WorldWideScience

Sample records for pu-be neutron sources

  1. Neutron producing reactions in PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, János [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU) (Germany); Lakosi, László; Nguyen, Cong Tam [Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-01-01

    There are a plenty of out-of-use plutonium–beryllium neutron sources in Eastern Europe presenting both nuclear safeguards and security issues. Typically, their actual Pu content is not known. In the last couple of years different non-destructive methods were developed for their characterization. For such methods detailed knowledge of the nuclear reactions taking place within the source is necessary. In this paper we investigate the role of the neutron producing reactions, their contribution to the neutron yield and their dependence on the properties of the source.

  2. Neutron spectra of /sup 239/Pu-Be neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A; Nagarajan, P S [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1977-01-01

    Neutron spectra of /sup 239/Pu-Be(..cap alpha..,n) sources have been calculated by using the most recent data on the differential cross sections and angular distributions. The contribution from the multibody break-up reaction /sup 9/Be(..cap alpha..,..cap alpha..n)/sup 8/Be has also been incorporated. Modifications to the primary spectrum due to the secondary interactions in the source such as elastic scattering with beryllium, oxygen and plutonium and the /sup 9/Be(n,2n) and /sup 239/Pu(n,f) reaction have been calculated for different strengths and geometries. The present calculation has shown that the spectrum changes considerably because of these events within the source by way of smearing of peaks and filling up of valleys and raising the low energy part of the spectrum. Increase in H/D value leads to channeling of extra neutrons into the equatorial plane at the cost of the neutrons along the axial direction. The present calculations show that inclusion of secondary interactions to the extent considered in this work does not account completely for the increased intensity in the lower energy end of the measured spectrum.

  3. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  4. Characterization of a neutron source of 239PuBe

    International Nuclear Information System (INIS)

    Hernandez V, R.; Chacon R, A.; Hernandez D, V. M.; Mercado, G. A.; Vega C, H. R.; Ramirez G, J.

    2009-10-01

    The spectrum equivalent dose and environmental equivalent dose f a 239 PuBe source have been determined. The appropriate handling of a neutron source depends on the knowledge of its characteristics, such as its energy distribution, total rate of flowing and dosimetric magnitudes. In many facilities have not spectrometer that allows to determine the spectrum and then area monitors are used that give a dosimetric magnitude starting from measuring the flowing rate and the use of conversion factors, however this procedure has many limitations and it is preferable to measure the spectra and starting from this information the interest dosimetric magnitudes are calculated. In this work a Bonner sphere spectrometer has been used with a 6 LiI(Eu) scintillator obtaining the count rates that produce, to a distance of 100 cm, a 239 PuBe source of 1.85E(11) Bq. The spectrum was reconstructed starting from the count rates using BUNKIUT code and response matrix UTA4. With the spectrum information was calculated the source intensity, total flow, energy average, equivalent dose rate, environmental equivalent dose rate, equivalent dose coefficient and environmental equivalent dose coefficient. By means of two area monitors for neutrons, Eberline ASP-1 and LB 6411 of Berthold the equivalent dose and environmental equivalent dose were measured. The determinate values were compared with those reported in literature and it found that are coincident inside 17%. (Author)

  5. Characterization of a neutron source of {sup 239}PuBe; Caracterizacion de una fuente de neutrones de {sup 239}PuBe

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez V, R.; Chacon R, A.; Hernandez D, V. M.; Mercado, G. A.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: ruben_zac@yahoo.com

    2009-10-15

    The spectrum equivalent dose and environmental equivalent dose f a {sup 239}PuBe source have been determined. The appropriate handling of a neutron source depends on the knowledge of its characteristics, such as its energy distribution, total rate of flowing and dosimetric magnitudes. In many facilities have not spectrometer that allows to determine the spectrum and then area monitors are used that give a dosimetric magnitude starting from measuring the flowing rate and the use of conversion factors, however this procedure has many limitations and it is preferable to measure the spectra and starting from this information the interest dosimetric magnitudes are calculated. In this work a Bonner sphere spectrometer has been used with a {sup 6}LiI(Eu) scintillator obtaining the count rates that produce, to a distance of 100 cm, a {sup 239}PuBe source of 1.85E(11) Bq. The spectrum was reconstructed starting from the count rates using BUNKIUT code and response matrix UTA4. With the spectrum information was calculated the source intensity, total flow, energy average, equivalent dose rate, environmental equivalent dose rate, equivalent dose coefficient and environmental equivalent dose coefficient. By means of two area monitors for neutrons, Eberline ASP-1 and LB 6411 of Berthold the equivalent dose and environmental equivalent dose were measured. The determinate values were compared with those reported in literature and it found that are coincident inside 17%. (Author)

  6. Low energy neutrons from a sup 2 sup 3 sup 9 PuBe isotopic neutron source inserting in moderating media

    CERN Document Server

    Vega, H R

    2002-01-01

    Several neutron applications share a common problem: the neutron source design. In this work MCNP computer code has been used to design a moderated sup 2 sup 3 sup 9 PuBe neutron source to produce low energy neutrons. The design involves the source located at the center of a spherical moderator. Moderator media studied were light water, heavy water and a heterogeneous combination of light water and heavy water. Similar moderating features were found between the 24.5 cm-radius container filled with heavy water (23.0-cm-thick) and that made with light water (3.5-cm-thick) plus heavy water (19.5-cm-thick). A sup 2 sup 3 sup 9 PuBe neutron source inserted in this moderator produces, at 27 cm, a neutron fluence of 1.8 x 10 sup - sup 4 n-cm sup - sup 2 per source neutron, with an average neutron energy of 0.34 MeV, where 47.8 % have an energy <= 0.4 eV. A further study of this moderator was carried out using a reflector medium made of graphite. Thus, 15-cm-thickness reflector improves the neutron field producing...

  7. Neutron and gamma-ray spectra of 239PuBe and 241AmBe

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Manzanares-Acuna, Eduardo; Becerra-Ferreiro, A.M.; Carrillo-Nunez, Aureliano

    2002-01-01

    Neutron and gamma-ray spectra of 239 PuBe and 241 AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a 6 LiI(Eu) scintillator. The 239 PuBe neutron spectrum was measured in an open environment, while the 241 AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the 241 AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity

  8. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    Science.gov (United States)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  9. Neutron and gamma-ray spectra of {sup 239}PuBe and {sup 241}AmBe

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Carrillo, H.R. E-mail: rvega@cantera.reduaz.mx; Manzanares-Acuna, Eduardo; Becerra-Ferreiro, A.M.; Carrillo-Nunez, Aureliano

    2002-08-01

    Neutron and gamma-ray spectra of {sup 239}PuBe and {sup 241}AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a {sup 6}LiI(Eu) scintillator. The {sup 239}PuBe neutron spectrum was measured in an open environment, while the {sup 241}AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the {sup 241}AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity.

  10. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  11. The sensitivity of various thermoluminescent, photoluminescent and photographic detectors to neutrons emitted by a Pu-Be source

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Marsault, Roger; Medioni, Roger; Portal, Guy.

    1975-07-01

    A series of experiments were conducted in order to determine the sensitivity of radiothermoluminescent detectors to fast neutrons. Experiments bearing on the determination of the sensitivity to neutrons emitted by a Pu-Be source are related here. The characteristics of the radiation field emitted by the source and especially of the γ-field are analysed as it is essential for the interpretation of results to know the latter, which appears to have been but partly studied so far. The measuring procedures are then described and a study is made of the best experimental procedures liable to eliminate or decrease the effect of external factors. The results are finally analysed [fr

  12. Study of neutron spectra using sources of {sup 241}AmBE and {sup 238}PuBe moderated in water; Estudo de espectros neutrônicos com fontes de {sup 241}AmBE e {sup 238}PuBe moderados em água

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Angela S.; Silva, Fellipe S.; Patrão, Karla C.S.; Fonseca, Evaldo S. da; Pereira, Walsan W., E-mail: angela.souzagon@gmail.com [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Metrologia de Neutrons; Fundação Técnico-Educacional Souza Marques (FTESM), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    Recent works demonstrate the increasing importance of characterizing the spectrum of neutron sources for various energies. The main objective of this study is to make the understanding of the interaction of neutrons as close as possible to the reality in which the workers act, thus allowing to act directly in the area of radioprotection. In this way, neutron fluence determination of the {sup 241}AmBe source of 0.6 TBq (16 Ci) and {sup 238} PuBe 1.8 TBq (50 Ci) free in the air and inserted in aluminium spheres of 16 cm and 20.5 cm filled with distilled water. The measurements were carried out in the low scattering laboratory of the Laboratory of Neutron Metrology, in order to obtain a more realistic spectrum. Spectrum determination is based on measurement using the Bonner multisphere spectrometer containing readings with the ball-free detector and covered with polyethylene spheres having diameters of: 5,08 cm (2″), 7,62 cm (3″), 12,70 cm (5″), 20,32 cm (8″), 25,40 cm (10″) e 30,48 cm (12″). The aim is to characterize a new moderate spectrum in water using the sources of {sup 238}PuBe and {sup 241}AmBe that may represent realistic fields in the radioprotection area useful for testing, calibration and irradiation of individual and area monitors for neutrons.

  13. Container construction for the Pu-Be source at the Atominstitut Wien

    International Nuclear Information System (INIS)

    Tatlisu Halit

    2003-07-01

    The aim of this study was to construct a neutron source container as small as possible. For this purpose an aluminum container was ordered to reserve the Pu-Be neutron source of the TRIGA Mark-II research reactor at the Atominstitute of Austrian Universities, Vienna. The important point is the shielding of the neutrons according to the radiation protection policy at ATI. Fast neutrons, which emitted from the source, cannot be shielded directly. They have to be moderated by a suitable moderator material and then they can be absorbed using a strong neutron absorber material. The most effective moderators are elements with low atomic number; therefore hydrogen-containing materials are the major component of neutron shielding. As a moderator and absorber material together we have chosen borated polyethylene among the various materials considering its properties. It contains H and C, which are suitable moderator materials and B for neutron absorption. It is important to quickly moderate the neutron to low energy, where it can be absorbed with boron owing to the high absorption cross section. The constructed shielding, which consists of borated polyethylene, was placed into the ordered A1 container. At the end we measured the emitted radiation dose using a neutron counter at different distances from the container. (author)

  14. Characterization of neutron spectra using sources of {sup 241}AmBe, {sup 238}PuBe e {sup 252}Cf moderated in water; Caracterização de espectros neutrônicos com fontes de {sup 241}AmBe, {sup 238}PuBe e {sup 252}Cf moderados em água

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, A.S.; Silva, F.S.; Patrão, K.C.S.; Fonseca, E.S. da; Pereira, W.W., E-mail: angela.souzagon@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratório de Metrologia de Nêutrons

    2017-07-01

    Recent studies have demonstrated the importance of characterizing the spectrum of neutron sources for various energies in order to make the understanding of neutron interaction closer to reality they work with. This work presents the determination of neutron energy flux from the source of {sup 241}AmBe (0.6 TBq), {sup 238}PuBe (1.8 TBq) and {sup 252}Cf (120 μg) free in the air and inserted into spheres of various diameters containing distilled water. The determination of the spectrum is based on the measurement and simulation by the Monte Carlo computational method, using the sources under study, with the Bonner multisphere spectrometer containing readings with the detector without sphere and covered with polyethylene balls of diameters: 5,08 cm (2 ″), 7.62 cm (3″), 12.70 cm (5 ″), 20.32 cm (8 ″), 25.40 cm (10 ″) and 30.48 cm (12 ″). It is sought to characterize a new moderate spectrum in water using the sources of {sup 241}AmBe, {sup 238}PuBe and {sup 252}Cf that may be useful for testing, calibration and irradiation of individual and area monitors for neutrons.

  15. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  16. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    International Nuclear Information System (INIS)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ( 238 PuBe, 252 Cf, 238 PuB, 238 PuF 4 , and 238 PuLi) and the neutron instrumentation (moderated BF 3 detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, 12 C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs

  17. Neutron dosimetry at SLAC: Neutron sources and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

    1991-10-01

    This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

  18. Determination of the neutron-induced fission cross section of 242Pu

    International Nuclear Information System (INIS)

    Koegler, Toni Joerg

    2016-01-01

    Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For 242 Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of 235 U and 242 Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of 242 Pu relative to 235 U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of 242 Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).

  19. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  20. Determination of the neutron-induced fission cross section of {sup 242}Pu; Bestimmung des neutroneninduzierten Spaltquerschnitts von {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, Toni Joerg

    2016-04-26

    Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For {sup 242}Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of {sup 235}U and {sup 242}Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of {sup 242}Pu relative to {sup 235}U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of {sup 242}Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).

  1. Radiation protection problems with sealed Pu radiation sources

    International Nuclear Information System (INIS)

    Naumann, M.; Wels, C.

    1982-01-01

    A brief outline of the production methods and most important properties of Pu-238 and Pu-239 is given, followed by an overview of possibilities for utilizing the different types of radiation emitted, a description of problems involved in the safe handling of Pu radiation sources, and an assessment of the design principles for Pu-containing alpha, photon, neutron and energy sources from the radiation protection point of view. (author)

  2. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.

    2015-10-01

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of 24 NaBe, 24 NaD 2 O, 116 InBe, 140 LaBe, 238 PuLi, 239 PuBe, 241 AmB, 241 AmBe, 241 AmF, 241 AmLi, 242 CmBe, 210 PoBe, 226 RaBe, 252 Cf and 252 Cf/D 2 O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  3. Bulk media assay using backscattered Pu-Be neutrons

    CERN Document Server

    Csikai, J

    1999-01-01

    Spectral yields of elastically backscattered Pu-Be neutrons measured for graphite, water, polyethylene, liquid nitrogen, paraffin oil, SiO sub 2 , Al, Fe, and Pb slabs show a definite correlation with the energy dependence of the elastic scattering cross sections, sigma sub E sub L (E sub n). The C, N and O can be identified by the different structures in their sigma sub E sub L (E sub n) functions. The integrated spectral yields versus thickness exhibit saturation for each sample. The interrogated volume is limited by the presence of hydrogen in the sample. (author)

  4. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Martinez O, S. A., E-mail: fermineutron@yahoo.com [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte 39-115, 150003 Tunja, Boyaca (Colombia)

    2015-10-15

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of {sup 24}NaBe, {sup 24}NaD{sub 2}O, {sup 116}InBe, {sup 140}LaBe, {sup 238}PuLi, {sup 239}PuBe, {sup 241}AmB, {sup 241}AmBe, {sup 241}AmF, {sup 241}AmLi, {sup 242}CmBe, {sup 210}PoBe, {sup 226}RaBe, {sup 252}Cf and {sup 252}Cf/D{sub 2}O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  5. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  6. Study of the number of neutrons produced by fission of {sup 239}Pu; Etude du nombre de neutrons produits par la fission de {sup 239}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Study of the number of neutrons produced by fission of {sup 239}Pu. The counting by coincidence of fissions and neutrons produced by these fissions allows the study of the variation of the mean number of neutrons emitted by {nu} fission. In the first chapter, it studied the variation of the mean number of neutrons emitted by {sup 239}Pu fission with the energy of the incident neutron. A description of the experiment is given: a spectrometer with a crystal of sodium chloride or beryllium (mounted on a goniometer) is used, a fission chamber containing 10 mg of {sup 239}Pu and the neutron detection system constituted of BF{sub 3} counters which are enriched in {sup 10}B. In the second part, the counting by coincidence of fissions and neutrons produced by the same fission and received by two different groups of counters allow the determination of a relationship between the root mean square and the average of neutron number produced by fission. The variation of the mean number of neutrons emitted by fission of {sup 239}Pu is studied when we change from a thermal spectra of neutrons to a fission spectra of incident neutrons. Finally, when separating in two different part the fission chamber, it is possible to measure the mean number of neutrons emitted from fission of two different sources. It compared the mean number of neutrons emitted by fission of {sup 239}Pu and {sup 233}U. (M.P.)

  7. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  8. Study of the number of neutrons produced by fission of 239Pu

    International Nuclear Information System (INIS)

    Jacob, M.

    1958-01-01

    Study of the number of neutrons produced by fission of 239 Pu. The counting by coincidence of fissions and neutrons produced by these fissions allows the study of the variation of the mean number of neutrons emitted by ν fission. In the first chapter, it studied the variation of the mean number of neutrons emitted by 239 Pu fission with the energy of the incident neutron. A description of the experiment is given: a spectrometer with a crystal of sodium chloride or beryllium (mounted on a goniometer) is used, a fission chamber containing 10 mg of 239 Pu and the neutron detection system constituted of BF 3 counters which are enriched in 10 B. In the second part, the counting by coincidence of fissions and neutrons produced by the same fission and received by two different groups of counters allow the determination of a relationship between the root mean square and the average of neutron number produced by fission. The variation of the mean number of neutrons emitted by fission of 239 Pu is studied when we change from a thermal spectra of neutrons to a fission spectra of incident neutrons. Finally, when separating in two different part the fission chamber, it is possible to measure the mean number of neutrons emitted from fission of two different sources. It compared the mean number of neutrons emitted by fission of 239 Pu and 233 U. (M.P.)

  9. Neutron sources and its dosimetric characteristics

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.; Gallego D, E.; Lorente F, A.

    2005-01-01

    By means of Monte Carlo methods the spectra of the produced neutrons 252 Cf, 252 Cf/D 2 O, 241 Am Be, 239 Pu Be, 140 La Be, 239 Pu 18 O 2 and 226 Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H * (10), H p,sIab (10, 0 0 ), E AP and E ISO . During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of 239 Pu Be and 241 Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  10. Validation of neutron data libraries by backscattered spectra of Pu-Be Neutrons

    CERN Document Server

    El-Agib, I

    1999-01-01

    Elastically backscattered spectra of Pu-Be neutrons have been measured for SiO sub 2 , water, graphite, paraffin oil and Al slabs using a proton recoil spectrometer. The results were compared with the calculated spectra obtained by the three-dimensional Monte-Carlo transport code MCNP-4B and point-wise cross sections from the ENDF/B-V, ENDF/B-VI, JENDL-3.1 and BROND-2 data libraries. The good agreement between the measured and calculated results indicates that this procedure can be used for validation of different data libraries. This simple method renders possible the detection of oxygen, carbon and hydrogen in bulk samples. (author)

  11. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    Science.gov (United States)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  12. Non-destructive assay of 242Pu by resonance neutron capture

    International Nuclear Information System (INIS)

    Kane, W.R.; Lu, Ming-Shih; Aronson, A.; Forman, L.; Vanier, P.E.

    1995-01-01

    For the accurate assay of plutonium by neutron correlation measurements, especially for material derived from high-burnup reactor fuel, the content of 242 Pu in a sample must be determined. Since 242 Pu has a long half-life (387,000 yr) and decays to 238 U by alpha particle emission with the accompanying emission of only weak, low-energy gamma rays, gamma-ray spectrometry methods which are ordinarily employed to determine the isotopic composition of a plutonium sample are not feasible for 242 Pu. The existence of a resonance in the neutron capture cross section of 242 Pu at an energy of 2.67 electron volts (eV) with a large (72, 000 barn) cross section affords the possibility for the quantitative assay of this isotope by epithermal neutron capture. Essential for this purpose is an appropriately designed geometry of neutron moderators and absorbers which will provide maximum flux in the eV region while suppressing thermal neutron capture by the fissile plutonium isotopes. Signatures for neutron capture in 242 Pu include the decay of 243 Pu (4.9 hr), prompt capture gamma rays (total energy 5.034 MeV), and the decay of an isomeric state (330 nanosecond). Experiments to determine the feasibility of this approach are currently in progress

  13. 239Pu(n, 2n) and 241Pu(n, 2n) surrogate cross section measurements using NeutronSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alan, B. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Univ. of California, Berkeley, CA (United States); Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Koglin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tamashiro, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oregon State Univ., Corvallis, OR (United States); Kolos, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States); Saastamoinen, A. [Univ. of California, Los Angeles, CA (United States); Padilla, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Fisher, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-08

    The goal of this project was to develop a new approach to measuring (n,2n) reactions for isotopes of interest. We set out to measure the 239Pu(n,2n) and 241Pu(n,2n) cross sections by directly detecting the 2n neutrons that are emitted. With the goal of improving the 239Pu(n,2n) cross section and to measure the 241Pu(n,2n) cross section for the first time. To that end, we have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in Casperson et al. [1] and in Akindele et al. [2]. We have used this new neutron-charged-particle array to measure the 241Pu and 239Pu fission neutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. We have made a preliminary determination of the 239Pu(n,2n) and 241Pu(n,2n) cross sections from the surrogate 240Pu(α,α’2n) and 242Pu(α,α’2n) reactions respectively. The experimental approach, detector array, data analysis, and results to date are summarized in the following sections.

  14. Neutron sources and its dosimetric characteristics; Fuentes de neutrones y sus caracteristicas dosimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2005-07-01

    By means of Monte Carlo methods the spectra of the produced neutrons {sup 252} Cf, {sup 252} Cf/D{sub 2}O, {sup 241} Am Be, {sup 239} Pu Be, {sup 140} La Be, {sup 239} Pu{sup 18}O{sub 2} and {sup 226} Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H{sup *}(10), H{sub p,sIab} (10, 0{sup 0}), E{sub AP} and E{sub ISO}. During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of {sup 239} Pu Be and {sup 241} Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  15. Surrogate 239Pu(n, fxn) and 241Pu(n, fxn) average fission-neutron-multiplicity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alan, B. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fisher, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-26

    We have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in LLNL-TR-703909 [1] and Akindele et al [2]. We have used this new neutron-charged-particle array to measure the 241Pu and 239Pu fissionneutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. The experimental approach, detector array, data analysis, and results are summarized in the following sections.

  16. Fabrication of gamma sources using the neutron-gamma reactions of 238Pu13C

    International Nuclear Information System (INIS)

    Solinhac, I.; Maillard, C.; Donnet, L.

    2004-01-01

    A production campaign for 238 Pu 13 C sources with gamma fluence ranging from 2500 to 4500 gamma/s/4π at 6.13 MeV was carried out in 2002 in Atalante. An experimental study was undertaken to prepare the 238 PuC mixture, which is the most delicate step. This procedure is described together with the other steps in the source fabrication process: purification of a plutonium oxide batch, preparation of a nitric solution of 238 Pu, measurement of the gamma fluence of the PuC mixture before and after insertion into each of the two stainless steel capsules that constitute a PuN 2 O package, welding of the second envelope followed by leak testing, final measurement of the gamma fluence of the sealed source. This PuC sources fabrication procedure is effective: all the sources include the required gamma activity with an uncertainty on the gamma fluence of less than 10%. (authors)

  17. Source identification of Pu and 236U deposited on Norwegian territories

    OpenAIRE

    Wendel, Cato Christian

    2013-01-01

    Plutonium (Pu) is a predominately anthropogenic element produced during neutron irradiation of U in reactors and nuclear weapon detonations. Pu has been released to the environment during nuclear weapon detonations, nuclear reactor accidents, and in association with reprocessing of spent nuclear fuel. The most important source of Pu in the environment were the 543 atmospheric nuclear detonations conducted worldwide in the period 1945 – 1980 by the former Soviet Union (FSU), USA, United Kingdo...

  18. 239Pu standards for quantitative neutron-induced autoradiography

    International Nuclear Information System (INIS)

    Smith, J.M.; Atherton, D.R.; Wronski, T.J.; Jee, W.S.S.

    1977-01-01

    The present study deals with the preparation of 239 Pu standards for neutron bone tissue autoradiography and the calibration of these standards with respect to uranium reference standards. Known concentrations of 239 Pu were prepared in methyl methacrylate and Bioplastic casting resin bars. Wafers sawed from these bars served as standards. Solid state nuclear tract detectors (Lexan polycarbonate) were used to record fission fragment tracks after the standards were exposed to a thermal neutron flux. The original bars were found to contain a uniform distribution of 239 Pu. To confirm the concentration of 239 Pu in the wafers, the induced track density from the 239 Pu standards was compared with that from uranium reference standards. The average fission fragment detection efficiency for all of the standards was 0.51

  19. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  20. The moisture content monitoring device for PuO2 using self neutron radiation

    International Nuclear Information System (INIS)

    Bulanenko, Valeriy I.; Sviridov, Victor; Frolov, Vladimir V.; Ryazanov, Boris G.; Talanov, Vladimir V.

    2003-01-01

    Solutions technology of plutonium dioxide powders production inevitably leads to free or chemically bound hydrogen to be present in these powders. This work is devoted to the nondestructive method of PuO 2 powder moisture measurement based on application of the effect of neutron moderation caused by water. Plutonium dioxide is fast neutron source, while 3 He counters located in the nickel and polyethylene annular reflectors surrounding PuO 2 serve as detectors. In the work wide range of issues are considered related to practical implementation of the moisture measurement method by detecting inherent neutron radiation of plutonium dioxide powder. The most practical design of the detector has been chosen, which include two 3 He detectors having different reflectors mounted to the device. The absolute error of measurement does not exceed 0.2wt% with confidence coefficient of 0.95. Duration of analysis ∼5 minutes. (author)

  1. Anisotropy of neutrons sources of the Neutron Metrology Laboratory

    International Nuclear Information System (INIS)

    Silva, A.C.F.; Silva, F.S.; Creazolla, P.G.; Patrão, K.C.S.; Fonseca, E.S. da; Pereira, W.W.

    2017-01-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. Measurements were performed using a Precision Long Counter (PLC) detector in the Laboratório de Baixo Espalhamento of the LNMRI / IRD. In this study were used an 241 AmBe (α,n) 5.92 GBq and a 238 PuBe (α,n) 1.85 TBq. The anisotropy factor was 8.65% to 241 AmBe and 4.36% to 238 PuBe, due to variations in the source encapsulation. The results in this work will focus mainly on the area of radiation protection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  2. Preliminary neutronic study on Pu-based OTTO cycle pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setiadipura, Topan; Zuhair [National Nuclear Energy Agency of Indonesia (BATAN), Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Irwanto, Dwi [Bandung Institute of Technology (ITB), Bandung (Indonesia). Nuclear Physics and Biophysics Research Group

    2017-12-15

    The neutron physics characteristic of Pebble Bed Reactor (PBR) allows a better incineration of plutonium (Pu). An optimized design of simple PBR might give a symbiotic solution of providing a safe energy source, effective fuel utilization shown by a higher burnup value, and incineration of Pu stockpiles. This study perform a preliminary neutronic design study of a 200 MWt Once Through Then Out (OTTO) cycle PBR with Pu-based fuel. The safety criteria of the design were represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. In this preliminary phase, the parametric survey is limited to the heavy metal (HM) loading per pebble and the average axial speed of the fuel. An optimum high burnup of 419.7 MWd/kg-HM was achieved in this study. This optimum design uses a HM loading of 2.5 g/pebble with average axial fuel velocity 0.5 cm/day.

  3. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and 239Pu

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV

  4. Quantitative Assay of Pu-239 and Pu-240 by Neutron Transmission Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E

    1971-04-15

    A method for quantitative assay of 239Pu and 240Pu has been tested at the reactor R1 in Stockholm. The method makes use of a fast chopper to measure the neutron transmission through a sample around the main resonances of these two isotopes - at 0.296 eV in 239Pu and at 1.056 eV in 240Pu. The transmission data measured are then combined with the known resonance cross sections to give the content of the isotopes. The method is nondestructive, i.e., one can use fuel pins as samples, even highly irradiated ones. A time-of-flight spectrometer of moderate capacity, like our fast chopper, is sufficient as the resonances are located at low energy. Altogether five samples have been used in the tests of the method. The results have been compared with mass spectrometer values. This comparison came out quite well for 239Pu whereas the chopper results for 240Pu were more than 10 per cent higher than the mass spectrometer results. This large deviation might be due to errors in the resonance cross section for 240Pu used in the analysis of the transmission data from the chopper. The best possible accuracy for a 15-hour run with our equipment is +- 1 per cent for 239Pu and +- 2 per cent for 240Pu, obtained for thick samples - about 3 x 1020 atoms per cm2 for each isotope. The accuracy corresponds to 68 per cent confidence level and does not include any contribution from the uncertainty in the resonance cross section

  5. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fast-neutron-induced fission of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2017-01-01

    Full Text Available The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  7. Comparative measurements of independent yields of 239Pu fission fragments induced by thermal and resonance neutrons

    International Nuclear Information System (INIS)

    Gundorin, N.A.; Kopach, Y.N.; Telezhnikov, S.A.

    1994-01-01

    The independent yields of 239 Pu fission fragments by means of gamma-spectroscopy method were measured for light and heavy groups on the IBR-30 reactor in Dubna. Comparative analysis of experimental data for fission induced by thermal and resonance neutrons was performed. The possibilities to increase the measurement's precision consist of the employment of a HPGe detector with high efficiency and its open-quotes activeclose quotes shielding in the gamma spectrometer, as well as a high speed electronics system. In this way the number of identified fragments will be increased and independent yields will be measured to a precision of 1-3%. Measurements at the source with shorter neutron pulse duration to increase neutron energy resolution will be possible after the reconstruction of a modern neutron source in Dubna in accordance with the IREN project

  8. Effect of Fast Neutron to MA/PU Burning/Transmutation Characteristic Using a Fast Reactor

    International Nuclear Information System (INIS)

    Marsodi; Lasman, As Natio; Kimamoto, A.; Marsongkohadi; Zaki, S.

    2003-01-01

    MA/Pu burning/transmutation has been studied and evaluated using fast neutrons. Generally, neutron density at this fast burner reactor and transmutation has spectrum energy level around 0.2 MeV with wide enough variation, i.e. from low neutron spectrum to its peak is 0.2 MeV. This neutron spectrum energy level depends on the kind of cooler material or fuel used. Neutron spectrum higher than fast power reactor neutron spectrum is found by means of changing oxide fuel by metallic fuel and changing natrium cooler material by metallic or gas cooler material. This evaluation is conducted by various variations in accordance with the kind of fuel or cooler, MA/Pu fractions and fuel comparison fraction with respect to its cooler in order to get better neutron usage and MA/Pu burning speed. Reactor calculation evaluation in this paper was conducted with 26-group nuclear data cross section energy spectrum. The main purpose of the discussion is to know the effect of fast neutrons to burning/transmutation MA/Pu using fast neutrons

  9. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    Science.gov (United States)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  10. In-wire measurement of the neutron dose rate on patients with 238Pu pacemakers implanted

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.; Kollmeier, W.

    1975-01-01

    In-vivo measurements of the neutron dose on Medtronic pacemakers have been performed by using a proportional counter and a scintillation counter. The paper discusses the technique of free air and phantom calibration and the method of in-vivo measurement of the neutron fluence and the estimation of the dose equivalent. The neutron dose equivalent rate measured on seven patients with 238 Pu pacemakers implanted were found to be (5.6+-0.1) mRem/h at the surface of the pacemaker in 1.25 cm distance from the center of the source corresponding to a neutron emission rate of 940 ns -1 . The results are in good agreement with results of other methods reported by different authors. (Auth.)

  11. Summary of alpha-neutron sources in GADRAS

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Thoreson, Gregory G.; Harding, Lee T.

    2012-01-01

    A common source of neutrons for calibration and testing is alpha-neutron material, named for the alpha-neutron nuclear reaction that occurs within. This material contains a long-lived alpha-emitter and a lighter target element. When the alpha particle from the emitter is absorbed by the target, neutrons and gamma rays are released. Gamma Detector Response and Analysis Software (GADRAS) includes built-in alpha-neutron source definitions for AcC, AmB, AmBe, AmF, AmLi, CmC, and PuC. In addition, GADRAS users may create their own alpha-neutron sources by placing valid alpha-emitters and target elements in materials within their one-dimensional models (1DModel). GADRAS has the ability to use pre-built alpha-neutron sources for plotting or as trace-sources in 1D models. In addition, if any material (existing or user-defined) specified in a 1D model contains both an alpha emitter in conjunction with a target nuclide, or there is an interface between such materials, then the appropriate neutron-emission rate from the alpha-neutron reaction will be computed. The gamma-emissions from these sources are also computed, but are limited to a subset of nine target nuclides. If a user has experimental data to contribute to the alpha-neutron gamma emission database, it may be added directly or submitted to the GADRAS developers for inclusion. The gadras.exe.config file will be replaced when GADRAS updates are installed, so sending the information to the GADRAS developers is the preferred method for updating the database. This is also preferable because it enables other users to benefit from your efforts.

  12. 8-group relative delayed neutron yields for monoenergetic neutron induced fission of 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    The energy dependence of the relative yield of delayed neutrons in an 8-group model representation was obtained for monoenergetic neutron induced fission of 239 Pu. A comparison of this data with the available experimental data by other authors was made in terms of the mean half-life of the delayed neutron precursors. (author)

  13. How should the JAERI neutron source be designed?

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    1996-01-01

    The importance of a next-generation neutron source in JAERI is discussed. The feasibility and the performances of three types of neutron sources, namely continuous wave spallation source (CWSS), long-pulse spallation source (LPSS) and short-pulse spallation source (SPSS), are compared based on a proposed JAERI accelerator, a superconducting (SC) proton linac (1-1.5 GeV, 25-16 mA in peak current, finally CW). How to realize one of the world's best neutron source using such a linac with a modest beam-current and what type of neutron source is the best for such a linac are the most important current problems. Since the accelerator is not favorable for LPSS due to a lower peak current and there exist serious technical problems for a CWSS target, a short-pulse spallation source would be the best candidate to realize a 5 MW-class SPSS like ESS, provided that the H - -injection to a compressor ring over a long pulse duration (>2 ms) is feasible. (author)

  14. 252Cf-source-driven neutron noise measurements of subcriticality for a slab tank containing aqueous Pu-U nitrate

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.; Robinson, R.C.; Seino, H.

    1987-08-01

    In order to study nuclear criticality safety related to the development of fast breeder technology, 252 Cf-source-driven neutron noise analysis measurements were performed with a Pu-U nitrate solution in a slab tank of various heights and thickness varying 11.43 cm to 19.05 cm. The results and conclusions of these experiments are (1) a capability to measure the subcriticality of a multiplying system of slab geometry to a k/sub eff/ as low as 0.7 was demonstrated, (2) calculated neutron multiplication factors agreed with those from the experiments within ∼0.02, and (3) the applicability of the method for plutonium solution systems was demonstrated. This paper describes measurements in which the height of the slab was varied for a fixed thickness and the thickness varied for a fixed height, which are the first applications of this measurement method to slab geometry

  15. Neutron inelastic-scattering cross sections of 232Th, 233U, 235U, 238U, 239Pu and 240Pu

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-01-01

    Differential-neutron-emission cross sections of 232 Th, 233 U, 235 U, 238 U, 239 Pu and 240 Pu are measured between approx. = 1.0 and 3.5 MeV with the angle and magnitude detail needed to provide angle-integrated emission cross sections to approx. 232 Th, 233 U, 235 U and 238 U inelastic-scattering values, poor agreement is observed for 240 Pu, and a serious discrepancy exists in the case of 239 Pu

  16. Moisture corrections in neutron coincidence counting of PuO2

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.

    1987-01-01

    Passive neutron coincidence counting is capable of 1% assay accuracy for pure, well-characterized PuO 2 samples that contain plutonium masses from a few tens of grams to several kilograms. Moisture in the sample can significantly bias the assay high by changing the (α,n) neutron production, the sample multiplication, and the detection efficiency. Monte Carlo calculations and an analytical model of coincidence counting have been used to quantify the individual and cumulative effects of moisture biases for two PuO 2 sample sizes and a range of moisture levels from 0 to 9 wt %. Results of the calculations suggest a simple correction procedure for moisture bias that is effective from 0 to 3 wt % H 2 O. The procedure requires that the moisture level in the sample be known before the coincidence measurement

  17. Evaluation of the U-Pu residual mass from spent fuel assemblies with passive and active neutronic methods

    International Nuclear Information System (INIS)

    Bignan, G.; Martin-Deidier, L.

    1991-01-01

    The interpretation of passive and active neutronic measurements to evaluate the U-Pu residual mass in spent fuel assemblies is presented as follows: passive neutron measurements are well correlated to the plutonium mass, active neutron measurements give information linked to the fissile mass content of the assembly ( 235 U + 239 Pu + 241 Pu) and, using the passive neutron measurement, lead to the 235 U mass content of the assemblies

  18. 11-year field study of Pu migration from Pu III, IV, and VI sources

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Serkiz, S.M.; Demirkanli, D.I.; Gumapas, L.; Fjeld, R.A.; Molz, F.J.; Powell, B.A.

    2005-01-01

    Full text of publication follows: Understanding the processes controlling Pu mobility in the subsurface environment is important for estimating the amount of Pu waste that can be safely disposed in vadose zone burial sites. To study long-term Pu mobility, four 52-L lysimeters filled with sediment collected from the Savannah River Site near Aiken South Carolina were amended with well characterized solid Pu sources (Pu III Cl 3 , Pu IV (NO 3 ) 4 , Pu IV (C 2 O 4 ) 2 , and Pu VI O 2 (NO 3 ) 2 ) and left exposed to natural precipitation for 2 to 11 years. Pu oxidation state distribution in the Pu(III) and Pu(IV) lysimeters sediments (a red clayey sediment, pH = 6.3) were similar, consisting of 0% Pu(III), >92% Pu(IV), 1% Pu(V), 1% Pu(VI), and the remainder was a Pu polymer. These three lysimeters also had near identical sediment Pu concentration profiles, where >95% of the Pu remained within 1.25 cm of the source after 11 years; moving at an overall rate of 0.9 cm yr -1 . As expected, Pu moved more rapidly through the Pu(VI) lysimeter, at an overall rate of 12.5 cm yr -1 . Solute transport modeling of the sediment Pu concentration profile data in the Pu(VI) lysimeter indicated that some transformation of Pu into a much less mobile form, presumably Pu(IV), had occurred during the course of the two year study. This modeling also supported previous laboratory measurements showing that Pu(V) or Pu(VI) reduction was five orders of magnitude faster than corresponding Pu(III) or Pu(IV) oxidation. The slow oxidation rate (1 x 10-8 hr -1 ; t 1/2 = 8,000 yr) was not discernable from the Pu(VI) lysimeter data that reflected only two years of transport but was readily discernable from the Pu(III) and Pu(IV) lysimeter data that reflected 11 yr of transport. (authors)

  19. 239Pu prompt fission neutron spectra impact on a set of criticality and experimental reactor benchmarks

    International Nuclear Information System (INIS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-01-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239 Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239 Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  20. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  1. 8-group relative delayed neutron yields for epithermal neutron induced fission of 235U and 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    An 8-group representation of relative delayed neutron yields was obtained for epithermal neutron induced fission of 235 U and 239 Pu. These data were compared with ENDF/B-VI data in terms of the average half- life of the delayed neutron precursors and on the basis of the dependence of reactivity on the asymptotic period. (author)

  2. Could weapon-grade plutonium be an asset for managing Pu inventories?

    International Nuclear Information System (INIS)

    Bairiot, H.; Bemden, E. van den

    1997-01-01

    Due to the temporary shortage of MOX fuel fabrication facilities, the stockpile of separated civilian grade Pu (CPu) is predicted to increase up to the turn of the century. An additional quantity of weapon grade Pu (WPu) will be progressively isolated at the same period. Both CPu and WPu surpluses require disposition as soon as feasible. Although non-proliferation concerns, established national policies, public acceptance problems and other considerations largely complicate the aspect of the use of WPu, it is worth examining the advantages which could result from a synergetic management of: LWR grade Pu to which AGR grade Pu might be associated; WPu; GCR grade Pu which should be considered as a Pu variety situated between the two first ones as far as their physical and neutronic characteristics are concerned. Two scenarios of integrated managements of the CPu varieties and WPu are being considered. They indicate several technical and economical advantages but also important problems to be resolved, mainly from the non-proliferation point of view. In that respect, it is concluded that, although no reasonable perspective exists to resolve these problems easily (or at all), the advantages justify an effort of the international community to consider how it could be implemented. (author). 24 refs, 2 figs, 5 tabs

  3. neutron multiplicity measurements on 220 l waste drums containing Pu in the range 0.1-1 g 240Pueff with the time interval analysis method

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.; De Boeck, W.

    1998-01-01

    Measurement results are presented for the assay of plutonium in 220 l waste drums containing Pu-masses in the range 0.1-1 g 240 Pu eff obtained with the time interval analysis (TIA) method. TIA is a neutron multiplicity method based on the concept of one- and two-dimensional Rossi-alpha distributions. The main source of measurement bias in neutron multiplicity measurements at low count-rates is the impredictable variation of the high-multiplicity neutron background of spallation neutrons induced by cosmic rays. The TIA-method was therefore equipped with a special background filter, which is designed and optimized to reduce the influence of these spallation neutrons by rejecting the high-multiplicity events. The measurement results, obtained with the background correction filter outlined in this paper, prove the repeatability and validity of the TIA-method and show that multiplicity counting with the TIA-technique is applicable for masses as low as 0.1 g 240 Pu eff even at a detection efficiency of 12%. (orig.)

  4. The feasibility study of in-vivo analysis of bone calcium by activation of hand with 5 Ci 238Pu-Be

    International Nuclear Information System (INIS)

    Sevimli, R.

    1985-01-01

    An in-vivo partial-body neutron activation technique (IVNAA) was used for evaluaton of the human bone. It was decided to use the hand for studies of osteroporosis. The 48 Ca(n,γ) 49 Ca reaction was employed (f=0.185%, I=900mb) and 5 Ci 238 Pu-Be isotopic neutron source. A sufficient precision was obtained by four 10 min irradiations of the hand phantom tubes, each followed by a 1000 sec counting period. A 5''x5'' NaI (Tl) well-type detector and a 1024 channel multichannel analyser were used for counting gamma rays. The neutron source, covered with 1 cm paraffin wax, is holding during the irradiation in hand

  5. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    Science.gov (United States)

    Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas

    2018-03-01

    The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  6. Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    CERN Document Server

    Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M

    2010-01-01

    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.

  7. Environmental Assessment Radioactive Source Recovery Program

    International Nuclear Information System (INIS)

    1995-01-01

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE's and the U.S. Nuclear Regulatory Commission's (NRC's) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ( 238 Pu-Be) and americium-beryllium ( 241 Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ( 238 PuO 2 or 241 AmO 2 ). The proposed action would include placing the 238 PuO 2 or 241 AmO 2 in interim storage in a special nuclear material vault at the LANL Plutonium Facility

  8. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2018-01-01

    Full Text Available The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f. The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  9. Bi-Modal Model for Neutron Emissions from PuO2 and MOX Holdup

    International Nuclear Information System (INIS)

    Menlove, Howard; Lafleur, Adrienne

    2015-01-01

    The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup for the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of Pu

  10. Evaluation of nuclear data of 244Pu and 237Pu

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Konshin, V.A.

    1995-10-01

    The evaluation of nuclear data for 244 Pu and 237 Pu was made in the neutron energy region from 10 -5 eV to 20 MeV. For the both nuclides, the total, elastic and inelastic scattering, fission, capture, (n,2n) and (n,3n) reaction cross sections were evaluated on the basis of theoretical calculation. The resonance parameters were given for 244 Pu. The angular and energy distributions of secondary neutrons were also estimated for the both nuclides. The results were compiled in the ENDF-5 format and will be adopted in JENDL Actinoid File. (author)

  11. Neutron spectra of /sup 242/Cm-Be and /sup 244/Cm-Be neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A; Nagarajan, P S [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1977-02-15

    Neutron spectra of /sup 242/Cm-Be(..cap alpha..,n) and /sup 244/Cm-Be(..cap alpha..,n) sources have been calculated including the spontaneous fission contribution which is negligible for /sup 242/Cm and amounts to about 4% for /sup 244/Cm. The agreement of the present work with experimental results is poor.

  12. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  13. Bulk - Samples gamma-rays activation analysis (PGNAA) with Isotopic Neutron Sources

    International Nuclear Information System (INIS)

    HASSAN, A.M.

    2009-01-01

    An overview is given on research towards the Prompt Gamma-ray Neutron Activation Analysis (PGNAA) of bulk-samples. Some aspects in bulk-sample PGNAA are discussed, where irradiation by isotopic neutron sources is used mostly for in-situ or on-line analysis. The research was carried out in a comparative and/or qualitative way or by using a prior knowledge about the sample material. Sometimes we need to use the assumption that the mass fractions of all determined elements add up to 1. The sensitivity curves are also used for some elements in such complex samples, just to estimate the exact percentage concentration values. The uses of 252 Cf, 241 Arn/Be and 239 Pu/Be isotopic neutron sources for elemental investigation of: hematite, ilmenite, coal, petroleum, edible oils, phosphates and pollutant lake water samples have been mentioned.

  14. Z dependence of the N=152 deformed shell gap: In-beam γ-ray spectroscopy of neutron-rich 245,246Pu

    International Nuclear Information System (INIS)

    Makii, H.; Ishii, T.; Asai, M.; Tsukada, K.; Toyoshima, A.; Ichikawa, S.; Matsuda, M.; Makishima, A.; Kaneko, J.; Toume, H.; Shigematsu, S.; Kohno, T.; Ogawa, M.

    2007-01-01

    We have measured in-beam γ rays in the neutron-rich 246 Pu 152 and 245 Pu 151 nuclei by means of 244 Pu( 18 O, 16 O) 246 Pu and 244 Pu( 18 O, 17 O) 245 Pu neutron transfer reactions, respectively. The γ rays emitted from 246 Pu ( 245 Pu) were identified by selecting the kinetic energy of scattered 16 O ( 17 O) detected by Si ΔE-E detectors. The ground-state band of 246 Pu was established up to the 12 + state. We have found that the shell gap of N=152 is reduced in energy with decreasing atomic number by extending the systematics of the one-quasiparticle energies in N=151 nuclei into those in 245 Pu. This reduction of the shell gap clearly affects the 2 + energy of the ground-state band of 246 Pu

  15. In vivo measurement of total body carbon using 238Pu/Be neutron sources

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Mitra, S.; Hill, G.L.

    1990-01-01

    Total body carbon has been measured by in vivo neutron activation analysis (IVNAA) in 278 surgical gastroenterological patients and 29 normal volunteers. This is based on the inelastic scattering reaction { 12 C(n,n') 12 C*} for neutrons with energy above 4.8MeV, producing 4.43 MeV gamma rays. Since only part of the body is scanned, total body carbon is estimated as the ratio of the gamma ray emission from carbon to the emission from hydrogen, using hydrogen as the internal standard. The precision of the estimate is ±1.6kg for a whole body dose of 0.3mSv. There is a significant difference between the estimates of total body water from IVNAA measurements of carbon and nitrogen and measurements of body water in these subjects by tritium dilution (t=3.1, p < 0.005). (author)

  16. Pu Denaturing by Transmutation of MA in FBR Multi-cycle

    Energy Technology Data Exchange (ETDEWEB)

    Meiliza, Yoshitalia; Saito, Masaki; Sagara, Hiroshi [Tokyo Institute of Technology, 2-12-1-N1-1 Ookayama, Meguro-ku, Tokyo, 1528550 (Japan)

    2009-06-15

    Pu accumulation and its recycling is important in the term of energy resources, however one of the most sensitive issues is non-proliferation in the future fuel cycle based on fast breeder reactor (FBR). The present paper utilizes Protected Pu Production (P{sup 3}) concept for the production of {sup 238}Pu and {sup 242}Pu by Minor Actinides (MA) transmutation to enhance the proliferation resistance of Pu in the fuel. Increase in the {sup 238}Pu and {sup 242}Pu isotopic fraction creates a high rate of internal heat generation by alpha decay (DH) and/or a high neutron source of spontaneous fission (SFN) in Pu that would be encountered during manufacturing and maintaining of nuclear explosive device. The feasibility of denaturing of Pu by MA transmutation in medium size FBR has been studied from the viewpoint of even-mass number Pu accumulation during multi-cycle of Pu and MA. The proliferation resistance property of Pu is also evaluated based on the specific decay heat and spontaneous fission neutron, compared with the reference criteria. In present paper, the P{sup 3} technology based on multi-recycled Pu and MA is compared with the conventional technology based on multi-recycled Pu only. The detail of mass balance behavior is, however, beyond the scope of the present paper. (authors)

  17. Application of ICP-MS and AMS for determination of Pu- and U-isotope ratios for source identification

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L. (Norwegian Univ. of Life Sciences, Isotope Lab.. Dept. of Plant and Environmental Sciences, AAs (Norway))

    2010-03-15

    Full text: Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which have resulted in a relatively uniform, underlying global distribution of plutonium. Plutonium isotope ratios are known to vary with reactor type, nuclear fuel-burn up time, neutron flux, and energy, and for fallout from nuclear detonations, weapon type and yield. Weapons-grade plutonium is characterized by a low content of the 240Pu isotope, with 240Pu/239Pu isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher 240Pu/239Pu isotope ratios (civil nuclear power reactors have 240Pu/239Pu atom ratios of between about 0.2-1). Thus, different sources often exhibit characteristic plutonium isotope ratios and these ratios can be used to identify the origin of contamination, calculate inventories, or follow the migration of contaminated sediments and waters. The measurement of the plutonium-isotope ratios in these studies offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers. The present paper presents results from determination of plutonium concentrations and isotope ratios in sediment samples collected during various expeditions to the Kara Sea, the Ob and Yenisey estuaries and their river systems and also Pu isotope ratios in the near area of Mayak PA. Weapons-grade plutonium is characterized by a low content of the Pu-240 isotope, with Pu-240/Pu-239 isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher Pu-240/Pu-239 isotope ratios, and

  18. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  19. Measurement of the neutron-induced fission cross-section of 240,242Pu

    International Nuclear Information System (INIS)

    Salvador-Castineira, P.; Hambsch, F.J.; Brys, T.; Oberstedt, S.; Vidali, M.; Pretel, C.

    2014-01-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are in high demand in the nuclear data community. In particular, highly accurate data are needed for the new Generation-IV nuclear applications. The aim is to obtain precise neutron-induced fission cross-sections for 240 Pu and 242 Pu. In this context accurate data on spontaneous fission half-lives have also been measured. To minimise the total uncertainty on the fission cross-sections the detector efficiency has been studied in detail. Both isotopes have been measured using a twin Frisch-grid ionisation chamber (TFGIC) due to its superiority compared to other detector systems in view of radiation hardness, 2 x 2π solid angle coverage and very good energy resolution. (authors)

  20. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  1. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am–Be neutron source

    International Nuclear Information System (INIS)

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am–Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am–Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. - Highlights: • The scope of the affected area for

  2. Evaluation of nuclear data of {sup 244}Pu and {sup 237}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Konshin, V.A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-10-01

    The evaluation of nuclear data for {sup 244}Pu and {sup 237}Pu was made in the neutron energy region from 10{sup -5} eV to 20 MeV. For the both nuclides, the total, elastic and inelastic scattering, fission, capture, (n,2n) and (n,3n) reaction cross sections were evaluated on the basis of theoretical calculation. The resonance parameters were given for {sup 244}Pu. The angular and energy distributions of secondary neutrons were also estimated for the both nuclides. The results were compiled in the ENDF-5 format and will be adopted in JENDL Actinoid File. (author).

  3. Anisotropy of neutrons sources of the Neutron Metrology Laboratory; Anisotropia de fontes de nêutrons do Laboratório de Metrologia de Nêutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.F., E-mail: alexander.camargo@oi.com.br [Fundação Técnico Educacional Souza Marques, Rio de Janeiro, RJ (Brazil); Silva, F.S.; Creazolla, P.G.; Patrão, K.C.S.; Fonseca, E.S. da; Pereira, W.W. [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratório Nacional de Metrologia das Radiações Ionizantes

    2017-07-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. Measurements were performed using a Precision Long Counter (PLC) detector in the Laboratório de Baixo Espalhamento of the LNMRI / IRD. In this study were used an {sup 241}AmBe (α,n) 5.92 GBq and a {sup 238}PuBe (α,n) 1.85 TBq. The anisotropy factor was 8.65% to {sup 241}AmBe and 4.36% to {sup 238}PuBe, due to variations in the source encapsulation. The results in this work will focus mainly on the area of radiation protection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  4. Proposal for Analysis of the Safeguarded Nuclear Materials 235U and 239Pu by Delayed Neutrons Technique

    International Nuclear Information System (INIS)

    El-Mongy, S.A.

    2000-01-01

    This paper introduces, describes and initiates a very sensitive and rapid non-destructive technique to be used for analysis of the safeguarded nuclear materials 235 U and 239 Pu. The technique is based on fission of the nuclear material by neutrons and then measuring the delayed neutrons produced from the neutron rich fission products. By this technique, fissile isotope content ( 235 U) can be determined in the presence of the other fissile (e.g. 239 Pu) or fertile isotopes (e.g. 238 U) in fresh and spent fuel. The time consumed for analysis of bulk materials by this technique is only 4 minutes. The method is also used for analysis of uranium in rock, sediment, soil, meteorites, lunar, biological, urine, archaeological, zircon sand and seawater samples. The method enables uranium in a sample to be measured without respect to its oxidation state, organic and inorganic elements

  5. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  6. Recovery of spent high intensity neutron sources in Atalante Facility

    International Nuclear Information System (INIS)

    Bros, P.; Boyer Deslys, V.; Millet, A.; Solinhac, I.; Donnet, L.; Maillard, C.; Paillard, S.; Ranchoux, M.

    2005-01-01

    The Atalante facility is required by law to recover both neutron and gamma sources with activity levels exceeding 300 mCi. Most of the neutron sources consist of mixtures of alpha-emitters (238Pu, 239Pu, 241Am or 244Cm) and beryllium. Several processes now under consideration are based on routine chemical separation techniques (selective precipitation, extraction chromatography, ion exchange). The treatment produces an actinide oxide (which is used later for R and D studies) and solid beryllium nitrate, which is considered as a waste and transferred to a surface interim storage site if the overall activity of the package after 300 years is less than 50 MBq (ANDRA specifications). The Material Analysis and Metrology Laboratory of Atalante validate the residual alpha activity in the waste. The techniques used include alpha spectrometry and L-line X-ray fluorescence for alpha emitters, and plasma torch measurements (ICP-AES and ICP-MS) for beryllium analysis. Specific equipment for transport (B type cask), storage and treatment (hot shielded cells) are used for this activity. (Author)

  7. Energy dependence of relative abundances and periods of delayed neutron separate groups from neutron induced fission of 239Pu in the virgin neutron energy range 0.37-4.97 MeV

    International Nuclear Information System (INIS)

    Piksajkin, V.M.; Kazakov, L.E.; Isaev, S.T.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G.

    2002-01-01

    Relative yield and group period of delayed neutrons induced by the 239 Pu fission in the 0.37-4.97 MeV range were measured. Comparative analysis of experimental data was conducted in terms of middle period of half-life of delayed neutron nuclei-precursors. Character and scale of changing values of delayed neutron group parameters as changing excitation energy of fission compound-nucleus have been demonstrated for the first time. Considerable energy dependence of group parameters under the neutron induced 239 Pu fission that was expressed by the decreasing middle period of half-life of nuclei-precursors by 10 % in the 2.85 eV - 5 MeV range of virgin neutrons was detected [ru

  8. Status of 239Pu evaluations

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Talou, Patrick; Chadwick, Mark B.

    2014-01-01

    This paper summarises the current status of nuclear data evaluations for n+ 239 Pu. The nuclear data we address include fission, capture, scattering cross-sections, as well as the prompt fission neutron energy spectrum, which has large sensitivities to the criticality benchmark testing. The evaluated nuclear data files currently available for 239 Pu are compared, and the source of differences in the cross-sections are discussed. Some open questions on the statistical model calculations for deformed systems are also given. (authors)

  9. The fission cross sections of 230Th, 232Th, 233U, 234U, 236U, 238U, 237Np, 239Pu and 242Pu relative 235U at 14.74 MeV neutron energy

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1986-12-01

    The measurement of the fission cross section ratios of nine isotopes relative to 235 U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for 235 U are: 230 Th - 0.290 +- 1.9%; 232 Th - 0.191 +- 1.9%; 233 U - 1.132 +- 0.7%; 234 U - 0.998 +- 1.0%; 236 U - 0.791 +- 1.1%; 238 U - 0.587 +- 1.1%; 237 Np - 1.060 +- 1.4%; 239 Pu - 1.152 +- 1.1%; 242 Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs

  10. Spectrometry and dosimetry of a neutron source

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Ramirez G, J.; Hernandez V, R.; Chacon R, A.

    2007-01-01

    Using Monte Carlo methods the spectrum, dose equivalent and ambient dose equivalent of a 239 PuBe at several distances has been determined. Spectrum and both doses, at 100 cm, were determined-experimentally using a Bonner sphere spectrometer. These quantities were obtained by unfolding the spectrometer count rates using artificial neural networks. The dose equivalent, based in the ICRP 21 criteria, was measured with the area neutron dosemeter Eberline model NRI), at 100, 200 and 300 cm. All measurements were carried out in an open space to avoid the room return. With these results it was found that this source has a yield of 8.41E(6) n/s. (Author)

  11. Bi-Modal Model for Neutron Emissions from PuO{sub 2} and MOX Holdup

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard; Lafleur, Adrienne [Los Alamos National Laboratory, Safeguard Science and Technology Group, NEN-1, MS E540, Los Alamos, NM, 87545 (United States)

    2015-07-01

    The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup for the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of Pu

  12. Economical Production of Pu-238

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Howe; Douglas Crawford; Jorge Navarro; Terry Ring

    2013-02-01

    All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238. The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100 M to get to production levels. The Center for Space Nuclear Research has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. The new process will also produce dramatically less waste. Potentially, the front end costs could be provided by private industry such that the government only had to pay for the product produced. Under a NASA Phase I NIAC grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce at least 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. In addition, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.

  13. Neutron Fluence Evaluation using an Am-Be Neutron Sources Assembly and P ADC Detectors

    International Nuclear Information System (INIS)

    Seddik, U.

    2008-01-01

    An assembly of four 241 Am-Be sources has been constructed at Nuclear Reactions Unit (NRU) of Nuclear Research Center (NRU) to perform analysis of different materials using thermal and fast neutrons. In the present paper, we measure the value of transmittance (T) in percentage of etched CR-39 detectors using a spectrophotometer at different neutron fluences ,to relate the transmittance of the detector with the neutron fluence values. The exposed samples to neutrons with accumulated fluence of order between 10 10 and 10 12 cm -2 were etched for 15 time intervals between 10-600 min in 6.25 N NaOH at 70 degree C. The etched samples were analyzed using Tech 8500 II spectrophotometer. A trend of the sample transmission and the etching time is observed which is different for each fluence value. A linear relation between the transmittance decay constant and the neutron fluence is observed which could be used as a calibration to determine unknown neutron fluence

  14. Photonuclear reactions of U-233 and Pu-239 near threshold induced by thermal neutron capture gamma rays

    International Nuclear Information System (INIS)

    Moraes, M.A.P. de.

    1990-01-01

    The photonuclear cross sections of U-293 and Pu-239 have been studied by using monochromatic and discrete photons, in the energy interval from 5.49 to 9.72 MeV, produced by thermal neutron capture. The gamma fluxes incident on the samples were measured using a ( 3 x 3 )'' NaI (TI) crystal. The photofission fragments were detected in Makrofol-Kg (SSNTD). A possible structure was observed in the U-233 cross sections, near 7.23 MeV. The relative fissionability of the nuclides was determined at each excitation energy and shown to be energy independent: ( 2.12 ± 0.25) for U-233 and ( 3.32 ± 0.41 ) for Pu-239. The angular distribution of photofission fragments of Pu-239 were measured at two mean excitation energies of 5.43 and 7.35 MeV. An anisotropic distribution of ( 12.2 ± 3.6 ) % was observed at 5.43 MeV. The total neutron cross sections were measured by using a long counter detector. The photoneutron cross sections were calculated by using energy dependent neutron multiplicities values, γ(E), obtained in the literature. The competition Γn/γf was also determined at each excitation energy, and shown to be energy independent: ( 0.54 ± 0.05 ) for U-233 and ( 0.44 ± 0.05 ) for Pu-239, and were correlated to the parameters Z sup(2)/A, ( Ef'-Bn'), A. According to the FUJIMOTO-YAMAGUCHI and CONSTANT NUCLEAR TEMPERATURE models, the nuclear temperatures were calculated. The total photoabsorption cross sections were also calculated as a sum of the photofission and photoneutron cross sections at each energy excitation. From these results the competition Γf/ΓA, called fission probability Pf, were obtained: ( 0.66 ± 0.02) for U-233 and ( 0.70 ± 0.02 ) for Pu-239. (author)

  15. Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method

    Science.gov (United States)

    Stefanik, Milan; Bem, Pavel; Majerle, Mitja; Novak, Jan; Simeckova, Eva

    2017-11-01

    The cyclotron-based fast neutron generator with the thick beryllium target operated at the NPI Rez Fast Neutron Facility is primarily designed for the fast neutron production in the p+Be source reaction at 35 MeV. Besides the proton beam, the isochronous cyclotron U-120M at the NPI provides the deuterons in the energy range of 10-20 MeV. The experiments for neutron field investigation from the deuteron bombardment of thick beryllium target at 20 MeV were performed just recently. For the neutron spectrum measurement of the d(20)+Be source reaction, the dosimetry foils activation method was utilized. Neutron spectrum reconstruction from resulting reaction rates was performed using the SAND-II unfolding code and neutron cross-sections from the EAF-2010 nuclear data library. Obtained high-flux white neutron field from the d(20)+Be source is useful for the intensive irradiation experiments and cross-section data validation.

  16. Evaluation of neutron nuclear data of 241pu for JENDL-2

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Sekine, Nobuo

    1984-06-01

    Neutron nuclear data of 241 Pu were newly evaluated for JENDL-2. Evaluated quantities are the total, elastic and inelastic scattering, fission, capture, (n,2n), (n,3n) and (n,4n) reaction cross sections, the resolved and unresolved resonance parameters, the angular and energy distributions of emitted neutrons, and the average number of neutrons emitted per fission. The simultaneous evaluation method was adopted for the fission cross section so as to keep the consistency among the main fissile and fertile material nuclides. The theoretical calculations based on the spherical optical model and the statistical model were also used, when the experimental data were not sufficient. Discussion is given on the evaluation method. (author)

  17. Neutron diffraction study of δ-alloy Pu{sup 242}–Ga aging

    Energy Technology Data Exchange (ETDEWEB)

    Somenkov, V.A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Blanter, M.S., E-mail: mike.blanter@gmail.com [Moscow State University of Instrumental Engineering and Information Science, Moscow (Russian Federation); Glazkov, V.P. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Laushkin, A.V.; Orlov, V.K. [JSC VNIINM n.a. A.A. Bochvar, Moscow (Russian Federation)

    2014-09-15

    In this paper, we report on a continuing neutron diffraction study of the mean-square atom displacements occurring during the long-term self-irradiation of a Pu–Ga alloy. The measurements were performed at room temperature using the sample based on the isotope Pu{sup 242} with low neutron absorption cross-section to which the short-lived isotope Pu{sup 238} (1.4 wt.%) was added to accelerate self-irradiation. We obtain the maximum self-irradiation equivalent time of 35.5 years, 12 years longer than in our previous papers. In the entire range of self-irradiation time a single fcc phase is preserved. It was found that after the two stages of change in the mean-square displacements we observed earlier (rapid growth up to ∼5–6 equivalent years and a slow decline in the range of ∼6–25 years), comes a stage of stabilization (after ∼25 years). The stabilization can be explained by the emergence of a balance between the formation of point defects and their absorption by helium bubbles and dislocation loops which accumulated over time.

  18. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  19. Spectrometry and dosimetry of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Ramirez G, J.; Hernandez V, R.; Chacon R, A. [Universidad Autonoma de Zacatecas, 98068 Zacatecas (Mexico)]. e-mail: fermineutron@yahoo.com

    2007-07-01

    Using Monte Carlo methods the spectrum, dose equivalent and ambient dose equivalent of a {sup 239}PuBe at several distances has been determined. Spectrum and both doses, at 100 cm, were determined-experimentally using a Bonner sphere spectrometer. These quantities were obtained by unfolding the spectrometer count rates using artificial neural networks. The dose equivalent, based in the ICRP 21 criteria, was measured with the area neutron dosemeter Eberline model NRI), at 100, 200 and 300 cm. All measurements were carried out in an open space to avoid the room return. With these results it was found that this source has a yield of 8.41E(6) n/s. (Author)

  20. Analysis of the 239Pu neutron cross sections from 300 to 2000 eV

    International Nuclear Information System (INIS)

    Derrien, H.; de Saussure, G.

    1990-01-01

    A recent high-resolution measurement of the neutron fission cross section of 239 Pu has allowed the extension from 1 to 2 keV of a previously reported resonance analysis of the neutron cross sections, and an improvement of the previous analysis in the range 0.3 to 1 keV. This report analyzes this region. 8 refs., 1 fig., 2 tabs

  1. SOURCES-3A: A code for calculating (α, n), spontaneous fission, and delayed neutron sources and spectra

    International Nuclear Information System (INIS)

    Perry, R.T.; Wilson, W.B.; Charlton, W.S.

    1998-04-01

    In many systems, it is imperative to have accurate knowledge of all significant sources of neutrons due to the decay of radionuclides. These sources can include neutrons resulting from the spontaneous fission of actinides, the interaction of actinide decay α-particles in (α,n) reactions with low- or medium-Z nuclides, and/or delayed neutrons from the fission products of actinides. Numerous systems exist in which these neutron sources could be important. These include, but are not limited to, clean and spent nuclear fuel (UO 2 , ThO 2 , MOX, etc.), enrichment plant operations (UF 6 , PuF 4 , etc.), waste tank studies, waste products in borosilicate glass or glass-ceramic mixtures, and weapons-grade plutonium in storage containers. SOURCES-3A is a computer code that determines neutron production rates and spectra from (α,n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media (i.e., a mixture of α-emitting source material and low-Z target material) and in interface problems (i.e., a slab of α-emitting source material in contact with a slab of low-Z target material). The code is also capable of calculating the neutron production rates due to (α,n) reactions induced by a monoenergetic beam of α-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The (α,n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay α-particle spectra, 24 sets of measured and/or evaluated (α,n) cross sections and product nuclide level branching fractions, and functional α-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an

  2. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  3. Recovery of 241Am/Be neutron sources, Wooster, Ohio

    International Nuclear Information System (INIS)

    Tompkins, J.A.; Wannigman, D.; Hatler, V.

    1998-07-01

    In August 1997, the Nuclear Regulatory Commission (NRC) submitted to the US Department of Energy (DOE) a partial list of licensed radioactive sealed sources to be recovered under a pilot project initiating Radioactive Source Recovery Program (RSRP) operations. The first of the pilot project recoveries was scheduled for September 1997 at Eastern Well Surveys in Wooster, Ohio, a company with five unwanted sealed sources on the NRC list. The sources were neutron emitters, each containing 241 Am/Be with activities ranging from 2.49 to 3.0 Ci. A prior radiological survey had established that one of these sources, a Gulf Nuclear Model 71-1 containing 3 Ci of 241 Am, was contaminated with 241 Am and might be leaking. The other four sources were obsolete and could no longer be used by Eastern Well Surveys for their intended application in well-logging applications due to NRC decertification of these sources. All of the sources exceeded the limits established for Class C waste under 10 CFR 61.55 and, as a result, are the ultimate responsibility of the DOE under the provisions of PL 99-240. This report describes the cooperative effort between the DOE and NRC to recover the sources and transport them to Los Alamos National Laboratory (LANL) for deactivation under the RSRP. This operation alleviated any potential risk to the public health and safety from the site which might result from the leaking neutron sources or the potential mismanagement of unwanted sources. The on-site recovery occurred on September 23, 1997, and was performed by personnel from LANL and its contractor and was observed by staff from the Region III office of the NRC. All aspects of the recovery were successfully accomplished, and the sources were received at LANL on September 29, 1997. Experience gained during this operation will be used to formulate operational poilicies and procedures which will contribute to the eventual routine recovery operations of a full-scale RSRP

  4. {sup 124}Sb–Be photo-neutron source for BNCT: Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Golshanian, Mohadeseh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Rajabi, Ali Akbar [Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-11-01

    In this research a computational feasibility study has been done on the use of {sup 124}SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of {sup 124}Sb, the epithermal neutron flux at the designed beam exit is 0.23×10{sup 9} (n/cm{sup 2} s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity {sup 124}Sb could be achieved using three 50 kCi rods of {sup 124}Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  5. Subcritical measurements with a cylindrical tank of Pu-U nitrate

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.; King, W.T.

    1997-01-01

    This series of measurements with a mixed Pu-U nitrate solution (280 g Pu/liter, 180 g U/liter) in a 35.54-cm-diam cylindrical tank provides a wide variety of experimental data for subcritical configurations that can be used to verify calculational methods and nuclear data. The Pu contained 7.85 wt% 240 Pu and the uranium was natural uranium. The measurements performed were: inverse count rate, prompt neutron decay constants, inverse kinetics, and frequency analysis by the 252 Cf source driven method. These data are presented in sufficient detail that the results of the experiments can be calculated directly. For purposes of extrapolating to the delayed critical height the ratio of spectral densities was linear with height and thus provided the best estimate of critical height

  6. Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)

    1998-10-01

    Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}

  7. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on 235U and 239Pu using the double time-of-flight technique

    International Nuclear Information System (INIS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Belier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-01-01

    Prompt fission neutron spectra from 235 U and 239 Pu were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg 235 U and 90 mg 239 Pu detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  8. Shielding of a neutron irradiator with {sup 241}Am-Be source

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X., E-mail: koliveira@con.ufrj.b, E-mail: verginia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Fonseca, E.S., E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The equivalent dose rates at 1.0 cm from the outer surface of the shielding of a neutron irradiation system that uses {sup 241}Am-Be source with activity of 185 GBq (5 Ci) were determined. A theoretical-experimental approach including case studies, through computer simulations with MCNP code was employed to calculate the best shielding thickness. Following the construction of the neutron irradiator, dose measurements were conducted in order to validate data obtained from simulation. The neutron irradiator shielding was designed in such a way to allow transport of the neutron radiography system for in loco inspections ensuring workers' radiologic safety. (author)

  9. Low energy 7Li(p,n)7Be neutron source (CANUTRON)

    International Nuclear Information System (INIS)

    Lone, M.A.; Ross, A.M.; Fraser, J.S.; Schriber, S.O.; Kushneriuk, S.A.; Selander, W.N.

    1982-04-01

    Characteristics of a neutron source based on the 7 Li(p,n) reaction at 2.5 MeV are investigated. It is shosn that with a 10-50 mA beam current this reaction provides a useful source for neutron radiography and other industrial applications

  10. 9Be(d,n)10B-based neutron sources for BNCT

    International Nuclear Information System (INIS)

    Capoulat, M.E.; Herrera, M.S.; Minsky, D.M.; González, S.J.; Kreiner, A.J.

    2014-01-01

    In the frame of accelerator-based BNCT, the 9 Be(d,n) 10 B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40 Gy-Eq, with a maximum value of 51 Gy-Eq at a depth of about 2.7 cm, in a 60 min treatment. The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol. - Highlights: • Study of the 9 Be(d,n) 10 B reaction as a source of epithermal neutrons for BNCT. • Evaluation of the optimal configuration of target thickness, deuteron energy and BSA design. • Computational dose assessment for brain tumor treatments using the MCNP code. • Treatment planning assessment of a particular clinical Glioblastoma Multiforme case. • Dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based source

  11. Determination of europium content in Li_2SiO_3(Eu) by neutron activation analysis using Am-Be neutron source

    International Nuclear Information System (INIS)

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-01-01

    Circulardiscs of Li_2SiO_3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the "1"5"1Eu(n,γ)"1"5"2"mEu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined. - Highlights: • Lithium meta-silicate is breeder materials for a fusion reactor. • Europium is used for neutron dose estimation in a breeder blanket. • It is important to determine amount of europium in lithium meta-silicate. • Amount of europium in lithium meta-silicate was determined by neutron activation and off-line gamma spectrometry.

  12. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  13. Accelerator based continuous neutron source.

    CERN Document Server

    Shapiro, S M; Ruggiero, A G

    2003-01-01

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...

  14. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    Science.gov (United States)

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  15. The secondary neutron sources for generation of particular neutron fluxes

    International Nuclear Information System (INIS)

    Tracz, G.

    2007-07-01

    The foregoing paper presents the doctor's thesis entitled '' The secondary neutron sources for generation of particular neutron fluxes ''. Two secondary neutron sources have been designed, which exploit already existing primary sources emitting neutrons of energies different from the desired ones. The first source is devoted to boron-neutron capture therapy (BNCT). The research reactor MARIA at the Institute of Atomic Energy in Swierk (Poland) is the primary source of the reactor thermal neutrons, while the secondary source should supply epithermal neutrons. The other secondary source is the pulsed source of thermal neutrons that uses fast 14 MeV neutrons from a pulsed generator at the Institute of Nuclear Physics PAN in Krakow (Poland). The physical problems to be solved in the two mentioned cases are different. Namely, in order to devise the BNCT source the initial energy of particles ought to be increased, whilst in the other case the fast neutrons have to be moderated. Slowing down of neutrons is relatively easy since these particles lose energy when they scatter in media; the most effective moderators are the materials which contain light elements (mostly hydrogen). In order to increase the energy of neutrons from thermal to epithermal (the BNCT case) the so-called neutron converter should be exploited. It contains a fissile material, 235 U. The thermal neutrons from the reactor cause fission of uranium and fast neutrons are emitted from the converter. Then fissile neutrons of energy of a few MeV are slowed down to the required epithermal energy range. The design of both secondary sources have been conducted by means of Monte Carlo simulations, which have been carried out using the MCNP code. In the case of the secondary pulsed thermal neutron source, some of the calculated results have been verified experimentally. (author)

  16. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  17. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  18. Neutronic analysis concerning the utilization of mixed U N-Pu N nitride fuel for fast reactors

    International Nuclear Information System (INIS)

    Renke, C.A.C.; Batista, J.L.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-08-01

    Neutronic behavior of mixed UN-PuN nitride fuel in substitution of the mixed oxide U O 2 - Pu O 2 for fast reactors is discussed with focus on Super Phenix I. Characteristics parameters of both cores are calculated and compared and the results presented show a great advantage for the nitride fuel, pointing out a larger performance of fuel elements in the core and an effective reduction of reactivity loss during the cycle. (author)

  19. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  20. Measurement of the fission cross-section of {sup 235}U and {sup 239}Pu for thermal neutrons; Mesures des sections de fission de {sup 235}U et de {sup 239}Pu en neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Fraysse, G; Prosdocimi, A; Netter, F; Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Improved techniques of fast detection have been applied for determining the fission cross-sections of {sup 235}U and {sup 239}Pu with reference to the absorption cross-section of Boron. Monochromatic neutron beams of 0.0322 eV, 0.0626 eV and 0.275 eV have been employed. Use has been made of a Xe-filled gaseous scintillator and of a low-geometry solid state ion chamber. Both measured alpha and fission rates. The results at the reference energy of 0.0253 eV are: ({sigma}{sub F}){sub 0} {sup 235}U = 588 {+-} 10 barns ({sigma}{sub F}){sub 0} {sup 239}Pu = 738 {+-} 7 barns. (authors) [French] Des techniques avancees de comptage rapide ont ete mise en oeuvre pour determiner la section efficace de fission de {sup 235}U et de {sup 239}Pu par rapport a celle d'absorption du bore. Des faisceaux de neutrons monochromatiques de 0,0322 eV, 0,0626 eV et 0,275 eV ont ete employes. Les detecteurs utilises sont un scintillateur gazeux rempli de xenon et une chambre d'ionisation a etat solide a basse geometrie. Les deux ont mesure les taux des desintegrations alpha et des fissions. Les resultats a l'energie de reference de 0,0253 eV sont: ({sigma}{sub F}){sub 0} {sup 235}U = 588 {+-} 10 barns ({sigma}{sub F}){sub 0} {sup 239}Pu = 738 {+-} 7 barns. (auteurs)

  1. Measurement of neutron energy spectra of PuO[sub 2]-UO[sub 2] mixed oxide fuel and penetrated through surrounding lead-acryl shield

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Noriaki; Tsujimura, Norio; Nakamura, Takashi (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Momose, Takumaro; Ninomiya, Kazushige; Ishiguro; Hideharu

    1993-12-01

    The energy spectra of neutrons emitted from an aluminum can containing PuO[sub 2]-UO[sub 2] mixed oxide fuel and penetrated through a 35mm thick lead-acryl shield surrounding the can, were measured with the NE-213 organic liquid scintillator, the proton recoil proportional counter and the multi-moderator [sup 3]He spectrometer (Bonner Ball). The measured results were compared with the results calculated by the MORSE-CG Monte Carlo code on the basis of source neutron yields obtained by the ORIGEN-2 code and the source energy spectrum cited from the reference data. The agreement between these two was pretty good. The dose equivalents were then calculated from thus-obtained energy spectra and the flux-to-dose conversion factor and showed good agreement with the data measured with the neutron dose-equivalent counters (rem counters). Since the published data on energy spectrum of mixed oxide fuel are very scarce, these results can be useful as basic data for shielding design study and radiation control of nuclear fuel facilities. (author).

  2. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    Science.gov (United States)

    Gatera, Angélique; Göök, Alf; Hambsch, Franz-Josef; Moens, André; Oberstedt, Andreas; Oberstedt, Stephan; Sibbens, Goedele; Vanleeuw, David; Vidali, Marzio

    2018-03-01

    Recent years have seen an increased interest in prompt fission γ-ray (PFG) measurements motivated by a high priority request of the OECD/NEA for high precision data, mainly for the nuclear fuel isotopes 235U and 239Pu. Our group has conducted a PFG measurement campaign using state-of-the-art lanthanum halide detectors for all the main actinides to a precision better than 3%. The experiments were performed in a coincidence setup between a fission trigger and γ-ray detectors. The time-of-flight technique was used to discriminate photons, traveling at the speed of light, and prompt fission neutrons. For a full rejection of all neutrons below 20 MeV, the PFG time window should not be wider than a few nanoseconds. This window includes most PFG, provided that no isomeric states were populated during the de-excitation process. When isomeric states are populated, PFGs can still be emitted up to 1 yus after the instant of fission or later. To study these γ-rays, the detector response to neutrons had to be determined and a correction had to be applied to the γ-ray spectra. The latest results for PFG characteristics from the reaction 239Pu(nth,f) will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  3. 238PuO2 Fuel and Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Douglas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rawool-Sullivan, Mohini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garner, Scott Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wenz, Tracy R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-01

    238Pu is an ideal material for use as a heat source with its half-life of 87.7 years and copious particle emissions. 238Pu radioisotope thermoelectric generators (RTGs) have found use for pacemakers, Apollo Space missions, Mars rovers, and Voyager spacecraft. In evaluating the dose to personnel and components near a 238Pu-based RTG, a number of additional nuclides and their daughter products must be considered to get an accurate estimate for γ-dose, and the amount of 17O and 18O for the neutron-dose must be considered. This paper looks at the contributing nuclides and their daughter products that add the most to the dose rates.

  4. Neutron induced fission cross sections for 232Th, 235,238U, 237Np, and 239Pu

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Hill, N.W.; Carlson, A.D.; Wasson, O.A.

    1989-01-01

    Neutron-induced fission cross section ratios for samples of 232 Th, 235,238 U, 237 Np and 239 Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence from 3 to 30 MeV. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.178 MeV. From 30 to 400 MeV cross section values were determined using the neutron fluence measured with a plastic scintillator. Cross section values of 232 Th, 235,238 U, 237 Np and 239 Pu were computed from the ratio data using the authors' values for 235 U(n,f). In addition to providing new results at high neutron energies, these data highlight several areas of deficiency in the evaluated nuclear data files and provide new information for the 235 U(n,f) standard

  5. Neutron induced fission cross section ratios for 232Th, 235,238U, 237Np and 239Pu from 1 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, 235,238 U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. (author)

  6. Collimator duct for neutron radiographs using a source of 241Am-Be

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X.

    2009-01-01

    With the aim of designing a collimator system to realize Neutron Radiographs using source of 241 Am-Be, a collimator was designed using two removable modules. One parameter of merit to be considered in the building of a collimator is the intensity of the neutron beam on the image plane. Therefore, the choice of the inner coating material is of utmost importance. As the scattered neutrons can reduce the resolution of the neutron radiographic image, it would be opportune to capture them so that the neutron beam is aligned. Thus, an aligning module made of an absorbent material was designed, to coat the wall end extensions of the collimator. Two other parameters are essential to configure a collimator system: the length, L, and diameter of the opening, D. Geometric resolution of the neutron radiographic image is defined by the ratio L/D, as well as the neutron flux on the image plane. Simulations with code MCNP-4B were conducted to select the geometry of the collimator, the materials for the structure and coating and the dimensions for the L and D parameters and aluminum was chosen as the structural material and cadmium for coating. (author)

  7. R-matrix analysis of the /sup 239/Pu neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Saussure, G. de; Perez, R.B.; Macklin, R.L.

    1986-03-01

    /sup 239/Pu neutron cross-section data in the resolved resonance region were analyzed with the R-Matrix Bayesian Program SAMMY. Below 30 eV the cross sections computed with the multilevel parameters are consistent with recent fission and transmission measurements as well as with older capture and alpha measurements. Above 30 eV no suitable transmission data were available and only fission cross-section measurements were analyzed. However, since the analysis conserves the complete covariance matrix, the analysis can be updated by the Bayes method as transmission measurements become available. To date, the analysis of the fission measurements has been completed up to 300 eV.

  8. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  9. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  10. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  11. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  12. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  13. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  14. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  15. Historical changes in 239Pu and 240Pu sources in sedimentary records in the East China Sea: Implications for provenance and transportation

    DEFF Research Database (Denmark)

    Wang, Jinlong; Baskaran, Mark; Hou, Xiaolin

    2017-01-01

    from 0.158 to 0.297 and were mostly higher than the mean global fallout value of 0.18. The 239,240Pu inventories in the ECS varied widely, from 2 to 807 Bqm−2, with the highest values commonly found in the coastal areas. In the Yangtze Estuary, the mean 239+240Pu activity concentration is close...... to the estimated value of the suspended material from the Yangtze River catchment (0.18 Bqkg−1), and the 240Pu/239Pu atom ratio was found to be ∼0.18, which indicates that the Yangtze River input is the dominant source of Pu for this area. The total annual Yangtze River input of 239+240Pu was estimated to be 2...

  16. Neutron induced fission cross section ratios for 232Th, /sup 235,238/U, 237Np, and 239Pu from 1 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, /sup 235,238/U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs

  17. Instrumentation at pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Lander, G.H.; Windsor, C.G.

    1984-01-01

    Scientific investigations involving the use of neutron beams have been centered at reactor sources for the last 35 years. Recently, there has been considerable interest in using the neutrons produced by accelerator driven (pulsed) sources. Such installations are in operation in England, Japan, and the United States. In this article a brief survey is given of how the neutron beams are produced and how they can be optimized for neutron scattering experiments. A detailed description is then given of the various types of instruments that have been, or are planned, at pulsed sources. Numerous examples of the scientific results that are emerging are given. An attempt is made throughout the article to compare the scientific opportunities at pulsed sources with the proven performance of reactor installations, and some familiarity with the latter and the general field of neutron scattering is assumed. New areas are being opened up by pulsed sources, particularly with the intense epithermal neutron beams, which promise to be several orders of magnitude more intense than can be obtained from a thermal reactor

  18. 242Pu: Preliminary evaluation with consideration of 240Pu, and some sensitivity results

    International Nuclear Information System (INIS)

    Jary, J.; Lagrange, C.; Philis, C.

    1978-01-01

    A preliminary evaluation of 242 Pu nuclear data is presented for the neutron energy range from 10 keV to 20 MeV. The fission cross section is based upon recent experimental measurements on 242 Pu. The remaining cross sections have been calculated using various nuclear models with parameters obtained mainly by both fits on 240 Pu experimental data and general reflexions on the actinides. Particular care has been taken of the direct interactions. The laws of secondary neutron energy spectra and the average number of neutrons produced per fission have been evaluated. The results have been placed in ENDF/BIV format and combined with the low energy region of ENDF/BIV MAT = 1161 data to make complete the evaluation over the whole energy range 10 -5 eV - 20 MeV. Finally, the sensitivities of some of these nuclear data available for reactor calculations are given in terms of the variation of the calculated critical masses

  19. An automatic evaluation system for NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At CERN, neutron personal monitoring for over 4000 collaborators is performed with Kodak NTA films, which have been shown to be the most suitable neutron dosimeter in the radiation environment around high-energy accelerators. To overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with sup 2 sup 3 sup 8 Pu-Be source neutrons, which results in densely ionised recoil tracks, as well as on the extension of the method to higher energy neutrons causing sparse and fragmentary tracks. The application of the method in routine personal monitoring is discussed. $9 overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with /sup 238/Pu-Be source $9 discussed. (10 refs).

  20. Pulsed neutron sources at Dubna

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1991-01-01

    In 1960 the first world repetitively pulsed reactor IBR was put into operation. It was the beginning of the story how fission based pulsed neutron sources at Dubna have survived. The engineers involved have experienced many successes and failures in the course of new sources upgrading to finally come to possess the world's brightest neutron source - IBR-2. The details are being reviewed through the paper. The fission based pulsed neutron sources did not reach their final state as yet- the conceptual views of IBR prospects are being discussed with the goal to double the thermal neutron peak flux (up to 2x10 16 ) and to enhance the cold neutron flux by 10 times (with the present one being as high that of the ISIS cold moderator). (author)

  1. Neutron generators at Purnima Lab

    International Nuclear Information System (INIS)

    Patel, Tarun; Sinha, Amar

    2015-01-01

    Neutron sources are in a great demand in many area like research, nuclear waste management, industrial process control, medical and also security. Major sources of neutrons are nuclear reactors, radioisotopes and accelerator based neutron generators. For many field applications, reactors cannot be used due to its large size, complicated system, high cost and also safety issues. Radioisotopes like Pu-Be, Am-Be, Cf, are extensively used for many industrial applications. But they are limited in their use due to their low source strength and also handling difficulties due to radioactivity. They are also not suitable for pulsed neutron applications. In contrast, compact size, pulsed operation, on/off operation etc.of accelerator based neutron generators make them very popular for many applications. Particle accelerators based on different types of neutron generators have been developed around the world. Among these deuteron accelerator based D-D and D-T neutron generators are widely used as they produce mono-energetic fast neutrons and in particular high yield of D-T neutron can be obtained with less than 300 KV of accelerating voltage

  2. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  3. APA: U free Pu pin in a heterogeneous assembly to improve Pu loading in a PWR - neutronic, thermo-hydraulic and manufacturing studies

    International Nuclear Information System (INIS)

    Porta, J.; Puill, A.; Bauer, M.; Matheron, P.

    1999-01-01

    After having presented the specific context of France with respect to the fuel cycle and reprocessing, the problem of plutonium fuel utilization is posed. If one of the solutions, a pressurized water reactor (PWR) with an increased moderation ratio seems possible, it entails making excessive changes to the reactor, the control systems, and the general architecture of the steam supply system. Another solution consists in modifying the fuel itself so as to eliminate conversion on 238 U by using plutonium (Pu) in a neutronically inert matrix. However, the disadvantage of this type of fuel is that it has very low Doppler and draining coefficients and a very small delayed neutron fraction. To enable using these fuels, a heterogeneous assembly has to be defined, in which standard UO 2 rods provide the physical properties required to ensure acceptable safety coefficients. (author)

  4. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  5. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  6. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  7. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  8. Investigation of some possible changes in Am-Be neutron source configuration in order to increase the thermal neutron flux using Monte Carlo code

    Science.gov (United States)

    Basiri, H.; Tavakoli-Anbaran, H.

    2018-01-01

    Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.

  9. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  10. Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility

    Science.gov (United States)

    Lerendegui-Marco, J.; Guerrero, C.; Mendoza, E.; Quesada, J. M.; Eberhardt, K.; Junghans, A. R.; Krtička, M.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.; n TOF Collaboration

    2018-02-01

    The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on 242Pu carried out at n_TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The 242Pu(n ,γ ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n_TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.

  11. The fission cross sections of /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu and /sup 242/Pu relative /sup 235/U at 14. 74 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.W.

    1986-12-01

    The measurement of the fission cross section ratios of nine isotopes relative to /sup 235/U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for /sup 235/U are: /sup 230/Th - 0.290 +- 1.9%; /sup 232/Th - 0.191 +- 1.9%; /sup 233/U - 1.132 +- 0.7%; /sup 234/U - 0.998 +- 1.0%; /sup 236/U - 0.791 +- 1.1%; /sup 238/U - 0.587 +- 1.1%; /sup 237/Np - 1.060 +- 1.4%; /sup 239/Pu - 1.152 +- 1.1%; /sup 242/Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs.

  12. Multilevel resonance parameters of 241Pu

    International Nuclear Information System (INIS)

    Weston, L.W.; Todd, J.H.

    1978-01-01

    The data previously reported by the authors on the neutron fission and capture cross sections of 241 Pu were simultaneously fit with the Adler formalism to obtain multilevel resonance parameters. The neutron energy range of the fit was 0.01 to 100 eV. The 241 Pu cross sections in the resonance region of neutron energies are complex, and the Adler parameters present an efficient method of representing these cross sections, which are important for plutonium-fueled reactors. The parameters represent the data to an accuracy within the quoted experimental errors. 5 figures, 2 tables

  13. First radiochemical studies on the transmutation of 239Pu with spallation neutrons

    International Nuclear Information System (INIS)

    Wan, J.-S.; Langrock, E.-J.; Westmeier, W.

    2000-01-01

    Incineration studies of plutonium were carried out at the synchrophasotron of the Joint Institute for Nuclear Research (Dubna) using proton beams with energies of 0.53 GeV and 1.0 GeV. Solid lead target (8 cm in diameter and 20 cm long) was surrounded with 6 cm thick paraffin as neutron moderator and then irradiated. The transmutation of 239 Pu and the associated production of fission products 91 Sr, 92 Sr, 97 Zr, 99 Mo, 103 Ru, 105 Ru, 129 Sb, 132 Te, 133 I, 135 I and 143 Ce were studied. The plutonium samples (each 449 mg) were placed on the outer surface of moderator. For 1.0 GeV proton beam, the fission rate of 239 Pu is 0.0032 fissions per proton in one gram plutonium samples, for 0.53 GeV proton this value is 0.0022. The experimental uncertainty is about 15%. The experiments are compared to two theoretical model calculations with moderate success, using the Dubna Cascade Model (CEM) and the LAHET code. The practical incineration rate of 239 Pu is very high. For example: if one uses 10mA, 1 GeV proton beams under the same (fictive) experimental conditions, the incineration rate of 239 Pu via fission is 3 mg out of the 449 mg sample per day. For 0.53 GeV protons the corresponding rate is 2 mg per day

  14. The k0-NAA Standardization Method Using an Am-Be Neutron Source

    International Nuclear Information System (INIS)

    Soliman, N.F.; Mohamed, G.Y.; Hassan, M.F.; Ali, M.A.

    2012-01-01

    Instrumental neutron activation analysis is a well established technique for the analysis of trace elements in different samples. Precise elemental concentrations of Al, Mn, Mg and Na in two unknown geological samples were determined by using the k 0 -standardization method. For such measurements two sets of standard monitors of Gold (Au), Indium (In), Tungsten (W) and Titanium (Ta) were used. One set is bare and the other is cadmium covered. These monitors were used for measuring the irradiation position factors f and α and using the cadmium ratios of the 115 In(n,γ) 116 In and 182 Ta(n,γ) 183 Ta interactions. Neutrons were obtained from CNIF 2 facility that uses an Am-Be radio-isotopic neutron source with a modification to have thermal and epi-thermal neutrons. Measurements were carried out using a gamma-ray spectrometer consisting of a hyper pure germanium detector and necessary associated electronics. The k 0 -standardization method can be used for quality control tests.

  15. Photon contributions from the 252Cf and 241Am–Be neutron sources at the PSI Calibration Laboratory

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Boschung, M.; Meier, K.; Stadtmann, H.; Hranitzky, C.; Figel, M.; Mayer, S.

    2012-01-01

    At the accredited PSI Calibration Laboratory neutron reference fields traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to the ambient dose equivalent in the neutron fields of the 252 Cf and 241 Am–Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source usually involves considerable uncertainties due to the presence of neutron induced photons in the room, due to a non-zero neutron sensitivity of the photon detector, and last but not least due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution of the two sources as an average of the individual methods. For the 241 Am–Be source a photon contribution of approximately 4.9% was determined and for the 252 Cf source a contribution of 3.6%.

  16. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  17. Monitoring the fast neutrons in a high flux: The case for 242Pu fission chambers

    International Nuclear Information System (INIS)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B.; Vermeeren, L.

    2009-01-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10 15 n/cm 2 /s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, 242 Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  18. Feasibility study of {sup 235}U and {sup 239}Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, T. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Pérot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Brackx, E. [CEA, DEN, Marcoule, Metallography and Chemical Analysis Laboratory, F-30207 Bagnols-sur-Cèze (France); Mariani, A.; Passard, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Mauerhofer, E. [FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble Alpes, CNRS/IN2P3 Grenoble (France)

    2016-10-01

    This paper reports a feasibility study of {sup 235}U and {sup 239}Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of {sup 235}U and {sup 239}Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to {sup 137}Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of {sup 235}U or {sup 239}Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  19. The advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    The Advanced Neutron Source (ANS), slated for construction start in 1994, will be a multipurpose neutron research laboratory serving academic and industrial users in chemistry, biology, condensed matter physics, nuclear and fundamental physics, materials science and engineering, and many other fields. It will be centered on the world's highest flux neutron beam reactor, operating at 330 MW, with careful design integration between the neutron source and the experiment systems. Many instruments will be situated in low backgrounds at distances up to 80 m from the reactor, using neutron guides with tailored neutron optical coatings for beam transport. Apart from the many stations for neutron scattering research, specialized stations will also be provided for isotope separation on-line, experiments with liquid hydrogen targets, neutron optical techniques such as interferometry, activation analysis, depth profiling, and positron production. Careful consideration has been given to providing a good research environment for visiting scientists, including easy access to the experimental areas, while maintaining a highly secure nuclear facility. This paper will describe the reactor and experimental facilities and give some examples of the types of research for which ANS has been designed

  20. Semi-insulating GaAs detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sagatova, A.; Sedlackova, K.; Necas, V.; Zatko, B.; Dubecky, F.; Bohacek, P.

    2012-01-01

    The present work deals with the technology of HDPE neutron conversion layer application on the surface of semi-insulating (SI) GaAs detectors via developed polypropylene (PP) based glue. The influence of glue deposition on the electric properties of the detectors was studied as well as the ability of the detectors to register the fast neutrons from "2"3"9Pu-Be neutron source. (authors)

  1. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  2. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Lee, H.S.; Bhang, H.; Choi, J.H.; Choi, S.; Joo, H.W.; Kim, G.B.; Kim, K.W.; Kim, S.C.; Kim, S.K.; Lee, J.H.; Lee, J.K.; Myung, S.S.; Hahn, I.S.; Jeon, E.J.; Kang, W.G.; Kim, Y.D.; Kim, Y.H.; Li, J.; Kim, H.J.; Leonard, D.S.

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137 Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  3. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  4. Neutron cooling and cold-neutron sources (1962)

    International Nuclear Information System (INIS)

    Jacrot, B.

    1962-01-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [fr

  5. Variations in Pu isotopic composition in soils from the Spitsbergen (Norway): Three potential pollution sources of the Arctic region.

    Science.gov (United States)

    Łokas, E; Anczkiewicz, R; Kierepko, R; Mietelski, J W

    2017-07-01

    Although the polar regions have not been industrialised, numerous contaminants originating from human activity are detectable in the Arctic environment. This study reports evidence of 240 Pu/ 239 Pu atomic ratios in the tundra and initial soils from different parts of west and central Spitsbergen and recognizes possible environmental inputs of non-global fallout Pu. The average atomic ratio of 240 Pu/ 239 Pu equal to 0.179 (ranging between 0.129 and 0.201) in tundra soils are comparable to the characteristic ratio for global fallout (0.180). However, the 240 Pu/ 239 Pu atomic ratios in the initial soils from proglacial zone of glaciers change within wide range between 0.1281 and 0.234 with the mean value of 0.169. By combining alpha and mass spectrometry, the three-sources model was used to identify the Pu sources in initial soils. Our study indicated that the main source of Pu is nuclear tests and that a second source with lower Pu ratio may come from weapons grade Pu (unexploded weapons grade Pu ie. material from bomb which didn't undergo nuclear explosions for example for security tests). Additionally, we found samples with high 238 Pu/ 239+240 Pu activity ratios and with typical global fallout 240 Pu/ 239 Pu atomic ratios, which are associated with separate sources of pure 238 Pu from the SNAP-9A satellite burn up in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integral data evaluation of stainless steel, 239Pu, 240Pu, and H2O for homogeneous plutonium systems

    International Nuclear Information System (INIS)

    Jenquin, U.P.; Thompson, J.K.; Trapp, T.J.; Kottwitz, D.A.

    1979-08-01

    Theory-experiment correlations of plutonium-fueled systems using ENDF/B cross-section data have discrepancies which could be due to cross-section data, theoretical methods, and/or interpretation of the experiment. Analyses of homogeneous plutonium critical experiments were performed to determine where cross section deficiencies may exist. New thermal cross-section data (0.3 eV) were generated for 239 Pu and 240 Pu capture, fission, and neutrons per fission. Two scattering kernels for hydrogen bound in water were also generated. Calculated values of k/sub eff/ using these new data were compared with corresponding values using ENDF/B-IV data. The results indicate that the 240 Pu resonance data are sufficiently well known for hydrogen-moderated plutonium systems. In systems using stainless steel as structural and/or neutron control, a large fraction of the neutron absorptions occur in the stainless steel. Analyses of several systems containing stainless steel indicate that the uncertainty in calculated values of k/sub eff/ is small using current estimates of the uncertainties in the cross sections. 20 figures, 30 tables

  7. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  8. Neutron sources and applications

    International Nuclear Information System (INIS)

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  9. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  10. α spectrometry on thick sources. Application to Pu dosing in U-Pu alloys with a low Pu content

    International Nuclear Information System (INIS)

    Guery, Marcel

    1969-06-01

    After having noticed that alpha spectrometry of thick sources has been not much studied, the author reports the application of this type of alpha spectrometry to a problem of plutonium dosing in uranium-plutonium alloys with low plutonium content. Four measurement and test campaigns, each being few month long, have been performed. During the first three ones, the best measurement conditions have been determined, the necessary apparatus has been acquired, and data compilation has been elaborated. This report addresses the last campaign during which exploitable results have been obtained. After some generalities about alpha rays from thick sources, the author reports a detailed examination of measurements made on U-Pu alloys, and of corrections to be made, notably those due to the Am-241 content, to stacking and to oxidation. The method appears to be very sensitive, with a precision better than 1 per cent. Improvements seem possible [fr

  11. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  12. Vertical distribution of 239+240Pu-concentration and 240Pu/239Pu isotope ratio in sediment cores. Implications for the sources of plutonium in the Japan Sea

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Jian, Zheng

    2005-01-01

    The main sources in the environmental plutonium is due to nuclear explosions held during 1945 - 1980. The global fallout of plutonium is estimated to amount to 10.9 PBq, of which 6.6 PBq entering into the ocean. The Japan Sea is reported to be concentrated in plutonium in excess according to previous measurements. The present report aims to clarify the origin and transport path of plutonium in Japan Sea by measuring 240 Pu/ 239 Pu ratio in sedimenta cores with ICP-MS (Inductively Coupled Plasma Mass Spectrometry) which depends on the types of the nuclear reactor, nuclear fuels, reacting time, or the types of nuclear weapons concerned. As an example the 240 Pu/ 239 Pu ratio from the nuclear explosions in early 1960's is known to be 0.18, while that of 0.34-0.36 Bikini experiments in the Marshall Islands in early 1950's. After a detailed examination, the present authors propose that the plutonium from the explosion sites around the Marshall Islands was carried with an oceanic current to be deposited in the bed of the East-China Sea, from which a part of the plutonium was transported with the Black Stream to enter Japan Sea. (S. Ohno)

  13. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  14. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  15. Advanced neutron source project

    International Nuclear Information System (INIS)

    Gorynina, L.V.; Proskuryakov, S.F.; Tishchenko, V.A.; Uzhanova, V.V.

    1991-01-01

    The project of the ANS improved neutron source intended for fundamental researches in nuclear physics and materials testing is considered. New superhigh-flux heavy-water 350 MW reactor is used for the source creation. The standard fuel is uranium silicide (U 3 Si 2 ). Reactor core volume equals 67.4 l and average power density is 4.9 MW/l. Neutron flux density is 10 16 neutron/(cm 2 xs). The facility construction begin is planned for 1996. The first experiments should be accomplished in 2000

  16. Properties of neutron sources

    International Nuclear Information System (INIS)

    1987-03-01

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  17. Monitoring the fast neutrons in a high flux: The case for {sup 242}Pu fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B. [Commissariat a l' Energie Atomique, DEN/SPEX/LDCI, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-07-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10{sup 15} n/cm{sup 2}/s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, {sup 242}Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  18. Neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs.

  19. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  20. Development of the neutron reference calibration field using a 252Cf standard source surrounded with PMMA moderators

    International Nuclear Information System (INIS)

    Yoshida, T.; Kanai, K.; Tsujimura, N.

    2002-01-01

    The authors developed the neutron reference calibration fields using a 252 Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the 252 Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments

  1. Plutonium activities and 240Pu/ 239Pu atom ratios in sediment cores from the east China sea and Okinawa Trough: Sources and inventories

    Science.gov (United States)

    Wang, Zhong-liang; Yamada, Masatoshi

    2005-05-01

    Plutonium concentrations and 240Pu/ 239Pu atom ratios in the East China Sea and Okinawa Trough sediment cores were determined by isotope dilution inductively coupled plasma mass spectrometry after separation using ion-exchange chromatography. The results showed that 240Pu/ 239Pu atom ratios in the East China Sea and Okinawa Trough sediments, ranging from 0.21 to 0.33, were much higher than the reported value of global fallout (0.18). The highest 240Pu/ 239Pu ratios (0.32-0.33) were observed in the deepest Okinawa Trough sediment samples. These ratios suggested the US nuclear weapons tests in the early 1950s at the Pacific Proving Grounds in the Marshall Islands were a major source of plutonium in the East China Sea and Okinawa Trough sediments, in addition to the global fallout source. It was proposed that close-in fallout plutonium was delivered from the Pacific Proving Grounds test sites via early direct tropospheric fallout and transportation by the North Pacific Equatorial Circulation system and Kuroshio Current into the Okinawa Trough and East China Sea. The total 239 + 240 Pu inventories in the cores were about 150-200% of that expected from direct global fallout; about 46-67% of the total inventories were delivered from the Pacific Proving Grounds. Much higher 239 + 240 Pu inventories were observed in the East China Sea sediments than in sediments of the Okinawa Trough, because in the open oceans, part of the 239 + 240 Pu was still retained in the water column, and continued Pu scavenging was higher over the margin than the trough. According to the vertical distributions of 239 + 240 Pu activities and 240Pu/ 239Pu atom ratios in these cores, it was concluded that sediment mixing was the dominant process in controlling profiles of plutonium in this area. Faster mixing in the coastal samples has homogenized the entire 240Pu/ 239Pu ratio record today; slightly slower mixing and less scavenging in the Okinawa Trough have left the surface sediment ratios closer

  2. Energy dependence of relative abundances and periods of separate groups of delayed neutrons at neutron induced fission of 239Pu in a range of neutrons energies 0.37 - 5 MeV

    International Nuclear Information System (INIS)

    Roschenko, V.A.; Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Tarasko, M.Z.; Tertychnyi, R.G.

    2001-01-01

    The fundamental role of delayed neutrons in behavior, control and safety of reactors is well known today. Delayed neutron data are of great interest not only for reactor physics but also for nuclear fission physics and astrophysics. The purpose of the present work was the measurement of energy dependence of delayed neutrons (DN) group parameters at fission of nuclei 239 Pu in a range of energies of primary neutrons from 0.37 up to 5 MeV. The measurements were executed on installation designed on the basis of the electrostatic accelerator of KG - 2.5 SSC RF IPPE. The data are obtained in 6-group representation. It is shown, that there is a significant energy dependence of DN group parameters in a range of primary neutrons energies from thermal meanings up to 5 MeV, which is expressed in reduction of the average half-life of nuclei of the DN precursors on 10 %. The data, received in the present work, can be used at creation of a set of group constants for reactors with an intermediate spectrum of neutrons. (authors)

  3. Strong neutron sources - How to cope with weapon material production capabilities of fusion and spallation neutron sources?

    International Nuclear Information System (INIS)

    Englert, M.; Franceschini, G.; Liebert, W.

    2013-01-01

    In this article we investigate the potential and relevance for weapon material production in future fusion power plants and spallation neutron sources (SNS) and sketch what should be done to strengthen these technologies against a non-peaceful use. It is shown that future commercial fusion reactors may have military implications: first, they provide an easy source of tritium for weapons, an element that does not fall under safeguards and for which diversion from a plant could probably not be detected even if some tritium accountancy is implemented. Secondly, large fusion reactors - even if not designed for fissile material breeding - could easily produce several hundred kg Pu per year with high weapon quality and very low source material requirements. If fusion-only reactors will prevail over fission-fusion hybrids in the commercialization phase of fusion technology, the safeguard challenge will be more of a legal than of a technical nature. In pure fusion reactors (and in most SNS) there should be no nuclear material present at any time by design. The presence of undeclared nuclear material would indicate a military use of the plant. This fact offers a clear-cut detection criterion for a covert use of a declared facility. Another important point is that tritium does not fall under the definition of 'nuclear material', so a pure fusion reactor or a SNS that do not use nuclear materials are not directly falling under any international non-proliferation treaty requirements. Non-proliferation treaties have to be amended to take into account that fact. (A.C.)

  4. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  5. An Am-Be neutron source Accident and its management

    International Nuclear Information System (INIS)

    Bai Guang; Wang Xinyong; Wu Zhenghan

    1988-01-01

    An 241 Am-Be neutron source for inaustrial use was lost in a county of Guangdong Province in April, 1982. A school boy picked up and brought it to his home. The source was broken and 10 people were contaminated with radioactive substance. The boy (X) received the highest external irradiation, with chest dose of 0.12 Sv and hand dose of 0.32 Sv. His brother (Y) incurred the heaviest internal contamination by 241 Am, about 3.3 x 10 3 Bq. Decorporation was carried out in four persons including Y, and the excretion of 241 Am in stools and urine was increased significantly. With the medical examination performed upon these persons one and half years after the accident, no positive findings induced by radiation were found except the increase of chromosomal aberration rate in lymphocytes

  6. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  7. Bulk media assay using backscattered neutron spectrometry

    International Nuclear Information System (INIS)

    Csikai, J.

    2000-01-01

    This paper summarized a systematic study of bulk media assay using backscattered neutron spectrometry. The source-sample-detector geometry used for the measurements of leakage and elastically backscattered (EBS) spectra of neutrons is shown. Neutrons up to about 14 MeV were produced via 2 H (d,n) and 9 Be (d,n) reactions using different deuteron beam energies between 5 and 10 MeV at the MGC-20E cyclotron of ATOMKI (Debrecen). Neutron yields of the Pu-Be and 252 Cf sources were 5.25 x 10 6 n/s and 1.8 x 10 6 n/s, respectively. Flux density distributions of thermal and primary 14 MeV neutrons were measured for graphite, water and coal samples in various moderator (M)-sample (S)-reflector (R) geometries. Relative fractions and integrated yields of 252 Cf, Pu-Be and 14 MeV neutrons above the (n,n'γ) reaction thresholds for 12 C, 16 O and 28 Si isotopes vs sample thickness have also been determined. It was found that the integrated reaction rate vs sample thickness decreasing exponentially with different attenuation coefficients depending on the neutron spectrum and the composition of the sample. The spectra of neutrons from sources passing through slabs of water, graphite, sand, Al, Fe and Pb up to 20 cm in thickness have been measured by a PHRS system in the 1.2 to 1.5 MeV range. The leakage neutron spectra from a Pu-Be source placed in the center of 30 cm diameter sphere filled with water, paraffin oil, SiO 2 , zeolite and river sand were also measured. The measured spectra have been compared with the calculated results obtained by the three dimensional Monte-Carlo code MCNP-4A and point-wise cross sections from the ENDF/B-4, ENDF/B-6, ENDF/E-1, BROND-2 and JENDL-3.1 data files. New results were obtained for validation of different data libraries from a comparison on the measured and the calculated spectra. Some typical results for water, Al, sand and Fe are shown. A combination of the backscattered neutron spectrometry with the surface gauge used both for the

  8. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  9. The advanced neutron source

    International Nuclear Information System (INIS)

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 8 x 10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research

  10. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  11. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  12. Thermal neutron capture cross-section measurements of 243Am and 242Pu using the new mini-INCA α- and γ-spectroscopy station

    International Nuclear Information System (INIS)

    Marie, F.; Letourneau, A.; Fioni, G.; Deruelle, O.; Veyssiere, Ch.; Faust, H.; Mutti, P.; AlMahamid, I.; Muhammad, B.

    2006-01-01

    In the framework of the Mini-INCA project, dedicated to the study of Minor Actinide transmutation process in high neutron fluxes, an α- and γ-spectroscopy station has been developed and installed at the High Flux Reactor of the Laue-Langevin Institut. This set-up allows short irradiations as well as long irradiations in a high quasi-thermal neutron flux and post-irradiation spectroscopy analysis. It is well suited to measure precisely, in reference to 59 Co cross-section, neutron capture cross-sections, for all the actinides, in the thermal energy region. The first measurements using this set-up were done on 243 Am and 242 Pu isotopes. Cross-section values, at E n =0.025eV, were found to be (81.8+/-3.6)b for 243 Am and (22.5+/-1.1)b for 242 Pu. These values differ from evaluated data libraries by a factor of 9% and 17%, respectively, but are compatible with the most recent measurements, validating by the way the experimental apparatus

  13. Instrumentation and procedures for moisture corrections to passive neutron coincidence counting assays of bulk PuO2 and MOX powders

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.; Ferran, R.R.; Aparo, M.; Zeppa, P.; Troiani, F.

    1993-05-01

    For passive neutron-coincidence-counting verification measurements of PuO 2 and MOX powder, assay biases have been observed that result from moisture entrained in the sample. This report describes a unique set of experiments in which MOX samples, with a range of moisture concentrations, were produced and used to calibrate and evaluate two prototype moisture monitors. A new procedure for moisture corrections to PuO 2 and MOX verification measurements yields MOX assays accurate to 1.5% (1σ) for 0.6- and 1.1-kg samples. Monte Carlo simulations were used to extend the measured moisture calibration data to higher sample masses. A conceptual design for a high-efficiency neutron coincidence counter with improved sensitivity to moisture is also presented

  14. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 9·10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs

  15. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Greene, G.L.

    1995-01-01

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  16. Development of the neutron reference calibration field using a {sup 252}Cf standard source surrounded with PMMA moderators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Kanai, K.; Tsujimura, N. [Japan Nuclear Cycle Development Institute, Ibaraki-ken (Japan)

    2002-07-01

    The authors developed the neutron reference calibration fields using a {sup 252} Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252} Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments.

  17. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    Vega C, H.R.; Torres M, C.

    1998-01-01

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu 239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  18. Total cross section of 242Pu between 0.7 and 170 MeV

    International Nuclear Information System (INIS)

    Moore, M.S.; Lisowski, P.W.; Morgan, G.L.; Auchampaugh, G.F.

    1979-01-01

    Various evaluations of the neutron cross sections of 242 Pu lead to widely different predictions of bulk neutronics properties such as critical mass. These evaluations also show rather different behavior of the energy dependence of the total cross section. The total cross section of 242 Pu from 0.7 to 170 MeV was measured to a statistical accuracy of = 0.5% below 6 MeV, using 8 g of high purity material and the WNR pulsed neutron facility. Recent evaluations by Madland and Young and by Lagrange and Jary are found to be reasonably consistent with the data obtained. Best agreement, however, is found by using a relationship between the total cross sections for 238 U, 239 Pu, and 235 U. The remarkable accuracy of this description for 242 Pu suggests that it could be extended to other deformed actinides for which inadequate amounts of material exist for direct measurements of sigma/sub T/ in the MeV region, as an evaluation constraint

  19. Development of moderated neutron calibration fields simulating workplaces of MOX fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Takada, Chie

    2005-01-01

    It is important for the MOX fuel facilities to control neutrons produced by the spontaneous fission of plutonium isotopes and those from (α,n) reactions between 18 O and α particles emitted by 238 Pu. Neutron dose meters should be calibrated for measuring these neutrons. We have developed moderated-neutron calibration fields employing a 252 Cf neutron source and moderators mainly for the characteristics evaluation and the calibration of neutron detectors used in MOX fuel facilities. Neutron energy spectrum can be adjusted by changing the position of the 252 Cf neutron source and combining different moderators to simulate the neutron field of the MOX fuel facility. This performance is realized owing to using an existing neutron irradiation room. (K. Yoshida)

  20. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  1. Measurements of the prompt neutron spectra in 233U, 235U, 239Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252Cf spontaneous fission in the energy range of 0.01-10 MeV

    International Nuclear Information System (INIS)

    Starostov, B.I.; Semenov, A.F.; Nefedov, V.N.

    1978-01-01

    The measurement results on the prompt neutron spectra in 233 U, 235 U, 239 Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252 Cf spontaneous fission in the energy range of 0.01-10 MeV are presented. The time-of-flight method was used. The exceeding of the spectra over the Maxwell distributions is observed at E 252 Cf neutron fission spectra. The spectra analysis was performed after normalization of the spectra and corresponding Maxwell distributions for one and the same area. In the range of 0.05-0.22 MeV the yield of 235 U + nsub(t) fission neutrons is approximately 8 and approximately 15 % greater than the yield of 252 Cf and 239 Pu + nsub(t) fission neutrons, respectively. In the range of 0.3-1.2 MeV the yield of 235 U + nsub(t) fission neutrons is 8 % greater than the fission neutron yield in case of 239 Pu + nsub(t) fission. The 235 U + nsub(t) and 233 U + nsub(t) fission neutron spectra do not differ from one another in the 0.05-0.6 MeV range

  2. Pu-239 and Pu-240 inventories and Pu-240/ Pu-239 atom ratios in the water column off Sanriku, Japan.

    Science.gov (United States)

    Yamada, Masatoshi; Zheng, Jian; Aono, Tatsuo

    2013-04-01

    A magnitude 9.0 earthquake and subsequent tsunami occurred in the Pacific Ocean off northern Honshu, Japan, on 11 March 2011 which caused severe damage to the Fukushima Dai-ichi Nuclear Power Plant. This accident has resulted in a substantial release of radioactive materials to the atmosphere and ocean, and has caused extensive contamination of the environment. However, no information is available on the amounts of radionuclides such as Pu isotopes released into the ocean at this time. Investigating the background baseline concentration and atom ratio of Pu isotopes in seawater is important for assessment of the possible contamination in the marine environment. Pu-239 (half-life: 24,100 years), Pu-240 (half-life: 6,560 years) and Pu-241 (half-life: 14.325 years) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-239 and Pu-240 inventories and Pu-240/Pu-239 atom ratios in seawater samples collected in the western North Pacific off Sanriku before the accident at Fukushima Dai-ichi Nuclear Power Plant will provide useful background baseline data for understanding the process controlling Pu transport and for distinguishing additional Pu sources. Seawater samples were collected with acoustically triggered quadruple PVC sampling bottles during the KH-98-3 cruise of the R/V Hakuho-Maru. The Pu-240/Pu-239 atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. The Pu-239 and Pu-240 concentrations were 2.07 and 1.67 mBq/m3 in the surface water, respectively, and increased with depth; a subsurface maximum was identified at 750 m depth, and the concentrations decreased with depth, then increased at the bottom layer. The total Pu-239+240 inventory in the entire water column (depth interval 0

  3. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  4. Accelerator-based neutron source and its future

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2008-01-01

    Neutrons are useful tool for the material science and also for the industrial applications. Now, high intensity neutron sources based on MW class big accelerators are under commissioning in Japan, Japan Spallation Neutron Source (JSNS) at J-PARC and in the US, SNS. Such high power neutron sources required the moderators that can be used under high radiation field and also give high neutronic performance. We have been performing experimental and Monte Carlo simulation studies to develop the cold neutron moderator systems for the high power sources since it is becoming important for materials and life science. Hydrogen is the unique candidate at the present stage due to its high resistibility to the radiation. It was indicated the para hydrogen moderator gave a good neutronic performance by experimental results. On the other hand, in the future, low power neutron sources are recognized to be useful to perform sprouting experiments and to promote the neutron science. The moderator systems need a concept different from the high power source. Therefore, we studied neutronic performances of the mesitylene and the methane moderators to get high intensity in a definite area on the moderator surface. Single groove moderators were studied and optimal geometry and the intensity gain were obtained. The mesitylene moderator gave a rather good performance compared to the methane moderator. (author)

  5. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  6. Measurement of prompt neutron spectra from the "2"3"9Pu(n, f ) fission reaction for incident neutron energies from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Chatillon, A.; Belier, G.; Granier, T.; Laurent, B.; Morillon, B.; Taieb, J.; Haight, R.C.; Devlin, M.; Nelson, R.O.; Noda, R.S.; O'Donnell, J.M.

    2014-01-01

    Prompt fission neutron spectra in the neutron-induced fission of "2"3"9Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Mean energies deduced from the prompt fission neutron spectra (PFNS) lead to the observation of the opening of the second chance fission at 7 MeV and to indications for the openings of fission channels of third and fourth chances. Moreover, the general trend of the measured PFNS is well reproduced by the different models. The comparison between data and models presents, however, two discrepancies. First, the prompt neutron mean energy seems constant for neutron energy, at least up to 7 MeV, whereas in the theoretical calculations it is continuously increasing. Second, data disagree with models on the shape of the high energy part of the PFNS, where our data suggest a softer spectrum than the predictions. (authors)

  7. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  8. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  9. Electronic state of PuCoGa5 and NpCoGa5 as probed by polarized neutrons.

    Science.gov (United States)

    Hiess, A; Stunault, A; Colineau, E; Rebizant, J; Wastin, F; Caciuffo, R; Lander, G H

    2008-02-22

    By using single crystals and polarized neutrons, we have measured the orbital and spin components of the microscopic magnetization in the paramagnetic state of NpCoGa(5) and PuCoGa(5). The microscopic magnetization of NpCoGa(5) agrees with that observed in bulk susceptibility measurements and the magnetic moment has spin and orbital contributions as expected for intermediate coupling. In contrast, for PuCoGa(5), which is a superconductor with a high transition temperature, the microscopic magnetization in the paramagnetic state is small, temperature-independent, and significantly below the value found with bulk techniques at low temperatures. The orbital moment dominates the magnetization.

  10. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  11. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body

    International Nuclear Information System (INIS)

    Endo, A.; Sato, T.

    2013-01-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from. 252 Cf and. 244 Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid. (authors)

  12. A cytogenetic study on persons exposed to 241Am-Be neutron source

    International Nuclear Information System (INIS)

    Bai Yushu; Zhang Xiuxia; Guan Shurong; Xie Feng; Lu Meiying

    1988-01-01

    An 241 Am-Be neutron source of 120 millicrocurie was stolen by a boy on April the 3rd, 1982. He brought it to his home. The neutron source was broken and the radioactive substance contaminated the whole family. He and his other family members did not leave the contaminated environment for 70 days. There were altogether 14 persons exposed to the radioactive substances. Chromosome aberrations of peripheral blood lymphocytes of six exposed cases were analysed on an early day of June 1982. The exposure doses were estimated by the frequency of chromosome aberration. Biological dose absorbed by the boy who stole the source was about 96 ∼ 128 mGy (physical dose about 120 mGy), the others were about 10 ∼ 30 mGy (physical dose about 10 ∼ 30 mGy). The results indicated that biological dose were quite approximate to the physical doses. One and half years after the accident, the analysis of stable chromosome aberrations for 14 exposed persons showed that the frequencies of chromosome aberrations of the irradiated individuals were still higher than those of the controls. The differences between them are very significant

  13. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  14. Feasibility Study of Neutron Multiplicity Assay for a Heterogeneous Sludge Sample containing Na, Pu and other Impurities

    International Nuclear Information System (INIS)

    Nakamura, H.; Nakamichi, H.; Mukai, Y.; Yoshimoto, K.; Beddingfield, D.H.

    2010-01-01

    To reduce radioactivity of liquid waste generated at PCDF, a neutralization precipitation processes of radioactive nuclides by sodium hydroxide is used. We call the precipitate a 'sludge' after calcination. Pu mass in the sludge is normally determined by sampling and DA within the required uncertainty on DIQ. Annual yield of the mass is small but it accumulates and reaches to a few kilograms, so it is declared as retained waste and verified at PIV. A HM-5-based verification is applied for sludge verification. The sludge contains many chemical components. For example, Pu (-10wt%), U, Am, SUS components, halogens, NaNO 3 (main component), residual NaOH, and moisture. They are mixed together as an impure heterogeneous sludge sample. As a result, there is a large uncertainty in the sampling and DA that is currently used at PCDF. In order to improve the material accounting, we performed a feasibility study using neutron multiplicity assay for impure sludge samples. We have measured selected sludge samples using a multiplicity counter which is called FCAS (Fast Carton Assay System) which was designed by JAEA and Canberra. The PCDF sludge materials fall into the category of 'difficult to measure' because of the high levels of impurities, high alpha values and somewhat small Pu mass. For the sludge measurements, it was confirmed that good consistency between Pu mass in a pure sludge standard (PuO 2 -Na 2 U 2 O 7 , alpha=7) and the DA could be obtained. For unknown samples, using 14-hour measurements, we could obtain quite low statistical uncertainty on Doubles (-1%) and Triples (-10%) count rate although the alpha value was extremely high (15-25) and FCAS efficiency was relatively low (40%) for typical multiplicity counters. Despite the detector efficiency challenges and the material challenges (high alpha, low Pu mass, heterogeneous matrix), we have been able to obtain assay results that greatly exceed the accountancy requirements for retained waste materials. We have

  15. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  16. Multi-isotopic determination of plutonium (239Pu, 240Pu, 241Pu and 242Pu) in marine sediments using sector-field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D

    2007-03-28

    Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.

  17. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  18. Radiography using californium-252 neutron sources

    International Nuclear Information System (INIS)

    Ray, J.W.

    1975-01-01

    The current status in the technology of neutron radiography using californium-252 neutron sources is summarized. Major emphasis is on thermal neutron radiography since it has the widest potential applicability at the present time. Attention is given to four major factors which affect the quality and useability of thermal neutron radiography: source neutron thermalization, neutron beam extraction geometry, neutron collimator dimensions, and neutron imaging methods. Each of these factors has a major effect on the quality of the radiographs which are obtained from a californium source neutron radiography system and the exposure times required to obtain the radiographs; radiograph quality and exposure time in turn affect the practicality of neutron radiography for specific nondestructive inspection applications. A brief discussion of fast neutron radiography using californium-252 neutron sources is also included. (U.S.)

  19. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  20. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  1. Neutron Generators for Spent Fuel Assay

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard A.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  2. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source arrangement is provided in which a sealed cylindrical chamber encloses a rotatable rotor member carrying a plurality of elongated target strips of material which emits neutrons when bombarded with alpha particles emitted by the plurality of source material strips. The rotor may be locked in a so-called ON position by an electromagnetic clutch drive mechanism controllable from the earth's surface so as to permit the making of various types of logs utilizing a continuously emitting neutron source. (Patent Office Record)

  3. Raman spectrometric determination of Pu(VI) and Pu(V) in nitric acid solutions

    International Nuclear Information System (INIS)

    Gantner, E.; Freudenberger, M.; Steinert, D.; Ache, H.J.

    1987-03-01

    The determination of Pu(VI) in nitric acid solutions by spontaneous Laser Raman Spectrometry (LRS) was investigated and a calibration curve was established using U(VI) as internal standard. In addition, the concentrations of Pu(VI) and Pu(V) as a function of time were measured by this method in Pu(VI) solutions of different acidity containing H 2 O 2 as the reducing agent. In solutions which are intensely coloured by the presence of Ru(NO) complexes Pu(VI) can also be determined by LRS using a Kr + laser as excitation source. In future experiments, the study of the Pu(IV)-interaction with Ru using LRS and spectrophotometry as analytical techniques is therefore intended. (orig.) [de

  4. Anisotropy of neutron sources of Neutron Metrology Laboratory, IRD, Brazil

    International Nuclear Information System (INIS)

    Silva, A.C.F.; Silva, F.S.; Leite, S.P.; Creazolla, P.G; Patrão, K.C.S.; Fonseca, E.S. da; Fernandes, S.S.; Pereira, W.W.

    2017-01-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. The measurements were performed using a Long Accuracy Counter (PLC) Detector in the Low Dispersion Room of the LNMRI / IRD with different neutron sources. Each measurement was made using a support for the source, emulated through an arduino system to rotate it. The carrier is marked with a variation of 5 °, ranging from 0 ° to 360 °, for the work in question only half, 0 ° to 180 ° is used for a total of nineteen steps. In this paper three sources of "2"4"1AmBe (α, n) 5.92 GBq (16 Ci) were used, neutron sources having the following dimensions: 105 mm in height and 31 mm in diameter. The PLC was positioned at a distance of 2 meters from the neutron source and has a radius of 15 cm for the detection area. The anisotropy factor of the "2"4"1AmBe source was 17%. The results in this work will focus mainly on the area of radioprotection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  5. Investigation of an egyptian phosphate ore sample by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Eissa, E.A.; Aly, R.A.; Rofail, N.B.; Hassan, A.M.

    1995-01-01

    A domestic phosphate ore sample has been analysed by means of prompt and delayed gamma-ray spectrometry following the activation by thermal neutron capture technique. The rabbit pneumatic transfer system (RPTS), long irradiation facility and two Pu/Be (2,5 Ci each) neutron sources set-Pu for prompt (n,gamma) were applied. The high purity germanium (HPGe) gamma-ray spectrometer with a personal computer analyzer (PCA) system were used for spectrum measurements. Programmes on the VAX computer were utilized for estimating the elemental concentrations of 22 out of 36 elements identified in this work. 2 tabs

  6. Savannah River Laboratory isotopic power and heat sources. Monthly report, June 1966

    International Nuclear Information System (INIS)

    1966-06-01

    Progress in research and development is described for the following: preparation of Tm 2 O 3 ; properties of thulium-171; reduction of Pu-236 in Pu-238; 238 Pu oxide with low neutron emission; and encapsulation of cobalt-60 heat sources

  7. Neutron source strength associated with FTR fuel

    International Nuclear Information System (INIS)

    Boroughs, G.L.; Bunch, W.L.; Johnson, D.L.

    1975-01-01

    The study presented shows the important effect of shelf life on the neutron source strength anticipated from fuel irradiated in the FTR. The neutron source strength will be enhanced appreciably by extended shelf lives. High neutron source strengths will also be associated with reprocessed LWR plutonium, which is expected to contain a greater abundance of the higher isotopes. The branching ratio and cross section of 241 Am is an important parameter that needs to be defined more precisely to establish calculated values with greater precision

  8. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  9. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Crawford, R.K.; Fornek, T.; Herwig, K.W.

    1998-01-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments

  10. R matrix analysis of 239Pu neutron cross sections in the energy range up to 1000 eV

    International Nuclear Information System (INIS)

    de Saussure, G.; Perez, R.B.

    1990-01-01

    This paper reports on the results of an R matrix analysis of the 239 Pu neutron cross sections up to 1000-eV neutron energy. The analysis was performed with the multilevel multichannel Reich-Moore code SAMMY. The method of analysis is describe, and the selection of experimental data is discussed. Some tabular and graphical comparisons between calculated and measured cross sections and transmissions are presented. The statistical properties of the resonance parameters are examined. The resonance parameters are proposed for the new evaluated data files ENDF/B-VI and JEF2

  11. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  12. Experimental Determination of the Neutron Characteristics of UO{sub 2}-PuO{sub 2}-H{sub 2}O Lattices; Determination Experimentale Des Caracteristiques Neutroniques De Reseaux UO{sub 2}-PuO{sub 2}-H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Debrue, J.; Fabry, A.; Leenders, L.; Motte, F.; Van Den Broeck, H. [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1967-09-15

    As part of the investigation, in the VENUS test facility, of the variably moderated core of the BR3/VULCAIN reactor, a fuel assembly consisting of 37 UO{sub 2}-PuO{sub 2} pins (94% natural UO{sub 2}, 6% PuO{sub 2} ) was substituted for one of the enriched (to 7% {sup 235}U) UO{sub 2} fuel assemblies constituting the reactor core. Experiments were carried out with the object of refining the mathematical models for calculating the performance of this special assembly; inter alia, the fission density distribution and the changing ratio of the effective cross-sections for fission in the {sup 233}Pu and {sup 235}U were measured. Using the same critical facility, the authors are carrying out a critical experiment related directly to the problems of plutonium recycling in pressurized light-water thermal reactors. Three types of fuel are being used: UO{sub 2}-PuO{sub 2} with 3% {sup 235}U and 1% fissile plutonium, UO{sub 2}-PuO{sub 2} with 2% {sup 235}U and 2% fissile plutonium, and UO{sub 2} with 4% {sup 235}U. The two UO{sub 2}-PuO{sub 2} mixtures have completely different isotopic contents of {sup 240}Pu: 7% and 17%. In the first part of the experimental programme, a study is being made of regular lattices in cores having two co-axial cylindrical zones: a UO{sub 2}-PuO{sub 2} zone and a UO{sub 2} zone. Particular attention is being paid to investigating the region on either side of the interface separating the two zones, where the neutron spectrum reflects the characteristic energy distributions in each of the two lattices. The experimental results are to be used in calibrating the computational methods. In the second part of the experimental programme, parts of the core of the SENA power reactor will be simulated with a view to studying the problems of reloading one third of the core with mixed UO{sub 2}-PuO{sub 2} fuel. Among the experimental techniques employed in these various experiments emphasis is given to those most specifically related to the presence of

  13. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  14. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  15. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  16. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  17. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  18. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  19. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  20. Calibration and evaluation of neutron survey meters used at linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, A.P. [Instituto de Radioprotecao e Dosimetria - IRD, Av. Salvador Allende s/n, Recreio dos Bandeirantes, CEP 22780-160 Rio de Janeiro (Brazil); Pereira, W.W., E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria - IRD, Av. Salvador Allende s/n, Recreio dos Bandeirantes, CEP 22780-160 Rio de Janeiro (Brazil); Fonseca, E.S. da; Patrao, K.C.S. [Instituto de Radioprotecao e Dosimetria - IRD, Av. Salvador Allende s/n, Recreio dos Bandeirantes, CEP 22780-160 Rio de Janeiro (Brazil); Batista, D.V.S. [Instituto Nacional do Cancer - INCa, Praca Cruz Vermelha, 23 - centro, CEP 20230-130 Rio de Janeiro (Brazil)

    2010-12-15

    Calibrated survey meters from the Neutron Laboratory of the Instituto de Radioprotecao e Dosimetria (IRD) were used to determine the ambient dose-equivalent rate in a 15 MV linear accelerator treatment room at the Instituto Nacional do Cancer (INCa). Three different models of neutron survey meters were calibrated using four neutron radionuclide neutron sources: {sup 241}AmBe({alpha},n), {sup 252}Cf(f,n), heavy-water moderated {sup 252}Cf(f,n), and {sup 238}PuBe({alpha},n). All neutron sources were standardized in a Manganese Sulphate Bath (MSB) absolute primary system. The response of each of these instruments was compared with reference values of ambient dose-equivalent rate. The results demonstrate the complexity of making measurements in the mixed neutron/photon field produced in electron linear accelerator radiotherapy treatment rooms.

  1. Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu

    International Nuclear Information System (INIS)

    Mac Innes, M.; Chadwick, M.B.; Kawano, T.

    2011-01-01

    We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235 U, 238 U and 239 Pu. The results are from historical measurements made in the 1950s–1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235 U and 238 U, but our FPYs are generally higher for 239 Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239 Pu fission cross section is now known to be 15–20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.

  2. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  3. Modelisation and distribution of neutron flux in radium-beryllium source (226Ra-Be)

    Science.gov (United States)

    Didi, Abdessamad; Dadouch, Ahmed; Jai, Otman

    2017-09-01

    Using the Monte Carlo N-Particle code (MCNP-6), to analyze the thermal, epithermal and fast neutron fluxes, of 3 millicuries of radium-beryllium, for determine the qualitative and quantitative of many materials, using method of neutron activation analysis. Radium-beryllium source of neutron is established to practical work and research in nuclear field. The main objective of this work was to enable us harness the profile flux of radium-beryllium irradiation, this theoretical study permits to discuss the design of the optimal irradiation and performance for increased the facility research and education of nuclear physics.

  4. Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER

    International Nuclear Information System (INIS)

    Acir, Adem

    2012-01-01

    In this paper, the effects of using FLiBe and FLiNaBe Molten Salts Bearing Plutonium Fluorides on the neutronic performance of the PACER are investigated. The optimum radial thickness for tritium self-sufficiency of the blankets addition of plutonium fluorides to FLiNaBe (LiF-/NaF BeF 2 ) and FLiBe (LiF-/BeF 2 ) of a dual purpose modified PACER concept are determined. The calculations are carried out with the one dimensional transport code XSDRNPM/SCALE5. The tritium breeding capacities of FLiNaBe and FLiBe with addition of plutonium fluorides in molten salt zone are investigated and compared. The optimum molten salt zone thickness is computed as 155 cm for tritium self-sufficiency of the blankets using FLiBe +1% PuF 4 whereas, the optimum thickness with FLiNaBe +1% PuF 4 is calculated as 170 cm. In addition, neutron transport calculations have been performed to evaluate the energy multiplication factor, total fission rate, displacement per atom and helium gas generation for optimal radial thickness in the blanket. Also, the tritium production and the radiation damage limits should be evaluated together in a fusion blanket for determining the optimum thickness of molten salt layer. (orig.)

  5. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  6. Experimental verification of neutron emission method for measuring of fissile material content in spent fuel

    International Nuclear Information System (INIS)

    Abou-Zaid, A.A.; Pytel, K.

    1999-01-01

    A non-destructive method of measurement of fissile nuclides content remained in spent fuel from research reactor is presented. The method, called the neutron emission one, is based on counting of fission neutrons emitted from fissile isotopes: 235 U, 239 Pu, 241 Pu. Fissions are induced mainly by neutrons supplied by the external neutron source. Another effects contribute also to the measured neutron population, e. g. source neutrons from penetrating the fuel without being captured and scattered, neutrons (α,n) reactions and from spontaneous fissions of actinides. Complexity of phenomena occurring within the measurement facility required the detailed numerical simulation and experimental studies prior design of ultimate measurement stand. In the previous paper, the results of Monte Carlo simulation on optimisation of measuring stand for neutron emission method were presented. On the basis of those results, the experimental stand for Maria reactor fuel investigation has been designed and manufactured. The present paper, being the continuation of previous one, contains the description of experimental facility and the results of measurements for the fresh fuel (without burnup) and the fuel mock-up (without fissile materials). Although some discrepancies were found between Monte Carlo and experimental results, the main conclusions concerning the optimal geometry of measuring facility have been confirmed. (author)

  7. Worldwide data on fluxes of 239,240Pu, 238Pu to the oceans

    International Nuclear Information System (INIS)

    Aarkrog, A.

    1987-04-01

    According to measurements (GEOSECS) the world's oceans contain approximately 16 PBq 239,240 Pu, of which one-fourth is in the Atlantic and three-fourths in the Pacific Ocean. The expected inventory (from nuclear weapons testing) in the world's oceans is 12 PBq 239,240 Pu including local fallout at the test sites. In the Irish Sea a local contamination of 0.3 PBq 239,240 Pu from the Sellafield reprocessing plant resides in the sediments. No other sources than fallout and reprocessing add significantly to the 239,240 Pu inventories in the oceans. The discrepancy between measurements and expectations are assumed to be due to an underestimate of the rainfall and dry fallout (seaspray) and thus of the Pu-deposition over the oceans, but may also to some degree be due to inadequate sampling

  8. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  9. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  10. Characterization of a sealed Americium-Beryllium (AmBe) source by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Sommers, J.; Jimenez, M.; Adamic, M.; Giglio, J.; Carney, K.

    2009-01-01

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as 'age' since purification, actinide content, trace metal content and inter and intra source composition were determined. The 'age' since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic uncertainties in the 'age' determination were ±4% 2σ. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n = 8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n = 3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52% (1σ). Source 2 had an Am-Be ratio of 9.81 ± 3.5% (1σ). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Sources 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W. (author)

  11. Miniature neutron sources: Thermal neutron sources and their users in the academic field

    International Nuclear Information System (INIS)

    Egelstaff, P.A.

    1992-01-01

    The three levels of thermal neutron sources are introduced - University laboratory sources infrastructure sources and world-class sources - and the needs for each kind and their inter-dependence will be emphasized. A description of the possibilities for University sources based on α-Be reactions or spontaneous fission emission is given, and current experience with them is described. A new generation of infrastructure sources is needed to continue the regional programs based on small reactors. Some possibilities for accelerator sources that could meet this need are considered

  12. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  13. Critical mass variation of 239Pu with water dilution

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1996-01-01

    The critical mass of an unreflected solid sphere of 239 Pu is ∼ 10 kg. The increase in critical mass observed for small water dilutions of unreflected 239 Pu spheres is paradoxical. Introducing small amounts of water uniformly throughout the sphere increases the spherical volume containing the same amount of 239 Pu as the critical solid sphere. The increase in radius decreases the surface-to-volume ratio of the sphere, which has the effect to first order of decreasing the neutron leakage, which is proportional to the surface, relative to the fissions, which are proportional to the volume. The reduction in neutron leakage is expected to reduce the critical mass, but instead, the critical mass is observed to increase. It is discussed how changes in the fast neutron spectrum with corresponding changes in the nuclear parameters result in an increase in critical mass for small water dilutions

  14. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  15. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  16. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    Science.gov (United States)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  17. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  18. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Blanc, Pauline; Tobin, Stephen J.; Croft, Stephen; Menlove, Howard O.; Swinhoe, M.; Lee, T.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to 235 U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a ∼14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of 3 He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in 238 U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of

  19. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  20. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  1. The new Munich neutron source

    International Nuclear Information System (INIS)

    Herrmann, W.A.

    1998-01-01

    The Munich FRM II neutron source currently under construction is to replace the FRM I research reactor in Munich, also known as 'atomic egg'. The project is executed by the Free State of Bavaria as a construction project of the Munich Technical University and managed by the University. As main contractor for the construction project, Siemens AG is also co-applicant in the licensing procedure under the Atomic Energy Act for the construction phase. The project is carried out to build a modern high flux neutron source required for a broad range of applications in research and technology mainly with thermal and cold neutrons. The 'neutron gap' existing in Germany is to be closed with the FRM II. As a national research installation, the FRM II is available to all interested scientists from a variety of disciplines. (orig.) [de

  2. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-10-01

    The neutron scattering community has endorsed the need for a high- power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 KW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap

  3. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Labeau, Pierre-Etienne; Pauly, Nicolas; Meer, Klaas van der

    2015-01-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of 239 Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of 239 Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a 239 Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to 239 Pu, in comparison with a 235 U fission chamber, with a 3 He proportional counter, and with a 10 B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the 239 Pu and 235 U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the 3 He and 10 B proportional counters to increase the sensitivity to 239 Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies

  4. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo, E-mail: rrossa@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Borella, Alessandro, E-mail: aborella@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Labeau, Pierre-Etienne, E-mail: pelabeau@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Pauly, Nicolas, E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Meer, Klaas van der, E-mail: kvdmeer@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium)

    2015-08-11

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of {sup 239}Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a {sup 239}Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to {sup 239}Pu, in comparison with a {sup 235}U fission chamber, with a {sup 3}He proportional counter, and with a {sup 10}B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the {sup 239}Pu and {sup 235}U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the {sup 3}He and {sup 10}B proportional counters to increase the sensitivity to {sup 239}Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies.

  5. Neutron flux depression in the UO2-PuO2 (15 to 30%) fuel rods from IVO-FR2-Vg7-Irradiation experiment

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Fernandez Marron, J.L.

    1983-01-01

    The thermal-neutron flux depression within a fuel rod has a great influence on the radial temperature profile of the rod, especially for high enrichment fuel. For this reason, a study was made about the UO 2 -PuO 2 (15 to 30% PuO 2 ) fuel pins for the KfK-JEN joint irradiation program IVO, in the FR2 reactor. Different methods (diffusion, Bonalumi, successive generations) were compared and a new approach (parabolic approximation) was developed. (author)

  6. Isotope ratios of 240Pu/239Pu in soil samples from different areas

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Yoshida, Satoshi; Yamazaki, Shinnosuke

    2003-01-01

    Plutonium concentrations and 240 Pu/ 239 Pu atom ratios in soil samples from Japan and other areas in the world (including IAEA standard reference materials) were determined by ICP-MS. The range of 240 Pu/ 239 Pu atom ratios observed in 21 Japanese soil samples was 0.155 - 0.194 and the average was 0.180 ± 0.011, which is comparable to the global fallout value. A low ratio of about 0.05, which is derived from Pu-bomb, was found in samples from Nishiyama (Nagasaki) and Mururoa Atoll (IAEA-368), while a high ratio of about 0.31 was found in a sample from Bikini Atoll (Marshall Islands). The ratio for Irish Sea sediment (IAEA-135) was 0.21, which was higher than the global fallout value, suggesting the influence by the contamination from the Sellafield facility. The 240 Pu/ 239 Pu atom ratios in soils from the Chernobyl area were determined, and the ratio was found to be very high (about 0.4), indicating the high burn-up grade of the reactor fuel. These results show that the 240 Pu/ 239 Pu ratio can be used as a finger print to identify the source of the contamination. (author)

  7. Surrogate measurement of the 238Pu(n,f) cross section

    International Nuclear Information System (INIS)

    Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.

    2011-01-01

    The neutron-induced fission cross section of 238 Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic α-induced fission reactions on 239 Pu, with 235 U(α,α ' f) and 236 U(α,α ' f) used as references. These reference reactions reflect 234 U(n,f) and 235 U(n,f) yields, respectively. The deduced 238 Pu(n,f) cross section agrees well with standard data libraries up to ∼10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.

  8. Analysis and composition of the first U-Pu charge (0,043 per cent of Pu); Analyse et constitution du 1. jeu U-Pu (0,043 pour cent de Pu)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J P; Lapparent, D de; Lourme, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Checking the homogeneity in the content of plutonium of 0,043 per cent Pu-natural uranium alloy slugs has been made by Pu 240 and U 238 spontaneous fissions neutrons counting. The purpose of the test was to select groups of slugs to be correctly associated into fuel rods for critical experiments. General technic for spontaneous fissions counting, then elaboration of data in view of ranking the slugs are described. Results are given for this particular case. (authors) [French] On a effectue un controle d'homogeneite de teneur en plutonium sur des billettes d'alliage 0,043 pour cent Pu-uranium naturel, par comptage des fissions spontanees du plutonium 240 et de l'uranium 238. Le but du controle etait de permettre une association correcte de ces billettes a l'interieur des elements combustibles destines a servir dans des experiences critiques. On indique la methode generale de comptage des fissions spontanees, puis le depouillement des donnees en vue du classement des barreaux. Les resultats pour ce cas particulier sont donnes dans le rapport. (auteurs)

  9. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10 14 n cm -2 s -1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10 15 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  10. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  11. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  12. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  13. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  14. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  15. Design of a system for neutrons dosimetry; Diseno de un sistema para dosimetria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ceron, P.; Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Vega C, H. R., E-mail: victceronr@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF{sub 3}, He{sub 3} and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a {sup 239}PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  16. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is to be a multipurpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotope production, materials irradiation, and analytical chemistry. The ANS will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high-intensity research reactor. But this reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users from all parts of the nation and the world, placed in a stimulating environment in which experiments can be effectively conducted and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use

  17. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  18. Evaluation of 242Pu data for the incident neutron energy range 0.1 - 6 MeV

    International Nuclear Information System (INIS)

    Vladuca, G.; Sin, M.; Tudora, A.

    1996-11-01

    This report presents the models and the procedures used for the calculation of the quantities required by Files 3, 4 and 5 of ENDF-6 for 242 Pu. These quantities are the integrated cross sections for the total, fission, scattering and gamma-capture reactions and the angular and energy distributions of the scattered neutrons for the incident neutron energies 0.01/6 MeV. The direct mechanism was treated with the coupled-channel method using a deformed optical potential defined by a set of actinide region parameters established by the authors. For the compound nucleus calculations, a new HRTW version of the statistical model extended to describe the fission at subbarrier energies was used. To describe the continuous part of the transition states spectrum, analytical expressions have been established. The energy distributions of the scattered neutrons have been calculated with an author's version of the Los Alamos model. The agreement of the calculations with the existing experimental data is good. (author)

  19. About the first experiment on investigation of 129I, 237Np, 238Pu and 239Pu transmutation at the nuclotron 2.52 GeV deuteron beam in neutron field generated in U/Pb-assembly 'Energy plus transmutation'

    International Nuclear Information System (INIS)

    Krivopustov, M.I.; Pavliouk, A.V.; Malakhov, A.I.

    2008-01-01

    Preliminary results of the first experiment with energy 2.52 GeV at the electronuclear setup which consists of Pb-target (diameter 8.4 cm, length 45.6 cm) and nat U-blanket (206.4 kg), transmutation samples of 129 I, 237 Np, 238 Pu and 239 Pu (radioecological aspect) are described. Hermetically sealed samples in notable amounts are gathered in atomic reactors and setups of industries which use nuclear materials and nuclear technologies were irradiated in the field of neutrons produced in the Pb-target and propagated in the nat U-blanket. Estimates of transmutations were obtained as a result of measurements of gamma activities of the samples. The information about the space and energy distribution of neutrons in the volume of the lead target and the uranium blanket was obtained with the help of sets of activation threshold detectors (Al, Co, Y, I, Au, Bi and others), solid-state nuclear track detectors, 3 He neutron detectors and nuclear emulsion. Comparison of the experimental data with the results of simulation with the MCNPX program was performed

  20. Future neutron data activity on the neutron source IREN

    International Nuclear Information System (INIS)

    Janeva, N.B.; Koyumdjieva, N.T.; Grigoriev, Y.V.; Gundorin, N.A.; Mareev, Y.D.; Kopatch, Y.N.; Pikelner, L.B.; Shvetsov, V.N.; Sedyshev, P.V.; Zeinalov, S.; Ruskov, I.N.

    2011-01-01

    The global energy demand continues to rise and nuclear power has a potential to be part of the solution of energy problem. Complete and accurate information about the nuclear reactions ensures developing and operating nuclear reactors to reach high efficiencies and adequate safety standards. This demands many nuclear data of improved quality, including covariance nuclear data and correlations. The new neutron source IREN (1 stage) has been put in operation at the end of 2009. The first stage includes the construction of the LUE-200 linear accelerator and non multiplying target. The first measured TOF spectra have been presented recently. The facility is in continuous completion and improvement (according to the full version in the project). The program for neutron data investigation on the IREN neutron source is in preparation. The measuring targets for neutron cross-sections TOF spectra would be selected between isotopes of construction materials, fission products and minor actinides. Now the experimental facilities are in preparation - detectors, innovative electronics equipment and systems for data acquisition and analysis. (authors)

  1. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  2. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  3. Status of the advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1991-01-01

    Research reactors in the United States are becoming more and more outdated, at a time when neutron scattering is being recognized as an increasingly important technique in areas vital to the U.S. scientific and technological future. The last U.S. research reactor was constructed over 25 years ago, whereas new facilities have been built or are under construction in Japan, Russia and, especially, Western Europe, which now has a commanding lead in this important field. Concern over this situation in the early 1980's by a number of organizations, including the National Academy of Sciences, led to a recommendation that design work start urgently on an advanced U.S. neutron research facility. This recommendation is realized in the Advanced Neutron Source Project. The centerpiece of the Advanced Neutron Source will be a new research reactor of unprecedented flux (> 7.5x10 19 m -2 ·s -1 ), equipped with a wide variety of state-of-the-art spectrometers and diffractometers on hot, thermal, and cold neutron beams. Very cold and ultracold neutron beams will also be provided for specialized experiments. This paper will discuss the current status of the design and the plans for scattering instrumentation. (author)

  4. Personnel neutron dosimetry using TLD elements at PNC

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    1985-01-01

    The evaluation method of neutron dose equivalent was studied on the basis of the albedo type neutron dosimetory to design the personnel dosimeter. The dosimeter was composed of three 6 Li 2 10 B 4 O 7 (Cu) TL elements and one 7 Li 2 11 B 4 O 7 (Cu) element. The equations for assessing thermal, epithermal and fast neutron dose equivalents were derived by 252 Cf, 241 Am-Be and PuO 2 neutron sources. The minimum detectable amount of 6 Li 2 10 B 4 O 7 (Cu) element to thermal neutron was 0.02 m rem. The neutron dose equivalent and the gamma one were evaluated separately within about 20 % error in the mixed radiation field. (author)

  5. Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method

    Czech Academy of Sciences Publication Activity Database

    Štefánik, Milan; Bém, Pavel; Majerle, Mitja; Novák, Jan; Šimečková, Eva

    2017-01-01

    Roč. 140, NOV (2017), s. 466-470 ISSN 0969-806X R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : multi-foil activation technique * accelerator-based neutron source * neutron spectrometry * Gamma-ray spectrometry * reaction rate * charged particle accelerator Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.315, year: 2016

  6. Neutron source multiplication method

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1985-01-01

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  7. Computing and physical methods to calculate Pu

    International Nuclear Information System (INIS)

    Mohamed, Ashraf Elsayed Mohamed

    2013-01-01

    Main limitations due to the enhancement of the plutonium content are related to the coolant void effect as the spectrum becomes faster, the neutron flux in the thermal region tends towards zero and is concentrated in the region from 10 Ke to 1 MeV. Thus, all captures by 240 Pu and 242 Pu in the thermal and epithermal resonance disappear and the 240 Pu and 242 Pu contributions to the void effect became positive. The higher the Pu content and the poorer the Pu quality, the larger the void effect. The core control in nominal or transient conditions Pu enrichment leads to a decrease in (B eff.), the efficiency of soluble boron and control rods. Also, the Doppler effect tends to decrease when Pu replaces U, so, that in case of transients the core could diverge again if the control is not effective enough. As for the voiding effect, the plutonium degradation and the 240 Pu and 242 Pu accumulation after multiple recycling lead to spectrum hardening and to a decrease in control. One solution would be to use enriched boron in soluble boron and shutdown rods. In this paper, I discuss and show the advanced computing and physical methods to calculate Pu inside the nuclear reactors and glovebox and the different solutions to be used to overcome the difficulties that effect, on safety parameters and on reactor performance, and analysis the consequences of plutonium management on the whole fuel cycle like Raw materials savings, fraction of nuclear electric power involved in the Pu management. All through two types of scenario, one involving a low fraction of the nuclear park dedicated to plutonium management, the other involving a dilution of the plutonium in all the nuclear park. (author)

  8. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  9. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  10. The production of {sup 238-242}Pu(n,γ){sup 239-243}Pu fissionable fluids in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Mehtap [Inoenue Univ., Malatya (Turkey). Physics Dept.

    2014-03-15

    In this study, the effect of spent fuel grade plutonium content on {sup 239-243}Pu was investigated in a designed hybrid reactor system. In this system, the fluids were composed of a molten salt, heavy metal mixture with increased mole fractions 99-95 % Li{sub 20}Sn{sub 80}-1-5 % SFG-Pu, 99-95 % Li{sub 20}Sn{sub 80}-1-5 % SFG-PuF{sub 4}, 99-95 % Li{sub 20}Sn{sub 80}-1-5 % SFG-PuO{sub 2}. Beryllium (Be) is a neutron multiplier by (n,2n) reactions. Thence, a Be zone of 3 cm thickness was used in order to contribute to fissile fuel breeding between the liquid first wall and a 9Cr2WVTa ferritic steel blanket which is used as structural material. The production of {sup 238-242}Pu(n,γ){sup 239-243}Pu was calculated in liquid first wall, blanket and shielding zones. Three-dimensional nucleonic calculations were performed by using the most recent version MCNPX-2.7.0 Monte Carlo code and nuclear data library ENDF/B-VII.0. (orig.)

  11. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1996-01-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap. copyright 1996 American Institute of Physics

  12. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys; Comparaison des alliages U-Pu-Mo, U-Pu-Nb, U-Pu-Ti, U-Pu-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, R; Barthelemy, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [French] On rappelle brievement les connaissances acquises sur les alliages U-Pu, U-Pu-Mo et U-Pu-Nb. On presente les resultats obtenus avec les alliages U-Pu-Ti et U-Pu-Zr pour des teneurs de 15 a 20 pour cent de plutonium et 10 pour cent en poids d'element ternaire. On a determine les temperatures de transformation, les coefficients de dilatation, la nature des phases, la conductibilite thermique a 20 deg. C, la tenue au cyclage thermique et diverses autres proprietes. Un tableau resume les principales proprietes des divers alliages. On considere les possibilites d'emploi de ces alliages comme combustibles de reacteur rapide. Les alliages U-Pu-Ti paraissent particulierement interessants: facilite d'elaboration, stabilite thermique etendue, tenue dans l'air excellente, faible quantite de la phase U-Pu zeta, temperature de fusion commencante superieure a 1100 deg. C. (auteurs)

  13. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    Cremer, J.T.; Piestrup, Melvin A.; Gary, Charles K.; Harris, Jack L.; Williams, David J.; Jones, Glenn E.; Vainionpaa, J.H.; Fuller, Michael J.; Rothbart, George H.; Kwan, J.W.; Ludewigt, B.A.; Gough, R.A.; Reijonen, Jani; Leung, Ka-Ngo

    2008-01-01

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  14. {sup 239}Pu and {sup 240}Pu inventories and {sup 240}Pu/{sup 239}Pu atom ratios in the equatorial Pacific Ocean water column

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masatoshi, E-mail: myamada@cc.hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Zheng, Jian [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2012-07-15

    The {sup 239+240}Pu concentrations and {sup 240}Pu/{sup 239}Pu atom ratios were determined by alpha spectrometry and inductively coupled plasma mass spectrometry for seawater samples from two stations, one at the equator and the other in the equatorial South Pacific. To better understand the fate of Pu isotopes, this study dealt with the contribution of the close-in fallout Pu from the Pacific Proving Grounds (PPG) in water columns of the Pacific Ocean. The {sup 239}Pu, {sup 240}Pu and {sup 239+240}Pu inventories over the depth interval 0-3000 m at the equator station were 10.4, 8.9 and 19.3 Bq m{sup -2}, respectively. Further, no noticeable difference was observed in {sup 239}Pu, {sup 240}Pu and {sup 239+240}Pu inventories over the depth interval 0-3000 m between the two stations. The total {sup 239+240}Pu inventories were significantly higher than the expected cumulative deposition density of global fallout. Water column {sup 239+240}Pu inventories measured in this study were lower than those reported for comparable stations in the Geochemical Ocean Sections Study, indicating that these inventories have been decreasing at average rates of 0.89 {+-} 0.07 and 0.16 {+-} 0.07 Bq m{sup -2} yr{sup -1} at the equator and equatorial South Pacific stations, respectively, from 1973 to 1990. The obtained {sup 240}Pu/{sup 239}Pu atom ratios were higher than the mean global fallout ratio of 0.18. These high atom ratios proved the existence of close-in tropospheric fallout Pu from the PPG in the Marshall Islands. The {sup 239+240}Pu inventories originating from the close-in fallout in the entire water column were estimated to be 11.1 Bq m{sup -2} at the equator station and 7.1 Bq m{sup -2} at the equatorial South Pacific Ocean station, and the relative percentages of close-in fallout Pu were 40% at the former and 34% at the latter. A significant amount of close-in fallout Pu originating from the PPG has been transported to deep layers below the 1000 m depth in the equatorial

  15. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  16. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  17. Neutron production enhancements for the Intense Pulsed Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  18. Neutron production enhancements for the Intense Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments

  19. Procedures for measurement of anisotropy factor of neutron sources

    International Nuclear Information System (INIS)

    Creazolla, P.G.; Camargo, A.; Astuto, A.; Silva, F.; Pereira, W.W.

    2017-01-01

    Radioisotope sources of neutrons allow the production of reference fields for calibration of neutron measurement devices for radioprotection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in the source capsule material and variations in the concentration of the emitting material may produce differences in its neutron emission rate relative to the source axis, this effect is called anisotropy. A proposed procedure for measuring the anisotropy factor of the sources belonging to the IRD/LNMRI/LN Neutron Metrology Laboratory using a Precision Long Counter (PLC) detector will be presented

  20. Status of the FRM-II hot neutron source

    International Nuclear Information System (INIS)

    Mueller, C.; Gutsmiedl, E.

    2001-01-01

    The new research reactor FRM-II will be equipped with a hot neutron source. This secondary source will shift a part of the thermal neutron energy spectrum in the D 2 O moderator to energies from 0.1 to 1 eV. The hot neutron source consists of a graphite cylinder (200 mm diameter, 300 mm high), which is heated by gamma radiation up to a maximum temperature of about 2400 C. The graphite cylinder is surrounded by a high-temperature insulation of carbon fiber, to achieve this high temperature. We have accomplished mock-up tests of the carbon fiber in a high temperature furnace, to investigate the insulation properties of the material. The graphite cylinder and the insulation are covered with two vessels made out of Zircaloy 4. The space between the vessels is filled with helium. The hot neutron source is permanent under control by pressure and temperature measurements. The temperature inside the graphite cylinder will be measured by a purpose-built noise thermometer due to the extremely harsh environment conditions (temperature and nuclear radiation). The hot neutron source is designed and manufactured according to the general specification basic safety and to the German nuclear atomic rules (KTA). The source will be installed in year 2001. (orig.)

  1. Spectra of fast neutrons using a lithiated glass film on silicon

    International Nuclear Information System (INIS)

    Wallace, Steven; Stephan, Andrew C.; Womble, Phillip C.; Begtrup, Gavi; Dai Sheng

    2003-01-01

    Experimental results of a neutron detector manufactured by coating a silicon charged particle detector with a film of lithiated glass are presented. The silicon surface barrier detector (SBD) responds to the 6 Li(n, alpha)triton reaction products generated in the thin film of lithiated glass entering the SBD. Neutron spectral information is present in the pulse height spectrum. An energy response is seen that clearly shows that neutrons from a Pu-Be source and from a deuterium-tritium (D-T) pulsed neutron generator can be differentiated and counted above a gamma background. The significant result is that the fissile content within a container can be measured using a pulsed D-T neutron generator using the neutrons that are counted in the interval between the pulses

  2. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  3. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  4. Thermal neutron absorption cross section of small samples

    International Nuclear Information System (INIS)

    Nghiep, T.D.; Vinh, T.T.; Son, N.N.; Vuong, T.V.; Hung, N.T.

    1989-01-01

    A modified steady method for determining the macroscopic thermal neutron absorption cross section of small samples 500 cm 3 in volume is described. The method uses a moderating block of paraffin, Pu-Be neutron source emitting 1.1x10 6 n.s. -1 , SNM-14 counter and ordinary counting equipment. The interval of cross section from 2.6 to 1.3x10 4 (10 -3 cm 2 g -1 ) was measured. The experimental data are described by calculation formulae. 7 refs.; 4 figs

  5. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  6. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  7. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  8. Passive non destructive assay of hull waste by gross neutron counting method

    International Nuclear Information System (INIS)

    Andola, Sanjay; Sur, Amit; Rawool, A.M.; Sharma, B.; Kaushik, T.C.; Gupta, S.C.; Basu, Sekhar; Raman Kumar; Agarwal, K.

    2014-01-01

    The special nuclear material accounting (SNMA) is an important and necessary issue now in nuclear waste management. The hull waste generated from dissolution of spent fuel contains small amounts of Uranium and Plutonium and other actinides due to undissolved trapped material inside zircoalloy tubes. We report here on the development of a Passive Hull monitoring system using gross neutron counting technique and its implementation with semiautomatic instrumentation. The overall sensitivity of the 3 He detector banks placed at 75 cm from the centre of loaded hull cask comes out to 5.2 x 10 -3 counts per neutron (c/n) while with standard Pu-Be source placed in same position it comes out to be 3.1 x 10 3 c/n. The difference in the efficiency is mainly because of the differences in the geometry and size of hull cask as well as difference in the energy spectrum of hull waste and Pu-Be source. This is accounted through Monte Carlo computations. The Pu mass in solid waste comes out as expected and varies with the surface dose rate of drum in almost a proportional manner. Being simple and less time consuming, this setup has been installed for routine assay of solid Hull waste at NRB, Tarapur

  9. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures

  10. Neutron induced fission cross sections for /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Neutron-induced fission cross section ratios for samples of /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence up to 30 MeV. These data provided the shape of the /sup 235/U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known values were determined using the neutron fluence measured with a second proton recoil telescope. Cross section values for /sup 232/Th, /sup 238/U, /sup 237/Np, and /sup 239/Pu were computed from the ratio data using our values for /sup 235/U(n,f). In addition to providing new results at high neutron energies, these data resolve long standing discrepancies among different data sets. 1 ref., 1 fig.

  11. Accelerator driven neutron sources in Korea. Current and future

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho

    2008-01-01

    The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)

  12. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  13. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  14. Energy dependence of the asymmetry-violated space parity of fragment emission from the 239PU fission by slow polarized neutrons

    International Nuclear Information System (INIS)

    Val'skij, G.V.; Zvezdkina, T.K.; Nikolaev, D.V.; Petrova, V.I.; Petrov, G.A.; Petukhov, A.K.; Pleva, Yu.S.; Tyukavin, V.A.

    1982-01-01

    Asymmetry violating parity in the fragment emission from fission of 239 Pu induced by polarized neutrons at six energy points in the interval 0.01 <= E <0.3 eV was measured. The results providing with an evidence in favour of the hypothesis that the asymmetry is independent on energy are discussed in view of the existing theoretical picture

  15. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  16. Comparison of the ENDF/B-V and SOKRATOR evaluations of 235U, 239Pu, 240Pu and 241Pu at low neutron energies

    International Nuclear Information System (INIS)

    de Saussure, G.; Wright, R.Q.

    1981-01-01

    The US and USSR's most recent evaluationsof 235 U, 239 Pu, 240 Pu and 241 Pu are compared over the thermal region and over the first few resonances. The two evaluations rest on essentially the same experimental data base and the differences reflect different approaches to the representation of the cross sections or different weightings of the experimental results. It is found that over the thermal and resolved ranges the two evaluations are very similar. Some differences in approaches are briefly discussed

  17. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  18. Measurement of the ${240}$Pu(n,f) reaction cross-section

    CERN Multimedia

    Following proposal CERN-INTC-2010-042 / INTC-P-280 (“Measurement of the fission cross-section of $^{240}$Pu and $^{242}$Pu at CERN’s n_TOF Facility”), the parallel measurement of the $^{240}$Pu(n,f) and $^{242}$Pu(n,f) reaction cross-sections was carried out at n_TOF EAR-1. While the $^{242}$Pu measurement was successful, unexpected sample-induced damage to the detectors caused by the high α-activity of the 240Pu samples resulted in a deterioration of the detector performance over the data taking period of several months, which compromised the measurement. This obstacle can be eliminated by performing the measurement in EAR-2, where the higher neutron flux will allow collecting data in a much shorter time, thus preventing the degradation of the detectors. In addition to this obvious advantage, the measurement would also benefit from the stronger suppression of the sample-induced α-background, due to the shorter times-of-flight involved.

  19. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)

    2000-07-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  20. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  1. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Garnier, J.C.; Ikegami, T.

    1993-01-01

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  2. Pulsed neutron source and instruments at neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jun-ichi; Morii, Yukio; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    We report the results of design studies on the optimal target shape, target - moderator coupling, optimal layout of moderators, and neutron instruments for a next generation pulsed spallation source in JAERI. The source utilizes a projected high-intensity proton accelerator (linac: 1.5 GeV, {approx}8 MW in total beam power, compressor ring: {approx}5 MW). We discuss the target neutronics, moderators and their layout. The sources is designed to have at least 30 beam lines equipped with more than 40 instruments, which are selected tentatively to the present knowledge. (author)

  3. Moderator materials for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Charlton, L.A.

    1999-01-01

    The Spallation Neutron Source (SNS) is a neutron source providing intense neutron fluxes that will be used for performing a large variety of neutron scattering experiments. SNS is to be completed and start operation in 2005. Protons will be accelerated to 1 GeV, stored in an accumulator ring, and then injected into a neutron-producing target. After leaving the target (Hg in the ca/se of SNS), the neutrons are prepared for experiments by first using a moderator to impose energy and width requirements on the neutron pulse. One of the most important ingredients is the moderator material. Four materials that are commonly used and that were considered for use in SNS are liquid hydrogen (L-H 2 ), liquid water (L-H 2 O), liquid methane (L-CH 4 ), and solid methane (S-CH 4 ). The spectra (neutron current versus neutron energy) for these four materials are shown. As may be seen, at low neutron energies ( 4 , which produces up to four times as many neutrons in this energy range as L-H 2 . The problem with the material is the internal storage of energy that can be spontaneously and explosively released. At energies of just above 10 MeV, the most effective moderator material is L-CH 4 . Polymerization problems, however, preclude its use at high powers (again such as in SNS), where the buildup of undesirable materials becomes prohibitive. This is, however, an important energy range for neutron experiments. Preliminary consideration is being given to a composite moderator that contains two adjacent sections, one of L-H 2 and one of L-H 2 O, which produces a spectrum that is very similar to L-CH 4

  4. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  5. Proposal for the design of a small-angle neutron scattering facility at a pulsed neutron source

    International Nuclear Information System (INIS)

    Kley, W.

    1980-01-01

    The intensity-resolution-background considerations of an optimized small angle neutron scattering facility are reviewed for the special case of a pulsed neutron source. In the present proposal we conclude that for 'true elastic scattering experiments' filters can be used instead of expensive neutron guide tubes since low background conditions can be achieved by a combined action of filters as well as a proper time gating of the twodimensional detector. The impinging neutron beam is monochromatized by phasing a disk chopper to the neutron source pulses and in the scattered beam a second disk chopper is used to eliminate the inelastically scattered neutrons. Therefore, no time of fligh analysis is necessary for the scattered neutron intensity and true-elastic conditions are obtained by simply gating the two-dimensional detector. Considering a 4 m thick shield for the pulsed neutron source and choosing for optimum conditions a detector area element of (2.5 cm) 2 and a sample area of (1.25 cm) 2 , than for a minimum sample-detector-distance of 1.5 m, a maximum neutron source diameter of 6.67 cm is required in order to maintain always the optimum intensity- and resolution requirements

  6. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys

    International Nuclear Information System (INIS)

    Boucher, R.; Barthelemy, P.

    1964-01-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [fr

  7. Intense neutron sources for cancer treatment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Significant progress has been made in the development of small, solid-target, pulsed neutron sources for nuclear weapons applications. The feasibility of using this type of neutron source for cancer treatment is discussed. Plans for fabrication and testing of such a source is briefly described

  8. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  9. Design of a portable directional neutron source finder

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni

    2005-01-01

    An instrument that determines the direction of a remote existing neutron source has been designed. This instrument combines a polyethylene block and four 3 He counter tubes. The advantages of the instrument are portability and good angular resolution. The count from the detector was varied with the neutron incident angle due to the moderator. Using this characteristic, the direction of the neutron source can be measured precisely by revising the axis of the instrument so that the difference between the four detectors measurements is minimized. Consequently, the direction of the central axis of the instrument in which the response difference of the four detectors reaches a minimum indicates the direction of the neutron source. The practical use of the instrument was demonstrated by 252 Cf source irradiation experiment and MCNP simulation

  10. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  11. Research applications of the Livermore RTNS-II neutron sources

    International Nuclear Information System (INIS)

    Davis, J.C.

    1978-01-01

    The Lawrence Livermore Laboratory has completed construction of the Rotating Target Neutron Source-II (RTNS-II) Facility. These sources, built and operated for the Office of Fusion Energy of the Department of Energy, will be operated by LLL as a national facility for the study of materials damage processes induced by 14-MeV neutrons. Design strength of the sources is 4 x 10 13 n/s with a maximum flux of 1 X 10 13 n/cm 2 s. The 400 keV, 150 mA D + accelerators and 5000 rpm titanium--tritide target assemblies were built using experience gained with LLL's RTNS-I neutron source. The RTNS-I source, producing 6 x 10 12 n/s, is currently the most intense 14-MeV source available. RTNS-I has been used for fusion reactor materials studies for the past six years. The experimental program for the new sources will be oriented toward fundamental measurements of high energy neutron-induced effects. The data produced will be used to develop models of damage processes to help guide materials selection for future fusion reactors

  12. Multicounter neutron detector for examination of content and spatial distribution of fissile materials in bulk samples

    International Nuclear Information System (INIS)

    Swiderska-Kowalczyk, M.; Starosta, W.; Zoltowski, T.

    1999-01-01

    A new neutron coincidence well-counter is presented. This experimental device can be applied for passive assay of fissile and, in particular, for plutonium bearing materials. It contains of a set of the 3 He tubes placed inside a polyethylene moderator. Outputs from the tubes, first processed by preamplifier/amplifier/discriminator circuits, are then analysed using a correlator connected with PC, and correlation techniques implemented in software. Such a neutron counter enables determination of the 240 Pu effective mass in samples of a small Pu content (i.e., where the multiplication effects can be neglected) having a fairly big volume (up to 0.17 m 3 ), if only the isotopic composition is known. For determination of neutron sources distribution inside a sample, a heuristic method based on hierarchical cluster analysis was applied. As input parameters, amplitudes and phases of two-dimensional Fourier transformation of the count profiles matrices for known point sources distributions and for the examined samples were taken. Such matrices of profiles counts are collected using the sample scanning with detection head. In the clustering processes, process, counts profiles of unknown samples are fitted into dendrograms employing the 'proximity' criterion of the examined sample profile to standard samples profiles. Distribution of neutron sources in the examined sample is then evaluated on the basis of a comparison with standard sources distributions. (author)

  13. 50 curie Am-Be neutron source in determining impurities in various materials

    International Nuclear Information System (INIS)

    Rastikerdar, S.

    1998-01-01

    The neutrons from a 50 Curies Am-Be neutron source after being thermalized have been used to study the impurities in various materials by measuring the gamma rays emitted from the activated samples. To get good resolution two HPGe detectors, one of them suitable for low energy gamma rays as well as X-rays and the other suitable for measuring the gamma-ray energies up to 10 MeV have been used. The resolution of the detectors were measured and proved to be better than 1.8 keV for 60 Co gamma rays. During the measurements the detectors were placed in thick lead chambers. In these chambers the background was reduced dramatically. To make the whole system safe and also for saving time in activation analysis a fully computerized control rabbit device has been coupled to the system. Our main purpose is to set up a portable, cheap and reliable system for activation analysis for research institutions that are not able to have reactors due to various reasons. Although our tests and analysis is still in progress we think that the system is very promising. In this paper we will discuss about the details and the future prospects. (author)

  14. Design of a system for neutrons dosimetry

    International Nuclear Information System (INIS)

    Ceron, P.; Rivera, T.; Paredes G, L.; Azorin, J.; Sanchez, A.; Vega C, H. R.

    2014-08-01

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF 3 , He 3 and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a 239 PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  15. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  16. Fusion neutron detector calibration using a table-top laser generated plasma neutron source

    International Nuclear Information System (INIS)

    Hartke, R.; Symes, D.R.; Buersgens, F.; Ruggles, L.E.; Porter, J.L.; Ditmire, T.

    2005-01-01

    Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV

  17. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq {sup 241}Am-Be isotopic source

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Haluk [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey); Budak, Mustafa Guray, E-mail: mbudak@gazi.edu.tr [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Karadag, Mustafa [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Yüksel, Alptuğ Özer [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey)

    2014-11-01

    Highlights: • An irradiation unit was installed using a 37 GBq {sup 241}Am-Be neutron source. • The source neutrons moderated by using both water and paraffin. • Irradiation unit was shielded by boron oxide and lead against neutrons and gammas. • There are two sites for irradiations, one of them has a pneumatic transfer system. • Cadmium ratio method was used for irradiation site characterization. - Abstract: For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq {sup 241}Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (φ{sub th}) and epithermal neutron fluxes (φ{sub epi}), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be φ{sub th} = (2.11 ± 0.05) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (3.32 ± 0.17) × 10{sup 1} n cm{sup −2} s{sup −1}, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as φ{sub th} = (1.49 ± 0.04) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (2.93 ± 0

  18. Optimization of hybrid-type instrumentation for Pu accountancy of U/TRU ingot in pyroprocessing.

    Science.gov (United States)

    Seo, Hee; Won, Byung-Hee; Ahn, Seong-Kyu; Lee, Seung Kyu; Park, Se-Hwan; Park, Geun-Il; Menlove, Spencer H

    2016-02-01

    One of the final products of pyroprocessing for spent nuclear fuel recycling is a U/TRU ingot consisting of rare earth (RE), uranium (U), and transuranic (TRU) elements. The amounts of nuclear materials in a U/TRU ingot must be measured as precisely as possible in order to secure the safeguardability of a pyroprocessing facility, as it contains the most amount of Pu among spent nuclear fuels. In this paper, we propose a new nuclear material accountancy method for measurement of Pu mass in a U/TRU ingot. This is a hybrid system combining two techniques, based on measurement of neutrons from both (1) fast- and (2) thermal-neutron-induced fission events. In technique #1, the change in the average neutron energy is a signature that is determined using the so-called ring ratio method, according to which two detector rings are positioned close to and far from the sample, respectively, to measure the increase of the average neutron energy due to the increased number of fast-neutron-induced fission events and, in turn, the Pu mass in the ingot. We call this technique, fast-neutron energy multiplication (FNEM). In technique #2, which is well known as Passive Neutron Albedo Reactivity (PNAR), a neutron population's changes resulting from thermal-neutron-induced fission events due to the presence or absence of a cadmium (Cd) liner in the sample's cavity wall, and reflected in the Cd ratio, is the signature that is measured. In the present study, it was considered that the use of a hybrid, FNEM×PNAR technique would significantly enhance the signature of a Pu mass. Therefore, the performance of such a system was investigated for different detector parameters in order to determine the optimal geometry. The performance was additionally evaluated by MCNP6 Monte Carlo simulations for different U/TRU compositions reflecting different burnups (BU), initial enrichments (IE), and cooling times (CT) to estimate its performance in real situations. Copyright © 2015 Elsevier Ltd. All

  19. Anisotropy of neutron sources of Neutron Metrology Laboratory, IRD, Brazil; Anisotropia de fontes de neutrons do Laboratorio de Metrologia de Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.F.; Silva, F.S.; Leite, S.P.; Creazolla, P.G; Patrão, K.C.S.; Fonseca, E.S. da; Fernandes, S.S.; Pereira, W.W., E-mail: Alexander.camargo@oi.com.br, E-mail: s.felippesouza@gmail.com, E-mail: karla@ird.gov.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br, E-mail: simonesilvafernandes@gmail.com, E-mail: prycyllacreazolla@gmail.com, E-mail: leitesprk@gmail.com [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratorio Nacional de Metrologia; Fundação Técnico Educacional Souza Marques (FTESM), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    The anisotropy measurements have as main objective to define the emission of the radiation by different angles of an encapsulated neutron source. The measurements were performed using a Long Accuracy Counter (PLC) Detector in the Low Dispersion Room of the LNMRI / IRD with different neutron sources. Each measurement was made using a support for the source, emulated through an arduino system to rotate it. The carrier is marked with a variation of 5 °, ranging from 0 ° to 360 °, for the work in question only half, 0 ° to 180 ° is used for a total of nineteen steps. In this paper three sources of {sup 241}AmBe (α, n) 5.92 GBq (16 Ci) were used, neutron sources having the following dimensions: 105 mm in height and 31 mm in diameter. The PLC was positioned at a distance of 2 meters from the neutron source and has a radius of 15 cm for the detection area. The anisotropy factor of the {sup 241}AmBe source was 17%. The results in this work will focus mainly on the area of radioprotection and studies that will improve the process of routine measurements in laboratories and instrument calibrations. (author)

  20. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  1. Experiments at the GELINA facility for the validation of the self-indication neutron resonance densitometry technique

    Directory of Open Access Journals (Sweden)

    Rossa Riccardo

    2017-01-01

    Full Text Available Self-Indication Neutron Resonance Densitometry (SINRD is a passive non-destructive method that is being investigated to quantify the 239Pu content in a spent fuel assembly. The technique relies on the energy dependence of total cross sections for neutron induced reaction. The cross sections show resonance structures that can be used to quantify the presence of materials in objects, e.g. the total cross-section of 239Pu shows a strong resonance close to 0.3 eV. This resonance will cause a reduction of the number of neutrons emitted from spent fuel when 239Pu is present. Hence such a reduction can be used to quantify the amount of 239Pu present in the fuel. A neutron detector with a high sensitivity to neutrons in this energy region is used to enhance the sensitivity to 239Pu. This principle is similar to self-indication cross section measurements. An appropriate detector can be realized by surrounding a 239Pu-loaded fission chamber with appropriate neutron absorbing material. In this contribution experiments performed at the GELINA time-of-flight facility of the JRC at Geel (Belgium to validate the simulations are discussed. The results confirm that the strongest sensitivity to the target material was achieved with the self-indication technique, highlighting the importance of using a 239Pu fission chamber for the SINRD measurements.

  2. Determination of the hydrogen content of oil samples from Nigeria using an Am-Be neutron source

    International Nuclear Information System (INIS)

    Jonah, S.A.; Elegba, S.B.; Zakari, I.I.

    1998-01-01

    A 5 Ci Am-Be neutron source-based facility, which utilises the principles of thermal neutron reflection technique in combination with foil activation method, has been used to determine the total hydrogen content of commercial oil samples from Nigeria. With an established detection limit of 0.25 H w% for oil matrix of volume 600-ml, the total hydrogen contents of the samples were found to be in the range of 11.11-14.22 H w%. The facility is economical and suitable for the determination of moisture in solid samples. A brief description of the ongoing projects and future plans concerning the CRP are enumerated. (author)

  3. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Tardocchi, M.; Schooneveld, E.M.; Senesi, R.

    2006-01-01

    This paper reports the characterization of the different components of the γ background in epithermal neutron scattering experiments at pulsed neutron sources. The measurements were performed on the VESUVIO spectrometer at ISIS spallation neutron source. These measurements, carried out with a high purity germanium detector, aim to provide detailed information for the investigation of the effect of the γ energy discrimination on the signal-to-background ratio. It is shown that the γ background is produced by different sources that can be identified with their relative time structure and relative weight

  4. Aspects of 238Pu production in the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Koyama, Shin-ichi; Tanaka, Kenya; Itoh, Masahiko; Saito, Masaki

    2005-01-01

    Experimental determination of 238 Pu in 237 Np samples irradiated in the experimental fast reactor JOYO was done as part of the demonstration of 238 Pu production from 237 Np in fast reactors within the framework of the protected Pu production project, which aims at reinforcement of proliferation resistance of Pu by increasing the 238 Pu isotopic ratio. 238 Pu production amount in the irradiated 237 Np samples was determined by a radioanalytical technique. Aspects of 238 Pu production were examined on the basis of the present radioanalysis. The 238 Pu production amount depends on the neutron spectrum which can range from that of a typical fast reactor to a nearly epi-thermal spectrum. It is concluded that the fast reactor has not only high potential for use in protected Pu production, but also as an incinerator for excess Pu

  5. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  6. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  7. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  8. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  9. Investigation on U - O - Na, Pu - O - Na and U,Pu - O - Na phase diagrams

    International Nuclear Information System (INIS)

    Pillon, S.

    1989-03-01

    The thermochemical interaction between the nuclear fuel (uranium and plutonium mixed oxides) and the sodium has been investigated and particularly the three phase diagrams: U - O - Na; Pu - O - Na; U,Pu - O - Na. High temperature neutron diffraction, microcalorimetry and powder X-ray diffraction were used for the characterization of the compounds synthetized. This study allowed to complete the knowledge about each of these diagrams and to measure some physical and thermal properties on the compounds. The limits on the modelization of the fuel-sodium interaction are discussed from the results of the UO 2 - Na reaction [fr

  10. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    Science.gov (United States)

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.

  11. Beryllium neutron activation detector for pulsed DD fusion sources

    International Nuclear Information System (INIS)

    Talebitaher, A.; Springham, S.V.; Rawat, R.S.; Lee, P.

    2011-01-01

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate ( 9 Be(n,α) 6 He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(E n ) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×10 4 cm -2 , the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  12. Management of disused long lived sealed radioactive sources (LLSRS)

    International Nuclear Information System (INIS)

    2003-06-01

    The document provides advice the sealed source users and the national waste management organizations with the technical know-how on the management of disused and spent long lived sealed radioactive sources (LLSRS) and with the particular guidelines required for handling, conditioning for storage, and storage of these sources. The guidance is intended to assist in establishing compliance with the present standards, requirements, and adopted practices. It also provides background material for any possible technical assistance to developing countries and serves as a reference for technical staff involved with IAEA programmes on the subject. Because of the historic nature of many of the sources under this category and the lack of well developed technical procedures recognized on the international level, this publication can serve as a basis for establishing future handling and conditioning procedures. The LLSRS addressed in this publication are primarily those containing radionuclides having half-lives greater than 30 years. These sources may contain long lived alpha-emitters, mainly 238 Pu, 239 Pu, 237 Np, 241 Am, 226 Ra; beta-emitters: 14 C, and 63 Ni and could be neutron sources such as PuBe, RaBe and AmBe

  13. Livermore intense neutron source: design concepts

    International Nuclear Information System (INIS)

    Davis, J.C.; Anderson, J.D.; Booth, R.; Logan, C.M.; Osher, J.E.

    1975-07-01

    The Lawrence Livermore laboratory proposes to build an irradiation facility containing several 14 MeV T(d,n) neutron sources for materials damage experimentation. A source strength of 4 x 10 13 n/s can be produced with 400 keV D + beam on the tritium in titanium target system now used on the Livermore Rotating Target Neutron Source (RTNS). To produce the desired source strength an accelerator which can deliver 150 mA of 400 keV D + ions must be built. For the target to remain within the time-temperature regime of the present system it must have a diameter of 46 cm and rotate at 5000 rpm. With a beam spot 1 cm fwhm the useful target lifetime is expected to be the 100 hours typical of the present system. A maximum flux of 1.5 x 10 13 n/cm 2 s will be attainable over a sample 1 mm thick by 8 mm in diameter. (U.S.)

  14. Neutron sources: Present practice and future potential

    International Nuclear Information System (INIS)

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs

  15. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  16. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    Science.gov (United States)

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Determination of boron in water solution by an indirect neutron activation technique from a 241Am/Be source

    International Nuclear Information System (INIS)

    Sales, H.B.

    1981-08-01

    Boron content in water solutions has been analysed by Indirect Activation Technique a twin 241 Am/Be neutron source with a source strength of 9x10 6 n/seg. The boron concentration was inferred from the measurement of the activity induced in a vanadium flux monitor. The vanadium rod was located inside the boron solution in a standart geometrical set up with respect to the neutron source. Boron concentrations in the range of 100 to 1000 ppm were determined with an overall accuracy of about 2% during a total analysis time of about 20 minutes. Eventhough the analysis is not selective for boron yet due the rapid, simple and precise nature, it is proposed for the analysis of boron in the primary coolant circuit of Nuclear Power Plants of PWR type. (Author) [pt

  18. Study of the variation with the energy of the fission cross-sections of {sup 233}U, {sup 235}U, {sup 239}Pu for the fast neutrons; Etude de la variation avec l'energie des sections efficaces de fission de {sup 233}U, {sup 235}U, {sup 239}Pu pour les neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Szteinsznaider, D; Naggiar, V; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This measurements have been done while taking the value of the fission cross-sections of {sup 238}U as reference. The neutrons are produced by the reaction {sup 7}Li(p,n) in the Van de Graaff generator of Saclay. The explored domain spreads from some tenths to 2000 keV. We find: for {sup 239}Pu: {sigma}{sub f} = 2,04 {+-} 0,12 barns, cross-section constant between 150 and 2000 keV, for {sup 235}U: {sigma}{sub f} = 1,15 {+-} 0,15 barns, cross-section constant between 700 and 1000 keV, for {sup 233}U: {sigma}{sub f} = 1,92 {+-} 0,25 barns, for neutrons of 850 keV. (authors) [French] Ces mesures ont ete effectuees en prenant la valeur de la section efficace de fission de {sup 238}U comme reference. Les neutrons sont produits par la reaction {sup 7}Li(p,n) au generateur Van de Graaff de Saclay. Le domaine explore s'etend de quelques dizaines de kev a 2000 kev. Nous trouvons: pour {sup 239}Pu: {sigma}{sub f} = 2,04 {+-} 0,12 barns, section efficace constante entre 150 et 2000 kev. pour {sup 235}U: {sigma}{sub f} = 1,15 {+-} 0,15 barns, section efficace constante entre 700 et 1000 kev. pour {sup 233}U: {sigma}{sub f} = 1,92 {+-} 0,25 barns, pour des neutrons de 850 kev. (auteurs)

  19. A quantitative PGNAA study for use in aqueous solution measurements using Am–Be neutron source and BGO scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ghal-Eh, N., E-mail: ghal-eh@du.ac.ir [School of Physics, Damghan University, P.O. Box 36716-41167, Damghan (Iran, Islamic Republic of); Ahmadi, P. [School of Physics, Damghan University, P.O. Box 36716-41167, Damghan (Iran, Islamic Republic of); Doost-Mohammadi, V. [Nuclear Science and Technology Research Center, AEOI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2016-02-01

    A prompt gamma neutron activation analysis (PGNAA) system including an Am–Be neutron source and BGO scintillation detector are used for quantitative analysis of bulk samples. Both Monte Carlo-simulated and experimental data are considered as input data libraries for two different procedures based on neural network and least squares methods. The results confirm the feasibility and precision of the proposed methods.

  20. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on 14 N, 181 Ta, 232 Th, 238 U and 239 Pu; Prompt fission spectra for 232 Th, 235 U, 238 U and 239 Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus

  1. Polarisation modulated crosscorrelation spectroscopy on a pulsed neutron source

    International Nuclear Information System (INIS)

    Cywinski, R.; Williams, W.G.

    1984-07-01

    A crosscorrelation technique is introduced by which a total scattering polarisation analysis spectrometer on a pulsed neutron source can be modified to give full neutron polarisation and energy analysis without changing the physical configuration of the instrument. Its implementation on the proposed POLARIS spectrometer at the Rutherford Appleton Laboratory Spallation Neutron Source is described, and the expected dynamic (Q, ω) range and resolution evaluated. (author)

  2. Neutron sources and their characteristics

    International Nuclear Information System (INIS)

    McCall, R.C.; Swanson, W.P.

    1979-03-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence but do substantially reduce the average energy of the transmitted spectrum. Reflection of neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. The ratio of maximum fluence to the treatment dose at the same distance is given as a function of electron energy. This ratio rises with energy to an almost constant value of 2.1 x 10 5 neutrons cm -2 rad -1 at electron energies above about 25 MeV. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. Reasons for apparent deviations are suggested. Absolute depth-dose and depth-dose-equivalent distributions for realistic neutron spectra that occur at therapy installations are calculated, and a rapid falloff with depth is found. The ratio of neutron integral absorbed dose to leakage photon absorbed dose is estimated to be 0.04 and 0.2 for 14 to 25 MeV incident electron energy, respectively. Possible reasons are given for lesser neutron production from betatrons than from linear accelerators. Possible ways in which neutron production can be reduced are discussed

  3. Neutron and gamma-ray emission in the proton induced fission of {sup 238}U and {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Kniajeva, G.N.; Krupa, L.; Bogachev, A.A.; Chubarian, G.G.; Dorvaux, O.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Khlebnikov, S.; Kondratiev, N.A.; Kozulin, E.M.; Lyapin, V.; Materna, T.; Pokrovsky, I.V.; Rubchenya, V.A.; Trzaska, W.H.; Vakhtin, D.; Voskressenski, V.M

    2004-04-05

    Average prescission M{sup pre}{sub n} and postscission M{sup post}{sub n} neutron multiplicities as well as average {gamma}-ray multiplicity , average energy emitted by {gamma}-rays as a function of mass and total kinetic energy (TKE) of fission fragments were measured in proton induced reactions p+{sup 242}Pu{yields}{sup 243}Am, p+{sup 238}U{yields}{sup 239}Np at proton energy E{sub p}=13, 20 and 55 MeV.

  4. Fabrication of 238Pu based sources for energy micro-generator

    International Nuclear Information System (INIS)

    Barthelemy, Pierre; Boucher, Rene

    1969-04-01

    The authors describe the fabrication of sources of 238 Pu. The plutonium-scandium alloy is obtained by arc fusion in its delta phase. This alloy is chosen for its excellent malleability, and is rolled at 20 C. Pellets are then cut and decontaminated. Each pellet is then placed in a first tantalum sheath which is welded by electronic bombardment. A second sheath in platinum-iridium is placed around the first one, and also welded by using the same welding process. The so-fabricated sources are to feed energy thermal-electric conversion micro-generators which are supposed to operate tens of years in medical applications as organ stimulators [fr

  5. 238Pu based energy micro-generation sources for medical applications

    International Nuclear Information System (INIS)

    Boucher, Rene

    1968-10-01

    Pace-makers are frequently implanted in the human body. The existing apparatus are, actually, equipped with chemical piles with a lifetime of about 15 months. The use of 238 Pu will provide a pace-maker with an autonomy of 10 years at least. Principal problems of security due to the use of plutonium are considered. It is advisable to improve the properties of pure plutonium by small additions of elements such as cerium, scandium, indium, gallium or americium. A number of the most important properties for a pace-maker source are presented. Finally, the fabrication and canning of the source are surveyed. (author) [fr

  6. The Advanced Neutron Source liquid deuterium cold source

    International Nuclear Information System (INIS)

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy

  7. Study of calculated and measured time dependent delayed neutron yields

    International Nuclear Information System (INIS)

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of 232 U, 237 Np, 238 Pu, 241 Am, /sup 242m/Am, 245 Cm, and 249 Cf were studied for the first time. The delayed neutron emission from 232 Th, 233 U, 235 U, 238 U, 239 Pu, 241 Pu, and 242 Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from 232 Th to 252 Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables

  8. Radiation sources and methods for producing them

    International Nuclear Information System (INIS)

    Malson, H.A.; Moyer, S.E.; Honious, H.B.; Janzow, E.F.

    1979-01-01

    The radiation sources contain a substrate with an electrically conducting, non-radioactive metal surface, a layer of a metal isotope of the scandium group as well as a percentage of non-radioactive binding metal being coated on the surface by means of an electroplating method. Besides examples for β sources ( 147 Pm), γ sources ( 241 Am), and neutron sources ( 252 Cf) there is described an α-radiation source ( 241 Am, 244 Cu, 238 Pu) for smoke detectors. There are given extensive tables and a bibliography. (DG) [de

  9. Alligator Rivers Analogue project. Geochemistry of 239Pu, 129I, 99Tc and 36Cl

    International Nuclear Information System (INIS)

    Fabryka-Martin, J.T.; Curtis, D.B.

    1992-01-01

    One objective of this research programme has been to evaluate the applicability of uranium orebodies as natural analogues for testing radionuclide release-rate models used in performance assessment activities. The investigated nuclides included three of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors: plutonium-239, iodine-129, and technetium-99. The feasibility of uranium minerals as analogues for the behavior of these nuclear reaction products (NRP) in spent fuel relies upon a capability to characterise NRP concentrations in the source minerals. Measured abundances of natural 239 Pu, 99 Tc and 129 I in uranium ores are compared to calculated abundances in order to evaluate the degree to retention of these radionuclides by the ore. This modelling study also shows the extent to which various NRP are correlated, such that one provides a constraint on the production rates of others. Under most conditions, 36 Cl, another long-lived neutron-capture product found in uranium ores, is shown to be an ideal in-situ monitor of the 235 U fission rate, which is the dominant source term for 129 I and possibly a significant one for 99 Tc. Similarly, 239 Pu/U ratios can be used to establish limits on the 238 U neutron-induced fission rate; the ratios measured in this study suggest that 238 U induced fission comprises 129 I and 99 Tc. 79 refs., 21 tabs., 18 figs

  10. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  11. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  12. Procedure for measurement of anisotropy factor for neutron sources

    International Nuclear Information System (INIS)

    Creazolla, Prycylla Gomes

    2017-01-01

    Radioisotope neutron sources allow the production of reference fields for calibration of neutron detectors for radiation protection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in source encapsulation and in the radioactive material concentration produce differences in its neutron emission rate, relative to the source axis, this effect is called anisotropy. In this study, is describe a procedure for measuring the anisotropy factor of neutron sources performed in the Laboratório de Metrologia de Neutrons (LN) using a Precision Long Counter (PLC) detector. A measurement procedure that takes into account the anisotropy factor of neutron sources contributes to solve some issues, particularly with respect to the high uncertainties associated with neutron dosimetry. Thus, a bibliographical review was carried out based on international standards and technical regulations specific to the area of neutron fields, and were later reproduced in practice by means of the procedure for measuring the anisotropy factor in neutron sources of the LN. The anisotropy factor is determined as a function of the angle of 90° in relation to the cylindrical axis of the source. This angle is more important due to its high use in measurements and also of its higher neutron emission rate if compared with other angles. (author)

  13. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  14. Compact neutron generator with nanotube ion source

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Ivashchuk, O. O.; Kirsanov, M. A.; Kitsyuk, E. P.; Klenin, A. A.; Kubankin, A. S.; Nazhmudinov, R. M.; Nikulin, I. S.; Oleinik, A. N.; Pavlov, A. A.; Shchagin, A. V.; Zhukova, P. N.

    2018-02-01

    In this letter, we report the observation of fast neutrons generated when a positive acceleration potential is applied to an array of orientated carbon nanotubes, which are used as an ion source. The neutrons with energy of 2.45 MeV are generated as a result of D-D fusion reaction. The dependencies of the neutron yield on the value of the applied potential and residual pressure of deuterium are measured. The proposed approach is planned to be used for the development of compact neutron generators.

  15. Neutron-neutron-resonance logging of boron in boreholes with the use of the PRKS-2 radiometer

    International Nuclear Information System (INIS)

    Vakhtin, B.S.; Ivanov, V.S.; Filippov, E.M.; Novoselov, A.V.

    1973-01-01

    The well rig of the PRKS-2 logging radiometer is supplemented with a probe device for neutron measurements permitting to vary the probe size from 20 to 45 cm. To decrease the natural gamma radiation effect an external lead shield 7-mm thick having 50-mm outer diameter is fixed on the instrument sleeve. The instrument is provided with a NaI detector and a set of foils of Cd, Ag, Rh, Tu, In, Ta, and a Pu-Be source of 1x10 6 n/sec strength. The optimal size of the probe is assumed as 25 cm. From the results of well measurements a better differentiation of neutron resonance logging was noticed in comparison with neutron gamma logging. Comparing the data obtained with those of kern analysis a calibration curve was derived of neutron resonance logging versus B for wells of 59 mm dia

  16. Advanced Neutron Source: The users' perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper

  17. Time-correlated neutron analysis of a multiplying HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.C., E-mail: Eric.Miller@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Kalter, J.M.; Lavelle, C.M. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Watson, S.M.; Kinlaw, M.T.; Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID (United States); Noonan, W.A. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States)

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated {sup 3}He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  18. Time-correlated neutron analysis of a multiplying HEU source

    Science.gov (United States)

    Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  19. Time-correlated neutron analysis of a multiplying HEU source

    International Nuclear Information System (INIS)

    Miller, E.C.; Kalter, J.M.; Lavelle, C.M.; Watson, S.M.; Kinlaw, M.T.; Chichester, D.L.; Noonan, W.A.

    2015-01-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3 He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations

  20. New perspectives from new generations of neutron sources

    International Nuclear Information System (INIS)

    Mezei, F.

    2007-01-01

    Since the early fifties the vital multidisciplinary progress in understanding condensed matter is, in a substantial fraction, based on results of neutron scattering experiments. Neutron scattering is an inherently intensity limited method and after 50 years of considerable advance - primarily achieved by improving the scattering instruments - the maturation of the technique of pulsed spallation sources now opens up the way to provide more neutrons with improved cost and energy efficiency. A quantitative analysis of the figure-of-merit of the specialized instruments for pulsed source operation shows that up to 2 orders of magnitude intensity gains can be achieved in the next decade, with the advent of high power spallation sources. The first stations on this road, the MW class short pulse spallation sources SNS in the Usa (under commissioning), and J-PARC in Japan (under construction) will be followed by the 5 MW long pulse European Spallation Source (ESS). Further progress, that can be envisaged on the longer term, could amount to as much as another factor of 10 improvement. (author)

  1. New perspectives from new generations of neutron sources

    Science.gov (United States)

    Mezei, Ferenc

    2007-09-01

    Since the early 1950s the vital multidisciplinary progress in understanding condensed matter is, in a substantial fraction, based on results of neutron scattering experiments. Neutron scattering is an inherently intensity limited method and after 50 years of considerable advance—primarily achieved by improving the scattering instruments—the maturation of the technique of pulsed spallation sources now opens up the way to provide more neutrons with improved cost and energy efficiency. A quantitative analysis of the figure-of-merit of the specialized instruments for pulsed source operation shows that up to 2 orders of magnitude intensity gains can be achieved in the next decade, with the advent of high power spallation sources. The first stations on this road, the MW class short pulse spallation sources SNS in the USA (under commissioning), and J-PARC in Japan (under construction) will be followed by the 5 MW long pulse European Spallation Source (ESS). Further progress, that can be envisaged on the longer term, could amount to as much as another factor of 10 improvement. To cite this article: F. Mezei, C. R. Physique 8 (2007).

  2. Characteristics of polyethylene-moderated 252Cf neutron sources

    International Nuclear Information System (INIS)

    Alejnikov, V.E.; Beskrovnaya, L.G.; Florko, B.V.

    2000-01-01

    Polyethylene-moderated 252 Cf neutron sources were designed to produce neutron reference fields' spectra that simulate the spectra observed in the workplaces within nuclear reactors and accelerators. The paper describes the neutron sources and fields. Neutron spectra were calculated by Monte Carlo method and compared with experimental data

  3. Three new nondestructive evaluation tools based on high flux neutron sources

    International Nuclear Information System (INIS)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M.

    1997-01-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities

  4. Research on background neutron of 226Ra γ source

    International Nuclear Information System (INIS)

    Ji Changsong

    1996-01-01

    This work studies the background neutron emission of 226 Ra γ source: the mechanism of resulting in background neutron is studied; a thesis that the (α, n) type reaction on Radium carriers Cl or Br is the main source of creating background neutron emission of 226 Ra γ source has been proposed and certificated; a proposal of substitution of Cl carrier by Br in radium source produced in China in order to reduce background neutron emission is put forward. A result to reduce the background neutron from 96.4 neutrons/4πsmgRa to 6.1 neutrons/4πsmgRa is obtained

  5. On the origin of low energy tail for monoenergetic neutron sources

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.

    1995-01-01

    The problems of data processing when measuring inelastic neutron scattering cross sections for separated nuclei levels are studied. The model describing the neutron energy distribution for monoenergetic neutron sources is developed. The factors which make the major contributions into spectrometer response function formation are discussed. It is shown that the model considered predicts well neutron energy distribution from metal Li-target. The model parameters should be estimated on the basis of the experimental data. The neutron scattering on target environment contributes much into the low energy region of the neutron spectrum. An additional neutron source is introduced into the model in order to describe the low energy peak asymmetry (the so-called low energy tail). The tail neutron contribution dependence on incident energy and angle turns out to be rather unexpected. The conclusion is made that it is difficult to explain the origin and the properties of the tail neutron source by slit proton scattering or some Li-nuclei distribution regularities. 3 refs., 6 figs

  6. Biodegradation of PuEDTA and Impacts on Pu Mobility

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Rai, D.; Xun, L.

    2004-01-01

    The contamination of many DOE sites by Pu presents a long-term problem because of its long half-life (240,000 yrs) and the low drinking water standard ( -12 M). EDTA was co-disposed with radionuclides (e.g., Pu, 60 Co), formed strong complexes, and enhanced radionuclide transport at several DOE sites. Biodegradation of EDTA should decrease Pu mobility. One objective of this project was to determine the biodegradation of EDTA in the presence of PuEDTA complexes. The aqueous system investigated at pH 7 (10 -4 M EDTA and 10 -6 M Pu) contained predominantly Pu(OH) 2 EDTA 2- . The EDTA was degraded at a faster rate in the presence of Pu. As the total concentration of both EDTA and PuEDTA decreased (i.e., 10 -5 M EDTA and 10 -7 M PuEDTA), the presence of Pu decreased the biodegradation rate of the EDTA. It is currently unclear why the concentration of Pu directly affects the increase/decrease in rate of EDTA biodegradation. The soluble Pu concentration decreased, in agreement with thermodynamic predictions, as the EDTA was biodegraded, indicating that biodegradation of EDTA will decrease Pu mobility when the Pu is initially present as Pu(IV)EDTA. A second objective was to investigate how the presence of competing metals, commonly encountered in geologic media, will influence the speciation and biodegradation of Pu(IV)-EDTA. Studies on the solubilities of Fe(OH) 3 (s) and of Fe(OH) 3 (s) plus PuO 2 (am) in the presence of EDTA and as a function of pH showed that Fe(III) out competes the Pu(IV) for the EDTA complex, thereby showing that Pu(IV) will not form stable complexes with EDTA for enhanced transport of Pu in Fe(III) dominated subsurface systems. A third objective is to investigate the genes and enzymes involved in EDTA biodegradation. BNC1 can use EDTA and another synthetic chelating agent nitrilotriacetate (NTA) as sole carbon and nitrogen sources. The same catabolic enzymes are responsible for both EDTA and NTA degradation except that additional enzymes are

  7. Suggestions for future Pu fuel cycle designs

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2013-01-01

    Recommended follow-up Pu Studies: • Verification of VSOP-A vs. VSOP 99/05, by comparison with MCNP. • DLOFC temperatures with Multi-group Tinte. • Redesign of the reactor: - Replace small concentrated Pu fuel kernels with large (500 μm diameter) diluted kernels to reduce burn-up. - Switch from the direct Brayton cycle to the indirect Rankine steam cycle to reduce fuel temperatures. - Add neutron poisons to the reflectors to suppress power and temperature peaks and to produce negative uniform temperature reactivity coefficients

  8. Neutron sources for neutrino investigations with the lithium converter

    International Nuclear Information System (INIS)

    Lyashuk, V.I.; Lutostansky, Yu.S.

    2012-01-01

    Creation of the powerful antineutrino source with a hard spectrum is possible on the base of β - -decay of the short lived 8 Li (T 1/2 = 0.84 s) isotope formed in the reaction 7 Li(n,γ) 8 Li. The 8 Li. isotope is a prime perspective antineutrino source taking into account that neutrino cross section depends as σ ∼ E ν 2 at the considered energy. The creation of this type powerful neutrino source (neutrino factory) is possible by (n,γ)-activation of high-purified 7 Li isotope under intensive neutron flux. As a neutron source for this purpose can be used the nuclear reactors (of steady-state flux and pulsed one), neutron sources on the base of accelerators and neutron generating targets, beam-dumps of large accelerators. The capabilities and perspectives of neutron sources are considered for the purpose of creation of the neutrino factory. Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7 Li isotope) are discussed: static regime (i.e., without transport of 8 Li isotope to the detector); dynamic regime (pumping of activated lithium to a remote detector in a closed cycle); lithium converter on the base of (a) a pulse reactors and (b) constructed as tandem of an antineutrino source and accelerator with a neutron-producing target. Heavy water solution of LiOD is proposed as a substance for the lithium converter. The expressions for neutrino fluxes in the detector position are obtained

  9. Thermal neutron equivalent doses assessment around KFUPM neutron source storage area using NTDs

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Haddad, M.N.; Al-Jarrallah, M.I.; Nassar, R

    2002-07-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) layer for thermal neutron detection via {sup 10}B(N,{alpha}){sup 7}Li and {sup 6}Li(n,{alpha}){sup 3}H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks.cm{sup -2}.{mu}Sv{sup -1} using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSv.h{sup -1} up to 11 {mu}Sv.h{sup -1}. The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv.h{sup -1}, which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. (author)

  10. Neutron generator tube ion source control

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A system is claimed for controlling the output of a neutron generator tube of the deuterium-tritium accelerator type and having an ion source to produce sharply defined pulses of neutrons for well logging use. It comprises: means for inputting a relatively low voltage input control pulse having a leading edge and a trailing edge; means, responsive to the input control pulse, for producing a relatively high voltage ion source voltage pulse after receipt of the input pulse; and means, responsive to the input control pulse, for quenching, after receipt of the input pulse, the ion source control pulse, thereby providing a sharply time defined neutron output from the generator tube

  11. Simultaneous measurement of 239Pu, 240Pu, 241Pu, and 242Pu by high resolution inductively coupled plasma mass spectrometer (HR ICP-MS) in marine sediments

    International Nuclear Information System (INIS)

    Bruneau, F.

    1999-01-01

    Transuranics elements are of particular interest in radioecological studies because of their radiotoxicity and their potential use to decipher source fingerprints and transport processes. The simultaneous measurement of 239 Pu, 240 Pu, 241 Pu, and 242 Pu in environmental samples requires a specific chemical procedure. This work deals with an analytical procedure which yields a very high grade of purification of Pu suitable for ultra low level detection by HR ICP-MS, from marine sediments. After the elimination of major elements (Fe, Al, Mg...) by a first chromatographic separation, a new device of purification by solvent extraction and concentration by a second chromatographic separation is used to obtain a concentrated and high purified solution of plutonium. The chemical procedure have been validated on IAEA certified sediment samples and on sediment samples collected in the roads of Cherbourg which had been previously analysed by other techniques (a spectrometry and thermo-ionisation mass spectrometer). (author)

  12. Method to determine the strength of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Chacon R, A.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2006-07-01

    The use of a gamma-ray spectrometer with a 3 {phi} x 3 NaI(Tl) detector, with a moderator sphere has been studied in the aim to measure the neutron fluence rate and to determine the source strength. Moderators with a large amount of hydrogen are able to slowdown and thermalize neutrons; once thermalized there is a probability that thermal neutron to be captured by hydrogen producing 2.22 MeV prompt gamma-ray. The pulse-height spectrum collected in a multicharmel analyzer shows a photopeak around 2.22 MeV whose net area is proportional to total neutron fluence rate and to the neutron source strength. The characteristics of this system were determined by a Monte Carlo study using the MCNP 4C code, where a detailed model of the Nal(Tl) was utilized. As moderators 3, 5, and 10 inches-diameter spheres where utilized and the response was calculated for monoenergetic and isotopic neutrons sources. (Author)

  13. The Los Alamos Intense Neutron Source

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-01-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10 11 neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10 13 neutrons/second

  14. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  15. {sup 137}Cs, {sup 239+240}Pu concentrations and the {sup 240}Pu/{sup 239}Pu atom ratio in a sediment core from the sub-aqueous delta of Yangtze River estuary

    Energy Technology Data Exchange (ETDEWEB)

    Pan, S.M., E-mail: span@nju.edu.cn [Key Lab of Ministry of Education of Coast and Island Development, Nanjing University, Nanjing 210093 (China); Tims, S.G. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu, X.Y. [Key Lab of Ministry of Education of Coast and Island Development, Nanjing University, Nanjing 210093 (China); Fifield, L.K. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2011-10-15

    A sediment core collected from the sub-aqueous delta of the Yangtze River estuary was subjected to analyses of {sup 137}Cs and plutonium (Pu) isotopes. The {sup 137}Cs was measured using {gamma}-spectrometry at the laboratories at the Nanjing University and Pu isotopes were determined with Accelerator Mass Spectrometry (AMS), measurements made at the Australian National University. The results show considerable structure in the depth concentration profiles of the {sup 137}Cs and {sup 239+240}Pu. The shape of the vertical {sup 137}Cs distribution in the sediment core was similar to that of the Pu. The maximum {sup 137}Cs and {sup 239+240}Pu concentrations were 16.21 {+-} 0.95 mBq/g and 0.716 {+-} 0.030 mBq/g, respectively, and appear at same depth. The average {sup 240}Pu/{sup 239}Pu atom ratio was 0.238 {+-} 0.007 in the sediment core, slightly higher than the average global fallout value. The changes in the {sup 240}Pu/{sup 239}Pu atom ratios in the sediment core indicate the presence of at least two different Pu sources, i.e., global fallout and another source, most likely close-in fallout from the Pacific Proving Grounds (PPG) in the Marshall Islands, and suggest the possibility that Pu isotopes are useful as a geochronological tool for coastal sediment studies. The {sup 137}Cs and {sup 239+240}Pu inventories were estimated to be 7100 {+-} 1200 Bq/m{sup 2} and 407 {+-} 27 Bq/m{sup 2}, respectively. Approximately 40% of the {sup 239+240}Pu inventory originated from the PPG close-in fallout and about 50% has derived from land-origin global fallout transported to the estuary by the river. This study confirms that AMS is a useful tool to measure {sup 240}Pu/{sup 239}Pu atom ratio and can provide valuable information on sedimentary processes in the coastal environment.

  16. Exploratory study of fission product yield determination from photofission of 239Pu at 11 MeV with monoenergetic photons

    Science.gov (United States)

    Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.

    2017-02-01

    Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγ=11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.

  17. Calibration of a detector by activation with a continuous neutron source used as a transfer standard for measuring pulsed neutron beams

    International Nuclear Information System (INIS)

    Moreno, Jose; Silva, Patricio; Birstein, Lipo; Soto, Leopoldo

    2002-01-01

    This paper presents a method for calibrating activation detectors. These detectors will be used as transfer standard in measuring neutron fluxes produced by pulsed plasma sources. A standard neutron source is used as a secondary standard. The activation detector is being shielded in order to substantially reduce detection of gamma emission coming from the source. The detector's calibration factor is obtained by considering also the standard neutron source as a free source of gamma radiation so that the measurements can be done without quickly withdrawing the neutron source as it is usually done. This will substantially simplify the traditionally established method (JM)

  18. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  19. Spectral correction factors for conventional neutron dose meters used in high-energy neutron environments improved and extended results based on a complete survey of all neutron spectra in IAEA-TRS-403

    International Nuclear Information System (INIS)

    Oparaji, U.; Tsai, Y. H.; Liu, Y. C.; Lee, K. W.; Patelli, E.; Sheu, R. J.

    2017-01-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (E n > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252 Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252 Cf, 241 Am-Be and 239 Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6''-9'') are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. (authors)

  20. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  1. 10 CFR 39.55 - Tritium neutron generator target sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...

  2. Optimization of CR-39 for fast neutron dosimetry applications

    International Nuclear Information System (INIS)

    Vilela, E.; Fantuzzi, E.; Giacomelli, G.; Giorgini, M.; Morelli, B.; Patrizii, L.; Serra, P.; Togo, V.

    1999-01-01

    We present the results of an experimental work aimed at improving the performances of the CR-39[reg] (Registered Trademark of PPG Industries Inc.) nuclear track detector for neutron dosimetry applications. The work was done in collaboration with the Intercast Europe S.p.A., producer of CR-39 for commercial and scientific applications. We compare the CR-39 made with different additives concentrations and different polymerization processes. We evaluate the response of the CR-39 to fast neutrons from three sources: 241 Am-Be, 252 Cf and 238 Pu-Li. Particular attention was paid to background fluctuations that limit the lower detectable dose

  3. Reclamation of greater than Class C sealed sources at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Jones, S.W.

    1995-01-01

    One of the important overriding themes of the Los Alamos National Laboratory as a world-class scientific institution is to utilize its expertise in enhancing the long-term welfare of society by minimizing negative side effects of nuclear technology over the past five decades. The Los Alamos National Laboratory is therefore committed to the use of its technical competencies and nuclear facilities, developed through programs in the areas of defense and civilian nuclear research, to support activities which will benefit the United States as a whole. As such, this paper discusses the organizational details and requirements of the Neutron Source Reclamation Program at Los Alamos. This program has as its mission the retrieval, interim storage, and chemical reprocessing of 238 PuBe, 239 PuBe and 24l AmBe neutron sources residing in the hands of private companies and industries, academic institutions, and various state and Federal government agencies

  4. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  5. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    Science.gov (United States)

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ( 241 Am/Be, 252 Cf, 241 Am/B, and DT neutron generator). Among the different systems the 252 Cf neutron based PGNAA system has the best performance.

  6. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  7. New opportunities in neutron capture research using advanced pulsed neutron sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1987-08-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. Prospective experiments are reviewed with particular attention to those with a strong connection to capture gamma-ray spectroscopy

  8. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  9. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  10. An advanced fusion neutron source facility

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Accelerator-based 14-MeV-neutron sources based on modifications of the original Fusion Materials Irradiation Facility are currently under consideration for investigating the effects of high-fluence high-energy neutron irradiation on fusion-reactor materials. One such concept for a D-Li neutron source is based on recent advances in accelerator technology associated with the Continuous Wave Deuterium Demonstrator accelerator under construction at Argonne National Laboratory, associated superconducting technology, and advances in liquid-metal technology. In this paper a summary of conceptual design aspects based on improvements in technologies is presented

  11. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  12. Extraction of neutron spectral information from Bonner-Sphere data

    CERN Document Server

    Haney, J H; Zaidins, C S

    1999-01-01

    We have extended a least-squares method of extracting neutron spectral information from Bonner-Sphere data which was previously developed by Zaidins et al. (Med. Phys. 5 (1978) 42). A pulse-height analysis with background stripping is employed which provided a more accurate count rate for each sphere. Newer response curves by Mares and Schraube (Nucl. Instr. and Meth. A 366 (1994) 461) were included for the moderating spheres and the bare detector which comprise the Bonner spectrometer system. Finally, the neutron energy spectrum of interest was divided using the philosophy of fuzzy logic into three trapezoidal regimes corresponding to slow, moderate, and fast neutrons. Spectral data was taken using a PuBe source in two different environments and the analyzed data is presented for these cases as slow, moderate, and fast neutron fluences. (author)

  13. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    Science.gov (United States)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-02-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.

  14. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    International Nuclear Information System (INIS)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-01-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium

  15. Determination of {sup 240}Pu/{sup 239}Pu ratio and its significance in environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-03-01

    Analytical procedures for the determination of Pu concentrations and its isotopic ratios in environmental samples were developed by using ICP-MS. Detection limit of Pu by ICP-MS was about 0.02 pg ml{sup -1} (0.05 mBq ml{sup -1} for {sup 239}Pu; 0.17 mBq ml{sup -1} for {sup 240}Pu) in the sample solution. Analytical results of {sup 239+240}Pu in IAEA standard reference materials indicated that the accuracy of this method was satisfactory. Data on the {sup 240}Pu/{sup 239}Pu atom ratios, which are rare in the literature, were also obtained for soil and sediment samples (including IAEA standard reference materials) from different areas such as Irish Sea, Mururoa Atoll, Marshall Islands, Chernobyl, Kyshtym, Nagasaki and some other places in Japan. The range of the {sup 240}Pu/{sup 239}Pu ratios was about 0.04-0.4, and the ratios are depending on the origin of the materials. Analytical results for the {sup 240}Pu/{sup 239}Pu atom ratios provide information about the source of the contamination and the transfer of plutonium in the environment. (author)

  16. Standard test method for nondestructive assay of nuclear material in scrap and waste by passive-Active neutron counting using 252Cf shuffler

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the nondestructive assay of scrap and waste items for U, Pu, or both, using a 252Cf shuffler. Shuffler measurements have been applied to a variety of matrix materials in containers of up to several 100 L. Corrections are made for the effects of matrix material. Applications of this test method include measurements for safeguards, accountability, TRU, and U waste segregation, disposal, and process control purposes (1, 2, 3). 1.1.1 This test method uses passive neutron coincidence counting (4) to measure the 240Pu-effective mass. It has been used to assay items with total Pu contents between 0.03 g and 1000 g. It could be used to measure other spontaneously fissioning isotopes such as Cm and Cf. It specifically describes the approach used with shift register electronics; however, it can be adapted to other electronics. 1.1.2 This test method uses neutron irradiation with a moveable Cf source and counting of the delayed neutrons from the induced fissions to measure the 235U equiva...

  17. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  18. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  19. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  20. Reactivity studies on the advanced neutron source

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Redmond, E.L. II; Fletcher, C.D.

    1990-01-01

    An Advanced Neutron Source (ANS) with a peak thermal neutron flux of about 8.5 x 10 19 m -2 s -1 is being designed for condensed matter physics, materials science, isotope production, and fundamental physics research. The ANS is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady-state source of neutrons. The design effort is currently in the conceptual phase. A reference reactor design has been selected in order to examine the safety, performance, and costs associated with this one design. The ANS Project has an established, documented safety philosophy, and safety-related design criteria are currently being established. The purpose of this paper is to present analyses of safety aspects of the reference reactor design that are related to core reactivity events. These analyses include control rod worth, shutdown rod worth, heavy water voiding, neutron beam tube flooding, light water ingress, and single fuel element criticality. Understanding these safety aspects will allow us to make design modifications that improve the reactor safety and achieve the safety related design criteria. 8 refs., 3 tabs

  1. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  2. Reactivity prediction of uniform PuO2-UO2 fuelled lattices and Pu(NO3)4 solutions in light water

    International Nuclear Information System (INIS)

    Mohankrishnan, P.; Huria, H.C.

    A theoretical analysis of the reactivities of the experimentally measured uniform light water moderated and reflected PuO 2 in UO 2 lattices and Pu(NO 3 ) 4 solutions is presented here. The mixed oxide single rod lattices are homogenised by the use of multigroup integral transport theory and diffusion theory is used for the cylindrical core calculations. The cross-sections are derived from the WTIS library. The homogeneous spherical Pu(NO 3 ) 4 solutions are analysed by discrete ordinate transport theory. Due to the small size of these criticals, it is necessary that one dimensional core calculations also be performed with a cross-section energy group structure which can represent neutron slowing down and thermalisation at the core reflector interface accurately. Due to the absence of such core calculation in the BNWL analyses of the mixed oxide lattices, the agreement of or predictions for these lattices with measurement is considered to be more satisfactory. These reactivity predictions are found to agree generally within +- 0.6% of measurements for the mixed oxide lattices and within 1% for the solution system. (author)

  3. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  4. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  5. Calculations of accelerator-based neutron sources characteristics

    International Nuclear Information System (INIS)

    Tertytchnyi, R.G.; Shorin, V.S.

    2000-01-01

    Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)

  6. Cross section measurements of fissile nuclei for slow neutrons; Mesures de sections efficaces de noyaux fissiles pour les neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)

  7. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Rai, D.; Xun, L.

    2005-01-01

    The complexation of radionuclides (e.g., plutonium (Pu) and 60 Co) by codisposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Our previous NABIR research investigated the aerobic biodegradation and biogeochemistry of Pu(IV)-EDTA. Plutonium(IV) forms stable complexes with EDTA under aerobic conditions and an aerobic EDTA degrading bacterium can degrade EDTA in the presence of Pu and decrease Pu mobility. However, our recent studies indicate that while Pu(IV)-EDTA is stable in simple aqueous systems, it is not stable in the presence of relatively soluble Fe(III) compounds (i.e., Fe(OH) 3 (s)--2-line ferrihydrite). Since most DOE sites have Fe(III) containing sediments, Pu(IV) in likely not the mobile form of Pu-EDTA in groundwater. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed in this brand new project to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV) as PuO2(am) by metal reducing bacteria, the redox conditions required for this reduction, the strength of the Pu(III)-EDTA complex, how the Pu(III)-EDTA complex competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, the formation of a stable soluble Pu(III)-EDTA complex under anaerobic conditions would require degradation of the EDTA complex to limit Pu(III) transport in geologic environments. Anaerobic EDTA degrading microorganisms have not been isolated. These knowledge gaps preclude the development of a mechanistic understanding of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop Pu

  8. Neutron calibration field of bare {sup 252}Cf source in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Le, Ngoc Thiem; Tran, Hoai Nam; Nguyen, Khai Tuan [Institute for Nuclear Science and Technology, Hanoi (Viet Nam); Trinh, Glap Van [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2017-02-15

    This paper presents the establishment and characterization of a neutron calibration field using a bare {sup 252}Cf source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

  9. Application of AmBe source neutron irradiator for determination of inorganic elements in commercial fertilizers

    International Nuclear Information System (INIS)

    Madi Filho, Tufic; Armelim, Maria Jose Aguirre; Fulas, Paulo Marcelo Marangon; Trevizam, Anderson Ricardo; Figueira, Rubens Cesar Lopes

    2005-01-01

    The rational use of fertilizers , for the soil fertility correction, contributes to the increase of agricultural production, using the same areas previously available. The quality of products could ne improved with reduced costs. Therefore, knowledge of the chemical characteristics of the correctives used is required to streamline the application and avoid excesses or deficiencies. The studied characteristics are generally limited to the essential nutrients for the nutrition of plants and animals, e.g.: Mn, Zn, P, K, Cu and those known toxic, such as: As, Cd, Hg and Pb. Neutron activation analysis (NAA) is a highly sensitive non destructive technique, for the determination of the elemental composition in samples. It has been particularly useful in the simultaneous determination of inorganic elements in complex samples of several kinds. Several analysis methods for activation are used, such as: comparative and absolute. Commercial fertilizers were analyzed applying the absolute and comparative methods. Using the absolute method, samples were submitted to neutron flux generated by an irradiator with two Am Be sources. The obtained results were compared with those obtained by the comparative method using neutrons generated in the IEA-R1 Reactor. (author)

  10. Automatic scanning of NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At the European Laboratory for Particle Physics CERN, personal neutron monitoring for over 4000 collaborators is performed with Kodak NTA film, one of the few suitable dosemeters in the stray radiation environment of a high energy accelerator. After development, films are scanned with a projection microscope. To overcome this lengthy and strenuous procedure an automated analysis system for the dosemeters has been developed. General purpose image recognition software, tailored to the specific needs with a macro language, analyses the digitised microscope image. This paper reports on the successful automatic scanning of NTA films irradiated with neutrons from a /sup 238/Pu-Be source (E approximately=4 MeV), as well as on the extension of the method to neutrons of higher energies. The question of detection limits is discussed in the light of an application of the method in routine personal neutron monitoring. (9 refs).

  11. The continued development of the Spallation Neutron Source external antenna H- ion source

    International Nuclear Information System (INIS)

    Welton, R. F.; Carmichael, J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.; Desai, N. J.

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H - ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ∼100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ∼35 mA (beam current required by the ramp up plan) with availability of ∼97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.

  12. Thermal-Neutron-Induced Fission of U235, U233 and Pu239

    International Nuclear Information System (INIS)

    Thomas, T.D.; Gibson, W.M.; Safford, G.J.

    1965-01-01

    We have used solid-state detectors to measure the kinetic energies of the coincident fission fragments in the thermal-neutron-induced fission of U 235 , U 233 and Pu 239 . Special care has been taken to eliminate spurious-events near symmetry to give an accurate measure of such quantities as the average total kinetic energy at symmetry. For each fissioning system over 10 6 events were recorded. As a result the statistics are good enough to see definite evidence for fine structure over a wide range of masses and energies. The data have been analysed to give mass yield curves, average kinetic energies as a function of mass, and other quantities of interest. For each fissioning system the average total kinetic energy goes through a maximum for a heavy fragment mass of about 132 and for the corresponding light fragment mass. There is a pronounced minimum at symmetry, although not as deep as that found in time-of-flight experiments. The difference between the maximum average kinetic energy and that at symmetry is about 32 MeV for U 235 , 18 MeV for U 233 and 20 MeV for Pu 239 . The dispersion of kinetic energies at symmetry is also smaller than that found in time-of-flight experiments. Fine structure is apparent in two different representations of the data. The energy spectrum of heavy fragments in coincidence with light fragment energies is greater than the most probable value. This structure becomes more pronounced as the light fragment energy increases. The mass yield curves for a given total kinetic energy show a structure suggesting a preference for fission fragments with masses ∼134, ∼140 and ∼145 (and their light fragment partners). Much of the structure observed can be understood by considering a semi-empirical mass surface and a simple model for the nuclear configuration at the saddle point. (author) [fr

  13. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  14. Assembly-level analysis of heterogeneous Th–Pu PWR fuel

    International Nuclear Information System (INIS)

    Zainuddin, Nurjuanis Zara; Parks, Geoffrey T.; Shwageraus, Eugene

    2017-01-01

    Highlights: • We directly compare homogeneous and heterogeneous Th–Pu fuel. • Examine whether there is an increase in Pu incineration in the latter. • Homogeneous fuel was able to achieve much higher Pu incineration. • In the heterogeneous case, U-233 breeding is faster (larger power fraction), thus decreasing incineration of Pu. - Abstract: This study compares homogeneous and heterogeneous thorium–plutonium (Th–Pu) fuel assemblies (with high Pu content – 20 wt%), and examines whether there is an increase in Pu incineration in the latter. A seed-blanket configuration based on the Radkowsky thorium reactor concept is used for the heterogeneous assembly. This separates the thorium blanket from the uranium seed, or in this case a plutonium seed. The seed supplies neutrons to the subcritical thorium blanket which encourages the in situ breeding and burning of "2"3"3U, allowing the fuel to stay critical for longer, extending burnup of the fuel. While past work on Th–Pu seed-blanket units shows superior Pu incineration compared to conventional U–Pu mixed oxide fuel, there is no literature to date that directly compares the performance of homogeneous and heterogeneous Th–Pu assembly configurations. Use of exactly the same fuel loading for both configurations allows the effects of spatial separation to be fully understood. It was found that the homogeneous fuel with and without burnable poisons was able to achieve much higher Pu incinerations than the heterogeneous fuel configurations, while still attaining a reasonably high discharge burnup. This is because in the heterogeneous cases, "2"3"3U breeding is faster, thereby contributing to a much larger fraction of total power produced by the assembly. In contrast, "2"3"3U build-up is slower in the homogeneous case and therefore Pu burning is greater. This "2"3"3U begins to contribute a significant fraction of power produced only towards the end of life, thus extending criticality, allowing more Pu to

  15. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  16. New sources and instrumentation for neutrons in biology

    DEFF Research Database (Denmark)

    Teixeira, S. C. M.; Zaccai, G.; Ankner, J.

    2008-01-01

    Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed.......Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed....

  17. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  18. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  19. A transportable system for the determination of phosphorus in sheep bone by in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Whineray, S.; Thomas, B.J.; Ternouth, J.H.; Davies, H.M.S.

    1980-01-01

    An apparatus was constructed which measures the phosphorus in sheep leg bone, non-invasively, by neutron activation analysis. The results obtained show that with two 10 Ci isotopic neutron sources ( 241 Am/Be or 238 Pu/Be) and a single 7.5 x 7.5 cm NaI(Tl) detector, serial changes in leg bone phosphorus may be determined with a precision of 13% in 15 min of experimental time. This precision could be reduced to 5% by incorporating two large detectors into the system. (author)

  20. Application of the neutron irradiator with AmBe sources for inorganic elements in commercial fertilizers determination

    International Nuclear Information System (INIS)

    Madi Filho, Tufic; Armelin, Maria Jose Aguirre; Fulas, Paulo Marcelo Marangon; Figueira, Rubens Cesar Lopes; Trevizam, Anderson Ricardo

    2005-01-01

    The rational use of fertilizers, for the soil fertility correction, contributes to the increase of agricultural production, using the same areas previously available. The quality of products could be improved with reduced costs. Therefore, knowledge of the chemical characteristics of the correctives used is required to streamline the application and avoid excesses or deficiencies. The studied characteristics are generally limited to the essential nutrients for the nutrition of plants and animals, e.g.: Mn, Zn, P, K, Cu and those known toxic, such as: As, Cd, Hg and Pb. Neutron activation analysis (NAA) is a highly sensitive non destructive technique, for the determination of the elemental composition in samples. It has been particularly useful in the simultaneous determination of inorganic elements in complex samples of several kinds. Several analysis methods for activation are used, such as: comparative and absolute. Commercial fertilizers were analyzed applying the absolute and comparative methods. Using the absolute method, samples were submitted to neutron flux generated by an Irradiator with two AmBe sources. The obtained results were compared with those obtained by the comparative method using neutrons generated in the IEA-R1 Reactor. (author)

  1. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  2. Neutron powder diffraction at a pulsed neutron source: a study of resolution effects

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Hitterman, R.L.

    1985-11-01

    The General Purpose Powder Diffractometer (GPPD), a high resolution (Δd/d = 0.002) time-of-flight instrument, exhibits a resolution function that is almost independent of d-spacing. Some of the special properties of time-of-flight scattering data obtained at a pulsed neutron source will be discussed. A method is described that transforms wavelength dependent data, obtained at a pulsed neutron source, so that standard structural least-squares analyses can be applied. Several criteria are given to show when these techniques are useful in time-of-flight data analysis. 14 refs., 6 figs., 1 tab

  3. Evaluation and calculation of neutron transactinide cross-sections

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1980-01-01

    This paper reviews the state of the art of nuclear theory and its application to the evaluation and calculation of neutron reaction cross sections of transactinium isotopes. In particular, the paper describes the current evaluation of the total files of neutron reaction data for 240 Pu and 241 Pu in the energy range between 10 -5 eV and 15 MeV based on a thorough analysis of available experimental data and on the use of modern theoretical concepts, and the work in progress on the evaluation of the total neutron reaction data file for 242 Pu and 241 Am. (author)

  4. A Broad Coverage Neutron Source For Security Inspections

    Science.gov (United States)

    Yang, Yang; Robert, Stubbers; Linchun, Wu; George, Miley

    2004-05-01

    To meet the increasing demanding requirements for security safety inspections, a line-type neutron source employing a cylindrical IEC (RC-IEC) is proposed for non-destructive "in situ" security inspections. The advantages of such a neutron source include line geometry, modularity, swithcability, variable source strength, low cost with minimum maintenance. Detailed description of a 1/3 scale cylindrical device is presented, which might demonstrate that a reasonably long RC-IEC produces a stable discharge with reasonably uniform neutron production along the cylindrical axis. Aiming at the neutron production efficiency at the order of 106 n/J, several methods to maximize neutron production efficiency are discussed. The results of a two-dimensional computer code(MCP) using a Monte Carlo numerical approach for the RC-IEC device are presented together with an analysis of neutron yield vs. different operation parameters.

  5. International key comparison of measurements of neutron source emission rate (1999-2005): CCRI(III)-K9.AmBe

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, N.J.; Jones, L.N. [National Physical Laboratory (NPL), Teddington, (United Kingdom); Wang, Z.; Liu, Y.; Wang, Q.; Chen, X.; Luo, H.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing (China); Kralik, M. [Czech Metrology Institute (CMI), Praha, (Czech Republic); Park, H.; Choi, K.O. [Korea Research Institute of Standards and Science (KRISS), Daejeon, (Korea, Republic of); Pereira, W.W.; Da Fonseca, E.S. [National Laboratory of Metrology of Ionizing Radiation (LNMRI), Rio de Janeiro, (Brazil); Cassette, P. [Laboratoire National Henri Becquerel (LNE-LNHB), Paris, (France); Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg, MD, (United States); Moiseev, N.N.; Kharitonov, I.A. [D I Mendeleyev Institute for Metrology (VNIIM), St Petersburg, (Russian Federation)

    2011-07-01

    Section III (neutron measurements) of the Comite Consultatif des Rayonnements Ionisants, CCRI, conducted a key comparison of primary measurements of the neutron emission rate of an {sup 241}Am-Be({alpha},n) radionuclide source. A single {sup 241}Am-Be({alpha},n) source was circulated to all the participants between 1999 and 2005. Eight laboratories participated - the CIAE (China), CMI (Czech Republic), KRISS (Republic of Korea), LNMRI (Brazil), LNE-LNHB (France), NIST (USA), NPL (UK) and the VNIIM (Russian Federation) - with the NPL making their measurements at the start and repeating them near the end of the exercise to verify the stability of the source. Each laboratory reported the emission rate into 4{pi} sr together with a detailed uncertainty budget. All participants used the manganese bath technique, with the VNIIM also making measurements using an associated particle technique. The CMI, KRISS, VNIIM, and later the NPL, also measured the anisotropy of the source although this was not a formal part of the comparison. The first draft report was released in May 2006 and having been discussed and modified by the participants and subsequently reviewed by the CCRI(III), the present paper is now the final report of the comparison. (authors)

  6. Detection of fission signatures induced by a low-energy neutron source

    International Nuclear Information System (INIS)

    Ocherashvili, A.; Becka, A.; Mayorovb, V.; Roesgen, E.; Crochemoreb, J.-M.; Mosconi, M.; Pedersen, B.; Heger, C.

    2015-01-01

    We present a method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and applicable under field conditions. The method uses an external pulsed neutron source to induce fission in SNM and subsequent detection of the fast prompt fission neutrons. The detectors surrounding the container under investigation are liquid scintillation detectors able to distinguish gamma rays from fast neutrons by means of the pulse shape discrimination method (PSD). One advantage of these detectors, besides the ability for PSD analysis, is that the analogue signal from a detection event is of very short duration (typically few tens of nanoseconds). This allows the use of very short coincidence gates for the detection of the prompt fission neutrons in multiple detectors while benefiting from a low accidental (background) coincidence rate yielding a low detection limit. Another principle advantage of this method derives from the fact that the external neutron source is pulsed. By proper time gating the interrogation can be conducted by epithermal and thermal source neutrons only. These source neutrons do not appear in the fast neutron signal following the PSD analysis thus providing a fundamental method for separating the interrogating source neutrons from the sample response in form of fast fission neutrons. The paper describes laboratory tests with a configuration of eight detectors in the Pulsed Neutron Interrogation Test Assembly (PUNITA). The sensitivity of the coincidence signal to fissile mass is investigated for different sample configurations and interrogation regimes.

  7. Perturbation in the 240Pu/239Pu global fallout ratio in local sediment following the nuclear accidents at Thule (Greenland) and Palomares (Spain)

    International Nuclear Information System (INIS)

    Mitchell, P.I.; Vintro, L.L.; Gasco, C.; Sanchez-Cabeza, J.A.

    1995-01-01

    It is well established that the main source of the plutonium found in marine sediments throughout the Northern Hemisphere is global stratospheric fallout, characterized by a typical 240 Pu/ 239 Pu atom ratio of ∼0.18. Measurements of perturbations in this ratio at various sites which had been subjected to close-in fallout, mainly from surface-based testing, has confirmed the feasibility of using this ratio to distinguish plutonium from different fallout sources. In the present study, the 240 Pu/ 239 Pu ratio has been examined in samples of sediment collected at Thule (Greenland) and Palomares (Spain), where accidents involving the release and dispersion of plutonium from fractured nuclear weapons occurred in 1968 and 1966, respectively. The 240 Pu/ 239 Pu ratio was measured by high-resolution alpha spectrometry and spectral deconvolution. The analytical results showed that at Thule the mean 240 Pu/ 239 Pu atom ratio was 0.033±0.004, while at Palomares the equivalent ratio appeared to be significantly higher at 0.056±0.003. Both ratios are consistent with those reported for soils samples at the Nevada site and Nagasaki, and are clearly indicative of weapons-grade plutonium. 27 refs., 1 fig., 2 tabs

  8. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: jonathan_mueller@ncsu.edu; Mattingly, J.

    2016-07-21

    There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron–neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% {sup 239}Pu and 6% {sup 240}Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron–neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron–neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.

  9. Accelerating fissile material detection with a neutron source

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  10. Effective source size as related to 252Cf neutron radiography

    International Nuclear Information System (INIS)

    Wada, Nobuo; Enomoto, Shigemasa; Tachikawa, Noboru; Nojiri, Toshiaki.

    1977-01-01

    The effective source size in 252 Cf thermal neutron radiography, relating to its geometrical unsharpness in image formation, is experimentally studied. A neutron radiographic system consists of a 160 μg 252 Cf neutron source, water moderator and divergent cadmium lined collimator. Thermal neutron image detection is performed with using a LiF scintillator and a high speed X-ray film to employ direct exposure method. The modulation transfer function, used for describing image quality, is derived from radiographic image corresponding to a cadmium plate with sharp edge. The modulation transfer function for the system is expressed by the product of the function for both geometrical and inherent unsharpness, and allows isolation of geometrical unsharpness as related to the effective size of the thermal neutron source. It is found to be 80 -- 90% of the collimator inlet diameter. (auth.)

  11. Study of neutron moderation using the {sup 241}Am-Be spectrum with hydrogenated materials; Estudo da moderacao de neutrons utilizando o espectro de {sup 241}Am-Be com materiais hidrogenados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.R.L.; Silva, F.S.; Martins, M.M.; Pereira, W.W., E-mail: aleiras@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI/LN), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons; Freitas, B.M. [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Tavares, D.Y.S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This work intends to assess materials for moderation of neutrons, trying to reduce the rate of H{sub p}(10) and H⁎p(10), reducing the effective dose of Occupationally Exposed Workers (OEW) who handle this source daily. The neutron spectra moderated by different materials was performed with a neutron source of {sup 241}Am-Be in an electronic positioning system, using a neutron spectrometry with Bonner Sphere at 50 cm from the center of source. The materials used for moderation were paraffin, silicone and Polyvinyl Chloride (PVC) resin ball. (author)

  12. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    2008-06-01

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  13. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  14. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  15. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  16. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  17. Neutron generator ion source pulser

    International Nuclear Information System (INIS)

    Peelman, H.E.

    1987-01-01

    This patent describes, for use with a pulsed neutron generator in a logging tool lowered in a borehole, a pulsed high voltage source having an output terminal adapted to be connected to pulse neutron generator. The power supply comprises: (a) high voltage supply means; (b) field effect transistor means comprising at least a pair of field effect transistors serially connected between the high voltage supply means and ground; (c) an output terminal between the two transistors of the field effect transistor means, the output terminal adapted to be connected by a conductor to provide pulsed high voltage to a neutron generator; (d) control pulse forming means connected to the gates of the respective two transistors, the pulse forming means forming control pulses selectively switching the transistors off and on in timed sequence to thereby connect the output terminal to the high voltage supply means, and (e) diode means connected to the gates of the transistors to limit gate voltage for operation of the transistors

  18. Analysis of the neutron generation from a D-Li neutron source

    International Nuclear Information System (INIS)

    Gomes, I.

    1994-02-01

    The study of the neutron generation from the D-Li reaction is an important issue to define the optimum combination of the intervening parameters during the design phase of a D-Li neutron source irradiation facility. The major players in defining the neutron yield from the D-Li reaction are the deuteron incident energy and the beam current, provided that the lithium target is thick enough to stop all incident deuterons. The incident deuteron energy also plays a role on the angular distribution of the generated neutrons, on the energy distribution of the generated neutrons, and on the maximum possible energy of the neutrons. The D-Li reaction produces neutrons with energies ranging from eV's to several MeV's. The angular distribution of these neutrons is dependent on the energy of both, incident deuterons and generated neutrons. The deuterons lose energy interacting with the lithium target material in such a way that the energy of the deuterons inside the lithium target varies from the incident deuteron energy to essentially zero. The first part of this study focuses in analyzing the neutron generation rate from the D-Li reaction as a function of the intervening parameters, in defining the source term, in terms of the energy and angular distributions of the generated neutrons, and finally in providing some insights of the impact of varying input parameters on the generation rate and correlated distributions. In the second part an analytical description of the Monte Carlo sampling procedure of the neutron from the D-Li reaction is provided with the aim at further Monte Carlo transport of the D-Li neutrons

  19. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  20. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  1. Review of fission product yields and delayed neutron data for the actinides NP-237, PU-242, AM-242M, AM-243, CM-243 and CM-245

    International Nuclear Information System (INIS)

    Mills, R.W.

    1990-07-01

    A review of fission product yields and delayed neutron data for Np-237, Pu-242, Am-242m, Am-243, Cm-243 and Cm-245 has been undertaken. Gaps in understanding and inconsistencies in existing data were identified and priority areas for further experimental, theoretical and evaluation investigation detailed

  2. Determination of 239Pu/240Pu isotopic ratio by high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Amoudry, F.; Burger, P.

    1983-05-01

    The development of passivated ion-implanted silicon detectors and of very thin alpha-particle sources improves the resolution of alpha-particle spectra and allows to separate energy pics up to now unseparate. The 239 Pu/ 240 Pu isotopic ratio of a mixture has been measured using the alpha spectrometry deconvolution code DEMO [fr

  3. Identification of Nilsson orbitals in the superdeformed minimum of 237Pu

    International Nuclear Information System (INIS)

    Morgan, Thomas James

    2008-01-01

    In this thesis, a spectroscopy experiment in the second minimum of the double humped fission barrier of 237 Pu is presented, in which, for the first time, single - particle states for a neutron - rich shape isomer with odd neutron number were identified and characterised by their Nilsson quantum numbers. While rotational ( 236f U and 240f Pu) and vibrational excitations ( 240f Pu) had already been identified earlier in the even-even neighbouring nuclei, now the fission isomers in 237 Pu (t 1/2 =115 ns/1.12 μs) were investigated in a γ-spectroscopy experiment at the Cologne Tandem accelerator. Using the 235 U(α,2n) reaction with a pulsed R beam, states in the second minimum were populated. Following the prompt decay of excited states into the ground states of the two shape isomers, the nucleus decays with its halflife, the resulting fission fragments were detected in a specially built 4π parallel plate detector. The extremely rare isomeric γ decays were measured in coincidence with the fission fragments using the highly efficient MINIBALL spectrometer. The background-subtracted γ-ray spectrum was disentangled into contributions from the two shape isomers and 9 excited rotational bands were identified built on the ground states of the two isomers. The ground state spins of the two shape isomers were determined to be I=5/2 (115 ns isomer) and I=9/2 (1120 ns isomer). From the 149 identified γ transitions, independent level schemes were constructed for the two fission isomers in 237 Pu. The consistency of these level schemes was supported by the connecting γ transitions between rotational bands. Furthermore, both level schemes could be combined to a common level scheme, in which the ground state of the long-lived 9/2 isomer was placed 54.0(3) keV above the ground state of the short-lived 5/2 isomer. The resulting level scheme was compared to Hartree-Fock-Bogolyubov single-particle calculations, Nilsson model and Woods-Saxon potential calculations. This

  4. Adsorption of Pu(IV) Polymer onto 304L Stainless Steel

    International Nuclear Information System (INIS)

    Bronikowski, M.G.

    1999-01-01

    'The report, Technical Basis for Safe Operations with Pu-239 Polymer in NMS and S Operating Facilities (F and H Areas), (WSRC-TR-99-00008) was issued in an effort to upgrade the Authorization Basis (AB) for H Area facilities relative to nuclear criticality. At the time, insufficient data were found in the literature to quantify the adsorption of Pu polymer onto the surfaces of stainless steel tanks. Additional experimental or literature information on the adsorption of Pu(IV) polymer and its removal was deemed necessary to support the H Area AB. The results obtained are also applicable to processing in F Area facilities.Additional literature sources suggest that adsorption on the tank walls should not be a safety concern. The sources show that the amount of Pu polymer that adsorbs from a solution comes to a limiting amount in 5 to 7 days after which no additional Pu is adsorbed. Adsorption increases with Pu concentration and decreases with acid concentration. The adsorbed amounts are small varying from 0.5 mg/cm2 for a 0.5 g/l Pu / 0.5M HNO3 solution to 11 mg/cm2 for a 1-3 g/l Pu / 0.1M HNO3 solution. Additionally, acid concentrations greater than 0.1M will remove a percentage of adsorbed Pu.The experimental results have generally confirmed much of what has been reported in the literature. Specifically, adsorption onto stainless steel was found to increase with increased Pu concentration, and decreased acid concentration. The amount adsorbed was found to come to a limiting amount after 5 to 7 days. Pu adsorbed as polymer was found to be harder to remove than if it was adsorbed as Pu(IV). The amount of Pu adsorbed as polymer was found to be almost an order of magnitude more than that from a similar concentration Pu(IV) solution. Unlike the literature, only a slight increase in adsorption values was found when the steel surface was removed, dried, and replaced in the Pu solution. The amount of Pu as polymer which would adsorb onto the surface of a 14,000L tank was

  5. Fission neutron spectra measurements at LANSCE - status and plans

    International Nuclear Information System (INIS)

    Haight, Robert C.; Noda, Shusaku; Nelson, Ronald O.; O' Donnell, John M.; Devlin, Matt; Chatillon, Audrey; Granier, Thierry; Taieb, Julien; Laurent, Benoit; Belier, Gilbert; Becker, John A.; Wu, Ching-Yen

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of 235 U, 238 U, 237 Np and 239 Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  6. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  7. Liquid Li based neutron source for BNCT and science application

    International Nuclear Information System (INIS)

    Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S.

    2015-01-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of "7Li(p,n)"7Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. - Highlights: • Liquid lithium (Li) is a candidate material for a target of intense neutron source. • An accelerator based neutron source with p-liquid Li target for boron neutron capture therapy is under development in Osaka University, Japan. • In our system, the harmful radiation dose due to rays and fast neutrons will be suppressed very low. • The system performance are very promising as a state of art cancer treatment system. • The project is planned as a joint undertaking between industries and Osaka University.

  8. Digital pulse shape discrimination between fast neutrons and gamma rays with para-terphenyl scintillator

    Science.gov (United States)

    Chepurnov, A. S.; Kirsanov, M. A.; Klenin, A. A.; Klimanov, S. G.; Kubankin, A. S.

    2017-12-01

    In the presented work, we investigated several digital methods of a discrimination signals from fast neutrons and gamma quanta. The experimental setup consists of a Pu-Be neutron source, a scintillation detector with an organic para-terphenyl monocrystal, and a digitizer (CAEN DT5730, 500 MS/s). Mixed waveform sequences were stored and then separated by pulse shape. Four methods were used for signals separation. Comparison of the traditional and the new methods of Figure of Merit (FOM) calculation is given. FOM = 1.5 was obtained in our setup for the minimum threshold value. A scintillation detector with a para-terphenyl crystal was used to measure neutron yield in the neutron generator with carbon nanotubes.

  9. Coded moderator approach for fast neutron source detection and localization at standoff

    Energy Technology Data Exchange (ETDEWEB)

    Littell, Jennifer [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Institute for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, TN 37996 (United States); Hayward, Jason; Milburn, Robert; Rowan, Allen [Department of Nuclear Engineering, University of Tennessee, 305 Pasqua Engineering Building, Knoxville, TN 37996 (United States)

    2015-06-01

    Considering the need for directional sensing at standoff for some security applications and scenarios where a neutron source may be shielded by high Z material that nearly eliminates the source gamma flux, this work focuses on investigating the feasibility of using thermal neutron sensitive boron straw detectors for fast neutron source detection and localization. We utilized MCNPX simulations to demonstrate that, through surrounding the boron straw detectors by a HDPE coded moderator, a source-detector orientation-specific response enables potential 1D source localization in a high neutron detection efficiency design. An initial test algorithm has been developed in order to confirm the viability of this detector system's localization capabilities which resulted in identification of a 1 MeV neutron source with a strength equivalent to 8 kg WGPu at 50 m standoff within ±11°.

  10. Production, Distribution, and Applications of Californium-252 Neutron Sources

    International Nuclear Information System (INIS)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-01-01

    The radioisotope 252 Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10 11 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252 Cf to commercial reencapsulators domestically and internationally. Sealed 252 Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252 Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations

  11. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  12. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  13. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  14. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  15. Study of the variation with the energy of the fission cross-sections of 233U, 235U, 239Pu for the fast neutrons

    International Nuclear Information System (INIS)

    Szteinsznaider, D.; Naggiar, V.; Netter, F.

    1955-01-01

    This measurements have been done while taking the value of the fission cross-sections of 238 U as reference. The neutrons are produced by the reaction 7 Li(p,n) in the Van de Graaff generator of Saclay. The explored domain spreads from some tenths to 2000 keV. We find: for 239 Pu: σ f = 2,04 ± 0,12 barns, cross-section constant between 150 and 2000 keV, for 235 U: σ f = 1,15 ± 0,15 barns, cross-section constant between 700 and 1000 keV, for 233 U: σ f = 1,92 ± 0,25 barns, for neutrons of 850 keV. (authors) [fr

  16. Overview of advanced technologies for stabilization of 238Pu-contaminated waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed 238 PuO 2 fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of 238 Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes 238 Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239 Pu ), makes disposal of 238 Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all 238 Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from 238 Pu-contaminated waste and recover kilogram quantities of 238 PuO 2 from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented

  17. Electronic structure of α- and δ-Pu from photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A. J.; Joyce, J. J.; Morales, L.; Wills, J.; Lashley, J.; Wastin, F.; Rebizant, J.

    2000-01-01

    We report photoemission results on α- and δ-Pu using a laser plasma light source (LPLS) as well as He light as the exciting radiation. The LPLS is a pseudocontinuum tunable light source with intensities rivaling some second-generation synchrotrons. Both phases of Pu display a narrow, temperature-independent, 5f-related feature at the Fermi energy, which is narrower in δ-Pu than in α-Pu, suggestive of possible heavy-fermion-like behavior. In both α-Pu and δ-Pu the photon-energy dependence of this feature suggests some 6d admixture, albeit somewhat smaller in δ-Pu. In this respect it differs qualitatively from Ce and U heavy fermions. (c) 2000 The American Physical Society

  18. Neutron-based techniques for detection of explosives and drugs

    International Nuclear Information System (INIS)

    Kiraly, B.; Olah, L.; Csikai, G.J.

    2000-01-01

    Neutron reflection, scattering and transmission methods combined with the detection of characteristic gamma rays have an increasing role in the identification of hidden explosives, illicit drugs and other contraband materials. There are about 100 million land mines buried in some 70 countries. Among the abandoned anti-personnel land mines (APL) certain types have low mass (about 100 g) and contain little or no metal. Therefore, these plastic APL cannot be detected by the usual metal detectors. The IAEA Physics Section has organized a CRP in 1999 for the development of novel methods in order to speed up the removing process of APL. The transportation of illicit drugs has shown an increasing trend during the last decade. Developments of fast, non-destructive interrogation methods are required for the inspection of cargo containers, trucks and airline baggage. The major constituents of plastic APL and drugs are H, C, N and O which can be identified by the different neutron interactions. The atom fractions of these elements, in particular the C/O, C/N and C/H ratios, are quite different for drugs and explosives as compared to other materials used to hide them. Recently, we have carried out systematic measurements and calculations on the neutron fields from the 9 Be(d,n), 2 H(d,n), 252 Cf and Pu-Be sources passing through different bulky samples, on the possible use of elastically backscattered Pu-Be neutrons in elemental analysis and on the advantages and limitations of the thermal neutron reflection method in the identification of land mines and illicit drugs. The measured spectral shapes of neutrons were compared with the calculated results using the MCNP-4A and MCNP-4B codes. (author)

  19. Measurement of radiation skyshine with D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  20. Chemical speciation of Pu in natural waters

    International Nuclear Information System (INIS)

    Nelson, D.M.; Larsen, R.P.; Penrose, W.R.

    1983-01-01

    The behavior of plutonium in natural waters is determined to a major degree by the chemical forms which are present. We have characterized the ambient Pu in a number of surface waters with regard to its oxidation state and association with natural colloidal organic carbon compounds using a combination of field measurements and laboratory experiments. Both of these factors are shown to have a profound effect on the adsorption of Pu to natural sediments, since both complexation with organic matter and oxidation compete with adsorption. The concentration of organic carbon in the water is the key variable influencing both oxidation state and organic binding. The adsorption process conforms to the laws applicable to a reversible equilibrium with values of the distribution coefficient, K/sub D/, measured in laboratory experiments being similar to those observed for ambient Pu. Experiments using natural waters and sediments in which the Pu concentration was varied show the forms present at typical ambient concentrations (10 -17 - 10 -14 M) are the same as those found at concentrations up to 10 -7 M. Moreover, the affinity for sediments did not change with concentration indicating the binding sites for Pu had not become saturated. Thus, the behavior observed for Pu at ultratrace concentrations should remain unchanged throughout this concentration range. The studies in this report all deal with Pu in exchangeable (and hence source independent) forms and should therefore reflect the behavior toward which the plutonium from any source will tend with time. 13 references, 7 figures, 10 tables

  1. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)

  2. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    Science.gov (United States)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is  ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within  ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in

  3. A Proposal for a Next Generation European Neutron Source

    International Nuclear Information System (INIS)

    Andersen, K.H.; Carlile, C.J.

    2016-01-01

    We argue that it is not too early to begin the planning process for a next generation neutron source for Europe, even as the European Spallation Source is being constructed. We put forward three main arguments. Firstly, nowadays the period between the first scientific concept of a new facility being proposed and its actual realisation is approaching half a century. We show evidence for this. Secondly, there is a straightforward development of the short pulse/long pulse spallation concepts that will deliver gains in neutron brightness of more than a factor 30 over what the ESS will soon deliver and provide the optimum balance between resolution and intensity. We describe our concept, which is a spallation source where the proton pulse length is matched to the moderating time of slow neutrons. Thirdly, when we look at our colleagues in astronomy and high energy physics, we see that they have a totally different, more global and more ambitious approach to the coming generations of large facilities. We argue that it is time for the neutron community not simply to rest upon its laurels and take what is given but to be proactive.. (paper)