WorldWideScience

Sample records for public error tracker

  1. Laser tracker error determination using a network measurement

    International Nuclear Information System (INIS)

    Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim

    2011-01-01

    We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies

  2. Parallax error in the monocular head-mounted eye trackers

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    2012-01-01

    each parameter affects the error. The optimum distribution of the error (magnitude and direction) in the field of view varies for different applications. However, the results can be used for finding the optimum parameters that are needed for designing a head-mounted gaze tracker. It has been shown...

  3. TRACKER

    CERN Multimedia

    G. Dirkes

    2010-01-01

    The strip system has generally exhibited stable and high performance operation during the last six months of pp and heavy ion collisions. The up-time during pp collision from June onwards was 99.0% and during the first weeks of heavy-ion running we reached 99.7%. Most of the down-time during the proton runs came from Tracker DAQ problems. Spurious extra events from individual front-end channels caused ‘sync loss draining’ errors at the central DAQ system downstream of the Tracker FEDs. Once the problem was understood, new firmware that detects this error condition was installed on the FEDs. This has reduced the recovery procedure from this particular condition from a full reconfiguration requiring 170 s, to a simple re-synchronisation taking only ~1 s. We have also streamlined the instructions for the central DAQ shifters in order to minimise the time needed to decide the proper reaction to a given problem. The average down-time for problems triggered by the strip tracker DAQ is 395 s. Th...

  4. Error handling for the CDF Silicon Vertex Tracker

    CERN Document Server

    Belforte, S; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2000-01-01

    The SVT online tracker for the CDF upgrade reconstructs two- dimensional tracks using information from the Silicon Vertex detector (SVXII) and the Central Outer Tracker (COT). The SVT has an event rate of 100 kHz and a latency time of 10 mu s. The system is composed of 104 VME 9U digital boards (of 8 different types) and it is implemented as a data driven architecture. Each board runs on its own 30 MHz clock. Since the data output from the SVT (few Mbytes/sec) are a small fraction of the input data (200 Mbytes/sec), it is extremely difficult to track possible internal errors by using only the output stream. For this reason several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named Spy Buffers which act as built in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be ...

  5. Error handling for the CDF online silicon vertex tracker

    CERN Document Server

    Bari, M; Cerri, A; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2001-01-01

    The online silicon vertex tracker (SVT) is composed of 104 VME 9U digital boards (of eight different types). Since the data output from the SVT (few MB/s) are a small fraction of the input data (200 MB/s), it is extremely difficult to track possible internal errors by using only the output stream. For this reason, several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams, and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named spy buffers, which act as built-in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be frozen at any time (e.g., on error detection) to take a snapshot of all data flowing through each SVT board. The spy buffers are coordinated at system level by the Spy Control Board. The architecture, design, and implementation of this system are described. (4 refs).

  6. TRACKER

    CERN Multimedia

    C. Barth

    2012-01-01

      Strip Tracker In the end of 2011, the Silicon Strip Tracker participated in the very successful heavy-ion collision data-taking. With zero downtime attributed to the Strip Tracker, CMS could achieve the excellent efficiency of 96%. Thus we were able to improve on the already good uptime during pp collisions, and completed an excellent year for the Strip Tracker. The shift of responsibility to raise the high voltages at the declaration of Stable Beams from the Tracker DOC to the central crew went smoothly. The new scheme is working reliably and we improved our automatic DQM and DCS SMS services. With this further improvement we plan to discontinue calling the TK DOC at each Stable Beam; so far the TK DOC personally checked all systems. The biggest effort of this Year-End Technical Stop was a comprehensive evaluation of the C6F14 cooling system performance with respect to future cold operation. The analysis allows a dedicated planning of system refurbishments to be executed during 2012 and LS1....

  7. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Jiongqi; XIONG Kai; ZHOU Haiyin

    2012-01-01

    The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.

  8. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  9. TRACKER

    CERN Multimedia

    D. Strom

    2011-01-01

    Strip Tracker Since the June CMS Week, the Silicon Strip Tracker has had another period of excellent detector operation with more than 97% system uptime. The focus on stable proton physics collection was fruitful, as CMS recorded greater than 5 fb–1 by the completion of the 2011 pp run. Following the November machine development and technical stop, the Strip Tracker now aims to provide the highest quality data during the heavy-ion run. The detector health, measured by the fraction of alive channels, is largely stable at around 97.8%. Recent failures include a TOB control ring, which now requires redundancy, and a TEC control ring with intermittent failures. These will be investigated during the Year-End Technical Stop. Critical services are very stable. The cooling system has a low total leak rate of less than 1 kg per day, and the power supply exchange rate is less than 1 unit per month. Two operational changes recently went into effect to optimise data-taking efficiency: (1) a tripped power su...

  10. TRACKER

    CERN Multimedia

    L. Demaria

    2011-01-01

    Strip Tracker The Silicon Strip Tracker has maintained excellent operational performance during the 2011 data-taking period. The increase of instantaneous luminosity up to 1033 cm-2s-1 did not introduce any new issues in the detector. The detector has collected high-quality physics data with an uptime greater than 98%. Sources of downtime have been identified and problems were properly addressed. Improved firmware in the Front-End Driver (FED) firmware was deployed to increase the robustness of the readout against spurious extra frames coming from the detector. When a FED detects bad data, it goes into Out-Of-Sync (OOS) status, waits for a L1 resynchronisation command (resync) to clean up the culprit data and restarts. Resync commands are now sent automatically to the Strip Tracker when it signals OOS and, as a result, this source of downtime has been reduced significantly. The dead-time, caused by recoveries from OOS, accounts for less than 0.1%. Downtime was also found to be caused by a FED occasionally ge...

  11. TRACKER

    CERN Multimedia

    Frank Hartmann

    2012-01-01

      Strip Tracker In general, the Strip Tracker is operating smoothly with the current peak instantaneous luminosity beyond 6.5E33, high L1 rate and large pile-up. With several improvements in automatic DQM checks and an enhanced SMS and e-mail service system plus additional audio alarms, we have reduced the work-load of our TK DOC and stopped the calls made at the beginning of each fill. We successfully collected more than two million cosmic tracks in peak mode during inter-fill periods before June, fulfilling the request from the Tracker alignment group. Around 500k cosmic tracks were also collected at zero Tesla. All planned special measurements, namely DCU calibration and I-V scans, have been taken during the YETS and other technical stops. A peak-mode run, a delay run and two HV scans have also been taken during early collisions at the initial low-lumi runs as well as during the fill where CMS had a problem with the magnet. The largest source of downtime comes from TIB-2.8.1 a.k.a. FED 101, ...

  12. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  13. Optical system error analysis and calibration method of high-accuracy star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  14. TRACKER

    CERN Document Server

    Bora Akgun

    2013-01-01

    Pixel Tracker Maintenance of the Pixel Tracker has been ongoing since it was extracted from inside CMS and safely stored at low temperatures in Pixel laboratory at Point 5 (see previous Bulletin).    All four half cylinders of the forward Pixel detector (FPIX) have been repaired and the failures have been understood. In October, a team of technicians from Fermilab replaced a total of three panels that were not repairable in place. The replacement of panels is a delicate operation that involves removing the half disks that hold the panels from the half cylinders, removing the damaged panels from the half disks, installing the new panels on the half disks, and finally putting the half disks back into the half cylinders and hooking up the cooling connections. The work was completed successfully. The same team also prepared the installation of the Phase 1 Pixel pilot blade system, installing a third half disk mechanics in the half cylinders; these half disks will host new Phase 1 P...

  15. TRACKER

    CERN Multimedia

    K. Gill and G. Bolla

    2010-01-01

    Silicon strips During the first collisions the strip-Tracker operated with excellent performance and stability. The results obtained were very impressive and this exciting experience marked a fine end to another intense year. Several issues were identified during 2009 operations that could benefit from improvement: to suppress the increased output data volume when in STANDBY state (LV ON, HV OFF), which is due to the larger noise amplitudes when the sensors are unbiased; to reduce the strips configuration time; to increase the stability of the power system, particularly during state transitions, and to decrease the powering up time. The strip-Tracker FEDs now react to changes in the HV conditions of the strips. Upon a transition to STAND-BY, central DAQ starts a PAUSE-RESUME cycle and a flag is issued to the FEDSupervisor. This results in forcing the common mode noise artificially to the maximum value, which effectively suppresses the analogue data output. This forced offset is removed as soon as the strips ...

  16. TRACKER

    CERN Multimedia

    K. Gill

    2010-01-01

    The Tracker has continued to operate with excellent performance during this first period with 7 TeV collisions. Strips operations have been very smooth. The up-time during collisions was 98.5%, up to end of May, with a large fraction of the down-time coming during the planned fine-timing scan with early 7 TeV collisions. Pixels operations are also going very well, besides problems related to background beam-gas collisions where the particles produced generate very large clusters in the barrel modules. When CMS triggers on these events, the FEDs affected overflow and then timeout. Effort was mobilised very quickly to understand and mitigate this problem, with modifications made to the pixel FED firmware in order to provide automatic recovery. With operations becoming more and more routine at P5, Pixels have begun the transition to centrally attended operation, which means that the P5 shifters will no longer be required to be on duty. The strip-Tracker is also planning to make this transition at the end of Ju...

  17. Reduction of low frequency error for SED36 and APS based HYDRA star trackers

    Science.gov (United States)

    Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc

    2017-11-01

    In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.

  18. TRACKER

    CERN Multimedia

    D. Duggan and L. Demaria

    2012-01-01

    Pixels Tracker With the 2012 proton-proton run almost complete, the pixel detector continues to operate well in an environment with large pile-up and high L1 rate. During this period, the pixel detector has shown excellent stability, with the number of current active channels from each the BPIX and FPIX the same as from the first month of 2012 running, resulting in 96.3% of the detector active. This total includes the recovery of six FPIX channels, temporarily disabled due to an unexpected dependence on the magnetic field. From a dedicated study that identified a small crack in an optical cable connector, a repair was made which restored 120 ROCs in the FPIX. During 2012 there has been a close collaboration of the online operations with the offline studies, resulting in the first dedicated HV bias scans used for the pixel Lorentz Angle measurement. These scans help to better understand this important parameter that changes with temperature, irradiation, and bias voltage. This is in addition to all other s...

  19. TRACKER

    CERN Multimedia

    M. Dinardo and G. Benelli

    2013-01-01

    Pixel Tracker At the beginning of May, the Pixel detector was successfully extracted from inside CMS. The operation lasted one and a half days each for the forward and barrel Pixel detectors. Everything went smoothly: new people were trained during the exercise and care was taken to minimise radiation exposure – see Image 3.  Lessons learned were noted in an updated written extraction procedure.  Care was also taken to prepare for reinsertion around the new beam pipe next year, with new alignment targets placed on the barrel Pixel detector. All pieces were lifted to the surface and are now safely stored at low temperatures in the dedicated Pixel laboratory at Point 5 (see Image 4 and previous Bulletin). Image 3 (a) and (b): Extracted FPIX and BPIX detector The subsequent maintenance of the forward Pixel detector started on 27 May.  Since then one of four half cylinders has been repaired and, even more importantly, most of the failures have been fully understood. ...

  20. TRACKER

    CERN Multimedia

    R. Yohay and E. Butz

    2013-01-01

      Pixel Tracker Preparation of the newly built Pixel clean room in the radioprotection (RP) zone of SX5 has been proceeding at a steady clip since the beginning of 2013. The clean room is designed to provide a cold, dry, dust-free laboratory environment for storage and repairs of the CMS Pixel detector during LS1 and future LHC shutdown periods. To that end, it is required to have robust temperature and humidity control, standalone DAQ and DCS systems, and space for specialised silicon testing and repair equipment. Good progress has been made in delivering each of these items. The ongoing project of commissioning the clean room HVAC system has been a success so far. The clean room will be kept at 10–20 Pa above atmospheric pressure to ensure that contaminants flow out of the room. There are two operating temperatures for the room: 21°C will be used when the Pixel detector components are under cold storage at subzero temperatures in well-sealed “cold boxes,” ...

  1. TRACKER

    CERN Multimedia

    E. Butz

    2011-01-01

    The strip tracker took data very efficiently during 2010 with system availabilities of above 97% in the pp running and close to 100% during the heavy-ion running. The number of active channels in the readout is largely stable around 98%. The maintenance and development during the extended technical stop have been focussed on improving the operating conditions of the main silicon strip cooling plants SS1 and SS2, which have been items of concern (see last Bulletin). In order to stabilise and smooth the operation of SS1 and SS2, larger bypass valves and variable frequency drivers (VFDs) have been introduced. Possible noise induced by operation of the VFDs on other parts of CMS has been evaluated and no increased noise has been reported so far. The leak rate of every single line on SS2 was measured with the precise test-rig. Besides the known leaky lines, ten other SS2 lines were measured to leak between 120 g/day and 1200 g/day under the given test conditions, establishin...

  2. Intelligent error correction method applied on an active pixel sensor based star tracker

    Science.gov (United States)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  3. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    Science.gov (United States)

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  4. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    Science.gov (United States)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  5. Remarks on managerial errors and public participation

    International Nuclear Information System (INIS)

    Hilberry, N.

    1978-01-01

    The failure of the Salt Vault project at Lyons was only a managerial error, as were the leaks in the Hanford tanks. Administrative and managerial decision-making needs to be distinguished. Despite claims to special welfare for the public welfare, no segment of the public, such as environmentalist groups, should be permitted to exercise greater (or lesser) political pressure than any other segment. The US NRC Commissioners should be the personification of the public for all operational purposes

  6. Electronic prescribing reduces prescribing error in public hospitals.

    Science.gov (United States)

    Shawahna, Ramzi; Rahman, Nisar-Ur; Ahmad, Mahmood; Debray, Marcel; Yliperttula, Marjo; Declèves, Xavier

    2011-11-01

    To examine the incidence of prescribing errors in a main public hospital in Pakistan and to assess the impact of introducing electronic prescribing system on the reduction of their incidence. Medication errors are persistent in today's healthcare system. The impact of electronic prescribing on reducing errors has not been tested in developing world. Prospective review of medication and discharge medication charts before and after the introduction of an electronic inpatient record and prescribing system. Inpatient records (n = 3300) and 1100 discharge medication sheets were reviewed for prescribing errors before and after the installation of electronic prescribing system in 11 wards. Medications (13,328 and 14,064) were prescribed for inpatients, among which 3008 and 1147 prescribing errors were identified, giving an overall error rate of 22·6% and 8·2% throughout paper-based and electronic prescribing, respectively. Medications (2480 and 2790) were prescribed for discharge patients, among which 418 and 123 errors were detected, giving an overall error rate of 16·9% and 4·4% during paper-based and electronic prescribing, respectively. Electronic prescribing has a significant effect on the reduction of prescribing errors. Prescribing errors are commonplace in Pakistan public hospitals. The study evaluated the impact of introducing electronic inpatient records and electronic prescribing in the reduction of prescribing errors in a public hospital in Pakistan. © 2011 Blackwell Publishing Ltd.

  7. Errors in drug administration by anaesthetists in public hospitals in ...

    African Journals Online (AJOL)

    Objective. To investigate errors in administering drugs by anaesthetists working in public hospitals in the Free State province. Methods. Anonymous questionnaires were distributed to doctors performing anaesthesia in public hospitals in the Free State, i.e. 188 doctors at 22 public sector hospitals. Outcomes included ...

  8. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery

    Directory of Open Access Journals (Sweden)

    Samuel Arba-Mosquera

    2012-01-01

    Conclusions: The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  9. A Simultaneously Calibration Approach for Installation and Attitude Errors of an INS/GPS/LDS Target Tracker

    Directory of Open Access Journals (Sweden)

    Jianhua Cheng

    2015-02-01

    Full Text Available To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS/Global position system (GPS/Laser distance scanner (LDS integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1 the attitude measure error of INS/GPS; (2 the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  10. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    Science.gov (United States)

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  11. Two ATLAS trackers become one

    CERN Multimedia

    2006-01-01

    The ATLAS inner detector barrel comes one step closer to completion as the semiconductor tracker is merged with the transition radiation tracker. ATLAS collaborators prepare for the insertion of the semiconductor tracker (SCT, behind) into the transition radiation tracker (TRT, in front). Some had hoped it would fall on Valentine's Day. But despite the slight delay, Friday 17 February was lovingly embraced as 'Conception Day,' when dozens of physicists and engineers from the international collaboration gathered to witness the insertion of the ATLAS semiconductor tracker into the transition radiation tracker, a major milestone in the assembly of the experiment's inner detector. With just millimeters of room for error, the cylindrical trackers were slid into each other as inner detector integration coordinator Heinz Pernegger issued commands and scientists held out flashlights, lay on their backs and stood on ladders to take careful measurements. Each tracker is the result of about 10 years of international ...

  12. INNER TRACKER

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. On 21 March 2007, the integration of the CMS Silicon Strip Tracker was completed with the successful integration of TEC- into the Tracker Support Tube (TST). Since then ~25% of the complete Tracker Systems has been commission at the TIF at both room temperature and operating temperature (-100 C), and the Tracker Community has gained very valuable experience in operating, calibrating and aligning the Tracker at the TIF before it is prepared for transportation to P5 in July 2007. The CMS Pixel System continues to make good progress. Module and Plaquette production is very well advanced. The first 25% of the Forward Pixel detector (Fpix) was delivered to CERN in April and the second 25% will shipped to CERN on 19 ...

  13. INNER TRACKER

    CERN Multimedia

    K. Gill.

    The clear highlight of recent months was switching on the Tracker to capture the first LHC collisions with 450GeV beams. This was during the first trial run of the LHC on 23rd November. On that day, the Tracker Outer Barrel (TOB) was powered and the detector performance was excellent, in accord with our expectations. Since then, the full Tracker, strips and pixels, has been powered up during “quiet” beam periods when there was judged to be little risk of damage due to sudden beam losses. All Tracker systems performed very well, considering the beam and trigger conditions in place, and we now eagerly anticipate the first collisions with stable beams. Besides this very intense and exciting recent period there has been a lot of other activity in the last 6 months. The full Tracker participated in CRAFT09 and operations of all systems went very smoothly for both pixels and strips, validating all the meticulous work that had taking place during the long shutdown, the subsequent re-commissionin...

  14. INNER TRACKER

    CERN Multimedia

    Karl Gill

    A series of important milestones have been passed during the last 3 months. With the delivery of refurbished cooling systems, pixels and strip systems have been brought back into operation after long shutdowns. Pixels has been operating since reinsertion of FPIX in April, and has been running at 4°C since May 16 when the bulkhead thermal screen was commissioned. More recently, on June 10 the Strip Tracker was powered up in its entirety, with cooling fluid circulating at 4°C, allowing commissioning of the Strip Tracker to proceed at full speed. The full Tracker is well on course to be ready for CRAFT, with Strip Tracker readout operation in ‘peak’ mode remaining also on track to be ready for beam operations in the Autumn in ‘deconvolution’ readout mode. The main Tracker activity during the shutdown was the cooling plant refurbishment for Strips and Pixels systems. The objectives were to reduce the serious leaks observed in 2008 and improve the longevity...

  15. INNER TRACKER

    CERN Multimedia

    K. Gill

    During the winter shutdown several parts of the Tracker system are undergoing maintenance, revision or upgrade. The main items are the revision of the strips and pixels cooling plants, removal and maintenance of FPIX, sealing of Tracker patch-panels and the bulkhead, integration of strips and pixels DCS, and further development of the DAQ, Online and commissioning software and firmware. The revision of the cooling system involves the complete replacement of the tanks, distribution lines, valves and manifolds on the SS1 and SS2 strip tracker (182 circuits) and pixels (36 circuits) cooling plants. The objectives are to eliminate the large leaks experienced during 2008 operations and to assure the long-term reliability of the cooling systems. Additional instrumentation is being added to provide more detailed monitoring of the performance of the cooling system. This work is proceeding smoothly under close supervision. Procurements are almost completed and the quality of delivered parts and the subsequent assembl...

  16. Error-correcting pairs for a public-key cryptosystem

    International Nuclear Information System (INIS)

    Pellikaan, Ruud; Márquez-Corbella, Irene

    2017-01-01

    Code-based Cryptography (CBC) is a powerful and promising alternative for quantum resistant cryptography. Indeed, together with lattice-based cryptography, multivariate cryptography and hash-based cryptography are the principal available techniques for post-quantum cryptography. CBC was first introduced by McEliece where he designed one of the most efficient Public-Key encryption schemes with exceptionally strong security guarantees and other desirable properties that still resist to attacks based on Quantum Fourier Transform and Amplitude Amplification. The original proposal, which remains unbroken, was based on binary Goppa codes. Later, several families of codes have been proposed in order to reduce the key size. Some of these alternatives have already been broken. One of the main requirements of a code-based cryptosystem is having high performance t -bounded decoding algorithms which is achieved in the case the code has a t -error-correcting pair (ECP). Indeed, those McEliece schemes that use GRS codes, BCH, Goppa and algebraic geometry codes are in fact using an error-correcting pair as a secret key. That is, the security of these Public-Key Cryptosystems is not only based on the inherent intractability of bounded distance decoding but also on the assumption that it is difficult to retrieve efficiently an error-correcting pair. In this paper, the class of codes with a t -ECP is proposed for the McEliece cryptosystem. Moreover, we study the hardness of distinguishing arbitrary codes from those having a t -error correcting pair. (paper)

  17. INNER TRACKER

    CERN Multimedia

    Peter Sharp

    In March the Silicon Strip Detector had been successfully connected to the PP1 patch panels on the CMS Cryostat, and every thing had been prepared to check out the Tracker and commission it with CMS with the ambition of joining the CMS Global Cosmic Run in April.  There followed serious problems with the cooling plant which through tremendous effort have been overcome and recently allowed commissioning of the tracker to proceed. In November 2007 there had been a failure of the heat exchanger in one of the seven cooling plants in the UXC cavern. After an analysis of the failure it was decided to replace this heat exchanger with a well-proven commercial heat exchanger and to re-commission the system. Re-commissioning the system proved to be more difficult than anticipated as on May 8 there was a second failure of a heat exchanger, in the main chiller plant in the USC service cavern. The analysis of the failure showed it was very similar to the previous failure. It was decided to replace all the heat ...

  18. Error analysis of a public domain pronunciation dictionary

    CSIR Research Space (South Africa)

    Martirosian, O

    2007-11-01

    Full Text Available ], a popular public domain resource that is widely used in English speech processing systems. The techniques being investigated are applied to the lexicon and the results of each step are illustrated using sample entries. The authors found that as many...

  19. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  20. Medication prescribing errors in a public teaching hospital in India: A prospective study.

    Directory of Open Access Journals (Sweden)

    Pote S

    2007-03-01

    Full Text Available Background: To prevent medication errors in prescribing, one needs to know their types and relative occurrence. Such errors are a great cause of concern as they have the potential to cause patient harm. The aim of this study was to determine the nature and types of medication prescribing errors in an Indian setting.Methods: The medication errors were analyzed in a prospective observational study conducted in 3 medical wards of a public teaching hospital in India. The medication errors were analyzed by means of Micromedex Drug-Reax database.Results: Out of 312 patients, only 304 were included in the study. Of the 304 cases, 103 (34% cases had at least one error. The total number of errors found was 157. The drug-drug interactions were the most frequently (68.2% occurring type of error, which was followed by incorrect dosing interval (12% and dosing errors (9.5%. The medication classes involved most were antimicrobial agents (29.4%, cardiovascular agents (15.4%, GI agents (8.6% and CNS agents (8.2%. The moderate errors contributed maximum (61.8% to the total errors when compared to the major (25.5% and minor (12.7% errors. The results showed that the number of errors increases with age and number of medicines prescribed.Conclusion: The results point to the establishment of medication error reporting at each hospital and to share the data with other hospitals. The role of clinical pharmacist in this situation appears to be a strong intervention; and the clinical pharmacist, initially, could confine to identification of the medication errors.

  1. Optical model and calibration of a sun tracker

    International Nuclear Information System (INIS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-01-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker. - Highlights: • We present an optimal optical sun tracker model for atmospheric spectroscopy. • The problem of loss of stability of tracker pointing at the Sun has been solved. • We propose an optimal method for tracker calibration at a measurement site. • Test results demonstrate the efficiency of the proposed optimization methods.

  2. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  3. LHCb Upstream Tracker

    CERN Multimedia

    Gandini, Paolo

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator (VELO) and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade.

  4. LHCb Upstream Tracker

    CERN Multimedia

    Gandini, P

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator (VELO) and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade

  5. Tracker Performance Metric

    National Research Council Canada - National Science Library

    Olson, Teresa; Lee, Harry; Sanders, Johnnie

    2002-01-01

    .... We have developed the Tracker Performance Metric (TPM) specifically for this purpose. It was designed to measure the output performance, on a frame-by-frame basis, using its output position and quality...

  6. Star Tracker Performance Estimate with IMU

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Swank, Aaron J.

    2015-01-01

    A software tool for estimating cross-boresight error of a star tracker combined with an inertial measurement unit (IMU) was developed to support trade studies for the Integrated Radio and Optical Communication project (iROC) at the National Aeronautics and Space Administration Glenn Research Center. Typical laser communication systems, such as the Lunar Laser Communication Demonstration (LLCD) and the Laser Communication Relay Demonstration (LCRD), use a beacon to locate ground stations. iROC is investigating the use of beaconless precision laser pointing to enable laser communication at Mars orbits and beyond. Precision attitude knowledge is essential to the iROC mission to enable high-speed steering of the optical link. The preliminary concept to achieve this precision attitude knowledge is to use star trackers combined with an IMU. The Star Tracker Accuracy (STAcc) software was developed to rapidly assess the capabilities of star tracker and IMU configurations. STAcc determines the overall cross-boresight error of a star tracker with an IMU given the characteristic parameters: quantum efficiency, aperture, apparent star magnitude, exposure time, field of view, photon spread, detector pixels, spacecraft slew rate, maximum stars used for quaternion estimation, and IMU angular random walk. This paper discusses the supporting theory used to construct STAcc, verification of the program and sample results.

  7. Activity trackers: a critical review.

    Science.gov (United States)

    Lee, Jeon; Finkelstein, Joseph

    2014-01-01

    The wearable consumer health devices can be mainly divided into activity trackers, sleep trackers, and stress management devices. These devices are widely advertised to provide positive effects on the user's daily behaviours and overall heath. However, objective evidence supporting these claims appears to be missing. The goal of this study was to review available evidence pertaining to performance of activity trackers. A comprehensive review of available information has been conducted for seven representative devices and the validity of marketing claims was assessed. The device assessment was based on availability of verified output metrics, theoretical frameworks, systematic evaluation, and FDA clearance. The review identified critical absence of supporting evidence of advertised functions and benefits for the majority of the devices. Six out of seven devices did not provide any information on sensor accuracy and output validity at all. Possible underestimation or overestimation of specific health indicators reported to consumers was not clearly disclosed to the public. Furthermore, significant limitations of these devices which can be categorized into user restrictions, user responsibilities and company disclaimers could not be easily found or comprehended by unsophisticated users and may represent a serious health hazard.

  8. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  9. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  10. Model of CMS Tracker

    CERN Multimedia

    Breuker

    1999-01-01

    A full scale CMS tracker mock-up exposed temporarily in the hall of building 40. The purpose of the mock-up is to study the routing of services, assembly and installation. The people in front are only a small fraction of the CMS tracker collaboration. Left to right : M. Atac, R. Castaldi, H. Breuker, D. Pandoulas,P. Petagna, A. Caner, A. Carraro, H. Postema, M. Oriunno, S. da Mota Silva, L. Van Lancker, W. Glessing, G. Benefice, A. Onnela, M. Gaspar, G. M. Bilei

  11. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  12. LHCb: LHCb Upstream Tracker

    CERN Multimedia

    Manning Jr, P; Stone, S

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade. We will describe the new detector being constructed and show its improved performance in charged particle tracking and triggering.

  13. ColorTracker

    NARCIS (Netherlands)

    Holzheu, Stefanie; Lee, S.; Herneoja, Aulikki; Österlund, Toni; Markkanen, Piia

    2016-01-01

    With the work-in-progress research project ColorTracker we explore color as a formal design tool. This project-based paper describes a novel software application that processes color composition of a place and transcribes the data into three-dimensional geometries for architectural design. The

  14. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  15. MediaTracker system

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, D. M. (Dana M.); Strittmatter, R. B. (Richard B.); Abeyta, J. D. (Joline D.); Brown, J. (John); Marks, T. (Thomas), Jr.; Martinez, B. J. (Benny J.); Jones, D. B. (Dana Benelli); Hsue, W.

    2004-01-01

    The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access to the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can

  16. MediaTracker system

    International Nuclear Information System (INIS)

    Sandoval, D.M.; Strittmatter, R.B.; Abeyta, J.D.; Brown, J.; Marks, T. Jr.; Martinez, B.J.; Jones, D.B.; Hsue, W.

    2004-01-01

    The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access to the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can accommodate

  17. Public Speaking Apprehension, Decision-Making Errors in the Selection of Speech Introduction Strategies and Adherence to Strategy.

    Science.gov (United States)

    Beatty, Michael J.

    1988-01-01

    Examines the choice-making processes of students engaged in the selection of speech introduction strategies. Finds that the frequency of students making decision-making errors was a positive function of public speaking apprehension. (MS)

  18. LHCb upstream tracker

    CERN Multimedia

    Artuso, Marina

    2016-01-01

    The detector for the LHCb upgrade is designed for 40MHz readout, allowing the experiment to run at an instantaneous luminosity of 2x10^33 cm$^2$s$^-1$. The upgrade of the tracker subsystem in front of the dipole magnet, the Upstream Tracker, is crucial for charged track reconstruction and fast trigger decisions based on a tracking algorithm involving also vertex detector information. The detector consists of 4 planes with a total area of about 8.5m$^2$, made of single sided silicon strip sensors read-out by a novel custom-made ASIC (SALT). Details on the performance of prototype sensors, front-end electronics, near-detector electronics and mechanical components are presented.

  19. CMS Tracker Visualisation

    CERN Document Server

    Mennea, Maria Santa; Zito, Giuseppe

    2004-01-01

    To provide improvements in the performance of existing tracker data visualization tools in IGUANA, a 2D visualisation software has been developed, using the object oriented paradigm and software engineering techniques. We have designed 2D graphics objects and some of them have been implemented. The access to the new objects is made in ORCA plugin of IGUANA CMS. A new tracker object oriented model has been designed for developing these 2D graphics objects. The model consists of new classes which represent all its components (layers, modules, rings, petals, rods).The new classes are described here. The last part of this document contains a user manual of the software and will be updated with new releases.

  20. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  1. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  2. CMS tracker visualization tools

    CERN Document Server

    Zito, G; Osborne, I; Regano, A

    2005-01-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  3. CMS tracker visualization tools

    Energy Technology Data Exchange (ETDEWEB)

    Mennea, M.S. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Osborne, I. [Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Regano, A. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Zito, G. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy)]. E-mail: giuseppe.zito@ba.infn.it

    2005-08-21

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  4. CMS tracker visualization tools

    International Nuclear Information System (INIS)

    Mennea, M.S.; Osborne, I.; Regano, A.; Zito, G.

    2005-01-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking

  5. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  6. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  7. The ATLAS Fast Tracker

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    The use of tracking information at the trigger level in the LHC Run II period is crucial for the trigger an data acquisition (TDAQ) system. The tracking precision is in fact important to identify specific decay products of the Higgs boson or new phenomena, a well as to distinguish the contributions coming from many contemporary collisions that occur at every bunch crossing. However, the track reconstruction is among the most demanding tasks performed by the TDAQ computing farm; in fact, full reconstruction at full Level-1 trigger accept rate (100 KHz) is not possible. In order to overcome this limitation, the ATLAS experiment is planning the installation of a specific processor: the Fast Tracker (FTK), which is aimed at achieving this goal. The FTK is a pipeline of high performance electronic, based on custom and commercial devices, which is expected to reconstruct, with high resolution, the trajectories of charged tracks with a transverse momentum above 1 GeV, using the ATLAS inner tracker information. Patte...

  8. ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra; The ATLAS collaboration

    2010-01-01

    The SemiConductor Tracker (SCT), made up from silicon micro-strip detectors is the key precision tracking device in ATLAS, one of the experiments at CERN LHC. The completed SCT is in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector and observed problems, with stress on the sensor and electronics performance. TWEPP Summary In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton- proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data i...

  9. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Alexandra M Schnoes

    2009-12-01

    Full Text Available Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families; the two other protein sequence databases (GenBank NR and TrEMBL and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%-63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with "overprediction" of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation.

  10. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.

    Science.gov (United States)

    Schnoes, Alexandra M; Brown, Shoshana D; Dodevski, Igor; Babbitt, Patricia C

    2009-12-01

    Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families); the two other protein sequence databases (GenBank NR and TrEMBL) and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%-63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with "overprediction" of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation.

  11. Error Analysis of Brailled Instructional Materials Produced by Public School Personnel in Texas

    Science.gov (United States)

    Herzberg, Tina

    2010-01-01

    In this study, a detailed error analysis was performed to determine if patterns of errors existed in braille transcriptions. The most frequently occurring errors were the insertion of letters or words that were not contained in the original print material; the incorrect usage of the emphasis indicator; and the incorrect formatting of titles,…

  12. Rendezvous and docking tracker

    Science.gov (United States)

    Ray, Art J.; Ross, Susan E.; Deming, Douglas R.

    1986-01-01

    A conceptual solid-state rendezvous and docking tracker (RDT) has been devised for generating range and attitude data for a docking vehicle relative to a target vehicle. Emphasis is placed on the approach of the Orbiter to a link with the Space Station. Three laser illuminators ring the optical axis of the lens a directed toward retroreflectors on the target vehicle. Each retroreflector is equipped with a bandpass filter for a designated illumination frequency. Data are collected sequentially over a 20 deg field of view as the range closes to 100-1000 m. A fourth ranging retroreflector 0.3 m from center is employed during close-in maneuvers. The system provides tracking data on motions with 6 deg of freedom, and furnishes 500 msec updates (to be enhanced to 100 msec) to the operator at a computer console.

  13. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  14. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  15. The TRADEX Multitarget Tracker

    Science.gov (United States)

    Meurer, Glenn W., Jr.

    The Multitarget Tracker (MTT) is a real-time signal processing and data processing system installed in the TRADEX radar at the Kiernan Reentry Measurements Site (KREMS) on Kwajalein Atoll in the Marshall Islands. The TRADEX radar is a high-power, high-sensitivity instrumentation radar that was originally designed to track and gather signature data on a single target. The MTT is designed to detect and track as many as 63 targets within the beam of the radar. It provides data necessary for determining the angular locations and ranges of all of these targets, as well as signature data necessary for target identification. The TRADEX MTT is unique because it utilizes a large, mechanically steered, pencil-beam antenna, whereas other MTT systems generally rely on electronically steered antennas or rotating antenna platforms. The MTT system automatically processes received signals, reports targets, initiates and maintains target track files, and presents target information to the radar operators through real-time interactive graphical displays. This information is given to the KREMS Control Center and from there is made available to other systems in the test range. This article presents an overview of the TRADEX MTT system and discusses its implementation, application, and operation.

  16. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  17. CMS Tracker Model

    CERN Multimedia

    Model of the tracking detector for the CMS experiment at the LHC. This object is a mock-up of an early design of the CMS Tracker mechanics. It is a segment of a “Wheel” to support Micro-Strip Gas Chamber (MSGC) detector modules on the outer layers and silicon-strip detector modules in the innermost layers. The particularity of that design is that modules are organised in spirals, along which power and optical cables and cooling pipes were planned to be routed. Some of such spirals are illustrated in the mock-up by the colors of the modules. With the detector development it became, however, evident that the silicon detectors would need to be operated in LHC experiments in cold temperatures, while the MSGC could stay in normal room-temperature. That split in two temperatures lead to separating those two detector types by a thermal barrier and therefore jeopardizing the idea of using common, vertical Wheels with services arranged along spirals.

  18. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  19. Attitudes of Mashhad Public Hospital's Nurses and Midwives toward the Causes and Rates of Medical Errors Reporting.

    Science.gov (United States)

    Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh

    2017-03-01

    Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer

  20. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  1. Operations of a non-stellar object tracker in space

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif; Betto, Maurizio

    1999-01-01

    The ability to detect and track non-stellar objects by utilizing a star tracker may seem rather straight forward, as any bright object, not recognized as a star by the system is a non stellar object. However, several pitfalls and errors exist, if a reliable and robust detection is required. To te...

  2. Forecasting method in multilateration accuracy based on laser tracker measurement

    International Nuclear Information System (INIS)

    Aguado, Sergio; Santolaria, Jorge; Samper, David; José Aguilar, Juan

    2017-01-01

    Multilateration based on a laser tracker (LT) requires the measurement of a set of points from three or more positions. Although the LTs’ angular information is not used, multilateration produces a volume of measurement uncertainty. This paper presents two new coefficients from which to determine whether the measurement of a set of points, before performing the necessary measurements, will improve or worsen the accuracy of the multilateration results, avoiding unnecessary measurement, and reducing the time and economic cost required. The first specific coefficient measurement coefficient (MC LT ) is unique for each laser tracker. It determines the relationship between the radial and angular laser tracker measurement noise. Similarly, the second coefficient is related with specific conditions of measurement β . It is related with the spatial angle between the laser tracker positions α and its effect on error reduction. Both parameters MC LT and β are linked in error reduction limits. Beside these, a new methodology to determine the multilateration reduction limit according to the multilateration technique of an ideal laser tracker distribution and a random one are presented. It provides general rules and advice from synthetic tests that are validated through a real test carried out in a coordinate measurement machine. (paper)

  3. Errors of Measurement, Theory, and Public Policy. William H. Angoff Memorial Lecture Series

    Science.gov (United States)

    Kane, Michael

    2010-01-01

    The 12th annual William H. Angoff Memorial Lecture was presented by Dr. Michael T. Kane, ETS's (Educational Testing Service) Samuel J. Messick Chair in Test Validity and the former Director of Research at the National Conference of Bar Examiners. Dr. Kane argues that it is important for policymakers to recognize the impact of errors of measurement…

  4. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  5. The LHCb Silicon Inner Tracker

    International Nuclear Information System (INIS)

    Sievers, P.

    2002-01-01

    A silicon strip detector has been adopted as baseline technology for the LHCb Inner Tracker system. It consists of nine planar stations covering a cross-shaped area around the LHCb beam pipe. Depending on the final layout of the stations the sensitive surface of the Inner Tracker will be of the order of 14 m 2 . Ladders have to be 22 cm long and the pitch of the sensors should be as large as possible in order to reduce costs of the readout electronics. Major design criteria are material budget, short shaping time and a moderate spatial resolution of about 80 μm. After an introduction on the requirements of the LHCb Inner Tracker we present a description and characterization of silicon prototype sensors. First, laboratory and test beam results are discussed

  6. Star trackers for attitude determination

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1995-01-01

    One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing...... a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tracker is explained. The obtainable accuracy is calculated, the numbers of stars to be included...... in the star catalogue are discussed and the acquisition of the initial attitude is explained. Finally the commercial market for star trackers is discussed...

  7. Determining The Factors Causing Human Error Deficiencies At A Public Utility Company

    Directory of Open Access Journals (Sweden)

    F. W. Badenhorst

    2004-11-01

    Full Text Available According to Neff (1977, as cited by Bergh (1995, the westernised culture considers work important for industrial mental health. Most individuals experience work positively, which creates a positive attitude. Should this positive attitude be inhibited, workers could lose concentration and become bored, potentially resulting in some form of human error. The aim of this research was to determine the factors responsible for human error events, which lead to power supply failures at Eskom power stations. Proposals were made for the reduction of these contributing factors towards improving plant performance. The target population was 700 panel operators in Eskom’s Power Generation Group. The results showed that factors leading to human error can be reduced or even eliminated. Opsomming Neff (1977 soos aangehaal deur Bergh (1995, skryf dat in die westerse kultuur werk belangrik vir bedryfsgeestesgesondheid is. Die meeste persone ervaar werk as positief, wat ’n positiewe gesindheid kweek. Indien hierdie positiewe gesindheid geïnhibeer word, kan dit lei tot ’n gebrek aan konsentrasie by die werkers. Werkers kan verveeld raak en dit kan weer lei tot menslike foute. Die doel van hierdie navorsing is om die faktore vas te stel wat tot menslike foute lei, en wat bydra tot onderbrekings in kragvoorsiening by Eskom kragstasies. Voorstelle is gemaak vir die vermindering van hierdie bydraende faktore ten einde die kragaanleg se prestasie te verbeter. Die teiken-populasie was 700 paneel-operateurs in die Kragopwekkingsgroep by Eskom. Die resultate dui daarop dat die faktore wat aanleiding gee tot menslike foute wel verminder, of geëlimineer kan word.

  8. In Defense of Sparse Tracking: Circulant Sparse Tracker

    KAUST Repository

    Zhang, Tianzhu; Bibi, Adel Aamer; Ghanem, Bernard

    2016-01-01

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  9. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  10. In Defense of Sparse Tracking: Circulant Sparse Tracker

    KAUST Repository

    Zhang, Tianzhu

    2016-12-13

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  11. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  12. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    Science.gov (United States)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  13. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  14. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  15. Mechanical stability of the CMS Tracker

    CERN Document Server

    CMS Collaboration

    2015-01-01

    reconstructs the absolute position of individual detector modules with a similar accuracy but after days of data taking. During the long term operation at fixed temperature of +4$^o$C in years 2011--2013 the alignment of tracker components was stable within 10 microns. Temperature variations in the Tracker volume are found to cause the displacements of tracker structures of abou...

  16. The LHCb Silicon Tracker Project

    International Nuclear Information System (INIS)

    Agari, M.; Bauer, C.; Baumeister, D.; Blouw, J.; Hofmann, W.; Knoepfle, K.T.; Loechner, S.; Schmelling, M.; Pugatch, V.; Bay, A.; Carron, B.; Frei, R.; Jiminez-Otero, S.; Tran, M.-T.; Voss, H.; Adeva, B.; Esperante, D.; Lois, C.; Vasquez, P.; Bernhard, R.P.; Bernet, R.; Ermoline, Y.; Gassner, J.; Koestner, S.; Lehner, F.; Needham, M.; Siegler, M.; Steinkamp, O.; Straumann, U.; Vollhardt, A.; Volyanskyy, D.

    2006-01-01

    Two silicon strip detectors, the Trigger Tracker(TT) and the Inner Tracker(Italy) will be constructed for the LHCb experiment. Transverse momentum information extracted from the TT will be used in the Level 1 trigger. The IT is part of the main tracking system behind the magnet. Both silicon detectors will be read out using a custom-developed chip by the ASIC lab in Heidelberg. The signal-over-noise behavior and performance of various geometrical designs of the silicon sensors, in conjunction with the Beetle read-out chip, have been extensively studied in test beam experiments. Results from those experiments are presented, and have been used in the final choice of sensor geometry

  17. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  18. LHCb Upgrade: Scintillating Fibre Tracker

    International Nuclear Information System (INIS)

    Tobin, Mark

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  19. The CMS tracker control system

    International Nuclear Information System (INIS)

    Dierlamm, A; Dirkes, G H; Fahrer, M; Frey, M; Hartmann, F; Masetti, L; Militaru, O; Shah, S Y; Stringer, R; Tsirou, A

    2008-01-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 10 4 power supply parameters, about 10 3 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 10 5 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention

  20. The CMS tracker control system

    Science.gov (United States)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  1. Star tracker operation in a high density proton field

    Science.gov (United States)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  2. Error propagation in spatial modeling of public health data: a simulation approach using pediatric blood lead level data for Syracuse, New York.

    Science.gov (United States)

    Lee, Monghyeon; Chun, Yongwan; Griffith, Daniel A

    2018-04-01

    Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.

  3. Is a shift from research on individual medical error to research on health information technology underway? A 40-year analysis of publication trends in medical journals.

    Science.gov (United States)

    Erlewein, Daniel; Bruni, Tommaso; Gadebusch Bondio, Mariacarla

    2018-06-07

    In 1983, McIntyre and Popper underscored the need for more openness in dealing with errors in medicine. Since then, much has been written on individual medical errors. Furthermore, at the beginning of the 21st century, researchers and medical practitioners increasingly approached individual medical errors through health information technology. Hence, the question arises whether the attention of biomedical researchers shifted from individual medical errors to health information technology. We ran a study to determine publication trends concerning individual medical errors and health information technology in medical journals over the last 40 years. We used the Medical Subject Headings (MeSH) taxonomy in the database MEDLINE. Each year, we analyzed the percentage of relevant publications to the total number of publications in MEDLINE. The trends identified were tested for statistical significance. Our analysis showed that the percentage of publications dealing with individual medical errors increased from 1976 until the beginning of the 21st century but began to drop in 2003. Both the upward and the downward trends were statistically significant (P information technology doubled between 2003 and 2015. The upward trend was statistically significant (P information technology in the USA and the UK. © 2018 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  4. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  5. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  6. The OPERA experiment Target Tracker

    CERN Document Server

    Adam, T; Borer, K.; Campagne, Jean-Eric; Con-Sen, N.; de La Taille, C.; Dick, N.; Dracos, M.; Gaudiot, G.; Goeltzenlichter, T.; Gornushkin, Y.; Grapton, J.-N.; Guyonnet, J.-L.; Hess, M.; Igersheim, R.; Janicsko Csathy, J.; Jollet, C.; Juget, F.; Kocher, H.; Krasnoperov, A.; Krumstein, Z.; Martin-Chassard, G.; Moser, U.; Nozdrin, A.; Olchevski, A.; Porokhovoi, S.; Raux, L.; Sadovski, A.; Schuler, J.; Schutz, H.-U.; Schwab, C.; Smolnikov, A.; Van Beek, G.; Vilain, P.; Walchli, T.; Wilquet, G.; Wurtz, J.

    2007-01-01

    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.

  7. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  8. The ATLAS semiconductor tracker (SCT)

    International Nuclear Information System (INIS)

    Jackson, J.N.

    2005-01-01

    The ATLAS detector (CERN,LHCC,94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10 34 cm -2 s -1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN,LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN,LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed

  9. Small star trackers for modern space vehicles

    Science.gov (United States)

    Kouzmin, Vladimir; Jushkov, Vladimir; Zaikin, Vladimir

    2017-11-01

    Based on experience of many years creation of spacecrafts' star trackers with diversified detectors (from the first star trackers of 60's to tens versions of star trackers in the following years), using technological achievements in the field of optics and electronics the NPP "Geofizika-Cosmos" has provided celestial orientation for all the space vehicles created in Russia and now has developed a series of new star trackers with CCD matrix and special processors, which are able to meet needs in celestial orientation of the modern spacecrafts for the nearest 10-15 years. In the given article the main characteristics and description of some star trackers' versions are presented. The star trackers have various levels of technical characteristics and use both combined (Russian and foreign) procurement parts, and only national (Russian) procurement parts for the main units.

  10. The LHCb Silicon Tracker, first operational results

    CERN Document Server

    Esperante, D; Adeva, B; Gallas, A; Pérez Trigo, E; Rodríguez Pérez, P; Pazos Álvarez, A; Saborido, J; Vàzquez, P; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; de Cian, M; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The Large Hadron Collider beauty (LHCb) experiment at CERN (Conseil Européen pour la Recherche Nucléaire) is designed to perform precision measurements of b quark decays. The LHCb Silicon Tracker consists of two sub-detectors, the Tracker Turicensis and the Inner Tracker, which are built from silicon micro-strip technology. First performance results of both detectors using data from Large Hadron Collider synchronization tests are presented.

  11. Nurse perceptions of organizational culture and its association with the culture of error reporting: a case of public sector hospitals in Pakistan.

    Science.gov (United States)

    Jafree, Sara Rizvi; Zakar, Rubeena; Zakar, Muhammad Zakria; Fischer, Florian

    2016-01-05

    There is an absence of formal error tracking systems in public sector hospitals of Pakistan and also a lack of literature concerning error reporting culture in the health care sector. Nurse practitioners have front-line knowledge and rich exposure about both the organizational culture and error sharing in hospital settings. The aim of this paper was to investigate the association between organizational culture and the culture of error reporting, as perceived by nurses. The authors used the "Practice Environment Scale-Nurse Work Index Revised" to measure the six dimensions of organizational culture. Seven questions were used from the "Survey to Solicit Information about the Culture of Reporting" to measure error reporting culture in the region. Overall, 309 nurses participated in the survey, including female nurses from all designations such as supervisors, instructors, ward-heads, staff nurses and student nurses. We used SPSS 17.0 to perform a factor analysis. Furthermore, descriptive statistics, mean scores and multivariable logistic regression were used for the analysis. Three areas were ranked unfavorably by nurse respondents, including: (i) the error reporting culture, (ii) staffing and resource adequacy, and (iii) nurse foundations for quality of care. Multivariable regression results revealed that all six categories of organizational culture, including: (1) nurse manager ability, leadership and support, (2) nurse participation in hospital affairs, (3) nurse participation in governance, (4) nurse foundations of quality care, (5) nurse-coworkers relations, and (6) nurse staffing and resource adequacy, were positively associated with higher odds of error reporting culture. In addition, it was found that married nurses and nurses on permanent contract were more likely to report errors at the workplace. Public healthcare services of Pakistan can be improved through the promotion of an error reporting culture, reducing staffing and resource shortages and the

  12. CMS Silicon Strip Tracker Performance

    CERN Document Server

    Agram, Jean-Laurent

    2012-01-01

    The CMS Silicon Strip Tracker (SST), consisting of 9.6 million readout channels from 15148 modules and covering an area of 198 square meters, needs to be precisely calibrated in order to correctly reconstruct the events recorded. Calibration constants are derived from different workflows, from promptly reconstructed events with particles as well as from commissioning events gathered just before the acquisition of physics runs. The performance of the SST has been carefully studied since the beginning of data taking: the noise of the detector, data integrity, signal-over-noise ratio, hit reconstruction efficiency and resolution have been all investigated with time and for different conditions. In this paper we describe the reconstruction strategies, the calibration procedures and the detector performance results from the latest CMS operation.

  13. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  14. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  15. Mind the tracker you wear

    DEFF Research Database (Denmark)

    Goyal, Rohit; Dragoni, Nicola; Spognardi, Angelo

    2016-01-01

    Wearable tracking devices have gained widespread usage and popularity because of the valuable services they offer, monitoring human's health parameters and, in general, assisting persons to take a better care of themselves. Nevertheless, the security risks associated with such devices can represent...... a concern among consumers, because of the sensitive information these devices deal with, like sleeping patterns, eating habits, heart rate and so on. In this paper, we analyse the key security and privacy features of two entry level health trackers from leading vendors (Jawbone and Fitbit), exploring...... possible attack vectors and vulnerabilities at several system levels. The results of the analysis show how these devices are vulnerable to several attacks (perpetrated with consumer-level devices equipped with just bluetooth and Wi-Fi) that can compromise users' data privacy and security, and eventually...

  16. ATLAS FTK: The Fast Tracker

    CERN Document Server

    T, Iizawa; The ATLAS collaboration

    2014-01-01

    The Fast TracKer (FTK) will perform global track reconstruction after each Level-1 trigger accept to enable the software-based High Level Trigger to have early access to tracking information. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). FTK provides global track reconstruction in the full inner silicon detector in approximately 100 microseconds with resolution comparable to the offline algorithms. It allows a fast and precise detection of the primary and secondary vertex information. The track and vertex information is then used by the High Level Trigger algorithms, allowing highly improved trigger performance for the important signatures such as b-jets. In this paper, the architecture and the hardware development status of FT...

  17. Evaluation of a miniature electromagnetic position tracker

    International Nuclear Information System (INIS)

    Hummel, Johann; Figl, Michael; Kollmann, Christian; Bergmann, Helmar; Birkfellner, Wolfgang

    2002-01-01

    The advent of miniaturized electromagnetic digitizers opens a variety of potential clinical applications for computer aided interventions using flexible instruments; endoscopes or catheters can easily be tracked within the body. With respect to the new applications, the systematic distortions induced by various materials such as closed metallic loops, wire guides, catheters, and ultrasound scan heads were systematically evaluated in this paper for a new commercial tracking system. We employed the electromagnetic tracking system Aurora trade mark sign (Mednetix/CH, NDI/Can); data were acquired using the serial port of a PC running SuSE Linux 7.1 (SuSE, Gmbh, Nuernberg). Objects introduced into the digitizer volume included wire loops of different diameters, wire guides, optical tracking tools, an ultrasonic (US) scan head, an endoscope with radial ultrasound scan head and various other objects used in operating rooms and interventional suites. Beyond this, we determined the influence of a C-arm fluoroscopy unit. To quantify the reliability of the system, the miniaturized sensor was mounted on a nonmetallic measurement rack while the transmitter was fixed at three different distances within the digitizer range. The tracker was shown to be more sensitive to distortions caused by materials close to the emitter (average distortion error 13.6 mm±16.6 mm for wire loops positioned at a distance between 100 mm and 200 mm from the emitter). Distortions caused by materials near the sensor (distances smaller than 100 mm) are small (typical error 2.2 mm±1.9 mm). The C-arm fluoroscopy unit caused considerable distortions and limits the reliability of the tracker (distortion error 18.6 mm±24.9 mm). Distortions resulting from the US scan head are high at distances smaller than about 100 mm from the emitter. The distortions also increase when the scan head is positioned horizontally and close to the sensor (average error 4.1 mm±1.5 mm when the scan head is positioned within a

  18. PageRank tracker: from ranking to tracking.

    Science.gov (United States)

    Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie

    2014-06-01

    Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.

  19. Scintillating fibre (SciFi) tracker

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    128 modules – containing 11 000 km of scintillating fibres – will make up the new SciFi tracker, which will replace the outer and inner trackers of the LHCb detector as part of the experiment’s major upgrade during Long Shutdown 2 (LS2)

  20. Sun tracker for clear or cloudy weather

    Science.gov (United States)

    Scott, D. R.; White, P. R.

    1979-01-01

    Sun tracker orients solar collector so that they absorb maximum possible sunlight without being fooled by bright clouds, holes in cloud cover, or other atmospheric conditions. Tracker follows sun within 0.25 deg arc and is accurate within + or - 5 deg when sun is hidden.

  1. Aerodynamical study of a photovoltaic solar tracker

    OpenAIRE

    Gutiérrez Castillo, José Leonardo

    2016-01-01

    Investigate the aerodynamic features of ground-mounted solar trackers under atmospheric boundary layer flows. Study and identify the aerodynamical interactions of solar trackers when they are displayed as an array. State of the art. Literature review about CFD applied to solar panels. Analytic approach of the problem. Application of CFD analysis. Validation of the results. Discussion of the results. Improvements proposal.

  2. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  3. Automated SmartPrep tracker positioning in liver MRI scans

    International Nuclear Information System (INIS)

    Goto, Takao; Kabasawa, Hiroyuki

    2013-01-01

    This paper presents a new method for automated SmartPrep tracker positioning in liver MRI scans. SmartPrep is used to monitor the contrast bolus signal in order to detect the arrival time of the bolus. Accurately placing the tracker in the aorta while viewing three planar scout images is a difficult task for the operator and is an important problem from the workflow standpoint. The development of an automated SmartPrep tracker would therefore help to improve workflow in liver MRI scans. In our proposed method, the aorta is detected using AdaBoost (which is a machine learning technique) by searching around the cerebral spinal fluid (CSF) in the spinal cord. Analysis of scout scan images showed that our detection method functioned properly for a variety of axial MR images without intensity correction. A total of 234 images reconstructed from the datasets of 64 volunteers were analyzed, and the results showed that the detection error for the aorta was approximately 3 mm. (author)

  4. The LHCb Upstream Tracker Project

    CERN Document Server

    Steinkamp, Olaf

    2015-01-01

    The LHCb detector performs searches for New Physics in CP-violating observables and rare heavy-quark decays at the LHC. A comprehensive upgrade is planned for the long shutdown of the LHC in 2018/19. A goal of this upgrade is to abolish hardware triggers and read out the full detector at 40 MHz. This requires to replace the existing TT station upstream of the LHCb magnet by a new silicon micro-strip detector, the Upstream Tracker (UT). The UT will have a new front-end chip compatible with 40 MHz readout, silicon sensors with improved radiation hardness, finer readout granularity, and improved acceptance coverage at small polar angles. The outer region of each detection layer will be covered by p-in-n sensors with 10 cm long strips and a pitch of about 180 mum, while n-in-p sensors with half the pitch and strip length will be employed in the regions of highest particle density close to the beam pipe. The innermost sensors will have a circular cutout to optimize the forward acceptance. The front-end chip is bei...

  5. The ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV. This was followed by collisions at the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is a precision tracking device in ATLAS made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICs working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experiment. Since then the detector was operated for two years under realistic conditions. Calibration data has been taken and analysed to determine the performance of the system. In addition, extensive commissioning with cosmic ray events has been performed both with and without magnetic field. The sensor behaviour in magnetic field was studied by measurements of the Lorentz angle. After ...

  6. The Fast TracKer

    CERN Document Server

    Potamianos, Karolos Jozef; The ATLAS collaboration

    2018-01-01

    The Fast Tracker (FTK) is a hardware upgrade to the ATLAS trigger and data acquisition system providing global track reconstruction to the High-Level Trigger (HLT) with the goal to improve pile-up rejection. The FTK processes incoming data from the Pixel and SCT detectors (part of the Inner Detector, ID) at up to 100 kHz using custom electronic boards. ID hits are matched to pre-defined track patterns stored in associative memory (AM) on custom ASICs and data routing, reduction and parameter extraction is achieved with processing on FPGAs. With 8000 AM chips and 2000 FPGAs, the FTK provides enough resources to reconstruct tracks with transverse momentum greater than 1 GeV/c in the whole tracking volume with an average latency below 100 microseconds at collisions intensities expected in Runs II and III of the LHC. The tracks will be available at the beginning of the trigger selection process, which allows development of pile-up resilient triggering strategies to identify b-quarks and tau-leptons, as well as pr...

  7. The ATLAS Fast Tracker system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00353645; The ATLAS collaboration

    2017-01-01

    From 2010 to 2012 the Large Hadron Collider (LHC) operated at a centre-of-mass energy of 7 TeV and 8 TeV, colliding bunches of particles every 50 ns. During operation, the ATLAS trigger system has performed efficiently contributing to important results, including the discovery of the Higgs boson in 2012. The LHC restarted in 2015 and will operate for four years at a center of mass energy of 13 TeV and bunch crossing of 50 ns and 25 ns. These running conditions result in the mean number of overlapping proton-proton interactions per bunch crossing increasing from 20 to 60. The Fast Tracker (FTK) system is designed to deliver full event track reconstruction for all tracks with transverse momentum above 1 GeV at a Level-1 rate of 100 kHz with an average latency below 100 microseconds. This will allow the trigger to utilize tracking information from the entire detector at an earlier event selection stage than ever before, allowing for more efficient event rejection. To achieve this goal the system uses a parallel ...

  8. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  9. Power distribution studies for CMS forward tracker

    International Nuclear Information System (INIS)

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R and D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  10. Silicon Tracker Design for the ILC

    International Nuclear Information System (INIS)

    Nelson, T.; SLAC

    2005-01-01

    The task of tracking charged particles in energy frontier collider experiments has been largely taken over by solid-state detectors. While silicon microstrip trackers offer many advantages in this environment, large silicon trackers are generally much more massive than their gaseous counterparts. Because of the properties of the machine itself, much of the material that comprises a typical silicon microstrip tracker can be eliminated from a design for the ILC. This realization is the inspiration for a tracker design using lightweight, short, mass-producible modules to tile closed, nested cylinders with silicon microstrips. This design relies upon a few key technologies to provide excellent performance with low cost and complexity. The details of this concept are discussed, along with the performance and status of the design effort

  11. CarbonTracker CT2007B release

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CarbonTracker is an open product of the NOAA Earth System Research Laboratory using data from the Global Monitoring Division greenhouse gas observational network and...

  12. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  13. The MICE scintillating-fibre tracker

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, T [Imperial College London (United Kingdom)], E-mail: T.Matsushita@imperial.ac.uk

    2008-06-15

    The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic investigation of the ionization cooling of a muon beam. An ionization cooling channel is required to compress the phase-space volume occupied by the muon beam prior to acceleration in the baseline conceptual designs for both the Neutrino Factory and the Muon Collider. Muons entering and leaving the cooling channel will be measured in two solenoidal spectrometers, each of which is instrumented with a scintillating-fibre tracker. Each tracker is composed of five planar scintillating fibre stations, each station being composed of three planar layers of 350 micron scintillating fibres. The devices will be read out using the Visible Light Photon Counters (VLPCs) developed for use in the D0 experiment at the Tevatron. The design of the system will be presented along with the status of the tracker-construction project. The expected performance of prototypes of the full tracker will be summarised.

  14. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  15. Last ATLAS transition radiation tracker module installed

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS transition radiation tracker consists of 96 modules and will join the pixel detector and silicon tracker at the heart of the experiment to map the trajectories of particles and identify electrons produced when proton beams collide. In the last image the team responsible for assembly are shown from left to right: Kirill Egorov (Petersburg Nuclear Physics Institute), Pauline Gagnon (Indiana University), Ben Legeyt (University of Pennsylvania), Chuck Long (Hampton University), John Callahan (Indiana University) and Alex High (University of Pennsylvania).

  16. One-kilohertz eye tracker and active intraoperative torsion detection in the NIDEK CXIII and Quest excimer lasers.

    Science.gov (United States)

    Waring, George O

    2009-10-01

    To describe recent technological additions to the NIDEK CXIII and Quest excimer lasers. A summary article with data from previous published studies outlining the benefits of newer technology. The addition of a 1-kHz infrared eye tracker decreased the spread of laser spot placement from a mean of 228.79 microm without a tracker to 38.47 microm with the eye tracker. The addition of real-time torsion error correction produced a statistically significantly lower cylinder dispersion, mean manifest refractive cylinder, and error of angle postoperatively in eyes that underwent LASIK. The incorporation of an ultrahigh speed eye tracker and active cyclotorsion correction surpasses the minimal technology criteria required for accurate wavefront-based ablations. Copyright 2009, SLACK Incorporated.

  17. An accuracy measurement method for star trackers based on direct astronomic observation.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  18. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    Science.gov (United States)

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  19. The performance of the DELPHI SAT tracker during 1991 and its contribution to the absolute luminosity measurement

    International Nuclear Information System (INIS)

    Bugge, L.; Buran, T.; Read, A.L.; Wilhelmsen, E.

    1994-01-01

    The performance of the DELPHI Small Angle Tagger (SAT) tracker in 1991 is presented. A method to use the SAT tracker for monitoring the internal geometry of the SAT calorimeter and thereby improving the luminosity measurement for DELPHI is described. A reduction from 0.35% to 0.05% in the relevant contribution to the systematic error on the luminosity is reported. 15 refs., 23 figs., 6 tabs

  20. Application results for an augmented video tracker

    Science.gov (United States)

    Pierce, Bill

    1991-08-01

    The Relay Mirror Experiment (RME) is a research program to determine the pointing accuracy and stability levels achieved when a laser beam is reflected by the RME satellite from one ground station to another. This paper reports the results of using a video tracker augmented with a quad cell signal to improve the RME ground station tracking system performance. The video tracker controls a mirror to acquire the RME satellite, and provides a robust low bandwidth tracking loop to remove line of sight (LOS) jitter. The high-passed, high-gain quad cell signal is added to the low bandwidth, low-gain video tracker signal to increase the effective tracking loop bandwidth, and significantly improves LOS disturbance rejection. The quad cell augmented video tracking system is analyzed, and the math model for the tracker is developed. A MATLAB model is then developed from this, and performance as a function of bandwidth and disturbances is given. Improvements in performance due to the addition of the video tracker and the augmentation with the quad cell are provided. Actual satellite test results are then presented and compared with the simulated results.

  1. Analyzing Virtual Physics Simulations with Tracker

    Science.gov (United States)

    Claessens, Tom

    2017-12-01

    In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical equations of motion onto experimentally obtained data. In the field of particle mechanics, Tracker has been effectively used for learning and teaching about projectile motion, "toss up" and free-fall vertical motion, and to explain the principle of mechanical energy conservation. Also, Tracker has been successfully used in rigid body mechanics to interpret the results of experiments with rolling/slipping cylinders and moving rods. In this work, I propose an original method in which Tracker is used to analyze virtual computer simulations created with a physics-based motion solver, instead of analyzing video recording or stroboscopic photos. This could be an interesting approach to study kinematics and dynamics problems in physics education, in particular when there is no or limited access to physical labs. I demonstrate the working method with a typical (but quite challenging) problem in classical mechanics: a slipping/rolling cylinder on a rough surface.

  2. A Methodology to Analyze Photovoltaic Tracker Uptime

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Matthew T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ruth, Dan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-17

    A metric is developed to analyze the daily performance of single-axis photovoltaic (PV) trackers. The metric relies on comparing correlations between the daily time series of the PV power output and an array of simulated plane-of-array irradiances for the given day. Mathematical thresholds and a logic sequence are presented, so the daily tracking metric can be applied in an automated fashion on large-scale PV systems. The results of applying the metric are visually examined against the time series of the power output data for a large number of days and for various systems. The visual inspection results suggest that overall, the algorithm is accurate in identifying stuck or functioning trackers on clear-sky days. Visual inspection also shows that there are days that are not classified by the metric where the power output data may be sufficient to identify a stuck tracker. Based on the daily tracking metric, uptime results are calculated for 83 different inverters at 34 PV sites. The mean tracker uptime is calculated at 99% based on 2 different calculation methods. The daily tracking metric clearly has limitations, but as there is no existing metrics in the literature, it provides a valuable tool for flagging stuck trackers.

  3. CMS tracker slides into centre stage

    CERN Document Server

    2006-01-01

    As preparations for the magnet test and cosmic challenge get underway, a prototype tracker has been carefully inserted into the centre of CMS. The tracker, in its special platform, is slowly inserted into the centre of CMS. The CMS prototype tracker to be used for the magnet test and cosmic challenge coming up this summer has the same dimensions -2.5 m in diameter and 6 m in length- as the real one and tooling exactly like it. However, the support tube is only about 1% equipped, with 2 m2 of silicon detectors installed out of the total 200 m2. This is already more than any LEP experiment ever used and indicates the great care needed to be taken by engineers and technicians as these fragile detectors were installed and transported to Point 5. Sixteen thousand silicon detectors with a total of about 10 million strips will make up the full tracker. So far, 140 modules with about 100 000 strips have been implanted into the prototype tracker. These silicon strips will provide precision tracking for cosmic muon...

  4. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers

    Directory of Open Access Journals (Sweden)

    M. Gisi

    2011-01-01

    Full Text Available A new system to very precisely couple radiation of a moving source into a Fourier Transform Infrared (FTIR Spectrometer is presented. The Camtracker consists of a homemade altazimuthal solar tracker, a digital camera and a homemade program to process the camera data and to control the motion of the tracker. The key idea is to evaluate the image of the radiation source on the entrance field stop of the spectrometer. We prove that the system reaches tracking accuracies of about 10 arc s for a ground-based solar absorption FTIR spectrometer, which is significantly better than current solar trackers. Moreover, due to the incorporation of a camera, the new system allows to document residual pointing errors and to point onto the solar disk center even in case of variable intensity distributions across the source due to cirrus or haze.

  5. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  6. An Optical tracker for the maritime environment

    CSIR Research Space (South Africa)

    Bachoo, AK

    2011-04-01

    Full Text Available that is robust to platform vibration, target appearance changes and short-term occlusions. The optical tracker is developed using a particle filter and an appearance model that is updated online. The system achieves real-time tracking through the use of non...

  7. Sun Tracker Operates a Year Between Calibrations

    Science.gov (United States)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  8. Developments for the TOF Straw Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, A.

    2006-07-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp{yields}d{pi}{sup +} data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  9. Developments for the TOF Straw Tracker

    International Nuclear Information System (INIS)

    Ucar, A.

    2006-01-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp→dπ + data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  10. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Rosendahl, P L; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon microstrip detector part of the ATLAS experiment at the CERN Large Hadron Collider (LHC). Together with the rest for the ATLAS Inner Detector (ID) it provides vital precision tracking information of charged particles. In this paper the performance and operational status of the SCT in the last two years of ATLAS data taking are reviewed.

  11. UK semiconductor tracker parts head for CERN

    CERN Multimedia

    Holland, Colin

    2005-01-01

    The last of the 4 barrels that make up the central part of the Semiconductor Tracker (SCT), the heart of the biggest physics collaboration in the world have left Oxford for its new home at the European Particle Physics Laboratory, CERN, near Geneva

  12. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  13. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  14. A Heavy Flavor Tracker for STAR

    International Nuclear Information System (INIS)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi, A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow, B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-01-01

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era

  15. Laser Tracker Calibration - Testing the Angle Measurement System -

    Energy Technology Data Exchange (ETDEWEB)

    Gassner, Georg; Ruland, Robert; /SLAC

    2008-12-05

    Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. A test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.

  16. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers.

    Science.gov (United States)

    Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J; Flagel, Shelly B; Khamassi, Mehdi

    2015-01-01

    Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. RFP for the Auroral Multiscale Midex (AMM) Mission star tracker

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif

    1999-01-01

    This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker.......This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker....

  18. Evaluation of a remote webcam-based eye tracker

    DEFF Research Database (Denmark)

    Skovsgaard, Henrik; Agustin, Javier San; Johansen, Sune Alstrup

    2011-01-01

    In this paper we assess the performance of an open-source gaze tracker in a remote (i.e. table-mounted) setup, and compare it with two other commercial eye trackers. An experiment with 5 subjects showed the open-source eye tracker to have a significantly higher level of accuracy than one...

  19. The research and development of the automatic solar power tracker

    Directory of Open Access Journals (Sweden)

    Li Yan Ping

    2016-01-01

    Full Text Available The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  20. The research and development of the automatic solar power tracker

    OpenAIRE

    Li Yan Ping; Yuan Zhong Ying

    2016-01-01

    The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  1. Performance of the LHCb Outer Tracker

    CERN Document Server

    Arink, R; Bachmann, S.; Bagaturia, Y.; Band, H.; Bauer, Th.; Berkien, A.; Farber, Ch.; Bien, A.; Blouw, J.; Ceelie, L.; Coco, V.; Deckenhoff, M.; Deng, Z.; Dettori, F.; van Eijk, D.; Ekelhof, R.; Gersabeck, E.; Grillo, L.; Hulsbergen, W.D.; Karbach, T.M.; Koopman, R.; Kozlinskiy, A.; Langenbruch, Ch.; Lavrentyev, V.; Linn, Ch.; Merk, M.; Merkel, J.; Meissner, M.; Michalowski, J.; Morawski, P.; Nawrot, A.; Nedos, M.; Pellegrino, A.; Polok, G.; van Petten, O.; Rovekamp, J.; Schimmel, F.; Schuylenburg, H.; Schwemmer, R.; Seyfert, P.; Serra, N.; Sluijk, T.; Spaan, B.; Spelt, J.; Storaci, B.; Szczekowski, M.; Swientek, S.; Tolk, S.; Tuning, N.; Uwer, U.; Wiedner, D.; Witek, M.; Zeng, M.; Zwart, A.

    2014-01-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5x6 m2 with 12 double layers of straw tubes. The detector with its services are described together with the commissioning and calibration procedures. Based on data of the first LHC running period from 2010 to 2012, the performance of the readout electronics and the single hit resolution and efficiency are presented. The efficiency to detect a hit in the central half of the straw is estimated to be 99.2%, and the position resolution is determined to be approximately 200 um. The Outer Tracker received a dose in the hottest region corresponding to 0.12 C/cm, and no signs of gain deterioration or other ageing effects are observed.

  2. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  3. CMS tracker towards the HL-LHC

    CERN Document Server

    Alunni Solestizi, Luisa

    2015-01-01

    In sight of the incoming new LHC era (High Luminosity - LHC), characterized by a jump forward in the precision boundary and in the event rate, all the CMS sub-detector are developing and studying innovative strategies of trigger, pattern recognition, event timing and so on. A crucial aspect will be the online event selection: a totally new paradigm is needed, given the huge amount of events. In this picture the most granular and innermost sub-detector, the tracker, will play a decisive role. The phase-2 tracker will be involved in the L1 Trigger and, taking advantage of both the Associative Memories and the FPGA, it can ensure a trigger decision in proper time and with satisfactory performances.

  4. Data quality monitoring of the CMS tracker

    CERN Document Server

    Potamianos, Karolos

    2009-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. It has been designed to be used during online data taking as well as during offline reconstruction. The goal of the online system is to monitor detector performance and identify problems very efficiently during data collection so that proper actions can be taken. On the other hand the reconstruction or calibration problems can be detected during offline processing using the same tool. The monitoring is performed with histograms, which are filled with information from raw and reconstructed data. All histograms can then be displayed both in the central CMS DQM graphical user interface (GUI), as well as in Tracker specific expert GUIs and socalled Tracker Maps. Applications are in place to further process the information from these basic histograms by summarizing them in overview plots, by evaluating them with automated statistica...

  5. ATLAS Transition Radiation Tracker - large piece

    CERN Multimedia

    2006-01-01

    The ATLAS transition radiation tracker is made of 300'000 straw tubes, up to 144cm long. Filled with a gas mixture and threaded with a wire, each straw is a complete mini-detector in its own right. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre. The tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Also, together with the ATLAS calorimeters, it distinguishes between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws.

  6. Overview of the ATLAS Fast Tracker Project

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00025195; The ATLAS collaboration

    2016-01-01

    The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge for the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency for interesting events despite the increase in multiple collisions per bunch crossing. In order to increase the use of tracks within the High Level Trigger, the ATLAS experiment planned the installation of a hardware processor dedicated to tracking: the Fast TracKer processor. The Fast Tracker is designed to perform full scan track reconstruction of every event accepted by the ATLAS first level hardware trigger. To achieve this goal the system uses a parallel architecture, with algorithms designed to exploit the computing power of custom Associative Memory chips, and modern field programmable gate arrays. The processor will provide computing power to reconstruct tracks with transverse momentum greater than 1 GeV in the whole trackin...

  7. The CDF online silicon vertex tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.

    2001-01-01

    The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  8. The CDF online Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H.J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A.M.

    2002-01-01

    The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  9. ATLAS Transition Radiation Tracker - small piece

    CERN Multimedia

    2006-01-01

    The ATLAS transition radiation tracker is made of 300'000 straw tubes, up to 144cm long. Filled with a gas mixture and threaded with a wire, each straw is a complete mini-detector in its own right. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre. The tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Also, together with the ATLAS calorimeters, it distinguishes between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws.

  10. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  11. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  12. Data Quality Monitoring of the CMS Tracker

    CERN Document Server

    Dutta, Suchandra

    2010-01-01

    histograms which are filled with information from raw and reconstructed data computed at the level of individual detectors. Furthermore, statistical tests are performed on these histograms to check the quality and flags are generated automatically. Results are visualized with web based graphical user interfaces. Final data certification is done combining these automatic flags and manual inspection. The Tracker DQM system has been successfully used during cosmic data tak...

  13. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Nagai, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is one of the key precision tracking devices in the ATLAS experiment at CERN Large Hadron Collider (LHC). The SCT was constructed of 4088 modules for a total of 6.3 million silicon strips and was installed into the ATLAS experiment in 2007. The SCT has been fully operational since then, and achieves a good tracking performance from the startup of the LHC operation.

  14. The BaBar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-01-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented

  15. First half of CMS inner tracker barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first half of the CMS inner tracker barrel is seen in this image consisting of three layers of silicon modules which will be placed at the centre of the CMS experiment at the LHC in CERN. Laying close to the interaction point of the 14 TeV proton-proton collisions, the silicon used here must be able to survive high doses of radiation and a 4 T magnetic field without damage.

  16. Data Quality Monitoring of the CMS Tracker

    International Nuclear Information System (INIS)

    Dutta, Suchandra

    2011-01-01

    The Data Quality Monitoring system for the Tracker has been developed within the CMS Software framework. It has been designed to be used during online data taking as well as during offline reconstruction. The main goal of the online system is to monitor detector performance and identify problems very efficiently during data collection so that proper actions can be taken to fix it. On the other hand any issue with data reconstruction or calibration can be detected during offline processing using the same tool. The monitoring is performed using histograms which are filled with information from raw and reconstructed data computed at the level of individual detectors. Furthermore, statistical tests are performed on these histograms to check the quality and flags are generated automatically. Results are visualized with web based graphical user interfaces. Final data certification is done combining these automatic flags and manual inspection. The Tracker DQM system has been successfully used during cosmic data taking and it has been optimised to fulfill the condition of collision data taking. In this paper we describe the functionality of the CMS Tracker DQM system and the experience acquired during proton-proton collision.

  17. Measuring and teaching light spectrum using Tracker as a spectrometer

    Science.gov (United States)

    Rodrigues, M.; Marques, M. B.; Simeão Carvalho, P.

    2015-10-01

    In this work we present a simple and low cost setup that allows obtaining the light spectra and measuring the wavelength of its features. It is based on a cheap transmission diffraction grating, an ordinary digital camera and using Tracker software to increase measuring accuracy. This equipment can easily be found in most schools. The experimental setup is easy to implement (the typical setup for a pocket spectroscope) replacing the eye with the camera. The calibration is done using a light source with a well-known spectrum. The acquired images are analyzed with Tracker (freeware software frequently used for motion studies). With this system, we have analyzed several light sources. As an example, the analysis of the spectra obtained with compact fluorescent lamp allowed to recognize the spectrum of mercury in the lamp, as expected. This spectral analysis is therefore useful in schools, among other topics, to enable the recognition of chemical elements through spectroscopy, and to alert students to the different spectra of illuminating light sources used in houses and public places.

  18. Design and test of a parallel kinematic solar tracker

    Directory of Open Access Journals (Sweden)

    Stefano Mauro

    2015-12-01

    Full Text Available This article proposes a parallel kinematic solar tracker designed for driving high-concentration photovoltaic modules. This kind of module produces energy only if they are oriented with misalignment errors lower than 0.4°. Generally, a parallel kinematic structure provides high stiffness and precision in positioning, so these features make this mechanism fit for the purpose. This article describes the work carried out to design a suitable parallel machine: an already existing architecture was chosen, and the geometrical parameters of the system were defined in order to obtain a workspace consistent with the requirements for sun tracking. Besides, an analysis of the singularities of the system was carried out. The method used for the singularity analysis revealed the existence of singularities which had not been previously identified for this kind of mechanism. From the analysis of the mechanism developed, very low nominal energy consumption and elevated stiffness were found. A small-scale prototype of the system was constructed for the first time. A control algorithm was also developed, implemented, and tested. Finally, experimental tests were carried out in order to verify the capability of the system of ensuring precise pointing. The tests have been considered passed as the system showed an orientation error lower than 0.4° during sun tracking.

  19. Magnet Test Setup of the CMS Tracker ready for installation

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The pieces of the Tracker that will be operated in the forthcoming Magnet Test and Cosmic Challenge (MTCC) have been transported inside the dummy tracker support tube to the CMS experimental hall (Point 5, Cessy). The operation took place during the night of 12th May, covering the ~15km distance in about three hours. The transport was monitored for shocks, temperature and humidity with the help of the CERN TS-IC section. The Tracker setup comprises segments of the Tracker Inner Barrel (TIB), the Tracker Outer Barrel (TOB) and Tracker EndCaps (TEC) detectors. It represents roughly 1% of the final CMS Tracker. Installation into the solenoid is foreseen to take place on Wednesday 17th May.

  20. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  1. Latest Results from the Multi-Object Keck Exoplanet Tracker

    Science.gov (United States)

    Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.

    2006-12-01

    The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.

  2. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  3. Performance of the ATLAS semiconductor tracker

    CERN Document Server

    Alpigiani, C; The ATLAS collaboration

    2014-01-01

    We report the operation and performance of the ATLAS Semi-Conductor Tracker (SCT) functioning in a high luminosity and high radiation environment. The SCT is part of the inner tracking system of the ATLAS experiment at CERN and is constructed of 4088 modules assembled from silicon-strip sensors for a total of 6.3 million channels more than 99 % of which were fully functional throughout all data taking periods. Noise occupancy and hit efficiency as well as the Lorentz angle and radiation damage measurements will be discussed in details.

  4. Calibration of the ATLAS Transition Radiation Tracker

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    The Transition Radiation Tracker (TRT) is the outermost charged particle tracking device of the ATLAS Inner Detector. The TRT has about 300,000 straws, each of which is a proportional drift tube with a diameter of 4 mm. For a precise measurement of the trajectory of a charged particle (track), the relation between the measured time of the start of the signal and the distance of closest approach between the track and the anode wire needs to be calibrated. In this note, we present the calibration of the TRT detector during the first year of 7 TeV collision data-taking.

  5. CMS Tracker Alignment Performance Results Summer 2016

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip modules need to be determined with a precision of several micrometers. The performance of the CMS tracker alignment in 2016 using cosmic-ray data recorded at 0 T magnetic field and proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are presented. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  6. Confronting tracker field quintessence with data

    International Nuclear Information System (INIS)

    Wang, Pao-Yu; Chen, Chien-Wen; Chen, Pisin

    2012-01-01

    We confront tracker field quintessence with observational data. The potentials considered in this paper include V(φ)∝φ −α , exp (M p /φ), exp (M p /φ)−1, exp (βM p /φ) and exp (γM p /φ)−1; while the data come from the latest SN Ia, CMB and BAO observations. Stringent parameter constraints are obtained. In comparison with the cosmological constant via information criteria, it is found that models with potentials exp (M p /φ), exp (M p /φ)−1 and exp (γM p /φ)−1 are not supported by the current data

  7. LHCb: The LHCb Silicon Tracker: Running experience

    CERN Multimedia

    Saornil Gamarra, S

    2012-01-01

    The LHCb Silicon Tracker is part of the main tracking system of the LHCb detector at the LHC. It measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. After presenting our production and comissioning issues in TWEPP 2008, we report on our running experience. Focusing on electronic and hardware issues as well as operation and maintenance adversities, we describe the lessons learned and the pitfalls encountered after three years of successful operation.

  8. Roadside Tracker Portal-less Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheriyadat, Anil M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradley, Eric Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Mark F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goddard, Jr, James Samuel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kerekes, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-07-01

    This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.

  9. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Yamada, M; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance.

  10. Silicon vertex tracker for RHIC PHENIX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taketani, A [RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama, Japan; Cianciolo, Vince [ORNL; Enokizono, Akitomo [Oak Ridge National Laboratory (ORNL); PHENIX, Collaboration [The

    2010-01-01

    The PHENIX experiment at Relativistic Heavy Ion Collider will be equipped with Silicon Vertex tracker to enhance its physics capability. There are four layers of silicon sensor to reconstruct charged tracks with 50 {micro}m resolution of decay length measurement. The VTX surrounds the collision point. The inner two layers and the outer two layers are composed of 30 pixel ladders and 44 stripixel ladders, respectively. We have been developing these detectors and done a performance test with 120 GeV proton beam.

  11. Status of the KLOE-2 Inner Tracker

    Directory of Open Access Journals (Sweden)

    De Lucia Erika

    2018-01-01

    Full Text Available KLOE-2 at the DAΦNE Φ-factory is the main experiment of the INFN Laboratori Nazionali di Frascati (LNF and is the first high-energy experiment using the GEM technology with a cylindrical geometry, a novel idea developed at LNF. Four concentric cylindrical triple-GEM detectors compose the Inner Tracker, inserted around the interaction region and before the inner wall of the pre-existing KLOE Drift Chamber to improve the resolution on decay vertices close to the interaction point. State-of-the-art solutions have been expressly developed or tuned for this project: single-mask GEM etching, multi-layer XV patterned readout, PEEK spacer grid, GASTONE front-end board, a custom 64-channel ASIC with digital output, and the Global Interface Board for data collection, with a configurable FPGA architecture and Gigabit Ethernet. Alignment and calibration of a cylindrical GEM detector was never done before and represents one of the challenging activities of the experiment. The Inner Tracker detector construction, operation, calibration and performance obtained with cosmic-ray muons and Bhabha scattering events will be reported.

  12. The NA62 GigaTracker

    CERN Document Server

    Perrin-Terrin, Mathieu

    2015-01-01

    The GigaTracker is an hybrid silicon pixel detector built for the NA62 experiment aiming at measuring the branching fraction of the ultra-rare kaon decay K + ! p + n ̄ n at the CERN SPS. The detector has to track particles in a beam with a flux reaching 1.3 MHz/mm 2 and provide single-hit timing with 200ps RMS resolution for a total material budget of less than 1.5 X 0 . The tracker comprises three 60.8mm 27mm stations installed in vacuum ( 10$^{-6}$ mbar) and cooled with liquid C 6 F 14 circulating through micro-channels etched inside few hundred of microns thick silicon plates. Each station is composed of a 200 m m thick silicon sensor readout by 2 x 5 cus- tom 100 m m thick ASIC, called TDCPix. Each chip contains 40 x 45 asynchronous pixels, each 300 m m x 300 m m and is instrumented with 100ps bin time-to-digital converters. In order to cope with the high rate, the TDCPix is equipped with four 3.2Gb/s serialisers sending out the data. We will describe the detector and the results from the 2014 NA62 ru...

  13. Cosmics in the LHCb Outer Tracker

    CERN Document Server

    Aaij, Roel

    2010-01-01

    The LHCb experiment at the Large Hadron Collider studies the decay of B mesons to test the description of CP violation in the Standard Model and to search for new physics. The decay $B_s \\to \\mu^+ \\mu^-$ has been identified as very promising in the search for new physics. An excellent invariant mass resolution is required to suppress backgrounds to this decay. This in turn requires a momentum resolution of dp/p = 0.4%. The Outer Tracker is part of the LHCb tracking system and has been commissioned with cosmic muons. The noise in the Outer Tracker is shown to be less than 0.05%. To use drift time information in the reconstruction of cosmic tracks, the event time must be known. Four methods to obtain the event time are studied and compared. It is shown that the event time can be obtained with a resolution better than 2.6 ns. Using drift time information, tracks are reconstructed with a resolution of 344 $\\mu$m. Knowledge of the event time enables the calibration of electronic time offsets and the r(t)– relati...

  14. Semiconductor Strip Tracker Endcaps come to CERN

    CERN Multimedia

    P. Bell

    The first few months of 2006 saw the delivery to CERN of the final components of the ATLAS Semi-Conductor Tracker (SCT), namely the completed SCT end-caps. Regular ATLAS eNews readers will recall that the SCT barrel arrived in sections in 2005 and was assembled later that year (see the April 2005 and December 2005 issues, respectively.) And as reported in this issue of the eNews, the barrel SCT has recently been integrated with the barrel Transition Radiation Tracker. The end-caps were constructed in Liverpool (side C) and NIKHEF (side A), using components manufactured at many different sites across the world. End-cap C left Liverpool on Monday 20 February and arrived at CERN after a two-day journey by road and through the Channel Tunnel. Accelerations in all three dimensions were monitored during the trip, as was temperature and humidity inside the container; all values remained within pre-specified safe ranges. The end-cap was visually inspected upon arrival, with no obvious damage being seen. Subsequent ...

  15. Status of the KLOE-2 Inner Tracker

    Science.gov (United States)

    De Lucia, Erika

    2018-01-01

    KLOE-2 at the DAΦNE Φ-factory is the main experiment of the INFN Laboratori Nazionali di Frascati (LNF) and is the first high-energy experiment using the GEM technology with a cylindrical geometry, a novel idea developed at LNF. Four concentric cylindrical triple-GEM detectors compose the Inner Tracker, inserted around the interaction region and before the inner wall of the pre-existing KLOE Drift Chamber to improve the resolution on decay vertices close to the interaction point. State-of-the-art solutions have been expressly developed or tuned for this project: single-mask GEM etching, multi-layer XV patterned readout, PEEK spacer grid, GASTONE front-end board, a custom 64-channel ASIC with digital output, and the Global Interface Board for data collection, with a configurable FPGA architecture and Gigabit Ethernet. Alignment and calibration of a cylindrical GEM detector was never done before and represents one of the challenging activities of the experiment. The Inner Tracker detector construction, operation, calibration and performance obtained with cosmic-ray muons and Bhabha scattering events will be reported.

  16. The ATLAS fast tracker processor design

    CERN Document Server

    Volpi, Guido; Albicocco, Pietro; Alison, John; Ancu, Lucian Stefan; Anderson, James; Andari, Nansi; Andreani, Alessandro; Andreazza, Attilio; Annovi, Alberto; Antonelli, Mario; Asbah, Needa; Atkinson, Markus; Baines, J; Barberio, Elisabetta; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Blair, R E; Bogdan, Mircea; Boveia, Antonio; Britzger, Daniel; Bryant, Partick; Burghgrave, Blake; Calderini, Giovanni; Camplani, Alessandra; Cavaliere, Viviana; Cavasinni, Vincenzo; Chakraborty, Dhiman; Chang, Philip; Cheng, Yangyang; Citraro, Saverio; Citterio, Mauro; Crescioli, Francesco; Dawe, Noel; Dell'Orso, Mauro; Donati, Simone; Dondero, Paolo; Drake, G; Gadomski, Szymon; Gatta, Mauro; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Howarth, James William; Iizawa, Tomoya; Ilic, Nikolina; Jiang, Zihao; Kaji, Toshiaki; Kasten, Michael; Kawaguchi, Yoshimasa; Kim, Young Kee; Kimura, Naoki; Klimkovich, Tatsiana; Kolb, Mathis; Kordas, K; Krizka, Karol; Kubota, T; Lanza, Agostino; Li, Ho Ling; Liberali, Valentino; Lisovyi, Mykhailo; Liu, Lulu; Love, Jeremy; Luciano, Pierluigi; Luongo, Carmela; Magalotti, Daniel; Maznas, Ioannis; Meroni, Chiara; Mitani, Takashi; Nasimi, Hikmat; Negri, Andrea; Neroutsos, Panos; Neubauer, Mark; Nikolaidis, Spiridon; Okumura, Y; Pandini, Carlo; Petridou, Chariclia; Piendibene, Marco; Proudfoot, James; Rados, Petar Kevin; Roda, Chiara; Rossi, Enrico; Sakurai, Yuki; Sampsonidis, Dimitrios; Saxon, James; Schmitt, Stefan; Schoening, Andre; Shochet, Mel; Shoijaii, Jafar; Soltveit, Hans Kristian; Sotiropoulou, Calliope-Louisa; Stabile, Alberto; Swiatlowski, Maximilian J; Tang, Fukun; Taylor, Pierre Thor Elliot; Testa, Marianna; Tompkins, Lauren; Vercesi, V; Wang, Rui; Watari, Ryutaro; Zhang, Jianhong; Zeng, Jian Cong; Zou, Rui; Bertolucci, Federico

    2015-01-01

    The extended use of tracking information at the trigger level in the LHC is crucial for the trigger and data acquisition (TDAQ) system to fulfill its task. Precise and fast tracking is important to identify specific decay products of the Higgs boson or new phenomena, as well as to distinguish the contributions coming from the many collisions that occur at every bunch crossing. However, track reconstruction is among the most demanding tasks performed by the TDAQ computing farm; in fact, complete reconstruction at full Level-1 trigger accept rate (100 kHz) is not possible. In order to overcome this limitation, the ATLAS experiment is planning the installation of a dedicated processor, the Fast Tracker (FTK), which is aimed at achieving this goal. The FTK is a pipeline of high performance electronics, based on custom and commercial devices, which is expected to reconstruct, with high resolution, the trajectories of charged-particle tracks with a transverse momentum above 1 GeV, using the ATLAS inner tracker info...

  17. CellTracker (not only) for dummies.

    Science.gov (United States)

    Piccinini, Filippo; Kiss, Alexa; Horvath, Peter

    2016-03-15

    Time-lapse experiments play a key role in studying the dynamic behavior of cells. Single-cell tracking is one of the fundamental tools for such analyses. The vast majority of the recently introduced cell tracking methods are limited to fluorescently labeled cells. An equally important limitation is that most software cannot be effectively used by biologists without reasonable expertise in image processing. Here we present CellTracker, a user-friendly open-source software tool for tracking cells imaged with various imaging modalities, including fluorescent, phase contrast and differential interference contrast (DIC) techniques. CellTracker is written in MATLAB (The MathWorks, Inc., USA). It works with Windows, Macintosh and UNIX-based systems. Source code and graphical user interface (GUI) are freely available at: http://celltracker.website/ horvath.peter@brc.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. The ATLAS Semiconductor tracker: operations and performance

    CERN Document Server

    Pani, P; The ATLAS collaboration

    2013-01-01

    Tracker After more than 3 years of successful operation at the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is part of the ATLAS experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibers. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very cl...

  19. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Yamada, M; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi-Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the strip...

  20. Overview of the ATLAS Fast Tracker Project

    CERN Document Server

    Ancu, Lucian Stefan; The ATLAS collaboration

    2016-01-01

    The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge for the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency for interesting events despite the increase in multiple collisions per bunch crossing. In order to increase the use of tracks within the High Level Trigger, the ATLAS experiment planned the installation of a hardware processor dedicated to tracking: the Fast TracKer processor. The Fast Tracker is designed to perform full scan track reconstruction of every event accepted by the ATLAS first level hardware trigger. To achieve this goal the system uses a parallel architecture, with algorithms designed to exploit the computing power of custom Associative Memory chips, and modern field programmable gate arrays. The processor will provide computing power to reconstruct tracks with transverse momentum greater than 1 GeV in the whol...

  1. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    Science.gov (United States)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker

  2. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    Directory of Open Access Journals (Sweden)

    Triplet Thomas

    2012-01-01

    Full Text Available Abstract Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50

  3. The EnzymeTracker: an open-source laboratory information management system for sample tracking.

    Science.gov (United States)

    Triplet, Thomas; Butler, Gregory

    2012-01-26

    In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is freely available online at http

  4. Modelling Structural Flexure Effects in CPV Sun Trackers

    OpenAIRE

    Luque-Heredia, Ignacio; Quéméré, G.; Magalhães, P.H.; Fraile de Lerma, Alberto; Hermanns, Lutz Karl Heinz; Alarcón Álvarez, Enrique; Luque López, Antonio

    2006-01-01

    Nowadays CPV trends mostly based in lens parqueted flat modules, enable the separate design of the sun tracker. To enable this possibility a set of specifications is to be prescribed for the tracker design team, which take into account fundamental requisites such as the maximum service loads both permanent and variable, the sun tracking accuracy and the tracker structural stiffness required to maintain the CPV array acceptance angle loss below a certain threshold. In its first part this paper...

  5. Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC

    International Nuclear Information System (INIS)

    Adam, W; Fruehwirth, R; Strandlie, A; Todorov, T

    2005-01-01

    The bremsstrahlung energy loss distribution of electrons propagating in matter is highly non-Gaussian. Because the Kalman filter relies solely on Gaussian probability density functions, it is not necessarily the optimal reconstruction algorithm for electron tracks. A Gaussian-sum filter (GSF) algorithm for electron reconstruction in the CMS tracker has therefore been developed and implemented. The basic idea is to model the bremsstrahlung energy loss distribution by a Gaussian mixture rather than by a single Gaussian. It is shown that the GSF is able to improve the momentum resolution of electrons compared to the standard Kalman filter. The momentum resolution and the quality of the error estimate are studied both with a fast simulation, modelling the radiative energy loss in a simplified detector, and the full CMS tracker simulation. (research note from collaboration)

  6. Reconstruction of Electrons with the Gaussian-Sum Filter in the CMS Tracker at the LHC

    CERN Document Server

    Adam, Wolfgang; Strandlie, Are; Todor, T

    2005-01-01

    The bremsstrahlung energy loss distribution of electrons propagating in matter is highly non-Gaussian. Because the Kalman filter relies solely on Gaussian probability density functions, it is not necessarily the optimal reconstruction algorithm for electron tracks. A Gaussian-sum filter (GSF) algorithm for electron reconstruction in the CMS tracker has therefore been developed and implemented. The basic idea is to model the bremsstrahlung energy loss distribution by a Gaussian mixture rather than by a single Gaussian. It is shown that the GSF is able to improve the momentum resolution of electrons compared to the standard Kalman filter. The momentum resolution and the quality of he error estimate are studied both with a fast simulation, modelling the radiative energy loss in a simplified detector, and the full CMS tracker simulation.

  7. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  8. The Alignment of the CMS Silicon Tracker

    CERN Document Server

    Lampen, Pekka Tapio

    2013-01-01

    The CMS all-silicon tracker consists of 16588 modules, embedded in a solenoidal magnet providing a field of B = 3.8 T. The targeted performance requires that the alignment determines the module positions with a precision of a few micrometers. Ultimate local precision is reached by the determination of sensor curvatures, challenging the algorithms to determine about 200k parameters simultaneously, as is feasible with the Millepede II program. The main remaining challenge are global distortions that systematically bias the track parameters and thus physics measurements. They are controlled by adding further information into the alignment workflow, e.g. the mass of decaying resonances or track data taken with B = 0 T. To make use of the latter and also to integrate the determination of the Lorentz angle into the alignment procedure, the alignment framework has been extended to treat position sensitive calibration parameters. This is relevant since due to the increased LHC luminosity in 2012, the Lorentz angle ex...

  9. Mechatronic Prototype of Parabolic Solar Tracker

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2016-06-01

    Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  10. Mechatronic Prototype of Parabolic Solar Tracker.

    Science.gov (United States)

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  11. CMS Tracker Alignment Performance Results 2016

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip module needs to be determined with a precision of several micrometers. The presented alignment results are derived following a global (Millepede-II) and a local (HipPy) fit approach. The performance of the CMS tracker alignment in 2016 using cosmic-ray data and the complete set of proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are shown. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  12. LHC Survey Laser Tracker Controls Renovation

    CERN Document Server

    Charrondière, C

    2011-01-01

    The LHC survey laser tracker control system is based on an industrial software package (Axyz) from Leica Geosystems™ that has an interface to Visual Basic™, which we used to automate the geometric measurements for the LHC magnets. With the new version of the Leica software, this Visual Basic™ interface is no longerb available and we had to redesign the interface software to adapt to a PC-DMIS server that replaced the Axyz software. As this package is no longer supported, we have taken the decision to recode the automation application in LabVIEW. This presentation describes the existing equipment, interface and application showing the reasons for our decisions to move to PC-DMIS and LabVIEW. A comparison between the new and legacy system is made

  13. The ATLAS Semiconductor Tracker: operations and performance

    CERN Document Server

    Pani, P; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at 2 the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, 4 high radiation environment. The SCT is part of the inner tracking system of the ATLAS 6 experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. We find 99.3% of the 8 SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to 10 the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation and performance 12 of the detector including an overview of the issues encountered. The observables employed to monitor online and offline the 14 quality and the performance of the data acquired by the SCT will be described and discussed.

  14. Ageing of the LHCb outer tracker

    CERN Document Server

    Blom, M R; Tuning, N

    2009-01-01

    The modules of the LHCb outer tracker have shown to suffer severe gain loss under moderate irradiation. This process is called ageing. Ageing of the modules results from contamination of the gas system by glue, araldite AY 103-1, used in their construction. In this thesis the ageing process will be shown. The schemes known to reduce, reverse, or prevent ageing have been investigated to determine their effect on the detector performance. The addition of O2 to the gas mixture lowers the detector response by an acceptable amount and does not affect the gas transport properties significantly. The ageing rate is decreased after extensive flushing and HV training could eventually repair the irradiation damage. The risks of HV training have been assessed. Furthermore, several gaseous and aquatic additions have been tested for their capability to prevent, or moderate ageing, but none showed significant improvement.

  15. LHC survey laser tracker controls renovation

    International Nuclear Information System (INIS)

    Charrondiere, C.; Nybo, M.

    2012-01-01

    The LHC survey laser tracker control system is based on an industrial software package (Axyz) from Leica Geosystems (TM) that has an interface to Visual Basic (TM), which we used to automate the geometric measurements for the LHC magnets. With the new version of the Leica software, this Visual Basic (TM) interface is no longer available and we had to redesign the interface software to adapt to a PC-DMIS server that replaced the Axyz software. As this package is no longer supported, we have taken the decision to re-code the automation application in LabVIEW. This presentation describes the existing equipment, interface and application showing the reasons for our decisions to move to PC-DMIS and LabVIEW. A comparison between the new and the existing system is made. (authors)

  16. The CMS Tracker Readout Front End Driver

    CERN Document Server

    Foudas, C.; Ballard, D.; Church, I.; Corrin, E.; Coughlan, J.A.; Day, C.P.; Freeman, E.J.; Fulcher, J.; Gannon, W.J.F.; Hall, G.; Halsall, R.N.J.; Iles, G.; Jones, J.; Leaver, J.; Noy, M.; Pearson, M.; Raymond, M.; Reid, I.; Rogers, G.; Salisbury, J.; Taghavi, S.; Tomalin, I.R.; Zorba, O.

    2004-01-01

    The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the APV25 analogue pipeline Application Specific Integrated Circuits. The FED receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec. The signals are digitized and processed by applying algorithms for pedestal and common mode noise subtraction. Algorithms that search for clusters of hits are used to further reduce the input rate. Only the cluster data along with trigger information of the event are transmitted to the CMS data acquisition system using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data processing algorithms on the FED are executed in large on-board Field Programmable Gate Arrays. Results on the design, performance, testing and quality control of the FED are presented and discussed.

  17. Tracker Alignment Performance Plots after Commissioning

    CERN Document Server

    CMS Collaboration

    2017-01-01

    During the LHC shutdown in Winter 2016/17, the CMS pixel detector, the inner component of the CMS Tracker, was replaced by the Phase-1 upgrade detector. Among others improvements, the new pixel detector consists of four instead of three layers in the central barrel region (BPIX) and three instead of two disks in the endcap regions (FPIX). In this report, performance plots of pixel detector alignment results are presented, which were obtained with both cosmic-ray and pp collision data acquired at the beginning of the 2017 LHC operation. Alignment constants have been derived for each data-taking period to the level of single module positions in both the pixel and the strip detectors. The complete understanding of the alignment and biases was derived by using two algorithms, Millepede-II and HipPy. The results confirm each other.

  18. Fitness Tracker for Weight Lifting Style Workouts

    Energy Technology Data Exchange (ETDEWEB)

    Wihl, B. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    This document proposes an early, high level design for a fitness tracking system which can automatically log weight lifting style workouts. The system will provide an easy to use interface both physically through the use of several wireless wristband style motion trackers worn on the limbs, and graphically through a smartphone application. Exercise classification will be accomplished by calibration of the user’s specific motions. The system will accurately track a user’s workout, miscounting no more than one repetition in every 20, have sufficient battery life to last several hours, work with existing smartphones and have a cost similar to those of current fitness tracking devices. This document presents the mission background, current state-of-theart, stakeholders and their expectations, the proposed system’s context and concepts, implementation concepts, system requirements, first sublevel function decomposition, possible risks for the system, and a reflection on the design process.

  19. A Heavy Flavor Tracker for STAR

    International Nuclear Information System (INIS)

    Chasman, C.; Beavis, D.; Debbe, R.; Lee, J.H.; Levine, M.J.; Videbaek, F.; Xu, Z.; Kleinfelder, S.; Li, S.; Cendejas, R.; Huang, H.; Sakai, S.; Whitten, C.; Joseph, J.; Keane, D.; Margetis, S.; Rykov, V.; Zhang, W.M.; Bystersky, M.; Kapitan, J.; Kushpil, V.; Sumbera, M.; Baudot, J.; Hu-Guo, C.; Shabetai, A.; Szelezniak, M.; Winter, M.; Kelsey, J.; Milner, R.; Plesko, M.; Redwine, R.; Simon, F.; Surrow, B.; Van Nieuwenhuizen, G.; Anderssen, E.; Dong, X.; Greiner, L.; Matis, H.S.; Morgan, S.; Ritter, H.G.; Rose, A.; Sichtermann, E.; Singh, R.P.; Stezelberger, T.; Sun, X.; Thomas, J.H.; Tram, V.; Vu, C.; Wieman, H.H.; Xu, N.; Hirsch, A.; Srivastava, B.; Wang, F.; Xie, W.; Bichsel, H.

    2008-01-01

    The STAR Collaboration proposes to construct a state-of-the-art microvertex detector, the Heavy Flavor Tracker (HFT), utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precision measurement of the yields and spectra of particles containing heavy quarks. This will be accomplished through topological identification of D mesons by reconstruction of their displaced decay vertices with a precision of approximately 50 mu m in p+p, d+A, and A+A collisions. The HFT consists of 4 layers of silicon detectors grouped into two sub-systems with different technologies, guaranteeing increasing resolution when tracking from the TPC and the Silicon Strip Detector (SSD) towards the vertex of the collision. The Intermediate Silicon Tracker (IST), consisting of two layers of single-sided strips, is located inside the SSD. Two layers of Silicon Pixel Detector (PIXEL) are inside the IST. The PIXEL detectors have the resolution necessary for a precision measurement of the displaced vertex. The PIXEL detector will use CMOS Active Pixel Sensors (APS), an innovative technology never used before in a collider experiment. The APS sensors are only 50 mu m thick and at a distance of only 2.5 cm from the interaction point. This opens up a new realm of possibilities for physics measurements. In particular, a thin detector (0.28percent radiation length per layer) in STAR makes it possible to do the direct topological reconstruction of open charm hadrons down to very low pT by the identification of the charged daughters of the hadronic decay

  20. A holographic waveguide based eye tracker

    Science.gov (United States)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  1. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Chasman, C.; Beavis, D.; Debbe, R.; Lee, J.H.; Levine, M.J.; Videbaek, F.; Xu, Z.; Kleinfelder, S.; Li, S.; Cendejas, R.; Huang, H.; Sakai, S.; Whitten, C.; Joseph, J.; Keane, D.; Margetis, S.; Rykov, V.; Zhang, W.M.; Bystersky, M.; Kapitan, J.; Kushpil, V.; Sumbera, M.; Baudot, J.; Hu-Guo, C.; Shabetai, A.; Szelezniak, M.; Winter, M.; Kelsey, J.; Milner, R.; Plesko, M.; Redwine, R.; Simon, F.; Surrow, B.; Van Nieuwenhuizen, G.; Anderssen, E.; Dong, X.; Greiner, L.; Matis, H.S.; Morgan, S.; Ritter, H.G.; Rose, A.; Sichtermann, E.; Singh, R.P.; Stezelberger, T.; Sun, X.; Thomas, J.H.; Tram, V.; Vu, C.; Wieman, H.H.; Xu, N.; Hirsch, A.; Srivastava, B.; Wang, F.; Xie, W.; Bichsel, H.

    2008-02-25

    The STAR Collaboration proposes to construct a state-of-the-art microvertex detector,the Heavy Flavor Tracker (HFT), utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precision measurement of the yields and spectra of particles containing heavy quarks. This will be accomplished through topological identification of D mesons by reconstruction of their displaced decay vertices with a precision of approximately 50 mu m in p+p, d+A, and A+A collisions. The HFT consists of 4 layers of silicon detectors grouped into two sub-systems with different technologies, guaranteeing increasing resolution when tracking from the TPC and the Silicon Strip Detector (SSD) towards the vertex of the collision. The Intermediate Silicon Tracker (IST), consisting of two layers of single-sided strips, is located inside the SSD. Two layers of Silicon Pixel Detector (PIXEL) are inside the IST. The PIXEL detectors have the resolution necessary for a precision measurement of the displaced vertex. The PIXEL detector will use CMOS Active Pixel Sensors (APS), an innovative technology never used before in a collider experiment. The APSsensors are only 50 mu m thick and at a distance of only 2.5 cm from the interaction point. This opens up a new realm of possibilities for physics measurements. In particular, a thin detector (0.28percent radiation length per layer) in STAR makes it possible to do the direct topological reconstruction of open charm hadrons down to very low pT by the identification of the charged daughters of the hadronic decay.

  2. Promoting physical activity using a wearable activity tracker in college students: A cluster randomized controlled trial.

    Science.gov (United States)

    Kim, Youngdeok; Lumpkin, Angela; Lochbaum, Marc; Stegemeier, Steven; Kitten, Karla

    2018-08-01

    This study examined the effects of utilizing a wearable activity tracker in a credit-based physical activity instructional program (PAIP) for promoting physical activity (PA) in college students. Fourteen PAIP courses in a large public university were randomly assigned into intervention (k = 7; n = 101) and control (k = 7; n = 86) groups. All courses focused on a core curriculum that covers basic exercise and behavioral science contents through lectures and activity sessions. A Misfit Flash activity tracker was provided to students in the intervention group. Objective PA assessments occurred at baseline, mid-, and end-of-semester during a 15-week academic semester. The control group showed a significant reduction in moderate- and vigorous-intensity PA (MVPA) minutes from baseline to the end-of-semester (P <.05), whereas the intervention group showed no changes in MVPA minutes over time. However, the intervention group also showed increased sedentary time and decreased time spent in light-intensity PA during the intervention period. Taken together, the present study found null effects of utilizing the wearable activity tracker in promoting PA in college students suggesting that intervention of primary using the wearable activity tracker as a behavior change strategy may not be effective to increase in PA in this setting.

  3. Which Eye Tracker is Right for Your Research Performance Evaluation of Several Cost Variant Eye Trackers

    Science.gov (United States)

    2016-09-19

    utilized to study a diverse number of topics such as the patterns of fixations and saccades while reading text (e.g., Rayner, 1998), the workload of...of their accessibility to our laboratory and because they represent a diverse set of relative price points, from low (Eye Tribe Tracker, Tobii EyeX...see Figure 1 for the layout of those systems). At both workstations, task stimuli were presented to observers on 48.26 cm Samsung SyncMaster 940Bx

  4. The Laser Alignment System for the CMS silicon strip tracker

    CERN Document Server

    Olzem, Jan

    2009-01-01

    The Laser Alignment System (LAS) of the CMS silicon strip Tracker has been designed for surveying the geometry of the large-scale Tracker support structures. It uses 40 laser beams ($\\lambda$ = 1075 nm) that induce signals on a subset of the Tracker silicon sensors. The positions in space of the laser spots on the sensors are reconstructed with a resolution of 30 $\\mu$m. From this, the LAS is capable of permanent in-time monitoring of the different Tracker components relative to each other with better than 30 $\\mu$m precision. Additionally, it can provide an absolute measurement of the Tracker mechanical structure with an accuracy better than 70 $\\mu$m, thereby supplying additional input to the track based alignment at detector startup. 31 out of the 40 LAS beams have been successfully operated during the CMS cosmic muon data taking campaign in autumn 2008. The alignment of the Tracker Endcap Discs and of the discs with respect to the Tracker Inner Barrel and Tracker Outer Barrel subdetectors was measured w...

  5. Wearable Gaze Trackers: Mapping Visual Attention in 3D

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Stets, Jonathan Dyssel; Suurmets, Seidi

    2017-01-01

    gaze trackers allows respondents to move freely in any real world 3D environment, removing the previous restrictions. In this paper we propose a novel approach for processing visual attention of respondents using mobile wearable gaze trackers in a 3D environment. The pipeline consists of 3 steps...

  6. Using an eye tracker for accurate eye movement artifact correction

    NARCIS (Netherlands)

    Kierkels, J.J.M.; Riani, J.; Bergmans, J.W.M.; Boxtel, van G.J.M.

    2007-01-01

    We present a new method to correct eye movement artifacts in electroencephalogram (EEG) data. By using an eye tracker, whose data cannot be corrupted by any electrophysiological signals, an accurate method for correction is developed. The eye-tracker data is used in a Kalman filter to estimate which

  7. Advances in RGB and RGBD Generic Object Trackers

    KAUST Repository

    Bibi, Adel Aamer

    2016-01-01

    new state-of-the-art trackers. One of which is 3D based tracker in a particle filter framework where both synchronization and registration of RGB and depth streams are adjusted automatically, and three works in correlation filters that achieve state-of-the-art

  8. Quality assurance for CMS Tracker LV and HV Power Supplies

    CERN Document Server

    Costa, Marco; Sertoli, M; Trapani, P; Periale, L; Isabella, L; Landi, C; Lucchesi, A

    2007-01-01

    This work describes the quality assurance measurements that have been carried out on about 2000 Power Supply Units produced in CAEN technology for the CMS Silicon Tracker Detector. The automate procedure and the characteristics of the dedicated Test Fixture developed for this activity are described in details. Magnetic field tolerance and radiation hardness of Tracker power supply units is also discussed at length.

  9. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  10. A simulator-based approach to evaluating optical trackers

    NARCIS (Netherlands)

    Smit, F.A.; Liere, van R.

    2009-01-01

    We describe a software framework to evaluate the performance of model-based optical trackers in virtual environments. The framework can be used to evaluate and compare the performance of different trackers under various conditions, to study the effects of varying intrinsic and extrinsic camera

  11. Reliability and validity of ten consumer activity trackers

    NARCIS (Netherlands)

    Kooiman, Thea; Dontje, Manon L.; Sprenger, Siska; Krijnen, Wim; van der Schans, Cees; de Groot, Martijn

    2015-01-01

    Background: Activity trackers can potentially stimulate users to increase their physical activity behavior. The aim of this study was to examine the reliability and validity of ten consumer activity trackers for measuring step count in both laboratory and free-living conditions. Method: Healthy

  12. Documentation for delivery of Star Tracker to CHAMP

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Jørgensen, John Leif

    1999-01-01

    The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the flight hardware of the Star Tracker for the German satellite CHAMP.......The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the flight hardware of the Star Tracker for the German satellite CHAMP....

  13. Determinants for sustained use of an activity tracker : observational study

    NARCIS (Netherlands)

    Hermsen, Sander; Moons, Jonas; Kerkhof, Peter; Wiekens, Carina; De Groot, Martijn

    2017-01-01

    BACKGROUND: A lack of physical activity is considered to cause 6% of deaths globally. Feedback from wearables such as activity trackers has the potential to encourage daily physical activity. To date, little research is available on the natural development of adherence to activity trackers or on

  14. Documentation for delivery of Star Tracker to ADEOS II

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Denver, Troelz

    1999-01-01

    The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the Flight Hardware of the Star Tracker for the Japanese satellite ADEOS II.......The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the Flight Hardware of the Star Tracker for the Japanese satellite ADEOS II....

  15. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  16. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  17. ALAT SOLAR TRACKER BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    Directory of Open Access Journals (Sweden)

    I Wayan Sutaya

    2015-07-01

    Full Text Available Penelitian yang telah dilakukan ini adalah membuat prototipe alat solar tracker. Alat ini berfungsi untuk menggerakkan modul sel surya sehingga permukaan sel surya bisa terkena sinar matahari secara maksimal. Saat ini sel surya di Indonesia banyak terpasang secara statis atau tidak dilengkapi alat solar tracker sehingga energi matahari tidak diterima secara maksimal. Hal ini menyebabkan sel surya yang terpasang di beberapa daerah di Indonesia tidak memberikan manfaat yang optimal. Alat solar tracker yang dihasilkan pada penelitian ini diharapkan sebagai solusi dari permasalahan yang ada saat ini. Mikrokontroler 8 bit ATMega8535 yang digunakan sebagai otak utama dari alat solar tracker menjadikan alat ini menjadi berbiaya murah. Serta teknik memprogram dengan bahasa assembly menjadikan alat ini tahan terhadap kegagalan sistem. Solar tracker ini sudah bisa beroperasi dengan baik dan cocok digunakan pada modul sel surya berukuran kecil.

  18. The Design Parameters for the MICE Tracker Solenoid

    International Nuclear Information System (INIS)

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor, Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-01-01

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report

  19. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

    Science.gov (United States)

    Nakamoto, Masahiko; Nakada, Kazuhisa; Sato, Yoshinobu; Konishi, Kozo; Hashizume, Makoto; Tamura, Shinichi

    2008-02-01

    This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as

  20. System tests of radiation hard optical links for the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    Charlton, D.G.; Dowell, J.D.; Homer, R.J.; Jovanovic, P.; Kenyon, I.R.; Mahout, G.; Shaylor, H.R.; Wilson, J.A.; Rudge, A.; Fopma, J.; Mandic, I.; Nickerson, R.B.; Shield, P.; Wastie, R.; Weidberg, A.R.; Eek, L.-O.; Go, A.; Lund-Jensen, B.; Pearce, M.; Soederqvist, J.; Morrissey, M.; White, D.J.

    2000-01-01

    A prototype optical data and Timing, Trigger and Control transmission system based on LEDs and PIN-diodes has been constructed. The system would be suitable in terms of radiation hardness and radiation length for use in the ATLAS SemiConductor Tracker. Bit error rate measurements were performed for the data links and for the links distributing the Timing, Trigger and Control data from the counting room to the front-end modules. The effects of cross-talk between the emitters and receivers were investigated. The advantages of using Vertical Cavity Surface Emitting Lasers (VCSELs) instead of LEDs are discussed

  1. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). In the talk the current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. We will report on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk damage due to non-ionising radiation. The main emphasis will be given to the tracking performance of the SCT and the data quality during the >2 ye...

  2. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analyzed to determine the noise performance of the ...

  3. The ATLAS semiconductor tracker: operations and performance

    CERN Document Server

    D'Auria, S; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar {it p}-in-{it n} technology. The signals are processed in the front-end ASICS ABCD3TA, working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current results from the successful operation of the SCT Detector at the LHC and its status af...

  4. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analysed to determine the noise performance of the ...

  5. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector (ID) of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules with a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each side of the barrel). The SCT silicon microstrip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICs ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational ever since. Calibration data has been taken regularly and analysed to determine the noise performance of the system. ...

  6. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices of the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of $4088$ silicon detector modules for a total of 6.3 million channels. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel ($4$ cylinders) and two end-cap systems (9 disks on each). The current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. The operation of the detector including an overview of the main issues encountered is reported. The main emphasis is be given to the tracking performance of the SCT and the data quality during the $>2$ years of data taking of proton-proton collision data at $7$ TeV (and short periods of heavy ion collisions). The SCT has been fully operational throughout a...

  7. Tracker electronics testing at Imperial College London

    CERN Multimedia

    PPARC, UK

    2006-01-01

    Jonathon Fulcher and Rob Bainbridge testing a rack of CMS Tracker readout electronics at Imperial College London. The signals from the front end APV chips will be transmitted optically to racks of electronics ~100m away in an adjacent underground cavern where they are fed into ~20 crates where 500 CMS Front End Driver boards (FEDs) are located. The FED inputs are 8 fibre ribbons, each ribbon consisting of 12 fibres, each fibre carrying the serially multiplexed data originating from 2 APVs. To test the FEDs special tester boards have been designed to produce simulated APV data in optical form. In the picture the yellow cables are the fibres, which originate from the FED tester boards on the left hand side of the crate as 96 individual fibres, which are then combined into the 8 fibre ribbons feeding the FED board on the right hand side of the crate. Fig. 2 shows an APV25 test board mounted in the X-ray irradiation setup, Fig. 3 the X-ray machine where the chips are irradiated and Fig. 4 the MGPA (Multi-Gain Pre...

  8. 3D Monitoring of LHCb Inner Tracker

    CERN Multimedia

    Sainvitu, Pascal

    2015-01-01

    The positions of the Inner Tracker (IT) detectors of the LHCb experiment installed in the LHC at CERN are impacted by the LHCb dipole magnet powering. In the past the movements of the stations have been measured using standard survey methods during magnet tests in shutdown periods. But the survey targets are visible only in very narrow spaces and the access to the IT is very difficult, even impossible in the central region when the detector is closed. Finally the precision of the standard survey measurement is affected by the poor configuration. In 2013 and 2014, during the first long shutdown of the LHC (LS1), the CERN Survey team (EN/MEF-SU) in collaboration with the LHCb Technical Coordination and the EPFL (Ecole Polytechnique Fédérale de LAUSANNE, CH), developed a permanent monitoring system which has been tested and installed in order to allow the 3D position measurement of the IT stations, even during the run periods, with a precision of 100 microns at 1 sigma level. The 3D Monitoring system of the LH...

  9. The Fast Tracker Real Time Processor

    CERN Document Server

    Annovi, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the SLHC Phase I level and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting massive parallelism of associative memories [2] that ...

  10. Climate Action Tracker Update. Climate Shuffle

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, N.; Fekete, H.; Vieweg, M.; Hare, B.; Schaeffer, M.; Rocha, M.; Larkin, J.; Guetschow, J.; Jeffery, L.

    2011-11-15

    The Climate Action Tracker (CAT) compares and assesses national and global action against a range of different climate targets across all relevant time frames, starting with an ongoing analysis of countries' current emission reduction pledges. National action on climate change mitigation appears to be joining the international climate negotiations in the new and ever popular 'climate shuffle' dance. It involves maximum effort and motion while staying in the same spot, or even, in some cases, going backwards. Recent emissions trends and estimates of the effects of those policies in place and proposed lead to a new estimate that warming is likely to approach 4C by 2100, significantly above the warming that would result from full implementation of the pledges (3.3C). The continuous global fossil-fuel intensive development of the past decade suggests that high warming levels of 4C are more plausible than assuming full implementation of current pledges. Evidence is ever increasing that existing and planned policies are not sufficient for countries to meet these pledges.

  11. The DELPHI Silicon Tracker in the global pattern recognition

    CERN Document Server

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  12. The LHCb Silicon Tracker - Control system specific tools and challenges

    CERN Document Server

    Adeva, G; Esperante Pereira, D; Gallas, A; Pazos Alvarez, A; Perez Trigo, E; Rodriguez Perez, P; Saborido, J; Amhis, Y; Bay, A; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Marki, R; Muresan, R; Nakada, T; Needham, M; Knecht, M; Schneider, O; Tran, M; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; De Cian, M; Elsasser, C; Salzmann, C; Saornil Gamarra, S; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Aquines Gutierrez, O; Bauer, C; Britsch, M; Maciuc, F; Schmelling, M; Voss, H; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2014-01-01

    The Experiment Control System (ECS) of the LHCb Silicon Tracker sub-detectors is built on the integrated LHCb ECS framework. Although all LHCb sub-detectors use the same framework and follow the same guidelines, the Silicon Tracker control system uses some interesting additional features in terms of operation and monitoring. The main details are described in this document. Since its design, the Silicon Tracker control system has been continuously evolving in a quite disorganized way. Some major maintenance activities are required to be able to keep improving. A description of those activities can also be found here.

  13. The DELPHI Silicon Tracker in the global pattern recognition

    International Nuclear Information System (INIS)

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  14. Publicity.

    Science.gov (United States)

    Chisholm, Joan

    Publicity for preschool cooperatives is described. Publicity helps produce financial support for preschool cooperatives. It may take the form of posters, brochures, newsletters, open house, newspaper coverage, and radio and television. Word of mouth and general good will in the community are the best avenues of publicity that a cooperative nursery…

  15. HETDEX tracker control system design and implementation

    Science.gov (United States)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  16. Social aspects of clinical errors.

    Science.gov (United States)

    Richman, Joel; Mason, Tom; Mason-Whitehead, Elizabeth; McIntosh, Annette; Mercer, Dave

    2009-08-01

    Clinical errors, whether committed by doctors, nurses or other professions allied to healthcare, remain a sensitive issue requiring open debate and policy formulation in order to reduce them. The literature suggests that the issues underpinning errors made by healthcare professionals involve concerns about patient safety, professional disclosure, apology, litigation, compensation, processes of recording and policy development to enhance quality service. Anecdotally, we are aware of narratives of minor errors, which may well have been covered up and remain officially undisclosed whilst the major errors resulting in damage and death to patients alarm both professionals and public with resultant litigation and compensation. This paper attempts to unravel some of these issues by highlighting the historical nature of clinical errors and drawing parallels to contemporary times by outlining the 'compensation culture'. We then provide an overview of what constitutes a clinical error and review the healthcare professional strategies for managing such errors.

  17. A Hardware Fast Tracker for the ATLAS Trigger: The Fast TracKer (FTK) Project.

    CERN Document Server

    Asbah, Nedaa; The ATLAS collaboration

    2015-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10^{34} cm^{-2} s{-1}. After a successful period of data taking from 2010 to early 2013, the LHC is restarting in 2015 with much higher instantaneous luminosity and this will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide, at every level-1 accept (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast extensive access to tracking information, with resolution comparable to the offline reconstruction, the Fast Tracker will for example help the High Level Trigger...

  18. Interferometric Star Tracker for High Precision Pointing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to adapt the precision star tracker it is currently developing under several DoD contracts for deep space lasercom beam...

  19. Advanced Exoplanet Star Tracker for Orbit Self Determination, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal puts forth an innovative star tracker hardware sensor that allows for autonomous calculation of a spacecraft's orbit by employing Doppler Spectroscopy...

  20. SWaP Reduction for Lost-Cost Star Tracker

    Data.gov (United States)

    National Aeronautics and Space Administration — In the last two years, a low-cost star tracker has been developed for suborbital applications. Currently the system weighs ~9 lbm, uses ~16W and has a parts cost of...

  1. Data acquisition software for the CMS strip tracker

    International Nuclear Information System (INIS)

    Bainbridge, R; Cripps, N; Fulcher, J; Radicci, V; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Gill, K; Mirabito, L; Cole, J; Jesus, A C A; Giassi, A; Giordano, D; Gross, L; Hahn, K; Mersi, S; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m 2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

  2. The mechanical Design of the LHCb Silicon Trigger Tracker

    CERN Document Server

    Gassner, J; Steiner, S

    2010-01-01

    In this note, we describe the design of the Silicon Trigger Tracker for the LHCb experiment. We emphasize on detector module and station design and characterize the layout of all relevant parts and components.

  3. Performance studies of the CMS Strip Tracker before installation

    CERN Document Server

    Adam, Wolfgang; Dragicevic, Marko; Friedl, Markus; Fruhwirth, R; Hansel, S; Hrubec, Josef; Krammer, Manfred; Oberegger, Margit; Pernicka, Manfred; Schmid, Siegfried; Stark, Roland; Steininger, Helmut; Uhl, Dieter; Waltenberger, Wolfgang; Widl, Edmund; Van Mechelen, Pierre; Cardaci, Marco; Beaumont, Willem; de Langhe, Eric; de Wolf, Eddi A; Delmeire, Evelyne; Hashemi, Majid; Bouhali, Othmane; Charaf, Otman; Clerbaux, Barbara; Dewulf, Jean-Paul; Elgammal, Sherif; Hammad, Gregory Habib; de Lentdecker, Gilles; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Devroede, Olivier; De Weirdt, Stijn; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Maes, Joris; Mozer, Matthias Ulrich; Tavernier, Stefaan; Van Lancker, Luc; Van Mulders, Petra; Villella, Ilaria; Wastiels, C; Bonnet, Jean-Luc; Bruno, Giacomo; De Callatay, Bernard; Florins, Benoit; Giammanco, Andrea; Gregoire, Ghislain; Keutgen, Thomas; Kcira, Dorian; Lemaitre, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Quertermont, L; Roberfroid, Vincent; Rouby, Xavier; Teyssier, Daniel; Daubie, Evelyne; Anttila, Erkki; Czellar, Sandor; Engstrom, Pauli; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, Auli; Lampen, Tapio; Linden, Tomas; Luukka, Panja-Riina; Maenpaa, T; Michal, Sebastien; Tuominen, Eija; Tuominiemi, Jorma; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Chierici, Roberto; Contardo, Didier; Della Negra, Rodolphe; Dupasquier, Thierry; Gelin, Georges; Giraud, Noël; Guillot, Gérard; Estre, Nicolas; Haroutunian, Roger; Lumb, Nicholas; Perries, Stephane; Schirra, Florent; Trocme, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Blaes, Reiner; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Hosselet, J; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Olivetto, Christian; Strub, Roger; Van Hove, Pierre; Anagnostou, Georgios; Brauer, Richard; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Raupach, Frank; Schael, Stefan; Schwering, Georg; Sprenger, Daniel; Thomas, Maarten; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flugge, G; Gillissen, C; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Perchalla, Lars; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Buhmann, Peter; Butz, Erik; Flucke, Gero; Hamdorf, Richard Helmut; Hauk, Johannes; Klanner, Robert; Pein, Uwe; Schleper, Peter; Steinbruck, G; Blum, P; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Frey, Martin; Furgeri, Alexander; Hartmann, Frank; Heier, Stefan; Hoffmann, Karl-Heinz; Kaminski, Jochen; Ledermann, Bernhard; Liamsuwan, Thiansin; Muller, S; Muller, Th; Schilling, Frank-Peter; Simonis, Hans-Jürgen; Steck, Pia; Zhukov, Valery; Cariola, P; De Robertis, Giuseppe; Ferorelli, Raffaele; Fiore, Luigi; Preda, M; Sala, Giuliano; Silvestris, Lucia; Tempesta, Paolo; Zito, Giuseppe; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Giordano, Domenico; Maggi, Giorgio; Manna, Norman; My, Salvatore; Selvaggi, Giovanna; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Galanti, Mario; Giudice, Nunzio; Guardone, Nunzio; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Sparti, V; Sutera, Concetta; Tricomi, Alessia; Tuve, Cristina; Brianzi, Mirko; Civinini, Carlo; Maletta, Fernando; Manolescu, Florentina; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Broccolo, B; Ciulli, Vitaliano; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Genta, Chiara; Landi, Gregorio; Lenzi, Piergiulio; Macchiolo, Anna; Magini, Nicolo; Parrini, Giuliano; Scarlini, Enrico; Cerati, Giuseppe Benedetto; Azzi, Patrizia; Bacchetta, Nicola; Candelori, Andrea; Dorigo, Tommaso; Kaminsky, A; Karaevski, S; Khomenkov, Volodymyr; Reznikov, Sergey; Tessaro, Mario; Bisello, Dario; De Mattia, Marco; Giubilato, Piero; Loreti, Maurizio; Mattiazzo, Serena; Nigro, Massimo; Paccagnella, Alessandro; Pantano, Devis; Pozzobon, Nicola; Tosi, Mia; Bilei, Gian Mario; Checcucci, Bruno; Fano, Livio; Servoli, Leonello; Ambroglini, Filippo; Babucci, Ezio; Benedetti, Daniele; Biasini, Maurizio; Caponeri, Benedetta; Covarelli, Roberto; Giorgi, Marco; Lariccia, Paolo; Mantovani, Giancarlo; Marcantonini, Marta; Postolache, Vasile; Santocchia, Attilio; Spiga, Daniele; Bagliesi, Giuseppe; Balestri, Gabriele; Berretta, Luca; Bianucci, S; Boccali, Tommaso; Bosi, Filippo; Bracci, Fabrizio; Castaldi, Rino; Ceccanti, Marco; Cecchi, Roberto; Cerri, Claudio; Cucoanes, Andi Sebastian; Dell'Orso, Roberto; Dobur, Didar; Dutta, Suchandra; Giassi, Alessandro; Giusti, Simone; Kartashov, Dmitry; Kraan, Aafke; Lomtadze, Teimuraz; Lungu, George-Adrian; Magazzu, Guido; Mammini, Paolo; Mariani, Filippo; Martinelli, Giovanni; Moggi, Andrea; Palla, Fabrizio; Palmonari, Francesco; Petragnani, Giulio; Profeti, Alessandro; Raffaelli, Fabrizio; Rizzi, Domenico; Sanguinetti, Giulio; Sarkar, Subir; Sentenac, Daniel; Serban, Alin Titus; Slav, Adrian; Soldani, A; Spagnolo, Paolo; Tenchini, Roberto; Tolaini, Sergio; Venturi, Andrea; Verdini, Piero Giorgio; Vos, Marcel; Zaccarelli, Luciano; Avanzini, Carlo; Basti, Andrea; Benucci, Leonardo; Bocci, Andrea; Cazzola, Ugo; Fiori, Francesco; Linari, Stefano; Massa, Maurizio; Messineo, Alberto; Segneri, Gabriele; Tonelli, Guido; Azzurri, Paolo; Bernardini, Jacopo; Borrello, Laura; Calzolari, Federico; Foa, Lorenzo; Gennai, Simone; Ligabue, Franco; Petrucciani, Giovanni; Rizzi, Andrea; Yang, Zong-Chang; Benotto, Franco; Demaria, Natale; Dumitrache, Floarea; Farano, R; Borgia, Maria Assunta; Castello, Roberto; Costa, Marco; Migliore, Ernesto; Romero, Alessandra; Abbaneo, Duccio; Abbas, M; Ahmed, Ijaz; Akhtar, I; Albert, Eric; Bloch, Christoph; Breuker, Horst; Butt, Shahid Aleem; Buchmuller, Oliver; Cattai, Ariella; Delaere, Christophe; Delattre, Michel; Edera, Laura Maria; Engstrom, Pauli; Eppard, Michael; Gateau, Maryline; Gill, Karl; Giolo-Nicollerat, Anne-Sylvie; Grabit, Robert; Honma, Alan; Huhtinen, Mika; Kloukinas, Kostas; Kortesmaa, Jarmo; Kottelat, Luc-Joseph; Kuronen, Auli; Leonardo, Nuno; Ljuslin, Christer; Mannelli, Marcello; Masetti, Lorenzo; Marchioro, Alessandro; Mersi, Stefano; Michal, Sebastien; Mirabito, Laurent; Muffat-Joly, Jeannine; Onnela, Antti; Paillard, Christian; Pal, Imre; Pernot, Jean-Francois; Petagna, Paolo; Petit, Patrick; Piccut, C; Pioppi, Michele; Postema, Hans; Ranieri, Riccardo; Ricci, Daniel; Rolandi, Gigi; Ronga, Frederic Jean; Sigaud, Christophe; Syed, A; Siegrist, Patrice; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vander Donckt, Muriel; Vasey, François; Alagoz, Enver; Amsler, Claude; Chiochia, Vincenzo; Regenfus, Christian; Robmann, Peter; Rochet, Jacky; Rommerskirchen, Tanja; Schmidt, Alexander; Steiner, Stefan; Wilke, Lotte; Church, Ivan; Cole, Joanne; Coughlan, John A; Gay, Arnaud; Taghavi, S; Tomalin, Ian R; Bainbridge, Robert; Cripps, Nicholas; Fulcher, Jonathan; Hall, Geoffrey; Noy, Matthew; Pesaresi, Mark; Radicci, Valeria; Raymond, David Mark; Sharp, Peter; Stoye, Markus; Wingham, Matthew; Zorba, Osman; Goitom, Israel; Hobson, Peter R; Reid, Ivan; Teodorescu, Liliana; Hanson, Gail; Jeng, Geng-Yuan; Liu, Haidong; Pasztor, Gabriella; Satpathy, Asish; Stringer, Robert; Mangano, Boris; Affolder, K; Affolder, T; Allen, Andrea; Barge, Derek; Burke, Samuel; Callahan, D; Campagnari, Claudio; Crook, A; D'Alfonso, Mariarosaria; Dietch, J; Garberson, Jeffrey; Hale, David; Incandela, H; Incandela, Joe; Jaditz, Stephen; Kalavase, Puneeth; Kreyer, Steven Lawrence; Kyre, Susanne; Lamb, James; Mc Guinness, C; Mills, C; Nguyen, Harold; Nikolic, Milan; Lowette, Steven; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rubinstein, Noah; Sanhueza, S; Shah, Yousaf Syed; Simms, L; Staszak, D; Stoner, J; Stuart, David; Swain, Sanjay Kumar; Vlimant, Jean-Roch; White, Dean; Ulmer, Keith; Wagner, Stephen Robert; Bagby, Linda; Bhat, Pushpalatha C; Burkett, Kevin; Cihangir, Selcuk; Gutsche, Oliver; Jensen, Hans; Johnson, Mark; Luzhetskiy, Nikolay; Mason, David; Miao, Ting; Moccia, Stefano; Noeding, Carsten; Ronzhin, Anatoly; Skup, Ewa; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Yumiceva, Francisco; Zatserklyaniy, Andriy; Zerev, E; Anghel, Ioana Maria; Bazterra, Victor Eduardo; Gerber, Cecilia Elena; Khalatian, S; Shabalina, Elizaveta; Baringer, Philip; Bean, Alice; Chen, Jie; Hinchey, Carl Louis; Martin, Christophe; Moulik, Tania; Robinson, Richard; Gritsan, Andrei; Lae, Chung Khim; Tran, Nhan Viet; Everaerts, Pieter; Hahn, Kristan Allan; Harris, Philip; Nahn, Steve; Rudolph, Matthew; Sung, Kevin; Betchart, Burton; Demina, Regina; Gotra, Yury; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Christofek, Leonard; Hooper, Ryan; Landsberg, Greg; Nguyen, Duong; Narain, Meenakshi; Speer, Thomas; Tsang, Ka Vang

    2009-01-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  4. Proposal for the LHCb outer tracker front-end electronics

    CERN Document Server

    Deppe, H; Feuerstack-Raible, M; Srowig, A; Stange, U; Hommels, B; Sluijk, T

    2001-01-01

    A market survey on available TDCs for reading out the LHCb Outer Tracker has left over only one TDC, which is not optimal for this purpose. Hence, a new readout architecture which is based on a TDC to be developed anew has been defined. This system fits optimal the requirements of the LHCb Outer Tracker and also should be much cheaper. The system and its main issues are described in this paper.

  5. Simulation studies for the ATLAS upgrade Strip tracker

    CERN Document Server

    Wang, Jike; The ATLAS collaboration

    2017-01-01

    ATLAS is making extensive efforts towards preparing a detector upgrade for the High luminosity operations of the LHC (HL-LHC), which will commence operation in ~10 years. The current ATLAS Inner Detector will be replaced by a all-silicon tracker (comprising an inner Pixel tracker and outer Strip tracker). The software currently used for the new silicon tracker is broadly inherited from that used for the LHC Run 1 and 2, but many new developments have been made to better fulfil the future detector and operation requirements. One aspect in particular which will be highlighted is the simulation software for the Strip tracker. The available geometry description software (including the detailed description for all the sensitive elements, the services, etc.) did not allow for accurate modeling of the planned detector design. A range of sensors/layouts for the Strip tracker are being considered and must be studied in detailed simulations in order to assess the performance and ascertain that requirements are met. For...

  6. Software and mathematical support of Kazakhstani star tracker

    Science.gov (United States)

    Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.

    2016-10-01

    Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range

  7. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  8. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  9. Tracker-on-C for cone-beam CT-guided surgery: evaluation of geometric accuracy and clinical applications

    Science.gov (United States)

    Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.

    2012-02-01

    Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C

  10. Design and fabrication of sun tracker

    International Nuclear Information System (INIS)

    Novinrooz, A. J.; Ghasemi, M. R.; Mohati, M.; Sadri, H.

    2003-01-01

    A sun tacker system, consists of two parts (opto-electronic and hydraulic), has been designed and fabricated to be used in solar thermal power plant. In this paper various parts of the system including optical sensors, electronic circuits, computational control and mechanical lever have been explained and the operational mechanism of each one is discussed. The parabolic mirror used in this plant has 400 cm length, 570 cm width and 170 cm focal length. Rays falling to the axis of mirror are reflected and collected at the focal point, while unparallel rays are diverted. To determine the rate of divergence, a three - dimensional equation of radiation path is written. Using a computational program in Cl anguage the error is calculated from 0t o 0 .5 d eg, for modifying the operational error of the optical system. The optical sensors detect the beam deviation from the mirror's principal axis with a precision of 0.1 degree and transfer the necessary corrections to the active mechanical system of the hydraulic type. A three phase electro motor of 0.7 k W power and one thousand revolutions per minute controls the mirror movement

  11. EU Climate Policy Tracker 2011. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, N.; Geurts, F.; Teckenburg, E.; Blok, K.; Becker, D. [Ecofys, Utrecht (Netherlands)

    2011-11-15

    Limiting the rise in the average global temperature to 2C has been the EU goal since 1996, and in December 2010 the UN recognised the need to consider a 1.5C limit. Avoiding overshooting these levels will require massive emissions reductions - in the order of 80-95% for industrialised countries, like those in the EU. The next ten years are crucial in establishing whether society will be able to make this transition, or whether temperature increase limits will be irreversibly missed. Last year, the European Union Climate Policy Tracker (EU CPT) investigated each member state's implementation of policy and legislation, and rated their progress towards a 2050 vision of deep decarbonisation using renewable energy. The uniquely developed rating scheme, modelled on appliance efficiency labels (A-G), gave an indication of how member states were doing compared to a 'low-carbon policy package'. The average score was an 'E', indicating that the level of effort needed to treble, to be on a pace to reach the 2050 vision. However, aggregating best practices across sectors and countries doubled the score - meaning that the tools are already at hand for major improvements across Europe. This report builds on last year's EU CPT by giving an update on action in member states, and an indicative trend in the rating, as well as adding a new section on EU policy. The addition of an EU section is appropriate, with the Commission having produced a roadmap on a low-carbon economy by 2050, a transport white paper, and with another roadmap for 2050 focused on energy anticipated by the end of 2011. This report seeks to answer the question of whether these and other related initiatives are sufficient to help Europe reach its low-carbon goals. When interpreting the results of this report, it is important to understand that the goal underlying the vision here is not the same as the one in the European Commission's 'low-carbon economy' roadmap

  12. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  13. Software alignment of the LHCb Outer Tracker chambers

    Energy Technology Data Exchange (ETDEWEB)

    Deissenroth, Marc

    2010-04-21

    This work presents an alignment algorithm that was developed to precisely determine the positions of the LHCb Outer Tracker detector elements. The algorithm is based on the reconstruction of tracks and exploits that misalignments of the detector change the residual between a measured hit and the reconstructed track. It considers different levels of granularities of the Outer Tracker geometry and fully accounts for correlations of all elements which are imposed by particle trajectories. In extensive tests, simulated shifts and rotations for different levels of the detector granularity have been used as input to the track reconstruction and alignment procedure. With about 260 000 tracks the misalignments are recovered with a statistical precision of O(10 - 100 {mu}m) for the translational degrees of freedom and of O(10{sup -2} - 10{sup -1} mrad) for rotations. A study has been performed to determine the impact of Outer Tracker misalignments on the performance of the track reconstruction algorithms. It shows that the achieved statistical precision does not decrease the track reconstruction performance in a significant way. During the commissioning of the LHCb detector, cosmic ray muon events have been collected. The events have been analysed and used for the first alignment of the 216 Outer Tracker modules. The module positions have been determined within {proportional_to} 90 {mu}m. The developed track based alignment algorithm has demonstrated its reliability and is one of the core algorithms which are used for the precise determination of the positions of the LHCb Outer Tracker elements. (orig.)

  14. Software alignment of the LHCb Outer Tracker chambers

    International Nuclear Information System (INIS)

    Deissenroth, Marc

    2010-01-01

    This work presents an alignment algorithm that was developed to precisely determine the positions of the LHCb Outer Tracker detector elements. The algorithm is based on the reconstruction of tracks and exploits that misalignments of the detector change the residual between a measured hit and the reconstructed track. It considers different levels of granularities of the Outer Tracker geometry and fully accounts for correlations of all elements which are imposed by particle trajectories. In extensive tests, simulated shifts and rotations for different levels of the detector granularity have been used as input to the track reconstruction and alignment procedure. With about 260 000 tracks the misalignments are recovered with a statistical precision of O(10 - 100 μm) for the translational degrees of freedom and of O(10 -2 - 10 -1 mrad) for rotations. A study has been performed to determine the impact of Outer Tracker misalignments on the performance of the track reconstruction algorithms. It shows that the achieved statistical precision does not decrease the track reconstruction performance in a significant way. During the commissioning of the LHCb detector, cosmic ray muon events have been collected. The events have been analysed and used for the first alignment of the 216 Outer Tracker modules. The module positions have been determined within ∝ 90 μm. The developed track based alignment algorithm has demonstrated its reliability and is one of the core algorithms which are used for the precise determination of the positions of the LHCb Outer Tracker elements. (orig.)

  15. Technical Training Seminar: Laser Trackers: the Local Positioning Technology (LPT)

    CERN Document Server

    Davide Vitè

    2005-01-01

    Friday 20 May from 10:00 to 16:00, Training Centre (bldg. 593) Laser Trackers: the Local Positioning Technology (LPT) Simon Moser, Michael Lettau, Achim Lupus, Niklaus Suter, Leica GEOSYSTEMS AG, Switzerland Laser trackers are used at CERN for different applications within the LHC Project. Leica Geosystems AG have been developing during the last four years the revolutionary Local Positioning Technology (LPT). Laser trackers are increasingly used to ensure accuracy of large fabrications, and alignment in the final assembly process. Competing portable Coordinate Measuring Machines (CMM) with articulated arms require a frequent repositioning, known to lead to a loss of accuracy and efficiency. Leica Geosystems developed armless solutions, the T-Probe and T-Scan, for use with its laser trackers. The combination of the tracker technology with photogrammetry is the base of LPT, enabling real time measurements with free hand-held devices, such as the T-Probe and T-Scan. T-Probe and T-Scan overcome the proble...

  16. Advances in RGB and RGBD Generic Object Trackers

    KAUST Repository

    Bibi, Adel

    2016-04-01

    Visual object tracking is a classical and very popular problem in computer vision with a plethora of applications such as vehicle navigation, human computer interface, human motion analysis, surveillance, auto-control systems and many more. Given the initial state of a target in the first frame, the goal of tracking is to predict states of the target over time where the states describe a bounding box covering the target. Despite numerous object tracking methods that have been proposed in recent years [1-4], most of these trackers suffer a degradation in performance mainly because of several challenges that include illumination changes, motion blur, complex motion, out of plane rotation, and partial or full occlusion, while occlusion is usually the most contributing factor in degrading the majority of trackers, if not all of them. This thesis is devoted to the advancement of generic object trackers tackling different challenges through different proposed methods. The work presented propose four new state-of-the-art trackers. One of which is 3D based tracker in a particle filter framework where both synchronization and registration of RGB and depth streams are adjusted automatically, and three works in correlation filters that achieve state-of-the-art performance in terms of accuracy while maintaining reasonable speeds.

  17. The CMS Tracker upgrade for HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2017-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 $\\times$ $10^{34} $cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running beyond design specifications, and CMS Phase1 Pixel Detector will not be able to survive HL-LHC radiation conditions and CMS will need completely new devices, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Outer Tracker should have also trigger capabilities. To achieve such goals, R$\\&$D activities are ongoing to explore options both for the Outer Tracker, and for the pixel Inner Tracker. Solutions are being developed that would allow including tracking information at Level-1. The design choices for the Tracker upgrades are discussed along with some highlights...

  18. Application Of Expert System Techniques To A Visual Tracker

    Science.gov (United States)

    Myler, Harley R.; Thompson, Wiley E.; Flachs, Gerald M.

    1985-04-01

    A structure for visual tracking system is presented which relies on information developed from previous tracking scenarios stored in a knowledge base to enhance tracking performance. The system is comprised of a centroid tracker front end which supplies segmented image features to a data reduction algorithm which holds the reduced data in a temporary data base relation. This relation is then classified vio two separate modes, learn and track. Under learn mode, an external teacher-irector operator provides identification and weighting cues for membership in a long-term storage relation within a knowledge base. Track mode operates autonomously from the learn mode where the system determines feature validity by applying fuzzy set membership criteria to previously stored track information in the database. Results determined from the classification generate tracker directives which either enhance or permit current tracking to continue or cause the tracker to search for alternate targets based upon analysis of a global target tracking list. The classification algorithm is based on correlative analysis of the tracker's segmented output presentation after low pass filtering derives lower order harmonics of the feature. The fuzzy set membership criteria is based on size, rotation, Irame location, and past history of the feature. The first three factors are lin-ear operations on the spectra, while the last is generated as a context relation in the knowledge base. The context relation interlinks data between features to facilitate tracker operation during feature occlusion or presence of countermeasures.

  19. The CMS Tracker Data Quality Monitoring Expert GUI

    CERN Document Server

    Palmonari, Francesco

    2009-01-01

    The CMS Tracker data quality monitoring (DQM) is a demanding task due the detector's high granularity. It consists of about 15148 strip and 1440 pixel detector modules. About 350,000 histograms are defined and filled accessing information from different stages of data reconstruction to check the data quality. It is impossible to manage such a large number of histograms by shift personnel and experts. A tracker specific Graphical User Interface (GUI) is developed to simplify the navigation and to spot detector problems efficiently. The GUI is web-based and implemented with Ajax technology. We will describe the framework and the specific features of the expert GUI developed for the CMS Tracker DQM system.

  20. 3D Silicon Tracker for AFP - From Qualification to Operation

    CERN Document Server

    F\\"orster, Fabian Alexander; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) experiment is a detector located ~210 m away from the ATLAS interaction point on both sides. Its aim is to tag and measure forward protons produced in diffractive events. The detector consists of a 3D silicon pixel tracker, to measure the proton trajectory, as well as a time-of-flight system to suppress pileup-related backgrounds. Each tracker and the ToF system are placed inside a Roman Pot, allowing operation in the vicinity of the LHC beam, up to 2-3 mm. AFP was installed in 2 stages during the LHC technical shutdowns of 2015-2016 and 2016-2017. This presentation will give an overview of the silicon sensor qualification as well as the production, assembly and quality assurance of the tracker modules. The installation, commissioning and operation of the full detector will also be discussed.

  1. Penerapan Teknologi GPS Tracker Untuk Identifikasi Kondisi Traffik Jalan Raya

    Directory of Open Access Journals (Sweden)

    IM. O. Widyantara

    2015-06-01

    Full Text Available Real time tracking system technology has been made possible by integrating three technologies, namely global positioning system (GPS, database technologies such as geographic information system (GIS and mobile telecommunications technologies such as general packet radio service (GPRS. This paper has proposed a vehicle tracking mechanism based on GPS tracker to build a real-time traffic information system. A GPS server is built to process data of position and speed of the vehicle for further processed into vehicle traffic information. The Server and GPS tracker is designed to communicate using GPRS services in real time. Furthermore, the server processes the data from the GPS tracker into traffic information such as traffic jam, dense, medium and smoothly. Test results showed that the GPS server is able to visualize the real position of the vehicle and is able to decide the category of traffic information in real time.

  2. Charge determination of nuclei with the AMS-02 silicon tracker

    CERN Document Server

    Alpat, B; Azzarello, P; Battiston, R; Bene, P; Bertucci, B; Bizzaglia, S; Bizzarri, M; Blasko, S; Bourquin, M; Bouvier, P; Burger, W J; Capell, M; Cecchi, C; Chang, Y H; Cortina, E; Dinu, N; Esposito, G; Fiandrini, E; Haas, D; Hakobyan, H; Ionica, M; Ionica, R; Kounine, A; Koutsenko, V F; Lebedev, A; Lechanoine-Leluc, C; Lin, C H; Masciocchi, F; Menichelli, M; Natale, S; Paniccia, M; Papi, A; Pauluzzi, M; Perrin, E; Pohl, M; Rapin, D; Richeux, J P; Wallraff, W; Willenbrock, M; Zuccon, P

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron group. The longest ladder, 72 multiplied by 496mm2, verified in the tests contains 12 sensors. Good charge resolution is observed up to iron.

  3. Charge determination of nuclei with the AMS-02 silicon tracker

    OpenAIRE

    Alpat, B.; G. Ambrosi; Azzarello, P.; Battiston, R.; Bene, P.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Blasko, S.; Bourquin, M.; Cortina Gil, Eduardo

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron ...

  4. TRACKER INSERTED INTO YB0 & HEAVY LOWERING COMPLETED

    CERN Multimedia

          The Tracker travelled very smoothly from Meyrin to Point 5 during the early hours of December 13th. Lowered later the same day, insertion was completed 18th December. The intense campaign of Tracker connections, involving 980 pipes, 2330 cables and 3623 fibre ribbons, has since begun and is making good progress. The final large element of CMS YE-1 was lowered gently into the cavern on January 22nd. This marks the end of fourteen months of heavy lowering operations.  

  5. Design of a cost-effective laser spot tracker

    Science.gov (United States)

    Artan, Göktuǧ Gencehan; Sari, Hüseyin

    2017-05-01

    One of the most important aspects of guided systems is detection. The most convenient detection in the sense of precision can be achieved with a laser spot tracker. This study deals with a military grade, high performance and cost-effective laser spot tracker for a guided system. The aim is to develop a high field of view system that will detect a laser spot from a distance of 3 kilometers in which the target is designated from 3 kilometers with a laser. The study basically consists of the system design, modeling, producing and the conducting performance tests of the whole system.

  6. Latency and distortion of electromagnetic trackers for augmented reality systems

    CERN Document Server

    Himberg, Henry

    2014-01-01

    Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration

  7. Retroreflector field tracker. [noncontact optical position sensor for space application

    Science.gov (United States)

    Wargocki, F. E.; Ray, A. J.; Hall, G. E.

    1984-01-01

    An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.

  8. Hybrid Design, Procurement and Testing for the LHCb Silicon Tracker

    CERN Document Server

    Bay, A; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, MT; Van Hunen, J J; Vervink, K; Vollhardt, A; Agari, M; Bauer, C; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Smale, N J; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Lehner, F; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Voss, H; Wenger, A

    2005-01-01

    The Silicon Tracker of the LHCb experiment consists of four silicon detector stations positioned along the beam line of the experiment. The detector modules of each station are constructed from wide pitch silicon microstrip sensors. Located at the module's end, a polyimide hybrid is housing the front-end electronics. The assembly of the more than 600 hybrids has been outsourced to industry. We will report on the design and production status of the hybrids for the LHCb Silicon Tracker and describe the quality assurance tests. Particular emphasis is laid on the vendor qualifying and its impact on our hybrid design that we experienced during the prototyping phase.

  9. Detector production for the R3B Si-tracker

    Energy Technology Data Exchange (ETDEWEB)

    Borri, M., E-mail: marcello.borri@liverpool.ac.uk [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lemmon, R. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Thornhill, J.; Bate, R.; Chartier, M. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Clague, N. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Herzberg, R.-D. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Labiche, M. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Lindsay, S.; Nolan, P.; Pearce, F.; Powell, W.; Wells, D. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-11-11

    R3B is a fixed target experiment which will study reactions with relativistic radioactive beams at FAIR. Its Si-tracker will surround the target volume and it will detect light charged-particles like protons. The detector technology in use consists of double-sided silicon strip sensors wire bonded to the custom made R3B-ASIC. The tracker allows for a maximum of two outer layers and one inner layer. This paper reports on the production of detectors necessary to build the minimum tracking configuration: one inner layer and one outer layer.

  10. Semiconductor tracker final integration and commissioning in the ATLAS detector

    International Nuclear Information System (INIS)

    Robichaud-Veronneau, Andree

    2008-01-01

    The SemiConductor Tracker (SCT) is part of the Inner Detector of the ATLAS experiment at the LHC. It is located between the Pixel detector and the Transition Radiation Tracker (TRT). During 2006 and 2007, the SCT was installed in its final position inside the ATLAS detector. The SCT barrel was lowered in 2006 and was tested for connectivity and noise. Common tests with the TRT to look for pick-up noise and grounding issues were also performed. The SCT end-caps were installed during summer 2007 and will undergo similar checks. The results from the various tests done before and after installation will be presented here.

  11. Characterization of the Ecosole HCPV tracker and single module inverter

    Science.gov (United States)

    Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio

    2015-09-01

    BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.

  12. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  13. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  14. Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kravchenko, Anton; Kremer, Jakub Andrzej; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sopczak, Andre; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2017-05-03

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS inner detector are described in this paper for different data-taking conditions in proton--proton, proton--lead and lead--lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected for different data-taking conditions in proton--proton, proton--lead and lead--lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected during the first period of LHC operation (Run 1) and is compared with Monte Carlo simulations. The performance of the TRT, operating with two different gas mixtures (xenon-based and argon-based) and its dependence on the TRT occupancy is presented. These studies show that the tracking performance of the TRT is similar for the two gas mixtures and that a significant contribution to the particle momentum resolution is made by the TRT up to high particle densities.

  15. SCIAMACHY WFM-DOAS XCO2: comparison with CarbonTracker XCO2 focusing on aerosols and thin clouds

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-08-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS (weighting function modified differential optical absorption spectroscopy algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1 using CarbonTracker version 2010. We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%. Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa. Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with

  16. Wedge silicon detectors for the inner trackering system of CMS

    International Nuclear Information System (INIS)

    Catacchini, E.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Meschini, M.; Parrini, G.; Pieri, M.; Wheadon, R.

    1997-01-01

    One ''wedge'' double sided silicon detector prototype for the CMS forward inner tracker has been tested both in laboratory and on a high energy particle beam. The results obtained indicate the most reliable solutions for the strip geometry of the junction side. Three different designs of ''wedge'' double sided detectors with different solutions for the ohmic side strip geometry are presented. (orig.)

  17. The LHCb Inner Tracker Module Production Steps and Quality Assurance

    CERN Document Server

    Bettler, M O; Esperante, D; Fauland, P; van Hunen, J; Knecht, M; Koestner, S; Tran, M T; Perez Trigo, E; Vazquez, P; Voss, H

    2010-01-01

    This note describes the various production step for the LHCb Inner Tracker silicon modules. We quickly sketch where the various items are produced and mention their acceptance criteria where applicable. A detail description is given of the various production and testing steps of the silicon detector modules in Lausanne and at CERN.

  18. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  19. Radiation hard silicon sensors for the CMS tracker upgrade

    CERN Document Server

    Pohlsen, Thomas

    2013-01-01

    At an instantaneous luminosity of $5 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of $3\\,000$ fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation dose of the tracking systems will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements for detectors for the HL-LHC. Focussing on the upgrade of the outer tracker region, pad sensors as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for the positions of detector layers in the future tracker. Different proton energies were used for irr...

  20. The CMS Outer Tracker for HL-LHC

    CERN Document Server

    Dierlamm, Alexander Hermann

    2018-01-01

    The LHC is planning an upgrade program, which will bring the luminosity to about $5-7\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with a goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker is already running beyond design specifications and will not be able to cope with the HL-LHC radiation conditions. CMS will need a completely new Tracker in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Outer Tracker system is designed to provide robust tracking as well as Level-1 trigger capabilities using closely spaced modules composed of silicon macro-pixel and/or strip sensors. Research and development activities are ongoing to explore options and develop module components and designs for the HL-LHC environment. The design choices for the CMS Outer Tracker Upgrade are discussed along with some highlig...

  1. Upgrading the ATLAS barrel tracker for the super-LHC

    International Nuclear Information System (INIS)

    Bates, Richard L.

    2009-01-01

    It has been proposed to increase the luminosity of the large hadron collider (LHC) at CERN by an order of magnitude, with the upgraded machine dubbed super-LHC. The ATLAS experiment will require a new tracker for this high-luminosity operation due to radiation damage and event density. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all-silicon tracker is being designed. The new strip detector will use significantly shorter strips than the current silicon tracker in order to minimize the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation-hard silicon detectors is required. An R and D program is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges facing the sensors and the cooling and mechanical support will be discussed. A possible tracker layout will be described.

  2. Operation and performance of the ATLAS Semiconductor Tracker

    CERN Document Server

    Barlow, N; The ATLAS collaboration

    2013-01-01

    The Semiconductor Tracker (SCT) is a crucial component of the ATLAS detector at the Large Hadron Collider at CERN. It is a silicon microstrip device, design to measure the trajectories of charged particles produced in pp collisions. In this talk I will briefly describe the design of the SCT, and various aspects of its performance during LHC Run 1.

  3. The CDF II eXtremely fast tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  4. Measuring Single Event Upsets in the ATLAS Inner Tracker

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    When the HL-LHC starts collecting data, the electronics inside will be subject to massive amounts of radiation. As a result, single event upsets could pose a threat to the ATLAS readout chain. The ABC130, a prototype front-end ASIC for the ATLAS inner tracker, must be tested for its susceptibility to single event upsets.

  5. Development and Testing of the AMEGO Silicon Tracker System

    Science.gov (United States)

    Griffin, Sean; Amego Team

    2018-01-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe-class mission in consideration for the 2020 decadal review designed to operate at energies from ˜ 200 keV to > 10 GeV. Operating a detector in this energy regime is challenging due to the crossover in the interaction cross-section for Compton scattering and pair production. AMEGO is made of four major subsystems: a plastic anticoincidence detector for rejecting cosmic-ray events, a silicon tracker for measuring the energies of Compton scattered electrons and pair-production products, a CZT calorimeter for measuring the energy and location of Compton scattered photons, and a CsI calorimeter for measuring the energy of the pair-production products at high energies. The tracker comprises layers of dual-sided silicon strip detectors which provide energy and localization information for Compton scattering and pair-production events. A prototype tracker system is under development at GSFC; in this contribution we provide details on the verification, packaging, and testing of the prototype tracker, as well as present plans for the development of the front-end electronics, beam tests, and a balloon flight.

  6. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    Science.gov (United States)

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  7. An investigation of frequency scanning interferometery for the alignment of the ATLAS semiconductor tracker

    CERN Document Server

    Coe, P A

    2001-01-01

    The relative alignment of the silicon detector modules of the ATLAS semiconductor tracker will need remote monitoring during operation, within a high radiation environment. A geodetic grid of distance measurement fibre-coupled interferometers will monitor changes in the shape of the support structure. Eight hundred fibre-coupled grid line interferometers (GLIs) will be compared simultaneously to a stable, evacuated reference interferometer using Frequency Scanning Interferometry (FSI). The GLIs, (from 70 mm to 1400mm long, with pW level return signals) must be measured to a precision of 1 micron, to reconstruct the grid shape, in three dimensions, to a precision of 10 microns. In this work two important limitations were overcome: 1. Inflated errors due to relative interferometer drift were significantly reduced using two lasers scanned in opposite directions. 2. The fine tuning range was effectively extended by linking the phase information in two 30 GHz fine tuning subscans, separated by a 3.5 THz coarse tun...

  8. Implementation of PLL and FLL trackers for signals with high harmonic content and low sampling frequency

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Iov, Florin; Sera, Dezso

    2014-01-01

    The accurate tracking of phase, frequency, and amplitude of different frequency components from a measured signal is an essential requirement for many digitally controlled equipment. The accurate and robust tracking of a frequency component from a complex signal was successfully applied for example...... in: grid connected inverters, sensorless motor control for rotor position estimation, grid voltage monitoring for ac-dc converters etc. Usually, the design of such trackers is done in continuous time domain. The discretization introduces errors which change the performance, especially when the input...... signal is rich in harmonics and the sampling frequency is close to the tracked frequency component. In this paper different discretization methods and implementation issues, such as Tustin, Backward-Forward Euler, are discussed and compared. A special case is analyzed, when the input signal is reach...

  9. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  10. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  11. iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker

    Science.gov (United States)

    Mayberry, Addison; Hu, Pan; Marlin, Benjamin; Salthouse, Christopher; Ganesan, Deepak

    2015-01-01

    Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees. PMID:26539565

  12. iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker.

    Science.gov (United States)

    Mayberry, Addison; Hu, Pan; Marlin, Benjamin; Salthouse, Christopher; Ganesan, Deepak

    2014-06-01

    Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees.

  13. Fine pitch and low material readout bus in the Silicon Pixel Vertex Tracker for the PHENIX Vertex Tracker upgrade

    International Nuclear Information System (INIS)

    Fujiwara, Kohei

    2010-01-01

    The construction of the Silicon Pixel Detector is starting in spring 2009 as project of the RHIC-PHENIX Silicon Vertex Tracker (VTX) upgrade at the Brookhaven National Laboratory. For the construction, we have developed a fine pitch and low material readout bus as the backbone parts of the VTX. In this article, we report the development and production of the readout bus.

  14. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com [Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada)

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An

  15. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    International Nuclear Information System (INIS)

    Luo, Xiongbiao

    2014-01-01

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min −1 . The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An

  16. Medication errors in pediatric inpatients

    DEFF Research Database (Denmark)

    Rishoej, Rikke Mie; Almarsdóttir, Anna Birna; Christesen, Henrik Thybo

    2017-01-01

    The aim was to describe medication errors (MEs) in hospitalized children reported to the national mandatory reporting and learning system, the Danish Patient Safety Database (DPSD). MEs were extracted from DPSD from the 5-year period of 2010–2014. We included reports from public hospitals on pati...... safety in pediatric inpatients.(Table presented.)...

  17. Learning from prescribing errors

    OpenAIRE

    Dean, B

    2002-01-01

    

 The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...

  18. Detailed Performance of the Outer Tracker at LHCb

    CERN Document Server

    Tuning, N

    2014-01-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5x6m2 with 12 double layers of straw tubes. Based on data of the first LHC running period from 2010 to 2012, the performance in terms of the single hit resolution and efficiency are presented. Details on the ionization length and subtle effects regarding signal reflections and the subsequent time-walk correction are given. The efficiency to detect a hit in the central half of the straw is estimated to be 99.2%, and the position resolution is determined to be approximately 200 um, depending on the detailed implementation of the internal alignment of individual detector modules. The Outer Tracker received a dose in the hottest region corresponding to 0.12 C/cm, and no signs of gain deterioration or other ageing effects are observed.

  19. The KLOE-2 Inner Tracker: Detector commissioning and operation

    Energy Technology Data Exchange (ETDEWEB)

    Balla, A.; Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Ciambrone, P. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Czerwinski, E. [Jagiellonian University, Institute of Physics, Cracow (Poland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Cicco, A. [Dipartimento di Matematica e Fisica dell' Università di “Roma Tre”, Roma (Italy); Di Domenici, D.; Felici, G.; Morello, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy)

    2017-02-11

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system including an Inner Tracker built with the cylindrical GEM technology, to operate together with the Drift Chamber improving the apparatus tracking performance. The Inner Tracker is composed of four cylindrical triple-GEM, each provided with an X–V strips-pads stereo readout and equipped with the GASTONE ASIC developed inside the KLOE-2 collaboration. Although GEM detectors are already used in high energy physics experiment, this device is considered a frontier detector due to its cylindrical geometry: KLOE-2 is the first experiment to use this novel solution. The results of the detector commissioning, detection efficiency evaluation, calibration studies and alignment, both with dedicated cosmic-ray muon and Bhabha scattering events, will be reported.

  20. High voltage multiplexing for the ATLAS Tracker Upgrade

    International Nuclear Information System (INIS)

    Villani, E G; Phillips, P; Matheson, J; Lynn, D; Hommels, L B A; Gregor, I; Bessner, M; Tackmann, K; Newcomer, F M; Spencer, E; Greenall, A

    2014-01-01

    The increased luminosity of the HL-LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation, stemming from the otherwise too high occupancy. Among the many technological challenges facing the ATLAS Tracker Upgrade there is more an efficient power distribution and HV biasing of the sensors. The solution adopted in the current ATLAS detector uses one HV conductor for each sensor, which makes it easy to disable malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. A number of approaches, including the use of the same HV line to bias several sensors and suitable HV switches, along with their control circuitry, are currently being investigated for this purpose. The proposed solutions along with latest test results and measurements will be described

  1. Tracker: Image-Processing and Object-Tracking System Developed

    Science.gov (United States)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in

  2. LHCb: Installation and operation of the LHCb Silicon Tracker detector

    CERN Multimedia

    Esperante Pereira, D

    2009-01-01

    The LHCb experiment has been designed to perform high-precision measurements of CP violation and rare decays of B hadrons. The construction and installation phases of the Silicon Tracker (ST) of the experiment were completed by early summer 2008. The LHCb Silicon Tracker sums up to a total sensitive area of about 12 m^2 using silicon micro-strip technology and withstands charged particle fluxes of up to 5 x 10^5cm^−2s^−1. We will report on the preparation of the detectors for the first LHC beams. Selected results from the commissioning in LHCb are shown, including the first beam-related events accumulated during LHC injection tests in September 2008. Lessons are drawn from the experience gathered during the installation and commissioning.

  3. Designed for Learning: use of Skill Tracker in Veterinary education

    Directory of Open Access Journals (Sweden)

    Phil Lionel Ramsey

    2016-08-01

    Full Text Available Although learning is a natural process, many of the systems designed to support education do not contribute positively to the experience of students. This paper reports on the design of Skill Tracker, a software system developed at Massey University to manage processes around student skill acquisition, and initially applied to the university’s Veterinary Science program. The software has been designed around guiding ideas relevant to learning in a professional context: the “progress principle” and Communities of Practice. The paper outlines how these ideas have shaped the design of the software. While Skill Tracker enables the university to collect data that informs the management of the Veterinary School, the underlying purpose of the system is to enhance the experience of students. In order to do achieve this goal it is necessary to understand a key dilemma in any educational innovation: the need to integrate technology and pedagogy.

  4. Commissioning and Performance of the LHCb Silicon Tracker

    CERN Multimedia

    van Tilburg, J; Buechler, A; Bursche , A; Chiapolini, N; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Staumann, U; Tobin, M; Vollhardt, A; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Fave, V; Frei, R; Gauvin, N; Gonzalez, R; Haefeli, G; Hicheur, A; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Perrin, A; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Adeva, B; Esperante, D; Fungueiriño Pazos, J; Gallas, A; Pazos-Alvarez, A; Pérez-Trigo, E; Pló Casasús, M; Rogríguez Pérez, P; Saborido, J; Vázquez, P; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The LHCb Silicon Tracker is a silicon micro-strip detector with a sensitive area of 12 m$^2$ and a total of 272k readout channels. The Silicon Tracker consists of two parts that use different detector modules. The detector installation was completed by early summer 2008 and the commissioning without beam has reached its finals stage, successfully overcoming most of the encountered problems. Currently, the detector has more than 99% of the channels fully functioning. Commissioning with particles has started using beam-induced events from the LHC injection tests in 2008 and 2009. These events allowed initial studies of the detector performance. Especially, the detector modules could be aligned with an accuracy of about 20 $\\mu$m. Furthermore, with the first beam collisions that took place end of 2009 we could further study the performance and improve the alignment of the detector.

  5. Operation and performance of the ATLAS semiconductor tracker

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernabéu, José; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; Garcia Argos, Carlos; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodrick, Maurice; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivarsson, Jenny; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joseph, John; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubik, Petr; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pieron, Jacek Piotr; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Rick; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sopko, Bruno; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warren, Matthew; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

  6. Data quality monitoring of the CMS Silicon Strip Tracker detector

    International Nuclear Information System (INIS)

    Benucci, L.

    2010-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. In this contribution, the DQM system for the Silicon Strip Tracker will be introduced. The set of elements to assess the status of detector will be mentioned, along with the way to identify problems and trace them to specific tracker elements. Monitoring tools, user interfaces and automated software will be briefly described. The system was used during extensive cosmic data taking of CMS in Autumn 2008, where it demonstrated to have a flexible and robust implementation and has been essential to improve the understanding of the detector. CMS Collaboration believes that this tool is now mature to face the forthcoming data-taking era.

  7. A Novel Solar Tracker Based on Omnidirectional Computer Vision

    Directory of Open Access Journals (Sweden)

    Zakaria El Kadmiri

    2015-01-01

    Full Text Available This paper presents a novel solar tracker system based on omnidirectional vision technology. The analysis of acquired images with a catadioptric camera allows extracting accurate information about the sun position toward both elevation and azimuth. The main advantages of this system are its wide field of tracking of 360° horizontally and 200° vertically. The system has the ability to track the sun in real time independently of the spatiotemporal coordinates of the site. The extracted information is used to control the two DC motors of the dual-axis mechanism to achieve the optimal orientation of the photovoltaic panels with the aim of increasing the power generation. Several experimental studies have been conducted and the obtained results confirm the power generation efficiency of the proposed solar tracker.

  8. The iMPACT project tracker and calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Mattiazzo, S., E-mail: serena.mattiazzo@pd.infn.it [Dipartimento di Ingegneria dell' Informazione, Università di Padova, Padova (Italy); Bisello, D. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Giubilato, P. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); CERN, Geneve (Switzerland); Pantano, D.; Pozzobon, N. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Snoeys, W. [CERN, Geneve (Switzerland)

    2017-02-11

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. While traditional X-ray Computed Tomography (xCT) fails in providing 3D images with the precision required for hadrons treatment guidance, Proton Computer Tomography (pCT) scanners, currently in their R&D phase, can. A pCT scanner consists of a tracker system, to track protons, and of a calorimeter, to measure their residual energy. In this paper we will present the iMPACT project, which foresees a novel proton tracking detector with higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. The tracker will be matched to a fast, highly segmented proton range calorimeter.

  9. The silicon microstrip sensors of the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS

  10. The ATLAS semi-conductor tracker operation and performance

    International Nuclear Information System (INIS)

    Robinson, D.

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been used to exploit fully the physics potential of the LHC since the first proton–proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed. -- Highlights: ► The operation and performance of the ATLAS Semi-Conductor Tracker (SCT) is reviewed. ► More than 99% of the SCT strips have remained operational in all data taking periods so far. ► Tracking performance indicators have met or exceeded design specifications. ► Radiation damage effects match closely expectations from delivered fluence.

  11. SED16 autonomous star tracker night sky testing

    Science.gov (United States)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  12. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  13. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  14. In Orbit Performance of a Fully Autonomous Star Tracker

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The Department of Automation at DTU has developed the Advanced Stellar Compass (ASC), a fully autonomous star tracker, for use as high precision attitude reference onboard spacecrafts. The ASC is composed of a CCD-based camera and a powerful microprocessor containing star catalogue, image......-analysis software and a search engine. The unit autonomously performs all tasks necessary to calculate the inertial attitude from a star image. To allow for flexible attitude manoeuvres, the ASC can, simultaneously, drive from one to four cameras, efficiently removing dropouts from, e.g., sun blinding of one camera......, it is difficult to test and verify the true robustness and accuracy of a star tracker on ground. This is caused by the fact that only real-sky tests offer high fidelity stimulation of the sensor, while the atmosphere instabilities result in a dominant noise source intrinsically limiting the achievable accuracy...

  15. Integration and test of the ATLAS Semiconductor Tracker

    CERN Document Server

    Pernegger, H

    2007-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment and is one of the major new silicon detector systems for LHC. The paper summarizes the system integration of the SCT from individual components to the completed tracker barrel and endcaps ready for installation in the pit. Particular attention will be given to the test results obtained during the different integration steps: from single barrels and disks to the final tests inside the ID before installation in the pit. The tests provided us with operational experience for a significant fraction of the full detector system and showed the very good performance of the final assembled detector.

  16. Embolization of brain arteriovenous malformations using tracker catheter

    International Nuclear Information System (INIS)

    Kim, Sun Yong; Son, Mi Young; Jang, Jae Chun; Hwang, Mi Soo; Park, Bok Hwan

    1990-01-01

    With the recent advance in micro catheters, steerable guide wires, balloons, embolic materials and digital subtraction angiography (DSA), as well as technical refinements in endovascular surgery, there has been a revolution in therapeutic strategies for cerebral arteriovenous malformations (AVMs). We have performed super selective angiography and embolization with Tracker micro catheter about 12 cases of brain AVMs for therapeutic and preoperative aims. This micro catheter and guide wire provided high selectivity of feeding artery, greater maneuverability and useful for deliver various embolus materials

  17. Microprocessor Controlled Maximum Power Point Tracker for Photovoltaic Application

    International Nuclear Information System (INIS)

    Jiya, J. D.; Tahirou, G.

    2002-01-01

    This paper presents a microprocessor controlled maximum power point tracker for photovoltaic module. Input current and voltage are measured and multiplied within the microprocessor, which contains an algorithm to seek the maximum power point. The duly cycle of the DC-DC converter, at which the maximum power occurs is obtained, noted and adjusted. The microprocessor constantly seeks for improvement of obtained power by varying the duty cycle

  18. A new silicon tracker for proton imaging and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.T., E-mail: jtaylor@hep.ph.liv.ac.uk [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Waltham, C. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Price, T. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Allinson, N.M. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Allport, P.P. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Casse, G.L. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Kacperek, A. [Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral CH63 4JY (United Kingdom); Manger, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Smith, N.A.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-09-21

    For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction around the world today. The Proton Radiotherapy, Verification and Dosimetry Applications (PRaVDA) consortium are developing instrumentation for particle therapy based upon technology from high-energy physics. The characteristics of a new silicon micro-strip tracker for particle therapy will be presented. The array uses specifically designed, large area sensors with technology choices that follow closely those taken for the ATLAS experiment at the HL-LHC. These detectors will be arranged into four units each with three layers in an x–u–v configuration to be suitable for fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of tracing the path of ~200 MeV protons entering and exiting a patient allowing a new mode of imaging known as proton computed tomography (pCT). This will aid the accurate delivery of treatment doses and in addition, the tracker will also be used to monitor the beam profile and total dose delivered during the high fluences used for treatment. We present here details of the design, construction and assembly of one of the four units that will make up the complete tracker along with its characterisation using radiation tests carried out using a {sup 90}Sr source in the laboratory and a 60 MeV proton beam at the Clatterbridge Cancer Centre.

  19. Integrated CMOS sensor technologies for the CLIC tracker

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2017-01-01

    Integrated technologies are attractive candidates for an all silicon tracker at the proposed future multi-TeV linear e+e- collider CLIC. In this context CMOS circuitry on a high resistivity epitaxial layer has been studied using the ALICE Investigator test-chip. Test-beam campaigns have been performed to study the Investigator performance and a Technology Computer Aided Design based simulation chain has been developed to further explore the sensor technology.

  20. A Data Formatter for the ATLAS Fast Tracker

    CERN Document Server

    Olsen, J; The ATLAS collaboration; Liu, Ted; Okumura, Y; Penning, B

    2012-01-01

    The Fast TracKer (FTK) is an upgrade to the ATLAS level-2 trigger. The FTK system will reconstruct tracks using data from the inner Pixel and SCT silicon detector modules at trigger rates up to 100 kHz. We present an overview of the Data Formatter system, which is designed to remap, share and reformat the Pixel and SCT module data to match the geometry of the FTK trigger towers.

  1. Tracker Mindset for Explosive Device Emplacement Indicator Detection

    Science.gov (United States)

    2014-09-01

    good impressions, though due to the coarseness of the sand particles some spoor yielded less crisp edges than would occur in finer soils. The pit...where conditions such as ambient light and soil moisture were confounds that varied over the course of the day. Given the very applied nature of...where best to intercept the trail, etc. To be a good tracker the officer insists that the person must love the job. If the person has no love for the

  2. Clementine Star Tracker Stellar Compass: Final report part 1

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R.E.; Kordas, J.F.; Lewis, I.T. [and others

    1995-07-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. Two star stracker stellar compasses (star tracker camera + stellar compass software) were included on the spacecraft, serving a primary function of providing angle updates to the guidance and navigation system. These cameras served a secondary function by providing a wide field of view imaging capability for lunar horizon glow and other dark-side imaging data. This 290 g camera using a 576 x 384 focal plane array and a 17 mm entrance pupil, detected and centroided stars as dim and dimmer than 4.5 m{sub v}, providing rms pointing accuracy of better than 100 {mu}rad pitch and yaw and 450 {mu}rad roll. A description of this light-weight, low power star tracker camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights. Documentation generated during the design, analysis, build, test and characterization of the star tracker cameras are presented. Collectively, this documentation represents a small library of information for this camera, and may be used as a framework for producing copy units by commercial enterprises, and therefore satisfies a Department of Defense and Department of Energy goal to transfer technology to industry. However, the considerable knowledge gained from the experience of the individuals involved in the system trades, design, analysis, production, testing and characterization of the star tracker stellar compass is not contained in this documentation.

  3. Qualification of the next generation of Star Tracker using COTS

    DEFF Research Database (Denmark)

    Guldager, Peter Buch; Aage, Helle Karina

    2005-01-01

    The Star Tracker from ØRSTED•DTU is built by using COTS components (Commercial-Off-The-Shelf) and due to no radiation data exists on COTS components, the EEE components are tested for Radiation effects. The components, which are tested is the one from the same lot, which is going to be used for t...... functional failure; a reliability measure can then be attained even for a small sample size....

  4. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  5. LHCb Silicon Tracker DAQ and DCS Online Systems

    CERN Multimedia

    Buechler, A; Rodriguez, P

    2009-01-01

    The LHCb experiment at the Large Hadron Collider (LHC) at CERN in Geneva Switzerland is specialized on precision measurements of b quark decays. The Silicon Tracker (ST) contributes a crucial part in tracking the particle trajectories and consists of two silicon micro-strip detectors, the Tracker Turicensis upstream of the LHCb magnet and the Inner Tracker downstream. The radiation and the magnetic field represent new challenges for the implementation of a Detector Control System (DCS) and the data acquisition (DAQ). The DAQ has to deal with more than 270K analog readout channels, 2K readout chips and real time DAQ at a rate of 1.1 MHz with data processing at TELL1 level. The TELL1 real time algorithms for clustering thresholds and other computations run on dedicated FPGAs that implement 13K configurable parameters per board, in total 1.17 K parameters for the ST. After data processing the total throughput amounts to about 6.4 Gbytes from an input data rate of around ~337 Gbytes per second. A finite state ma...

  6. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  7. The construction of the ATLAS semi-conductor tracker

    International Nuclear Information System (INIS)

    Jones, Tim

    2006-01-01

    The ATLAS (A Toroidal LHC ApparatuS) experiment at the Large Hadron Collider (LHC) at CERN has been designed to explore physics at the TeV energy scale and will be commissioned in 2007. In the innermost region of the experiment is a charged particle tracker, the Inner Detector of which the Semiconductor Tracker (SCT) is a major component. The SCT comprises a central barrel section enclosed by two endcaps (A and C). The construction of the major components of the ATLAS Semi-conductor tracker (SCT) is now nearing completion. Following a brief description of the design of the SCT, the logistics and organisation of the construction phase of the project are discussed. Central to the delivery of a high quality detector is the testing of large numbers of modules both during assembly and after they are mounted on their final support structures. The results of these tests for endcap C are presented showing that the electrical performance of the 988 modules to be installed in ATLAS is compatible with the specifications required

  8. Upgrades of the CMS Outer Tracker for HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5×1034cm$^{−2}$s$^{−1}$ around 2028, to possibly reach an integrated luminosity of 3000 fb$^{−1}$ in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D; activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D; activities.

  9. The CMS tracker calibration workflow: Experience with cosmic ray data

    International Nuclear Information System (INIS)

    Frosali, Simone

    2010-01-01

    During the second part of 2008 a CMS commissioning was performed with the acquisition of cosmic events in global runs. Cosmic rays detected in the muon chambers were used to trigger the readout of all CMS subdetectors in the general data acquisition system. A total of about 300M of tracks were collected by the CMS Muon Chambers with a 3.8T magnetic field produced by the CMS superconducting solenoid, 6M of which pointing to the tracker region and reconstructed by the Si-Strip Tracker (SST) detectors. Other 1M of cosmic tracks were collected with the magnetic field off. Using the cosmic data available it was possible to validate the performances of the CMS tracker calibration workflows. In this paper the adopted calibration workflow is described. In particular, the three main calibration workflows requested for the low level reconstruction of the SST, i.e. gain calibration, Lorentz angle calibration and bad components identification, are described. The results obtained using cosmic tracks for these three calibration workflows are also presented.

  10. Radiation-hard optoelectronic data transfer for the CMS tracker

    International Nuclear Information System (INIS)

    Troska, J.K.

    1999-01-01

    An introduction to the physics prospects of future experiments at the CERN Large Hadron Collider (LHC) will be given, along with the rather stringent requirements placed on their detectors by the LHC environment. Emphasis will be placed upon the particle tracking detectors, and the particular problem of their readout systems. The novel analogue optical readout scheme chosen by the Compact Muon Solenoid (CMS) experiment at the LHC will provide the basis for the thesis. The reasons for preferring analogue optical data transmission in CMS will be given, leading to a description of a generic optical readout scheme and its components. The particular scheme chosen by CMS makes as wide as possible use of commercially available components. These will be given greatest importance, with descriptions of component operation and characteristics pertinent to successful readout of the CMS tracker within the constraints of the LHC environment. Of particular concern is the effect of the LHC's harsh radiation environment on the operational characteristics of the readout system and its components. Work on radiation effects in components of the CMS tracker optical readout system will be described. This work includes the effects of ionising (gamma photon) and particle (neutron, proton, pion) irradiation on the operational characteristics and reliability of laser diodes, photodiodes, and optical fibres. System integration issues are discussed in the context of the long-term operation of the full CMS tracker readout system under laboratory conditions. It will be shown that system stability can be maintained even under widely varying ambient conditions. (author)

  11. CMS silicon tracker alignment strategy with the Millepede II algorithm

    International Nuclear Information System (INIS)

    Flucke, G; Schleper, P; Steinbrueck, G; Stoye, M

    2008-01-01

    The positions of the silicon modules of the CMS tracker will be known to O(100 μm) from survey measurements, mounting precision and the hardware alignment system. However, in order to fully exploit the capabilities of the tracker, these positions need to be known to a precision of a few μm. Only a track-based alignment procedure can reach this required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously and all correlations between their position parameters taken into account. Different simulated data, such as Z 0 decays and muons originated in air showers were used for the study. Additionally information about the mechanical structure of the tracker, and initial position uncertainties have been used as input for the alignment procedure. A proof of concept of this alignment strategy is demonstrated using simulated data

  12. Monitoring radiation damage in the LHCb Silicon Tracker

    CERN Multimedia

    Graverini, Elena

    2018-01-01

    The purpose of LHCb is to search for indirect evidence of new physics in decays of heavy hadrons. The LHCb detector is a single-arm forward spectrometer with precise silicon-strip detectors in the regions with highest particle occupancies. The non-uniform exposure of the LHCb sensors makes it an ideal laboratory to study radiation damage effects in silicon detectors. The LHCb Silicon Tracker is composed of an upstream tracker, the TT, and of the inner part of the downstream tracker (IT). Dedicated scans are regularly taken, which allow a precise measurement of the charge collection efficiency (CCE) and the calibration of the operational voltages. The measured evolution of the effective depletion voltage $V_{depl}$ is shown, and compared with the Hamburg model prediction. The magnitudes of the sensor leakage current are also analysed and compared to their expected evolution according to phenomenological models. Our results prove that both the TT and the IT will withstand normal operation until the end of the L...

  13. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  14. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  15. Learning from Errors

    OpenAIRE

    Martínez-Legaz, Juan Enrique; Soubeyran, Antoine

    2003-01-01

    We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.

  16. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  17. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector.

    Science.gov (United States)

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-03-01

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  18. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-01-01

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  19. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  20. Characterization of different options of trackers in OPERA detector

    International Nuclear Information System (INIS)

    Moret, Guillaume

    2002-01-01

    Neutrinos were postulated by Pauli during the thirties. These spin-half and massless particles helped to solve the β decay problems. Their study started in the fifties and work is still going on nowadays. This study was lengthy due the difficulty to detect neutrinos and also to a 'strange' phenomenon: we always detect less neutrinos than expected for solar and atmospheric neutrinos. This phenomenon can be explained by oscillation between massive neutrino states. The OPERA project is intended to directly proved this oscillation. To this aim, a ν μ beam is produced at CERN and pointed to Gran-Sasso (Italy), 732 km away. The detector is optimised to reveal the tau neutrino coming from ν μ → ν τ oscillation. This detector of 30 meters length with 2,000 tonnes of target will be built with more than 200,000 bricks of lead and emulsion. Taus are observed after scanning of the emulsions. The bricks must be localized into the wall and this localization is possible with a tracker located downstream of each target wall. The present work was devoted to the determination of the best tracker for OPERA. Three options were studied and a tracker made of plastic scintillator slabs has been chosen. It allows obtaining an efficiency of the localization of the vertex wall of around 80% and an efficiency of the localization of the brick inside the wall of around 80%. As photo detector we have studies HPD with a self-triggerable readout. HPDs have displayed an excellent resolution, a cross talk lower than 2% and a uniformity higher then 98%. A DAQ based on Ethernet was proposed and accepted by the collaboration. In this option, each photon detector is node of the network and can be accessed in a web browser. A prototype with plastic oscillator, a HPD with an self triggerable readout and a DAQ based on Ethernet were built and validated during beam tests. (author)

  1. Operation and Performance of the ATLAS Semiconductor Tracker

    International Nuclear Information System (INIS)

    Barlow, Nick

    2013-06-01

    The ATLAS detector is the largest of the four main particle detectors at the Large Hadron Collider at CERN, Switzerland. A crucial requirement for it to accomplish its physics goals is efficient and precise tracking of charged particles in the region around the point where proton-proton collisions take place. This role is performed by the ATLAS Inner Detector, of which the Semiconductor Tracker (SCT) is a key component. I will briefly describe the design and layout of the SCT, before discussing the commissioning of the detector and its operation over the course of LHC Run 1. (authors)

  2. The STAR Heavy Flavor Tracker PXL detector readout electronics

    International Nuclear Information System (INIS)

    Schambach, J.; Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.; Sun, X.; Szelezniak, M.

    2016-01-01

    The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ('PXL') subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector

  3. Final Report: ATLAS Phase-2 Tracker Upgrade Layout Task Force

    CERN Document Server

    Clark, A; The ATLAS collaboration; Hessey, N; Mättig, P; Styles, N; Wells, P; Burdin, S; Cornelissen, T; Todorov, T; Vankov, P; Watson, I; Wenig, S

    2012-01-01

    he mandate of the Upgrade Layout Task Force was to develop a benchmark layout proposal for the ATLAS Phase-2 Upgrade Letter of Intent (LOI), due in late 2012. The work described in this note has evolved from simulation and design studies made using an earlier "UTOPIA" upgrade tracker layout, and experience gained from the current ATLAS Inner Detector during the first years of data taking. The layout described in this document, called the LoI-layout, will be used as a benchmark layout for the LoI and will be used for simulation and engineering studies described in the LoI.

  4. The ATLAS Semi-Conductor Tracker Operation and Performance

    CERN Document Server

    Robinson, D; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT), is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been has been used to fully exploit the physics potential of the LHC since the first proton-proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed.

  5. Operation and Performance of the ATLAS Semiconductor Tracker

    CERN Document Server

    Barlow, N; The ATLAS collaboration

    2013-01-01

    The ATLAS detector is the largest of the four main particle detectors at the Large Hadron Collider at CERN, Switzerland. A crucial requirement for it to accomplish its physics goals is efficient and precise tracking of charged particles in the region around the point where proton-proton collisions take place. This role is performed by the ATLAS Inner Detector, of which the Semiconductor Tracker (SCT) is a key component. I will briefly describe the design and layout of the SCT, before discussing the commissioning of the detector and its operation over the course of LHC Run 1.

  6. Expected Particle Fluences and Performance of the LHCb Trigger Tracker

    CERN Document Server

    Siegler, M; Needham, M; Steinkamp, O

    2004-01-01

    Monte Carlo simulations of the expected 1 MeV-neutron equivalent fluence in the Trigger Tracker (TT) station of the LHCb detector have been used to investigate the effect of radiation damage on the performance of the detector. The build-up of leakage currents and the corresponding increase in electronic noise has been investigated, as well as the effect of bulk damage on the full-depletion voltage of the sensors and the risk of thermal runaway due to the power generated due to the leakage currents.

  7. Operation and Performance of the CMS Outer Tracker

    CERN Document Server

    Butz, Erik Manuel

    2017-01-01

    The CMS Silicon Strip Tracker with its more than 15000 silicon modules and 200\\,m$^2$ of active silicon area has been running together with the other subsystems of CMS for several years. We present the performance of the detector in the LHC Run 2 data taking. Results for signal-to-noise, hit efficiency and single hit resolution will be presented. We review the behavior of the system when running at beyond-design instantaneous luminosity and describe challenges observed under these conditions. The evolution of detector parameters under the influence of radiation damage will be presented and compared to simulations.

  8. Preliminary results from the GLAST silicon tracker beam test

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Stefano [INFN sez.Perugia, Via A. Pascoli, 06123, Perugia (Italy)], E-mail: stefano.germani@pg.infn.it

    2007-12-01

    The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine the origin of the gamma-ray. The LAT instrument, the Calibration Unit (CU) and the beamtest performed at CERN during the summer 2006 are described in this paper.

  9. Preliminary Results From the GLAST Silicon Tracker Beam Test

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Stefano; /INFN, Perugia

    2009-05-12

    The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine the origin of the gamma-ray. The LAT instrument, the Calibration Unit (CU) and the beamtest performed at CERN during the summer 2006 are described in this paper.

  10. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  11. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    Science.gov (United States)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  12. Prevalence and pattern of prescription errors in a Nigerian kidney ...

    African Journals Online (AJOL)

    Setting: Kidney Care Centre is a public Specialist hospital. ... Main outcome measures: Prevalence of prescription errors, pattern of prescription errors, pharmacist's intervention. ... A medication quality assurance unit is needed in our hospitals.

  13. Prescription Errors in Psychiatry

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    clinical pharmacists in detecting errors before they have a (sometimes serious) clinical impact should not be underestimated. Research on medication error in mental health care is limited. .... participation in ward rounds and adverse drug.

  14. The Straw Tube Trackers of the PANDA Experiment

    International Nuclear Information System (INIS)

    Gianotti, P.; Lucherini, V.; Pace, E.; Boca, G.L.; Costanza, S.; Genova, P.; Lavezzi, L.; Montanga, P.; Rotondi, A.; Bragadireanu, M.; Vasile, M.E.; Pietreanu, D.; Biernat, J.; Jowzaee, S.; Korcyl, G.; Palka, M.; Salabura, P.; Smyrski, J.; Fiutowski, T.; Idzik, M.; Przyborowski, D.; Korcyl, K.; Kulessa, P.; Pysz, K.; Dobbs, S.; Tomaradze, A.; Bettoni, D.; Fioravanti, E.; Garzia, I.; Savrie, M.; Kozlov, V.; Mertens, M.; Ohm, H.; Orfanitski, S.; Ritman, J.; Serdyuk, V.; Wintz, P.; Spataro, S.

    2013-06-01

    The PANDA experiment will be built at the FAIR facility at Darmstadt (Germany) to perform accurate tests of the strong interaction through p-bar p and p-bar A annihilation's studies. To track charged particles, two systems consisting of a set of planar, closed-packed, self-supporting straw tube layers are under construction. The PANDA straw tubes will have also unique characteristics in term of material budget and performance. They consist of very thin mylar-aluminized cathodes which are made self-supporting by means of the operation gas-mixture over-pressure. This solution allows to reduce at maximum the weight of the mechanical support frame and hence the detector material budget. The PANDA straw tube central tracker will not only reconstruct charged particle trajectories, but also will help in low momentum (< 1 GeV) particle identification via dE/dx measurements. This is a quite new approach that PANDA tracking group has first tested with detailed Monte Carlo simulations, and then with experimental tests of detector prototypes. This paper addresses the design issues of the PANDA straw tube trackers and the performance obtained in prototype tests. (authors)

  15. Embedded pitch adapters for the ATLAS Tracker Upgrade

    International Nuclear Information System (INIS)

    Ullan, Miguel; Benitez, Victor; Pellegrini, Giulio; Fleta, Celeste; Lozano, Manuel; Lacasta, Carlos; Soldevila, Urmila; Garcia, Carmen

    2013-01-01

    In the current ATLAS tracker modules, sensor bonding pads are placed on their corresponding strips and oriented along the strips. This creates a difference in pitch and orientation between sensor bond pads and readout electronics bond pads. Therefore, a pitch adapter (PA), or “fan-in”, is needed. The purpose of these PA is the electrical interconnection of every channel from the detector bonding pads to the read-out chips, adapting the different pad pitch. Our new approach is to build those PAs inside the sensor; this is what we call Embedded Pitch Adapters. The idea is to use an additional metal layer in order to define a new group of pads, connected to the strips via tracks with the second metal. The embedded PAs have been fabricated on 4-in. prototype sensors for the ATLAS-Upgrade Endcap Tracker to test their performance and suitability. The tests confirm proper fabrication of the second metal tracks, and no effects on detector performance. No indication of cross-talk between first and second metal channels has been observed. A small indication of possible signal pick-up from the bulk has been observed in a few channels, which needs to be further investigated

  16. Software alignment of the LHCb inner tracker sensors

    International Nuclear Information System (INIS)

    Maciuc, Florin

    2009-01-01

    This work uses the Millepede linear alignment method, which is essentially a χ 2 minimization algorithm, to determine simultaneously between 76 and 476 alignment parameters and several million track parameters. For the case of non-linear alignment models, Millepede is embedded in a Newton-Raphson iterative procedure. If needed a more robust approach is provided by adding quasi-Newton steps which minimize the approximate χ 2 model function. The alignment apparatus is applied to locally align the LHCb's Inner Tracker sensors in an a priori fixed system of coordinate. An analytic measurement model was derived as function of track parameters and alignment parameters, for the two cases: null and nonnull magnetic field. The alignment problem is equivalent to solving a linear system of equations, and usually a matrix inversion is required. In general, as consequence of global degrees of freedom or poorly constrained modes, the alignment matrix is singular or near-singular. The global degrees of freedom are obtained: directly from χ 2 function invariant transformations, and in parallel by an alignment matrix diagonalization followed by an extraction of the least constrained modes. The procedure allows to properly de ne the local alignment of the Inner Tracker. Using Monte Carlo data, the outlined procedure reconstructs the position of the IT sensors within micrometer precision or better. For rotations equivalent precision was obtained. (orig.)

  17. Technical Design Report for the ATLAS Inner Tracker Strip Detector

    CERN Document Server

    Collaboration, ATLAS

    2017-01-01

    This is the first of two Technical Design Report documents that describe the upgrade of the central tracking system for the ATLAS experiment for the operation at the High Luminosity LHC (HL-LHC) starting in the middle of 2026. At this time the LHC will have been upgraded to reach a peak instantaneous luminosity of 7.5x10^34 cm^[-2]s^[-1], which corresponds to approximately 200 inelastic proton-proton collisions per beam crossing. The new Inner Tracker (ITk) will be operational for more than ten years, during which ATLAS aims to accumulate a total data set of 3,000 fb^[-1]. Meeting these requirements presents a unique challenge for the design of an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large-area strip tracking detector surrounding it. This document presents in detail the requirements of the new tracker, its layout and expected performance including the results of several benchmark physics studies at the highest numbers of collisions per beam...

  18. First cosmic rays seen in the CMS Tracker Endcap

    CERN Multimedia

    Lutz Feld, RWTH Aachen

    2006-01-01

    On March 14, 2006, first cosmic muon tracks have been measured in the Tracker EndCap TEC+ of the CMS silicon strip tracker. The end caps have silicon strip modules mounted onto wedge-shaped carbon fiber support plates called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an end cap (called sector) is populated with 18 petals. The TEC+ endcap is currently being integrated at RWTH Aachen. 400 silicon modules with a total of 241664 channels, corresponding to one eighth of the endcap, are read-out simultaneously by final power supply and DAQ components. On the left is the TEC+ in Aachen, whilst on the right is a computer image of a cosmic ray traversing the many layers of silicon sensors. To understand the response to real particles, basic functionality testing was followed by a cosmic muon run. A total of 400 silicon strip modules are read out with a channel inefficiency of below 1% and a common mode noise of only 25% of the intrinsic noise.

  19. Planar silicon sensors for the CMS Tracker upgrade

    CERN Document Server

    Junkes, Alexandra

    2013-01-01

    The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements for detectors for the high-luminosity phase of the Large Hadron Collider (HL-LHC).A variety of silicon p-in-n and n-in-p test-sensors made from Float Zone, Deep-Diffused FZ and Magnetic Czochralski materials were manufactured by one single industrial producer, thus guaranteeing similar conditions for the production and design of the test-structures. Properties of different silicon materials and design choices have been systematically studied and compared.The samples have been irradiated with 1 MeV neutrons and protons corresponding to maximal fluences as expected for the positions of detector layers in the future tracker. Irradiations with protons of different energies (23 MeV and 23 GeV) have been performed to evaluate the energy dependence of the defect generation in oxygen rich material. All materials have been characterized before an...

  20. Development of Digital Readout Electronics for the CMS Tracker

    CERN Document Server

    Corrin, E P

    2002-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector, based at CERN in Switzerland, designed to look for new physics in high-energy protonproton collisions provided by the Large Hadron Collider. The CMS tracker has 10 million readout channels being sampled at a rate of 40 MHz, then read out at up to 100 kHz, generating huge volumes of data; it is essential that the system can handle these rates without any of the data being lost or corrupted. The CMS tracker FED processes the data, removing pedestal and common mode-noise, and then performing hit and cluster finding. Strips below threshold are discarded, resulting in a significant reduction in data size. These zero suppressed data are stored in a buffer before being sent to the DAQ. The processing on the FEDs is done using FPGAs. Programmable logic was chosen over custom ASICs because of the lower cost, faster design and verification process, and the ability to easily upgrade the firmware at a later date. This thesis is concerned with the digital read...

  1. The control system for the CMS tracker front-end

    CERN Document Server

    Drouhin, F; Ljuslin, C; Maazouzi, C; Marchiero, A; Marinelli, N; Paillard, C; Siegrist, P; Tsirou, A L; Verdini, P G; Walsham, P; Zghiche, A

    2002-01-01

    The CMS Tracker uses complex, programmable embedded electronics for the readout of the Silicon sensors, for the control of the working point of the optical transmitters, for the phase adjustment of the 40 MHz LHC clock and for the monitoring of the voltages, currents and temperatures. In order to establish reliable, noise-free communication with the outside world the control chain has been designed to operate over a ribbon of optical fibers. The optical links, the Front End Controller board that carries their support electronics, the Clocking and Control Unit module receiving the signals over the high-speed link and fanning them out to the front- ends have recently become available. A multi-layered software architecture to handle these devices, and the front-ends, in a way transparent to the end-user, interfaced to an Oracle database for the retrieval of the parameters to be downloaded with the intent of building and operating a small-scale prototype of the control system for the CMS Tracker. The paper descri...

  2. Input Mezzanine Card for the Fast Tracker at ATLAS

    CERN Document Server

    Iizawa, Tomoya; The ATLAS collaboration

    2016-01-01

    The Fast Tracker (FTK) is an integral part of trigger upgrade program for the ATLAS experiment. At LHC Run 2, which started operations in June 2015 at a center-of-mass energy of 13 TeV, the luminosity could reach up to 2*1034 cm-2s-1 and an average of 40-50 simultaneous proton collisions per beam crossing will be expected. The higher luminosity demands a more sophisticated trigger system with increased use of tracking information. The Fast Tracker is a highly-parallel hardware system that rapidly finds and reconstructs tracks in the ATLAS inner-detector at the triggering stage. This paper focuses on the FTK Input Mezzanine Board that is input module of entire system. The functions of this board are to receive the insertable b-layer, pixel and micro-strip data from the ATLAS Silicon read-out drivers, perform clustering, and forward the data to its mother board. Mass production and quality control tests of Mezzanine Boards were completed, and staged installation and commissioning are ongoing. Details of its fun...

  3. Tests and final integration of the ATLAS semiconductor tracker

    CERN Document Server

    Mikulec, Bettina

    2005-01-01

    The Silicon Tracker (SCT) is part of the Inner Detector at the ATLAS experiment at CERN. Its basic building blocks are 5 different types of silicon strip modules. In total more than 15000 p-on-n single-sided silicon strip sensors of an area of about 61 m2 were used to produce 4088 SCT modules. An overall module production yield of 92% could be achieved, where the silicon modules comply with the tight electrical, thermal and mechanical specifications. The macro-assembly of 2112 barrel modules to the four barrel support cylinders was successfully carried out. The nine disks of one endcap are fully populated with 988 modules, and for the second endcap more than 50% of the modules are already mounted. Test results operating complete barrels will be presented as well as a description of the test setup. The different integration steps of the SCT with the surrounding Transition Radiation Tracker (TRT) will be explained. The installation of SCT and TRT into the ATLAS pit will happen during 2006.

  4. Development of an Embedded Solar Tracker using Compact RIO

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jin; Lee, Yoon Joon; Chun, Won Gee [Jeju National University, Jeju (Korea, Republic of)

    2011-08-15

    An embedded two-axis solar tracking system using LabVIEW to write the operation and control algorithms was developed for enhancing solar energy utilization. The system consists of a real-time processor, two motion- control modules, two step drives, two step motors, feedback devices, and other accessories needed for functional stability. The real-time processor allows the solar tracker to be used as a stand-alone, real-time system that can operate automatically without any external control. The system combines two different solar tracking methods: the optical method and the astronomical method. CdS sensors are employed to continuously generate feedback signals to the controller, ensuring high-precision solar tracking even under adverse conditions. CdS sensor is a resistor whose resistance decreases with increasing incident light intensity. A database of solar altitude, azimuth, and sunrise and sunset times is provided by this solar tracking system. Other solar trackers operating in an astronomical method may access and use this database over the Internet. Solar position and sunrise and sunset times in the database were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The differences were found to be negligible.

  5. Development of an Embedded Solar Tracker using Compact RIO

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Lee, Yoon Joon; Chun, Won Gee

    2011-01-01

    An embedded two-axis solar tracking system using LabVIEW to write the operation and control algorithms was developed for enhancing solar energy utilization. The system consists of a real-time processor, two motion- control modules, two step drives, two step motors, feedback devices, and other accessories needed for functional stability. The real-time processor allows the solar tracker to be used as a stand-alone, real-time system that can operate automatically without any external control. The system combines two different solar tracking methods: the optical method and the astronomical method. CdS sensors are employed to continuously generate feedback signals to the controller, ensuring high-precision solar tracking even under adverse conditions. CdS sensor is a resistor whose resistance decreases with increasing incident light intensity. A database of solar altitude, azimuth, and sunrise and sunset times is provided by this solar tracking system. Other solar trackers operating in an astronomical method may access and use this database over the Internet. Solar position and sunrise and sunset times in the database were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The differences were found to be negligible

  6. Software alignment of the LHCb inner tracker sensors

    Energy Technology Data Exchange (ETDEWEB)

    Maciuc, Florin

    2009-04-20

    This work uses the Millepede linear alignment method, which is essentially a {chi}{sup 2} minimization algorithm, to determine simultaneously between 76 and 476 alignment parameters and several million track parameters. For the case of non-linear alignment models, Millepede is embedded in a Newton-Raphson iterative procedure. If needed a more robust approach is provided by adding quasi-Newton steps which minimize the approximate {chi}{sup 2} model function. The alignment apparatus is applied to locally align the LHCb's Inner Tracker sensors in an a priori fixed system of coordinate. An analytic measurement model was derived as function of track parameters and alignment parameters, for the two cases: null and nonnull magnetic field. The alignment problem is equivalent to solving a linear system of equations, and usually a matrix inversion is required. In general, as consequence of global degrees of freedom or poorly constrained modes, the alignment matrix is singular or near-singular. The global degrees of freedom are obtained: directly from {chi}{sup 2} function invariant transformations, and in parallel by an alignment matrix diagonalization followed by an extraction of the least constrained modes. The procedure allows to properly de ne the local alignment of the Inner Tracker. Using Monte Carlo data, the outlined procedure reconstructs the position of the IT sensors within micrometer precision or better. For rotations equivalent precision was obtained. (orig.)

  7. Software alignment of the LHCb inner tracker sensors

    Energy Technology Data Exchange (ETDEWEB)

    Maciuc, Florin

    2009-04-20

    This work uses the Millepede linear alignment method, which is essentially a {chi}{sup 2} minimization algorithm, to determine simultaneously between 76 and 476 alignment parameters and several million track parameters. For the case of non-linear alignment models, Millepede is embedded in a Newton-Raphson iterative procedure. If needed a more robust approach is provided by adding quasi-Newton steps which minimize the approximate {chi}{sup 2} model function. The alignment apparatus is applied to locally align the LHCb's Inner Tracker sensors in an a priori fixed system of coordinate. An analytic measurement model was derived as function of track parameters and alignment parameters, for the two cases: null and nonnull magnetic field. The alignment problem is equivalent to solving a linear system of equations, and usually a matrix inversion is required. In general, as consequence of global degrees of freedom or poorly constrained modes, the alignment matrix is singular or near-singular. The global degrees of freedom are obtained: directly from {chi}{sup 2} function invariant transformations, and in parallel by an alignment matrix diagonalization followed by an extraction of the least constrained modes. The procedure allows to properly de ne the local alignment of the Inner Tracker. Using Monte Carlo data, the outlined procedure reconstructs the position of the IT sensors within micrometer precision or better. For rotations equivalent precision was obtained. (orig.)

  8. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  9. A new mapping function in table-mounted eye tracker

    Science.gov (United States)

    Tong, Qinqin; Hua, Xiao; Qiu, Jian; Luo, Kaiqing; Peng, Li; Han, Peng

    2018-01-01

    Eye tracker is a new apparatus of human-computer interaction, which has caught much attention in recent years. Eye tracking technology is to obtain the current subject's "visual attention (gaze)" direction by using mechanical, electronic, optical, image processing and other means of detection. While the mapping function is one of the key technology of the image processing, and is also the determination of the accuracy of the whole eye tracker system. In this paper, we present a new mapping model based on the relationship among the eyes, the camera and the screen that the eye gazed. Firstly, according to the geometrical relationship among the eyes, the camera and the screen, the framework of mapping function between the pupil center and the screen coordinate is constructed. Secondly, in order to simplify the vectors inversion of the mapping function, the coordinate of the eyes, the camera and screen was modeled by the coaxial model systems. In order to verify the mapping function, corresponding experiment was implemented. It is also compared with the traditional quadratic polynomial function. And the results show that our approach can improve the accuracy of the determination of the gazing point. Comparing with other methods, this mapping function is simple and valid.

  10. SciFi - A large Scintillating Fibre Tracker for LHCb

    CERN Multimedia

    Quagliani, Renato

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. Concept, design and operational parameters are driven by the challenging LHC environment including significant ionising and neutron radiation levels. Over a total active surface of 360 m2 the SciFi Tracker will use scintillating fibres (Ø 0.25 mm) read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The project is now at the transition from R&D to series production. We will present the evolution of the design a...

  11. CosmoQuest Transient Tracker: Opensource Photometry & Astrometry software

    Science.gov (United States)

    Myers, Joseph L.; Lehan, Cory; Gay, Pamela; Richardson, Matthew; CosmoQuest Team

    2018-01-01

    CosmoQuest is moving from online citizen science, to observational astronomy with the creation of Transient Trackers. This open source software is designed to identify asteroids and other transient/variable objects in image sets. Transient Tracker’s features in final form will include: astrometric and photometric solutions, identification of moving/transient objects, identification of variable objects, and lightcurve analysis. In this poster we present our initial, v0.1 release and seek community input.This software builds on the existing NIH funded ImageJ libraries. Creation of this suite of opensource image manipulation routines is lead by Wayne Rasband and is released primarily under the MIT license. In this release, we are building on these libraries to add source identification for point / point-like sources, and to do astrometry. Our materials released under the Apache 2.0 license on github (http://github.com/CosmoQuestTeam) and documentation can be found at http://cosmoquest.org/TransientTracker.

  12. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  13. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00512833; The ATLAS collaboration

    2017-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  14. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  15. ATLAS SemiConductor Tracker Operation and Performance

    CERN Document Server

    Tojo, J; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi- Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the stri...

  16. The ATLAS Fast TracKer Processing Units

    CERN Document Server

    Krizka, Karol; The ATLAS collaboration

    2016-01-01

    The Fast Tracker is a hardware upgrade to the ATLAS trigger and data-acquisition system, with the goal of providing global track reconstruction by the start of the High Level Trigger starts. The Fast Tracker can process incoming data from the whole inner detector at full first level trigger rate, up to 100 kHz, using custom electronic boards. At the core of the system is a Processing Unit installed in a VMEbus crate, formed by two sets of boards: the Associative Memory Board and a powerful rear transition module called the Auxiliary card, while the second set is the Second Stage board. The associative memories perform the pattern matching looking for correlations within the incoming data, compatible with track candidates at coarse resolution. The pattern matching task is performed using custom application specific integrated circuits, called associative memory chips. The auxiliary card prepares the input and reject bad track candidates obtained from from the Associative Memory Board using the full precision a...

  17. Readout electronics development for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Borer, K.; Beringer, J.; Anghinolfi, F.; Aspell, P.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Bonino, R.; Clark, A.G.; Kambara, H.; La Marra, D.; Leger, A.; Wu, X.; Richeux, J.P.; Taylor, G.N.; Fedotov, M.; Kuper, E.; Velikzhanin, Yu.; Campbell, D.; Murray, P.; Seller, P.

    1995-01-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.)

  18. The Associative Memory System Infrastructure of the ATLAS Fast Tracker

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00525014; The ATLAS collaboration

    2016-01-01

    The Associative Memory (AM) system of the Fast Tracker (FTK) processor has been designed to perform pattern matching using the hit information of the ATLAS experiment silicon tracker. The AM is the heart of FTK and is mainly based on the use of ASICs (AM chips) designed on purpose to execute pattern matching with a high degree of parallelism. It finds track candidates at low resolution that are seeds for a full resolution track fitting. The AM system implementation is based on a collection of boards, named “Serial Link Processor” (AMBSLP), since it is based on a network of 900 2 Gb/s serial links to sustain huge data traffic. The AMBSLP has high power consumption (~250 W) and the AM system needs custom power and cooling. This presentation reports on the integration of the AMBSLP inside FTK, the infrastructure needed to run and cool the system which foresees many AMBSLPs in the same crate, the performance of the produced prototypes tested in the global FTK integration, an important milestone to be satisfie...

  19. The ATLAS Fast Tracker Processing Units - track finding and fitting

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00384270; The ATLAS collaboration; Alison, John; Ancu, Lucian Stefan; Andreani, Alessandro; Annovi, Alberto; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Bogdan, Mircea Arghir; Bryant, Patrick; Calabro, Domenico; Citraro, Saverio; Crescioli, Francesco; Dell'Orso, Mauro; Donati, Simone; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Greco, Virginia; Horyn, Lesya Anna; Iovene, Alessandro; Kalaitzidis, Panagiotis; Kim, Young-Kee; Kimura, Naoki; Kordas, Kostantinos; Kubota, Takashi; Lanza, Agostino; Liberali, Valentino; Luciano, Pierluigi; Magnin, Betty; Sakellariou, Andreas; Sampsonidis, Dimitrios; Saxon, James; Shojaii, Seyed Ruhollah; Sotiropoulou, Calliope Louisa; Stabile, Alberto; Swiatlowski, Maximilian; Volpi, Guido; Zou, Rui; Shochet, Mel

    2016-01-01

    The Fast Tracker is a hardware upgrade to the ATLAS trigger and data-acquisition system, with the goal of providing global track reconstruction by the start of the High Level Trigger starts. The Fast Tracker can process incoming data from the whole inner detector at full first level trigger rate, up to 100 kHz, using custom electronic boards. At the core of the system is a Processing Unit installed in a VMEbus crate, formed by two sets of boards: the Associative Memory Board and a powerful rear transition module called the Auxiliary card, while the second set is the Second Stage board. The associative memories perform the pattern matching looking for correlations within the incoming data, compatible with track candidates at coarse resolution. The pattern matching task is performed using custom application specific integrated circuits, called associative memory chips. The auxiliary card prepares the input and reject bad track candidates obtained from from the Associative Memory Board using the full precision a...

  20. Alignment of Ion Accelerator for Surface Analysis using Theodolite and Laser Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Sung; Seo, Dong Hyuk; Kim, Dae Il; Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The method of ion accelerator alignment is used two ways which are a theodolite and laser tracker. For the alignment and maintenance of the proton linear accelerator, the laser tracker is typically used at KOMAC. While the device for alignment by using laser tracker is not installed in all ion accelerator components, it was used in parallel in two methods. In this paper, alignment methods are introduced and the result and comparison of each alignment method are presented. The ion accelerator for surface analysis has aligned using theodolite and laser tracker. The two ways for alignment have advantage as well as weakness. But alignment using laser tracker is stronger than using theodolite. Because it is based on alignment and position data and it is more detailed. Also since the beam distribution is smaller than accelerator component that is direction of beam progress, main component (ex. Magnet, Chamber, Pelletron tank, etc.) alignment using laser tracker is enough to align the ion accelerator.

  1. Novel approach to improve the attitude update rate of a star tracker.

    Science.gov (United States)

    Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong

    2018-03-05

    The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

  2. Errors in otology.

    Science.gov (United States)

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  3. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    Science.gov (United States)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  4. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    OpenAIRE

    I Wayan Sutaya; Ketut Udy Ariawan

    2016-01-01

    prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response) pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 ...

  5. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    International Nuclear Information System (INIS)

    Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J.; Tsamalaidze, Z.; Tsverava, N.; Ueno, K.; Volkov, A.

    2017-01-01

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10 −16 , 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  6. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    Energy Technology Data Exchange (ETDEWEB)

    Nishiguchi, H., E-mail: hajime.nishiguchi@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Evtoukhovitch, P. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Fujii, Y. [Institute of High Energy Physics (IHEP), 19B YuquanLu, Shijingshan district, Beijing 1000049 (China); Hamada, E.; Mihara, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Moiseenko, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J. [Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tsamalaidze, Z.; Tsverava, N. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Ueno, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Volkov, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation)

    2017-02-11

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10{sup −16}, 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  7. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer; Zhang, Tianzhu; Ghanem, Bernard

    2016-01-01

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  8. A Sliding Mode Control for a Sensorless Tracker: Application on a Photovoltaic System

    OpenAIRE

    Rhif, Ahmed

    2012-01-01

    The photovoltaic sun tracker allows us to increase the energy production. The sun tracker considered in this study has two degrees of freedom (2-DOF) and especially specified by the lack of sensors. In this way, the tracker will have as a set point the sun position at every second during the day for a period of five years. After sunset, the tracker goes back to the initial position (which of sunrise). The sliding mode control (SMC) will be applied to ensure at best the tracking mechanism and,...

  9. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer

    2016-12-13

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  10. Precision Attitude Determination System (PADS) system design and analysis: Single-axis gimbal star tracker

    Science.gov (United States)

    1974-01-01

    The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.

  11. 2D/3D Visual Tracker for Rover Mast

    Science.gov (United States)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  12. The new silicon strip detectors for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the tracker caused by the increase in luminosity which is proposed as an upgrade to the LHC accelerator (sLHC). This chapter motivates the work I have conducted and clarifies why the solutions proposed by myself are important contributions to the upgrade of the CMS tracker. The following chapters present the concepts that are necessary to operate the silicon strip sensors at sLHC luminosities and additional improvements to the construction and quality assurance of the sensors and the detector modules. The most important concepts and works presented in chapters 7 to 9 are: Development of a software framework to enable the flexible and quick design of test structures and sensors. Selecting a suitable sensor material which is sufficiently radiation hard. Design, implementation and production of a standard set of test structures to enable the quality assurance of such sensors and any future developments. Electrical characterisation of the test structures and analysis

  13. A retrospective analysis of real-world use of the eaTracker® My Goals website by adults from Ontario and Alberta, Canada.

    Science.gov (United States)

    Lieffers, Jessica R L; Haresign, Helen; Mehling, Christine; Hanning, Rhona M

    2016-09-15

    Little is known about use of goal setting and tracking tools within online programs to support nutrition and physical activity behaviour change. In 2011, Dietitians of Canada added "My Goals," a nutrition and physical activity behaviour goal setting and tracking tool to their free publicly available self-monitoring website (eaTracker® ( http://www.eaTracker.ca/ )). My Goals allows users to: a) set "ready-made" SMART (Specific, Measurable, Attainable, Realistic, Time-related) goals (choice of n = 87 goals from n = 13 categories) or "write your own" goals, and b) track progress using the "My Goals Tracker." The purpose of this study was to characterize: a) My Goals user demographics, b) types of goals set, and c) My Goals Tracker use. Anonymous data on all goals set using the My Goals feature from December 6/2012-April 28/2014 by users ≥19y from Ontario and Alberta, Canada were obtained. This dataset contained: anonymous self-reported user demographic data, user set goals, and My Goals Tracker use data. Write your own goals were categorized by topic and specificity. Data were summarized using descriptive statistics. Multivariate binary logistic regression was used to determine associations between user demographics and a) goal topic areas and b) My Goals Tracker use. Overall, n = 16,511 goal statements (75.4 % ready-made; 24.6 % write your own) set by n = 8,067 adult users 19-85y (83.3 % female; mean age 41.1 ± 15.0y, mean BMI 28.8 ± 7.6kg/m(2)) were included for analysis. Overall, 33.1 % of ready-made goals were from the "Managing your Weight" category. Of write your own goal entries, 42.3 % were solely distal goals (most related to weight management); 38.6 % addressed nutrition behaviour change (16.6 % had unspecific general eating goals); 18.1 % addressed physical activity behaviour change (47.3 % had goals without information on exercise amount and type). Many write your own goals were poor quality (e.g., non-specific (e.g., missing

  14. Petal Integration for the CMS Tracker End Caps

    CERN Document Server

    Bergauer, Thomas; Friedl, Markus; Hansel, S; Hrubec, Josef; Krammer, Manfred; Pernicka, Manfred; Beaumont, Willem; De Wolf, Eddi A; Bouhali, Othmane; Clerbaux, Barbara; Dewulf, Jean-Paul; De Lentdecker, Gilles; Mahmoud, Tariq; Neukermans, Lionel; Van der Velde, C; Vanlaer, Pascal; Wickens, John; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Tavernier, Stefaan; Udo, Fred; Van Lancker, Luc; Bonnet, Jean-Luc; De Callatay, Bernard; Delaere, Christophe; Florins, Benoit; Grégoire, Ghislain; Keutgen, Thomas; Lemaître, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Rouby, Xavier; Teyssier, Daniel; Van der Donckt, M; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Contardo, Didier; Della Negra, Rodolphe; Estre, Nicolas; Giraud, Noël; Haroutunian, Roger; Lumb, Nicholas; Mirabito, Laurent; Perriès, Stephane; Trocmé, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Hosselet, J; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Ollivetto, C; Strub, Roger; Van Hove, Pierre; Adolphi, Roman; Brauer, Richard; Braunschweig, Wolfgang; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; König, Stefan; Kosbow, M; Lübelsmeyer, Klaus; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Schael, Stefan; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flossdorf, E; Flügge, Günter; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Butz, Erik; Flucke, Gero; Klanner, Robert; Pein, Uwe; Schirm, Norbert; Schleper, Peter; Steinbruck, G; Stoye, Markus; Van Staa, Rolf; Atz, Bernd; Blüm, Peter; de Boer, Wim; Bogelsbacher, F; Barvich, Tobias; Dehm, Philip; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Fernández, J; Frey, Martin; Furgeri, Alexander; Gregoriev, E; Hartmann, Frank; Heier, Stefan; Kaminski, Jochen; Ledermann, Bernhard; Muller, Th; Piaseki, C; Sabellek, Andreas; Simonis, Hans-Jürgen; Steck, Pia; Theel, Andreas; Weiler, Thomas; Weseler, Siegfried; Zhukov, Valery; Freudenreich, Klaus

    2008-01-01

    This note describes the assembly and testing of the 292 petals built for the CMS Tracker End Caps from the beginning of 2005 until the summer of 2006. Due to the large number of petals to be assembled and the need to reach a throughput of 10 to 15 petals per week, a distributed integration approach was chosen. This integration was carried out by the following institutes: I. and III. Physikalisches Institut - RWTH Aachen University; IIHE, ULB \\& VUB Universities, Brussels; Hamburg University; IEKP, Karlsruhe University; FYNU, Louvain University; IPN, Lyon University; and IPHC, Strasbourg University. Despite the large number of petals which needed to be reworked to cope with a late-discovered module issue, the quality of the petals is excellent with less than 0.2\\% bad channels.

  15. Aging studies for the ATLAS Transition Radiation Tracker (TRT)

    CERN Document Server

    Åkesson, T; Bondarenko, V; Capéans-Garrido, M; Catinaccio, A; Cwetanski, Peter; Danielsson, H; Dittus, F; Dolgoshein, B A; Dressnandt, N; Ebenstein, W L; Eerola, Paule Anna Mari; Farthouat, Philippe; Fedin, O; Froidevaux, D; Gavrilenko, I; Grichkevitch, Y; Gagnon, P; Hajduk, Z; Keener, P T; Kekelidze, G D; Konovalov, S; Kowalski, T; Kramarenko, V A; Laritchev, A; Lichard, P; Lundberg, B; Luehring, F C; Markina, I; Manara, A; McFarlane, K; Mitsou, V; Muraviev, S; Newcomer, F M; Ogren, H; Oh, S H; Olszowska, J; Peshekhonov, V D; Rembser, C; Romaniouk, A; Rhone, O; Rust, D R; Shchegelskii, V; Shmeleva, A; Smirnov, S; Smirnova, L N; Sosnovtsev, V V; Sutchkov, S; Tartarelli, F; Tikhomirov, V; Van Berg, R; Vassilieva, L; Wang, C; Williams, H H

    2003-01-01

    A summary of the aging and material validation studies carried out for the ATLAS Transition Radiation Tracker (TRT) is presented. Particular emphasis is put on the different phenomena observed in straw tubes operating with the chosen Xe/CF//4/CO//2 mixture. The most serious effects observed are silicon deposition on the anode wire and damage of the anode wire gold plating. Etching phenomena and active radical effects are also discussed. With a careful choice of all materials and components, and with good control of the water contamination in the active gas, the ATLAS TRT will operate reliably for 10 years at the LHC design luminosity. To demonstrate this fully, more work is still needed on the gas system purification elements, in particular to understand their interplay with the active species containing fluorine created in the avalanche process under irradiation.

  16. FPGA Online Tracking Algorithm for the PANDA Straw Tube Tracker

    Science.gov (United States)

    Liang, Yutie; Ye, Hua; Galuska, Martin J.; Gessler, Thomas; Kuhn, Wolfgang; Lange, Jens Soren; Wagner, Milan N.; Liu, Zhen'an; Zhao, Jingzhou

    2017-06-01

    A novel FPGA based online tracking algorithm for helix track reconstruction in a solenoidal field, developed for the PANDA spectrometer, is described. Employing the Straw Tube Tracker detector with 4636 straw tubes, the algorithm includes a complex track finder, and a track fitter. Implemented in VHDL, the algorithm is tested on a Xilinx Virtex-4 FX60 FPGA chip with different types of events, at different event rates. A processing time of 7 $\\mu$s per event for an average of 6 charged tracks is obtained. The momentum resolution is about 3\\% (4\\%) for $p_t$ ($p_z$) at 1 GeV/c. Comparing to the algorithm running on a CPU chip (single core Intel Xeon E5520 at 2.26 GHz), an improvement of 3 orders of magnitude in processing time is obtained. The algorithm can handle severe overlapping of events which are typical for interaction rates above 10 MHz.

  17. Test beam results of LHCb scintillating fibre tracker prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Sebastian; Comerma, Albert; Gerick, David; Hansmann-Menzemer, Stephanie; Kecke, Matthieu; Leverington, Blake; Mazorra de Cos, Jose; Mitzel, Dominik; Neuner, Max; Uwer, Ulrich; Han, Xiaoxue [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: LHCb-Collaboration

    2016-07-01

    During the Long Shutdown 2 of the LHC, the LHCb detector will undergo a major upgrade to meet the challenges of running at a higher luminosity. The current Inner and Outer Tracking system will not be sufficient to deal with the envisaged increased detector occupancy and higher radiation levels and will be replaced by a single tracking detector based on 0.250 mm diameter plastic scintillating fibres. The fibres are wound to multilayer ribbons 2.4 m long and read out by 128 channel silicon photomultiplier arrays. The Scintillating Fibre (SciFi) tracker will cover a total active area of 360 m{sup 2}, arranged in 12 layers. The performances of prototype modules having 6 and 8 layers of fibre have been tested at the SPS at CERN. This talk focuses on basic properties of the prototype modules such as spatial resolution, single hit efficiency and light yield measured during the test beam campaigns in 2015.

  18. Performance of the CMS Silicon Tracker at LHC

    CERN Document Server

    Benelli, Gabriele

    2011-01-01

    The CMS all-silicon Tracker, comprising 16588 modules covering an area of more than $200 \\mathrm{m}^2$, needs to be precisely calibrated and aligned in order to correctly interpret and reconstruct the events recorded from the detector, ensuring that the performance fully meets the physics research program of the CMS experiment. The performance have been carefully studied since the start of data taking: the noise of the detector, the data integrity, the S/N ratio, the hit resolution and efficiency have been all investigated with time. In 2010 it has been successfully aligned using tracks from cosmic rays and pp-collisions, following the time dependent movements of its innermost pixel layers. Ultimate local precision is now achieved by the determination of sensor curvatures, challenging the algorithms to determine about 200000 parameters. Remaining alignment uncertainties are dominated by systematic effects that are controlled by adding further information, such as constraints from resonance decays.

  19. Studies of the Silicon Tracker resolution using data

    CERN Document Server

    van Tilburg, J

    2010-01-01

    Several parameters that influence the hit resolution of the Silicon Tracker have been determined from data. These include charge sharing, cross talk and Lorentz deflection. A charge sharing width of ~4 $\\mu$m has been measured. No charge loss has been observed in the interstrip region. The cross talk to the neighbouring strips is found to vary between 4 − 14%, depending on the total capacitance (sensors plus cable), on whether it is the left or right neighbour and on the Beetle channel number (odd or even). The Lorentz deflection was also investigated and was observed to be small. Finally, the new parameters have been inserted in the LHCb Monte Carlo simulation to update the $\\eta$-correction functions required for the reconstruction of tracks. Compared to the previous tuning the hit resolution in the simulation has increased from ~35 $\\mu$m to ~50 $\\mu$m.

  20. Comparative evaluation of photovoltaic MPP trackers: A simulated approach

    Directory of Open Access Journals (Sweden)

    Barnam Jyoti Saharia

    2016-12-01

    Full Text Available This paper makes a comparative assessment of three popular maximum power point tracking (MPPT algorithms used in photovoltaic power generation. A 120 Wp PV module is taken as reference for the study that is connected to a suitable resistive load by a boost converter. Two profiles of variation of solar insolation at fixed temperature and varying temperature at fixed solar insolation are taken to test the tracking efficiency of three MPPT algorithms based on the perturb and observe (P&O, Fuzzy logic, and Neural Network techniques. MATLAB/SIMULINK simulation software is used for assessment, and the results indicate that the fuzzy logic-based tracker presents better tracking effectiveness to variations in both solar insolation and temperature profiles when compared to P&O technique and Neural Network-based technique.

  1. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  2. Results of a first beam test of hadron blind trackers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M. (Laboratory for Nuclear Science, MIT, Cambridge, MA (United States)); Luckey, D. (Laboratory for Nuclear Science, MIT, Cambridge, MA (United States)); Smolin, M. (Laboratory for Nuclear Science, MIT, Cambridge, MA (United States)); Sumorok, K. (Laboratory for Nuclear Science, MIT, Cambridge, MA (United States)); Zhang, X. (Laboratory for Nuclear Science, MIT, Cambridge, MA (United States)); Bolozdynya, A. (ITEP, Moscow (Russian Federation)); Belogurov, S. (ITEP, Moscow (Russian Federation)); Churakov, D. (ITEP, Moscow (Russian Federation)); Koutchenkov, A. (ITEP, Moscow (Russian Federation)); Kovalenko, A. (ITEP, Moscow (Russian Federation)); Kuzichev, V. (ITEP, Moscow (Russian Federation)); Lebedenko, V. (ITEP, Moscow (Russian Federation)); Sheinkman, V. (ITEP, Moscow (Russian Federation)); Smirnov, G. (ITEP, Moscow (Russian Federation)); Safronov, G. (ITEP, Moscow (Russian Federation)); Vinogradov, V. (ITEP, Moscow (Russian Federation)); Giomataris, Y. (IPN,

    1994-07-15

    We describe the experimental results of a new type of electron tracker, called Hadron Blind Detector or HBD. An HBD prototype was tested with gas mixtures of CF[sub 4] with He or Ne and a parallel plate avalanche chamber having a CsI photocathode of eight pads. Beam tests confirm the large Cherenkov light bandwidth in the EUV region that can be obtained with such gas mixtures. It results in a large quality factor of about 500 cm[sup -1] which allows HBD operation with a much shorter radiator thickness than conventional Cherenkov counters. Full electron efficiency was obtained, while pions were rejected up to momenta of 9 GeV/c. HBD is unique in measuring electron trajectories near the vertex, vetoing Dalitz pairs, and providing trigger on electrons among heavy hadron background. We discuss the use of such detectors for lepton identification and detection in high energy physics experiments and especially in heavy ion colliders. ((orig.))

  3. Results of a first beam test of hadron blind trackers

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Smolin, M.; Sumorok, K.; Zhang, X.; Bolozdynya, A.; Belogurov, S.; Churakov, D.; Koutchenkov, A.; Kovalenko, A.; Kuzichev, V.; Lebedenko, V.; Sheinkman, V.; Smirnov, G.; Safronov, G.; Vinogradov, V.; Giomataris, Y.; Joseph, C.; Werlen, M.; Charpak, G.; Blumenfeld, B.; Gougas, A.K.; Steele, D.; Akopyan, M.

    1994-01-01

    We describe the experimental results of a new type of electron tracker, called Hadron Blind Detector or HBD. An HBD prototype was tested with gas mixtures of CF 4 with He or Ne and a parallel plate avalanche chamber having a CsI photocathode of eight pads. Beam tests confirm the large Cherenkov light bandwidth in the EUV region that can be obtained with such gas mixtures. It results in a large quality factor of about 500 cm -1 which allows HBD operation with a much shorter radiator thickness than conventional Cherenkov counters. Full electron efficiency was obtained, while pions were rejected up to momenta of 9 GeV/c. HBD is unique in measuring electron trajectories near the vertex, vetoing Dalitz pairs, and providing trigger on electrons among heavy hadron background. We discuss the use of such detectors for lepton identification and detection in high energy physics experiments and especially in heavy ion colliders. ((orig.))

  4. The fast tracker processor for hadron collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, E; Pietri, M; Varotto, G

    2001-01-01

    Perspectives for precise and fast track reconstruction in future hadron collider experiments are addressed. We discuss the feasibility of a pipelined highly parallel processor dedicated to the implementation of a very fast tracking algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points, called patterns, for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at an input rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution tracks with transverse momentum above a few GeV and search for secondary vertices within typical level-2 times. (15 refs).

  5. The fast tracker processor for hadronic collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, F; Pietri, M; Varotto, G

    2000-01-01

    Perspective for precise and fast track reconstruction in future hadronic collider experiments are addressed. We discuss the feasibility of a pipelined highly parallelized processor dedicated to the implementation of a very fast algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points (patterns) for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at a rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution traces with transverse momentum above few GeV and search secondary vertexes within typical level-2 times. 15 Refs.

  6. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Neubauer, Mark S

    2011-01-01

    In hadron collider experiments, triggering the detector to store interesting events for offline analysis is a challenge due to the high rates and multiplicities of particles produced. Maintaining high trigger efficiency for the physics we are most interested in while at the same time suppressing high rate physics from inclusive QCD processes is a difficult but important problem. It is essential that the trigger system be flexible and robust, with sufficient redundancy and operating margin. Providing high quality track reconstruction over the full ATLAS detector by the start of processing at LVL2 is an important element to achieve these needs. As the instantaneous luminosity increases, the computational load on the LVL2 system will significantly increase due to the need for more sophisticated algorithms to suppress backgrounds. The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system. It is designed to enable early rejection of background events and thus leave more LVL2 execution time by moving...

  7. Silicon photomultiplier arrays for the LHCb scintillating fibre tracker

    CERN Multimedia

    Girard, Olivier Goran; Kuonen, Axel Kevin; Stramaglia, Maria Elena

    2017-01-01

    For the LHCb detector upgrade in 2019, a large scale scintillating fibre tracker read out with silicon photomultipliers is under construction. The harsh radiation environment (neutron and ionising radiation), the 40MHz read-out rate of the trigger less system and the large detector surface of 320m2 impose many challenges. We present the results from lab tests with 1MeV electrons and from the SPS test facility at CERN for the mulitchannel SiPM array that combines peak photo-detection efficiency of 48% and extremely low correlated noise. The measurements were performed with detectors irradiated with neutrons up to a fluence of 12*1011 neq/cm2 and single photon detection was maintained. First results of the characterization of the pre-series of 500 detectors delivered by Hamamatsu and irradiation studies on a large sample will be included.

  8. The construction of a microstrip gas tracker for Hermes

    International Nuclear Information System (INIS)

    Brand, J. van den

    1994-01-01

    To measure the spin structure of the nucleon, the HERMES experiment is planned at the HERA electron beam using a polarised internal gas target. A tracker is being built to reconstruct the vertex of the exciting particles. It consists of two drift chambers and two microstrip gas counter (MSGC) systems. The MSGC systems are housed into two gas gatight containers surrounding the beam pipe and located immediately after the exit flange of the target housing. The active area of the upper MSGC system covers an angular range of 40 mrad≤θ v ≤ 140 mrad by -170 mrad≤θ h ≤170 mrad. Below the beam pipe a second system is situated with the same acceptance. Each track within the acceptance is measured by two stations of three MSCGs having a strip orientation, of 0 , and +30 and -30 respectively with respect to the vertical axis. (HSI)

  9. LoyalTracker: Visualizing Loyalty Dynamics in Search Engines.

    Science.gov (United States)

    Shi, Conglei; Wu, Yingcai; Liu, Shixia; Zhou, Hong; Qu, Huamin

    2014-12-01

    The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.

  10. ATLAS Fast Tracker Status and Tracking at High luminosity LHC

    CERN Document Server

    Ilic, Nikolina; The ATLAS collaboration

    2018-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. This talk describes the electronics system used for the FTK’s massive parallelization. The installation, commissioning and running of the system is happening in 2016, and is detailed in this talk. Tracking at High luminosity LHC is also presented.

  11. CDF silicon vertex tracker: tevatron run II preliminary results

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Belforte, S.; Budagov, Yu.

    2002-01-01

    The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies

  12. Application of Vertically Integrated Electronics to Intelligent Trackers

    CERN Document Server

    Lipton, Ronald

    2010-01-01

    At Super-LHC luminosity it is expected that the standard suite of L1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the L1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional IC technology to incorporate chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  13. Technical Design Report for the: PANDA Straw Tube Tracker

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Aab, A; Albrecht, M; Becker, J; Csapó, A; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Klask, L; Koch, H; Kopf, B; Leiber, S; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Sowa, C; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Bianco, S; Brinkmann, K T; Hammann, C; Hinterberger, F; Kaiser, D; Kliemt, R; Kube, M; Pitka, A; Quagli, T; Schmidt, C; Schmitz, R; Schnell, R; Thoma, U; Vlasov, P; Walther, D; Wendel, C; Würschig, T; Zaunick, H G; Bianconi, A; Bragadireanu, M; Caprini, M; Pantea, D; Pantelica, D; Pietreanu, D; Serbina, L; Tarta, P D; Kaplan, D; Fiutowski, T; Idzik, M; Mindur, B; Przyborowski, D; Swientek, K; Czech, B; Kistryn, M; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Pysz, K; Schäfer, W; Siudak, R; Szczurek\\inst, A; Jowzaee, S; Kajetanowicz, M; Kamys, B; Kistryn, S; Korcyl, G; Korcyl, K; Krzemien, W; Magiera, A; Moskal, P; Palka, M; Rudy, Z; Salabura, P; Smyrski, J; Wrońska\\inst, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Flemming, H; Gerhardt, A; Götzen, K; Jordi, A F; Kalicy, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Patsyuk, M; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Traxler, M; Voss, B; Wieczorek, P; Wilms, A; Zühlsdorf\\inst, M; Abazov, V M; Alexeev, G; Arefiev, A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Festchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevskiy, A; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tomaradze, A; Xiao, T; Bettoni, D; Carassiti, V; Ramusino, A Cotta; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Savriè, M; Stancari, G; Bianchi, N; Gianotti, P; Guaraldo, C; Lucherini, V; Orecchini, D; Pace, E; Bersani, A; Bracco, G; Macri, M; Parodi, R F; Bremer, D; Dormenev, V; Drexler, P; Düren, M; Eissner, T; Föhl, K; Galuska, M; Gessler, T; Hayrapetyan, A; Hu, J; Koch, P; Kröck, B; Kühn, W; Lange, S; Liang, Y; Merle, O; Metag, V; Moritz, M; Münchow, D; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Ullrich, T; Werner, M; Xu, H; Euan, C; Hoek, M; Ireland, D; Keri, T; Montgomery, R; Protopopescu, D; Rosner, G; Seitz, B; Babai, M; Glazenborg-Kluttig, A; Kavatsyuk, M; Lemmens, P; Lindemulder, M; Löhner, H; Messchendorp, J; Moeini, H; Schakel, P; Schreuder, F; Smit, H; Tambave, G; Weele, J C van der; Veenstra\\inst, R; Sohlbach, H; Büscher, M; Deermann, D; Dosdall, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Henssler, S; Herten, A; Hu, Q; Kemmerling, G; Kleines, H; Kozlov, V; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Orfanitski, S; Prasuhn, D; Randriamalala, T; Ritman, J; Schadmand, S; Serdyuk, V; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Rigato, V; Fissum, S; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Bleser, S; Cahit, U; Cardinali, M; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Merkel, H; Michel, M; Espi, M C Mora; Müller, U; Pochodzalla, J; Prometeusz, J; Sanchez, S; Sanchez-Lorente, A; Schlimme, S; Sfienti, C; Weber\\inst, M Thiel T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Balanutsa, V; Chernetsky, V; Demekhin, A; Dolgolenko, A; Fedorets, P; Gerasimov, A; Goryachev, V; Varentsov, V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Böhmer, F; Dørheim, S; Ketzer, B; Paul, S; Hergemöller, A K; Khoukaz, A; Köhler, E; Täschner, A; Wessels, J; Varma, R; Chaterjee, A; Jha, V; Kailas, S; Roy, B; Yan, Y; Chinorat, K; Khanchai, K; Ayut, L; Pomrad, S; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Boucher, J; Chambert, V; Dbeyssi, A; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Ma, B; Marchand, D; Maroni, A; Ong, S; Ramstein, B; Rosier, P; Sudol, M; Tomasi-Gustafsson, E; Wiele, J Van de; Boca, G; Braghieri, A; Costanza, S; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Abramov, V; Belikov, N; Davidenko, A; Derevschikov, A; Goncharenko, Y; Grishin, V; Kachanov, V; Konstantinov, D; Kormilitsin, V; Melnik, Y; Levin, A; Minaev, N; Mochalov, V; Morozov, D; Nogach, L; Poslavskiy, S; Ryazantsev, A; Ryzhikov, S; Semenov, P; Shein, I; Uzunian, A; Vasiliev, A; Yakutin, A; Bäck, T; Cederwall, B; Makónyi, K; Tegnér, P E; Würtemberg, K M von; Belostotski, S; Gavrilov, G; Itzotov, A; Kashchuk, A; Kisselev, A; Kravchenko, P; Levitskaya, O; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; Mori, F De; Destefanis, M; Fava, L; Ferrero, L; Greco, M; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Zotti, L; Calvo, D; Coli, S; Remigis, P De; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Morra, O; Rivetti, A; Wheadon, R; Iazzi, F; Lavagno, A; Younis, H; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galander, B; Balkestal, L Caldeira; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Chlopik, A; Guzik, Z; Kosinski, K; Melnychuk, D; Wasilewski, A; Wojciechowski, M; Wronka, S; Wysocka, A; Zwieglinski, B; Bühler, P; Hartman, O; Kienle, P; Marton, J; Suzuki, K; Widmann, E; Zmeskal, J

    2012-01-01

    This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM-stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy-loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole \\Panda scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.

  14. Optical readout and control systems for the CMS tracker

    CERN Document Server

    Troska, Jan K; Faccio, F; Gill, K; Grabit, R; Jareno, R M; Sandvik, A M; Vasey, F

    2003-01-01

    The Compact Muon Solenoid (CMS) Experiment will be installed at the CERN Large Hadron Collider (LHC) in 2007. The readout system for the CMS Tracker consists of 10000000 individual detector channels that are time-multiplexed onto 40000 unidirectional analogue (40 MSample /s) optical links for transmission between the detector and the 65 m distant counting room. The corresponding control system consists of 2500 bi-directional digital (40 Mb/s) optical links based as far as possible upon the same components. The on-detector elements (lasers and photodiodes) of both readout and control links will be distributed throughout the detector volume in close proximity to the silicon detector elements. For this reason, strict requirements are placed on minimal package size, mass, power dissipation, immunity to magnetic field, and radiation hardness. It has been possible to meet the requirements with the extensive use of commercially available components with a minimum of customization. The project has now entered its vol...

  15. Performance and operation experience of the Atlas Semiconductor Tracker

    CERN Document Server

    Liang, Zhijun

    2014-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in the high luminosity, high radiation environment of the Large Hadron Collider at CERN. Well also report on the few im- provements of the SCT foreseen for the high energy run of the LHC. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruc- tion and invariant mass determination. We will report on the operation and performance of the detector including an overview of the issues encountered. We observe a significant increase in leakage currents from bulk damage due to non-ionizing radiation and make comparisons with the predictions.

  16. Production Performance of the ATLAS Semiconductor Tracker Readout System

    CERN Document Server

    Mitsou, V A

    2006-01-01

    The ATLAS Semiconductor Tracker (SCT) together with the pixel and the transition radiation detectors will form the tracking system of the ATLAS experiment at LHC. It will consist of 20000 single-sided silicon microstrip sensors assembled back-to-back into modules mounted on four concentric barrels and two end-cap detectors formed by nine disks each. The SCT module production and testing has finished while the macro-assembly is well under way. After an overview of the layout and the operating environment of the SCT, a description of the readout electronics design and operation requirements will be given. The quality control procedure and the DAQ software for assuring the electrical functionality of hybrids and modules will be discussed. The focus will be on the electrical performance results obtained during the assembly and testing of the end-cap SCT modules.

  17. Large liquid-scintillator trackers for neutrino experiments

    CERN Document Server

    Benussi, L; D'Ambrosio, N; Déclais, Y; Dupraz, J P; Fabre, Jean-Paul; Fanti, V; Forton, E; Frekers, D; Frenkel, A; Girerd, C; Golovkin, S V; Grégoire, G; Harrison, K; Jonkmans, G; Jonsson, P; Katsanevas, S; Kreslo, I; Marteau, J; Martellotti, G; Martínez, S; Medvedkov, A M; Moret, G; Niwa, K; Novikov, V; Van Beek, G; Penso, G; Vasilchenko, V G; Vuilleumier, J L; Wilquet, G; Zucchelli, P; Kreslo, I E

    2002-01-01

    Results are given on tests of large particle trackers for the detection of neutrino interactions in long-baseline experiments. Module prototypes have been assembled using TiO$_2$-doped polycarbonate panels. These were subdivided into cells of $\\sim 1$~cm$^2$ cross section and 6~m length, filled with liquid scintillator. A wavelength-shifting fibre inserted in each cell captured a part of the scintillation light emitted when a cell was traversed by an ionizing particle. Two different fibre-readout systems have been tested: an optoelectronic chain comprising an image intensifier and an Electron Bombarded CCD (EBCCD); and a hybrid photodiode~(HPD). New, low-cost liquid scintillators have been investigated for applications in large underground detectors. Testbeam studies have been performed using a commercially available liquid scintillator. The number of detected photoelectrons for minimum-ionizing particles crossing a module at different distances from the fibre readout end was 6 to 12 with the EBCCD chain and ...

  18. Development and performance test of a solar tracker

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, T.H.; Hasib, Z.M. [Bangladesh Univ. of Engineering and Technology, Dhaka (Bangladesh). Dept. of Mechanical Engineering

    2010-07-01

    This paper discussed the development of a low-cost solar tracker device designed for use in developing countries. Expert control sensors and input-output interfaces were integrated with a tracking mechanism to increase the energy generation efficiency of the solar panel. Light sensing devices were used to automatically track the sun's rays. The controller sensors were integrated with the tracking mechanism. The control system was implemented on a microcontroller-based embedded system. A graphical user interface (GUI) was incorporated with a commercial software program in order to make the system more user-friendly. Performance tests demonstrated that the tracking system increases the amount of power that the solar panels could obtain. The efficiency of the panels increased by between 18 and 23 percent. Operators were able to control the movement of individual solar panels from a control room. The system also alerted operators of environmental damage to the panels. 12 refs., 2 tabs., 13 figs.

  19. Two-axis tracker for solar panels and the like

    Science.gov (United States)

    Liao, Henry H.

    2013-04-16

    A tracker including an outer post having elongated bore and a lower end mounted on a sub-structure, an inner pole rotatably received in the elongated bore, a lower bearing in the bore adjacent a lower end of the outer post and attached thereto to be constrained from lateral movement and mounted on the sub-structure such that a lower end of the inner pole rests on and is supported by the lower bearing, an upper bearing near an upper end of the outer post, a circumferential drive supported on the outer post for rotating the inner pole relative to the outer post, such that substantially a full weight of a load on the inner pole is directly transmitted to the sub-structure and lateral force and torque leverage are placed on a full length of the outer post by way of the upper and lower bearing.

  20. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    Science.gov (United States)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  1. Adaptive double-integral-sliding-mode-maximum-power-point tracker for a photovoltaic system

    Directory of Open Access Journals (Sweden)

    Bidyadhar Subudhi

    2015-10-01

    Full Text Available This study proposed an adaptive double-integral-sliding-mode-controller-maximum-power-point tracker (DISMC-MPPT for maximum-power-point (MPP tracking of a photovoltaic (PV system. The objective of this study is to design a DISMC-MPPT with a new adaptive double-integral-sliding surface in order that MPP tracking is achieved with reduced chattering and steady-state error in the output voltage or current. The proposed adaptive DISMC-MPPT possesses a very simple and efficient PWM-based control structure that keeps switching frequency constant. The controller is designed considering the reaching and stability conditions to provide robustness and stability. The performance of the proposed adaptive DISMC-MPPT is verified through both MATLAB/Simulink simulation and experiment using a 0.2 kW prototype PV system. From the obtained results, it is found out that this DISMC-MPPT is found to be more efficient compared with that of Tan's and Jiao's DISMC-MPPTs.

  2. Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation

    Science.gov (United States)

    Orfiz, Gerardo G.; Lee, Shinhak

    2006-01-01

    A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.

  3. 60 GHz wireless data transfer for tracker readout systems—first studies and results

    International Nuclear Information System (INIS)

    Dittmeier, S.; Berger, N.; Schöning, A.; Soltveit, H.K.; Wiedner, D.

    2014-01-01

    To allow highly granular trackers to contribute to first level trigger decisions or event filtering, a fast readout system with very high bandwidth is required. Space, power and material constraints, however, pose severe limitations on the maximum available bandwidth of electrical or optical data transfers. A new approach for the implementation of a fast readout system is the application of a wireless data transfer at a carrier frequency of 60 GHz. The available bandwidth of several GHz allows for data rates of multiple Gbps per link. 60 GHz transceiver chips can be produced with a small form factor and a high integration level. A prototype transceiver currently under development at the University of Heidelberg is briefly described in this paper. To allow easy and fast future testing of the chip's functionality, a bit error rate test has been developed with a commercially available transceiver. Crosstalk might be a big issue for a wireless readout system with many links in a tracking detector. Direct crosstalk can be avoided by using directive antennas, linearly polarized waves and frequency channeling. Reflections from tracking modules can be reduced by applying an absorbing material like graphite foam. Properties of different materials typically used in tracking detectors and graphite foam in the 60 GHz frequency range are presented. For data transmission tests, links using commercially available 60 GHz transmitters and receivers are used. Studies regarding crosstalk and the applicability of graphite foam, Kapton horn antennas and polarized waves are shown

  4. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    Directory of Open Access Journals (Sweden)

    I Wayan Sutaya

    2016-08-01

    Full Text Available prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 bit sebagai otak utama pada penelitian ini menjadikan produk ini berbiaya rendah. Pengujian yang dilakukan menunjukkan bahwa solar tracker cerdas dibandingkan dengan solar tracker biasa mempunyai perbedaan konsumsi daya baterai yang sangat signifikan yaitu terjadi penghematan sebesar 85 %. Besar penghematan konsumsi daya ini tentunya bukan sebuah angka konstan melainkan tergantung seberapa besar noise yang dikenakan pada alat solar tracker. Untuk sebuah perlakuan yang sama, maka semakin besar noise semakin besar pula perbedaan penghematan konsumsi daya pada solar tracker yang cerdas. Kata-kata kunci: solar tracker, filter digital, mikrokontroler 8 bit, konsumsi daya Abstract This research had made a prototype of smart solar tracker product based on microcontroller AVR 8 bit. The solar tracker used digital filter IIR (Infinite Impulse Response on its software. Filter programming needs 32 bit multiplication but the processor inside of the microcontroller that used in this research is 8 bit. This multiplication is only can be solved on microcontroller 8 bit by using assembly language in programming. The language is a hardware level language. The smart solar tracker using the microcontroller 8 bit as a main brain in this research made the product had a low cost. The test results show that the comparison in saving of baterai power consumption between the smart solar tracker and the normal one is 85 %. The percentage of the saving indubitably is not a constant

  5. The effect of latitude on the performance of different solar trackers in Europe and Africa

    International Nuclear Information System (INIS)

    Bahrami, Arian; Okoye, Chiemeka Onyeka; Atikol, Ugur

    2016-01-01

    Highlights: • The effect of latitude on the performance of seven solar trackers is analyzed in Europe and Africa. • The performance of the trackers is ranked according to the area location latitude. • The results showed five ranking patterns. • Based on the five patterns and the site latitude, designers can select the best available tracker. - Abstract: In this paper, the effect of latitude on the performance of different solar trackers is examined. The hourly solar radiation data of different locations around Europe and Africa measured on a horizontal surface is collected and utilized. Widely validated Perez anisotropic model is used to predict the diffuse component of the solar radiation on an inclined surface. Different solar trackers namely, Full/dual-axis, East–West (EW), North–South (NS), Inclined East–West (IEW), and Vertical-axis (V) trackers are considered in calculating the available solar potential of the locations. The performance of the solar trackers in terms of the energy gain is ranked according to the area location latitudes. The results show that the tracking performance is highly dependent on the locations, thus changes with the latitude. The percentage variation among the implemented one-axis tracking options relative to dual-axis trackers ranges from 0.42% to 23.4%. Overall, the increase in the energy gain of dual-axis trackers compared to the optimal fixed panel for the locations varies from 17.72% to 31.23%, thus emphasizes the importance of solar trackers. Finally, the study is expected to aid designers in the selection and installation of appropriate solar trackers in the regions.

  6. The error in total error reduction.

    Science.gov (United States)

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Errors in Neonatology

    OpenAIRE

    Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano

    2013-01-01

    Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...

  8. Systematic Procedural Error

    National Research Council Canada - National Science Library

    Byrne, Michael D

    2006-01-01

    .... This problem has received surprisingly little attention from cognitive psychologists. The research summarized here examines such errors in some detail both empirically and through computational cognitive modeling...

  9. Human errors and mistakes

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1993-01-01

    Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)

  10. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  11. Comparison of silicon strip tracker module size using large sensors from 6 inch wafers

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.

  12. Large-scale module production for the CMS silicon strip tracker

    CERN Document Server

    Cattai, A

    2005-01-01

    The Silicon Strip Tracker (SST) for the CMS experiment at LHC consists of 210 m**2 of silicon strip detectors grouped into four distinct sub-systems. We present a brief description of the CMS Tracker, the industrialised detector module production methods and the current status of the SST with reference to some problems encountered at the factories and in the construction centres.

  13. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  14. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea J. M.; Krijnen, Wim P.; Van der Schans, Cees P.; De Groot, Martijn

    Purpose: To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  15. Reliability and validity of ten consumer activity trackers depend on walking speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea; Krijnen, Wim; van der Schans, Cees; de Groot, Martijn

    Purpose: To examine the test–retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  16. A framework for performance evaluation of model-based optical trackers

    NARCIS (Netherlands)

    Smit, F.A.; Liere, van R.

    2008-01-01

    We describe a software framework to evaluate the performance of model-based optical trackers in virtual environments. The framework can be used to evaluate and compare the performance of different trackers under various conditions, to study the effects of varying intrinsic and extrinsic camera

  17. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  18. Alignment of the CMS Silicon Strip Tracker during stand-alone Commissioning

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A.S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinnessr, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  19. Learning from Errors

    Science.gov (United States)

    Metcalfe, Janet

    2017-01-01

    Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…

  20. Feasibility study to use an SRAM-based FPGA in the readout electronics of the upgraded LHCb outer tracker detector

    International Nuclear Information System (INIS)

    Faerber, Christian

    2014-01-01

    This thesis presents a study of the feasibility to use SRAM-based FPGAs as central component of the upgraded LHCb Outer Tracker readout electronics. The FPGA should contain the functionality of a TDC and should provide fast data links using multi-GBit/s transceivers. The TDC core that was developed provides 5 bit time measurements for 32 channels with a bin size of 780 ps. The TDC has the required time resolution of better than 1 ns. This was achieved by manually placing every logic element of the TDC channels and with an iterative procedure feeding timing measurements back to the Place and Route step of the router software. A transceiver and TDC card, and an adapter board for the existing readout electronics was developed. Both boards were used successfully to read out drift times from an Outer Tracker straw-tube module in a cosmic setup. To qualify the proposed electronics for the expected radiation levels an irradiation test with 22 MeV protons and two FPGA boards was performed up to a total ionization dose of 30 Mrad. Both chips sustained the irradiation expected for the full life time of the upgraded LHCb detector of up to 30 krad. After an irradiation dose of 150 krad the first deteriorations of the performance of the chips were observed. The proton cross section for configuration bit flips was determined to be 1.6.10 16 cm 2 per bit. The measured error rate scaled to the upgrade environment would correspond to a manageable firmware error rate.

  1. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  2. Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems.

    Science.gov (United States)

    Bueeler, Michael; Mrochen, Michael

    2005-01-01

    The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.

  3. Medication Errors: New EU Good Practice Guide on Risk Minimisation and Error Prevention.

    Science.gov (United States)

    Goedecke, Thomas; Ord, Kathryn; Newbould, Victoria; Brosch, Sabine; Arlett, Peter

    2016-06-01

    describes the key concepts of the EU good practice guidance for defining, classifying, coding, reporting, evaluating and preventing medication errors. This guidance should contribute to the safe and effective use of medicines for the benefit of patients and public health.

  4. The Soldier Fitness Tracker: global delivery of Comprehensive Soldier Fitness.

    Science.gov (United States)

    Fravell, Mike; Nasser, Katherine; Cornum, Rhonda

    2011-01-01

    Carefully implemented technology strategies are vital to the success of large-scale initiatives such as the U.S. Army's Comprehensive Soldier Fitness (CSF) program. Achieving the U.S. Army's vision for CSF required a robust information technology platform that was scaled to millions of users and that leveraged the Internet to enable global reach. The platform needed to be agile, provide powerful real-time reporting, and have the capacity to quickly transform to meet emerging requirements. Existing organizational applications, such as "Single Sign-On," and authoritative data sources were exploited to the maximum extent possible. Development of the "Soldier Fitness Tracker" is the most recent, and possibly the best, demonstration of the potential benefits possible when existing organizational capabilities are married to new, innovative applications. Combining the capabilities of the extant applications with the newly developed applications expedited development, eliminated redundant data collection, resulted in the exceeding of program objectives, and produced a comfortable experience for the end user, all in less than six months. This is a model for future technology integration. (c) 2010 APA, all rights reserved.

  5. A Hardware Fast Tracker for the ATLAS trigger

    International Nuclear Information System (INIS)

    Asbah, N.

    2016-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10 34 cm -2 · s -1 . After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 μs, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  6. The Phase II ATLAS Pixel Upgrade: The Inner Tracker (ITk)

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ITk (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m^2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to eta < 3.2 and two to eta < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions. Support...

  7. Simulation of an all silicon tracker for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Muenker, Magdalena; Nuernerg, Andreas [CERN (Switzerland); University of Bonn (Germany)

    2016-07-01

    CLIC is a proposed future electron-positron linear collider with a centre-of-mass energy up to 3 TeV. The aim of high precision measurements at CLIC is driving the design of the detector for CLIC. To perform a precise measurement of the Higgs recoil mass a momentum resolution of σ{sub p{sub T}}/p{sub T}{sup 2} ∝2 . 10{sup -5} GeV{sup -1} is required. This imposes a single point tracking resolution of ∝7 μm. To reach this aim an all silicon tracker is foreseen for CLIC. A simulation chain has been set up to study the performance of different silicon sensor designs. This simulation chain consists of a GEANT4 simulation to model the energy deposit in silicon, a finite element simulation of the charge drift and signal formation with TCAD and a fast parametric modelling of the front-end electronics. By that energy fluctuations, electronic noise and the digitalisation of the readout signal are taken into account. Furthermore this tool is used to predict the sensor performance in terms of efficiency, cluster-size and resolution. This framework is used to study the performance of e.g. sensors with different pitch and thickness. Various incident angles of charged particles with respect to the sensor surface and the effect of a magnetic field are taken into account. The simulation chain is validated with data.

  8. Conceptual design report for the Solenoidal Tracker at RHIC

    International Nuclear Information System (INIS)

    1992-01-01

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of Δp/p ∼ 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,Δp/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets

  9. CMS Tracker Alignment Performance Results Start-Up 2017

    CERN Document Server

    CMS Collaboration

    2017-01-01

    During the LHC shutdown in Winter 2016/17, the CMS pixel detector, the inner component of the CMS Tracker, was replaced by the Phase-1 upgrade detector. Among others improvements, the new pixel detector consists of four instead of three layers in the central barrel region (BPIX) and three instead of two disks in the endcap regions (FPIX). In this report, performance plots of the first pixel-detector alignment results are presented, which were obtained with cosmic-ray data taken prior to the start of the 2017 LHC pp operation. Alignment constants have been derived using the data collected initially at 0T and later at 3.8T magnetic field to the level of single module positions in the pixel detector, while keeping the alignment parameters of the strip detector fixed at the values determined in the end of 2016. The complete understanding of the alignment and biases was derived by using two algorithms, Millepede-II and HipPy. The results confirm each other.

  10. A transition radiation tracker (TRT) for the Atlas experiment

    International Nuclear Information System (INIS)

    Fuchs, W.

    1995-05-01

    The LHC (Large Hadron Collider) foresees two general purpose detectors, CMS and ATLAS. The inner ATLAS detector will make use of a Transition Radiation Tracker (TRT), which consists of a barrel TRT and a forward TRT. The TRT will provide additional rejection power in order to reduce the jet background to less than 10 % of the inclusive isolated electron signal. Transition Radiation (TR) is generated by charged particles when they cross an interface of changing dielectric behaviour (radiator). The intensity of TR produced is proportional to the γ-factor (γ=E/mc 2 ). A short introduction of TR theory is followed by optimization studies of the radiator and the working gas mixture. TR is detected by gas proportional counters (straws). The electrical and mechanical characteristics of the straws were studied. Furthermore, the straw's operation at the presence of the 2 T magnetic field was investigated. Any signal corresponds to a heat load which has to be cooled in order to provide stable conditions. A cooling system is presented. The induced signal exhibits a long lasting component (ion tail). This ion tail tends to influence signals which are closely spaced in time. A filter was designed which suppresses the ion tail (pole/zero network). The physics performance of some prototypes was studied, in particular the hadron rejection and the tracking capability. A full-scale prototype (9600 channels) was designed and manufactured. A summary of the machinery and tooling involved is presented. (author)

  11. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  12. Development of a closed and open loop solar tracker technology

    Directory of Open Access Journals (Sweden)

    Aurélio Gouvêa Melo

    2017-05-01

    Full Text Available Solar energy is among the renewable energy sources that received greater addition in installed capacity. However, it accounts for a small fraction of the energy matrix of most countries. Electric energy generation by solar systems can be improved through tracking. This work aimed to develop and compare a closed and an open loop solar tracking system. The closed loop system was developed using Light Dependent Resistors. An algorithm was developed for the open loop tracker as a function of the geometric relation between the sun and the photovoltaic module. A simulation was run to compare this algorithm with a system using tracking at fixed time intervals, for clear sky conditions, with different tracking parameters and for five different latitudes. No significant difference was observed between the proposed open loop tracking algorithm and the fixed time interval algorithm for the tracking parameters evaluated. The open and closed loop solar tracking systems were compared experimentally in Rio das Ostras, Brazil (22.49 °S 41.92° W. An average gain of 28.5% was observed for the open loop tracking system over a latitude tilted system and 33.0% for the closed loop tracking system.

  13. Planar waveguide concentrator used with a seasonal tracker.

    Science.gov (United States)

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

  14. The Silicon Ministrip Detector of the DELPHI Very Forward Tracker

    CERN Document Server

    AUTHOR|(CDS)2067985

    1996-01-01

    The subject of this work is the design, test and construction of a new silicon tracking detector for the extreme forward region of the DELPHI experiment at LEP. I joined the Very Forward Tracker (VFT) Ministrip group in 1993, at a time when the upgrade of the DELPHI tracking system was proposed. My first task was to participate in the design of the ministrip detector for the VFT. This included the optimisation of the detector layout in simulations and the study of prototype detectors in the testbeam. In 1994 I became responsible for the tests and assembly' of the VFT ministrip detector at CERN. The main focus of my work was the study of the performance of a large variety of detectors in beam tests. This included the preparation of the test setup, the tests of different detectors and the analysis of the measurements. With these measurements it is possible to compare the advantages and disadvantages of various new layouts for large pitch silicon strip detectors. In particular the signal response and spatial res...

  15. Scintillating Fibre Tracker Front-End Electronics for LHCb upgrade

    CERN Multimedia

    Comerma, A

    2014-01-01

    The LHCb detector will be upgraded during the next LHC shutdown in 2018/19. The tracker system will undergo major changes. Its components will be replaced by new technologies in order to cope with the increased hit occupancy and the higher radiation dose. A detector made of scintillating fibres read out by silicon photomultipliers (SiPM) is envisaged for this upgrade. Even if this technology has proven to achieve high efficiency and spatial resolution, its integration within a LHC experiment bears new challenges. The detector will consist of 12 planes of 5 to 6 layers of 250μm fibres stacked covering a total area of 5x6m^2 . The desired spacial resolution on the reconstructed hit is 100μm. SiPMs have been adapted to the detector geometry reducing the dead area between channels. A total of 64 channels are arranged in a single die with common cathode connection and channel size of 0.23x1.32mm^2 . Two dies are packaged together with only 0.25mm of dead area between them. Radiation tolerance of such devices is ...

  16. TAB Bonded SSD Module for the STAR and ALICE Trackers

    CERN Document Server

    Lutz, Jean Robert; Baudot, J; Bonnet, D; Coffin, J P; Germain, M; Gojak, C; Jundt, F; Kühn, C E; Suire, C; Tarchini, A; Berst, D; Clauss, G; Colledani, C; Dulinski, W; Boucham, A; Bouvier, S; Castillo, J; Drancourt, C; Erazmus, B; Guilloux, G; Martin, L; Roy, C

    1999-01-01

    Presentation made at LEB99, 20-24 September 1999A novel compact detector module has been produced by the "IReS"-"Subatech"-"Thomson-CSF-Detexis" collaboration. It includes a Double-Sided (DS) Silicon Strip Detector (SSD) and the related Front End Electronics (FEE) located on two hybrids, one for the N side and one for the P side. Bumpless Tape Automated Bonding (TAB) is used to connect the detector to the hybrids by means of microcables with neither wirebonding nor pitch adapter. Each of the six dedicated ALICE128C FE chip [1], located on the hybrid, is TABed on identical single layer microcables, which connect its inputs to the DS SSD and its outputs to the hybrid [2]. These microcables are bent in order to fold over the two hybrids on the DS SSD. This module meets the specifications of two experiments, ALICE (A Large Ion Collider Experiment) on the LHC accelerator at CERN [3] and STAR (Solenoid Tracker At Rhic) on the RHIC accelerator at BNL (Brookhaven National Laboratory)[4]. It can be used with air cooli...

  17. Commissioning and first data with the ATLAS silicon microstrip tracker

    International Nuclear Information System (INIS)

    Rohne, Ole Myren

    2010-01-01

    The ATLAS experiment at the CERN large hadron collider (LHC) has started taking data this autumn with the inauguration of the LHC. The semiconductor tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has recently been installed inside the ATLAS experimental hall. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analysed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has been performed. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The current status of the SCT will be reviewed, including results from the latest data-taking periods in autumn 2008, and from the detector alignment. We will report on the commissioning of the detector, including overviews on services, connectivity and observed problems. Particular emphasis will also be placed on the SCT data taken in the latest running period with the entire ATLAS detector participating. The SCT commissioning and running experience will then be used to extract valuable lessons for future silicon strip detector projects.

  18. The First Prototype for the FastTracker Processing Unit

    CERN Document Server

    Andreani, A; The ATLAS collaboration; Beretta, M; Bogdan, M; Citterio, M; Alberti, F; Giannetti, P; Lanza, A; Magalotti, D; Piendibene, M; Shochet, M; Stabile, A; Tang, J; Tompkins, L

    2012-01-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment complexity and the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive selections. We present the first prototype of a new Processing Unit, the core of the FastTracker processor for Atlas, whose computing power is such that a couple of hundreds of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV in the ATLAS events up to Phase II instantaneous luminosities (5×1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below hundreds of microseconds. We plan extremely powerful, very compact and low consumption units for the far future, essential to increase efficiency and purity of the Level 2 selected samples through the intensive use of tracking. This strategy requires massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generall...

  19. Recent aging studies for the ATLAS transition radiation tracker

    CERN Document Server

    Capéans-Garrido, M; Anghinolfi, F; Arik, E; Baker, O K; Baron, S; Benjamin, D; Bertelsen, H; Bondarenko, V; Bychkov, V; Callahan, J; Cardiel-Sas, L; Catinaccio, A; Cetin, S A; Cwetanski, Peter; Dam, M; Danielsson, H; Dittus, F; Dologshein, B; Dressnandt, N; Driouichi, C; Ebenstein, W L; Eerola, Paule Anna Mari; Farthouat, Philippe; Fedin, O; Froidevaux, D; Gagnon, P; Grichkevitch, Y; Grigalashvili, N S; Hajduk, Z; Hansen, P; Kayumov, F; Keener, P T; Kekelidze, G D; Khristatchev, A; Konovalov, S; Koudine, L; Kovalenko, S; Kowalski, T; Kramarenko, V A; Krüger, K; Laritchev, A; Lichard, P; Luehring, F C; Lundberg, B; Maleev, V; Markina, I; McFarlane, K W; Mialkovski, V; Mindur, B; Mitsou, V A; Morozov, S; Munar, A; Muraviev, S; Nadtochy, A; Newcorner, F M; Ogren, H; Oh, S H; Olszowska, J; Passmore, S; Patritchev, S; Peshekhonov, V D; Petti, R; Price, M; Rembser, C; Rohne, O; Romaniouk, A; Rust, D R; Ryabov, Yu; Ryzhov, V; Shchegelskii, V; Seliverstov, D M; Shin, T; Shmeleva, A; Smirnov, S; Sosnovtsev, V V; Soutchkov, V; Spiridenkov, E; Szczygiel, R; Tikhomirov, V; Van Berg, R; Vassilakopoulos, V I; Vassilieva, L; Wang, C; Williams, H H; Zalite, A

    2004-01-01

    The transition radiation tracker (TRT) is one of the three subsystems of the inner detector of the ATLAS experiment. It is designed to operate for 10 yr at the LHC, with integrated charges of similar to 10 C/cm of wire and radiation doses of about 10 Mrad and 2 multiplied by 10**1**4 neutrons/cm**2. These doses translate into unprecedented ionization currents and integrated charges for a large-scale gaseous detector. This paper describes studies leading to the adoption of a new ionization gas regime for the ATLAS TRT. In this new regime, the primary gas mixture is 70%Xe-27%CO**2-3%O**2. It is planned to occasionally flush and operate the TRT detector with an Ar-based ternary mixture, containing a small percentage of CF**4, to remove, if needed, silicon pollution from the anode wires. This procedure has been validated in realistic conditions and would require a few days of dedicated operation. This paper covers both performance and aging studies with the new TRT gas mixture. 12 Refs.

  20. Commodity Tracker: Mobile Application for Food Security Monitoring in Haiti

    Science.gov (United States)

    Chiu, M. T.; Huang, X.; Baird, J.; Gourley, J. R.; Morelli, R.; de Lanerolle, T. R.; Haiti Food Security Monitoring Mobile App Team

    2011-12-01

    Megan Chiu, Jason Baird, Xu Huang, Trishan de Lanerolle, Ralph Morelli, Jonathan Gourley Trinity College, Computer Science Department and Environmental Science Program, 300 Summit Street, Hartford, CT 06106 megan.chiu@trincoll.edu, Jason.baird@trincoll.edu, xu.huang@trincoll.edu, trishan.delanerolle@trincoll.edu, ralph.morelli@trincoll.edu, jonathan.gourley@trincoll.edu Price data for Haiti commodities such as rice and potatoes have been traditionally recorded by hand on paper forms for many years. The information is then entered onto computer manually, thus making the process a long and arduous one. With the development of the Haiti Commodity Tracker mobile app, we are able to make this commodity price data recording process more efficient. Officials may use this information for making inferences about the difference in commodity prices and for food distribution during critical time after natural disasters. This information can also be utilized by governments and aid agencies on their food assistance programs. Agronomists record the item prices from several sample sites in a marketplace and compare those results from other markets across the region. Due to limited connectivity in rural areas, data is first saved to the phone's database and then retransmitted to a central server via SMS messaging. The mobile app is currently being field tested by an international NGO providing agricultural aid and support in rural Haiti.

  1. A parallel non-neural trigger tracker for the SSC

    International Nuclear Information System (INIS)

    Farber, R.M.; Kennison, W.; Lapedes, A.S.

    1991-01-01

    The Superconducting Super Collider (SSC) is a major project promising to open the vistas of very high particle physics. When the SSC is in operation, data will be produced at a staggering rate. Current estimates place the raw data coming our of the proposed silicon detector system at 2.5 x 10 16 bits/second. Clearly, storing all events for later off-line processing is totally impracticable. A hierarchy of triggers, firing only on events meeting increasingly specific criteria, are planned to cull interesting events from the flood of information. Each event consists of a sequence of isolated ''hits'', caused by particles hitting various parts of the detector. Collating these hits into the tracks of the approximately 500 particles/event, and then quickly deciding which events meet the criteria for later processing, is essential if the SSC is to produce usable information. This paper addresses the need for real-time triggering and track reconstruction. A benchmarked and buildable algorithm, operable at the required data rates, is described. The use of neural nets, suggested by other researchers, is specifically avoided as unnecessary and impractical. Instead, a parallel algorithm, and associated hardware architecture using only conventional technology, is presented. The algorithm has been tested on fully scaled up, extensively detailed, simulated SSC events, with extremely encouraging results. Preliminary hardware analysis indicate that the trigger/tracker may be built within proposed SSC budget guidelines. 7 refs., 4 figs

  2. Silicon Sensor Development for the CMS Tracker Upgrade

    CERN Document Server

    Auzinger, Georg; Elliott-Peisert, Anna

    The Large Hadron Collider at the European Council for Nuclear Research in Geneva is scheduled to undergo a major luminosity upgrade after its lifetime of ten years of operation around the year 2020, to maximize its scientific discovery potential. The total integrated luminosity will be increased by a factor of ten, which will dramatically change the conditions under which the four large detectors at the LHC will have to operate. The Compact Muon Solenoid, which has contributed to the recent discovery of a new, Higgs-like boson is one of them. Its innermost part -- the so-called tracker -- is a high-precision instrument that measures the created particles' trajectories by means of silicon detectors. With a total surface of more than 200 square-meters it is the largest device of its kind ever built. The increase in instantaneous luminosity in the upgraded LHC will lead to a dramatically increased track density at the interaction points of the colliding beams and thus also to a much more hostile radiation env...

  3. The CDF II eXtremely Fast Tracker Upgrade

    CERN Document Server

    Fedorko, I; Errede, D; Gerberich, H; Junk, T; Kasten, M; Levine, S; Mokos, R; Pitts, K; Rogers, E; Veramendi, G; Azzurri, P; Donati, S; Staveris-Polykalas, A; Cochran, E; Efron, J; Gartner, J; Hughes, R; Johnson, M; Kilminster, B; Lannon, K; McKim, J; Olivito, D; Parks, B; Slaunwhite, J; Winer, B; Dittmann, J; Hewamanage, S; Krumnack, N; Wilson, J S; Erbacher, R; Forrest, R; Ivanov, A; Soha, A; Flanagan, G; Jones, T; Holm, S; Klein, R; Schmidt, E E; Scott, L; Shaw, T; Wilson, P J

    2008-01-01

    The CDF II eXtremely Fast Tracker (XFT) is the trigger processor which reconstructs charged particle tracks in the transverse plane of the central tracking chamber. The XFT tracks are also extrapolated to the electromagnetic calorimeter and muon chambers to generate trigger electron and muon candidates. The XFT is crucial for the entire CDF II physics program: it detects high pT leptons from W/Z and heavy flavor decays and, in conjunction with the Level 2 processors, it identifies secondary vertices from beauty decays. The XFT has thus been crucial for the recent measurement of the oscilation and Σb discovery. The increase of the Tevatron instantaneous luminosity demanded an upgrade of the system to cope with the higher occupancy of the chamber. In the upgraded XFT, three dimensional tracking reduces the level of fake tracks and measures the longitudinal track parameters, which strongly reinforce the trigger selections. This allows to mantain the trigger perfectly efficient at the record luminosities 2–3·...

  4. Construction, Test And Calibration of the GLAST Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sgro, C.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Belli, F.; Bonamente, E.; Borden, T.; Bregeon, J.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De Angelis, A.; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; /INFN, Pisa /Pisa U. /UC, Santa Cruz /INFN, Trieste /Rome U.,Tor Vergata /SLAC /INFN, Bari /Bari U. /INFN, Perugia /Perugia U. /Udine U. /Hiroshima U. /Maryland U., JCA /Tokyo Inst. Tech. /JAXA, Sagamihara /INFN, Padua /Padua U. /Pisa, Scuola Normale Superiore /NASA, Goddard

    2009-06-05

    The Gamma-ray Large Area Space Telescope represents a great advance in space application of silicon detectors. With a surface of 80 m{sup 2} and about 1 M readout channels it is the largest silicon tracker ever built for a space experiment. GLAST is an astro-particle mission that will study the mostly unexplored, high energy (20 MeV-300 GeV) spectrum coming from active sources or diffused in the Universe. The detector integration and test phase is complete. The full instrument underwent environmental testing and the spacecraft integration phase has just started: the launch is foreseen in late 2007. In the meanwhile the spare modules are being used for instrument calibration and performance verification employing the CERN accelerator complex. A Calibration Unit has been exposed to photon, electron and hadron beams from a few GeV up to 300 GeV. We report on the status of the instrument and on the calibration campaign.

  5. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Neubauer, M; The ATLAS collaboration

    2009-01-01

    As the LHC luminosity is ramped up to the design level of 10^{34} cm^{-2} s^{-1} and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting the massive parallelism of Associative Memori...

  6. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  7. Performance and operation experience of the Atlas Semiconductor Tracker

    CERN Document Server

    Liang, Z; The ATLAS collaboration

    2013-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in the high luminosity, high radiation environment of the Large Hadron Collider at CERN. We’ll also report on the few improvements of the SCT foreseen for the high energy run of the LHC. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alig...

  8. Performance and operation of the semiconductor tracker (SCT)

    CERN Document Server

    Dervan, P; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational and the hit efficiency exceeds the design specifications. We will report on the operation and performance of the detector, including an ove...

  9. Performance and Operation Experience of the ATLAS Semiconductor Tracker

    CERN Document Server

    Gallop, B J; The ATLAS collaboration

    2013-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation an...

  10. Performance and Operation Experience of the ATLAS Semiconductor Tracker

    CERN Document Server

    Gallop, B J

    2014-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find $99.3\\%$ of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation...

  11. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  12. Development of a tracker based on GEM optically readout

    CERN Document Server

    Torchia, Natalia

    The high-resolution tracking of low energy release particles had a remarkable development in recent years and will give a crucial contribution in different sectors, from medical applications to those in dark matter search. Thanks to their characteristics (high space and time resolution, low material budget, large volumes, low costs) the gas detectors have shown to be ideal candidates for this type of trackers. In particular, a very promising technique regards the optical reading of the light produced by the de-excitation of gas molecules during the processes of electron multiplication. This type of detector has been made possible thanks to the great progresses achieved in last years in the performance in micro pattern gas detector and in the evolution of the CMOS technology which led to the production of sensors able of offering high sensitivity and granularity combined with a very low noise level. In this thesis I studied the performance of a two prototypes where the light is produced through the multiplicat...

  13. Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349845; The ATLAS collaboration

    2017-01-01

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS Inner Detector (ID) are described for different data taking conditions in proton-proton collisions at the Large Hadron Collider (LHC). These studies are performed using data collected during the first (Run 1) and the second (Run 2) periods of LHC operation and are compared with Monte Carlo simulations. The performance of the TRT, operating with Xe-based (Xe-based) and Argon-based (Ar-based) gas mixtures and its dependence on the TRT occupancy is presented. No significant degradation of position measurement accuracy was found up to occupancies of about 20\\% in Run 1. The relative number of reconstructed tracks in ID that also have a extension in the TRT was observed to be almost constant with the increase of occupancies up to 50\\%. Even in configurations where tracks are close to each other, the reconstruction algorithm is still able to find the correct TRT hits and properly reconstruct the tracks.

  14. New Prototype of Photovoltaic Solar Tracker Based on Arduino

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2017-08-01

    Full Text Available The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.

  15. A Fast hardware tracker for the ATLAS Trigger

    CERN Document Server

    Pandini, Carlo Enrico; The ATLAS collaboration

    2015-01-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing at 40 MHz to about 1 kHz for a designed LHC luminosity of 10$^{34}$ cm$^{-2}$ s$^{-1}$. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz and based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGA) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by ~8000 standard-cell ASICs named Associative Memories. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult sign...

  16. A Fast hardware Tracker for the ATLAS Trigger system

    CERN Document Server

    Pandini, Carlo Enrico; The ATLAS collaboration

    2015-01-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing at 40 MHz to about 1 kHz for a designed LHC luminosity of 10$^{34}$ cm$^{-2}$ s$^{-1}$. After a very successful data taking run the LHC is expected to run starting in 2015 with much higher instantaneous luminosities and this will increase the load on the High Level Trigger system. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals, which requires a more extensive use of tracking information. The Fast Tracker (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform full-scan track-finding at the event rate of 100 kHz. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful, Field Programmable Gate Arrays form an important part of the system architecture, and the combinatorial problem of pattern r...

  17. A Hardware Fast Tracker for the ATLAS trigger

    CERN Document Server

    Asbah, Nedaa; The ATLAS collaboration

    2015-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10^{34} cm^{-2}s^{-1}. After a successful period of data taking from 2010 to early 2013, the LHC restarted with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide, at every level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondar...

  18. A hardware fast tracker for the ATLAS trigger

    Science.gov (United States)

    Asbah, Nedaa

    2016-09-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  19. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  20. Preventing Errors in Laterality

    OpenAIRE

    Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie

    2014-01-01

    An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...