or pulmonary interstitial and alveolar edema. The mean pulmonary CT value increased parallel to the severity of pulmonary congestion, interstitial or alveolar edema and was well correlated with the pulmonary arterial wedge pressure, indicating that such a correlation was a valuable tool in assessing therapeutic effects. The results of the present study indicatethat pulmonary CT is useful for the noninvasive estimation of intrapulmonary water content and its distribution, thereby providing an effective diagnostic clue to various conditions in congestive heart failure. (author)

  4. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  5. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein.

    Directory of Open Access Journals (Sweden)

    Ronan Le Goffic

    2011-08-01

    Full Text Available Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the

  6. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  7. The α-MSH analogue AP214 attenuates rise in pulmonary pressure and fall in ejection fraction in lipopolysaccharide-induced systemic inflammatory response syndrome in pigs.

    Science.gov (United States)

    Kristensen, Jens; Jonassen, Thomas E N; Rehling, Michael; Tønnesen, Else; Sloth, Erik; Nielsen, Søren; Frøkiaer, Jørgen

    2011-01-01

    The effect of an α-melanocyte stimulating hormone (α-MSH) analogue (AP214) on experimentally endotoxin-induced systemic inflammatory response syndrome (SIRS) was studied, because α-MSH in rodent models has shown promise in attenuating inflammatory response markers and associated organ damage in SIRS. SIRS is associated with considerable morbidity and mortality. Consequently, new treatment modalities are still warranted to address the different aspects of the pathophysiological process. SIRS was induced by lipopolysaccharide (LPS) (Escherichia coli endotoxin) infusion in anaesthetized Danish Landrace pigs (20-25 kg). The pigs received an α-MSH analogue (AP214) or saline as a bolus at the initiation of the LPS infusion. The hemodynamic response was registered as well as echocardiographic indices of left ventricular function. The cardiovascular response was recorded together with echocardiographic indices of left ventricular function in control and in intervention animals. AP214 reduced the early peak in pulmonary pressure and pulmonary vascular resistance by approximately 33%. Furthermore, AP214 prevented the decline in left ventricular fractional shortening as observed in the control group. Mean change and standard deviation in fractional shortening (ΔFS) in control group: - 7·3 (4·7), AP214 (low dose): 0·9 (8·2) and AP214 (high dose) 4·1 (6·0), P < 0·05 for both intervention groups versus control. In the porcine model, the peak increase in pulmonary pressure was attenuated, and the LPS-induced decline in left ventricular function was prevented. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  8. Persistent diffuse pulmonary interstitial emphysema mimicking pulmonary emphysema

    OpenAIRE

    Demura, Y; Ishizaki, T; Nakanishi, M; Ameshima, S; Itoh, H

    2009-01-01

    A 69-year-old male non-smoker with a history of atopic asthma presented with symptoms suggestive of chronic obstructive pulmonary disease and this appeared to be corroborated by lung function testing and a chest radiograph. However, a chest CT showed no evidence of pulmonary emphysema and instead demonstrated free air along the bronchovascular sheaths indicative of pulmonary interstistial emphysema, possibly caused by repeated prior exacerbations of asthma. His lung function tests and symptom...

  9. Balloon pulmonary angioplasty: a treatment option for inoperable patients with chronic thromboembolic pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Aiko eOgawa

    2015-02-01

    Full Text Available In chronic thromboembolic pulmonary hypertension, stenoses or obstructions of the pulmonary arteries due to organized thrombi can cause an elevation in pulmonary artery resistance, which in turn can result in pulmonary hypertension. Chronic thromboembolic pulmonary hypertension can be cured surgically by pulmonary endarterectomy; however, patients deemed unsuitable for pulmonary endarterectomy due to lesion, advanced age, or comorbidities have a poor prognosis and limited treatment options. Recently, advances have been made in balloon pulmonary angioplasty for these patients, and this review highlights this recent progress.

  10. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host.

    Science.gov (United States)

    Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang

    2018-06-01

    Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.

    Science.gov (United States)

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B Brett; So, Yee Wing; Stothard, Paul; Willing, Benjamin P

    2017-09-01

    Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where

  12. Host preference of the bean weevil Zabrotes subfasciatus

    Institute of Scientific and Technical Information of China (English)

    Isabel Ribeiro do Valle Teixeira; Angel Roberto Barchuk; Fernando Sérgio Zucoloto

    2008-01-01

    It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus.However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largelyun known. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z. subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different popula-tions (reared for~30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts,indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.

  13. Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection

    NARCIS (Netherlands)

    Anche, M.T.

    2016-01-01

    Mahlet Teka Anche. (2016). Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection. PhD thesis, Wageningen University, the Netherlands

    Genetic approaches aiming to reduce the prevalence of an infection in a

  14. Spitting Image: Tick Saliva Assists the Causative Agent of Lyme Disease in Evading Host Skin's Innate Immune Response

    NARCIS (Netherlands)

    Hovius, Joppe W. R.

    2009-01-01

    Lyme disease is caused by the spirochete Borrelia burgdorferi and is transmitted through ticks. Inhibition of host skin's innate immune response might be instrumental to both tick feeding and B. burgdorferi transmission. The article by Marchal et al. describes how tick saliva suppresses B.

  15. Successful treatment of massive pulmonary embolism with prolonged catheter-directed thrombolysis.

    LENUS (Irish Health Repository)

    Kelly, Peter

    2012-02-03

    This is a case report of a young woman who presented with an extensive pulmonary embolism and echocardiographic evidence of right ventricular dysfunction. Although hemodynamically stable, the patient\\'s clinical condition failed to improve with standard heparin anticoagulation. Successful local catheter-directed thrombolysis was performed over an extended period of 48 h with regular monitoring of response to therapy by computed tomography-pulmonary angiography and echocardiography. To our knowledge, treatment of a pulmonary embolism by catheter-directed thrombolytic infusion over an extended period of 48 h has not previously been described.

  16. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  17. Experimental shifts in egg-nest contrasts do not alter egg rejection responses in an avian host-brood parasite system.

    Science.gov (United States)

    Hauber, Mark E; Aidala, Zachary; Igic, Branislav; Shawkey, Matthew D; Moskát, Csaba

    2015-09-01

    Obligate brood parasitic birds exploit their hosts to provide care for unrelated young in the nest. Potential hosts can reduce the cost of parasitism by rejecting foreign eggs from the nest. Observational, comparative, and experimental studies have concluded that most hosts use the coloration and patterning of eggshells to discriminate between own and foreign eggs in the nest. However, an alternative hypothesis is that birds use the colour contrasts between eggshells and the nest lining to identify parasitic eggs (egg-nest contrast hypothesis). In support of this hypothesis, we found that the avian perceivable chromatic contrasts between dyed eggs and unmanipulated nest linings significantly and negatively covaried with the rejection rates of different dyed eggs of the great reed warbler Acrocephalus arundinaceus, a frequently parasitized host of the common cuckoo Cuculus canorus. To experimentally test whether egg-nest contrasts influence rejection, we reciprocally dyed both eggs and the nest lining of this host species with one of two colours: orange and green. Contrary to the egg-nest contrast hypothesis, host rejection patterns in response to dyed eggs were not altered by dyeing nests, relative to unmanipulated control eggs and nests. In turn, experimental egg colour was the only significant predictor of egg rejection rate. Our results demonstrate that egg-nest contrast is a collateral, not a causal factor in egg rejection, and confirm the conclusions of previous studies that hosts can rely on the parasitic egg's appearance itself to recognize the foreign egg in the nest.

  18. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks

    Science.gov (United States)

    Flentie, Kelly; Garner, Ashley L.

    2016-01-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824

  19. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  20. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Carlsen, Jørn; Andersen, Kasper Hasseriis; Boesgaard, Søren

    2013-01-01

    BACKGROUND: Pulmonary vascular findings are largely unreported in end-stage chronic obstructive pulmonary disease (COPD). METHODS: Pulmonary vascular lesions in explanted lungs from 70 patients with COPD/emphysema or α-1-antitrypsin deficiency were analyzed retrospectively. Patients were stratified...... of pulmonary vascular lesions in COPD correlate with the severity of PH. Morphologic lesions similar to those characteristic of IPAH can be observed as PH in COPD progresses to levels characteristic of IPAH....... by the presence and severity of pulmonary hypertension (PH) assessed by right-heart catheterization in 3 hemodynamically distinct groups: (1) non-PH (mean pulmonary arterial pressure [mPAP]50 mm Hg; median HE Grade 4 (range 3-6), with generalized arterial dilatation and plexiform lesions. CONCLUSIONS: The extent...

  1. A model system for studying the transcriptomic and physiological changes associated with mammalian host-adaptation by Leptospira interrogans serovar Copenhageni.

    Directory of Open Access Journals (Sweden)

    Melissa J Caimano

    2014-03-01

    Full Text Available Leptospirosis, an emerging zoonotic disease with worldwide distribution, is caused by spirochetes belonging to the genus Leptospira. More than 500,000 cases of severe leptospirosis are reported annually, with >10% of these being fatal. Leptospires can survive for weeks in suitably moist conditions before encountering a new host. Reservoir hosts, typically rodents, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. In humans, leptospires can cause a variety of clinical manifestations, ranging from asymptomatic or mild fever to severe icteric (Weil's disease and pulmonary haemorrhage. Currently, little is known about how Leptospira persist within a reservoir host. Prior in vitro studies have suggested that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. However, no study has examined gene expression by leptospires within a mammalian host-adapted state. To obtain a more faithful representation of how leptospires respond to host-derived signals, we used RNA-Seq to compare the transcriptome of L. interrogans cultivated within dialysis membrane chambers (DMCs implanted into the peritoneal cavities of rats with that of organisms grown in vitro. In addition to determining the relative expression levels of "core" housekeeping genes under both growth conditions, we identified 166 genes that are differentially-expressed by L. interrogans in vivo. Our analyses highlight physiological aspects of host adaptation by leptospires relating to heme uptake and utilization. We also identified 11 novel non-coding transcripts that are candidate small regulatory RNAs. The DMC model provides a facile system for studying the transcriptional and antigenic changes associated with mammalian host

  2. Pulmonary Hypertension Overview

    Science.gov (United States)

    ... well as sleep apnea, are common causes of secondary pulmonary hypertension. Other causes include the following: Congestive heart failure Birth defects in the heart Chronic pulmonary thromboembolism (blood clots in the pulmonary arteries) Acquired immunodeficiency syndrome ( ...

  3. Familial Pulmonary Fibrosis

    Science.gov (United States)

    ... Education & Training Home Conditions Familial Pulmonary Fibrosis Familial Pulmonary Fibrosis Make an Appointment Find a Doctor Ask a ... more members within the same family have Idiopathic Pulmonary Fibrosis (IPF) or any other form of Idiopathic Interstitial ...

  4. Enhanced magnetic resonance pulmonary perfusion imaging in diagnosing pulmonary embolism: preliminary investigation

    International Nuclear Information System (INIS)

    Huang Xiaoyong; Du Jing; Zhang Zhaoqi; Guo Xi; Yan Zixu; Jiang Hong; Wang Wei

    2005-01-01

    Objective: This study was designed to investigate the sensitivity and specificity of magnetic resonance pulmonary perfusion imaging (MRPP) in diagnosing pulmonary embolism (PE) compared with enhanced magnetic resonance pulmonary angiography (MRPA) and pulmonary radionuclide perfusion imaging. Methods: Fourteen patients were definitely diagnosed as PE, whose ages were from 19 to 71 years old and mean 45.5 ± 19.8 years old. All patients under went MRPA and MRPP and 3 patients were examined again after thrombolytic treatment. Five patients underwent pulmonary radionuclide perfusion imaging. Setting ROI in top, middle, bottom of lung area and abnormal area respectively, we detected signal intensity and time-signal curve to obtain the transformation rate of signal (TROS) during perfusion peak value. Results: In 14 pulmonary embolism patients, MRPA found 62 branches of pulmonary artery obstruction. Fifty-five abnormal pulmonary perfusion zones were found by MRPP, and the above results were very alike. The coincidence was 88.71%. In 14 cases, MRPP could show 25 subsegments lesion below segments. In 5 patients who had both results Of MRPP and ECT at the same time. MRPP shows 33 perfusion defect zones and 37 segments were found by ECT, the sensitivity was 89.19%. After thrombolytic treatment, both the status of the affected pulmonary artery improved markedly and perfusion defect zones reduced obviously in 3 cases by MRPP and MRPA. TROS in normal perfusion zones perfusion defect zones and low perfusion zones had significant difference (t=22.882, P<0.01). Conclusion: Contrast enhanced MR pulmonary perfusion can show both perfusion defect zones and low perfusion zones in pulmonary embolism. Time-signal curve can show the period of maximum no perfusion zones in pulmonary artery embolism zones. And the amplitude of fluctuation is small with miminum TROS. MRPP has significant values especially in showing pulmonary artery embolism in segments and subsegments. Using both MRPP and

  5. Clinical study of the histologic host response of the patients with lung cancer during radiotherapy

    International Nuclear Information System (INIS)

    Gose, Kyuhei

    1984-01-01

    Serial bronchofiberscopic biopsies were performed during radiotherapy in 28 patients with squamous cell carcinoma of the lung. The effect of radiotherapy on tumor tissue was examined histologically as to the responsiveness of the host against tumor cells. The mononuclear cell infiltration induced in the tumor by irradiation correlated well with its direct effect on the tumor cells. The most remarkable infiltration was observed at the dose of 2000 rad and in the polypoid type. Indirect immunofluonescent technique with monoclonal anti OKT 3 and OKIa revealed that most of the infiltrated cells were T-lymphocytes. There was a good relationship between the grade of mononuclear cell infiltration and the survival period. These facts suggest that the mononuclear cells in the irradiated tumor tissues represent host resistance against cancer and the intensity of the infiltration correlates with the clinical course and prognosis of the lung cancer patients. (author)

  6. Diminazene aceturate (Berenil modulates the host cellular and inflammatory responses to Trypanosoma congolense infection.

    Directory of Open Access Journals (Sweden)

    Shiby Kuriakose

    Full Text Available BACKGROUND: Trypanosoma congolense are extracellular and intravascular blood parasites that cause debilitating acute or chronic disease in cattle and other domestic animals. Diminazene aceturate (Berenil has been widely used as a chemotherapeutic agent for trypanosomiasis in livestock since 1955. As in livestock, treatment of infected highly susceptible BALB/c mice with Berenil leads to rapid control of parasitemia and survival from an otherwise lethal infection. The molecular and biochemical mechanisms of action of Berenil are still not very well defined and its effect on the host immune system has remained relatively unstudied. Here, we investigated whether Berenil has, in addition to its trypanolytic effect, a modulatory effect on the host immune response to Trypanosoma congolense. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c and C57BL/6 mice were infected intraperitoneally with T. congolense, treated with Berenil and the expression of CD25 and FoxP3 on splenic cells was assessed directly ex vivo. In addition, serum levels and spontaneous and LPS-induced production of pro-inflammatory cytokines by splenic and hepatic CD11b⁺ cells were determined by ELISA. Berenil treatment significantly reduced the percentages of CD25⁺ cells, a concomitant reduction in the percentage of regulatory (CD4⁺Foxp3⁺ T cells and a striking reduction in serum levels of disease exacerbating pro-inflammatory cytokines including IL-6, IL-12, TNF and IFN-γ. Furthermore, Berenil treatment significantly suppressed spontaneous and LPS-induced production of inflammatory cytokines by splenic and liver macrophages and significantly ameliorated LPS-induced septic shock and the associated cytokine storm. CONCLUSIONS/SIGNIFICANCE: Collectively, these results provide evidence that in addition to its direct trypanolytic effect, Berenil also modulates the host immune response to the parasite in a manner that dampen excessive immune activation and production of pathology

  7. Hemodynamic Characteristics Including Pulmonary Hypertension at Rest and During Exercise Before and After Heart Transplantation

    Science.gov (United States)

    Lundgren, Jakob; Rådegran, Göran

    2015-01-01

    Background Little is known about the hemodynamic response to exercise in heart failure patients at various ages before and after heart transplantation (HT). This information is important because postoperative hemodynamics may be a predictor of survival. To investigate the hemodynamic response to HT and exercise, we grouped our patients based on preoperative age and examined their hemodynamics at rest and during exercise before and after HT. Methods and Results Ninety-four patients were evaluated at rest prior to HT with right heart catheterization at our laboratory. Of these patients, 32 were evaluated during slight supine exercise before and 1 year after HT. Postoperative evaluations were performed at rest 1 week after HT and at rest and during exercise at 4 weeks, 3 months, 6 months, and 1 year after HT. The exercise patients were divided into 2 groups based on preoperative age of ≤50 or >50 years. There were no age-dependent differences in the preoperative hemodynamic exercise responses. Hemodynamics markedly improved at rest and during exercise at 1 and 4 weeks, respectively, after HT; however, pulmonary and, in particular, ventricular filling pressures remained high during exercise at 1 year after HT, resulting in normalized pulmonary vascular resistance response but deranged total pulmonary vascular resistance response. Conclusions Our findings suggest that, (1) in patients with heart failure age ≤50 or >50 years may not affect the hemodynamic response to exercise to the same extent as in healthy persons, and (2) total pulmonary vascular resistance may be more adequate than pulmonary vascular resistance for evaluating the exercise response after HT. PMID:26199230

  8. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  9. The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

    Science.gov (United States)

    Khan, Mike; Harms, Jerome S; Marim, Fernanda M; Armon, Leah; Hall, Cherisse L; Liu, Yi-Ping; Banai, Menachem; Oliveira, Sergio C; Splitter, Gary A; Smith, Judith A

    2016-12-01

    Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. The Right Ventricle Explains Sex Differences in Survival in Idiopathic Pulmonary Arterial Hypertension

    NARCIS (Netherlands)

    Jacobs, W.; van de Veerdonk, M.C.; Trip, P.; de Man, F.S.; Heymans, M.W.; Marcus, J.T.; Kawut, S.M.; Bogaard, H.J.; Boonstra, A.; Vonk-Noordegraaf, A.

    2014-01-01

    Background: Male sex is an independent predictor of worse survival in pulmonary arterial hypertension (PAH). This finding might be explained by more severe pulmonary vascular disease, worse right ventricular (RV) function, or different response to therapy. The aim of this study was to investigate

  11. A comparative analysis of pulmonary ventilation-perfusion imaging with pulmonary angiography in the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Wang Jincheng; Mi Hongzhi; Wang Qian; Zhang Weijun; Lu Biao; Yang Hao; Ding Jian; Lu Yao

    2001-01-01

    Objective: To assess the value of ventilation-perfusion imaging in the diagnosis of pulmonary embolism (PE). Methods: Thirty consecutive patients with clinically suspected pulmonary embolism were studied, male: female 15:15, mean age was (36.2 +- 13.9) years. The chest radiograms were obtained in all 30 patients. All patients underwent radionuclide ventilation-perfusion imaging and pulmonary angiography. Results: Of the 30 patients, 22 with lobe, multiple segment or multi-subsegment perfusion defects and normal or nearly normal ventilation images were reported as PE. 20 of them were confirmed to be with PE by pulmonary angiography, 2 patients were not confirmed. Eight of 30 patients with multiple perfusion defects, ventilative abnormalities were reported as non-PE and the diagnoses were confirmed by pulmonary angiography. The sensitivity, specificity and accuracy of diagnosis of PE by ventilation-perfusion imaging was 100%, 80.0% and 93.3% respectively. Conclusions: (1) Ventilation-perfusion imaging is one of the most valuable methods in the diagnosis of PE. (2) The results suggest that pulmonary embolism can be diagnosed non-invasively in most patients on the basis of clinical manifestation, chest radiograms and ventilation-perfusion imaging findings. (3) Pulmonary angiography is required while clinical manifestation and ventilation-perfusion imaging findings are discordant with each other

  12. Pulmonary Infection In Renal Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Rassulineiad M

    2003-11-01

    Full Text Available Renal transplantation is ideal treatment of chronic renal failure. Pulmonary infection is a common and serious post transplant infection requiring hospitalization and is associated with high mortality. Increased susceptibility to infection is due to a decrease in the patients' immunological response caused by immunosuppression through drug administration, and by other influences."nMaterials and Methods: This study was case series and prospective, from July 2001 to July 2002 in Imam Khomeini hospital of Tehran."nResults: 164 renal transplant recipients were studied, 14 patients (8.5% had pulmonary infection, 11 of them (78.6% were female and 3 (21.4% were male. The mean age of them was 42.6 years. The patients were followed up for 9 to 12 months. All patients were on triple immunosuppressive regimens. The interval between transplantation and the appearance of pneumonia was 2 months to 10 years. The time of beginning infection in 3 cases (21.4% was between 1 to 6 months post transplantation, 11 cases (78.6% were occurred beyond 6 months after transplantation. In 7 cases (50%, pulmonary infection was occurred during first year after transplantation. None of the 14 patients developed pulmonary infection in first month after transplantation. BAL were used in 6 cases (42.8% of pulmonary infection, and organism were detected in 5 of them (83.3%. The most common clinical feature was fever. Six cases were due to mycobacterium tuberculosis (42.9%, this organism was the most common ethiology of pneumonia. In this study tuberculosis was seen in 3.6% of renal transplant recipients. One patient had pulmonary mucormycosis. All patients with pulmonary TB were cured, and other cases with unknown case, were cured with empirical treatment."nConclusion: Our finding indicate the invasive diagnostic procedures are required in order to earlier and reliable diagnosis and then better outcome of transplantation."n"n"n"n"n"n"n 

  13. Pulmonary embolism in pregnancy: comparison of pulmonary CT angiography and lung scintigraphy.

    LENUS (Irish Health Repository)

    Ridge, Carole A

    2012-02-01

    OBJECTIVE: The purpose of this study was to retrospectively compare the diagnostic adequacy of lung scintigraphy with that of pulmonary CT angiography (CTA) in the care of pregnant patients with suspected pulmonary embolism. MATERIALS AND METHODS: Patient characteristics, radiology report content, additional imaging performed, final diagnosis, and diagnostic adequacy were recorded for pregnant patients consecutively referred for lung scintigraphy or pulmonary CTA according to physician preference. Measurements of pulmonary arterial enhancement were performed on all pulmonary CTA images of pregnant patients. Lung scintigraphy and pulmonary CTA studies deemed inadequate for diagnosis at the time of image acquisition were further assessed, and the cause of diagnostic inadequacy was determined. The relative contribution of the inferior vena cava to the right side of the heart was measured on nondiagnostic CTA images and compared with that on CTA images of age-matched nonpregnant women, who were the controls. RESULTS: Twenty-eight pulmonary CTA examinations were performed on 25 pregnant patients, and 25 lung scintigraphic studies were performed on 25 pregnant patients. Lung scintigraphy was more frequently adequate for diagnosis than was pulmonary CTA (4% vs 35.7%) (p = 0.0058). Pulmonary CTA had a higher diagnostic inadequacy rate among pregnant than nonpregnant women (35.7% vs 2.1%) (p < 0.001). Transient interruption of contrast material by unopacified blood from the inferior vena cava was identified in eight of 10 nondiagnostic pulmonary CTA studies. CONCLUSION: We found that lung scintigraphy was more reliable than pulmonary CTA in pregnant patients. Transient interruption of contrast material by unopacified blood from the inferior vena cava is a common finding at pulmonary CTA of pregnant patients.

  14. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Schultz, Marc J.; Knapp, Sylvia; Florquin, Sandrine; Pater, Jennie; Takeda, Kiyoshi; Akira, Shizuo; van der Poll, Tom

    2003-01-01

    Interleukin-18 (IL-18) is a potent cytokine with many different proinflammatory activities. To study the role of IL-18 in the pathogenesis of Pseudomonas pneumonia, IL-18-deficient (IL-18(-/-)) and wild-type mice were intranasally inoculated with Pseudomonas aeruginosa. IL-18 deficiency was

  15. Effects of altered platelet number on pulmonary hypertension and platelet sequestration in monocrotaline pyrrole-treated rats

    International Nuclear Information System (INIS)

    White, S.M.; Wagner, J.G.; Roth, R.A.

    1989-01-01

    To study the role of platelets in monocrotaline pyrrole (MCTP)-induced pulmonary hypertension, pulmonary sequestration of 111In-labeled platelets in rats treated with MCTP and anti-rat platelet serum (PAS) was examined. Lung injury from a single, intravenous injection of MCTP (3.5 mg/kg) at Day 8 was evident as elevated lung weight and lavage fluid protein and lactate dehydrogenase activity. Additionally, right ventricular hypertrophy and elevated pulmonary arterial pressures (PAP) occurred. Treatment with PAS on Days 6-8 did not affect the lung injury but resulted in an attenuation of the pulmonary hypertensive response. Pulmonary platelet sequestration was also decreased in PAS-treated rats, yet the sequestration in the lungs of MCTP-treated rats that received PAS was significantly higher than that in the lungs of N,N-dimethylformamide (DMF) controls. MCTP-treated rats receiving control serum (CS) tended to sequester more 111In-labeled platelets than respective DMF controls, but this was not statistically significant. Blood platelet half-life was unaltered in rats receiving CS. When rats were treated similarly with MCTP and PAS and were killed at 18 days, the attenuation of the pulmonary hypertensive response previously described was not observed, and lung injury was more extensive than when CS was given. Apparently, platelet depletion delayed the development of the pulmonary hypertensive response. Supranormal platelet numbers produced by splenectomy did not affect MCTP-induced lung injury or the elevation in PAP. These results support the hypothesis that the development of MCTP-induced pulmonary hypertension is mediated in part by platelets

  16. Energy efficiency and pulmonary artery flow after balloon pulmonary angioplasty for inoperable, chronic thromboembolic pulmonary hypertension: Analysis by phase-contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Michinobu, E-mail: nagao.michinobu@twmu.ac.jp [Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women’s Medical University, Tokyo (Japan); Yamasaki, Yuzo [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Abe, Kohtaro; Hosokawa, Kazuya [Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Kawanami, Satoshi [Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Kamitani, Takeshi; Yamanouchi, Torahiko [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yabuuchi, Hidetake [Department of Medical Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Fukushima, Kenji [Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women’s Medical University, Tokyo (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2017-02-15

    Purpose: The aims of this study were to propose a new quantitative method for pulmonary artery (PA) flow energetics using phase-contrast magnetic resonance imaging (PC-MRI), and to investigate how balloon pulmonary angioplasty (BPA) impacts energetics in chronic thromboembolic pulmonary hypertension (CTEPH). Materials and methods: PC-MRI at 3-Teslar and with a flow sensitive gradient echo was used to examine energetics prior to and following BPA for 24 CTEPH patients. Stroke volume (m; ml) and mean velocity (V; mm/s) for the main pulmonary artery (PA), right PA, and left PA were calculated from a time-flow curve derived from PC-MRI. Based on the Bernoulli principle, PA energy was identified as 1/2 mV{sup 2} (μj/kg), and energy loss was defined as the following equation “energy loss = main PA energy − (rt. PA energy + lt. PA energy)”. Results: Right PA energy was significantly greater post-BPA than pre-BPA (61 ± 55 vs. 32 ± 40 μj/kg). There was no difference in main PA and left PA energies. Energy loss was significantly decreased post-BPA (18 ± 97 μj/kg) than pre-BPA (79 ± 125 μj/kg). An optimal cutoff of left PA energy of 45 μj/kg pre-BPA can be used to predict patients with mPAP ≥ 30 mmHg after BPA, with an area under the curve of 0.91, 78% sensitivity, and 92% specificity. Conclusion: Analysis of PA energetics using phase-contrast MRI demonstrates that BPA improves energy loss in CTEPH. In addition, BPA responses can be predicted by PA energy status pre-treatment.

  17. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  18. Recombinant Marburg viruses containing mutations in the IID region of VP35 prevent inhibition of Host immune responses.

    Science.gov (United States)

    Albariño, César G; Wiggleton Guerrero, Lisa; Spengler, Jessica R; Uebelhoer, Luke S; Chakrabarti, Ayan K; Nichol, Stuart T; Towner, Jonathan S

    2015-02-01

    Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses. Published by Elsevier Inc.

  19. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  20. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: a phase II safety and proof of principle trial

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Francois [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Nuclear Medicine, Montreal, Quebec (Canada); Langleben, David; Abikhzer, Gad [McGill University, Lady Davis Institute and Jewish General Hospital, Montreal, Quebec (Canada); Provencher, Steve; Guimond, Jean [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec (Canada); Fournier, Alain; Letourneau, Myriam [INRS-Institut Armand-Frappier, Laval, Quebec (Canada); Finnerty, Vincent; Nguyen, Quang T.; Levac, Xavier [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Mansour, Asmaa; Guertin, Marie-Claude [Montreal Health Innovation Coordination Center, Montreal, QC (Canada); Dupuis, Jocelyn [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Medicine, Montreal, Quebec (Canada)

    2017-07-15

    The adrenomedullin receptor is densely expressed in the pulmonary vascular endothelium. PulmoBind, an adrenomedullin receptor ligand, was developed for molecular diagnosis of pulmonary vascular disease. We evaluated the safety of PulmoBind SPECT imaging and its capacity to detect pulmonary vascular disease associated with pulmonary hypertension (PH) in a human phase II study. Thirty patients with pulmonary arterial hypertension (PAH, n = 23) or chronic thromboembolic PH (CTEPH, n = 7) in WHO functional class II (n = 26) or III (n = 4) were compared to 15 healthy controls. Lung SPECT was performed after injection of 15 mCi {sup 99m}Tc-PulmoBind in supine position. Qualitative and semi-quantitative analyses of lung uptake were performed. Reproducibility of repeated testing was evaluated in controls after 1 month. PulmoBind injection was well tolerated without any serious adverse event. Imaging was markedly abnormal in PH with ∝50% of subjects showing moderate to severe heterogeneity of moderate to severe extent. The abnormalities were unevenly distributed between the right and left lungs as well as within each lung. Segmental defects compatible with pulmonary embolism were present in 7/7 subjects with CTEPH and in 2/23 subjects with PAH. There were no segmental defects in controls. The PulmoBind activity distribution index, a parameter indicative of heterogeneity, was elevated in PH (65% ± 28%) vs. controls (41% ± 13%, p = 0.0003). In the only subject with vasodilator-responsive idiopathic PAH, PulmoBind lung SPECT was completely normal. Repeated testing 1 month later in healthy controls was well tolerated and showed no significant variability of PulmoBind distribution. In this phase II study, molecular SPECT imaging of the pulmonary vascular endothelium using {sup 99m}Tc-PulmoBind was safe. PulmoBind showed potential to detect both pulmonary embolism and abnormalities indicative of pulmonary vascular disease in PAH. Phase III studies with this novel tracer and

  1. Right pulmonary aplasia, aberrant left pulmonary artery, and bronchopulmonary sequestration with an esophageal bronchus

    International Nuclear Information System (INIS)

    Lee, Peter; McCauley, Roy; Westra, Sjirk; Baba, Timothy

    2006-01-01

    Pulmonary aplasia and bronchopulmonary foregut malformations in which a patent communication between the foregut and the pulmonary system is present are rare congenital abnormalities. Pulmonary aplasia associated with a pulmonary sling is an even rarer abnormality. We report a unique case of right pulmonary aplasia, aberrant left pulmonary artery, and bronchopulmonary sequestration with an esophageal bronchus diagnosed by multidetector helical CT. (orig.)

  2. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  3. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  4. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  5. Pulmonary Arterial Hypertension

    Science.gov (United States)

    ... heart). This type of pulmonary hypertension was called “secondary pulmonary hypertension” but is now referred to as PH, because the cause is known to be from lung disease, heart disease, or chronic thromboemboli (blood clots). Pulmonary Arterial Hypertension (PAH) used to be ...

  6. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  7. Pharmacological therapy of chronic obstructive pulmonary disease

    African Journals Online (AJOL)

    patients with COPD require pharmacological therapy. ... pulmonary dysfunction. Clearly the patient's tolerance to the various drugs will influence the choice of long-term maintenance treatment. The other important factor in the .... blocking cervical immune responses might leave her less protected against other infections.

  8. Pulmonary vascular limitation to exercise and survival in idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    van der Plas, Mart N.; van Kan, Coen; Blumenthal, Judith; Jansen, Henk M.; Wells, Athol U.; Bresser, Paul

    2014-01-01

    Pulmonary hypertension is frequently observed in advanced idiopathic pulmonary fibrosis (IPF) and is associated with poor prognosis. Cardiopulmonary exercise testing (CPET) can be used to detect less advanced pulmonary vascular impairment, and therefore may be of prognostic use. We studied the

  9. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension

    Science.gov (United States)

    Naik, Jay S.; Weise-Cross, Laura; Detweiler, Neil D.; Herbert, Lindsay M.; Yellowhair, Tracylyn R.; Resta, Thomas C.

    2017-01-01

    Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a

  10. Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    David Jenkins

    2017-03-01

    Full Text Available Chronic thromboembolic pulmonary hypertension (CTEPH is a type of pulmonary hypertension, resulting from fibrotic transformation of pulmonary artery clots causing chronic obstruction in macroscopic pulmonary arteries and associated vascular remodelling in the microvasculature. Pulmonary endarterectomy (PEA offers the best chance of symptomatic and prognostic improvement in eligible patients; in expert centres, it has excellent results. Current in-hospital mortality rates are 90% at 1 year and >70% at 10 years. However, PEA, is a complex procedure and relies on a multidisciplinary CTEPH team led by an experienced surgeon to decide on an individual's operability, which is determined primarily by lesion location and the haemodynamic parameters. Therefore, treatment of patients with CTEPH depends largely on subjective judgements of eligibility for surgery by the CTEPH team. Other controversies discussed in this article include eligibility for PEA versus balloon pulmonary angioplasty, the new treatment algorithm in the European Society of Cardiology/European Respiratory Society guidelines and the definition of an “expert centre” for the management of this condition.

  11. Modifying effects of preexisting pulmonary fibrosis on biological responses of rats to inhaled 239PuO2

    International Nuclear Information System (INIS)

    Lundgren, D.L.; Mauderly, J.L.; Rebar, A.H.; Gillett, N.A.; Hahn, F.F.

    1991-01-01

    We investigated the modifying effects of preexisting, bleomycin-induced pulmonary fibrosis on the deposition, retention, and biological effects of inhaled 239PuO2 in the rat. Among rats exposed to similar airborne concentrations of 239PuO2, initial lung burdens of 239Pu per kilogram body mass were similar whether or not pulmonary fibrosis was present. However, clearance of 239Pu from the lungs was significantly decreased in the rats with preexisting pulmonary fibrosis. The incidence of lung lesions (epithelial hyperplasia, diffuse macrophage increases and aggregation, and loose and dense connective tissue) was significantly greater among rats with preexisting pulmonary fibrosis than among the exposed controls. Rats with preexisting fibrosis had shorter life spans than 239PuO2-exposed control rats. When groups of rats with similar alpha doses to the lungs were compared, the incidences of neoplastic lesions in the lung, the times to death of rats with lung neoplasms, and the risk of lung tumors per unit of alpha dose to the lungs in rats with or without pulmonary fibrosis were similar. The results of this study suggest that humans with uncomplicated pulmonary fibrosis may not be more sensitive to the carcinogenic effects of inhaled 239PuO2 than are individuals with normal lungs, assuming that the total alpha doses to the lungs are similar

  12. Definition and classification of pulmonary hypertension.

    Science.gov (United States)

    Humbert, Marc; Montani, David; Evgenov, Oleg V; Simonneau, Gérald

    2013-01-01

    Pulmonary hypertension is defined as an increase of mean pulmonary arterial pressure ≥25 mmHg at rest as assessed by right heart catheterization. According to different combinations of values of pulmonary wedge pressure, pulmonary vascular resistance and cardiac output, a hemodynamic classification of pulmonary hypertension has been proposed. Of major importance is the pulmonary wedge pressure which allows to distinguish pre-capillary (pulmonary wedge pressure ≤15 mmHg) and post-capillary (pulmonary wedge pressure >15 mmHg) pulmonary hypertension. Pre-capillary pulmonary hypertension includes the clinical groups 1 (pulmonary arterial hypertension), 3 (pulmonary hypertension due to lung diseases and/or hypoxia), 4 (chronic thrombo-embolic pulmonary hypertension) and 5 (pulmonary hypertension with unclear and/or multifactorial mechanisms). Post-capillary pulmonary hypertension corresponds to the clinical group 2 (pulmonary hypertension due to left heart diseases).

  13. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antibody response to Mycoplasma pneumoniae: protection of host and influence on outbreaks?

    Directory of Open Access Journals (Sweden)

    Roger eDumke

    2016-01-01

    Full Text Available In humans of all ages, the cell wall-less and genome-reduced species Mycoplasma pneumoniae can cause infections of the upper and lower respiratory tract. The well-documented occurrence of major peaks in the incidence of community-acquired pneumonia cases reported world-wide, the multifaceted clinical manifestations of infection and the increasing number of resistant strains provide reasons for ongoing interest in the pathogenesis of mycoplasmal disease. The results of recent studies have provided insights into the interaction of the limited virulence factors of the bacterium with its host. In addition, the availability of complete M. pneumoniae genomes from patient isolates and the development of proteomic methods for investigation of mycoplasmas have not only allowed characterization of sequence divergences between strains but have also shown the importance of proteins and protein parts for induction of the immune reaction after infection. This review focuses on selected aspects of the humoral host immune response as a factor that might influence the clinical course of infections, subsequent protection in cases of re-infections and changes of epidemiological pattern of infections. The characterization of antibodies directed to defined antigens and approaches to promote their induction in the respiratory mucosa are also preconditions for the development of a vaccine to protect risk populations from severe disease due to M. pneumoniae.

  15. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  16. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  17. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    Science.gov (United States)

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  18. DNA strand breaks, acute phase response and inflammation following pulmonary exposure by instillation to the diesel exhaust particle NIST1650b in mice

    DEFF Research Database (Denmark)

    Kyjovska, Zdenka O.; Jacobsen, Nicklas R.; Saber, Anne T.

    2015-01-01

    by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary acute phase response was analysed by Saa3 mRNA levels by real-time quantitative polymerase chain reaction. Instillation of DEP induced a strong neutrophil influx 1 and 3 days, but not 28 days post-exposure. Saa3 m...

  19. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity.

    Science.gov (United States)

    Koo, Hyeon-Kyoung; Hong, Yoonki; Lim, Myoung Nam; Yim, Jae-Joon; Kim, Woo Jin

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the airway and lung. A protease-antiprotease imbalance has been suggested as a possible pathogenic mechanism for COPD. We evaluated the relationship between matrix metalloproteinase (MMP) levels and COPD severity. Plasma levels of MMP-1, MMP-8, MMP-9, and MMP-12 were measured in 57 COPD patients and 36 normal controls. The relationship between MMP levels and lung function, emphysema index, bronchial wall thickness, pulmonary artery pressure, and quality of life was examined using general linear regression analyses. There were significant associations of MMP-1 with bronchodilator reversibility and of MMP-8 and MMP-9 with lung function. Also, MMP-1, MMP-8, and MMP-9 levels were correlated with the emphysema index, independent of lung function. However, MMP-12 was not associated with lung function or emphysema severity. Associations between MMP levels and bronchial wall thickness, pulmonary artery pressure, and quality of life were not statistically significant. Plasma levels of MMP-1, MMP-8, and MMP-9 are associated with COPD severity and can be used as a biomarker to better understand the characteristics of COPD patients.

  20. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.