WorldWideScience

Sample records for pu-238 pu-239 pu-240

  1. Pu-239 and Pu-240 inventories and Pu-240/ Pu-239 atom ratios in the water column off Sanriku, Japan.

    Science.gov (United States)

    Yamada, Masatoshi; Zheng, Jian; Aono, Tatsuo

    2013-04-01

    A magnitude 9.0 earthquake and subsequent tsunami occurred in the Pacific Ocean off northern Honshu, Japan, on 11 March 2011 which caused severe damage to the Fukushima Dai-ichi Nuclear Power Plant. This accident has resulted in a substantial release of radioactive materials to the atmosphere and ocean, and has caused extensive contamination of the environment. However, no information is available on the amounts of radionuclides such as Pu isotopes released into the ocean at this time. Investigating the background baseline concentration and atom ratio of Pu isotopes in seawater is important for assessment of the possible contamination in the marine environment. Pu-239 (half-life: 24,100 years), Pu-240 (half-life: 6,560 years) and Pu-241 (half-life: 14.325 years) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-239 and Pu-240 inventories and Pu-240/Pu-239 atom ratios in seawater samples collected in the western North Pacific off Sanriku before the accident at Fukushima Dai-ichi Nuclear Power Plant will provide useful background baseline data for understanding the process controlling Pu transport and for distinguishing additional Pu sources. Seawater samples were collected with acoustically triggered quadruple PVC sampling bottles during the KH-98-3 cruise of the R/V Hakuho-Maru. The Pu-240/Pu-239 atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. The Pu-239 and Pu-240 concentrations were 2.07 and 1.67 mBq/m3 in the surface water, respectively, and increased with depth; a subsurface maximum was identified at 750 m depth, and the concentrations decreased with depth, then increased at the bottom layer. The total Pu-239+240 inventory in the entire water column (depth interval 0

  2. Improved MOX fuel calculations using new Pu-239, Am-241 and Pu-240 evaluations

    Science.gov (United States)

    Noguere, G.; Bouland, O.; Bernard, D.; Leconte, P.; Blaise, P.; Peneliau, Y.; Vidal, J. F.; De Saint Jean, C.; Leal, L.; Schillebeeckx, P.; Kopecky, S.; Lampoudis, C.

    2013-03-01

    Several studies based on the JEFF-3.1.1 nuclear data library show a systematic overestimation of the critical keff for core configurations of MOX fuel assemblies. The present work investigates possible improvements of the C/E results by using new evaluations for Am-241, Pu-239 and Pu-240.

  3. Improved MOX fuel calculations using new Pu-239, Am-241 and Pu-240 evaluations

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available Several studies based on the JEFF-3.1.1 nuclear data library show a systematic overestimation of the critical keff for core configurations of MOX fuel assemblies. The present work investigates possible improvements of the C/E results by using new evaluations for Am-241, Pu-239 and Pu-240.

  4. Determination of Pu-238 and Pu-239+240 in marine sediment samples of southern brazilian coast; Determinacao de Pu-238 e Pu-239+240 em amostras de sedimento marinho da costa sul brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Figueira, Rubens C.L.; Cunha, Ieda Irma Lamas [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: figueira@curiango.ipen.br; Furtado, Valdenir V.; Tessler, Moyses G. [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico

    2000-07-01

    This work presents Pu-238 and Pu-239+240 levels from southern brazilian coast, in the region between Cabo de Santa Marta Grande (SC) and Cabo Frio (RJ), involving the seaside to external continental shelf. Pu-238 and Pu-239+240 levels in this region ranged from 15 to 150 mBq.kg{sup -1} and from 18.2 to 228 mBq.kg{sup -1}, respectively. The values are in agreement with the established range for south hemisphere as a result of the atmospheric fallout. The methodology for plutonium determination reached 30% to 75% as yield recovery and 4.2 mBq.kg{sup -1} as minimum detectable concentration (MDC). Thus the methodology is applicable to environmental samples analysis at low levels of the studied radionuclides. (author)

  5. Feasibility study of U-235, Pu-239 and Pu-240 content determination in an irradiated fuel by neutron transmission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Michaiel, M.L.; Morcos, H.N

    1998-07-01

    A proposed nondestructive method and its feasibility for the determination of U-235, Pu-239 and Pu-240 contents in an irradiated fuel is described. The method is based on the use of shape fit analysis of the Time-Of-Flight (TOF) neutron transmission data of the irradiated fuel for neutron energies below 3 eV. The neutron transmission experiment of the irradiated fuel is planned to carry out using one of the TOF spectrometers installed at ET-RR-1 reactor. The computer code SHAPE is adapted taking into account the known parameters of resonances of certain fissile and fission product nuclei to provide the fit analysis. The content of the gross-fissile and fission product isotopes are determined from the burn-up calculations of the fuel assembly of the ET-RR-1 reactor with defined history. The effect of both uncertainties in resonance parameters on the deduced contents of fissile nuclei and statistical accuracy of the TOF measurements are estimated.

  6. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    Science.gov (United States)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  7. Vertical distributions of radionuclides ((239+240)Pu, (240)Pu/(239)Pu, and (137)Cs) in sediment cores of Lake Bosten in Northwestern China.

    Science.gov (United States)

    Liao, Haiqing; Bu, Wenting; Zheng, Jian; Wu, Fengchang; Yamada, Masatoshi

    2014-04-01

    Artificial radionuclides ((137)Cs, (239+240)Pu, (241)Pu, (241)Am) deposited in lacustrine sediments have been used for dating as well as radionuclide source identification. In the present work, we investigated the vertical distributions of (239+240)Pu and (137)Cs activities, (240)Pu/(239)Pu atom ratios, and (239+240)Pu/(137)Cs activity ratios in sediment cores collected from Lake Bosten, which is the lake closest to the Lop Nor Chinese Nuclear Weapon Test site in northwestern China. Uniformly high concentrations of (239+240)Pu and (137)Cs were found in the upper layers deposited since 1964 in the sediment cores, and these were controlled by the resuspension of soil containing radionuclides from the nearby land surface. As the Chinese nuclear tests varied remarkably in yield, the mixing of the tropospheric deposition from these tests and the stratospheric deposition of global fallout has led to a (240)Pu/(239)Pu atom ratio that is similar to that of global fallout and to a (239+240)Pu/(137)Cs activity ratio that is slightly higher than that of global fallout. However, a low (240)Pu/(239)Pu atom ratio of 0.080 and high (239+240)Pu/(137)Cs activity ratio of 0.087, significantly different from the global fallout values, were observed in one sediment core (07BS10-2), indicating the inhomogenous tropospheric deposition from the Chinese nuclear tests in Lake Bosten during 1967-1973. These results are important to understand the influence of the CNTs on the radionuclide contamination in Lake Bosten.

  8. Analysis of plutonium isotope ratios including (238)Pu/(239)Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    Science.gov (United States)

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as (238)U with (238)Pu and (241)Am with (241)Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu, and (242)Pu/(239)Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the (240)Pu/(239)Pu, (241)Pu/(239)Pu, and (242)Pu/(239)Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, (238)Pu/(239)Pu isotope ratios were able to be calculated by using both the (238)Pu/((239)Pu+(240)Pu) activity ratios that had been measured through alpha spectrometry and the (240)Pu/(239)Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including (238)Pu/(239)Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Economical Production of Pu-238

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Howe; Douglas Crawford; Jorge Navarro; Terry Ring

    2013-02-01

    All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238. The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100 M to get to production levels. The Center for Space Nuclear Research has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. The new process will also produce dramatically less waste. Potentially, the front end costs could be provided by private industry such that the government only had to pay for the product produced. Under a NASA Phase I NIAC grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce at least 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. In addition, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.

  10. Environmental aspects of the transuranics: a selected, annotated bibliography. [Pu-238, Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Martin, F.M.; Fore, C.S. (comps.)

    1977-03-01

    This eighth published bibliography of 427 references is compiled from the Nevada Applied Ecology Information Center's Data Base on the Environmental Aspects of the Transuranics. The data base was built to provide information support to the Nevada Applied Ecology Group (NAEG) of ERDA's Nevada Operations Office. The general scope covers environmental aspects of uranium and the transuranic elements, with emphasis on plutonium. This bibliography highlights literature on plutonium 238 and 239 and americium in the critical organs of man and animals. Supporting information on ecology of the Nevada Test Site and reviews and summarizing literature on other radionuclides have been included at the request of the NAEG. The references are arranged by subject category with leading authors appearing alphabetically in each category. Indexes are provided for author(s), geographic location, keyword(s), taxon, title, and publication description.

  11. Superdeformed rotational bands in Pu-240

    NARCIS (Netherlands)

    Hunyadi, M; Gassmann, D; Krasznahorkay, A; Habs, D; Csatlos, M; Eisermann, Y; Faestermann, T; Graw, G; Gulyas, J; Hertenberger, R; Maier, HJ; Mate, Z; Metz, A; Thirolf, P; Chromik, M; van der Werf, SY

    The intermediate structure of the fission resonances has been observed in Pu-240. A resonance structure found around the excitation energy of 4.5 MeV was interpreted as a group of K-pi = 0(+) superdeformed rotational bands. The moments of inertia and level density distributions were also deduced for

  12. Economical Production of Pu-238: NIAC Phase I Final Report

    Science.gov (United States)

    Howe, Steven D.; Crawford, Douglas; Navarro, Jorge; O'Brien, Robert C.; Katalenich, Jeff; Ring, Terry

    2016-01-01

    All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238 (Pu-238). The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100M to get to production levels. The Center for Space Nuclear Research (CSNR) has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. Potentially, the front end capital costs could be provided by private industry such that the government only had to pay for the product produced. In the Phase I NIAC (NASA Innovative Advanced Concepts) grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. Finally, as the study progressed, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.

  13. Pu-238 assay performance with the Canberra IQ3 system

    Energy Technology Data Exchange (ETDEWEB)

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  14. Pu236(n,f), Pu237(n,f), and Pu238(n,f) cross sections deduced from (p,t), (p,d), and (p,p') surrogate reactions

    Science.gov (United States)

    Hughes, R. O.; Beausang, C. W.; Ross, T. J.; Burke, J. T.; Casperson, R. J.; Cooper, N.; Escher, J. E.; Gell, K.; Good, E.; Humby, P.; McCleskey, M.; Saastimoinen, A.; Tarlow, T. D.; Thompson, I. J.

    2014-07-01

    The Pu236(n,f), Pu237(n,f) and Pu238(n,f) cross sections have been inferred by utilizing the surrogate ratio method. Targets of Pu239 and U235 were bombarded with 28.5-MeV protons, and the light ion recoils, as well as fission fragments, were detected using the STARS detector array at the K150 Cyclotron at the Texas A&M cyclotron facility. The (p, tf) reaction on Pu239 and U235 targets was used to deduce the σ (Pu236(n ,f))/σ(U232(n,f)) ratio, and the Pu236(n,f) cross section was subsequently determined for En=0.5-7.5 MeV. Similarly, the (p,df) reaction on the same two targets was used to deduce the σ(Pu237(n ,f))/σ(U233(n,f)) ratio, and the Pu237(n,f) cross section was extracted in the energy range En=0.5-7 MeV. The Pu238(n,f) cross section was also deduced by utilizing the (p,p') reaction channel on the same targets. There is good agreement with the recent ENDF/B-VII.1 evaluated cross section data for Pu238(n,f) in the range En=0.5-10.5 MeV and for Pu237(n,f) in the range En=0.5-7 MeV; however, the Pu236(n,f) cross section deduced in the present work is higher than the evaluation between 2 and 7 MeV.

  15. U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris

    DEFF Research Database (Denmark)

    Eriksson, Mats; Lindahl, Patric; Roos, Per

    2008-01-01

    ). In the five hot particles examined, the measured uranium atomic ratio was U-235/U-238 = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: Pu-240/Pu-239 0.0551 +/- 0.0008 (atom ratio), Pu-238/Pu239+240 = 0.0161 +/- 0.0005 (activity ratio), Pu-241/Pu239+240 = 0.87 +/- 0.12 (activity ratio), and Am-241...... than one Pu source involved in the accident, confirming earlier studies. The Pu-238/Pu239+240 activity ratio and the Pu-240/Pu-239 atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described...... above and for the other groups the Pu isotopic ratios were lower (Pu-238/Pu239+240 activity ratio similar to 0.01 and the Pu-240/Pu-239 atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We...

  16. Plutonium isotopes 238Pu, 239+240Pu, 241Pu and 240Pu/239Pu atomic ratios in the southern Baltic Sea ecosystem

    Directory of Open Access Journals (Sweden)

    Dagmara I. Strumińska-Parulska

    2010-09-01

    Full Text Available The paper summarizes the results of plutonium findings in atmospheric fallout samples and marine samples from the southern Baltic Sea during our research in 1986-2007. The activities of 238Pu and 239+240Pu isotopes were measured with an alpha spectrometer. The activities of 241Pu were calculated indirectly by 241Am activity measurements 16-18 years after the Chernobyl accident. The 240Pu/239Pu atomic ratios were measured using accelerator mass spectrometry (AMS. The 241Pu activities indicate that the main impact of the Chernobyl accident was on the plutonium concentration in the components of the Baltic Sea ecosystem examined in this work. The highest 241Pu/239+240Pu activity ratio was found in sea water (140 ± 33. The AMS measurements of atmospheric fallout samples collected during 1986 showed a significant increase in the 240Pu/239Pu atomic ratio from 0.29 ± 0.04 in March 1986 to 0.47 ± 0.02 in April 1986.

  17. Estimates for Pu-239 loadings in burial ground culverts based on fast/slow neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.; Hochel, R.C.; Hofstetter, K.J.; Sigg, R.A.

    1989-08-15

    This report provides guideline estimates for Pu-239 mass loadings in selected burial ground culverts. The relatively high recorded Pu-239 contents of these culverts have been appraised as suspect relative to criticality concerns, because they were assayed only with the solid waste monitor (SWM) per gamma-ray counting. After 1985, subsequent waste was also assayed with the neutron coincidence counter (NCC), and a comparison of the assay methods showed that the NCC generally yielded higher assays than the SWM. These higher NCC readings signaled a need to conduct non-destructive/non-intrusive nuclear interrogations of these culverts, and a technical team conducted scoping measurements to illustrate potential assay methods based on neutron and/or gamma counting. A fast/slow neutron method has been developed to estimate the Pu-239 in the culverts. In addition, loading records include the SWM assays of all Pu-239 cuts of some of the culvert drums and these data are useful in estimating the corresponding NCC drum assays from NCC vs SWM data. Together, these methods yield predictions based on direct measurements and statistical inference.

  18. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    CERN Document Server

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  19. Sediment budget for Murder Creek, Georgia, USA, from Pu239+240 - determined soil erosion rates

    Science.gov (United States)

    Stubblefield, A. P.; Matissoff, G.; Ketterer, M. E.; Whiting, P. J.

    2005-12-01

    Soil inventories of the radionuclides Cs137 and Pb210 have been used in a variety of environments as indicators for erosion and depositional processes. Development of sediment budgets for entire watersheds from radionuclide data has been somewhat constrained because limited sample numbers may not adequately characterize the wide range of geomorphic conditions and land uses found in heterogeneous environments. The measurement of Pu239+240 shows great potential for developing quantitative watershed sediment budgets. With inductively-coupled plasma mass spectrometry, hundreds of samples may be processed in dramatically shorter times than the gamma spectrometry method used for Cs137 or alpha spectrometry method used for Pb210. We collected surface soil samples from Murder Creek in the Piedmont region of Georgia, USA, to compare Pu239+240 inventories with Cs137 and Pb210 inventories for a range of land uses in a predominantly forested watershed. Excellent correlations were found for radionuclide inventories (r2 =0.88, n = 38) and high resolution (4 mm) depth profiles. The second objective was to generate a sediment budget using the full Pu239+240 dataset (n = 309). Average Pu239+240 inventories were 70.0 Bq/m2 for hardwood forest, 60.0 Bq/m2 for pine plantation, 65.1 Bq/m2 for pine forest, 66.7 Bq/m2 for row crop agriculture and 67.9 Bq/m2 for pasture. The sediment budget will be constructed by converting inventories into site-specific erosion rates. Erosion rates will be scaled up to the watershed scale using GIS coverages of land use, soil, slope, and slope position. Results will be compared with Murder Creek sediment budgets in the scientific literature generated from RUSLE erosion modeling, USGS monitoring networks and reservoir sedimentation.

  20. Pu-239 organ specific dosimetric model applied to non-human biota

    Science.gov (United States)

    Kaspar, Matthew Jason

    There are few locations throughout the world, like the Maralinga nuclear test site located in south western Australia, where sufficient plutonium contaminate concentration levels exist that they can be utilized for studies of the long-term radionuclide accumulation in non-human biota. The information obtained will be useful for the potential human users of the site while also keeping with international efforts to better understand doses to non-human biota. In particular, this study focuses primarily on a rabbit sample set collected from the population located within the site. Our approach is intended to employ the same dose and dose rate methods selected by the International Commission on Radiological Protection and adapted by the scientific community for similar research questions. These models rely on a series of simplifying assumptions on biota and their geometry; in particular; organisms are treated as spherical and ellipsoidal representations displaying the animal mass and volume. These simplifications assume homogeneity of all animal tissues. In collaborative efforts between Colorado State University and the Australian Nuclear Science and Technology Organisation (ANSTO), we are expanding current knowledge on radionuclide accumulation in specific organs causing organ-specific dose rates, such as Pu-239 accumulating in bone, liver, and lungs. Organ-specific dose models have been developed for humans; however, little has been developed for the dose assessment to biota, in particular rabbits. This study will determine if it is scientifically valid to use standard software, in particular ERICA Tool, as a means to determine organ-specific dosimetry due to Pu-239 accumulation in organs. ERICA Tool is normally applied to whole organisms as a means to determine radiological risk to whole ecosystems. We will focus on the aquatic model within ERICA Tool, as animal organs, like aquatic organisms, can be assumed to lie within an infinite uniform medium. This model would

  1. An evaluation of alternate production methods for Pu-238 general purpose heat source pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mark Borland; Steve Frank

    2009-06-01

    For the past half century, the National Aeronautics and Space Administration (NASA) has used Radioisotope Thermoelectric Generators (RTG) to power deep space satellites. Fabricating heat sources for RTGs, specifically General Purpose Heat Sources (GPHSs), has remained essentially unchanged since their development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the applicable fields of chemistry, manufacturing and control systems. This paper evaluates alternative processes that could be used to produce Pu 238 fueled heat sources. Specifically, this paper discusses the production of the plutonium-oxide granules, which are the input stream to the ceramic pressing and sintering processes. Alternate chemical processes are compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product.

  2. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    2008-06-01

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  3. Determination of Pu-238 Abundance in a Plutonium Standard by an Advanced Thermal Ionization Mass Spectrometric Technique

    Science.gov (United States)

    Mason, P.; Thomas, R.

    2006-12-01

    New developments in thermal ionization mass spectrometers allow for the determination of very small minor isotope ratios. The new hardware and software capabilities require attention to detail and accounting for additional sources of measurement uncertainty. The Pu-238 isotopic composition in New Brunswick Laboratory plutonium metal standard CRM 126-A was determined by thermal ionization mass spectrometry using combined Faraday cup and ion counting detection. A dynamic acquisition scheme was employed which provided for near real-time mass fractionation correction and ion counter/Faraday detector inter-calibration. Steps taken to minimize or eliminate isobaric U-238 interferences will be described, and an evaluation detailing contributions to the uncertainty, including SEM non-linearity, will be presented.

  4. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Taylor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  5. Plutonium concentration and (240)Pu/(239)Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS.

    Science.gov (United States)

    Bu, Kaixuan; Cizdziel, James V; Dasher, Douglas

    2013-10-01

    Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and Amchitka Island underground nuclear test site cannot be ruled out.

  6. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy.

    Science.gov (United States)

    Hoover, Andrew S; Bond, Evelyn M; Croce, Mark P; Holesinger, Terry G; Kunde, Gerd J; Rabin, Michael W; Wolfsberg, Laura E; Bennett, Douglas A; Hays-Wehle, James P; Schmidt, Dan R; Swetz, Daniel; Ullom, Joel N

    2015-04-07

    We have developed a new category of sensor for measurement of the (240)Pu/(239)Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the (240)Pu/(239)Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  7. Transmutation of 129I, 237Np, 238Pu, 239Pu, and 241Am using neutrons produced in target-blanket system `Energy plus Transmutation' by relativistic protons

    Indian Academy of Sciences (India)

    J Adam; K Katovsky; A Balabekyan; V G Kalinnikov; M I Krivopustov; H Kumawat; A A Solnyshkin; V I Stegailov; S G Stetsenko; V M Tsoupko-Sitnikov; W Westmeier

    2007-02-01

    Target-blanket facility `Energy + Transmutation' was irradiated by proton beam extracted from the Nuclotron Accelerator in Laboratory of High Energies of Joint Institute for Nuclear Research in Dubna, Russia. Neutrons generated by the spallation reactions of 0.7, 1.0, 1.5 and 2 GeV protons and lead target interact with subcritical uranium blanket. In the neutron field outside the blanket, radioactive iodine, neptunium, plutonium and americium samples were irradiated and transmutation reaction yields (residual nuclei production yields) have been determined using -spectroscopy. Neutron field's energy distribution has also been studied using a set of threshold detectors. Results of transmutation studies of 129I, 237Np, 238Pu, 239Pu and 241Am are presented.

  8. Ultra-trace determination of (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu by triple quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments.

    Science.gov (United States)

    Amr, Mohamed A; Helal, Abdul-Fattah I; Al-Kinani, Athab T; Balakrishnan, Perumal

    2016-03-01

    The development of practical, fast, and reliable methods for the ultra-trace determination of anthropogenic radionuclides (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu by triple quadruple collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS) were investigated in term of its accuracy and precision for producing reliable results. The radionuclides were extracted from 1 kg of the environmental soil samples by concentrated nitric and hydrochloric acids. The leachate solutions were measured directly by triple quadrupole CRC-ICP-MS/MS. For quality assurance, a chemical separation of the concerned radionuclides was conducted and then measured by single quadrupole-ICP-MS. The developed methods were next applied to measure the anthropogenic radionuclides (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu in soil samples collected throughout the State of Qatar. The average concentrations of (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu were 0.606 fg/g (3.364 Bq/kg), 0.619 fg/g (2.038 Bq/kg), 0.034 fg/g (0.0195 Bq/kg), 65.59 fg/g (0.150 Bq/kg), and 12.06 fg/g (0.103 Bq/kg), respectively.

  9. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  10. Manmade radionuclide vector in Austrian soil and vegetation near Temelin nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sinojmeri, M.; Ringer, V. [Oesterreichische Agentur fuer Gesundheit und Ernaehrungssicherheit - AGES (Austria)

    2014-07-01

    Since Chernobyl NPP accident an environmental monitoring program concerning the Upper Austrian region near Czech Republic Nuclear Power Plant, NPP Temelin, is in progress between AGES and BMLFUV, the Austrian Federal Ministry of Agriculture, Forestry, Environment, Water and Food, in Austria. This paper presents the results obtained during the sampling campaign over biennial period of 2010-2011. Soil samples, grass and different cereal species were collected. Beside Cs-134, Cs-137 and Sr-89, Sr-90 isotopes, at this phase the number of isotopes determined was extended with plutonium isotopes Pu-238, Pu-239, Pu-240, Pu-241 and Am-241. A comparison of these results with the existing data so far is presented. New knowledge was obtained related the bio-kinetic parameters of these elements in the environment. Document available in abstract form only. (authors)

  11. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    DEFF Research Database (Denmark)

    McMahon, C.A.; Vintró, L.L.; Mitchell, P.I.

    2000-01-01

    chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean Pu-238/Pu-239,Pu-240 activity ratio in the water column (dissolved phase) at Thule (0.06 +/- 0.02; n = 10) is similar to the global fallout ratio at this latitude......The speciation of plutonium in Arctic waters sampled on the northwest Greenland shelf in August 1997 is discussed in this paper. Specifically, we report the results of analyses carried out on seawater sampled (a) close to the Thule air base where, in 1968, a US military aircraft carrying four......(V, VI) (mean, 68 +/- 6%; n = 6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed...

  12. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2007-11-15

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for {sup 137}Cs removal. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  13. FURTHER DEVELOPMENT OF MODIFIED MONOSODIUM TITANATE, AN IMPROVED SORBENT FOR PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.; Fondeur, F.; Fink, S.

    2011-01-12

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for Cs-137 removal, and sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239, and Pu-240. This paper describes recent results from the development of an improved titanate material that exhibits increased removal kinetics and effective capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  14. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2008-01-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for Cs-137 removal. The MST and separated Cs-137 will be encapsulated into a borosilicate glass waste form for eventual entombment at the federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  15. LITERATURE REVIEW ON MAXIMUM LOADING OF RADIONUCLIDES ON CRYSTALLINE SILICOTITANATE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.; Pennebaker, F.

    2010-10-13

    Plans are underway to use small column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions at Savannah River Site. The ion exchange material slated for the SCIX project is engineered or granular crystalline silicotitanate (CST). Information on the maximum loading of radionuclides on CST is needed by Savannah River Remediation for safety evaluations. A literature review has been conducted that culminated in the estimation of the maximum loading of all but one of the radionuclides of interest (Cs-137, Sr-90, Ba-137m, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, and Cm-244). No data was found for Cm-244.

  16. Comparative analysis between measured and calculated concentrations of major actinides using destructive assay data from Ohi-2 PWR

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2015-09-01

    Full Text Available In the paper, we assess the accuracy of the Monte Carlo continuous energy burnup code (MCB in predicting final concentrations of major actinides in the spent nuclear fuel from commercial PWR. The Ohi-2 PWR irradiation experiment was chosen for the numerical reconstruction due to the availability of the final concentrations for eleven major actinides including five uranium isotopes (U-232, U-234, U-235, U-236, U-238 and six plutonium isotopes (Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242. The main results were presented as a calculated-to-experimental ratio (C/E for measured and calculated final actinide concentrations. The good agreement in the range of ±5% was obtained for 78% C/E factors (43 out of 55. The MCB modeling shows significant improvement compared with the results of previous studies conducted on the Ohi-2 experiment, which proves the reliability and accuracy of the developed methodology.

  17. (137)Cs, (239+240)Pu concentrations and the (240)Pu/(239)Pu atom ratio in a sediment core from the sub-aqueous delta of Yangtze River estuary.

    Science.gov (United States)

    Pan, S M; Tims, S G; Liu, X Y; Fifield, L K

    2011-10-01

    A sediment core collected from the sub-aqueous delta of the Yangtze River estuary was subjected to analyses of (137)Cs and plutonium (Pu) isotopes. The (137)Cs was measured using γ-spectrometry at the laboratories at the Nanjing University and Pu isotopes were determined with Accelerator Mass Spectrometry (AMS), measurements made at the Australian National University. The results show considerable structure in the depth concentration profiles of the (137)Cs and (239+240)Pu. The shape of the vertical (137)Cs distribution in the sediment core was similar to that of the Pu. The maximum (137)Cs and (239+240)Pu concentrations were 16.21 ± 0.95 mBq/g and 0.716 ± 0.030 mBq/g, respectively, and appear at same depth. The average (240)Pu/(239)Pu atom ratio was 0.238 ± 0.007 in the sediment core, slightly higher than the average global fallout value. The changes in the (240)Pu/(239)Pu atom ratios in the sediment core indicate the presence of at least two different Pu sources, i.e., global fallout and another source, most likely close-in fallout from the Pacific Proving Grounds (PPG) in the Marshall Islands, and suggest the possibility that Pu isotopes are useful as a geochronological tool for coastal sediment studies. The (137)Cs and (239+240)Pu inventories were estimated to be 7100 ± 1200 Bq/m(2) and 407 ± 27 Bq/m(2), respectively. Approximately 40% of the (239+240)Pu inventory originated from the PPG close-in fallout and about 50% has derived from land-origin global fallout transported to the estuary by the river. This study confirms that AMS is a useful tool to measure (240)Pu/(239)Pu atom ratio and can provide valuable information on sedimentary processes in the coastal environment.

  18. Proceedings of the NEANDC/NEACRP specialists meeting on fast neutron fission cross sections of U-233, U-235, U-238, and Pu-239, June 28--30, 1976, at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W P; Guenther, P T

    1976-01-01

    Data files of all available data of absolute cross section measurements of U-233, U-235, U-238 and Pu-239, and of the ratios of U-233, U-238, and Pu-239 to U-235 were assembled at Argonne National Laboratory for use by the two Working Groups. The data files of absolute cross sections included also data measured relative to one of the standard cross sections H(n,n), Li-6(n,..cap alpha..), and B-10(n,..cap alpha..), and the ratio data files included ratios derived from absolute values which were measured in an identical type of experiment by the same group of experimenters. The subject files (e.g., U-235-Absolute, or U-238/U-235-Ratio, etc.) consisted of ''Sets.'' These sets contained the data from one experimental group which may have been published at different times. The assembling of the files was started with an extract from the CSISRS data files of the National Neutron Cross Section Center at the Brookhaven National Laboratory. Ratios were derived from quoted consistent sets of absolute cross sections, or from data which were actually measured as ratios but quoted as absolute values. The latter type of data was eliminated from the data files on absolute values. The files were improved by an extensive search for errors and data missing on the original CSISRS files at the time the extract was made. Other additions to the present subject files came from presentations made at this meeting and are described in the proceedings.

  19. Calorimetry of low mass Pu239 items

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, Teresa L [Los Alamos National Laboratory; Sampson, Thomas E [Los Alamos National Laboratory

    2010-01-01

    Calorimetric assay has the reputation of providing the highest precision and accuracy of all nondestructive assay measurements. Unfortunately, non-destructive assay practitioners and measurement consumers often extend, inappropriately, the high precision and accuracy of calorimetric assay to very low mass items. One purpose of this document is to present more realistic expectations for the random uncertainties associated with calorimetric assay for weapons grade plutonium items with masses of 200 grams or less.

  20. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    Science.gov (United States)

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended

  1. A method of measurement of (239)Pu, (240)Pu, (241)Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples.

    Science.gov (United States)

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tazoe, Hirofumi; Tagami, Keiko; Uchida, Shigeo; Yamada, Masatoshi

    2014-01-01

    An accurate and precise analytical method is highly needed for the determination of Pu isotopes in marine sediments for the long-term marine environment monitoring that is being done since the Fukushima Dai-ichi Nuclear Power Plant accident. The elimination of uranium from the sediment samples needs to be carefully checked. We established an analytical method based on anion-exchange chromatography and SF-ICP-MS in this work. A uranium decontamination factor of 2 × 10(6) was achieved, and the U concentrations in the final sample solutions were typically below 4 pg mL(-1), thus no extra correction of (238)U interferences from the Pu spectra was needed. The method was suitable for the analysis of (241)Pu in marine sediments using large sample amounts (>10 g). We validated the method by measuring marine sediment reference materials and our results agreed well with the certified and the literature values. Surface sediments and one sediment core sample collected after the nuclear accident were analyzed. The characterization of (241)Pu/(239)Pu atom ratios in the surface sediments and the vertical distribution of Pu isotopes showed that there was no detectable Pu contamination from the nuclear accident in the marine sediments collected 30 km off the plant site.

  2. Adjustment of a direct method for the determination of man body burden in Pu-239 on by X-ray detection of U-235; Mise au point d'une methode directe de determination de la charge corporelle en plutonium 239 chez l'homme par detection X de l'uranium 235

    Energy Technology Data Exchange (ETDEWEB)

    Boulay, P. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1968-04-01

    The use of Pu-239 on a larger scale sets a problem about the contamination measurement by aerosol at lung level. A method of direct measurement of Pu-239 lung burden is possible, thanks to the use of a large area window proportional counter. A counter of such pattern, has been especially carried out for this purpose. The adjustment of the apparatus allows an adequate sensibility to detect a contamination at the maximum permissible body burden level. Besides, a method for individual 'internal calibration', with a plutonium mock: the protactinium-233, is reported. (author) [French] L'utilisation a une echelle de plus en plus large du plutonium-239 pose un probleme de la mesure de la contamination par aerosol au niveau du poumon. Une methode de mesure directe de la charge pulmonaire en plutonium-239 est possible grace a l'utilisation d'un compteur proportionnel a fenetre de grande surface. Un compteur de ce type a specialement ete realise dans ce but. La mise au point de l'appareillage permet une sensibilite suffisante pour deceler une contamination au niveau de la Q.M.A (quantite maximale admissible). D'autre part, une methode 'd'etalonnage interne' de l'individu a l'aide d'un simulateur de plutonium, le protactinium-233, est decrite. (auteur)

  3. Lessons learned in the accident of contamination with Pu-239; Lecciones aprendidas en el accidente de contaminacion con Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Molina, G.; Ruiz C, M.; Angeles C, A.; Benitez S, J.A. [ININ, 52045 Estado de Mexico (Mexico)]. e-mail: gm@nuclear.inin.mx

    2004-07-01

    This work describes the lessons learned during the accident by transuranic contamination in the National Institute of Nuclear Research happened between 1998 and 2003. The origin of the same one is the not authorized transfer of 0.51 g of plutonium metallic used as pattern source in the Department of Metrology to a laboratory which lacked of physical infrastructure, training and team to manipulate this source. (Author)

  4. Geological and physicochemical controls of the spatial distribution of partition coefficients for radionuclides (Sr-90, Cs-137, Co-60, Pu-239,240 and Am-241) at a site of nuclear reactors and radioactive waste disposal (St. Petersburg region, Russian Federation).

    Science.gov (United States)

    Rumynin, Vyacheslav G; Nikulenkov, Anton M

    2016-10-01

    The paper presents a study of the sorption properties of sediments of different geological ages and lithological types, governing radionuclide retention in the subsurface (up to 160 m beneath the surface) within the area of potential influence of the Northwestern Center of Atomic Energy (NWCAE), St. Petersburg region, RF. The focus of this work is mostly on the sedimentary rocks of two types, i.e., weakly cemented sandstone and lithified clay formations of Cambrian and Vendian series. The first lithological unit is associated with a groundwater reservoir (Lomonosov aquifer), and the second one, with both a relative aquitard in the upper part of the Vendian formation (Kotlin clay) and a regional aquifer (Gdov aquifer) in the lower part of the formation. The main mechanisms responsible for the variability of the sorption distribution coefficient (Kd, defined as the ratio of the concentration of solute on solid phase to its concentration in solution at equilibrium) was identified for radionuclides such as Sr-90, Cs-137, Co-60, Pu-239,240, and Am-241. It was shown that the main factors contributing to the chemical heterogeneity of the Cambrian sandstone were related to the presence of secondary minerals (iron and magnesium oxides and hydroxides produced by the weathering process) in trace amounts, forming correlated layer structures. The statistical analysis of nonlinear isotherms confirmed this conclusion. For the Vendian formation, a determinate trend was established in the Kd change over depth as a result of temporal trends in the sedimentation process and pore-water chemistry. The geostatistical characteristics and the spatial correlation models for describing linear sorption of different radionuclides are not identical, and the exhibition of chemical heterogeneity of sedimentary rock of a particular lithological type depends on radionuclide chemistry. Moreover, variogram analysis for some Kd data sets (both in Cambrian and Vendian formations) demonstrates the

  5. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  6. Plutonium in the marine environment at Thule, NW-Greenland after a nuclear weapons accident

    DEFF Research Database (Denmark)

    Dahlgaard, H.; Eriksson, M.; Ilus, E.

    2001-01-01

    than in sediments. Some biota groups show a somewhat higher uptake of americium than of plutonium. Sediment samples with weapons plutonium from the accident show a significant variation in Pu-240/Pu-239 atom ratios in the range 0.027-0.057. This supports the hypothesis that the Thule plutonium...

  7. Pertubation in the 240Pu/239Pu global fallout ratio in local sediments following the nuclear accidents at Thule (Greenland) and Palomares (Spain)

    DEFF Research Database (Denmark)

    Mitchell, P.I.; León Vintró, L.; Dahlgaard, H.

    1997-01-01

    been subjected to close-in fallout, mainly from surface-based testing (e.g. Bikini Atoll, Nevada test site, Mururoa Atoll), has confirmed the feasibility of using this ratio to distinguish plutonium from different fallout sources. In the present study, the Pu-240/Pu-239 ratio has been examined...

  8. Analysis Method of 241Pu Radioactivity by Isotope Dilution-Extraction Liquid Scintillation Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>241Pu is the only pure β emitter with the maximum energy of 20.81 keV in plutonium isotopes of 238Pu, 239Pu, 240Pu and 242Pu, in which 241Pu is mostly specific radioactivity because its half-life is 14.29 a.

  9. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin

    2014-01-01

    This paper reports an analytical method for the determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation...

  10. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Snider, C.A. [Department of Energy, Carlsbad, NM (United States); Weston, W.W. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  11. 232Th、233U、238Pu、240Pu、242Pu、241Am、242Cm、243Cm和244Cm的裂变释放热能研究%Thermal Energy Released in Fission of 232 Th,233 U,238 Pu, 240 Pu,242 Pu,241 Am,242 Cm,243 Cm and 244 Cm

    Institute of Scientific and Technical Information of China (English)

    赵艳飞; 马续波; 陈义学

    2013-01-01

    In the nuclear reactor design ,the precise calculation of thermal fission energy is of great significance .In the pressurized water reactor ,high energy neutron-induced fission rarely occurs ,the isotopes including 233 U ,241 Am and 243 Cm are mostly induced by thermal neutrons ,while the other isotopes such as 232Th ,238Pu ,240Pu ,242Pu ,242Cm and 244 Cm are by fast neutron . In order to carry out this work , the nuclear data extracted from the latest evaluated nuclear data file (ENDF/B-Ⅶ ) were adopted ,and the energy-conservation law for the calculation of total fission energy were used , meanw hile ,with the consideration of capture energy and the correction of βand γ ,the thermal fission energy of nine isotopes was obtained .Compared with the data excerpted from IAEA issued WIMS-D database ,the results are reasonable .The thermal fission energy and its uncertainties of the nine isotopes are :(193.939 ± 0.176) MeV for 232 Th , (200.063 ± 0.084) MeV for 233 U ,(208.786 ± 1.133 ) MeV for 238 Pu ,(211.266 ± 0.220 ) MeV for 240 Pu ,(213.862 ± 0.299 ) MeV for 242 Pu ,(215.077 ± 0.210 ) MeV for 241 Am ,(218.821 ± 0.159) MeV for 242Cm ,(218.525 ± 0.388) MeV for 243Cm ,and (220.067 ± 0.131) MeV for 244 Cm ,respectively .%在核反应堆设计中,对每次裂变释放热能进行精确计算具有重要意义。在压水堆内,高能中子诱发核裂变份额很小,233 U、241 Am、243 Cm主要由热中子诱发裂变,232 T h、238 Pu、240 Pu、242 Pu、242 Cm、244 Cm主要由快中子诱发裂变。本文采用最新的核评价数据库 ENDF/B-Ⅶ,利用质量守恒法计算裂变释放总能,同时研究了中微子带走的能量,中子俘获能及β、γ修正项,最终给出了9种核素裂变释放热能。与IAEA颁布的WIMS-D格式数据库中的裂变释放热能数据的对比表明,本文所用方法计算结果合理。9种核素每次裂变释放热能分别为:232 Th ,(193.939±0.176) MeV ;233 U ,(200.063

  12. Plutonium in the marine environment at Thule, NW-Greenland after a nuclear weapons accident

    DEFF Research Database (Denmark)

    Dahlgaard, H.; Eriksson, M.; Ilus, E.

    2001-01-01

    In January 1968, a B52 plane carrying 4 nuclear weapon!: crashed on the sea ice similar to 12 km from the Thule Air Base, in northwest Greenland. The benthic marine environment in the 180-230 m deep Bylot Sound was then contaminated with similar to1.4 TBq Pu-239,Pu-240 (similar to0.5 kg). The site...... than in sediments. Some biota groups show a somewhat higher uptake of americium than of plutonium. Sediment samples with weapons plutonium from the accident show a significant variation in Pu-240/Pu-239 atom ratios in the range 0.027-0.057. This supports the hypothesis that the Thule plutonium...

  13. Determination of plutonium isotopes in seawater reference materials using isotope-dilution ICP-MS.

    Science.gov (United States)

    Zheng, Jian; Yamada, Masatoshi

    2012-09-01

    We analyzed the activities of (239)Pu, (240)Pu, (239+240)Pu, (241)Pu, the ratio of number of atoms (atom ratio) for (240)Pu/(239)Pu, and the activity ratio of (241)Pu/(239+240)Pu in seawater reference materials, IAEA-443 and IAEA-381, using a highly sensitive isotope dilution sector field inductively coupled plasma mass spectrometry method. With a mean chemical yield of 65% determined with (242)Pu as a tracer, we found that the experimentally established values in IAEA-443 for (239)Pu, (240)Pu, (241)Pu and (239+240)Pu activities are almost the same as those in IAEA-381. Regarding the (239+240)Pu activity, we provided the most precise and accurate result among the twelve laboratories, which participated in the interlaboratory comparison. In addition, for the (240)Pu/(239)Pu atom ratio, our results for IAEA-381 (0.2315±0.0008) and IAEA-443 (0.2325±0.0008) are in good agreement with the IAEA information value (0.229±0.006), but have much smaller uncertainty. Since the new seawater reference material, IAEA-443, is commercially available, it can be used not only for method validation for seawater plutonium isotope ratio and activity analysis, but also for more general use as a plutonium isotope standard for mass discrimination correction for other environmental samples.

  14. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  15. Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances

    Energy Technology Data Exchange (ETDEWEB)

    Sigeti, David Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, D. Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    Algorithms and software have been developed for producing variations in plutonium 239 neutron cross sections based on experimental uncertainties and covariances. The varied cross- section sets may be produced as random samples from the multi- variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin- Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances do not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.

  16. Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.

    Energy Technology Data Exchange (ETDEWEB)

    Klann, R. T.

    1998-11-25

    A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests using a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.

  17. Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances

    Energy Technology Data Exchange (ETDEWEB)

    Sigeti, David Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, D. Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances do not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.

  18. Radiochemical analysis of aerosol filters and precipitation samples by the German Weather Service; Radiochemische Analyse von Schwebstofffilter- und Niederschlagsproben im Deutschen Wetterdienst

    Energy Technology Data Exchange (ETDEWEB)

    Dalheimer, A.; Diedrich-Roesch, H. [Deutscher Wetterdienst, Offenbach (Germany)

    2014-01-20

    The German Weather Service routinely analyses air and precipitation samples for the isotopes U-234, U-235, U-238, Am-241, Pu-238, Pu-239/240, Sr-89 and Sr-90. In the presented method, the separation of alpha emitters and strontium isotopes from the same sample is done by a multi-stage extraction chromatography procedure. Alpha-emitting nuclides are electrodeposited and measured by alpha spectrometry, Sr-89 and Sr-90 will be simultaneously determined using a three-window LSC-method. The analysis procedure is used in routine operation, as well, with minor modifications in the intensive operation.

  19. Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea)

    DEFF Research Database (Denmark)

    Pham, M.K.; Sanchez-Cabeza, J.A.; Povinec, P.P.

    2006-01-01

    ratios are also included. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in fish sample, for the development and validation of analytical methods and for training purposes. The material is available from IAEA, Vienna, in 100 g units. (c) 2006 Elsevier Ltd. All......A certified reference material (CRM) for radionuclides in fish sample IAEA-414 (mixed fish from the Irish Sea and North Seas) is described and the results of the certification process are presented. Nine radionuclides (K-40, Cs-137, Th-232, U-234, U-235, U-238, Pu-238, Pu239+240 and Am-241) were...

  20. Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990-1995)

    DEFF Research Database (Denmark)

    Aarkrog, A.; Dahlgaard, H.; Nielsen, S.P.;

    1997-01-01

    and Western radioecologists. The present study is a joint Russian-Ukrainian-Danish effort to make an independent estimate of the inventories of Sr-90, Cs-137 and Pu-239,Pu-240 from two major contamination events in the South Urals, namely, the Kyshtym accident in 1957 and the Karachay wind dispersion in 1967....... The calculations are based upon deposition measurements of the radionuclides carried out on soil samples assuming that the depositions decreased exponentially with distance from the two sources. The inventory estimates are compared with the available Russian information on the two accidents. (C) 1997 Elsevier...

  1. Direct Measurement of U235 and Pu239 in Spent Fuel Rods with Gamma-Ray Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alameda, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brejnholt, N. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Descalle, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fernandez-Perea, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hill, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kisner, R. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melin, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ruz, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soufli, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-30

    The amounts of fissile Pu and U in spent nuclear fuel are of primary concern to the safeguards community. In particular, there are issues when safeguards transitions from an item accountancy basis (such as fuel bundles) to a fissile material mass basis as occurs when spent fuel enters a reprocessing plant. Discrepancies occur because item accountancy requires estimating the content of fissile material using indirect techniques such as the fuel burn-up and item-level measurements of radiation emissions from fission by-products. Direct measurement of the fissile content by monitoring line emissions from fissile species themselves is impossible because the lines are much weaker than those emitted by shorter-lived isotopes in the fuel. The goal of this project is to develop a technique to directly measure these weaker lines despite the presence of overwhelming radiation from other isotopes. This is achieved by using gamma-ray mirrors as a narrow band-pass filter. The mirrors reflect only energies of interest toward a HPGe detector that is shielded from direct view of the spent fuel and its fierce emissions. This can significantly improve the reliability with which the mass of fissile material is tracked.

  2. Carcinogenesis From Inhaled (PuO2)-Pu-239 in Beagles: Evidence for Radiation Homeostasis at Low Doses?

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Weller, Richard E.

    2010-09-01

    From the early 1970s to the late 1980s, Pacific Northwest National Laboratory conducted life-span studies in beagle dogs on the biological effects of inhaled plutonium (239PuO2, 238PuO2, and 239Pu[NO3]4) to help predict risks associated with accidental intakes in workers. Years later, the purpose of the present follow-up study is to reassess the dose-response relationship for lung cancer induction in the 239PuO2 dogs compared to controls, with particular focus on the dose-response at low lung doses. A 239PuO2 aerosol (2.3 μm AMAD, 1.9 μm GSD) was administered to six groups of 20 young (18-month old) beagle dogs (10 males and 10 females) by inhalation at six different activity levels, as previously described in Laboratory reports. Control dogs were sham-exposed. In dose level 1, initial pulmonary lung depositions were 130 ± 48 Bq (3.5 ± 1.3 nCi), corresponding to 1 Bq g-1 lung tissue (0.029 ± 0.001 nCi g-1. Groups 2 through 6 received initial lung depositions (mean values) of 760, 2724, 10345, 37900, and 200000 Bq (22, 79, 300, 1100, and 5800 nCi) 239PuO2, respectively. For each dog, the absorbed dose to lungs was calculated from the initial lung burden and the final lung burden at time of death and lung mass, assuming a single, long-term retention function. Insoluble plutonium oxide exhibited long retention times in the lungs. Increased dose-dependent mortality due to lung cancer (bronchiolar-alveolar carcinoma, adenocarcinoma, epidermoid carcinoma) and radiation pneumonitis (highest exposures group) was observed in dogs exposed to 239PuO2. Calculated lung doses ranged from a few cGy in early-sacrificed dogs to 7764 cGy in dogs that experienced early deaths from radiation pneumonitis. Data were regrouped by lifetime lung dose and plotted as a function of lung tumor incidence. Lung tumor incidence in controls and zero-dose exposed dogs was 18% (5/28). However, no lung tumors were observed in 16 dogs with the lowest lung doses (8 to 22 cGy, mean 14.4 ± 7.6 cGy), and only one lung tumor was observed in 10 dogs with lung doses ranging from 27 to 48 cGy (mean 37.5 ± 10.9 cGy). By least-squares analysis, a quadratic function represented the overall dose-response (n = 137, r = 0.96) with no dose threshold. Reducing this function to three linear dose-response components, risk coefficients were calculated for each. The incidence of lung tumors at zero dose was significantly greater than the incidence at low dose (at the p ≤ 0.053 confidence level), suggesting a protective effect (radiation homeostasis) of alpha-particle radiation from 239PuO2. If a threshold for lung cancer incidence exists, it will be observed in the range 15 to 40 cGy.

  3. Polonium 210Po, uranium (234U, 238U and plutonium (238Pu, 239+240Pu bioaccumulation in marine birds

    Directory of Open Access Journals (Sweden)

    Strumińska-Parulska D. I.

    2013-04-01

    Full Text Available The aim of this work was the determination of 210Po, 234U, 238U, 238Pu and 239+240Pu concentration in marine birds which permanently or temporally live in the southern Baltic Sea coast. We chose 11 species of seabirds: three species permanently residing at southern Baltic Sea, four species of wintering birds and three species of migrating birds. The results show that analyzed radionuclides are non-uniformly distributed in the marine birds. The highest activities of 210Po were observed in feathers, muscles and liver. The highest uranium content was found in liver, rest of viscera and feathers, while plutonium in the digestion organs and feathers. Omnivore seabirds accumulated more polonium, plutonium than species that feed on fish, while herbivore seabirds accumulated more uranium than carnivore.

  4. Potential health risks from postulated accidents involving the Pu-238 RTG (radioisotope thermoelectric generator) on the Ulysses solar exploration mission

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, M. (California Univ., Davis, CA (USA)); Nelson, R.C. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Bollinger, L. (Air Force Inspection and Safety Center, Kirtland AFB, NM (USA)); Hoover, M.D. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.); Templeton, W. (Pacific Northwest Lab., Richland, WA (USA)); Anspaugh, L. (Lawren

    1990-11-02

    Potential radiation impacts from launch of the Ulysses solar exploration experiment were evaluated using eight postulated accident scenarios. Lifetime individual dose estimates rarely exceeded 1 mrem. Most of the potential health effects would come from inhalation exposures immediately after an accident, rather than from ingestion of contaminated food or water, or from inhalation of resuspended plutonium from contaminated ground. For local Florida accidents (that is, during the first minute after launch), an average source term accident was estimated to cause a total added cancer risk of up to 0.2 deaths. For accidents at later times after launch, a worldwide cancer risk of up to three cases was calculated (with a four in a million probability). Upper bound estimates were calculated to be about 10 times higher. 83 refs.

  5. AMS of the Minor Plutonium Isotopes.

    Science.gov (United States)

    Steier, P; Hrnecek, E; Priller, A; Quinto, F; Srncik, M; Wallner, A; Wallner, G; Winkler, S

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure (239)Pu, (240)Pu, (241)Pu, (242)Pu and (244)Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of (244)Pu/(239)Pu = (5.7 ± 1.0) × 10(-5) based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the (242)Pu/(240)Pu ratio as an estimate of the initial (241)Pu/(239)Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  6. REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

    2011-12-20

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently

  7. Study of neutron-deficient isotopes of Fl in the 239Pu, 240Pu + 48Ca reactions

    Science.gov (United States)

    Voinov, A. A.; Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu Ts; Rykaczewski, K. P.; Abdullin, F. Sh; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu S.; Subbotin, V. G.; Sukhov, A. M.; Sabelnikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y.

    2016-07-01

    The results of the experiments aimed at the synthesis of Fl isotopes in the 239Pu + 48Ca and 240Pu + 48Ca reactions are presented. The experiment was performed using the Dubna gas-filled recoil separator at the U400 cyclotron. In the 239Pu+48Ca experiment one decay of spontaneously fissioning 284Fl was detected at 245-MeV beam energy. In the 240Pu+48Ca experiment three decay chains of 285Fl were detected at 245 MeV and four decays were assigned to 284Fl at the higher 48Ca beam energy of 250 MeV. The α-decay energy of 285Fl was measured for the first time and decay properties of its descendants 281Cn, 277Ds, 273Hs, 269Sg, and 265Rf were determined more precisely. The cross section of the 239Pu(48Ca,3n)284Fl reaction was observed to be about 20 times lower than those predicted by theoretical models and 50 times less than the value measured in the 244Pu+48Ca reaction. The cross sections of the 240Pu(48Ca,4-3n)284,285Fl at both 48Ca energies are similar and exceed that observed in the reaction with lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate rapid decrease of stability of superheavy nuclei with departing from the neutron number N=184 predicted to be the next magic number.

  8. Compatibility of selected elastomers with plutonium glovebox environment

    Energy Technology Data Exchange (ETDEWEB)

    Burns, R.

    1994-06-01

    This illustrative test was undertaken as a result of on-going failure of elastomer components in plutonium gloveboxes. These failures represent one of the major sources of required maintenance to keep gloveboxes operational. In particular, it was observed that the introduction of high specific activity Pu-238 into a glovebox, otherwise contaminated with Pu-239, resulted in an inordinate failure of elastomer components. Desiring to keep replacement of elastomer components to a minimum, a decision to explore a few possible alternative elastomer candidates was undertaken and reported upon herewith. Sample specimens of Neoprene, Urethane, Viton, and Hypalon elastomeric formulations were obtained from the Bacter Rubber Company. Strips of the elastomer specimens were placed in a plutonium glovebox and outside of a glovebox, and were observed for a period of three years. Of the four types of elastomers, only Hypalon remained completely viable.

  9. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; Diprete, D. P.

    2014-05-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to

  10. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; DiPrete, D. P.

    2013-08-22

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to

  11. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; Diprete, D. P.

    2014-05-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to

  12. Development of self-interrogation neutron resonance densitometry (SINRD) to measure U-235 and Pu-239 content in a PWR spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Adrienne M [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory

    2009-01-01

    The use of Self-Interrogation Neutron Resonance Densitometry (SINRD) to measure the {sup 235}U and {sup 239}Pu content in a PWR spent fuel assembly was investigated via Monte Carlo N-Particle eXtended transport code (MCNPX) simulations. The sensitivity of SINRD is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n, f) reaction peaks in fission chamber. These simulations utilize the {sup 244}Cm spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be measured using {sup 235}U and {sup 239}Pu fission chambers placed adjacent to the assembly. We used ratios of different fission chambers to reduce the sensitivity of the measurements to extraneous material present in fuel. The development of SINRD to measure the fissile content in spent fuel is of great importance to the improvement of nuclear safeguards and material accountability. Future work includes the use of this technique to measure the fissile content in FBR spent fuel and heavy metal product from reprocessing methods.

  13. Spatial distribution of (241)Am, (137)Cs, (238)Pu, (239,240)Pu and (241)Pu over 17 year periods in the Ravenglass saltmarsh, Cumbria, UK.

    Science.gov (United States)

    Oh, J-S; Warwick, P E; Croudace, I W

    2009-01-01

    Ninety five surface scrape samples were collected at the Ravenglass saltmarsh and analysed for radionuclides by alpha spectrometry ((238)Pu and (239,240)Pu), gamma spectrometry ((241)Am and (137)Cs) and liquid scintillation counting ((241)Pu). Both (241)Am and (137)Cs activities are compared with those reported by Horrill [1983. Concentrations and spatial distribution of radioactivity in an ungrazed saltmarsh. In: Coughtrey, P.J. (Ed.), Ecological Aspects of Radionuclide Release. British Ecological Society Special Publication No. 3. Blackwell, Oxford, pp. 119-215.] Significant decreases in activities for both radionuclides were observed which is caused by the declining levels of discharges from the Sellafield nuclear reprocessing plant since the 1980s. It has been concluded that the spatial distribution of these radionuclides are controlled by the tidal currents and the clay contents in the sediments. There is evidence of surface erosion of the saltmarsh and redistribution of radionuclides in the saltmarsh using isotopic ratios of measured Pu.

  14. PLANTS AS BIO-MONITORS FOR 137CS, 238PU, 239, 240PU AND 40K AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, E.; Duff, M.; Ferguson, C.

    2010-12-16

    The nuclear fuel cycle generates a considerable amount of radioactive waste, which often includes nuclear fission products, such as strontium-90 ({sup 90}Sr) and cesium-137 ({sup 137}Cs), and actinides such as uranium (U) and plutonium (Pu). When released into the environment, large quantities of these radionuclides can present considerable problems to man and biota due to their radioactive nature and, in some cases as with the actinides, their chemical toxicity. Radionuclides are expected to decay at a known rate. Yet, research has shown the rate of elimination from an ecosystem to differ from the decay rate due to physical, chemical and biological processes that remove the contaminant or reduce its biological availability. Knowledge regarding the rate by which a contaminant is eliminated from an ecosystem (ecological half-life) is important for evaluating the duration and potential severity of risk. To better understand a contaminants impact on an environment, consideration should be given to plants. As primary producers, they represent an important mode of contamination transfer from sediments and soils into the food chain. Contaminants that are chemically and/or physically sequestered in a media are less likely to be bio-available to plants and therefore an ecosystem.

  15. Method-MS, final report 2010

    DEFF Research Database (Denmark)

    Skipperud, Lindis; Popic, Jelena M.; Roos, Per

    (AMS) have shown several advantages compared to traditional methods when measuring long-lived radionuclides. Mass spectrometric methods for determination of very low concentrations of elemental isotopes, and thereby isotopic ratios, have been developed using a variety of ion sources. Although primarily...... applied to the determination of the lighter stable element isotopes and radioactive isotopes in geological studies, the techniques can equally well be applied to the measurement of activity concentrations of long-lived low-level radionuclides in various samples using “isotope dilution” methods...... such as those applied in inductively coupled plasma mass spectrometry (ICP-MS). Due to the low specific activity of long-lived radionuclides, many of these are more conveniently detected using mass spectrometric techniques. Mass spectrometry also enables the individual determination of Pu-239 and Pu-240, which...

  16. Certified reference materials for radionuclides in Bikini Atoll sediment (IAEA-410) and Pacific Ocean sediment (IAEA-412).

    Science.gov (United States)

    Pham, M K; van Beek, P; Carvalho, F P; Chamizo, E; Degering, D; Engeler, C; Gascó, C; Gurriaran, R; Hanley, O; Harms, A V; Herrmann, J; Hult, M; Ikeuchi, Y; Ilchmann, C; Kanisch, G; Kis-Benedek, G; Kloster, M; Laubenstein, M; Llaurado, M; Mas, J L; Nakano, M; Nielsen, S P; Osvath, I; Povinec, P P; Rieth, U; Schikowski, J; Smedley, P A; Suplinska, M; Sýkora, I; Tarjan, S; Varga, B; Vasileva, E; Zalewska, T; Zhou, W

    2016-03-01

    The preparation and characterization of certified reference materials (CRMs) for radionuclide content in sediments collected offshore of Bikini Atoll (IAEA-410) and in the open northwest Pacific Ocean (IAEA-412) are described and the results of the certification process are presented. The certified radionuclides include: (40)K, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (232)Th, (234)U, (238)U, (239)Pu, (239+240)Pu and (241)Am for IAEA-410 and (40)K, (137)Cs, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (232)Th, (235)U, (238)U, (239)Pu, (240)Pu and (239+240)Pu for IAEA-412. The CRMs can be used for quality assurance and quality control purposes in the analysis of radionuclides in sediments, for development and validation of analytical methods and for staff training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Designing Pu600 for Authentication

    Energy Technology Data Exchange (ETDEWEB)

    White, G

    2008-07-10

    Many recent Non-proliferation and Arms Control software projects include an authentication component. Demonstrating assurance that software and hardware performs as expected without hidden 'back-doors' is crucial to a project's success. In this context, 'authentication' is defined as determining that the system performs only its intended purpose and performs that purpose correctly and reliably over many years. Pu600 is a mature software solution for determining the presence of Pu and the ratio of Pu240 to Pu239 by analyzing the gamma ray spectra in the 600 KeV region. The project's goals are to explore hardware and software technologies which can by applied to Pu600 which ease the authentication of a complete, end-to-end solution. We will discuss alternatives and give the current status of our work.

  18. Management of disused plutonium sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory; Abeyta, Cristy [Los Alamos National Laboratory

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources since 1999, including more than 2,400 Plutonium (Pu)-238 sealed sources and 653 Pu-239-bearing sources that represent more than 10% of the total sources recovered by GTRI/OSRP to date. These sources have been recovered from hundreds of sites within the United States (US) and around the world. OSRP grew out of early efforts at the Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program, a loan-lease program that serviced 31 countries, as well as domestic users. In the conduct of these recovery operations, GTRI/OSRP has been required to solve problems related to knowledge-of-inventory, packaging and transportation of fissile and heat-source materials, transfer of ownership, storage of special nuclear material (SNM) both at US Department of Energy (DOE) facilities and commercially, and disposal. Unique issues associated with repatriation from foreign countries, including end user agreements required by some European countries and denials of shipment, will also be discussed.

  19. Operational comparison of bubble (super heated drop) dosimetry results with routine albedo thermoluminescent dosimetry for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1999-03-01

    This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at the Los Alamos National Laboratory (LANL) working on the Radioactive Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The bubble dosimeters were issued and read on a daily basis and the data were used as an ALARA tool. The personnel albedo dosimeter was processed on monthly basis and used as the dose-of-record. The results of this study indicated that cumulative bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average. However it was observed that there is a significant variability of the results on an individual basis both month-to-month and from one individual to another.

  20. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  1. Plutonium and the risk of cancer. A comparative analysis of Pu-body burdens due to releases from nuclear plants (Chelyabinsk-65, Gomel area) and global fallout.

    Science.gov (United States)

    Hohryakov, V F; Syslova, C G; Skryabin, A M

    1994-03-01

    Results of the analysis of dynamic body burdens of Pu in adult inhabitants of Chelyabinsk-65 (not occupationally exposed) and different areas of the Gomel region are presented for 1990-1991. The data are based on radiochemical analyses of Pu in human organs and tissues. Comparison with the published data on global Pu and our data for human autopsies (Ufa, Russia) revealed that estimates of Pubody burdens in Chelyabinsk-65 residents were up to 30 times higher than global levels and depended on the period of residence in town. The Pu body contents of Gomel citizens 4-5 years after the Chernobyl accident are on average 3-4 times higher than the global levels. Activity of Pu-238 in various organs constitutes 4.7-26.0% (on the average 13.5 +/- 5.0%) of the total alpha-activity of Pu-238 and Pu-239, 240. The expected number of cancers induced by incorporated plutonium is approximately the same for the two population groups despite their different sizes and does not differ from the global level by more than one order of magnitude.

  2. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    Science.gov (United States)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  3. 242Pu as tracer for simultaneous determination of 237Np and 239,240Pu in environmental samples

    DEFF Research Database (Denmark)

    Chen, Q.J.; Dahlgaard, H.; Nielsen, S.P.;

    2002-01-01

    A procedure has been developed using Pu-242 as tracer for simultaneous determination of Np-237 and Pu-239,Pu-240 in environmental samples. The validity of the method has been demonstrated by ICPMS and alpha-spectroscopy for up to 10 gram soil and sediment, seawater up to 200 litres. The paper...... describes a suitable chemical procedure for Np and Pu including a quantitative pre-concentration of neptunium and plutonium, preparation of Np4+ and Pu4+, NP(NO3)(6)(2-) and Pu(NO3)(6)(2-), The ratio of Np-237/Pu-242 (or Np-237/Pu-239) before and after the procedure has been determined using 10 g soil (free...... from Np and Pu) R-before/R-after = 1.004 +/- 3.3% (S.D n = 20) and 1 litre seawater R-before/R-after = 1.019+/-1.9% (S.D., n = 12). Results from the intercomparison samples LAEA-135, LAEA-381 and from environmental samples are presented....

  4. Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible.

    Science.gov (United States)

    Bu, Wenting; Fukuda, Miho; Zheng, Jian; Aono, Tatsuo; Ishimaru, Takashi; Kanda, Jota; Yang, Guosheng; Tagami, Keiko; Uchida, Shigeo; Guo, Qiuju; Yamada, Masatoshi

    2014-08-19

    Atmospheric deposition of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has been observed in the terrestrial environment around the FDNPP site; however, their deposition in the marine environment has not been studied. The possible contamination of Pu in the marine environment has attracted great scientific and public concern. To fully understand this possible contamination of Pu isotopes from the FDNPP accident to the marine environment, we collected marine sediment core samples within the 30 km zone around the FDNPP site in the western North Pacific about two years after the accident. Pu isotopes ((239)Pu, (240)Pu, and (241)Pu) and radiocesium isotopes ((134)Cs and (137)Cs) in the samples were determined. The high activities of radiocesium and the (134)Cs/(137)Cs activity ratios with values around 1 (decay corrected to 15 March 2011) suggested that these samples were contaminated by the FDNPP accident-released radionuclides. However, the activities of (239+240)Pu and (241)Pu were low compared with the background level before the FDNPP accident. The Pu atom ratios ((240)Pu/(239)Pu and (241)Pu/(239)Pu) suggested that global fallout and the pacific proving ground (PPG) close-in fallout are the main sources for Pu contamination in the marine sediments. As Pu isotopes are particle-reactive and they can be easily incorporated with the marine sediments, we concluded that the release of Pu isotopes from the FDNPP accident to the marine environment was negligible.

  5. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    Science.gov (United States)

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra.

  6. MA Doping Analysis on Breeding Capability and Protected Plutonium Production of Large FBR

    Science.gov (United States)

    Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke

    2010-06-01

    Spent fuel from LWR can be seen as long-live waste if it is not recycled or as a "new fuel" resource if it is recycled into the reactors. Uranium and plutonium have been used for "new fuel" resources from LWR spent fuel as MOX fuel type which is loaded into thermal reactor or fast reactor types. Other actinides from the spent fuel such as neptunium, americium and curium as minor actinide (MA) are considered to be loaded into the reactors for specific purposes, recently. Those purposes such as for increasing protected plutonium production and breeding capability for protected plutonium as well as in the same time those amount of MA can be reduced to a small quantity as a burner or transmutation purpose. Some investigations and scientific approaches are performed in order to increase a material "barrier" in plutonium isotope composition by increasing the even mass number of plutonium isotope such as Pu-238, Pu-240 and Pu-242 as plutonium protected composition. Higher material barrier which related to intrinsic properties of plutonium isotopes with even mass number (Pu-238, Pu-240 and Pu-242), are recognized because of their intense decay heat (DH) and high spontaneous fission neutron (SFN) rates. Those even number mass of plutonium isotope contribute to some criteria of plutonium characterization which will be adopted for present study such as IAEA, Pellaud and Kessler criteria (IAEA, 1972; Pellaud, 2002; and Kessler, 2007). The present paper intends to evaluate the breeding capability as a fuel sustainability index of the reactors and to analyze the composition of protected plutonium production of large power reactor based on the FaCT FBR as reference (Ohki, et al., 2008). Three dimensional FBR core configuration has been adopted which is based on the core optimization calculation of SRAC-CITATION code as reactor core analysis and JENDL-3.3 is adopted for nuclear data library. Some MA doping materials are loaded into the blanket regions which can be considered as

  7. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.

    2013-09-11

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples

  8. The feasibility of retrieving nuclear heat sources from orbit with the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Pyatt, D.W.; Englehart, R.W.

    1980-01-01

    Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

  9. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    Science.gov (United States)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  10. LA-ICP-MS for Pu source identification at Mayak PA, the Urals, Russia.

    Science.gov (United States)

    Cagno, S; Hellemans, K; Lind, O C; Skipperud, L; Janssens, K; Salbu, B

    2014-02-01

    Information on Pu in environmental samples is traditionally based on the determination of the (240+239)Pu activity via Alpha Spectrometry (AS). A large number of alpha spectrometry sources (planchettes) containing radiochemically separated Pu are therefore stored worldwide and are available for further analyses. These archive samples represent a resource from which valuable information on isotopic composition of alpha emitters including Pu can be obtained. The relative abundances of Pu isotopes can be used to trace specific Pu sources and characterize the relative contributions of different Pu sources in a sample. Thus, in addition to the total (239+240)Pu activity, determination of the (240)Pu/(239)Pu ratio can provide valuable information on the nature of the Pu emitting sources. The Pu isotopic ratios can be determined by mass spectrometry techniques such as Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICPMS) or Accelerator Mass Spectrometry (AMS) that require dissolution and complete destruction of the material deposited on the planchettes. In this study Laser Ablation (LA)-quadrupole-ICP-MS has been employed for the analysis of (239)Pu/(240)Pu ratios from alpha-planchettes prepared from samples originating from the Mayak PA nuclear facility, Russia. The results are compared with data from AMS and show that the (240)Pu/(239)Pu ratios obtained by LA-ICP-MS can be utilized to distinguish weapons-grade Pu from civil reprocessing sources. Moreover, isotope ratio mapping can also be performed across the planchettes, allowing e.g. the visualization of possible inhomogeneities in the Pu-isotope distribution on their surface. Thus, this solid sample technique can be applied to extract additional information from existing archives of samples.

  11. Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers.

    Science.gov (United States)

    Evrard, Olivier; Pointurier, Fabien; Onda, Yuichi; Chartin, Caroline; Hubert, Amélie; Lepage, Hugo; Pottin, Anne-Claire; Lefèvre, Irène; Bonté, Philippe; Laceby, J Patrick; Ayrault, Sophie

    2014-08-19

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurements of Pu isotopic atom and activity ratios are required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we used a double-focusing sector field ICP-MS to measure Pu atom and activity ratios in recently deposited sediment along rivers draining the most contaminated part of the inland radioactive plume. Results showed that plutonium isotopes (i.e., (239)Pu, (240)Pu, (241)Pu, and (242)Pu) were detected in all samples, although in extremely low concentrations. The (241)Pu/(239)Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113 ± 0.00008 on average for the Northern Hemisphere between 31°-71° N: Kelley, J. M.; Bond, L. A.; Beasley, T. M. Global distribution of Pu isotopes and (237)Np. Sci. Total. Env. 1999, 237/238, 483-500). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout that represented up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (∼45 km) from FDNPP and been deposited in rivers representing a potential source of Pu to the ocean. In future, the high (241)Pu/(239)Pu atom ratio of the Fukushima accident sourced-Pu should be measured to quantify the supply of continental-originating material from Fukushima Prefecture to the Pacific Ocean.

  12. Radiological Impact of 1993 Operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, A.A.

    1994-10-28

    An offsite individual residing at the SRS boundary at the point of the maximum exposure (maximum individual) received a dose of 0.11 mrem from SRS atmospheric releases in 1993 (See Table 1 for a 5-yr history of doses). This dose was only 1.1% of the EPA public dose limit of 10 mrem/yr (DOE, 1990). Tritium oxide releases were responsible for 90% of the atmospheric dose. Ninety-nine percent of the atmospheric dose was accounted for with the inclusion of I-129, U-235, U-238, Pu-238 and Pu-239. The 50-mile population received a collective dose of 7.6 person-rem from 1993 atmospheric releases. Ninety-nine percent of this dose also resulted from the release of the same isotopes that dominated the maximum individual dose due to atmospheric releases. For both the individual and the population, atmospheric radiation dose was dominated by the inhalation and vegetation consumption pathways. The maximum dose received by an offsite individual as a result of SRS liquid releases in 1993 was 0.14 mrem (See Table 1 for a 5-yr history). This does was only 3.5% of the EPA limit for drinking water of 4 mrem/yr (DOE, 1990). This dose was dominated by Cs-137 accumulated in Savannah River fish and tritium in drinking water. More than 99% of the maximum individual dose from liquid releases resulted from tritium, Sr-90, Cs-137,and Pu-239. The population dose from liquid releases in 1993 was 1.5 person-rem. Again, tritium, Sr-90, Cs-137, and Pu-239 contributed more than 99% of this dose. The major exposure pathway to the population was drinking water. Radiation dose to the general public from operations at the Savannah River Site continued to be a very small fraction of the natural background dose. A resident of the CSRA receives about 300 mrem per year from background radiation. The population within 80 km of the SRS (620,000) and at the downstream water treatment facilities (65,000), therefore, received a natural background population dose of approximately 200,000 person-rem during 1993.

  13. Determination of (236)U and transuranium elements in depleted uranium ammunition by alpha-spectrometry and ICP-MS.

    Science.gov (United States)

    Desideri, D; Meli, M A; Roselli, C; Testa, C; Boulyga, S F; Becker, J S

    2002-11-01

    It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement. The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.

  14. National Low-Level Waste Management Program Radionuclide Report Series, Volume 17: Plutonium-239

    Energy Technology Data Exchange (ETDEWEB)

    J. P. Adams; M. L. Carboneau

    1999-03-01

    This report, Volume 17 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of plutonium-239 (Pu-239). This report also discusses waste types and forms in which Pu-239 can be found, waste and disposal information on Pu-239, and Pu-239 behavior in the environment and in the human body.

  15. Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

    2010-03-01

    A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother. It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.

  16. WDR-PK-AK-018

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, R

    2009-08-26

    Method - CES SOP-HW-P556 'Field and Bulk Gamma Analysis'. Detector - High-purity germanium, 40% relative efficiency. Calibration - The detector was calibrated on February 8, 2006 using a NIST-traceable sealed source, and the calibration was verified using an independent sealed source. Count Time and Geometry - The sample was counted for 20 minutes at 72 inches from the detector. A lead collimator was used to limit the field-of-view to the region of the sample. The drum was rotated 180 degrees halfway through the count time. Date and Location of Scans - June 1,2006 in Building 235 Room 1136. Spectral Analysis Spectra were analyzed with ORTEC GammaVision software. Matrix and geometry corrections were calculated using OR TEC Isotopic software. A background spectrum was measured at the counting location. No man-made radioactivity was observed in the background. Results were determined from the sample spectra without background subtraction. Minimum detectable activities were calculated by the Nureg 4.16 method. Results - Detected Pu-238, Pu-239, Am-241 and Am-243.

  17. ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.

    2013-06-21

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that

  18. Classification of hot particles from the Chernobyl accident and nuclear weapons detonations by non-destructive methods.

    Science.gov (United States)

    Zheltonozhsky, V; Mück, K; Bondarkov, M

    2001-01-01

    Both after the Chernobyl accident and nuclear weapon detonations, agglomerates of radioactive material, so-called hot particles, were released or formed which show a behaviour in the environment quite different from the activity released in gaseous or aerosol form. The differences in their characteristic properties, in the radionuclide composition and the uranium and actinide contents are described in detail for these particles. While nuclear bomb hot particles (both from fission and fusion bombs) incorporate well detectable trace amounts of 60Co and 152Eu, these radionuclides are absent in Chernobyl hot particles. In contrast, Chernobyl hot particles contain 125Sb and 144Ce which are absent in atomic bomb HPs. Obvious differences are also observable between fusion and fission bombs' hot particles (significant differences in 152Eu/l55Eu, 154Eu/155Eu and 238Pu/239Pu ratios) which facilitate the identification of HPs of unknown provensence. The ratio of 239Pu/240Pu in Chernobyl hot particles could be determined by a non-destructive method at 1:1.5. A non-destructive method to determine the content of non-radioactive elements by Kalpha-emission measurements was developed by which inactive Zr, Nb, Fe and Ni could be verified in the particles.

  19. Determination of plutonium content in high burnup pressurized water reactor fuel samples and its use for isotope correlations for isotopic composition of plutonium.

    Science.gov (United States)

    Joe, Kihsoo; Jeon, Young-Shin; Han, Sun-Ho; Lee, Chang-Heon; Ha, Yeong-Keong; Song, Kyuseok

    2012-06-01

    The content of plutonium isotopes in high burnup pressurized water reactor fuel samples was examined using both alpha spectrometry and mass spectrometry after anion exchange separation. The measured values were compared with results calculated by the ORIGEN-2 code. On average, the ratios (m/c) of the measured values (m) over the calculated values (c) were 1.22±0.16 for (238)Pu, 1.02±0.14 for (239)Pu, 1.08±0.06 for (240)Pu, 1.06±0.16 for (241)Pu, and 1.13±0.08 for (242)Pu. Using the Pu data obtained in this work, correlations were derived between the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu, and the atom % abundances of the Pu isotopes. Using these correlations, the atom % abundances of the plutonium isotopes in the target samples were calculated. These calculated results agreed within a range from 2 to 8% of the experimentally derived values according to the isotopes of plutonium.

  20. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from one another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF

  1. Fe-Mn substance in ocean as reason of regulation radionuclide pollution

    Science.gov (United States)

    Asavin, Alex; Martynov, Konstantin; Konstantinova, Lia

    2013-04-01

    Distribution of radionuclide in marine sediments as yet little studied [Choppin & Wong 1998]. The work mainly focused on effects of nuclear test fallout. In the works are examined isotopes of Pu - 238; Th - 232; U -234;238; Pu - 239,240,241; Am - 241; Np - 237; Cm -244 [Holm 1995]. It has been shown that seems to accumulate radionuclides in marine sediments. In particular, the importance attached to carbonate complexes (corals, etc.). But questions about the possibility of re-mobilization of radionuclide, forms their concentration, their participation in global geochemical cycles in the ocean, remain open. We believe a major factor controlling the distribution of heavy metals is the formation of ocean ferromanganese crusts and nodules hydrogenic at the bottom of the ocean and seamounts. It is likely that the process of formation of Fe-manganese hydrogenic can play a major role in the control of radioactive contamination in the oceanic sediment. At least for the U number of works on the subject [Sherman et al. 2008]. The high sensitivity of the Fe-manganese crust is known to the isotopic composition of lead [Loranger & Zayed 1994, Collen et al 2011]. Recent work [Wilkins etal 2006, Renshaw etal 2009] show a large role; Fe (III)-and Mn (IV)-reducing organisms that anaerobic bacteria in oxidation and therefore changes in mobility systems U and Pu. So much interest is data for sorption of radionuclide on hydroxides Fe and Mn. Unfortunately we are not aware of works on the subject. We have therefore taken their own experimental studies on sorption of radionuclide on natural Fe-Mn crusts (sample from Magellan seamount Pacific ocean) [Martynov et al 2012]. The results showed high sorption ability of material crusts for fixation of radionuclides: U-233, Np-237, Pu-238, Am-241. For all radionuclide experiment absorption has been reached already in the first hour it was 96.0% of total substance radionuclide absorbed from the solution, and after the first day it was reached

  2. An ideal sealed source life-cycle

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they

  3. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  4. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes); Evaluacion de la Intercomparacion CSN/CIEMAT-2010 entre los Laboratorios Nacionales de Radiactividad Ambiental (Ceniza de Dieta)

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Trinidad, J. A.; Llaurado, M.; Suarez, J. A.

    2012-06-08

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  5. Regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees. Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1985-06-01

    Potential accidents for 15 types of fuel cycle and other radioactive material licensees were analyzed. The most potentially hazardous accident, by a large margin, was determined to be the sudden rupture of a heated multi-ton cylinder of UF/sub 6/. Acute fatalities offsite are probably not credible. Acute permanent injuries may be possible for many hundreds of meters, and clinically observable transient effects of unknown long term consequences may be possible for distances up to a few miles. These effects would be caused by the chemical toxicity of the UF/sub 6/. Radiation doses would not be significant. The most potentially hazardous accident due to radiation exposure was determined to be a large fire at certain facilities handling large quantities of alpha-emitting radionuclides (i.e., Po-210, Pu-238, Pu-239, Am-241, Cm-242, Cm-244) or radioiodines (I-125 and I-131). However, acute fatalities or injuries to people offsite due to accidental releases of these materials do not seem plausible. The only other significant accident was identified as a long-term pulsating criticality at fuel cycle facilities handling high-enriched uranium or plutonium. An important feature of the most serious accidents is that releases are likely to start without prior warning. The releases would usually end within about half an hour. Thus protective actions would have to be taken quickly to be effective. There is not likely to be enough time for dose projections, complicated decisionmaking during the accident, or the participation of personnel not in the immediate vicinity of the site. The appropriate response by the facility is to immediately notify local fire, police, and other emergency personnel and give them a brief predetermined message recommending protective actions. Emergency personnel are generally well qualified to respond effectively to small accidents of these types.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 482: Area 15 U15a/e Muckpiles and Ponds Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-09-30

    This Corrective Action Decision Document /Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 482 U15a/e Muckpiles and Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 482 is comprised of three Corrective Action Sites (CASs) and one adjacent area: CAS 15-06-01, U15e Muckpile; CAS 15-06-02, U15a Muckpile; CAS 15-38-01, Area 15 U15a/e Ponds; and Drainage below the U15a Muckpile. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further corrective action, by placing use restrictions on the three CASs and the adjacent area of CAU 482. To support this recommendation, a corrective action investigation (CAI) was performed in September 2002. The purpose of the CAI was to fulfill the following data needs as defined during the Data Quality Objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to determine appropriate corrective actions. The CAU 482 dataset from the CAI was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Tier 2 FALS were determined for the hazardous constituents of total petroleum hydrocarbons (TPH)-diesel-range organics (DRO) and the radionuclides americium (Am)-241, cesium (Cs)-137, plutonium (Pu)-238, and Pu-239. The Tier 2 FALs were calculated for the radionuclides using site-specific information. The hazardous constituents of TPH-DRO were compared to the PALs

  7. Method-MS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L.; Popic, J.M. (Norwegian Univ. of Life Science (UMB), Isotope Lab. (Norway)); Roos, P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Salminen, S. (Univ. of Helsinki (UH) (Finland)); Nygren, U. (Swedish Defence Research Agency (FOI) (Sweden)); Sigmarsson, O.; Palsson, S.E. (Univ. of Iceland/Icelandic Radiation Protection Institute (Iceland))

    2011-05-15

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry (AMS) have shown several advantages compared to traditional methods when measuring long-lived radionuclides. Mass spectrometric methods for determination of very low concentrations of elemental isotopes, and thereby isotopic ratios, have been developed using a variety of ion sources. Although primarily applied to the determination of the lighter stable element isotopes and radioactive isotopes in geological studies, the techniques can equally well be applied to the measurement of activity concentrations of long-lived low-level radionuclides in various samples using 'isotope dilution' methods such as those applied in inductively coupled plasma mass spectrometry (ICP-MS). Due to the low specific activity of long-lived radionuclides, many of these are more conveniently detected using mass spectrometric techniques. Mass spectrometry also enables the individual determination of Pu-239 and Pu-240, which cannot be obtained by alpha spectrometry. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are rapidly growing techniques for the ultra-trace analytical determination of stable and long-lived isotopes and have a wide potential within environmental science, including ecosystem tracers and radio ecological studies. Such instrumentation, of course needs good radiochemical separation, to give best performance. The objectives of the project is to identify current needs and problems within low-level determination of long-lived radioisotopes by ICP-MS, to perform intercalibration and development and improvement of ICP-MS methods for the measurement of radionuclides and isotope ratios and to develop new methods based on modified separation chemistry applied to new

  8. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  9. Effect of precipitation, sorption and stable of isotope on maximum release rates of radionuclides from engineered barrier system (EBS) in deep repository.

    Science.gov (United States)

    Malekifarsani, A; Skachek, M A

    2009-10-01

    shown that the concentrations of the following radionuclides are limited by solubility and precipitate around the waste and buffer: U, Np, Ra, Sm, Zr, Se, Tc, and Pd. The Sensitivity of maximum release rates in case precipitation shows that some nuclides such as Cs-135, Nb-94, Nb-93 m, Zr-93, Sn-126, Th-230, Pu-240, Pu-242, Pu-239, Cm-245, Am-243, Cm-245, U-233, Ac-227, Pb-210, Pa-231 and Th-229 are very little changed in case the maximum release rate from EBS corresponding to eliminate precipitation in buffer material. Some nuclides such as Se-79, Tc-99, Pd-107, Th-232, U-236, U-233, Ra-226, Np-237 U-235, U-234, and U-238 are virtually changed in the maximum release rate compared to case that taking account precipitation. In Sensitivity of maximum release rates in case to taking account stable isotopes (according to the table of inventory) there are only some nuclides with their stable isotopes in the vitrified waste. And calculation shows that Pd-107 and Se-79 are very increase in case eliminate stable isotope. The Sensitivity of maximum release rates in case retardation with sorption shows that some nuclides such as Pu-240, Pu-241, Pu-239, Cm-245, Am-241, Cm-246, and Am-243 are increased in some time in case maximum release rate from EBS corresponding to eliminate retardation in buffer material. Some nuclides such as U-235, U-233 and U-236 have a little decrease in case maximum release because their parents have short live and before decay to their daughter will released from the EBS. If the characteristic time taken for a nuclide to diffuse across the buffer exceeds its half-life, then the release rate of that nuclide from the EBS will be attenuated by radioactive decay. Thus, the retardation of the diffusion process due to sorption tends to reduce the release rates of short-lived nuclides more effectively than for the long-lived ones. For example, release rates of Pu-240, Cm-246 and Am-241, which are relatively short-lived and strongly sorbing, are very small

  10. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.

    2013-07-15

    .05E+00 wt % (n=3, st. dev. = 8.25E-01 wt %). Analyses results for Pu-238 and Pu-239, and Pu-241 are 7.06E-05 {+-} 7.63E-06 wt %, 9.45E-04 {+-} 3.52E-05 wt %, and <2.24E-06 wt %, respectively. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Because this 2H evaporator pot bottom scale sample contained a significant amount of elemental mercury (11.7 wt % average), it is recommended that analysis for mercury be included in future Technical Task Requests on 2H evaporator sample analysis at SRNL. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241.

  11. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead

  12. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov [Washington State Department of Ecology, N. 4601 Monroe, Spokane, WA 99205-1295 (United States); Verst, Scott Van [Washington State Department of Health, Olympia, WA (United States); Rochette, Elizabeth A. [Washington State Department of Ecology, Richland, WA (United States)

    2010-02-15

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA

  13. Tank 40 Final SB7b Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J.

    2012-11-06

    , and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method.

  14. Tank 40 final sludge batch 9 chemical and fissile radionuclide characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, W. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-26

    carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the SB9 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.v

  15. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-09-19

    carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.

  16. Verification of RESRAD-RDD. (Version 2.01)

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States); Flood, Paul E. [Argonne National Lab. (ANL), Argonne, IL (United States); LePoire, David [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, the results generated by RESRAD-RDD version 2.01 are compared with those produced by RESRAD-RDD version 1.7 for different scenarios with different sets of input parameters. RESRAD-RDD version 1.7 is spreadsheet-driven, performing calculations with Microsoft Excel spreadsheets. RESRAD-RDD version 2.01 revamped version 1.7 by using command-driven programs designed with Visual Basic.NET to direct calculations with data saved in Microsoft Access database, and re-facing the graphical user interface (GUI) to provide more flexibility and choices in guideline derivation. Because version 1.7 and version 2.01 perform the same calculations, the comparison of their results serves as verification of both versions. The verification covered calculation results for 11 radionuclides included in both versions: Am-241, Cf-252, Cm-244, Co-60, Cs-137, Ir-192, Po-210, Pu-238, Pu-239, Ra-226, and Sr-90. At first, all nuclidespecific data used in both versions were compared to ensure that they are identical. Then generic operational guidelines and measurement-based radiation doses or stay times associated with a specific operational guideline group were calculated with both versions using different sets of input parameters, and the results obtained with the same set of input parameters were compared. A total of 12 sets of input parameters were used for the verification, and the comparison was performed for each operational guideline group, from A to G, sequentially. The verification shows that RESRAD-RDD version 1.7 and RESRAD-RDD version 2.01 generate almost identical results; the slight differences could be attributed to differences in numerical precision with Microsoft Excel and Visual Basic.NET. RESRAD-RDD version 2.01 allows the selection of different units for use in reporting calculation results. The results of SI units were obtained and compared with the base results (in traditional units) used for comparison with version 1.7. The comparison shows that RESRAD

  17. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  18. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

    2013-07-01

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment

  19. CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-01-09

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is

  20. Seaborg's Plutonium ?

    CERN Document Server

    Norman, Eric B; Telhami, Kristina E

    2014-01-01

    Passive x-ray and gamma-ray analysis was performed on UC Berkeley's EH&S Sample S338. The object was found to contain Pu-239 and no other radioactive isotopes. The mass of Pu-239 contained in this object was determined to be 2.0 +- 0.3 micrograms. These observations are consistent with the identification of this object being the 2.77-microgram plutonium oxide sample described by Glenn Seaborg and his collaborators as the first sample of Pu-239 that was large enough to be weighed.

  1. Accelerator mass spectrometry (AMS) in plutonium analysis.

    Science.gov (United States)

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  2. Investigation of the feasibility of a small scale transmutation device

    Science.gov (United States)

    Sit, Roger Carson

    This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long

  3. Application of Frequency of Detection Methods in Design and Optimization of the INL Site Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report presents an evaluation of a hypothetical INL Site monitoring network and the existing INL air monitoring network using frequency of detection methods. The hypothetical network was designed to address the requirement in 40 CFR Part 61, Subpart H (2006) that “emissions of radionuclides to ambient air from U.S. DOE facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent exceeding 10 mrem/year.” To meet the requirement for monitoring only, “radionuclide releases that would result in an effective dose of 10% of the standard shall be readily detectable and distinguishable from background.” Thus, the hypothetical network consists of air samplers placed at residence locations that surround INL and at other locations where onsite livestock grazing takes place. Two exposure scenarios were used in this evaluation: a resident scenario and a shepherd/rancher scenario. The resident was assumed to be continuously present at their residence while the shepherd/rancher was assumed to be present 24-hours at a fixed location on the grazing allotment. Important radionuclides were identified from annual INL radionuclide National Emission Standards for Hazardous Pollutants reports. Important radionuclides were defined as those that potentially contribute 1% or greater to the annual total dose at the radionuclide National Emission Standards for Hazardous Pollutants maximally exposed individual location and include H-3, Am-241, Pu-238, Pu 239, Cs-137, Sr-90, and I-131. For this evaluation, the network performance objective was set at achieving a frequency of detection greater than or equal to 95%. Results indicated that the hypothetical network for the resident scenario met all performance objectives for H-3 and I-131 and most performance objectives for Cs-137 and Sr-90. However, all actinides failed to meet the performance objectives for most sources. The shepherd/rancher scenario showed

  4. 2015 In-Situ Gamma-Ray Assay of the West Cell Line in the 235-F Plutonium Fuel Form Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Aucott, T. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    In November and December 2015, scientists from SRNL took a series of in-situ gamma-ray measurements through the windows in front of Cells 6-9 on the west line of the PuFF facility using a shielded, 120% high-purity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Where possible, the distribution of the Pu-238 in the cells was determined using the Germanium Gamma-ray Imager (GeGI). This distribution was then fed into the MCNP model to quantify the Pu-238 in each cell. Data analysis was performed using three gamma rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells.

  5. A fast semi-quantitative method for Plutonium determination in an alpine firn/ice core

    Science.gov (United States)

    Gabrieli, J.; Cozzi, G.; Vallelonga, P.; Schwikowski, M.; Sigl, M.; Boutron, C.; Barbante, C.

    2009-04-01

    Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Plutonium, unlike uranium, is essentially anthropogenic and it was first produced and isolated in 1940 by deuteron bombardment of uranium in the cyclotron of Berkeley University. It exists in five main isotopes, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, derived from civilian and military sources (weapons production and detonation, nuclear reactors, nuclear accidents). In the environment, 239Pu is the most abundant isotope. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l.), dating from 1945 to 1991. The239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an ICP-SFMS (Thermo Element2) equipped with a desolvation system (APEX). 238UH+ interferences were negligible for U concentrations lower than 50 ppt as verified both in spiked fresh snow and pre-1940 ice samples. The shape of 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak starts in 1954/55 to 1958 and includes the first testing period which reached a maximum in 1958. Despite a temporary halt in testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the sign of the "Limited Test Ban Treaty" between USA and URSS in 1964, Pu

  6. TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C.

    2012-03-15

    /free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH{sup -}/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described. The following conclusions were drawn from the analytical results reported here: (1) The ratios of the major elements for the SB7b WAPS sample are different from those measured for the SB7a WAPS sample. There is less Al and Mn relative to Fe than the previous sludge batch. (2) The elemental composition of this sample and the analyses conducted here are reasonable and consistent with DWPF batch data measurements in light of DWPF pre-sample concentration and SRAT product heel contributions to the DWPF SRAT receipt analyses. The element ratios for Al/Fe, Ca/Fe, Mn/Fe, and U/Fe agree within 10% between this work and the DWPF Sludge Receipt and Adjustment Tank (SRAT) receipt analyses. (3) Sulfur in the SB7b WAPS sample is 82% soluble, slightly less than results reported for SB3, SB4, and SB6 samples but unlike the 50% insoluble sulfur observed in the SB5 WAPS sample. In addition, 23% of the soluble sulfur is not present as sulfate in SB7b. (4) The average activities of the fissile isotopes of interest in the SB7b WAPS sample are (in {mu}Ci/g of total dried solids): 4.22E-02 U-233, 6.12E-04 U-235, 1.08E+01 Pu-239, and 5.09E+01 Pu-241. The full radionuclide composition will be reported in a future document. (5) The fission product noble metal and Ag concentrations appear to have largely peaked in previous DWPF sludge batches, with the exception of Ru, which still shows a slight increase in SB7b.

  7. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Wenner, M. [Westinghouse Electric Company, Cranberry Township, PA (United States); Fiorina, C. [Polytechnic of Milano, Milan (Italy); Paul Sherrer Institute (Switzerland); Huang, M.; Petrovic, B. [Georgia Technology University, Atlanta, GA (United States); Krepel, J. [Paul Sherrer Institute (Switzerland)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energy ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially

  8. Behavior of Sr-90 and transuranic elements in three areas in Finland[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ikaeheimonen, T.K.; Vartti, V.P.; Ilus, E. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The study was carried out in three areas (both terrestrial and aquatic): in the Maenttae area in Central Finland and in the environs of the Loviisa and Olkiluoto Nuclear Power Plants. The highest Sr-90 concentrations were found in Ebilobium angustifolium, being 70 - 90 Bq/kg d.w., and Empetrum nigrum, 15 - 60 Bq/kg d.w. Concentrations of more than 10 Bq/kg d.w. were also detected in leaves of birch (Betula pendula), in berries of Empetrum nigrum and in ferns (Dryopteris carthusiana, Dryopteris expansa, Polypodium vulgare). The Sr-90 concentrations in mushrooms were less than 10 Bq/kg d.w. and varied considerably from one species to another. The concentrations of Pu-239,240 were below the detection limits in mushrooms and berries. Detectable amounts of Pu-239,240 were found in ferns. Am-241 was detected in ferns, but also in a Cantharellus tubaeformis sample and in Calluna vulgaris, in which the Pu-239,240 concentrations were below the detection limits. The highest concentrations of Sr-90 in fresh water environment were detected in shells and flesh of freshwater clam, Anodonta sp., and in marine environment in Saduria entomon and Macoma balthica. In Anodonta sp. (both shells and flesh), also Pu-239,240 and Am-241 were detected. Pu-239,240 was detectable in almost all the marine samples. Concentration factors (CF) of Pu-239,240 were roughly at the same level or greater than those of Sr-90, especially in the marine environment. Best indicator organism for Sr in the fresh water environment was Anodonta sp., and then Nuphar lutea (CFs 10{sup 3} - 10{sup 4}); and Macoma balthica and Fucus vesiculosus in the marine environment. Roots of Nymphaea candida and flesh of Anodonta sp. accumulated best Pu-239,240 in fresh water environment; The CFs of Pu-239,240 were greater in the marine environment compared to those in fresh water environment. Phytoplankton and periphyton accumulate most efficiently Pu-239,240 in the marine environment. The behavior of plutonium and americium

  9. Variations in Pu isotopic composition in soils from the Spitsbergen (Norway): Three potential pollution sources of the Arctic region.

    Science.gov (United States)

    Łokas, E; Anczkiewicz, R; Kierepko, R; Mietelski, J W

    2017-07-01

    Although the polar regions have not been industrialised, numerous contaminants originating from human activity are detectable in the Arctic environment. This study reports evidence of (240)Pu/(239)Pu atomic ratios in the tundra and initial soils from different parts of west and central Spitsbergen and recognizes possible environmental inputs of non-global fallout Pu. The average atomic ratio of (240)Pu/(239)Pu equal to 0.179 (ranging between 0.129 and 0.201) in tundra soils are comparable to the characteristic ratio for global fallout (0.180). However, the (240)Pu/(239)Pu atomic ratios in the initial soils from proglacial zone of glaciers change within wide range between 0.1281 and 0.234 with the mean value of 0.169. By combining alpha and mass spectrometry, the three-sources model was used to identify the Pu sources in initial soils. Our study indicated that the main source of Pu is nuclear tests and that a second source with lower Pu ratio may come from weapons grade Pu (unexploded weapons grade Pu ie. material from bomb which didn't undergo nuclear explosions for example for security tests). Additionally, we found samples with high (238)Pu/(239+240)Pu activity ratios and with typical global fallout (240)Pu/(239)Pu atomic ratios, which are associated with separate sources of pure (238)Pu from the SNAP-9A satellite burn up in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Traditional and Model Based Assay of Irregular Geometry Items

    Energy Technology Data Exchange (ETDEWEB)

    MOORE, FRANK S.; SALAYMEH, SALEEM

    2005-06-15

    The Analytical Development Section (ADS) of SRNL was requested to perform a waste disposal assay of two heater boxes which had been used in the HB Line dissolvers. They had been sent to SRNL for study to make recommendations on how to prevent future failure of the units when they were replaced. The study having been completed, the units needed to be characterized prior to sending to Solid Waste for disposal. An assay station consisting of a turntable, HPGe detector, CANBERRA Inspector, transmission source and a portable computer was set up to do the required assays. The assays indicate the presence of U-235, Pu-239 and Cs-137. No measurable amounts of U-235 or Pu-239 were found. Therefore the Minimum Detectable Activities for U-235 and Pu-239 were calculated. For Heater Box 1, 0.23 grams of U-235 and 0.24 grams of Pu-239. For Heater Box 2, the results were 0.21 grams of U-235 and 0.21 grams of Pu-239. This paper describes and documents the assays employed to determine the amount of U, Pu and Cs contents of the heater boxes. The paper provides results of SNM assays using traditional calibration of the system and on one based on modeling. It also provides the scientific community with data that will assist the user in determining the method of choice for assaying items with irregular geometries.

  11. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  12. Light Weight Radioisotope Heater Unit (LWRHU) production for the Galileo mission

    Science.gov (United States)

    Rinehart, Gary H.

    The Light Weight Radioisotope Heater Unit (LWRHU) is a (Pu-238)O2-fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a (Pu-238)O2-fuel pellet, a Pt-30 pct Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 134 heater units which will be used on the Galileo mission.

  13. Intercalibration of selected anthropogenic radionuclides for the GEOTRACES Program

    DEFF Research Database (Denmark)

    Kenna, Timothy C.; Masqué, Pere; Mas, Jose Luis

    2012-01-01

    As part of the GEOTRACES Program, six laboratories participated in an intercalibration exercise on several anthropogenic radionuclides of interest. The effort was successful for 239,240Pu activity, 240Pu/239Pu isotope ratio, and 137Cs activity measured in filtered seawater samples from the Bermud...

  14. Analysis of tank 39H (HTF-39-15-61, 62) surface and subsurface supernatant samples in support of corrosion control program

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-19

    This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239.

  15. Plutonium in Soils from Northeast China and Its Potential Application for Evaluation of Soil Erosion

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin;

    2013-01-01

    Surface and soil core samples from northeast China were analyzed for Pu isotopes. The measured 240Pu/239Pu atomic ratios and 239 1 240Pu/137Cs activity ratios revealed that the global fallout is the dominant source of Pu and 137Cs at these sites. Migration behavior of Pu varying with land type an...

  16. A certified reference material for radionuclides in the water sample from Irish Sea (IAEA-443)

    DEFF Research Database (Denmark)

    Pham, M.K.; Betti, M.; Povinec, P.P.

    2011-01-01

    A new certified reference material (CRM) for radionuclides in sea water from the Irish sea (IAEA-443) is described and the results of the certification process are presented. Ten radionuclides (3H, 40K, 90Sr, 137Cs, 234U, 235U, 238U, 238Pu, 239+240Pu and 241Am) have been certified, and information...

  17. Transport of (137)Cs, (241)Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea.

    Science.gov (United States)

    Lujanienė, G; Remeikaitė-Nikienė, N; Garnaga, G; Jokšas, K; Šilobritienė, B; Stankevičius, A; Šemčuk, S; Kulakauskaitė, I

    2014-01-01

    Activities of (137)Cs, (241)Am and (239,240)Pu were analyzed with special emphasis on better understanding of radionuclide transport from land via the Neman River estuaries to the Baltic Sea and behavior in the marine environment. Although activity concentrations of (137)Cs in water samples collected the Baltic Sea were almost 100 times higher as compared to the Curonian Lagoon, its activities in the bottom sediments were found to be comparable. Activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios indicated a different contribution of the Chernobyl-originated Pu to the suspended particulate matter (SPM) and bottom sediments. The largest amount of the Chernobyl-derived Pu was found in the smallest suspended matter particles of 0.2-1 μm in size collected in the Klaipeda Strait in 2011-2012. The decrease of characteristic activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios towards the global fallout ones in surface soil and the corresponding increase of plutonium (Pu) ratios in the suspended particulate matter and bottom sediments have indicated that the Chernobyl-derived Pu, primarily deposited on the soil surface, was washed out and transported to the Baltic Sea. Behavior of (241)Am was found to be similar to that of Pu isotopes.

  18. Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  19. 78 FR 1848 - Plutonium-238 Production for Radioisotope Power Systems for National Aeronautics and Space...

    Science.gov (United States)

    2013-01-09

    ... Plutonium-238 Production for Radioisotope Power Systems for National Aeronautics and Space Administration...-238 (Pu-238) for radioisotope power systems (RPSs) to support the National Aeronautics and Space... Radioisotope Power Systems (Draft Consolidation EIS) in 2005 to consolidate the nuclear operations related...

  20. Production of plutonium tracers in Np-237 nuclear reactions with He-3-ions in the energy range from 26 to 60 MeV

    NARCIS (Netherlands)

    Aaltonen, J; Dendooven, P; Gromova, EA; Jakovlev, VA; Trzaska, WH

    1998-01-01

    Cross-sections for the reaction Np-237 + He-3 --> Pu-236,Pu-237,Pu-238 at He-3 bombarding energies from 26 to 60 MeV were measured. Thick-target yields, based on the measured and previously known cross-sections were constructed. The results are discussed and compared with Ether reactions leading to

  1. U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris.

    Science.gov (United States)

    Eriksson, Mats; Lindahl, Patric; Roos, Per; Dahlgaard, Henning; Holm, Elis

    2008-07-01

    This study concerns an arctic marine environment that was contaminated by actinide elements after a nuclear accident in 1968, the so-called Thule accident In this study we have analyzed five isolated hot particles as well as sediment samples containing particles from the weapon material for the determination of the nuclear fingerprint of the accident. We report that the fissile material in the hydrogen weapons involved in the Thule accident was a mixture of highly enriched uranium and weapon-grade plutonium and that the main fissile material was 235U (about 4 times more than the mass of 239Pu). In the five hot particles examined, the measured uranium atomic ratio was 235U/238U = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: 24Pu/239Pu = 0.0551 +/- 0.0008 (atom ratio), 238Pu/239+240Pu = 0.0161 +/- 0.0005 (activity ratio), 241Pu/239+240Pu = 0.87 +/- 0.12 (activity ratio), and 241Am/ 239+240Pu = 0.169 +/- 0.005 (activity ratio) (reference date 2001-10-01). From the activity ratios of 241Pu/241Am, we estimated the time of production of this weapon material to be from the late 1950s to the early 1960s. The results from reanalyzed bulk sediment samples showed the presence of more than one Pu source involved in the accident, confirming earlier studies. The 238Pu/239+240PU activity ratio and the 240Pu/ 239Pu atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described above and for the other groups the Pu isotopic ratios were lower (238Pu/ 239+240PU activity ratio approximately 0.01 and the 240Pu/P239Pu atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We hypothesis that the decrease in the ratio is due to a preferential leaching of U relative to Pu from the particle matrix.

  2. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  3. In-situ gamma-ray assay of the east cell line in the 235-F Plutonium fuel form facility

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-08-21

    On September 17th -19th , 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 1-5 on the east line of the PuFF facility using a well-collimated, high-purity germanium detector. The cell interiors were assayed along with the furnaces and storage coolers that protrude beneath the cells. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the East Cell Line of PuFF. The results of the assay measurements are found in the table on the following page along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are reported at 1σ. Summing the assay results and treating MDAs as M238Pu= 0 ± MDA, the total holdup in the East Cell Line was 240 ± 40 grams. This result is 100 grams lower than the previous estimate, a 0.55σ difference. The uncertainty in the Pu-238 holdup is also reduced substantially relative to the 2006 scoping assay. However, the current assay results are in agreement with the 2006 scoping assay results due to the large uncertainty associated with the 2006 scoping assays. The current assay results support the conclusion that the 2006 results bound the Pu-238 mass in Cells 1-5. These results should be considered preliminary since additional measurements of the East Cell line are scheduled for 2017 and 2018. Those measurements will provide detailed information about the distribution of Pu-238 in the cells to be used to refine the results of the current assay.

  4. The behavior of radionuclides in the soils of Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Litaor, M.I. [Tel-Hai Rodman Coll., Upper Galilee (Israel); Barth, G.; Zika, E.M.; Litus, G.; Moffitt, J.; Daniels, H. [Colorado Univ., Civil and Environmental Engineering Dept., Boulder, CO (United States)

    1998-05-01

    Radionuclide contamination of soils in Rocky Flats, Colorado, resulted from leaking drums of Pu-contaminated oil stored at an outdoor area. To evaluated the mechanisms of radionuclide transport from the contaminated soils to groundwater, an advanced monitoring system was installed across a toposequence. The impact of natural rain, snowmelt, and large-scale rain simulations on the mobility and distribution of the radionuclides in soil interstitial water was studied. The distribution of radionuclides during the monitoring period from 1993 to 1995 suggested that Pu-239 + 240 and Am-241 are largely immobile in semi-arid soils. Fractionation of Pu-239 + 240 and Am-241 to different particle sizes in the soil interstitial water suggested that most of the radionuclides (83-97%) were associated with suspended particles, whereas the level of radionuclides associated with colloidal (0.45 {mu}m > X > 1 nm) and nonfilterable (< 1 nm) fractions ranged from 1.5 to 15%. (author).

  5. Distribution characteristics of ¹³⁷Cs, Pu isotopes and ²⁴¹Am in soil in Korea.

    Science.gov (United States)

    Lee, S H; Oh, J S; Lee, J M; Lee, K B; Park, T S; Lujaniene, G; Valiulis, D; Sakalys, J

    2013-11-01

    Cesium-137, Plutonium isotopes and (241)Am were studied in soil samples collected from Korea between 2006 and 2008 to provide information on the distribution and origin of Pu isotopes and (241)Am. The vertical profiles of radionuclides showed higher activity concentrations at the surface layer and then gradually decreased with depth. A good correlation between (137)Cs and (239,240)Pu was observed, whereas a poor relationship between (137)Cs and (241)Am was found. The (238)Pu/(239,240)Pu, (241)Am/(239,240)Pu and (239,240)Pu/(137)Cs activity ratios were concordant to those of the global fallout ratios. Furthermore, the atomic ratios of (240)Pu/(239)Pu in the samples provided the information of Pu depositional history and the origin of Pu isotopes in Korea.

  6. Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters

    OpenAIRE

    Alhassan, Erwin; Sjöstrand, Henrik; Duan, Junfeng; Gustavsson, Cecilia; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael

    2014-01-01

    Analyses are carried out to assess the impact of nuclear data uncertainties on some reactor safety parameters for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-format libraries, generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo code to obtain distribution in reactor safety parameters. The distribution in keff obtained was compar...

  7. Propagation of nuclear data uncertainties for ELECTRA burn-up calculations

    OpenAIRE

    Sjöstrand, Henrik; Alhassan, Erwin; Duan, Junfeng; Gustavsson, Cecilia; KONING Arjan J.; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael

    2013-01-01

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in Pu-239 transport data to uncertainties in the fuel inventory of ELECTRA during the reactor life using the Total Monte Carlo approach (TMC). Within the TENDL project the nuclear models input parameters were randomized within their uncertainties a...

  8. Application of deconvolution techniques in X-ray spectra; Aplicacion de tecnica de deconvolucion en espectros de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Burgos Garcia, D.; Sancho Llerandi, C.; Saez Vergara, J. C.; Correa Garces, E.; Lanzas Sanchez, M. R.; Herbella Blazquez, M.

    2011-07-01

    The decay of Am-241, like that of Pu-239 is accompanied by the characteristic X-ray emission in this case, the Np-237. Being atomic number elements in a row, the X-ray emission of U (Z = 92) and Np (Z93) are very similar energies and thus inevitably overlapping photopeaks in the spectrum. This raises the question whether it is appropriate to try to separate their respective contributions in the spectrum, using spectral deconvolution techniques.

  9. Distribution and source of (129)I, (239)(,240)Pu, (137)Cs in the environment of Lithuania.

    Science.gov (United States)

    Ežerinskis, Ž; Hou, X L; Druteikienė, R; Puzas, A; Šapolaitė, J; Gvozdaitė, R; Gudelis, A; Buivydas, Š; Remeikis, V

    2016-01-01

    Fifty five soil samples collected in the Lithuania teritory in 2011 and 2012 were analyzed for (129)I, (137)Cs and Pu isotopes in order to investigate the level and distribution of artificial radioactivity in Lithuania. The activity and atomic ratio of (238)Pu/((239,24)0)Pu, (129)I/(127)I and (131)I/(137)Cs were used to identify the origin of these radionuclides. The (238)Pu/(239+240)Pu and (240)Pu/(239)Pu ratios in the soil samples analyzed varied in the range of 0.02-0.18 and 0.18-0.24, respectively, suggesting the global fallout as the major source of Pu in Lithuania. The values of 10(-9) to 10(-6) for (129)I/(127)I atomic ratio revealed that the source of (129)I in Lithuania is global fallout in most cases though several sampling sites shows a possible impact of reprocessing releases. Estimated (129)I/(131)I ratio in soil samples from the southern part of Lithuania shows negligible input of the Chernobyl fallout. No correlation of the (137)Cs and Pu isotopes with (129)I was observed, indicating their different sources terms. Results demonstrate uneven distribution of these radionuclides in the Lithuanian territory and several sources of contamination i.e. Chernobyl accident, reprocessing releases and global fallout.

  10. Distribution and source of 129I, 239,240Pu, 137Cs in the environment of Lithuania

    DEFF Research Database (Denmark)

    Ezerinskis, Z.; Hou, Xiaolin; Druteikiene, R.;

    2016-01-01

    Fifty five soil samples collected in the Lithuania teritory in 2011 and 2012 were analyzed for 129I, 137Cs and Pu isotopes in order to investigate the level and distribution of artificial radioactivity in Lithuania. The activity and atomic ratio of 238Pu/239,240Pu, 129I/127I and 131I/137Cs were...... used to identify the origin of these radionuclides. The 238Pu/239þ240Pu and 240Pu/239Pu ratios in the soil samples analyzed varied in the range of 0.02e0.18 and 0.18e0.24, respectively, suggesting the global fallout as the major source of Pu in Lithuania. The values of 109 to 106 for 129I/127I atomic...... ratio revealed that the source of 129I in Lithuania is global fallout in most cases though several sampling sites shows a possible impact of reprocessing releases. Estimated 129I/131I ratio in soil samples from the southern part of Lithuania shows negligible input of the Chernobyl fallout...

  11. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Directory of Open Access Journals (Sweden)

    Lee YongDeok

    2017-01-01

    Full Text Available A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241 was done at Korea Atomic Energy Research Institute (KAERI, using lead slowing down spectrometer (LSDS. The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with ~2% uncertainty for Pu239. By applying the covering (neutron absorber, the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  12. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Science.gov (United States)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  13. Plutonium isotopes in the terrestrial environment at the Savannah River Site, USA: a long-term study.

    Science.gov (United States)

    Armstrong, Christopher R; Nuessle, Patterson R; Brant, Heather A; Hall, Gregory; Halverson, Justin E; Cadieux, James R

    2015-02-01

    This work presents the findings of a long-term plutonium (Pu) study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at the Savannah River National Laboratory (SRNL) in the A-Area. Plutonium content and isotopic abundances were measured over this time period by α particle and thermal ionization mass spectrometry (3STIMS). We detail the complete process of the sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the (238)Pu/(239+240)Pu activity ratios attributed to SRS are substantially different than fallout due to past (238)Pu production on the site. The (240)Pu/(239)Pu atom ratios are reasonably consistent from year to year and are lower than fallout indicating an admixture of weapons-grade material, while the (242)Pu/(239)Pu atom ratios are higher than fallout values, again due to actinide production activities. Overall, the plutonium signatures obtained in this study reflect a distinctive mixture of weapons-grade, heat source, and higher burn-up plutonium with fallout material. This study provides a unique opportunity for developing and demonstrating a blue print for long-term low-level monitoring of trace plutonium in the environment.

  14. Plutonium concentration and isotopic ratio in soil samples from central-eastern Japan collected around the 1970s

    Science.gov (United States)

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2015-04-01

    Obtaining Pu background data in the environment is essential for contamination source identification and assessment of environmental impact of Pu released from the Fukushima Daiichi nuclear power plant (FDNPP) accident. However, no baseline information on Pu isotopes in Fukushima Prefecture has been reported. Here we analyzed 80 surface soil samples collected from the central-eastern Japan during 1969-1977 for 239+240Pu activity concentration and 240Pu/239Pu atom ratio to establish the baseline before the FDNPP accident. We found that 239+240Pu activity concentrations ranged from 0.004 -1.46 mBq g-1, and 240Pu/239Pu atom ratios varied narrowly from 0.148 to 0.229 with a mean of 0.186 +/- 0.015. We also reconstructed the surface deposition density of 241Pu using the 241Pu/239Pu atom ratio in the Japanese fallout reference material. The obtained results indicated that, for the FDNPP-accident released 241Pu, a similar radiation impact can be estimated as was seen for the global fallout deposited 241Pu in the last decades.

  15. US Department of Energy Nevada Operations Office annual site environmental report: 1993. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Glines, W.M.; Townsend, Y.E.

    1994-09-01

    This report is comprised of appendices which support monitoring and surveillance on and around the Nevada Test Site (NTS) during 1993. Appendix A contains onsite Pu-238, gross beta, and gamma-emitting radionuclides in air. Appendix B contains onsite tritium in air. Appendix C contains onsite Pu-238, Sr-90, gross alpha and beta, gamma-emitting radionuclides, Ra-226, Ra-228 and tritium in water. A summary of 1993 results of offsite radiological monitoring is included in Appendix D. Appendix E contains radioactive noble gases in air onsite. Appendix F contains onsite thermoluminescent dosimeter data. Historical trends in onsite thermoluminescent dosimeter data are contained in Appendix G. Appendix H summarizes 1993 compliance at the DOE/NV NTS and non-NTS facilities. Appendix I summarizes the 1993 results of non radiological monitoring.

  16. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  17. Nuclear applications in manned space station

    Science.gov (United States)

    Brooksbank, W. A., Jr.; Sieren, G. J.

    1972-01-01

    The zirconium hydride reactor, coupled to a thermo-electric or Brayton conversion system, and the Pu 238 isotope/Brayton system, are considered to be the viable nuclear candidates for the modular space station electrical power system. The basic integration aspects of these nuclear electrical power systems are reviewed, including unique requirements imposed by the buildup and incremental utilization considerations of the modular station. Also treated are the various programmatic aspects of nuclear power system design and selection.

  18. The Oxidation of Hydrazine by Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  19. Radiolytic hydrogen production from process vessels in HB line - production rates compared to evolution rates and discussion of LASL reviews

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.

    1992-11-12

    Hydrogen production from radiolysis of aqueous solutions can create a safety hazard since hydrogen is flammable. At times this production can be significant, especially in HB line where nitric acid solutions containing high concentrations of Pu-238, an intense alpha emitter, are processed. The hydrogen production rates from these solutions are necessary for safety analyses of these process systems. The methods and conclusions of hydrogen production rate tests are provided in this report.

  20. In-situ gamma-ray assay of the west cell line in the 235-F plutonium fuel form facility

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A. H. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-09-01

    On August 29th, 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 6-9 on the west line of the PuFF facility using an uncollimated, highpurity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the West Cell Line of PuFF. The results of the assay measurements are found in the table below along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are given as 1σ. The total holdup in the West Cell Line was 2.4 ± 0.7 grams. This result is 0.6 g higher than the previous estimate, a 0.4σ difference.

  1. Methodological Study on AMS Measurement of Ultra-trace Pu Isotope Ratios at CIAE

    Institute of Scientific and Technical Information of China (English)

    DONG; Ke-jun; ZHAO; Qing-zhang; WANG; Chen; HE; Ming; JIANG; Shan; ZHANG; Hui; PANG; Yi-jun; SHEN; Hong-tao; WANG; Xiao-ming; XU; Yong-ning; WU; Shao-yong; YANG; Xu-ran; WANG; Xiang-gao

    2015-01-01

    The determination of ultra-trace plutonium is very important in different fields.A new measurement method of plutonium isotopic ratios with accelerator mass spectrometry(AMS)was developed at China Institute of Atomic Energy(CIAE).Two laboratory reference standards of 239Pu/240 Pu(ST1)and 239Pu/242 Pu(ST2)are17.241and 10.059,a flow blank,a commercial blank and three real samples were respectively

  2. Neutron angular distribution in plutonium-240 spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2016-09-11

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.

  3. Plutonium Isotopes ((239-241)Pu) Dissolved in Pacific Ocean Waters Detected by Accelerator Mass Spectrometry: No Effects of the Fukushima Accident Observed.

    Science.gov (United States)

    Hain, Karin; Faestermann, Thomas; Fimiani, Leticia; Golser, Robin; Gómez-Guzmán, José Manuel; Korschinek, Gunther; Kortmann, Florian; Lierse von Gostomski, Christoph; Ludwig, Peter; Steier, Peter; Tazoe, Hirofumi; Yamada, Masatoshi

    2017-02-21

    The concentration of plutonium (Pu) and the isotopic ratios of (240)Pu to (239)Pu and (241)Pu to (239)Pu were determined by accelerator mass spectrometry (AMS) in Pacific Ocean water samples (20 L each) collected in late 2012. The isotopic Pu ratios are important indicators of different contamination sources and were used to identify a possible release of Pu into the ocean by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. In particular, (241)Pu is a well-suited indicator for a recent entry of Pu because (241)Pu from fallout of nuclear weapon testings has already significantly decayed. A total of 10 ocean water samples were prepared at the Radiochemie München of the TUM and analyzed at the Vienna Environmental Research Laboratory (VERA). Several samples showed a slightly elevated (240)Pu/(239)Pu ratio of up to 0.22 ± 0.02 compared to global fallout ((240)Pu/(239)Pu = 0.180 ± 0.007), whereas all measured (241)Pu-to-(239)Pu ratios were consistent with nuclear weapon fallout ((241)Pu/(239)Pu < 2.4 × 10(-3)), which means that no impact from the Fukushima accident was detected. From the average (241)Pu-to-(239)Pu ratio of 8-2(+3) ×10(-4) at a sampling station located at a distance of 39.6 km to FDNPP, the 1-σ upper limit for the FDNPP contribution to the (239)Pu inventory in the water column was estimated to be 0.2%. Pu, with the signature of weapon-grade Pu was found in a single sample collected around 770 km off the west coast of the United States.

  4. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    Science.gov (United States)

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice.

  5. Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai-ichi Nuclear Power Station accident.

    Science.gov (United States)

    Oikawa, Shinji; Watabe, Teruhisa; Takata, Hyoe

    2015-04-01

    A radioactivity measurement survey was carried out from 24 April 2008 to 3 June 2011 to determine the levels of plutonium isotopes and (240)Pu/(239)Pu atom ratios in the marine environments off the sites of commercial nuclear power stations around the Japanese islands; the sampling period extended to two months after the Fukushima Dai-ichi Nuclear Power Station accident. In our previous study (Oikawa et al., 2015), data on Pu isotopes and (241)Am in sediments have already been reported. In this study, we report those on Pu isotopes in seawater as well as sediments, and the characteristics of sediments in addition (e.g., ignition loss and biogenic opals). Concentrations of (239+240)Pu in seawater and bottom sediments remained nearly constant at all sampling locations during the survey period. In addition, no regional differences were observed in the (239+240)Pu concentrations in surface waters. Higher (239+240)Pu concentrations were found in bottom waters at deeper sampling locations, but the (240)Pu/(239)Pu atom ratios were nearly constant regardless of the water depth. Higher (239+240)Pu concentrations were also found in bottom sediments at deeper sampling locations, but vice versa for (240)Pu/(239)Pu atom ratios as reported in the previous report. The sediments samples from deeper locations showed the higher percentage of ignition loss as well as the higher content of biogenic opal. There was likely to be some driving force participating in the transfer of Pu isotopes associated with biogenic substances to the deeper seabed. The present survey showed that the accident at the Fukushima Dai-ichi Nuclear Power Station did not contribute much to the inventory of Pu isotopes in the adjacent sea area.

  6. Disposition of plutonium-239 via production of fission molybdenum-99.

    Science.gov (United States)

    Mushtaq, A

    2011-04-01

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  7. Tank 241-S-304, Grab samples, 304S-98-1, 304S-98-2 and 304S-98-3 analytical results for the final report

    Energy Technology Data Exchange (ETDEWEB)

    STEEN, F.H.

    1999-02-23

    This document is the final report for tank 241-S-304 grab samples. Four grab samples were collected from riser 4 on July 30, 1998. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) (Sasaki, 1998) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in the data summary report (Table 1). None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP (Saaaki, 1998).

  8. Toward Reanalysis of the Tight-Pitch HCLWR-PROTEUS Phase II Experiments

    Directory of Open Access Journals (Sweden)

    Perret Grégory

    2016-01-01

    Spectral index predictions using the three nuclear data libraries agreed within two standard deviations with the measured values. The only exception is the Pu-242-capture-to-Pu-239-fission ratio, which was overestimated with all libraries by more than four standard deviations, i.e. 13%, in the non-moderated configuration. In this configuration, Pu-242 captures are few since the flux spectrum in the Pu-242 capture resonance region (between 1eV and 1keV is small making this spectral index hard to measure. Sensitivity coefficient predictions with both MCNP6 and SERPENT2 were in good agreement.

  9. Fractionation of plutonium in environmental and bio-shielding concrete samples using dynamic sequential extraction

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin

    2010-01-01

    Fractionation of plutonium isotopes (238Pu, 239,240Pu) in environmental samples (i.e. soil and sediment) and bio-shielding concrete from decommissioning of nuclear reactor were carried out by dynamic sequential extraction using an on-line sequential injection (SI) system combined with a specially...... designed extraction column. Plutonium in the fractions from the sequential extraction was separated by ion exchange chromatography and measured using alpha spectrometry. The analytical results show a higher mobility of plutonium in bio-shielding concrete, which means attention should be paid...

  10. Verification of Neutron Data for Main Reactor Materials from RUSFOND Library based on Integral Experiments

    Directory of Open Access Journals (Sweden)

    Tsibouliya A. M.

    2013-03-01

    Full Text Available In this work the modern state of the library of evaluated nuclear data files RUSFOND for the main reactor materials, U235, U238, Pu239, Fe, Cr, Ni, Na, Pb, etc., is given. Calculations are performed and comparison with experimental data is done for the following characteristics: (i Removal cross-sections under the threshold of fission of U-238 etc… (ii Average cross-sections with different standard neutron fission spectra; (iii Criticality of fast uranium and plutonium systems. Calculations are performed using continuous energy cross-sections and a Monte-Carlo code.

  11. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  12. Combining Total Monte Carlo and Benchmarks for nuclear data uncertainty propagation on an LFRs safety parameters

    OpenAIRE

    Alhassan, Erwin; Sjöstrand, Henrik; Duan, Junfeng; Gustavsson, Cecilia; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael

    2013-01-01

    Analyses are carried out to assess the impact of nuclear data uncertainties on keff for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-formated libraries generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo neutron transport code to obtain distribution in keff. The keff distribution obtained was compared with the latest major nuclea...

  13. Fuel burnup calculation of Ghana MNSR using ORIGEN2 and REBUS3 codes.

    Science.gov (United States)

    Abrefah, R G; Nyarko, B J B; Fletcher, J J; Akaho, E H K

    2013-10-01

    Ghana Research Reactor-1 core is to be converted from HEU fuel to LEU fuel in the near future and managing the spent nuclear fuel is very important. A fuel depletion analysis of the GHARR-1 core was performed using ORIGEN2 and REBUS3 codes to estimate the isotopic inventory at end-of-cycle in order to help in the design of an appropriate spent fuel cask. The results obtained for both codes were consistent for U-235 burnup weight percent and Pu-239 build up as a result of burnup.

  14. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning;

    1986-01-01

    collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 65°N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent...... of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters....

  15. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2016-01-01

    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  16. Electrodeposition of selected alpha-emitting nuclides from ammonium acetate electrolyte

    Science.gov (United States)

    Lee, Shan C.; Choi, Jae G.; Hodge, Vernon F.

    1994-10-01

    The experimentally optimal conditions of the electrodeposition of selected alpha particle-emitting radionuclides, including Po-208, Ra-226, Th-228, U-238, Pu-239, Am-241 and Cm-(243, 244) with ammonium acetate electrolyte have been determined. This simple method could be used for the determination of the most important actinides in radiological waste and could be applicable to waste treatment. In addition, this method could be used for radium determination instead of the traditional radon emanation technique, which requires approximately 30 days.

  17. Vertical distribution of (241)Pu in the southern Baltic Sea sediments.

    Science.gov (United States)

    Strumińska-Parulska, Dagmara I

    2014-12-15

    The vertical distribution of plutonium (241)Pu in marine sediments can assist in determining the deposition history and sedimentation process of analyzed regions. In addition, (241)Pu/(239+240)Pu activity ratio could be used as a sensitive fingerprint for radioactive source identification. The present preliminary studies on vertical distribution of (241)Pu in sediments from four regions of the southern Baltic Sea are presented. The distribution of (241)Pu was not uniform and depended on sediment geomorphology and depth as well as location. The highest concentrations of plutonium were found in the surface layers of all analyzed sediments and originated from the Chernobyl accident.

  18. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2009-05-01

    In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder reactor under construction at Kalpakkam. After about five recycles, the cycle-to-cycle variation in the above parameters is below 1%.

  19. IN-SITU ASSAY OF TRANSURANIC RADIONUCLIDES IN THE VADOSE ZONE USING HIGH-RESOLUTION SPECTRAL GAMMA LOGGING - A HANFORD CASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    ROHAY VJ; HENWOOD P; MCCAIN R

    2009-11-30

    High-resolution spectral gamma logging in steel-cased boreholes is used to detect and quantify transuranic radionuclides in the subsurface. Pu-239, Pu-241, Am-241, and Np-237 are identified based on characteristic decay gammas. Typical minimum detectable levels are on the order of 20 to 40 nCi/g. In intervals of high transuranic concentrations, gamma rays from other sources may complicate analysis and interpretation. Gamma rays detected in the borehole may originate from three sources: decay of the parent transuranic radionuclide or a daughter; alpha interactions; and interactions with neutrons resulting from either spontaneous fission or alpha particle interactions.

  20. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  1. SEPARATION AND EXTRACTION OF PLUTONIUM IN MIXED WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur E. Desrosiers, ScD, CHP; Robert Kaiser, ScD; Jason Antkowiak; Justin Desrosiers; Josh Jondro; Adam Kulczyk

    2002-12-13

    The Sonatol process uses ultrasonic agitation in fluorinated surfactant solutions to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. The current work applies the Sonatol process to the decontamination of heterogeneous legacy Pu-238 waste that exhibits excessive hydrogen gas generation, which prevents transportation of the waste to the Waste Isolation Pilot Plant. Bartlett Services, Inc. (BSI) designed and fabricated a prototype decontamination system within a replica of a Savannah River Site glovebox. In Phase I, BSI conducted cold testing with surrogate waste material to verify that the equipment, operating procedures, and test protocols would support testing with Pu-238 in Phase II. The surrogate waste material is representative of known constituents of legacy job control waste. Two sub-micron sized Pu-238 simulants were added to the surrogate waste so that decontamination could be tested. The first simulant was an Osram Sylvania Phosphor 2284C powder that fluoresces under ultraviolet light. The use of the fluorescent simulant allows rapid, inexpensive system startup testing because residuals can be assayed using a digital camera. The results of digital pixel analysis (DPA) are available immediately and do not require use of licensed material. The second simulant, which was used for integrated cold testing, was a cerium oxide powder that was activated in a research reactor neutron flux and assayed by photon spectroscopy. The surrogate transuranic (TRU) waste material was contaminated with Pu-238 simulants and loaded into the cleaning chamber, where the surrogates were ultrasonically agitated and rinsed. The decontaminated materials were then assayed for surface contamination by DPA to establish optimum operating parameters and provide process quality control. Selected samples were sent to the Massachusetts Institute of Technology for neutron activation analysis (NAA). NAA testing

  2. Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft

    CERN Document Server

    Cooper, Peter S

    2008-01-01

    Data from the power output of the radioisotope thermoelectric generators aboard the Cassini spacecraft are used to test the conjecture that small deviations observed in terrestrial measurements of the exponential radioactive decay law are correlated with the Earth-Sun distance. No significant deviations from exponential decay are observed over a range of 0.7 - 1.6 A.U. A 90% Cl upper limit of 0.84 x 10^-4 is set on a term in the decay rate of Pu-238 proportional to 1/R^2 and 0.99 x 10^-4 for a term proportional to 1/R.

  3. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  4. Health and Safety Laboratory environmental quarterly, June 1, 1976--September 1, 1976. [Fallout radionuclides in environment

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1976-10-01

    This report presents current data from the HASL environmental programs. The initial section consists of interpretive reports and notes on Sr-90 concentrations in human bone through 1975, global deposition of Sr-90 through 1975, Pu-238 in canal and river sediment from the Mound Laboratory area, and trace metals in atmospheric deposition. Subsequent sections include tabulations of radionuclide levels in stratospheric air; lead and radionuclides in surface air; Sr-90 in deposition, milk, diet and tap water. A bibliography of recent selected publications related to environmental studies is also included. (auth)

  5. Analysis of tank 39H (HTF-39-15-61, 62) surface and subsurface supernatant samples in support of corrosion control program

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239. The measured sodium concentration averaged, respectively, 4.28E+00 ± 9.30E-02 M and 4.32E+00 ± 1.076E-01 M in the Tank 39H surface sample and Tank 39H subsurface sample. In general, the nitrate, nitrite, free-OH and specific gravity of the Tank 39H surface and subsurface samples were all about the same in magnitude, respectively, averaging 1.98 M, 0.314 M, 1.26 M and 1.24. The measured silicon concentration for the Tank 39H surface and subsurface samples were, respectively, 3.84E+01± 5.51E+00 and 4.14E+01± 1.17E+00 mg/L. Based on the uranium, Pu-241 and Pu-239 concentrations, the calculated U-235 equivalent is 21.41 wt% for the surface sample and 21.32 wt% for the subsurface sample.

  6. Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya.

    Science.gov (United States)

    Gwynn, Justin P; Nikitin, Aleksander; Shershakov, Viacheslav; Heldal, Hilde Elise; Lind, Bjørn; Teien, Hans-Christian; Lind, Ole Christian; Sidhu, Rajdeep Singh; Bakke, Gunnar; Kazennov, Alexey; Grishin, Denis; Fedorova, Anastasia; Blinova, Oxana; Sværen, Ingrid; Lee Liebig, Penny; Salbu, Brit; Wendell, Cato Christian; Strålberg, Elisabeth; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Logoyda, Igor; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Pham, Mai Khanh; Sam, Adam; Nies, Hartmut; Rudjord, Anne Liv

    2016-01-01

    This paper reports the main results of the 2012 joint Norwegian-Russian expedition to investigate the radioecological situation of the Stepovogo Fjord on the eastern coast of Novaya Zemlya, where the nuclear submarine K-27 and solid radioactive waste was dumped. Based on in situ gamma measurements and the analysis of seawater and sediment samples taken around the submarine, there was no indication of any leakage from the reactor units of K-27. With regard to the radioecological status of Stepovogo Fjord, activity concentrations of all radionuclides in seawater, sediment and biota in 2012 were in general lower than reported from the previous investigations in the 1990s. However in 2012, the activity concentrations of (137)Cs and, to a lesser extent, those of (90)Sr remained elevated in bottom water from the inner part of Stepovogo Fjord compared with surface water and the outer part of Stepovogo Fjord. Deviations from expected (238)Pu/(239,240)Pu activity ratios and (240)Pu/(239)Pu atom ratios in some sediment samples from the inner part of Stepovogo Fjord observed in this study and earlier studies may indicate the possibility of leakages from dumped waste from different nuclear sources. Although the current environmental levels of radionuclides in Stepovogo Fjord are not of immediate cause for concern, further monitoring of the situation is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    Science.gov (United States)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  8. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  9. Results of the Excreta Bioassay Quality Control Program for April 1, 2009 through March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cheryl L.

    2012-07-19

    A total of 58 urine samples and 10 fecal samples were submitted during the report period (April 1, 2009 through March 31, 2010) to General Engineering Laboratories, South Carolina by the Hanford Internal Dosimetry Program (IDP) to check the accuracy, precision, and detection levels of their analyses. Urine analyses for Sr, 238Pu, 239Pu, 241Am, 243Am 235U, 238U, elemental uranium and fecal analyses for 241Am, 238Pu and 239Pu were tested this year as well as four tissue samples for 238Pu, 239Pu, 241Am and 241Pu. The number of QC urine samples submitted during the report period represented 1.3% of the total samples submitted. In addition to the samples provided by IDP, GEL was also required to conduct their own QC program, and submit the results of analyses to IDP. About 33% of the analyses processed by GEL during the third year of this contract were quality control samples. GEL tested the performance of 21 radioisotopes, all of which met or exceeded the specifications in the Statement of Work within statistical uncertainty (Table 4).

  10. Analysis of seawater circulation and radioactive concentration in the whole Arctic Ocean

    Science.gov (United States)

    Ochiai, Minoru; Wada, Akira; Takano, Tairyu

    The results of research on marine contamination in the regional areas (the Kara and Barents Seas) in the Arctic Ocean were reported at the Journal of the Japan Society for Marine Survey and Technology, Vol. 15(2). In the present research, the authors carried out flow analysis and concentration analysis of radioactive materials in the whole region of the Arctic Ocean, based on the release scenario. A numerical hybrid box model was developed. The results obtained agreed with the observed features in many respects. Especially, stream flows in Norwegian, Barents Sea and Kara Sea showed fairly realistic features. The flow field in the surface layer in the central Arctic Ocean agreed with that in previously known data. In nuclide dispersion model, nuclide decay, mixing, scavenging and interaction between seawater and bottom sediment layers were taken into consideration in order to improve accuracy of the dosage estimate. Based on nuclide (Pu-239 and Cs-137) release scenarios, the whole Arctic Ocean was subjected to analysis. A clear difference was recognized in the diffusion distribution according to the properties of nuclides, and concentration in the sediment is one or two orders higher than that in the seawater when the distribution factor of Kd value is large as in Pu-239.

  11. Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Dai-ichi Nuclear Power Plant accident

    Directory of Open Access Journals (Sweden)

    W. T. Bu

    2013-04-01

    Full Text Available The Fukushima Dai-ichi Nuclear Power Plant (FDNPP accident led to the release of large amounts of radionuclides into the atmosphere as well as direct discharges into the sea. In contrast to the intensive studies on the distribution of the released high volatility fission products, such as 131I, 134Cs and 137Cs, similar studies of the actinides, especially the Pu isotopes, are limited. To obtain the vertical distribution of Pu isotopes in marine sediments and to better assess the possible contamination of Pu from the FDNPP accident in the marine environment, we determined the activities of 239+240Pu and 241Pu as well as the atom ratios of 240Pu/239Pu and 241Pu/239Pu in sediment core samples collected in the western North Pacific off Fukushima from July 2011 to July 2012. We also measured surface sediment samples collected from seven Japanese estuaries before the FNDPP accident to establish the comprehensive background baseline data. The observed results of both the Pu activities and the Pu atom ratios for the sediments in the western North Pacific were comparable to the baseline data, suggesting that the FDNPP accident did not cause detectable Pu contamination to the studied regions prior to the sampling time. The Pu isotopes in the western North Pacific 30 km off the Fukushima coast originated from global fallout and Pacific Proving Ground close-in fallout.

  12. Combining Total Monte Carlo and Benchmarks for nuclear data uncertainty propagation on an LFRs safety parameters

    CERN Document Server

    Alhassan, Erwin; Duan, Junfeng; Gustavsson, Cecilia; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael

    2013-01-01

    Analyses are carried out to assess the impact of nuclear data uncertainties on keff for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-formated libraries generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo neutron transport code to obtain distribution in keff. The keff distribution obtained was compared with the latest major nuclear data libraries - JEFF-3.1.2, ENDF/B-VII.1 and JENDL-4.0. A method is proposed for the selection of benchmarks for specific applications using the Total Monte Carlo approach. Finally, an accept/reject criterion was investigated based on chi square values obtained using the Pu-239 Jezebel criticality benchmark. It was observed that nuclear data uncertainties in keff were reduced considerably from 748 to 443 pcm by applying a more rigid acceptance criteria for accepting random files.

  13. Time-resolved record of (236)U and (239,240)Pu isotopes from a coral growing during the nuclear testing program at Enewetak Atoll (Marshall Islands).

    Science.gov (United States)

    Froehlich, M B; Chan, W Y; Tims, S G; Fallon, S J; Fifield, L K

    2016-12-01

    A comprehensive series of nuclear tests were carried out by the United States at Enewetak Atoll in the Marshall Islands, especially between 1952 and 1958. A Porites Lutea coral that was growing in the Enewetak lagoon within a few km of all of the high-yield tests contains a continuous record of isotopes, which are of interest (e.g. (14)C, (236)U, (239,240)Pu) through the testing period. Prior to the present work, (14)C measurements at ∼2-month resolution had shown pronounced peaks in the Δ(14)C data that coincided with the times at which tests were conducted. Here we report measurements of (236)U and (239,240)Pu on the same coral using accelerator mass spectrometry, and again find prominent peaks in the concentrations of these isotopes that closely follow those in (14)C. Consistent with the (14)C data, the magnitudes of these peaks do not, however, correlate well with the explosive yields of the corresponding tests, indicating that smaller tests probably contributed disproportionately to the debris that fell in the lagoon. Additional information about the different tests can also be obtained from the (236)U/(239)Pu and (240)Pu/(239)Pu ratios, which are found to vary dramatically over the testing period. In particular, the first thermonuclear test, Ivy-Mike, has characteristic (236)U/(239)Pu and (240)Pu/(239)Pu signatures which are diagnostic of the first arrival of nuclear test material in various archives.

  14. Validation de schemas de calcul APOLLO3 pour assemblages de type RNR

    Science.gov (United States)

    Berche, Simon

    The next generation nuclear reactors are already under construction or under development in the R&D labs around the world. The 3rd and 4th generation nuclear reactors will need a neutronic calculation code able to deal with any kind of technology (FBR or PWR for example). APOLLO3, a new neutronic code developped by the Commissariat a l'Energie Atomique, will receive the heritage of his two predecessors, APOLLO2 (PWR) and ECCO/ERANOS (FBR), and to play a major role in the design of the next nuclear reactors. Validation is an essential step along the development of a deterministic neutronic code. It comes right after implementation and verification and it gives the team in charge of the calculation models in Cadarache the necessary feedbacks on the code's behaviour in various situations. This thesis goal is to suggest a validation (without evolution) of the current APOLLO3 reference calculation route used for FBR. This validation is supposed to be as complete as possible and to cover various configurations. This work will be a preparatory work for the complete validation which will be performed by the APOLLO3 project team in Cadarache. This validation is based on a study of various configurations composed of basic elements like pincells or assemblies. To complete this task, we study different aspects : geometry, sodium void effect, AEMC-RNR-1200 energy mesh, JEFF3.2 nuclear data evaluation for Pu239. We conduct a macroscopical study (multiplication factor, reactivity, neutron flux,...) and an isotopical study (fission and capture rates for Pu239 and U238 for example). We use TRIPOLI4, a Monte-Carlo simulation code, as a reference for all of our APOLLO3 calculations. We consider an infinite lattice (no neutron leakage model keff = kinfinity). This first validation phase led us to several conclusions. First of all, we observed that the geometrical configuration defined for the single pincell used in ASTRID predefinition studies is heterogeneous enough. Indeed, void

  15. Photonuclear activation of pure isotopic mediums.

    Energy Technology Data Exchange (ETDEWEB)

    Grohman, Mark A.; Lukosi, Eric Daniel

    2010-06-01

    This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to the material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.

  16. Propagation of nuclear data uncertainties for ELECTRA burn-up calculations

    CERN Document Server

    ostrand, H; Duan, J; Gustavsson, C; Koning, A; Pomp, S; Rochman, D; Osterlund, M

    2013-01-01

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in Pu-239 transport data to uncertainties in the fuel inventory of ELECTRA during the reactor life using the Total Monte Carlo approach (TMC). Within the TENDL project the nuclear models input parameters were randomized within their uncertainties and 740 Pu-239 nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty in the ...

  17. Isotopic composition and distribution of plutonium in northern South China Sea sediments revealed continuous release and transport of Pu from the Marshall Islands.

    Science.gov (United States)

    Wu, Junwen; Zheng, Jian; Dai, Minhan; Huh, Chih-An; Chen, Weifang; Tagami, Keiko; Uchida, Shigeo

    2014-03-18

    The (239+240)Pu activities and (240)Pu/(239)Pu atom ratios in sediments of the northern South China Sea and its adjacent Pearl River Estuary were determined to examine the spatial and temporal variations of Pu inputs. We clarified that Pu in the study area is sourced from a combination of global fallout and close-in fallout from the Pacific Proving Grounds in the Marshall Islands where above-ground nuclear weapons testing was carried out during the period of 1952-1958. The latter source dominated the Pu input in the 1950s, as evidenced by elevated (240)Pu/(239)Pu atom ratios (>0.30) in a dated sediment core. Even after the 1950s, the Pacific Proving Grounds was still a dominant Pu source due to continuous transport of remobilized Pu from the Marshall Islands, about 4500 km away, along the North Equatorial Current followed by the transport of the Kuroshio current and its extension into the South China Sea through the Luzon Strait. Using a simple two end-member mixing model, we have quantified the contributions of Pu from the Pacific Proving Grounds to the northern South China Sea shelf and the Pearl River Estuary are 68% ± 1% and 30% ± 5%, respectively. This study also confirmed that there were no clear signals of Pu from the Fukushima Daiichi Nuclear Power Plant accident impacting the South China Sea.

  18. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  19. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  20. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  1. Preparation of a multi-isotope plutonium AMS standard and preliminary results of a first inter-lab comparison

    Science.gov (United States)

    Dittmann, B.-A.; Dunai, T. J.; Dewald, A.; Heinze, S.; Feuerstein, C.; Strub, E.; Fifield, L. K.; Froehlich, M. B.; Tims, S. G.; Wallner, A.; Christl, M.

    2015-10-01

    The motivation of this work is to establish a new multi-isotope plutonium standard for isotopic ratio measurements with accelerator mass spectrometry (AMS), since stocks of existing solutions are declining. To this end, certified reference materials (CRMs) of each of the individual isotopes 239Pu, 240Pu, 242Pu and 244Pu were obtained from JRC IRMM (Joint Research Center Institute for Reference Materials and Measurements). These certified reference materials (IRMM-081a, IRMM-083, IRMM-043 and IRMM-042a) were diluted with nitric acid and mixed to obtain a stock standard solution with an isotopic ratio of approximately 1.0:1.0:1.0:0.1 (239Pu:240Pu:242Pu:244Pu). From this stock solution, samples were prepared for measurement of the plutonium isotopic composition by AMS. These samples have been measured in a round-robin exercise between the AMS facilities at CologneAMS, at the ANU Canberra and ETH Zurich to verify the isotopic ratio and to demonstrate the reproducibility of the measurements. The results show good agreement both between the different AMS measurements and with the gravimetrically determined nominal ratios.

  2. Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

    CERN Document Server

    Grigoriev, Yuriy

    2016-01-01

    The general scheme of power installations based on nuclear reactions of fission and synthesis activated by external sources is analyzed. The external activation makes possible to support nuclear reactions at temperatures and pressures lower than needed for chain reactions, so simplifies considerably practical realization of power installations. The possibility of operation on subcritical masses allows making installations compact and safe at emergency situations. Installations are suitable for transmutation of radioactive nuclides, what solves the problem of utilization of nuclear waste products. It is proposed and considered schemes of power installations based on nuclear reactions of fission and fusion, activated by external sources, different from ADS systems. Variants of activation of nuclear reactions of fission (U-235, 238, Pu-239) and fusion (Li-6,7, B-10,11) are considered.

  3. New Fe-56 Evaluation for the CIELO project

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, G P [Brookhaven National Laboratory (BNL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA), Vienna / Austria and Universidad de Sevilla, Spain; Trkov, A. [International Atomic Energy Agency (IAEA); Leal, Luiz C [ORNL; Plompen, A. [Institute for Reference Materials and Measurements (IRMM), Geel, Belgium; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Qian, Jing [China Nuclear Data Center; Ge, Zhigang [China Nuclear Data Center; Liu, Tingjin [China Nuclear Data Center; Lu, Hnalin [China Institute of Atomic Energy (CIAE); Ruan, Xichao [China Institute of Atomic Energy (CIAE)

    2016-01-01

    The Collaborative International Evaluated Library Organisation (CIELO) aims to provide revised and updated evaluations for Pu-239, U-238,U-235, Fe-56, O-16, and H-1 through international collaboration. This work, which is part of the CIELO project, presents the initial results for the evaluation of the Fe-56 isotope, with neutron-incident energy ranging from 0 to 20 MeV. The Fe-56(n,p) cross sections were fitted to reproduce the ones from IRDFF dosimetry file. Our preliminary file provides good cross-section agreements for the main angle-integrated reactions, as well as a reasonable overall agreement for angular distributions and double-differential spectra, when compared to previous evaluations.

  4. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R.S.; Blackadder, W.H.; Ronqvist, N.

    1967-02-15

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products.

  5. Burn-Up Determination by High Resolution Gamma Spectrometry: Spectra from Slightly-Irradiated Uranium and Plutonium between 400-830 keV

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R.S.; Ronqvist, N.

    1966-08-15

    Previously published studies of the short-cooled fission product spectra of irradiated uranium have been severely restricted by the poor energy resolution of the sodium iodide detectors used. In this report are presented fission product spectra of irradiated uranium and plutonium obtained by means of a lithium-drifted germanium detector. The resolved gamma peaks have been assigned to various fission products by correlation of measured energy and half-life values with published data. By simultaneous study of the spectra of two irradiated mixtures of plutonium and uranium, the possibility of using the activities of Ru-103 and Ru-106 as a measure of the relative fission rate in U-235 and Pu-239 has been briefly examined.

  6. Detection of charged particles through a photodiode: design and analysis; Deteccion de particulas cargadas mediante un fotodiodo: diseno y analisis

    Energy Technology Data Exchange (ETDEWEB)

    Angoli, A.; Quirino, L.L.; Hernandez, V.M.; Lopez del R, H.; Mireles, F.; Davila, J.I.; Rios, C.; Pinedo, J.L. [UAEN, UAZ, 98000 Zacatecas (Mexico)]. e-mail: toono4@hotmail.com

    2006-07-01

    This project develops and construct an charge particle detector mean a pin photodiode array, design and analysis using a silicon pin Fotodiodo that generally is used to detect visible light, its good efficiency, size compact and reduced cost specifically allows to its use in the radiation monitoring and alpha particle detection. Here, so much, appears the design of the system of detection like its characterization for alpha particles where one is reported as alpha energy resolution and detection efficiency. The equipment used in the development of work consists of alpha particle a triple source composed of Am-241, Pu-239 and Cm-244 with 5,55 KBq as total activity, Maestro 32 software made by ORTEC, a multi-channel card Triumph from ORTEC and one low activity electroplated uranium sample. (Author)

  7. Analysis of the Important Factors for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Song, Jae Hoon; Park, Chang Je; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    It is confirmed that it is necessary to have domestic experience for measuring fissile material such as U-235, U-238, and Pu-239 in spent fuel or pyro-processed fuel containing TRU and to have technology related with measurement for fissile material. Understanding newly advanced measurement system for fissile material, it indicates the development directions. In this research, it is shown to the basic principle of LSDTS and it is investigated to commercial neutron source generator in order to use appropriated neutron source in the LSDTS. On the other hand, it is understood to the properties for fission chamber as induced neutron detector. It is confirmed to the relationship between slowing-down time and neutron energy in slowing-down medium. Understanding the application of SDTS, the efficiency is broaden, that is, it can help as equipment for real-time, direct, and quantitative measurement of fissile material from fuel assay such as spent fuel or pyro-processed fuel.

  8. Lung and skeleton malignant tumor induction due to high let emitters

    Energy Technology Data Exchange (ETDEWEB)

    Buldakov, L.A.; Lyubchansky, E.R.; Kalmikova, Z.I.; Buhtoyarova, Z.M. [Institute of biophysics, Moscow (Russian Federation)] [and others

    1992-06-01

    Experimental studies show that malignant tumor induction is of primary importance in regard to the biological action of transuranium elements on the animal body. Clarification of quantitative relationship between these parameters for low-level radiation is aproblem to be solved by health physics. This report aims at analysis of the dose-response relationship following rat exposure to PU-239, Am-241, and NP-237 over a wide range of doses, and also at comparison between risk fact obtained experimentally and tose recommended by the ICRP. The biological effect of transuranium elements was investigated regarding malignant tumor incidence in rat bone for all the pathways of intake covered and in the lung for intakes of radionuclides into the respiratory system.

  9. Plutonium and americium inventories in atmospheric fallout and sediment cores from Blelham Tarn, Cumbria (UK).

    Science.gov (United States)

    Michel, H; Barci-Funel, G; Dalmasso, J; Ardisson, G; Appleby, P G; Haworth, E; El-Daoushy, F

    2002-01-01

    The objective of this paper is to report on the results of a study of 238Pu, 239 + 240Pu and 241Am inventories onto Blelham Tarn in Cumbria (UK). The atmospheric fallout inventory was obtained by analysing soil cores and the results are in good agreement with the literature: 101 Bq m(-2) for 239 + 240Pu; 4.5 Bq m(-2) for 238Pu and 37 Bq m(-2) for 241Am. The sediment core inventory for the whole lake is compared to the atmospheric fallout inventory. The sediment activity is 60-80% higher than the estimated fallout activity, showing a catchment area contribution and in particular the stream input.

  10. Pu and Am determination in the environment—method development

    Science.gov (United States)

    Afonin, M.; Simonoff, M.; Donard, O.; Michel, H.; Ardisson, G.

    2003-01-01

    A high resolution inductively coupled plasma mass spectrometric (HR-ICP-MS) method for the determination of plutonium isotopes, Am and the 240Pu/239Pu isotope ratio utilising modification of Pu-02-RC Plutonium in Soil Samples, Pu-03-RC Plutonium in Soil Residue—Total Dissolution Method, Pu-11-RC Plutonium Purification—Ion Exchange Technique, Pu-12-RC Plutonium and/or Americium in Soil or Sediments, HASL-300 was developed. Total plutonium concentrations (239+240Pu) measured in environmental samples by this HR-ICP-MS method were in good agreement with recommended data obtained from a-spectrometry. It was achieved the decreasing of the time to analyze the samples over than 33%.

  11. Plutonium and americium contamination in Rocky Flats soil, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Krey, P.; Hardy, E.; Volchok, H.; Toonkel, L.; Knuth, R.; Coppes, M.; Tamura, T.

    1976-03-01

    The plutonium mass isotopic analysis and the Am-241 analysis of soil samples from Rocky Flats identify the contamination as Pu which was processed in 1958. The Am-241 activity in the soil will reach its maximum in 2033 and represent 18 percent of the Pu-239-240 activity. Nuclide ratios indicate that current operations at Rocky Flats contribute little to the airborne Pu concentrations which are due to resuspension of the contaminated soil. Root uptake of Pu or Am by vegetation is slight or shows no discrimination among the isotopes and nuclides studied. The relationship between Pu deposition contour and the area enclosed by that contour has been verified for contour values extending over 7 orders of magnitude. This gives confidence to our calculations of the quantities of Pu released on and off the Rocky Flats plant site. (auth)

  12. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  13. Plutonium in Southern Hemisphere ocean Waters

    DEFF Research Database (Denmark)

    Hirose, K.; Aoyama, M.; Gastaud, J.

    2013-01-01

    Plutonium in seawater collected by the BEAGLE2003 cruise was determined using ICP- SF-MS and alpha spectrometry after Fe co-precipitation and radiochemical purification. Levels and distributions of dissolved plutonium activity concentrations in Southern Hemisphere ocean waters are summarized here......, including historical data. Pu-239 concentrations in surface water----of the central South Pacific (32.5 °S) in 2003 were around 1 mBq/m3. The 239Pu concentrations in the Indian Ocean surface waters (20°S) were similar to that in the South Pacific, whereas the 239Pu concentrations in the South Atlantic...... surface waters (30°S) were markedly lower than those in the South Pacific and Indian Oceans. The 239Pu vertical profile pattern was similar to that in the North Pacific subtropical gyre, although 239Pu concentrations in the deep South Pacific were significantly lower than those in the North Pacific. One...

  14. Tank 241-AX-103, cores 212 and 214 analytical results for the final report

    Energy Technology Data Exchange (ETDEWEB)

    Steen, F.H.

    1998-02-05

    This document is the analytical laboratory report for tank 241-AX-103 push mode core segments collected between July 30, 1997 and August 11, 1997. The segments were subsampled and analyzed in accordance with the Tank 241-AX-103 Push Mode Core Sampling and Analysis Plan (TSAP) (Comer, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995) and the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC), Total Alpha Activity (AT), plutonium 239 (Pu239), and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Conner, 1997). The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and not considered in this report.

  15. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  16. Dose Assessment of Los Alamos National Laboratory-Derived Residual Radionuclides in Soils within C Tracts (C-2, C-3, and C-4) for Land Transfer Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Jessica M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whicker, Jeffrey J.

    2016-01-26

    Three separate Sampling and Analysis Plans (SAPs) were prepared for tracts C-2, C-3, and C-4. The objective of sampling was to confirm, within the stated statistical confidence limits, that the mean levels of potential radioactive residual contamination in soils in the C Tracts are documented, in appropriate units, and are below the 15 mrem/y (150 μSv/y) Screening Action Levels (SALs). Results show that radionuclide concentration upper-bound 95% confidence levels were close to background levels, with the exception of Pu-239 and Cs-137 being slightly elevated above background, and all measurements were below the ALs and meet the real property release criteria for future construction or recreational use. A follow-up ALARA analysis showed that the costs of cleanup of the soil in areas of elevated concentration and confirmatory sampling would far exceed any benefit from dose reduction.

  17. Plutonium, (137)Cs and uranium isotopes in Mongolian surface soils.

    Science.gov (United States)

    Hirose, K; Kikawada, Y; Igarashi, Y; Fujiwara, H; Jugder, D; Matsumoto, Y; Oi, T; Nomura, M

    2017-01-01

    Plutonium ((238)Pu and (239,240)Pu), (137)Cs and plutonium activity ratios ((238)Pu/(239,240)Pu) as did uranium isotope ratio ((235)U/(238)U) were measured in surface soil samples collected in southeast Mongolia. The (239,240)Pu and (137)Cs concentrations in Mongolian surface soils (surface soils (0.013-0.06) coincided with that of global fallout. The (235)U/(238)U atom ratios in the surface soil show the natural one. There was a good correlation between the (239,240)Pu and (137)Cs concentrations in the surface soils. We introduce the migration depth to have better understanding of migration behaviors of anthropogenic radionuclides in surface soil. We found a difference of the migration behavior between (239,240)Pu and (137)Cs from (137)Cs/(239,240)Pu - (137)Cs plots for the Mongolian and Tsukuba surface soils; plutonium in surface soil is migrated easier than (137)Cs.

  18. Reliability analysis for the facility data acquisition interface system upgrade at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.J.; Pope, N.G.; Brown, R.E.

    1995-05-01

    Because replacement parts for the existing facility data acquisition interface system at TA-55 have become scarce and are no longer being manufactured, reliability studies were conducted to assess various possible replacement systems. A new control system, based on Allen-Bradley Programmable Logic Controllers (PLCs), was found to have a likely reliability 10 times that of the present system, if the existing Continuous Air Monitors (CAMS) were used. Replacement of the old CAMs with new CAMs will result in even greater reliability as these are gradually phased in. The new PLC-based system would provide for hot standby processors, redundant communications paths, and redundant power supplies, and would be expandable and easily maintained, as well as much more reliable. TA-55 is the Plutonium Processing Facility which processes and recovers Pu-239 from scrap materials.

  19. Thorium as a Fuel for Accelerator Driven Subcritical Electronuclear Systems

    CERN Document Server

    Barashenkov, V S; Singh, V

    2000-01-01

    Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, accelerator Driven subcritical Systems (ADS) with thorium fuel are very perspective at the bombarding energies higher than several hundreds MeV. An admixture of fissile elements U^{233}, U^{235}, Pu^{239} in the set-up gives larger neutron multiplication which in turn shows better energy amplification. It is argued that due to the practically complete burning of the fuel in such set-up there is no need of technology of conversion of the exhaust fuel.

  20. The United States Plutonium Balance, 1944 - 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-06-01

    This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

  1. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    Science.gov (United States)

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation.

  2. PAT-2 (Plutonium Air-Transportable Model 2) safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, J.A.; Davis, E.J.; Duffey, T.A.; Dupree, S.A.; George, O.L. Jr.; Ortiz, Z.

    1981-07-01

    The PAT-2 package is designed for the safe transport of plutonium and/or uranium in small quantities. The PAT-2 package is resistant to severe accidents, including that of a high-speed jet aircraft crash, and is designed to withstand such environments as extreme impact, crushing, puncturing and slashing loads, severe hydrocarbon-fueled fires, and deep underwater immersion, with no escape of contents. The package meets the requirements of 10 CFR 71 for Fissile Class I packages with a cargo of 15 grams of Pu-239, or other isotopic forms described herein, not to exceed 2 watts of thermal activity. This SAR presents design and oprational information including evaluations and analyses, test results, operating procedures, maintenance, and quality assurance information.

  3. Fissile material storage in the Oak Ridge Radiochemical Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T. III

    1993-08-01

    As a part of a Department of Energy review of Oak Ridge National Laboratory facilities, nuclear safety documentation for the Radiochemical Development Facility (Building 3019) was found to be inadequate. While calculations existed which established safe limits for the storage of fissile material, these calculations were not performed with verified/validated software nor were the results reported in the manner prescribed by applicable DOE orders and ORNL procedures. To address this deficiency, the operations conducted in Building 3019 were reviewed and conditions were compared to available critical experiment data. Applicable critical experiments were selected and multiplication factors were calculated. Subcritical limits were derived for each of three fissile materials (U-233, U-235, and Pu-239). One application of these limits was to certify the safety of a storage array which could contain any or all of the above nuclides at varying degrees of moderation. The studies presented are believed to fulfill most of the applicable regulatory requirements.

  4. (239)Pu fallout across continental Australia: Implications on (239)Pu use as a soil tracer.

    Science.gov (United States)

    Lal, R; Fifield, L K; Tims, S G; Wasson, R J

    2017-09-19

    At present there is a need for the development of new radioisotopes for soil erosion and sediment tracing especially as fallout (137)Cs levels become depleted. Recent studies have shown that (239)Pu can be a useful new soil erosion and sediment radioisotope tracer. (239)Pu was released in the major atmospheric nuclear weapons tests of 1950's and 1960's. However (239)Pu has a half-life of 24110 years and more than 99% of this isotope is still present in the environment today. In contrast (137)Cs with a half-life of 30.07 year has decayed to atom ratios range from 0.045 to 0.197, with averages of 0.139(0.017), 0.111(0.052) and 0.160(0.027) in the 10-20°S, 20-30°S and 30-40°S latitude bands respectively. The (240)Pu/(239)Pu atom ratios in Central Australia (0.069) likely represent fallout from the Australian tests which also have low (240)Pu/(239)Pu atom ratios i.e., Maralinga (0.113) and Montebello (0.045). The average ratios in the 20-30°S and 30-40° bands are closer to the global average (0.139 and 0.177 respectively when not including the close-in fallout data from the nuclear test sites) if the Australian test sites and Central Australian sites are neglected as they clearly represent the effects of close in fallout. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Steve Hoeffner

    2003-12-31

    The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

  6. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier.

    Science.gov (United States)

    Łokas, Edyta; Zaborska, Agata; Kolicka, Małgorzata; Różycki, Michał; Zawierucha, Krzysztof

    2016-10-01

    Surface of glaciers is covered by mineral and organic dust, together with microorganisms forming cryoconite granules. Despite fact that glaciers and ice sheets constitute significance part of land surface, reservoir of freshwater, and sites of high biological production, the knowledge on the cryoconite granules still remain unsatisfactory. This study presents information on radionuclide and heavy metal contents in cryoconites. Cryoconites collected from the Hans Glacier in SW Spitsbergen reveal high activity concentrations of anthropogenic ((238,239,240)Pu, (137)Cs, (90)Sr) and natural ((210)Pb) radionuclides. The (238)Pu/(239+240)Pu activity ratios in these cryoconites significantly exceed the mean global fallout ratio (0.025). The (238)Pu/(239+240)Pu ranged from 0.064 to 0.118. The (239+240)Pu/(137)Cs varied from 0.011 ± 0.003 to 0.030 ± 0.007. Such activity ratios as observed in these cryoconites were significantly higher than the values characterizing global fallout, pointing to possible contributions of these radionuclides from other sources. Heavy metals (Pb, Cd, Cu, Zn, Fe, and Mn) in cryoconites exceed both UCC concentrations and local rocks' concentrations, particularly for cadmium. The concentration ratios of stable lead isotopes ((206)Pb/(207)Pb, (208)Pb/(206)Pb) were determined to discriminate between the natural and anthropogenic sources of Pb in cryoconites and to confirm the strong anthropogenic contribution to heavy metal deposition in the Arctic. In investigated cryoconite holes, two groups of invertebrates, both extremophiles, Tardigrada and Rotifera were detected. Our study indicate that cryoconites are aggregates of mineral and organic substances on surfaces of glaciers are able to accumulate large amounts of airborne pollutants bound to extracellular polymeric substances secreted by microorganisms.

  7. Using radiosilver and plutonium isotopes to trace the dispersion of contaminated sediment in Fukushima coastal catchments

    Science.gov (United States)

    Evrard, O.; Ayrault, S.; Pointurier, F.; Onda, Y.; Laceby, J. P.; Lepage, H.; Chartin, C.; Cirella, M.; Pottin, A. C.; Hubert, A.; Lefèvre, I.

    2015-12-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a 3000-km² radioactive pollution plume consisting predominantly of radiocesium (137Cs and 134Cs). This plume is drained by several rivers to the Pacific Ocean after flowing through less contaminated, but densely inhabited coastal plains. As the redistribution of radionuclide contaminated sediment could expose the local population to higher radiation rates, novel fingerprinting methods were developed to trace the downstream dispersion of contaminated sediment. First, the heterogeneous deposition of metastable silver-110 (110mAg) across these coastal catchments was used to investigate sediment migration. In particular, the 110mAg/137Cs activity ratio was measured in soils and river sediment demonstrating the occurrence of a seasonal cycle of soil erosion during typhoons and spring snowmelt in 2011 and 2012. However, due to the rapid decay of 110mAg (half-life of 250 days), alternative methods were required to continue tracking sediment from 2013 onwards. One promising method includes the analyses of plutonium isotopes to further understand sediment migration in the Fukushima region. For example, 241Pu/239Pu atom ratios measured in sediment collected in Fukushima coastal rivers shortly after the accident were shown to be significantly higher (0.0017 - 0.0884) than corresponding values attributed to the global fallout (0.00113 ± 0.00008). Additional analyses were conducted on sediment sampled in 2013 and 2014 after the start of decontamination works. These analyses show that the 241Pu/239Pu atom ratios decreased towards the global fallout values in rivers draining decontaminated paddy fields, demonstrating the effectiveness of remediation works.

  8. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-06-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  9. Some improvements in the microscopic depletion of assemblies with gadolinium rods

    Energy Technology Data Exchange (ETDEWEB)

    Hoareau, F.; Couyras, D.; Girardi, E. [EDF R and D, Paris (France)

    2012-03-15

    EDF/R and D is developing a new calculation scheme based on the transport-Simplified Pn (SPn) approach. The lattice code used is the deterministic code APOLLO2, developed at CEA with the support of EDF and AREVA-NP. The core code is the code COCAGNE, developed at EDF R and D. The latter can take advantage of a microscopic depletion solver which improves the treatment of spectral history effects. However, comparisons with reference calculations show that the microscopic mode used in COCAGNE gives slightly less accurate results when used to simulate the depletion of assemblies with gadolinium rods. This study aims at determining whether specific models can be used to improve the results of the depletion of assemblies containing burnable poisons. Three possible models are considered in this paper. The first model consists in describing explicitly the gadolinium isotopic chain into the microscopic model implemented within COCAGNE. In the second model, one also uses an explicit description of the gadolinium chain. In addition, the LOCA concentration of gadolinium isotopes is used as interpolation parameter instead of the LOCA burnup, when evaluation microscopic cross sections. The last model consists in using the concentration of Pu239 as a spectral indicator: microscopic cross sections are then corrected according to the LOCA concentration of this nuclide. Comparisons with APOLLO2 depletion calculations were performed to validate these models in COCAGNE. These APOLLO2 calculations consisted in depleting the fuel from 0 GWd/t to 60 GWd/t while keeping perturbed thermal-hydracrylic conditions. CPCAGNE used as input the neutronic libraries generated via a depletion performed in nominal conditions and then a branch case corresponding to the perturbed thermal-hydracrylic conditions of the reference APOLLO2 calculations. These tests show that the microscopic model using Pu239 as a spectral indicator improves the treatment of spectral effects in COCAGNE.

  10. The plutonium isotopic composition of marine biota on Enewetak Atoll: a preliminary assessment.

    Science.gov (United States)

    Hamilton, Terry F; Martinelli, Roger E; Kehl, Steven R; McAninch, Jeffrey E

    2008-10-01

    We have determined the level and distribution of gamma-emitting radionuclides, plutonium activity concentrations, and 240Pu/239Pu atom ratios in tissue samples of giant clam (Tridacna gigas and Hippopus hippopus), a top snail (Trochus nilaticas) and sea cucumber (Holothuria atra) collected from different locations around Enewetak Atoll. The plutonium isotopic measurements were performed using ultra-high sensitivity accelerator mass spectrometry (AMS). Elevated levels of plutonium were observed in the stomachs (includes the stomach lining) of Tridacna clam (0.62 to 2.98 Bq kg(-1), wet wt.), in the soft parts (edible portion) of top snails (0.25 to 1.7 Bq kg(-1)), wet wt.) and, to a lesser extent, in sea cucumber (0.015 to 0.22 Bq kg(-1), wet wt.) relative to muscle tissue concentrations in clam (0.006 to 0.021 Bq kg(-1), wet wt.) and in comparison with previous measurements of plutonium in fish. These data and information provide a basis for re-evaluating the relative significance of dietary intakes of plutonium from marine foods on Enewetak Atoll and, perhaps most importantly, demonstrate that discrete 240Pu239Pu isotope signatures might well provide a useful investigative tool to monitor source-term attribution and consequences on Enewetak Atoll. One potential application of immediate interest is to monitor and assess the health and ecological impacts of leakage of plutonium (as well as other radionuclides) from a low-level radioactive waste repository on Runit Island relative to background levels of fallout contamination in Enewetak Atoll lagoon.

  11. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples.

    Science.gov (United States)

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Tazoe, Hirofumi; Yamada, Masatoshi

    2014-04-11

    Long-term monitoring of Pu isotopes in seawater is required for assessing Pu contamination in the marine environment from the Fukushima Dai-ichi Nuclear Power Plant accident. In this study, we established an accurate and precise analytical method based on anion-exchange chromatography and SF-ICP-MS. This method was able to determine Pu isotopes in seawater samples with small volumes (20-60L). The U decontamination factor was 3×10(7)-1×10(8), which provided sufficient removal of interfering U from the seawater samples. The estimated limits of detection for (239)Pu and (240)Pu were 0.11fgmL(-1) and 0.08fgmL(-1), respectively, which corresponded to 0.01mBqm(-3) for (239)Pu and 0.03mBqm(-3) for (240)Pu when a 20L volume of seawater was measured. We achieved good precision (2.9%) and accuracy (0.8%) for measurement of the (240)Pu/(239)Pu atom ratio in the standard Pu solution with a (239)Pu concentration of 11fgmL(-1) and (240)Pu concentration of 2.7fgmL(-1). Seawater reference materials were used for the method validation and both the (239+240)Pu activities and (240)Pu/(239)Pu atom ratios agreed well with the expected values. Surface and bottom seawater samples collected off Fukushima in the western North Pacific since March 2011 were analyzed. Our results suggested that there was no significant variation of the Pu distribution in seawater in the investigated areas compared to the distribution before the accident.

  12. Management experience of an international venture in space The Ulysses mission

    Science.gov (United States)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  13. Alpha indirect conversion radioisotope power source

    Energy Technology Data Exchange (ETDEWEB)

    Sychov, Maxim [TRACE Photonics Inc., 1680 West Polk, Charleston, IL 61920 (United States)], E-mail: msychov@yahoo.com; Kavetsky, Alexandr; Yakubova, Galina; Walter, Gabriel; Yousaf, Shahid; Lin, Qian; Chan, Doris; Socarras, Heather; Bower, Kenneth [TRACE Photonics Inc., 1680 West Polk, Charleston, IL 61920 (United States)

    2008-02-15

    Advantages of radioisotope-powered electric generators include long service life, wide temperature range operation and high-energy density. We report development of a long-life generator based on indirect conversion of alpha decay energy. Prototyping used 300 mCi Pu-238 alpha emitter and AlGaAs photovoltaic cells designed for low light intensity conditions. The alpha emitter, phosphor screens, and voltaic arrays were assembled into a power source with the following characteristics: I{sub sc}=14 {mu}A; U{sub oc}=2.3 V; power output -21 {mu}W. Using this prototype we have powered an eight-digit electronic calculator and wrist watch.

  14. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    Science.gov (United States)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  15. Verification of EPA's ''Preliminary Remediation Goals for radionuclides'' (PRG) electronic calculator

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, Brooke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-28

    The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their updated “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides PRGs for radionuclides that are used as a screening tool at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. These risk-based PRGs establish concentration limits under specific exposure scenarios. The purpose of this verification study is to determine that the calculator has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly. There are 167 equations used in the calculator. To verify the calculator, all equations for each of seven receptor types (resident, construction worker, outdoor and indoor worker, recreator, farmer, and composite worker) were hand calculated using the default parameters. The same four radionuclides (Am-241, Co-60, H-3, and Pu-238) were used for each calculation for consistency throughout.

  16. Savannah River Laboratory monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  17. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  18. Analysis of tank 23H samples in support of salt batch planning

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-08-14

    Savannah River Remediation obtained three samples from different heights within Tank 23H. The samples were analyzed by Savannah River National Laboratory to support salt batch planning. The results from the analysis indicate the top two samples from the tank appear similar in composition. The lowest sample from the tank contained significantly more solids and a more concentrated salt solution. The filtered supernate from the bottom sample showed ~60% lower Sr-90 and Pu-238 concentrations than the decanted (unfiltered) supernate results which may indicate the presence of some small amount of entrained solid particles in the decanted sample. The mercury concentrations measured in the filtered supernate were fairly low for all three samples ranging from 11.2 to 42.3 mg/L.

  19. Safety analysis for the Galileo light-weight radioisotope heater unit

    Science.gov (United States)

    Johnson, Ernest W.

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope Pu 238 in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  20. Determination of the Galaxy age by the method of uranium-thorium-plutonium isotopic ratios

    Science.gov (United States)

    Panov, I. V.; Lutostansky, Yu. S.; Eichler, M.; Thielemann, F.-K.

    2017-07-01

    The dependence of the Galaxy age ( T G), as determined by the method of uranium-thorium isotopic ratios, on the parameters of the nucleosynthesis model is studied within the theory of galactic nucleosynthesis. It is shown that TG depends strongly both on the scenario of the production of nuclei in the r-process and those features of neutron-rich nuclei that are used in the respective analysis and on galactic-nucleosynthesis parameters. The effect of a sudden nucleosynthesis spike before the formation of a solar system on the Galaxy age is evaluated. The region of admissible values of the parameters of galacticnucleosynthesis theory is discussed. The method of uranium-thorium isotopic ratios is supplemented with the 244Pu/238U ratio for yet another cosmochronometer pair, and the Galaxy age is estimated on the basis of the model modified in this way.

  1. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Building 221-H, B-Line, Scrap Recovery Facility (Supplement 2A): Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-07-01

    The now HB-Line is located an top of the 221-H Building on the fifth and sixth levels and is designed to replace the aging existing HB-Line production facility. The new HB-Line consists of three separate facilities: the Scrap Recovery Facility, Neptunium Facility, and Plutonium Oxide Facility. The Scrap Recovery Facility is designed to routinely generate nitrate solutions of {sup 235}U{sup 239}Pu and Pu-238 fromscrap for purification by anion exchange or by solvent extraction in the canyon. The now facility incorporates improvements in: (1) engineered controls for nuclear criticality, (2) cabinet integrity and engineered barriers to contain contamination and minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

  2. Nuclear Propulsion for Space Applications

    Science.gov (United States)

    Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2013-01-01

    Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.

  3. Production of nuclear sources and nuclear batteries by proton irradiation

    CERN Document Server

    Möller, S

    2016-01-01

    The decay of instable nuclei is being used in a broad range of applications from detector calibration to power sources. As the public acceptance of classical fission nuclear technology is decaying and its integral costs are enormous, alternative production routes are required. The mathematical formalism and fundamental considerations are presented for the use of ion accelerators for isotope production. A focus is put on the production of nuclear power sources to substitute Pu-238 based batteries. 20 MeV protons are found to produce {\\alpha} emitting polonium isotopes from bismuth with an energy efficiency of up to 0.031%. Some hours are required to produce a 1Wth power source of the 2.9 year half-life {\\alpha} emitter Po-208 with a suitable accelerator. The accelerator approach offers more flexibility for tailoring of nuclear products and less waste. The technical requirements are close to and compatible with the planned International Fusion Materials Irradiation Facility accelerator

  4. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash); Evaluacion de la Intercomparacion CSN/CIEMAT-2005 entre Laboratorios Nacionales Radiactividad Ambiental (Ceniza Vegetal)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.; Valino Garcia, F.

    2006-07-01

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC {sup I}nternational harmonised protocol for the proficiency testing of analytical chemistry laboratories{sup .} The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs.

  5. Summary of Plutonium-238 Production Alternatives Analysis Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Wade E. Bickford; David B. Lord; Chadwick D. Barklay

    2013-03-01

    The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baseline technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration’s urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation

  6. Advanced alpha spectrum analysis based on the fitting and covariance analysis of dependent variables

    Science.gov (United States)

    Ihantola, S.; Pelikan, A.; Pöllänen, R.; Toivonen, H.

    2011-11-01

    The correct handling of statistical uncertainties is crucial especially when unfolding alpha spectra that contain a low number of counts or overlapping peaks from different nuclides. For this purpose, we have developed a new spectrum analysis software package called ADAM, which performs a full covariance calculus for alpha-particle emitting radionuclides. By analyzing a large number of simulated and measured spectra, the program was proved to give unbiased peak areas and statistically correct uncertainty limits. This applies regardless of the peak areas and the number of unknown parameters during the fitting. In addition, ADAM performs reliable deconvolution for multiplets, which opens the way for the determination of isotope ratios, such as 239Pu/240Pu.

  7. CHARACTERIZATION OF PLUTONIUM CONTAMINATED SOILS FROM THE NEVADA TEST SITE IN SUPPORT OF EVALUATION OF REMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Torrao, Guilhermina; Carlino, Robert; Hoeffner, Steve L.; Navratil, James D.

    2003-02-27

    The removal of plutonium from Nevada Test Site (NTS) area soils has previously been attempted using various combinations of attrition scrubbing, size classification, gravity based separation, flotation, air flotation, segmented gate, bioremediation, magnetic separation and vitrification. Results were less than encouraging, but the processes were not fully optimized. To support additional vendor treatability studies soil from the Clean Slate II site (located on the Tonopah Test Range, north of the NTS) were characterized and tested. These particular soils from the NTS are contaminated primarily with plutonium-239/240 and Am-241. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu- 239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. The results indicate that about a 40% volume reduction of contaminated soil should be achievable by removing the >300 um size fraction of the soil. Attrition scrubbing does not effect particle size distribution, but does result in a slight shift of plutonium distribution to the fines. As such, attrition scrubbing may be able to slightly increase the ability to separate plutonium-contaminated particles from clean soil. This could add another 5-10% to the mass of the clean soil, bringing the total clean soil to 45-50%. Additional testing would be needed to determine the value of using attrition scrubbing as well as screening the soil through a sieve size slightly smaller than 300 um. Since only attrition scrubbing and wet sieving would be needed to attain this, it would be good to conduct this

  8. Criticality prompt gamma and neutron dose equations validated by Monte Carlo analyses and compared to known criticality accident doses

    Science.gov (United States)

    Hochhalter, Eugene

    The United States (US) Department of Energy [DOE] and the Nuclear Regulatory Commission [NRC] have provided the nuclear industry with requirements, goals, and objectives for the preparation of safety analysis and the finalization of that safety analysis in the form of a documented safety analysis (DSA) and technical safety requirements (TSRs). The deterministic guidance provided by the NRC in Regulatory Guide (RG) 3.33 for calculating the prompt gamma and neutron doses from a criticality has a number of potential issues associated with the semi-empirical equations, which make these equations potentially out dated. The NRC guidance for estimating the prompt gamma and neutron doses to a facility worker due to an accidental criticality was withdrawn without newer deterministic guidance being issued. This research project determined the original basis for the RG prompt gamma and neutron equations, evaluated the potential issues associated with the RG 3.33 prompt gamma and neutron equations, and modified the RG 3.33 point source prompt gamma and neutron equations to calculate the doses for the selected set of criticality accidents. The criticality accidents addressed by this dissertation include: 1. U-235, Pu-239, and Pu-241 point source criticality, 2. U-235, Pu-239, and Pu-241 sphere source criticality, 3. Uranyl nitrate and plutonium nitrate solutions in a cylindrical process vessel and 4. Low level waste in 55-gallon and 30-gallon drums. The prompt gamma and neutron equation doses (RG 3.33/3.34/3.35) are compared to actual nuclear industry criticality accident worker doses to assess the conservatism of the RG equations. Finally, the RG 3.33 prompt gamma and neutron dose equations are compared to MCNP5 results to investigate consistency with respect to the modified prompt gamma and neutron dose equations and the representative dose estimates for each of the criticality configurations (point source, spherical source, and cylindrical source). Knowledge and accurate

  9. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  10. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    Science.gov (United States)

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-02 (Fauna Marina)

    Energy Technology Data Exchange (ETDEWEB)

    Romero gonzalez, M. L.

    2003-07-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs.

  12. Uranium comparison by means of AMS and ICP-MS and Pu and 137Cs results around an Italian Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    De Cesare M.

    2015-01-01

    Full Text Available Italy built and commissioned 4 nuclear power plants between 1958-1978, which delivered a total of 1500 MW. All four were closed down after the Chernobyl accident following a referendum in 1987. One of the plants was Garigliano, commissioned in 1959. This plant used a 160 MW BWR1 (SEU of 2.3 % and was operational from 1964 to 1979, when it was switched off for maintenance. It was definitively stopped in 1982, and is presently being decommissioned. We report here details on the chemistry procedure and on the measurements for soil samples, collected up to 4.5 km from the Nuclear Plant. A comparison between uranium (238U concentration as determined by means of AMS (Accelerator Mass Spectrometry and by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry techniques respectively at the ANU (Australian National University and at the Ecowise company in Canberra, Australia, is reported, as well as 236U and 239;240Pu concentration results detected by AMS. 236U/238U and 240Pu/239Pu isotopic ratios by means of AMS are also provided. A contamination from Chernobyl is visible in the 137Cs/239+240Pu activity ratio measurements.

  13. The alligator rivers analogue project

    Energy Technology Data Exchange (ETDEWEB)

    Duerden, P. (Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia))

    1991-01-01

    The Koongarra uranium ore deposit in the Northern Territory of Australia is being studied to evaluate the processes and mechanisms involved in the hydrological/geochemical alteration of the primary uranium and model the formation of the secondary uranium mineralisation and the dispersion fan. A wide range of research is undertaken in the field and at laboratories in Australia, Japan, Sweden, the UK and the USA. The experimental and modelling tasks consider the original weathering of the region, the alteration of the host rock and primary uranium, groundwater flow and migration pathways, rock/groundwater interactions, such as adsorption desorption, nuclide transport and the relative distribution of the uranium/thorium radionuclides in the multi-phase system, and the continued development of the dispersion fan. The study of the in-situ production and mobility of long lived fission products eg Tc-99 and I-129 and transuranic nuclides such as Pu-239 is also possible. The methods used in collecting data for a repository are similar to those applied at Koongarra, hence, an analysis of the many different approaches taken may help evaluate and decrease the uncertainties of with field and laboratory measurements. (J.P.N.).

  14. Thermochemical assessment of oxygen gettering by SiC or ZrC in PuO 2-x TRISO fuel

    Science.gov (United States)

    Besmann, Theodore M.

    2010-02-01

    Particulate nuclear fuel in a modular helium-cooled reactor is being considered for the consumption of excess plutonium and related transuranics. In this work a thermochemical analysis was performed to predict oxygen potential behavior in plutonia TRISO fuel to burnups of 88% FIMA of the Pu 239 content with and without the presence of oxygen gettering SiC and ZrC. The gettering phases are designed to prevent kernel migration, a serious issue in TRISO fuel, and this has been demonstrated with both SiC and ZrC. The phases reduce CO pressure, thus also reducing the peak pressure within the particles by at least 50%, decreasing the likelihood of pressure-induced particle failure. A model for kernel migration based on vapor transport by CO was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and demonstrate the potential dramatic effect of the addition of these phases on carbon transport.

  15. Anthropogenic plutonium-244 in the environment: Insights into plutonium's longest-lived isotope.

    Science.gov (United States)

    Armstrong, Christopher R; Brant, Heather A; Nuessle, Patterson R; Hall, Gregory; Cadieux, James R

    2016-02-22

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., (244)Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic (244)Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant (244)Pu was measured in all of the years sampled with the highest amount observed in 2003. The (244)Pu content, in femtograms (fg = 10(-15) g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the (244)Pu/(239)Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.

  16. Cleanup and treatment (CAT) test: a land-area decontamination project utilizing a vacuum method of soil removal

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, J.A.

    1982-08-01

    Areas 11 and 13 of the Nevada Test Site (NTS) are contaminated with varying concentrations of Pu-239, 240 and Am-241. An investigation of a vacuum method of soil removal, the Cleanup and Treatment (CAT) test, was conducted over a 3-month period in the plutonium safety shot or Plutonium Valley portion of Area 11. Soil in Plutonium Valley is of the Aridisol Order. The surface 0 to 10 cm is a gravelly loam, and is strongly alkaline (pH 8.8). A large truck-mounted vacuum unit, rather than conventional earth-moving equipment, was used as the primary soil collection unit. Effectiveness of the vacuum method of soil removal was evaluated in relation to conventional earthmoving procedures, particularly in terms of volume reduction of removed soil achieved over conventional techniques. Radiological safety considerations associated with use of the vacuum unit were evaluated in relation to their impact on a full-scale land decontamination program. Environmental and operational impacts of devegetation with retention of root crowns or root systems were investigated. It is concluded that the CAT test was successful under difficult environmental conditions.

  17. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Sharma A.

    2008-07-01

    Full Text Available Einstein’s September 1905 paper is origin of light energy-mass inter conversion equa- tion ( L = mc 2 and Einstein speculated E = mc 2 from it by simply replacing L by E . From its critical analysis it follows that L = mc 2 is only true under special or ideal conditions. Under general cases the result is L / mc 2 ( E / mc 2 . Conse- quently an alternate equation E = Ac 2 M has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by E = mc 2 . The total kinetic energy of fission fragments of U 235 or Pu 239 is found experimentally 20–60 MeV less than Q -value predicted by mc 2 . The mass of parti- cle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions E = mc 2 is not confirmed yet, but regarded as true. It implies the conversion factor than c 2 is possible. These phenomena can be explained with help of generalized mass-energy equation E = Ac 2 M .

  18. Studies of Np and Pu in the marine environment of Swedish-Danish waters and the North Atlantic Ocean.

    Science.gov (United States)

    Lindahl, Patric; Roos, Per; Holm, Elis; Dahlgaard, Henning

    2005-01-01

    The long-lived anthropogenic radionuclides (237)Np, (239)Pu and (240)Pu were determined in marine environmental samples (seaweed and seawater) collected from Swedish-Danish waters and the North Atlantic Ocean at various locations on different occasions during the period 1991-2001. The measurements were performed with sector field Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and conventional alpha spectrometry. The (237)Np activity concentrations in Fucus vesiculosus and surface seawater from the Swedish west coast and Danish waters ranged from 0.16+/-0.02 to 1.02+/-0.09 mBq kg(-1) (dry weight) and 0.65+/-0.02 to 1.69+/-0.02 mBq m(-3), respectively, depending on the location and sampling year. Most of the (237)Np in these waters is believed to originate from the Sellafield nuclear reprocessing plant, with some contribution from global fallout. The (240)Pu/(239)Pu atomic ratios in F. vesiculosus samples are reported in this study with an overall average of 0.17+/-0.03. The (237)Np and (239)Pu activity concentrations observed in surface seawater collected in North Atlantic waters ranged from 0.16+/-0.01 to 0.62+/-0.08 mBq m(-3) and from 0.64+/-0.05 to 4.27+/-0.08 mBq m(-3), respectively, and the (237)Np/(239)Pu atomic ratios were a good indicator of conservative behaviour of Np in marine waters.

  19. Vertical distribution and migration of global fallout Pu in forest soils in southwestern China.

    Science.gov (United States)

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Uchida, Shigeo

    2014-10-01

    Soil samples collected in southwestern China were analyzed for Pu isotopes. The (240)Pu/(239)Pu atom ratios were around 0.18, which indicated the dominant source of global fallout. Consistent sub-surface maximums followed by exponential decline of (239+240)Pu activities in the soil cores were observed. Most of the Pu has still remained in the 0-10 cm layers since its deposition. Convection velocities and dispersion coefficients for Pu migration in the soils were estimated by the convection-dispersion equation (CDE) model. The effective convection velocities and effective dispersion coefficients ranged from 0.05 to 0.11 cm/y and from 0.06 to 0.29 cm(2)/y, respectively. Other factors that control the vertical migration of Pu in soil besides precipitation, soil particle size distribution and organic matter were suggested. Long-term migration behaviors of Pu in the soils were simulated. The results provide the Pu background baseline for further environmental monitoring and source identification of non-global fallout Pu inputs in the future.

  20. Development of a standard data base for FBR core nuclear design. 10. Reevaluation of atomic number density of JOYO Mk-II core

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazuyuki; Sato, Wakaei [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Ishikawa, Makoto; Arii, Yoshio [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-07-01

    The material composition of JOYO Mk-II core components in its initial core was reevaluated as a part of the effort for developing a standard data base for FBR core nuclear design. The special feature of the reevaluation is to treat the decay of Pu-241 isotope, so that the atomic number densities of Pu-241 and Am-241 in fuel assemblies can be exactly evaluated on the initial critical date, Nov. 22nd, 1982. Further, the atomic number densities of other core components were also evaluated to improve the analytical accuracy. Those include the control rods which were not so strictly evaluated in the past, and the dummy fuels and the neutron sources which were not treated in the analytical model so far. The results of the present reevaluation were as follows: (1) The changes of atomic number densities of the major nuclides such as Pu-239, U-235 and U-238 were about {+-}0.2 to 0.3%. On the other hand, the number density of Pu-241, which was the motivation of the present work, was reduced by 12%. From the fact, the number densities in the past analysis might be based on the isotope measurement of the manufacturing point of time without considering the decay of Pu-241. (2) As the other core components, the number densities of control rods and outer reflector-type A were largely improved. (author)

  1. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Ajay Sharma

    2008-07-01

    Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.

  2. A gas-jet ECR ion source at TRIGA-SPEC

    Energy Technology Data Exchange (ETDEWEB)

    Smorra, Christian; Eibach, Martin [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, Mainz (Germany); Physikalisches Institut, Ruprecht Karls-Universitaet, Heidelberg (Germany); Beyer, Thomas; Blaum, Klaus [Physikalisches Institut, Ruprecht Karls-Universitaet, Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Block, Michael; Herfurth, Frank [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Eberhardt, Klaus [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, Mainz (Germany); Ketelaer, Jens; Knuth, Konstantin [Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz (Germany); Nagy, Szilard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Noertershaeuser, Wilfried [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2010-07-01

    The TRIGA-SPEC experiment has been installed recently at the research reactor TRIGA Mainz. Ground state properties like masses, charge radii, spins, and moments of short-lived nuclides can be determined with very-high precision using the Penning trap mass spectrometer TRIGA-TRAP, and the collinear laser spectroscopy setup TRIGA-LASER. Short-lived neutron-rich radionuclides in the mass range 80 < A < 140 are produced by thermal neutron induced fission of e.g. U-235, Pu-239 or Cf-249, respectively. For the extraction and ionization of the fission products a gas-jet system is coupled to a 2.45-GHz ECR ion source for the production of singly charged ions. The gas-jet has been tested on-line and fission products have been extracted. First off-line tests of the ion source have been performed successfully with argon gas. The results of the commissioning test of the ion source and the on-line coupling of the experiments are presented.

  3. Results of The Excreta Bioassay Quality Control Program For April 1, 2010 Through March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cheryl L.

    2012-07-19

    A total of 76 urine samples and 10 spiked fecal samples were submitted during the report period (April 1, 2010 through March 31, 2011) to GEL Laboratories, LLC in South Carolina by the Hanford Internal Dosimetry Program (IDP) to check the accuracy, precision, and detection levels of their analyses. Urine analyses for 14C, Sr, for 238Pu, 239Pu, 241Am, 243Am, 235U, 238U, 238U-mass and fecal analyses for 241Am, 238Pu and 239Pu were tested this year. The number of QC urine samples submitted during the report period represented 1.1% of the total samples submitted. In addition to the samples provided by IDP, GEL was also required to conduct their own QC program, and submit the results of analyses to IDP. About 31% of the analyses processed by GEL during the first year of contract 112512 were quality control samples. GEL tested the performance of 23 radioisotopes, all of which met or exceeded the specifications in the Statement of Work within statistical uncertainty except the slightly elevated relative bias for 243,244Cm (Table 4).

  4. Multi-actinide analysis with AMS for ultra-trace determination and small sample sizes: advantages and drawbacks

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Francesca; Lagos, Markus; Plaschke, Markus; Schaefer, Thorsten; Geckeis, Horst [Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (Germany); Steier, Peter; Golser, Robin [VERA Laboratory, Faculty of Physics, University of Vienna (Austria)

    2016-07-01

    With the abundance sensitivities of AMS for U-236, Np-237 and Pu-239 relative to U-238 at levels lower than 1E-15, a simultaneous determination of several actinides without previous chemical separation from each other is possible. The actinides are extracted from the matrix elements via an iron hydroxide co-precipitation and the nuclides sequentially measured from the same sputter target. This simplified method allows for the use of non-isotopic tracers and consequently the determination of Np-237 and Am-243 for which isotopic tracers with the degree of purity required by ultra-trace mass-spectrometric analysis are not available. With detection limits of circa 1E+4 atoms in a sample, 1E+8 atoms are determined with circa 1 % relative uncertainty due to counting statistics. This allows for an unprecedented reduction of the sample size down to 100 ml of natural water. However, the use of non-isotopic tracers introduces a dominating uncertainty of up to 30 % related to the reproducibility of the results. The advantages and drawbacks of the novel method will be presented with the aid of recent results from the CFM Project at the Grimsel Test Site and from the investigation of global fallout in environmental samples.

  5. Radioecologycal study of 239/240Pu in Bangka Island and Muria Peninsula: Determination of 239/240Pu in marine sediment and seawater as part of baseline data collecting for sitting of candidates of first Indonesia NPP

    Science.gov (United States)

    Suseno, Heny; Wisnubroto, Djarot S.

    2014-03-01

    Radioisotope Pu-239/240 are alpha emitting nuclides important indicators of radioactive contamination of the marine environment. Global fallout is the main source of plutonium in the marine environment. There are very limited study on 239/240Pu in Indonesia coastal environments. The data of this radioisotopes is needed for baseline data of nuclear power plant (NPP) site candidates both in Bangka Island and Muria Peninsula. Bottom sediments play an important role in radioecological studies of the marine environment because a large proportion of radioactive substances entering the sea is adsorbed over time onto suspended particulate matter and deposited in sediments. Plutonium is particle reactive and deposited in marine sediment. Radioisotope 239/240Pu was determinated by alpha spectrometry after radiochemical procedure that was performed in both water and marine sediment from Bangka Island and Muria Peninsula. The sediment baseline of concentration 239/240Pu in Bangka Island and Muria Peninsula were range from 0.013 to 0.021 Bq.kg-1 and 0.018 to 0.024 Bq.kg-1 respectively. The water baseline concentration this isotope were range from 2.73 to 4.05 mBq.m-3 and 2.98 to 4.50 mBq.m-3.

  6. Radioecologycal study of {sup 239/240}Pu in Bangka Island and Muria Peninsula: Determination of {sup 239/240}Pu in marine sediment and seawater as part of baseline data collecting for sitting of candidates of first Indonesia NPP

    Energy Technology Data Exchange (ETDEWEB)

    Suseno, Heny, E-mail: henis@batan.go.id [Radioactive Waste Technology Center - The Indonesian National Nuclear Energy Agency (Indonesia); Wisnubroto, Djarot S. [The Indonesian National Nuclear Energy Agency (Indonesia)

    2014-03-24

    Radioisotope Pu-239/240 are alpha emitting nuclides important indicators of radioactive contamination of the marine environment. Global fallout is the main source of plutonium in the marine environment. There are very limited study on {sup 239/240}Pu in Indonesia coastal environments. The data of this radioisotopes is needed for baseline data of nuclear power plant (NPP) site candidates both in Bangka Island and Muria Peninsula. Bottom sediments play an important role in radioecological studies of the marine environment because a large proportion of radioactive substances entering the sea is adsorbed over time onto suspended particulate matter and deposited in sediments. Plutonium is particle reactive and deposited in marine sediment. Radioisotope {sup 239/240}Pu was determinated by alpha spectrometry after radiochemical procedure that was performed in both water and marine sediment from Bangka Island and Muria Peninsula. The sediment baseline of concentration {sup 239/240}Pu in Bangka Island and Muria Peninsula were range from 0.013 to 0.021 Bq.kg{sup −1} and 0.018 to 0.024 Bq.kg{sup −1} respectively. The water baseline concentration this isotope were range from 2.73 to 4.05 mBq.m{sup −3} and 2.98 to 4.50 mBq.m{sup −3}.

  7. Americium and plutonium in water, biota, and sediment from the central Oregon coast

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, R. D.

    1982-06-01

    Plutonium-239, 240 and americium-241 were measured in the mussel Mytilus californianus from the region of Coos Bay, OR. The flesh of this species has a plutonium concentration of about 90 fCi/kg, and an Am-241/Pu-239, 240 ratio that is high relative to mixed fallout, ranging between two and three. Transuranic concentrations in sediment, unfiltered water, and filterable particulates were also measured; none of these materials has an Am/Pu ratio as greatly elevated as the mussels, and there is no apparent difference in the Am/Pu ratio of terrestrial runoff and coastal water. Sediment core profiles do not allow accumulation rates or depositional histories to be identified, but it does not appear that material characterized by a high Am/Pu ratio has ever been introduced to this estuary. Other bivalves (Tresus capax and Macoma nasuta) and a polychaete (Abarenicola sp.) do not have an elevated Am/Pu ratio, although the absolute activity of plutonium in the infaunal bivalves is roughly four times that in the mussels.

  8. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout

    Science.gov (United States)

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-07-01

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m2) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The 240Pu/239Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China.

  9. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-00 (Suelo)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.

    2002-07-01

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs.

  10. Development of output user interface software to support analysis

    Science.gov (United States)

    Wahanani, Nursinta Adi; Natsir, Khairina; Hartini, Entin

    2014-09-01

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu239 and Pu241. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  11. Performance-assessment progress for the Rozan low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smietanski, L.; Mitrega, J.; Frankowski, Z. [Polish Geological Institute, Warsaw (Poland)] [and others

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangered unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.

  12. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  13. Uranium comparison by means of AMS and ICP-MS and Pu and 137Cs results around an Italian Nuclear Power Plant

    Science.gov (United States)

    De Cesare, M.; Tims, S. G.; Fifield, L. K.

    2015-04-01

    Italy built and commissioned 4 nuclear power plants between 1958-1978, which delivered a total of 1500 MW. All four were closed down after the Chernobyl accident following a referendum in 1987. One of the plants was Garigliano, commissioned in 1959. This plant used a 160 MW BWR1 (SEU of 2.3 %) and was operational from 1964 to 1979, when it was switched off for maintenance. It was definitively stopped in 1982, and is presently being decommissioned. We report here details on the chemistry procedure and on the measurements for soil samples, collected up to 4.5 km from the Nuclear Plant. A comparison between uranium (238U) concentration as determined by means of AMS (Accelerator Mass Spectrometry) and by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) techniques respectively at the ANU (Australian National University) and at the Ecowise company in Canberra, Australia, is reported, as well as 236U and 239;240Pu concentration results detected by AMS. 236U/238U and 240Pu/239Pu isotopic ratios by means of AMS are also provided. A contamination from Chernobyl is visible in the 137Cs/239+240Pu activity ratio measurements.

  14. Bonebrake Theological Seminary - Most Secret A-Bomb Project Site

    Science.gov (United States)

    Sopka, Katherine R.; Sopka, Elisabeth M.

    2004-05-01

    In late 1943, a small number of nuclear scientists was urgently assembled in Dayton, Ohio by the U.S. Army Manhattan District Engineers and Monsanto Chemical Company Research Division to set up a top secret research project essential to counteract the German atomic bomb threat. The site chosen was an old stone building built in 1879 by the United Brethren Church in a residential area known locally as the Bonebrake Seminary. Centered on a sizeable open plot, the austere three story building was surrounded by a tall cyclone fence with a narrow gate and a minimal guard post - nothing revealed the site's intense research activity then or even in the post-WWII Cold War period. Bonebrake scientists would produce the highly radioactive polonium sources for the plutonium (Pu-239) bomb igniter used in August over Nagasaki just before the end of WWII against Japan. The existence of Bonebrake and its research/production work remained classified top secret throughout the Cold War. Only in recent times can any reference be found even to the existence of this project (unlike , for example, Los Alamos or Oak Ridge) and few, if any details, have ever been published. The primary source of information for this paper is Dr. John J. Sopka who was recruited from Princeton University by the Manhattan District in 1943 as physicist for this project.

  15. Study on transfer behavior of radionuclides from soil to plants

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Shigemitsu; Watanabe, Hitoshi; Katagiri, Hiromi; Shinohara, Kunihiko [Environmental Protection Section, Environment and Safety Division, Japan Nuclear Cycle Development Institute, Tokai, Ibaraki (Japan)

    1999-03-01

    Technetium-99 (Tc-99), Iodine-129 (I-129) and Neptunium-237 (Np-237) are important radionuclides for environmental assessment around nuclear fuel cycle facilities, because they have long half-lives and relatively high mobilities in the environment. Therefore, we have studied on the determination method, distribution and behavior of such long-lived radionuclides in surface soil environment. A new analytical technique using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Microwave Induced Plasma Mass Spectrometry (MIP-MS) were applied to the determination of long-lived radionuclides in environmental samples. The sensitivity of ICP-MS method was 10 to 100,000 times higher, and the counting time was 100 to 100,000 times shorter than the conventional radioanalytical methods. The depth profiles showed that more than 90% of Tc-99, I-129, Np-237 and Pu-239, 240 were retained in the surface layer, up to 10 cm in depth, which contained much amount of organic materials. The result suggests that the content of organic materials in soil is related to adsorption of these nuclides on soil. (author)

  16. Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's

    Directory of Open Access Journals (Sweden)

    Hernandez-Solis Augusto

    2017-01-01

    Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.

  17. Plutonium and uranium contamination in soils from former nuclear weapon test sites in Australia

    Science.gov (United States)

    Child, D. P.; Hotchkis, M. A. C.

    2013-01-01

    The British government performed a number of nuclear weapon tests on Australian territory from 1952 through to 1963 with the cooperation of the Australian government. Nine fission bombs were detonated in South Australia at Emu Junction and Maralinga, and a further three fission weapons were detonated in the Monte Bello Islands off the coast of Western Australia. A number of soil samples were collected by the Australian Radiation Laboratories in 1972 and 1978 during field surveys at these nuclear weapon test sites. They were analysed by gamma spectrometry and, for a select few samples, by alpha spectrometry to measure the remaining activities of fission products, activation products and weapon materials. We have remeasured a number of these Montebello Islands and Emu Junction soil samples using the ANTARES AMS facility, ANSTO. These samples were analysed for plutonium and uranium isotopic ratios and isotopic concentrations. Very low 240Pu/239Pu ratios were measured at both sites (∼0.05 for Alpha Island and ∼0.02 for Emu Field), substantially below global fallout averages. Well correlated but widely varying 236U and plutonium concentrations were measured across both sites, but 233U did not correlate with these other isotopes and instead showed correlation with distance from ground zero, indicating in situ production in the soils.

  18. ILL polarised hot-neutron beam facility D3

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre-Berna, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France)]. E-mail: lelievre@ill.fr; Bourgeat-Lami, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Gibert, Y. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Kernavanois, N. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Locatelli, J. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Mary, T. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Pastrello, G. [AZ-Systeme, 38170 Seyssinet-Pariset (France); Petukhov, A. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Pujol, S. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Rouques, R. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Thomas, F. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Thomas, M. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Tasset, F. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France)

    2005-02-15

    D3 is a very comprehensive polarised beam facility at the renewed hot neutron source of the Institut Laue-Langevin (ILL). In magnetic field up to 10T, it exploits the spin dependency of the neutron scattering cross-section for determining unpaired electron magnetisation in crystals. The technique applies very successfully to molecular compounds, heavy fermions, high-Tc superconductors, transition metals and actinide alloys.Within the frame of the ILL Millennium Programme, we have recently added polarisation analysis by taking advantage of {sup 3}He spin filters and built a dedicated third-generation Cryopad for carrying out spherical neutron polarimetry experiments. In the case of magnetic structures, this leads to the direct determination of the magnetic interaction vector. Hence, D3 has become one of the most powerful tool for solving complex AF structures that had proven to be intractable when employing other techniques. Moreover, when the magnetic and nuclear scattering occur at the same position in the reciprocal space, it allows a precise determination of the AF magnetisation distributions.D3 can also be used for many purposes other than diffraction experiments, e.g. the search for the T-odd asymmetry of light particle emission in Pu239 ternary fission.

  19. Study of Thorium Fuel Cycles for Light Water Reactor VBER-150

    Directory of Open Access Journals (Sweden)

    Daniel Evelio Milian Lorenzo

    2013-01-01

    Full Text Available The main objective of this paper is to examine the use of thorium-based fuel cycle for the transportable reactors or transportable nuclear power plants (TNPP VBER-150 concept, in particular the neutronic behavior. The thorium-based fuel cycles included Th232+Pu239, Th232+U233, and Th232+U and the standard design fuel UOX. Parameters related to the neutronic behavior such as burnup, nuclear fuel breeding, MA stockpile, and Pu isotopes production (among others were used to compare the fuel cycles. The Pu transmutation rate and accumulation of Pu with MA in the spent fuel were compared mutually and with an UOX open cycle. The Th232+U233 fuel cycle proved to be the best cycle for minimizing the production of Pu and MA. The neutronic calculations have been performed with the well-known MCNPX computational code, which was verified for this type of fuel performing calculation of the IAEA benchmark announced by IAEA-TECDOC-1349.

  20. Light water reactor fuel element suitable for thorium employment in a discrete seed and blanket configuration with the aim to attain conversion ratios above the range of one

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.F.; Grosse, K.H.; Seemann, R. [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2008-07-01

    The thorium resources in the world are relatively large. According to the IAEA-NEA-publication ''Red Book'' they amount to 4.5 10E6 metric tons and are about 4 times greater than the resources of Uranium. The fuel element described in this paper could be used in light water reactor (LWR) preferably in pressurized water reactor (PWR). The seed (feed) rods contain uranium 235 as fissionable material and the blanket (breed) rods contain thorium and uranium. The thorium in the blanket rods is converted to fissionable U-233 by irradiation with thermal neutrons. The U-233 produced is a valuable fissionable material and is characterized by high revalues, where t is defined as the number of fission neutrons per absorption in fissile materials. By optimized configuration and loading of the seed- and blanket rods the thorium is converted to U-233 and the U-238 is converted to fissionable Plutonium isotopes. Consequently more fissionable material is generated than is used. The fuel cycle is also flexible. Thus U-235, Pu-239 or weapons-grade Plutonium can be used.Based on knowledge obtained in the development of fuel elements for material test reactors (MTR), high temperature reactors (HTR) and light water reactors (LWR), a new design of fuel element suitable for thorium employment in PWR is described.

  1. Results of The Excreta Bioassay Quality Control Program For April 1, 2008 through March 31, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cheryl L.

    2010-06-01

    A total of 62 urine samples and 6 spiked fecal samples were submitted during the report period (April 1, 2008 through March 31, 2009) to General Engineering Laboratories, South Carolina by the Hanford Internal Dosimetry Program (IDP) to check the accuracy, precision, and detection levels of their analyses. Urine analyses for Sr, 238Pu, 239Pu, 241Am, 243Am 235U, 238U, elemental uranium and fecal analyses for 241Am, 238Pu and 239Pu were tested this year. The number of QC urine samples submitted during the report period represented 1.3% of the total samples submitted. In addition to the samples provided by IDP, GEL was also required to conduct their own QC program, and submit the results of analyses to IDP. About 34% of the analyses processed by GEL during the third year of this contract were quality control samples. GEL tested the performance of 21 radioisotopes, all of which met or exceeded the specifications in the Statement of Work within statistical uncertainty. IDP concluded that GEL was performing well for all analyses tested, and concerns identified earlier were satisfactorily resolved (see section on Follow-up on Concerns During the Fourth Contract Year).

  2. Development of a standard data base for FBR core nuclear design. 10. Reevaluation of atomic number density of JOYO Mk-II core

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazuyuki; Sato, Wakaei [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Ishikawa, Makoto; Arii, Yoshio [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-07-01

    The material composition of JOYO Mk-II core components in its initial core was reevaluated as a part of the effort for developing a standard data base for FBR core nuclear design. The special feature of the reevaluation is to treat the decay of Pu-241 isotope, so that the atomic number densities of Pu-241 and Am-241 in fuel assemblies can be exactly evaluated on the initial critical date, Nov. 22nd, 1982. Further, the atomic number densities of other core components were also evaluated to improve the analytical accuracy. Those include the control rods which were not so strictly evaluated in the past, and the dummy fuels and the neutron sources which were not treated in the analytical model so far. The results of the present reevaluation were as follows: (1) The changes of atomic number densities of the major nuclides such as Pu-239, U-235 and U-238 were about {+-}0.2 to 0.3%. On the other hand, the number density of Pu-241, which was the motivation of the present work, was reduced by 12%. From the fact, the number densities in the past analysis might be based on the isotope measurement of the manufacturing point of time without considering the decay of Pu-241. (2) As the other core components, the number densities of control rods and outer reflector-type A were largely improved. (author)

  3. Radon Concentration and Influence Factors Indoors in Suzhou City%苏州市区居民住宅内氡水平及其影响因素分析

    Institute of Scientific and Technical Information of China (English)

    涂彧; 张兵波; 俞荣生; 刘犁

    2003-01-01

    目的了解苏州市居民住宅内氡水平.方法采用双滤膜法,选用标准Pu-239源校正后的FT-648型测氡仪,效率为0.8,以40L/min的空气流速采样15 min,间隔1 min后记数15 min,读取结果,经公式换算,得出氡浓度的数据.结果本次调查的135户住房中氡浓度为41.4 Bq/m3.楼层、房屋结构、居住时间及装修材料对居民室内氡水平的有影响.结论苏州市居住宅室内氡水平与世界范围的40.0 Bq/m3相当,保持良好通风是室内降低氡浓度的有效措施.

  4. Plutonium thermal utilization in PWR in Mihama No. 1 plant; Course of verification project with small number of specimens

    Energy Technology Data Exchange (ETDEWEB)

    Yokote, Mitsuhiro (Kansai Electric Power Co., Inc., Osaka (Japan)); Kondo, Yoshiaki; Shimada, Shouichirou; Abeta, Sadaaki

    1992-05-01

    On December 20, 1991, the use of four MOX fuels charged in Mihama No. 1 plant for three cycles ended, which is the verification project with small number of specimens on the plutonium thermal utilization in PWRs in Japan. There was not any symptom of showing abnormality in the safety of the core and the soundness of the fuel during the use. In this report, the verification project and the results are explained. In spent fuel, reusable fission substances such as Pu-239 and Pu-241 produced from U-235 and U-238 are contained. By recycling and effectively utilizing them, resources are protected and the effect to environment is reduced, the energy security in Japan with poor resources can be heightened, and waste management becomes proper. The course of the plutonium thermal utilization in PWR project in Mihama No. 1 plant, the design of MOX fuel and the core, the manufacture of MOX fuel in USA and its transport to Japan, the preservation, practical use and operation management of MOX fuel, the charging of MOX fuel in Mihama No. 1 plant and the use, and the plan of the plutonium thermal utilization in PWRs for hereafter are reported. (K.I.).

  5. Unique diversity of radioactive particles found in the Yenisei River floodplain.

    Science.gov (United States)

    Bolsunovsky, Alexander; Melgunov, Mikhail; Chuguevskii, Alexey; Lind, Ole Christian; Salbu, Brit

    2017-09-11

    The long-term operation of three reactors and the radiochemical plant of the Mining-and-Chemical Combine (MCC), Russia's largest producer of weapons-grade plutonium, has resulted in radioactive contamination of the Yenisei River floodplain. From 1995 to 2016, we found more than 200 radioactive particles (RP) in the Yenisei floodplain, downstream of the MCC. Analytical characterization showed that most of the RP were fuel particles, which were carried into the river after incidents at the MCC reactors. Having compared the (137)Cs/(134)Cs ratios in the particles, we determined three time intervals when the RP were formed. The plutonium isotope ratios ((238)Pu/(239,240)Pu) vary substantially between the particles and indicate several different source terms. In addition to fuel RP, we found particles that only contained activation products ((60)Co or europium isotopes). SEM and γ-spectrometry showed that the cobalt particles could have originated from the corrosion of the reactor coolant system and the europium particles - from the damaged compensating rods. No europium particles have been found anywhere else in the world. The presence of RP from different sources (fuel, cobalt, and europium particles) in the Yenisei River floodplain makes this region a unique site for studying environmental effects of the particles. These RP represent point sources of radioecological significance.

  6. Xenon Gamma Detector Project Support

    Energy Technology Data Exchange (ETDEWEB)

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  7. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado.

    Science.gov (United States)

    Litaor, M I

    1999-02-01

    Spatial analysis of the 240Pu:239Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152+/-0.003 to 0.169+/-0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio > or = 0.155, thus were minimally impacted by the plant activity; (2) the study area east of Rocky Flats Plant (approximately 120 km2) exhibited a plutonium isotopic ratio open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq.

  8. The value of helium-cooled reactor technologies for transmutation of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.; Baxter, A. [General Atomics, Los Alamos, NM (United States)

    2001-07-01

    Helium-cooled reactor technologies offer significant advantages in accomplishing the waste transmutation process. They are ideally suited for use with thermal, epithermal, or fast neutron energy spectra. They can provide a relatively hard thermal neutron spectrum for transmutation of fissionable materials such as Pu-239 using ceramic-coated transmutation fuel particles, a graphite moderator, and a non-fertile burnable poison. These features (1) allow deep levels of transmutation with minimal or no intermediate reprocessing, (2) enhance passive decay heat removal via heat conduction and radiation, (3) allow operation at relatively high temperatures for a highly efficient generation of electricity, and (4) discharge the transmuted waste in a form that is highly resistant to corrosion for long times. They also offer the possibility for the use of epithermal neutrons that can interact with transmutable materials more effectively because of the large atomic cross sections in this energy domain. A fast spectrum may be useful for deep burnup of certain minor actinides. For this application, helium is essentially transparent to neutrons, does not degrade neutron energies, and offers the hardest possible neutron energy environment. In this paper, we report results from recent work on materials transmutation balances, safety, value to a geological repository, and economic considerations. (authors)

  9. Comparison of Pu and (137)Cs as tracers of soil and sediment transport in a terrestrial environment.

    Science.gov (United States)

    Everett, S E; Tims, S G; Hancock, G J; Bartley, R; Fifield, L K

    2008-02-01

    Following atmospheric nuclear weapons testing in the 1950s and 1960s significant quantities of (137)Cs and (239+240)Pu were deposited worldwide. In recent decades, (137)Cs has been commonly used as a tracer of soil erosion and sedimentation, particularly in the Northern Hemisphere where atomic deposition was three times as great as in the Southern Hemisphere. The relatively short 30-year half-life of this isotope means that its sensitivity as a tracer is rapidly decreasing. In contrast, with half-lives of 24,110 and 6561 years, the sensitivity of the two plutonium isotopes remains essentially the same as when it was deposited. Here we use the technique of Accelerator Mass Spectrometry to demonstrate the potential of anthropogenic Pu as an alternative to (137)Cs as a tracer of soil transport in Australia. We measure an average (137)Cs/(239+240)Pu activity ratio of 27.3+/-1.5 and an average (240)Pu/(239)Pu atom ratio of 0.149+/-0.003, both slightly lower than the global average.

  10. Measurements of low-level anthropogenic radionuclides from soils around Maralinga

    Science.gov (United States)

    Tims, Stephen G.; Tsifakis, Dimitrios; Srncik, Michaela; Fifield, L. Keith; Hancock, Gary J.; De Cesare, Mario

    2013-12-01

    The isotopes 239Pu and 240Pu are present in surface soils as a result of global fallout from nuclear weapons tests carried out in the 1950's and 1960's. These isotopes constitute artificial tracers of recent soil erosion and sediment movement. In practice the high throughput capabilities and high sensitivity of the AMS technique makes the study of Australia's geographically large areas viable using Pu isotopes. As part of its weapons development program the United Kingdom carried out a series of atmospheric and surface nuclear weapons tests at Maralinga, South Australia in 1956 and 1957. The contribution from the Maralinga tests to the Pu isotopic abundances present in the region around Maralinga is largely unknown. In global fallout, for example, the 240Pu/239Pu ratio is typically in the range 0.17 - 0.19, but the influence of the regional tests could lead to values outside this range. This would impact on the assessment techniques used in the soil and sediment tracer studies. We report recent measurements on soil samples collected from across the Maralinga Test site.

  11. Measurements of low-level anthropogenic radionuclides from soils around Maralinga

    Directory of Open Access Journals (Sweden)

    Tims Stephen G.

    2013-12-01

    Full Text Available The isotopes 239Pu and 240Pu are present in surface soils as a result of global fallout from nuclear weapons tests carried out in the 1950’s and 1960’s. These isotopes constitute artificial tracers of recent soil erosion and sediment movement. In practice the high throughput capabilities and high sensitivity of the AMS technique makes the study of Australia’s geographically large areas viable using Pu isotopes. As part of its weapons development program the United Kingdom carried out a series of atmospheric and surface nuclear weapons tests at Maralinga, South Australia in 1956 and 1957. The contribution from the Maralinga tests to the Pu isotopic abundances present in the region around Maralinga is largely unknown. In global fallout, for example, the 240Pu/239Pu ratio is typically in the range 0.17 - 0.19, but the influence of the regional tests could lead to values outside this range. This would impact on the assessment techniques used in the soil and sediment tracer studies. We report recent measurements on soil samples collected from across the Maralinga Test site.

  12. Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem.

    Science.gov (United States)

    Wood, M D; Leah, R T; Jones, S R; Copplestone, D

    2009-06-15

    International intercomparisons of models to assess the impact of ionising radiation on wildlife have identified radionuclide transfer assumptions as a significant source of uncertainty in the modelling process. There is a need to improve the underpinning data sets on radionuclide transfer to reduce this uncertainty, especially for poorly-studied ecosystems such as coastal sand dunes. This paper presents the results of the first published study of radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Activity concentrations of (137)Cs, (238)Pu, (239+240)Pu and (241)Am are reported for detritivorous, herbivorous, carnivorous and omnivorous biota. Differences in activity concentrations measured in the sand dune biota are related to the trophic level of the organisms and the influence of sea-to-land transfer is apparent in the food chain transfer observed at the site. There are notable differences in the concentration ratios (CRs) calculated for the sand dune biota compared to other terrestrial ecosystems, especially for the small mammals which have CRs that are two orders of magnitude lower than the generic terrestrial ecosystem CRs published by the recent EC EURATOM ERICA project. The lower CRs at the sand dunes may be due to the influence of other cations from the marine environment (e.g. K and Na) on the net radionuclide transfer observed, but further research is required to test this hypothesis.

  13. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout.

    Science.gov (United States)

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-07-17

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m(2)) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The (240)Pu/(239)Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China.

  14. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    Science.gov (United States)

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.

    2016-01-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531

  15. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  16. Dating of sediments and determination of sedimentation rate. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Illus, E. [ed.

    1998-08-01

    The Second NKS (Nordic Nuclear Safety Research)/EKO-1 Seminar was held at the Finnish Centre for Radiation and Nuclear Safety (STUK) on April 2-3, 1997. The work of the NKS is based on 4-year programmes; the current programme having been planned for the years 1994-1997. The programme comprises 3 major fields, one of them being environmental effects (EKO). Under this umbrella there are 4 main projects. The EKO-1 project deals with marine radioecology, in particular bottom sediments and sediment processes. The programme of the second seminar consisted of 8 invited lecturers and 6 other scientific presentations. Dating of sediments and determination of sedimentation rate are important in all types of sedimentological study and model calculations of fluxes of substances in the aquatic environment. In many cases these tasks have been closely related to radioecological studies undertaken in marine and fresh water environments, because they are often based on measured depth profiles of certain natural or artificial radionuclides present in the sediments. During recent decades Pb-210 has proved to be very useful in dating of sediments, but some other radionuclides have also been successfully used, e.g. Pu-239,240, Am-241 and Cs-137. The difficulties existing and problems involved in dating of sediments, as well as solutions for resolving these problems are discussed in the presentations

  17. Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms

    Science.gov (United States)

    Lujanienė, G.; Valiulis, D.; Byčenkienė, S.; Šakalys, J.; Povinec, P. P.

    2012-12-01

    137Cs, 241Am and Pu isotopes collected in aerosol samples during 1994-2011 were analyzed with special emphasis on better understanding of Pu and Am behavior in the atmosphere. The results from long-term measurements of 240Pu/239Pu atom ratios showed a bimodal frequency distribution with median values of 0.195 and 0.253, indicating two main sources contributing to the Pu activities at the Vilnius sampling station. The low Pu atom ratio of 0.141 could be attributed to the weapon-grade plutonium derived from the nuclear weapon test sites. The frequency of air masses arriving from the North-West and North-East correlated with the Pu atom ratio indicating the input from the sources located in these regions (the Novaya Zemlya test site, Siberian nuclear plants), while no correlation with the Chernobyl region was observed. Measurements carried out during the Fukushima accident showed a negligible impact of this source with Pu activities by four orders of magnitude lower as compared to the Chernobyl accident. The activity concentration of actinides measured in the integrated sample collected in March-April, 2011 showed a small contribution of Pu with unusual activity and atom ratios indicating the presence of the spent fuel of different origin than that of the Chernobyl accident.

  18. AIR AND RADON PATHWAY MODELING FOR THE F AREA TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.; Phifer, M.

    2010-07-30

    An air and radon pathways analysis was conducted for the F-Area Tank Farm (FTF) to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. Additionally, the dose to the MEI was estimated at a seepage outcrop located 1600 m from the facility. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  19. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  20. Radiation enhanced diffusion in UO/sub 2/ and (U,Pu)O/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, Hj. (Commission of the European Communities, Karlsruhe (Germany, F.R.). European Inst. for Transuranium Elements)

    1983-08-01

    The radiation enhanced diffusion (coefficient D*) of U-233 and Pu-238 in UO/sub 2/ and (U,Pu)O/sub 2/ with 2.5 and 15% Pu was measured during fission in a nuclear reactor. Normal diffusion sandwiches with a thin tracer layer were used. A radio-frequency furnace allowed the temperatures to be varied between 130 and 1400/sup 0/C. Neutron fluxes (7 x 10/sup 12/ to 1.2 x 10/sup 14/ n cm/sup -2/ s/sup -1/) and irradiation times (56 to 334 h) were also varied to cover ranges of fission rates (dF/dt) and of doses F between 4.2 x 10/sup 17/ and 3.1 x 10/sup 19/ f cm/sup -3/. Below approx. 1000/sup 0/C, D* was completely athermal and increased linearly with (dF/dt). It was described by D* = A(dF/dt) with A = 1.2 x 10/sup -29/ cm/sup 5/. A possible temperature dependence was indicated between approx. 1000 and 1200/sup 0/C. The results are explained in terms of thermal and pressure effects of fission spikes and are related with other studies of radiation damage as well as with technologically interesting processes occurring in UO/sub 2/ during irradiation.

  1. Analysis of Tank 38H (HTF-38-16-80, 81) and Tank 43H (HTF-43-16-82, 83) Samples for Support of the Enrichment Control and Corrosion Control Programs

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-24

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 57.6 mg/L, while the sub-surface sample was 106 mg/L. The Tank 43H samples ranged from 50.0 to 51.9 mg/L total uranium. The U-235 percentage was consistent for all four samples at 0.62%. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and somewhat higher concentrations than previous samples. The Pu-238 concentration is more than forty times higher in the Tank 38H sub-surface sample than the surface sample. The surface and sub-surface Tank 43H samples contain similar plutonium concentrations and are within the range of values measured on previous samples. The four samples analyzed show silicon concentrations somewhat higher than the previous sample with values ranging from 104 to 213 mg/L.

  2. Artificial heart development program. Volume I. System development. Phase III summary report

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report documents efforts and results in the development of the power system portions of a calf implantable model of nuclear-powered artificial heart. The primary objective in developing the implantable model was to solve the packaging problems for total system implantation. The power systems portion is physically that portion of the implantable model between the Pu-238 heat sources and the blood pump ventricles. The work performed had two parallel themes. The first of these was the development of an integrated implantable model for bench and animal experiments plus design effort on a more advanced model. The second was research and development on components of the system done in conjunction with the development of the implantable model and to provide technology for incorporation into advanced models plus support to implantations, at the University of Utah, of the systems blood pumping elements when driven by electric motor. The efforts and results of implantable model development are covered, mainly, in the text of the report. The research and development efforts and results are reported, primarily, in the appendices (Vol. 2).

  3. Radioisotope Power: A Key Technology for Deep Space Explorations

    Science.gov (United States)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  4. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  5. Exploring the ocean of Europa: Reactor or RHU?

    Science.gov (United States)

    Poston, David; Belooussov, Andrei

    2000-01-01

    This paper examines the heat transfer characteristics of a probe (cryobot) penetrating through the ice layer of Europa. Initially, simple 1D calculations are used to predict the ideal (no heat losses or temperature limitations) penetration rates for various size cryobots. Next, a detailed 2D model is used to more realistically model penetration rates. It is found that for small, low power density systems, conductive losses can cause the penetration rate to be significantly lower than the ideal rate. The results of these calculations are meant to establish rough limits on the size of cryobot that can be powered by an RHU (Radioisotope Heater Unit), and at what sizes a reactor becomes enabling. It is concluded that if an RHU system (that delivers almost all power to the bit) can be developed with an overall, fully-engineered power density of ~1 W/cm3, then an RHU system may be suitable for some mission scenarios, although slow penetration times (which increase mission risk) and/or high Pu-238 requirements (cost and availability) may still make a reactor a more optimal choice. If there is a requirement for a large payload and/or a rapid penetration time (~months), then a reactor will probably be required. The final portion of the paper examines potential reactor designs that could be used to power a cryobot. Two potential reactor designs are discussed-a near-term, low-cost heatpipe cooled system and a conductively-cooled metal-fueled reactor. .

  6. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  7. Studies on the Precise Measurement of Isotope of Trace Plutonium in Uranium by MC-ICP-MS%多接收电感耦合等离子体质谱法精确测量铀中痕量钚同位素方法研究

    Institute of Scientific and Technical Information of China (English)

    李力力; 李金英; 赵永刚; 常志远; 张继龙; 王同兴

    2009-01-01

    The infinitesimal plutonium impurity was contained in the uranium product obtained by reprocessing. The precise measurement of the isotope ratio of plutonium was beneficial to the identification of the corresponding source of uranium product. Basing on the separation of trace plutonium from uranium matrix, the operating parameters of MC-ICP-MS were studied and optimized for determining the isotope ratio of trace plutonium, such as the adjustment of resolution, selection of mode of ion extraction, elimination of background and interference, etc. The correction method of the mass discrimination was explored for MCICP-MS measuring isotope ratio. The isotope ratio of ~(239)pu/~(240)Pu in two selected uranium products obtained by reprocessing, which was measured and corrected by measuring plutonium reference material. The ratio of uranium and plutonium is more than 10~(10), and the sum of relative uncertainty for plutonium measurement is better than 5%. The measuring method of isotope ratiois establishes for ng · L~(-1) level of plutonium.%经过核燃料后处理得到的铀产品中含有极微量钚杂质,对其同位素组成进行分析有利于对应铀材料的溯源.本工作在铀钚化学分离的基础上,对影响MC-ICP-MS法精确测量痕量钚同位素丰度比值的仪器条件进行了优化,研究了仪器分辨率、离子提取模式的选择、"背景和干扰"等参数的影响,探索研究了MC-ICP-MS上质量偏倚的校正方法.对选择的两个后处理铀产品中痕量钚同位素比进行了测量,当铀钚比例达10~(10)时,测得的~(239)Pu/~(240)Pu相对不确定度优于5%.并且建立了在MC-ICP-MS上测量ng·L~(-1)量级钚同位素丰度比值的方法.

  8. α-accompanied cold ternary fission of Pu-244238 isotopes in equatorial and collinear configuration

    Science.gov (United States)

    Santhosh, K. P.; Krishnan, Sreejith; Priyanka, B.

    2015-04-01

    The cold ternary fission of 238Pu, 240Pu, 242Pu, and 244Pu isotopes, with 4He as light charged particle, in equatorial and collinear configuration has been studied within the unified ternary fission model. The fragment combination 100Zr+4He+134Te possessing the near doubly magic nuclei 134Te(N =82 ,Z =52 ) gives the highest yield in the α-accompanied ternary fission of 238Pu. For the α-accompanied ternary fission of 240Pu, 242Pu, and 244Pu isotopes, the highest yield was found for the fragment combination with doubly magic nuclei 132Sn(N =82 ,Z =50 ) as the heavier fragment. The deformation and orientation of fragments have also been taken into account for the α-accompanied ternary fission of Pu-244238 isotopes, and it has been found that, in addition to the closed-shell effect, ground-state deformation also plays an important role in determining the isotopic yield in the ternary fission process. The emission probability and kinetic energy of long-range α particles have been calculated and are found to be in good agreement with the experimental data.

  9. {\\alpha}-accompanied cold ternary fission of $^{238-244}$Pu isotopes in equatorial and collinear configuration

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2015-01-01

    The cold ternary fission of $^{238}$Pu, $^{240}$Pu, $^{242}$Pu and $^{244}$Pu isotopes, with $^{4}$He as light charged particle, in equatorial and collinear configuration has been studied within the Unified ternary fission model (UTFM). The fragment combination $^{100}$Zr+$^{4}$He+$^{134}$Te possessing the near doubly magic nuclei $^{134}$Te (N=82, Z=52) gives the highest yield in the alpha accompanied ternary fission of $^{238}$Pu. For the alpha accompanied ternary fission of $^{240}$Pu, $^{242}$Pu and $^{244}$Pu isotopes, the highest yield was found for the fragment combination with doubly magic nuclei $^{132}$Sn (N=82, Z=50) as the heavier fragment. The deformation and orientation of fragments have also been taken into account for the alpha accompanied ternary fission of $^{238-244}$Pu isotopes, and it has been found that in addition to closed shell effect, ground state deformation also plays an important role in determining the isotopic yield in the ternary fission process. The emission probability and ki...

  10. Neutron angular distribution in plutonium-240 spontaneous fission

    Science.gov (United States)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  11. Constraining the surface properties of effective Skyrme interactions

    CERN Document Server

    Jodon, R; Bennaceur, K; Meyer, J

    2016-01-01

    The purpose of this study is threefold: first, to identify a scheme for the determination of the surface energy coefficient a_surf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for a_surf and the characteristic energies of the fission barrier of Pu240; and third, to lay out a procedure how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. There are several frequently used possibilities to define and calculate the surface energy coefficient a_surf of effective interactions. The most direct access is provided by the model system of semi-infinite nuclear matter, but a_surf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently (HF), which incorporates quantal shell effects, or in one of the semi-classical Extended Thomas-Fermi (ETF) or Modified Thomas-Fermi (MTF) approxima...

  12. Fission Meter Information Barrier Attribute Measurement System: Task 1 Report: Document existing Fission Meter neutron IB system

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, P. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-28

    An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements in a way the does not reveal sensitive information. In full IB mode, only red/green ‘lights’ are displayed in the software. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.

  13. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis, FY14 Extended Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-06

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K or below offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. We are developing cryogenic γ–detectors based on metallic magnetic calorimeters (MMCs), which have the potential of higher resolution, faster count rates and better linearity than other cryogenic detector technologies. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. Here we discuss the fabrication of a new generation of MMC γ–detectors in FY2014, and the resulting improvements in energy resolution and linearity of the new design. As an example of the type of NDA that cryogenic detectors enable, we demonstrate the direct detection of Pu-242 emissions with our MMC γ–detectors in the presence of Pu-240, and show that a quantitative NDA analysis agrees with the mass spectrometry

  14. 福岛核事故向环境释放的 Pu研究进展%Plutonium Isotopes Released f rom Fukushima Daiichi Nuclear Power Plant Accident into Environment

    Institute of Scientific and Technical Information of China (English)

    倪有意; 卜文庭; 郭秋菊; 胡丹; 许宏

    2015-01-01

    福岛核事故向环境释放的放射性核素中包含了锕系元素Pu ,其中以极毒组的239 Pu、240 Pu和高毒组的241 Pu为主。本文总结并分析了针对福岛核事故向环境释放的 Pu的相关研究。据估计,福岛核事故向环境中排放的239+240 Pu总量约为109 Bq ,是切尔诺贝利核事故排放量的万分之一。此次事故排放的Pu同位素原子比(240 Pu/239 Pu和241 Pu/239 Pu)及活度比(A (238 Pu)/A (239+240 Pu))明显异于全球沉降值,可作为事故中Pu溯源的判定依据。事故所排放的Pu全部来源于核电站1~3号反应堆堆芯而非乏燃料池。现有研究报道的数据表明,在福岛核电站周围30 km范围内的陆地环境中存在来自核事故排放的Pu污染,污染相对严重的“热点”区域和该地区与核电站的相对位置没有明显关联,主要是受地形和降水的影响。而对于人们关心的海洋环境,来自福岛核事故的Pu污染非常小。核事故向海洋中排放的Pu相对于核事故前海洋环境中的Pu污染水平可忽略不计。%On March 11 , 2011 , a catastrophic tsunami induced by a magnitude 9.0 earthquake caused the terrible Fukushima Daiichi Nuclear Power Plant (FDNPP) acci‐dent ,leading to the release of a large amount of radionuclides into the environment .T he published studies on plutonium isotopes in the environment after the FDNPP accident were reviewed in this paper .The total atmospheric released amounts of Pu from the FDNPP accident were estimated to be 109 Bq ,that is only 1/10 000 of that released from the Chernobyl accident .The Pu isotopes were released from the damaged reactors ,not from the spent fuel pools in the FDNPP .The Pu isotopic ratios (240 Pu/239 Pu ,241 Pu/239 Pu) and activity ratios of A(238 Pu)/A(239+ 240 Pu) were significantly different from that of global fallout ,serving as powerful fingerprints for Pu source identification .To date , the plutonium

  15. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  16. Plutonium contamination in soils and sediments at Mayak PA, Russia.

    Science.gov (United States)

    Skipperud, Lindis; Salbu, Brit; Oughton, Deborah H; Drozcho, Eugeny; Mokrov, Yuri; Strand, Per

    2005-09-01

    The Mayak Production Association (Mayak PA) was established in the late 1940's to produce plutonium for the Soviet Nuclear Weapons Programme. In total, seven reactors and two reprocessing plants have been in operation. Today, the area comprises both military and civilian reactors as well as reprocessing and metallurgical plants. Authorized and accidental releases of radioactive waste have caused severe contamination to the surrounding areas. In the present study, [alpha]-spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to determine plutonium activities and isotope ratios in soil and sediment samples collected from reservoirs of the Techa River at the Mayak area and downstream Techa River. The objective of the study was to determine the total inventory of plutonium in the reservoirs and to identify the different sources contributing to the plutonium contamination. Results based on [alpha]-spectrometry and ICP-MS measurements show the presence of different sources and confirmed recent reports of civilian reprocessing at Mayak. Determination of activity levels and isotope ratios in soil and sediment samples from the Techa River support the hypothesis that most of the plutonium, like other radionuclides in the Techa River, originated from the very early waste discharges to the Techa River between 1949 and 1951. Analysis of reservoir sediment samples suggest that about 75% of the plutonium isotopes could have been released to Reservoir 10 during the early weapons production operation of the plant, and that the majority of plutonium in Reservoir 10 originates from discharges from power production or reprocessing. Enhanced 240Pu/239Pu atom ratios in river sediment upper layers (0-2 cm) between 50 and 250 km downstream from the plant indicate a contribution from other, non-fallout sources.

  17. Short term soil erosion dynamics in alpine grasslands - Results from a Fallout Radionuclide repeated-sampling approach

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    Improper land management and climate change has resulted in accelerated soil erosion rates in Alpine grasslands. To efficiently mitigate and control soil erosion and reduce its environmental impact in Alpine grasslands, reliable and validated methods for comprehensive data generation on its magnitude and spatial extent are mandatory. The use of conventional techniques (e.g. sediment traps, erosion pins or rainfall simulations) may be hindered by the extreme topographic and climatic conditions of the Alps. However, the application of the Fallout Radionuclides (FRNs) as soil tracers has already showed promising results in these specific agro-ecosystems. Once deposited on the ground, FRNs strongly bind to fine particles at the surface soil and move across the landscape primarily through physical processes. As such, they provide an effective track of soil and sediment redistribution. So far, applications of FRN in the Alps include 137Cs (half-life: 30.2 years) and 239+240Pu (239Pu [half-life = 24110 years] and 240Pu [half-life = 6561 years]). To investigate short term (4-5 years) erosion dynamics in the Swiss Alps, the authors applied a FRNs repeated sampling approach. Two study areas in the central Swiss Alps have been investigated: the Urseren Valley (Canton Uri), where significant land use changes occurred in the last centuries, and the Piora Valley (Canton Ticino), where land use change plays a minor role. Soil samples have been collected at potentially erosive sites along the valleys over a period of 4-5 years and measured for 137Cs and 239+240Pu activity. The inventory change between the sampling years indicates high erosion and deposition dynamics at both valleys. High spatial variability of 137Cs activities at all sites has been observed, reflecting the heterogeneous distribution of 137Cs fallout after the Chernobyl power plant accident in 1986. Finally, a new modelling technique to convert the inventory changes to quantitative estimates of soil erosion has

  18. Characterization of DWPF recycle condensate tank materials

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to undertand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here. The composition of the Sludge Batch 8 (SB8) RCT material is largely a low base solution of 0.2M NaNO2 and 0.1M NaNO3 with a small amount of formate present. Insoluble solids comprise only 0.05 wt.% of the slurry. The solids appear to be largely sludge-like solids based on elemental composition and SEM-EDS analysis. The sample contains an elevated concentration of I-129 (38x) and substantial 59% fraction of Tc-99, as compared to the incoming SB8 Tank 40 feed material. The Hg concentration is 5x, when compared to Fe, of that expected based on sludge carryover. The total U and Pu concentrations are reduced significantly, 0.536 wt.% TS and 2.42E-03 wt.% TS, respectively, with the fissile components, U-233, U-235, Pu-239, and Pu-241, an order of magnitude lower in concentration than those in the SB8 Tank 40 DWPF feed material. This report will be revised to include the foaming study requested in the TTR and outlined in the TTQAP when that work is concluded.

  19. Plutonium as a tracer for soil erosion assessment in northeast China.

    Science.gov (United States)

    Xu, Yihong; Qiao, Jixin; Pan, Shaoming; Hou, Xiaolin; Roos, Per; Cao, Liguo

    2015-04-01

    Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of 137Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and 137Cs. 240Pu/239Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of 137Cs at both uncultivated and cultivated sites. 239+240Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688 Bq m(-2) respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs for soil erosion assessment.

  20. The neutron emission method for determination of fissile materials within the spent fuel equipment optimization

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Zaid, A. [Nuclear Research Center, Atomic Energy Authority, 13759- Cairo (Ethiopia); Pytel, K. [Atomic Energy Institute, Research Reactor Center, 05-400 Otwock-Swierk (Poland)

    1998-07-01

    A nondestructive assay method using neutron technique for determination of the fissile isotopes content along the irradiated fuel rods of MARIA reactor is presented. This method is based on detection of the fission neutrons emitted from external neutron source and multiplied by the fissile isotopes U-235, Pu-239, and Pu-241 within the fuel rod. Neutrons emitted from the spent fuel originate mainly from induced fission in the fissile material and source neutrons penetrating the fuel rod without interaction. Additionally, the neutrons from ({alpha}, n) reaction and spontaneous fission of actinide isotopes contribute in the total population of emitted ones. The method gives a chance to perform an experimental calibration of the equipment using two points: fresh fuel rod (maximum signal plus background) and its mock-up (background). The Monte Carlo code has been used for the geometrical simulation and optimization of the measuring equipment: neutron source, moderating container, collimator, and the neutron detector. The results of the calculation show that the moderating container of 30 cm length and 32 cm diameter and a collimator of 26 cm length, 6.8 cm width, and 2 cm height are the optimal configuration. With respect to the fission chamber position, the number of neutrons has been calculated as a function of distance from the fuel rod surface in the case of fresh fuel and its mock-up. The distance, at which the ratio of the signal to background has its maximum, has been found at 4.5 cm far from the outer surface of the fuel. (author)

  1. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  2. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  3. 10 years and 20,000 sources: the offsite source recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia R [Los Alamos National Laboratory; Abeyta, Cristy L [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory

    2009-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

  4. Toward Reanalysis of the Tight-Pitch HCLWR-PROTEUS Phase II Experiments

    Science.gov (United States)

    Perret, Grégory; Vlassopoulos, Efstathios; Hursin, Mathieu; Pautz, Andreas

    2016-03-01

    The HCLWR-Proteus Phase II experiments were conducted from 1985 to 1990 in the zero-power reactor Proteus at PSI in Switzerland. The experimental program was dedicated to the physics of high conversion light water reactors and in particular to the measurement of reactor parameters such as reaction rate traverses, spectral indices, absorber reactivity worths and void coefficients. The HCLWR experiments are especially interesting because they generated knowledge in the epithermal range of the neutron flux spectrum, for which little integral experimental data is available. In an effort to assess the interest of this experimental data to validate modern nuclear data and improve their uncertainties, a preliminary re-analysis of selected configurations was conducted with Monte-Carlo codes (MCNP6/SERPENT2) and modern nuclear data libraries (ENDF/B-VII.0, JEFF-3.1.1 and JENDL-4.0). The spectral ndices, flux spectra and sensitivity coefficients on k∞ were calculated using cell models representative of the tight-pitch measurement configurations containing 11% PuO2-UO2 fuel rods in different moderation conditions (air, water and dowtherm). Spectral index predictions using the three nuclear data libraries agreed within two standard deviations with the measured values. The only exception is the Pu-242-capture-to-Pu-239-fission ratio, which was overestimated with all libraries by more than four standard deviations, i.e. 13%, in the non-moderated configuration. In this configuration, Pu-242 captures are few since the flux spectrum in the Pu-242 capture resonance region (between 1eV and 1keV) is small making this spectral index hard to measure. Sensitivity coefficient predictions with both MCNP6 and SERPENT2 were in good agreement.

  5. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  6. Chronology of Pu isotopes and 236U in an Arctic ice core.

    Science.gov (United States)

    Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B

    2013-09-01

    In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of the criticality of a concrete container for storage of spent fuel in dry with MCNP; Evaluacion de la criticidad de un contenedor de concreto para almacenamiento de combustible gastado en seco con MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Ramirez S, J. R., E-mail: vicente.xolocostli@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    A main concern exists inside the nuclear power plants in operation around the world that is the with respect to the storage capacity of the spent fuel, due to the useful life of the plant and the storage capacity in the spent fuel pool. In diverse countries is believed that one of the best alternatives for the spent fuel is the reprocessing of the same one since exists a great quantity of fissile material that can be profitable as the Pu-239, but even so the costs for the reprocessing continue being high, what limits taking this process to great scale. Is for that reason the importance of the containers for storage of spent fuel in dry which has had a great apogee in the last years, since they represent an alternative to store the spent fuel before making a decision on the reprocessing of the same one or the final disposal. In this work an evaluation of the criticality of a concrete container for storage of spent fuel in dry commercially available is made, and which is useful for fuel assemblies type PWR like BWR, in our case only the type BWR is considered. For the analysis of the evaluation was used the code MCNP5, considering the characteristics of the concrete container according to the available data, although the type of fuel assembly is BWR one of the models of the ABB company was considered with which the comparative of the results is made. The made calculations were carried out considering the inundation of the gap that exist and the external cavity, being this the most extreme condition to arrive to the criticality or in the case of happening an accident to have the filtration of the water toward the space of the gap. (author)

  8. Analysis of BFS-75-1 critical experiment

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Young Il; Kim, Sang Ji

    2001-03-01

    As the second stage of critical experiment plan for developing the KALIMER core design, an experimental program named BFS-75-1 was carried out through the second half of 1998 to the first half of 1999, for which a critical mock-up core was constructed at the BFS-1 facility in IPPE. In this work, the K-CORE system, being used in the KALIMER conceptual core design, has been validated against BFS-75-1 experiment by comparing the calculated results to the measurements. The validation results show that the effective multiplication factor can be predicted within 0.2% error. The fission reaction rate distributions are calculated within 10% error in the core region, but are found to be in poor agreement in the blanket region. The calculated values agree with the measured ones within 3% for principal one and 7% for minor actinide spectal index according to various measurement method respectively. The calculation for sodium void reactivity worth shows the large deviation from measurement value in case of central void but 24% deviation at the core boundary region. Deviations are found ranged from 1% to 7% in the most of control rod experiment except the trap type control rod simulated by pellets. In the calculations of small sample reactivity worth, the first order perturbation method results in the calculated errors less than 8% for U-235, U-238, Pu-239 and B-10, but much higher calculated errors for other materials. The calculated value for Doppler effect shows the large deviation from experiment value but the reason for these unacceptable deviations has not been identified yet.

  9. Thermal Property Simulation of Zr{sub O}2-based Nanocomposites for Inert Matrix Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Vivek Raj [Indian Institute of Technology-Kanpur, Kalyanpur (India); Mistarihi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Inert matrix fuel (IMF) is a promising concept to incinerate TRU without further producing plutonium from U-238 which is a main host material for current nuclear fuels containing fissile isotopes such as U-235 or Pu-239. ZrO{sub 2} is one of the suitable materials for a matrix of IMF because it has an excellent chemical stability and an irradiation resistance. However, ZrO{sub 2} has a very low thermal conductivity around 3 W/mK at 1000 .deg. C which is not beneficial for the in-reactor fuel performances, and the low thermal conductivity might result in a high fission gas release and high fuel swelling. Therefore, enhancing the thermal conductivity of ZrO{sub 2} might be very effective in improving the fuel performance of ZrO{sub 2} based IMF. Metallic wires with a high thermal conductivity can be used as reinforcement for ZrO{sub 2}. In this study, Mo wire has been selected for the modeling and characterization of ZrO{sub 2}-based nanocomposites because Mo has a high thermal conductivity approximately 138 W/mK and a relatively low neutron absorption cross section. The experimental results and computational simulations presented a good agreement in estimating the effects of the reinforcement on the thermal conductivities of Mo reinforced ZrO{sub 2} nanocomposites. It is found that one of the most contributing factors to the enhancement of the thermal conductivity of ZrO{sub 2}-based nanocomposites is the interconnection of Mo wire.

  10. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    Science.gov (United States)

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. © The Author(s) 2016.

  11. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.

  12. 33 Shafts Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Monk, Thomas H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package were developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).

  13. Isotopic compositions of (236)U and Pu isotopes in "black substances" collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident.

    Science.gov (United States)

    Sakaguchi, Aya; Steier, Peter; Takahashi, Yoshio; Yamamoto, Masayoshi

    2014-04-01

    Black-colored road dusts were collected in high-radiation areas in Fukushima Prefecture. Measurement of (236)U and Pu isotopes and (134,137)Cs in samples was performed to confirm whether refractory elements, such as U and Pu, from the fuel core were discharged and to ascertain the extent of fractionation between volatile and refractory elements. The concentrations of (134,137)Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 MBq/kg, respectively. (239+240)Pu was detected at low levels, ranging from 0.15 to 1.14 Bq/kg, and with high (238)Pu/(239+240)Pu activity ratios of 1.64-2.64. (236)U was successfully determined in the range of (0.28 to 6.74) × 10(-4) Bq/kg. The observed activity ratios for (236)U/(239+240)Pu were in reasonable agreement with those calculated for the fuel core inventories, indicating that trace amounts of U from the fuel cores were released together with Pu isotopes but without large fractionation. The quantities of U and (239+240)Pu emitted to the atmosphere were estimated as 3.9 × 10(6) Bq (150 g) and 2.3 × 10(9) Bq (580 mg), respectively. With regard to U, this is the first report to give a quantitative estimation of the amount discharged. Appreciable fractionation between volatile and refractory radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found.

  14. European roe deer antlers as an environmental archive for fallout (236)U and (239)Pu.

    Science.gov (United States)

    Froehlich, M B; Steier, P; Wallner, G; Fifield, L K

    2016-01-01

    Anthropogenic (236)U and (239)Pu were measured in European roe deer antlers hunted between 1955 and 1977 which covers and extends beyond the period of intensive nuclear weapons testing (1954-1962). The antlers were hunting trophies, and hence the hunting area, the year of shooting and the approximate age of each animal is given. Uranium and plutonium are known to deposit in skeletal tissue. Since antler histology is similar to bone, both elements were expected in antlers. Furthermore, roe deer shed their antlers annually, and hence antlers may provide a time-resolved environmental archive for fallout radionuclides. The radiochemical procedure is based on a Pu separation step by anion exchange (Dowex 1 × 8) and a subsequent U purification by extraction chromatography using UTEVA(®). The samples were measured by Accelerator Mass Spectrometry at the VERA facility (University of Vienna). In addition to the (236)U and (239)Pu concentrations, the (240)Pu/(239)Pu isotopic ratios were determined with a mean value of 0.172 ± 0.023 which is in agreement with the ratio of global fallout (∼0.18). Rather high (236)U/(238)U ratios of the order of 10(-6) were observed. These measured ratios, where the (236)U arises only from global fallout, have implications for the use of the (236)U/(238)U ratio as a fingerprint for nuclear accidents or releases from nuclear facilities. Our investigations have shown the potential to use antlers as a temporally resolved archive for the uptake of actinides from the environment.

  15. Measurement of fallout radionuclides, (239)(,240)Pu and (137)Cs, in soil and creek sediment: Sydney Basin, Australia.

    Science.gov (United States)

    Smith, B S; Child, D P; Fierro, D; Harrison, J J; Heijnis, H; Hotchkis, M A C; Johansen, M P; Marx, S; Payne, T E; Zawadzki, A

    2016-01-01

    Soil and sediment samples from the Sydney basin were measured to ascertain fallout radionuclide activity concentrations and atom ratios. Caesium-137 ((137)Cs) was measured using gamma spectroscopy, and plutonium isotopes ((239)Pu and (240)Pu) were quantified using accelerator mass spectrometry (AMS). Fallout radionuclide activity concentrations were variable ranging from 0.6 to 26.1 Bq/kg for (137)Cs and 0.02-0.52 Bq/kg for (239+240)Pu. Radionuclides in creek sediment samples were an order of magnitude lower than in soils. (137)Cs and (239+240)Pu activity concentration in soils were well correlated (r(2) = 0.80) although some deviation was observed in samples collected at higher elevations. Soil ratios of (137)Cs/(239+240)Pu (decay corrected to 1/1/2014) ranged from 11.5 to 52.1 (average = 37.0 ± 12.4) and showed more variability than previous studies. (240)Pu/(239)Pu atom ratios ranged from 0.117 to 0.165 with an average of 0.146 (±0.013) and an error weighted mean of 0.138 (±0.001). These ratios are lower than a previously reported ratio for Sydney, and lower than the global average. However, these ratios are similar to those reported for other sites within Australia that are located away from former weapons testing sites and indicate that atom ratio measurements from other parts of the world are unlikely to be applicable to the Australian context.

  16. Radiation Risks of Leukemia, Lymphoma and Multiple Myeloma Incidence in the Mayak Cohort: 1948-2004.

    Science.gov (United States)

    Kuznetsova, Irina S; Labutina, Elena V; Hunter, Nezahat

    2016-01-01

    Incidence of all types of lymphatic and hematopoietic cancers, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, multiple myeloma, acute and chronic myeloid leukemia (AML and CML respectively), chronic lymphocytic leukemia (CLL) and other forms of leukemia have been studied in a cohort of 22,373 workers employed at the Mayak Production Association (PA) main facilities during 536,126 person-years of follow-up from the start of employment between 1948 and 1982 to the end of 2004. Risk assessment was performed for both external gamma-radiation and internal alpha-exposure of red bone marrow due to incorporated Pu-239 using Mayak Workers Dosimetry System 2008 taking into account non-radiation factors. The incidence of leukemia excluding CLL showed a non-linear dose response relationship for external gamma exposure with exponential effect modifiers based on time since exposure and age at exposure. Among the major subtypes of leukemia, the excess risk of AML was the highest within the first 2-5 years of external exposure (ERR per Gy: 38.40; 90% CI: 13.92-121.4) and decreased substantially thereafter, but the risks remained statistically significant (ERR per Gy: 2.63; 90% CI: 0.07-12.55). In comparison, excess CML first occurred 5 years after exposure and decreased about 10 years after exposure, although the association was not statistically significant (ERR per Gy: 1.39; 90% CI: -0.22-7.32). The study found no evidence of an association between leukemia and occupational exposure to internal plutonium ERR per Gy 2.13; 90% CI: <0-9.45). There was also no indication of any relationship with either external gamma or internal plutonium radiation exposure for either incidence of Hodgkin or non-Hodgkin lymphoma or multiple myeloma.

  17. Radionuclides in pinon pine (Pinus edulis) nuts from Los Alamos National Laboratory lands and the dose from consumption.

    Science.gov (United States)

    Fresquez, P R; Huchton, J D; Mullen, M A; Naranjo, L

    2000-09-01

    One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239,240Pu, and 241Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN fromLANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 microSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 microSv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  18. Preliminary Analysis: Am-241 RHU/TEG Electric Power Source for Nanosatellites

    Science.gov (United States)

    Robertson, Glen A.; Young, David; Cunningham, Karen; Kim, Tony; Ambrosi, Richard M.; Williams, Hugo R.

    2014-01-01

    The Februay 2013 Space Works Commercial report indicates a strong increase in nano/microsatellite (1-50 kg) launch demand globally in future years. Nanosatellites (NanoSats) are small spacecraft in the 1-10 kg range, which present a simple, low-cost option for developing quickly-deployable satellites. CubeSats, a special category of NanoSats, are even being considered for interplanetary missions. However, the small dimensions of CubeSats and the limited mass of the NanoSat class in general place limits of capability on their electrical power systems (especially where typical power sources such as solar panels are considered) and stored energy reserves; restricting the power budget and overall functionality. For example, leveraging NanoSat clusters for computationally intensive problems that are solved collectively becomes more challenging with power related restrictions on communication and data-processing. Further, interplanetary missions that would take NanoSats far from the sun, make the use of solar panels less effective as a power source as their required area would become quite large. To overcome these limitations, americium 241 (Am-241) has been suggested as a low power source option. The Idaho National Laboratory, Center for Space Nuclear Research reports that: ? (Production) requires small quantities of isotope - 62.5 g of Pu-238; 250 g Am- 241 (for 5 We); Am-241 is available at around 1 kg/yr commercially; Am-241 produces 59 kev gammas which are stopped readily by tungsten so the radiation field is very low. Whereby, an Am-241 source could be placed in among the instruments and the waste heat used to heat the platform; and ? amounts of isotope are so low that launch approval may be easier, especially with tungsten encapsulation. As further reported, Am-241 has a half-life that is approximately five times greater than that of Pu- 238 and it has been determined that the neutron yield of a 241-AmO(sub 2) source is approximately an order of magnitude lower

  19. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  20. Development of a Quasi-monoenergetic 6 MeV Gamma Facility at NASA Goddard Space Flight Center

    Science.gov (United States)

    Nowicki, Suzanne F.; Hunter, Stanley D.; Parsons, Ann M.

    2012-01-01

    The 6 MeV Gamma Facility has been developed at NASA Goddard Space Flight Center (GSFC) to allow in-house characterization and testing of a wide range of gamma-ray instruments such as pixelated CdZnTe detectors for planetary science and Compton and pair-production imaging telescopes for astrophysics. The 6 MeV Gamma Facility utilizes a circulating flow of water irradiated by 14 MeV neutrons to produce gamma rays via neutron capture on oxygen (O-16(n,p)N-16 yields O-16* yields O-16 + gamma). The facility provides a low cost, in-house source of 2.742, 6.129 and 7.117 MeV gamma rays, near the lower energy range of most accelerators and well above the 2.614 MeV line from the Th-228 decay chain, the highest energy gamma ray available from a natural radionuclide. The 7.13 s half-life of the N-16 decay allows the water to be irradiated on one side of a large granite block and pumped to the opposite side to decay. Separating the irradiation and decay regions allows for shielding material, the granite block, to be placed between them, thus reducing the low-energy gamma-ray continuum. Comparison between high purity germanium (HPGe) spectra from the facility and a manufactured source, Pu-238/C-13, shows that the low-energy continuum from the facility is reduced by a factor approx. 30 and the gamma-ray rate is approx.100 times higher at 6.129 MeV.

  1. Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.

    Science.gov (United States)

    Nies, H; Harms, I H; Karcher, M J; Dethleff, D; Bahe, C

    1999-09-30

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239 + 240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclide by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas.

  2. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  3. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, C.V.; Vold, E.L.

    1995-12-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G`s Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC`s), 68 semivolatile organic compounds (SVOC`s), tritium, lead 210, radium 226 & 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G`s disposal units are performing well and no significant liquid phase migration of contaminants has occurred.

  4. Studies of Long-lived Radionuclides in the Environment - with Emphasis on {sup 99}Tc, {sup 237}Np and Pu Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Patric

    2003-03-01

    Studies of the long-lived anthropogenic radionuclides 99Tc, 237Np, 239Pu and 240Pu were performed in marine and terrestrial areas contaminated by different accidental and controlled releases of radioactive materials. The three main sources discussed in this thesis are nuclear weapons tests, nuclear reprocessing plants and the Chernobyl accident. Results are mainly based on measurements of environmental samples collected in different parts of Sweden. An analytical method for trace analysis of plutonium and neptunium in environmental samples using ICP-MS (Inductively Coupled Plasma Mass Spectrometry) is described, and the results compared with those from conventional alpha spectrometry. The use of activated carbon filters for the separation of 99Tc from marine waters, with an adsorption efficiency in the range of 70%, is described. During 1991, 1995 and 2001 brown seaweed samples were collected at several stations along the Swedish west coast. In addition to these locations, a well-defined site (Saerdal; 56.76 deg N, 12.63 deg E) was included from which 99Tc data were collected from 1967 to 2000. The effect of discharges from the Sellafield EARP (Enhanced Actinide Removal Plant) from 1995-1996 was observed in brown seaweed from the Swedish west coast 4-5 years later, with a ten-fold increase in 99Tc activity concentration. An inverse correlation between 99Tc and 137Cs concentrations in seaweed was observed due to continuous mixing of high-Tc-low-Cs (Atlantic Sea) and low-Tc-high-Cs (Baltic Sea) waters. Radioactive materials from the Chernobyl accident contaminated various part of Sweden and by analysing lichen samples from different areas an estimate of the deposited 237Np density could be made. Through the determination of 240Pu/239Pu and 237Np/239Pu atomic ratios, source identification could be made in Swedish lichen samples. In the areas most contaminated by the Chernobyl accident in Sweden, the Chernobyl-derived 237Np contribution was up to 30% of the total

  5. Space and Time Distribution of Pu Isotopes inside The First Experimental Fuel Pin Designed for PWR and Manufactured in Indonesia

    Science.gov (United States)

    Suwardi; Setiawan, J.; Susilo, J.

    2017-01-01

    The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.

  6. Expedition surveys of the sea water and atmospheric air radioactive contamination in the Russian Far Eastern coastal areas and in the North Western Pacific in connection with accident at the "Fukushima-1" NPP

    Science.gov (United States)

    Nikitin, Aleksandr; Shershakov, Vjacheslav

    2013-04-01

    In accordance with decision of the Russian Federation Federal Service on Hydrometeorology and Environmental Monitoring (Roshydromet) on assessment of the sea water and atmospheric air radioactive contamination in the Sea of Japan and in Kurile-Kamchatka region of the Pacific ocean, in connection with accident at the "Fukushima-1" NPP, two expedition surveys were conducted in the Sea of Japan and in the North-Western Pacific (in the area adjacent to Kurile Islands and in the Kuroshio current selected area (coordinates 36°00'-39°33' n., 146°33'-150°00' e.): first survey April - May 2011, second survey August-September 2012. Both surveys were conducted under the Russian Geographical Society patronage. The results of measurements of Cs-137, Cs-134, Sr-90, Pu-239,240 and H-3 concentrations in the sea water samples and I-131, Cs-137 and Cs-134 concentrations in atmospheric aerosol samples are presented and discussed. The data received allowed to conclude that the levels of contamination by products of accidental releases and discharges at "Fukushima-1" NPP observed in investigated water areas near the Russian Federation coast of the Sea of Japan and of the Kurile- Kamchatka region of the Pacific ocean have no hazard. However, these expedition surveys revealed large-scale contamination by Cs-137 and Cs-134 of water areas of the North-Western Pacific in the investigated region of the Kuroshio current. The Cs-137 concentration in sea water at a distance about 400 km from accidental NPP in April-May, 2011 reached 30 Bq/m3, which approximately 20 times exceed preaccidental level, and it was found that water mass till more than 100 m below the surface was contaminated. For correct estimation of current and potential consequences of the "Fukushima-1" accident for the Far-Eastern water areas a special study is reasonable to perform of transport with marine currents of products of accidental releases and discharges at "Fukushima-1" NPP.

  7. Determination the total neutron yields of several semiconductor compounds using various alpha emitters

    Science.gov (United States)

    Abdullah, Ramadhan Hayder; Sabr, Barzan Nehmat

    2016-03-01

    In the present work, the cross-sections of (α,n) reactions available in the literature as a function of α-particle energies for light and medium elements have been rearranged for α-particle energies from near threshold up to 10 MeV in steps of (0.050MeV) using the (Excel and Matlab) computer programs. The obtained data were used to calculate the neutron yields (n/106α) using the quick basic-computer program (Simpson Rules). The stopping powers of alpha particle energies from near threshold to 10 MeV for light and medium elements such as (nat.Be,10B,11B,13C,14N,nat.O,nat.F,nat.Mg,nat.Al,29Si,30Si, nat.P and 46.48Ti) have been calculated using the Zeigler formula. The kinetic energies (Tα) and the branching ratios of each α-emitters such as (211Bi, 210Po, 211Po, 215Po, 217At, 218Rn, 219Rn, 222Rn, 224Ra, 226Ra, 215Th, 228Th, 232U, 234U, 236U, 238U, 238Pu, 239Pu, 241Am, 245Es, 252Fm, 254Fm, 256Fm, 257Fm and 257Md) are taken into consideration to calculate the mean kinetic energy . The polynomial expressions were used to fitting the calculated weighted average of neutron yields (n/106α) for natural light and medium elements such as (Be, B, C, N, O, F, Mg, Al, Si, P and Ti) to determine the adopted neutron yields from the best fitting equation with minimum (CHISQ) at mean kinetic energies of various α-emitters. The total neutron yields (n/s/gx/ppmi) of the mentioned natural light and medium elements have been calculated using the adopted neutron yields (n/106α) from the fitting equations at mean kinetic energies of various α-emitters. The total neutron yields (n/s/gα-emitters/gcompounds) of semiconductor compounds such as (AlN, AlP, BN, BP, SiC, TiO2, BeSiN2, MgCN2, MgSiN2 and MgSiP2) have been calculated by mixing (1gram) of compounds with (1gram) of pure α-emitters using the quick basic computer program. The aim of the present work is to constructed and fabricate the neutron sources theoretically

  8. Adsorption of Pu(IV) Polymer onto 304L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Bronikowski, M.G.

    1999-07-16

    'The report, Technical Basis for Safe Operations with Pu-239 Polymer in NMS&S Operating Facilities (F & H Areas), (WSRC-TR-99-00008) was issued in an effort to upgrade the Authorization Basis (AB) for H Area facilities relative to nuclear criticality. At the time, insufficient data were found in the literature to quantify the adsorption of Pu polymer onto the surfaces of stainless steel tanks. Additional experimental or literature information on the adsorption of Pu(IV) polymer and its removal was deemed necessary to support the H Area AB. The results obtained are also applicable to processing in F Area facilities.Additional literature sources suggest that adsorption on the tank walls should not be a safety concern. The sources show that the amount of Pu polymer that adsorbs from a solution comes to a limiting amount in 5 to 7 days after which no additional Pu is adsorbed. Adsorption increases with Pu concentration and decreases with acid concentration. The adsorbed amounts are small varying from 0.5 mg/cm2 for a 0.5 g/l Pu / 0.5M HNO3 solution to 11 mg/cm2 for a 1-3 g/l Pu / 0.1M HNO3 solution. Additionally, acid concentrations greater than 0.1M will remove a percentage of adsorbed Pu.The experimental results have generally confirmed much of what has been reported in the literature. Specifically, adsorption onto stainless steel was found to increase with increased Pu concentration, and decreased acid concentration. The amount adsorbed was found to come to a limiting amount after 5 to 7 days. Pu adsorbed as polymer was found to be harder to remove than if it was adsorbed as Pu(IV). The amount of Pu adsorbed as polymer was found to be almost an order of magnitude more than that from a similar concentration Pu(IV) solution. Unlike the literature, only a slight increase in adsorption values was found when the steel surface was removed, dried, and replaced in the Pu solution. The amount of Pu as polymer which would adsorb onto the surface of a 14,000L tank was

  9. Radionuclides in deer and elk from Los Alamos National Laboratory and the doses to humans from the ingestion of muscle and bone.

    Science.gov (United States)

    Fresquez, P R; Biggs, J R; Bennett, K D; Kraig, D H; Mullen, M A; Ferenbaugh, J K

    1999-09-01

    This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p < 0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% of LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y-1 (2.2 microSv y-1), deer bone = 3.8 mrem y-1 (38 microSv y-1), elk muscle = 0.12 mrem y-1 (1.2 microSv y-1), and elk bone = 1.7 mrem y-1 (17 microSv y-1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y-1 (1000 microSv y-1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E-06, which is far below the Environmental Protection Agency upper level guideline of 1E-04.

  10. Radionuclides and trace elements in fish collected upstream and downstream of Los Alamos National Laboratory and the doses to humans from the consumption of muscle and bone.

    Science.gov (United States)

    Fresquez, P R; Kraig, D H; Mullen, M A; Naranjo, L

    1999-09-01

    The purpose of this study was to determine radionuclide and trace element concentrations in bottom-feeding fish (catfish, carp, and suckers) collected from the confluences of some of the major canyons that cross Los Alamos National Laboratory (LANL) lands with the Rio Grande (RG) and the potential radiological doses from the ingestion of these fish. Samples of muscle and bone (and viscera in some cases) were analyzed for 3H, 90Sr, 137Cs, totU, 238Pu, 239,240Pu, and 241Am and Ag, As, Ba, Be, Cr, Cd, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Most radionuclides, with the exception of 90Sr, in the muscle plus bone portions of fish collected from LANL canyons/RG were not significantly (p < 0.05) higher from fish collected upstream (San Ildefonso/background) of LANL. Strontium-90 in fish muscle plus bone tissue significantly (p < 0.05) increases in concentration starting from Los Alamos Canyon, the most upstream confluence (fish contained 3.4E-02 pCi g-1 [126E-02 Bq kg-1]), to Frijoles Canyon, the most downstream confluence (fish contained 14E-02 pCi g-1 [518E-02 Bq kg-1]). The differences in 90Sr concentrations in fish collected downstream and upstream (background) of LANL, however, were very small. Based on the average concentrations (+/- 2SD) of radionuclides in fish tissue from the four LANL confluences, the committed effective dose equivalent from the ingestion of 46 lb (21 kg) (maximum ingestion rate per person per year) of fish muscle plus bone, after the subtraction of background, was 0.1 +/- 0.1 mrem y-1 (1.0 +/- 1.0 microSv y-1), and was far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem y-1 (1000 microSv y-1). Of the trace elements that were found above the limits of detection (Ba, Cu, and Hg) in fish muscle collected from the confluences of canyons that cross LANL and the RG, none were in significantly higher (p < 0.05) concentrations than in muscle of fish collected from background locations.

  11. Multistage Carcinogenesis Modelling of Low and Protracted Radiation Exposure for Risk Assessment

    Science.gov (United States)

    Brugmans, M. J. P.; Bijwaard, H.

    Exposure to cosmic radiation in space poses an increased risk for radiation-induced cancer later in life. Modelling is essential to quantify these excess risks from low and protracted exposures to a mixture of radiation types, since they cannot be determined directly in epidemiological studies. Multistage carcinogenesis models provide a mechanistic basis for the extrapolation of epidemiological data to the regime that is relevant for radiation protection. In recent years, we have exploited the well-known two-mutation carcinogenesis model to bridge the gap between radiobiology and epidemiology. We have fitted this model to a number of animal and epidemiological data sets, using dose-response relationships for the mutational steps that are well established in cellular radiobiology. The methodology and implications for radiation risks are illustrated with analyses of two radiation-induced tumours: bone cancer from internal (high-LET and low-LET) emitters and lung cancer after radon exposure. For the risks of bone-seeking radionuclides (Ra-226, Sr-90, Pu-239), model fits to beagle data show that the dose-effect relationship for bone cancer at low intakes is linear-quadratic. This is due to a combination of equally strong linear dose-effects in the two subsequent mutational steps in the model. This supra-linear dose-effect relationship is also found in a model analysis of bone cancer in radium dial painters. This implies that at low intakes the risks from bone seekers are significantly lower than estimated from a linear extrapolation from high doses. Model analyses of radon-exposed rats and uranium miners show that lung-cancer induction is dominated by a linear radiation effect in the first mutational step. For two miner cohorts with significantly different lung cancer baselines a uniform description of the effect of radon is obtained in a joint analysis. This demonstrates the possibility to model risk transfer across populations. In addition to biologically based risk

  12. A multi-radionuclide approach to evaluate the suitability of (239+240)Pu as soil erosion tracer.

    Science.gov (United States)

    Meusburger, Katrin; Mabit, Lionel; Ketterer, Michael; Park, Ji-Hyung; Sandor, Tarjan; Porto, Paolo; Alewell, Christine

    2016-10-01

    Fallout radionuclides have been used successfully worldwide as tracers for soil erosion, but relatively few studies exploit the full potential of plutonium (Pu) isotopes. Hence, this study aims to explore the suitability of the plutonium isotopes (239)Pu and (240)Pu as a method to assess soil erosion magnitude by comparison to more established fallout radionuclides such as (137)Cs and (210)Pbex. As test area an erosion affected headwater catchment of the Lake Soyang (South Korea) was selected. All three fallout radionuclides confirmed high erosion rates for agricultural sites (>25tha(-1)yr(-1)). Pu isotopes further allowed determining the origin of the fallout. Both (240)Pu/(239)Pu atomic ratios and (239+240)Pu/(137)Cs activity ratios were close to the global fallout ratio. However, the depth profile of the (239+240)Pu/(137)Cs activity ratios in undisturbed sites showed lower ratios in the top soil increments, which might be due to higher migration rates of (239+240)Pu. The activity ratios further indicated preferential transport of (137)Cs from eroded sites (higher ratio compared to the global fallout) to the depositional sites (smaller ratio). As such the (239+240)Pu/(137)Cs activity ratio offered a new approach to parameterize a particle size correction factor that can be applied when both (137)Cs and (239+240)Pu have the same fallout source. Implementing this particle size correction factor in the conversion of (137)Cs inventories resulted in comparable estimates of soil loss for (137)Cs and (239+240)Pu. The comparison among the different fallout radionuclides highlights the suitability of (239+240)Pu through less preferential transport compared to (137)Cs and the possibility to gain information regarding the origin of the fallout. In conclusion, (239+240)Pu is a promising soil erosion tracer, however, since the behaviour i.e. vertical migration in the soil and lateral transport during water erosion was shown to differ from that of (137)Cs, there is a clear

  13. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.e [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2010-06-15

    Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. The need to improve resource-efficiency has stimulated interest in Fast-Reactor-based fuel cycles, which can exploit a much higher fraction of the energy content of mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles also offer several potential advantages over a uranium fuel cycle. The coolant initially selected for most of the FBR programs launched in the 1960s was sodium, which is still considered the best candidate for these reactors. However, Na-cooled FBRs have a positive void reactivity coefficient. Among other factors, this fundamental drawback has resulted in the canceled deployment of these reactors. Therefore, it seems reasonable to explore new options for breeder coolants. In this paper, a proposal is presented for a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would require an extensive R and D program, this paper presents the very appealing properties of this salt when using a specific type of fuel that is similar to that of pebble bed reactors. The F{sub 2}Be concept was studied over a typical MOX composition and extended to a thorium-based cycle. The general analysis took into account the requirements for criticality (opening the option of hybrid subcritical systems); the requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window was found in the definition of a F{sub 2}Be cooled reactor where the safety requirement was met, unlike for molten metal-cooled reactors, which always have positive void

  14. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A. [ETSI Industriales-Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2. 28006 Madrid (Spain)

    2010-07-01

    Breeder reactors are considered the unique tool for fully exploiting the natural nuclear resources. In current LWR, only a 0.5% of the primary energy contained in the nuclei removed from the mine is converted into useful heat, with the rest remaining in the depleted uranium or in the spent fuel. The objective of resource-efficiency stimulated the interest in Fast- Reactor-based fuel cycles which can exploit a much higher fraction of the energy content of the mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles would also offers several potential advantages over a uranium fuel cycle. The coolant initially chosen for most of the FBR programs launched in the 60's was sodium, which still is considered the best candidate for these reactors. However, Na-cooled FBR have a positive void reactivity coefficient, which has been among others, a fundamental drawback that has cancelled the deployment of these reactors. Therefore, it seems reasonable to explore totally new options on coolants for breeders. In this paper, a proposal is presented on a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would need an extensive R and D programme, this paper presents the very appealing properties of this salt, in the case of using a specific type of fuel, similar to that of pebble bed reactors. The concept will be studied over a typical MOX composition and extended to a Thorium-based cycle. The general analysis takes into account requirements for criticality (opening the option of hybrid subcritical systems); requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window is found in the definition of a F{sub 2}Be cooled reactor where the safety requirement is met, unlike for molten metal cooled reactors which always have positive void

  15. Neutron source capability assessment for cumulative fission yields measurements

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources

  16. Concordant 241Pu-241Am Dating of Environmental Samples: Results from Forest Fire Ash

    Science.gov (United States)

    Goldstein, S. J.; Oldham, W. J.; Murrell, M. T.; Katzman, D.

    2010-12-01

    We have measured the Pu, 237Np, 241Am, and 151Sm isotopic systematics for a set of forest fire ash samples from various locations in the western U.S. including Montana, Wyoming, Idaho, and New Mexico. The goal of this study is to develop a concordant 241Pu (t1/2 = 14.4 y)-241Am dating method for environmental collections. Environmental samples often contain mixtures of components including global fallout. There are a number of approaches for subtracting the global fallout component for such samples. One approach is to use 242Pu/239Pu as a normalizing isotope ratio in a three-isotope plot, where this ratio for the non-global fallout component can be estimated or assumed to be small. This study investigates a new, complementary method of normalization using the long-lived fission product, 151Sm (t1/2 = 90 y). We find that forest fire ash concentrates actinides and fission products with ~1E10 atoms 239Pu/g and ~1E8 atoms 151Sm/g, allowing us to measure these nuclides by mass spectrometric (MIC-TIMS) and radiometric (liquid scintillation counting) methods. The forest fire ash samples are characterized by a western U.S. regional isotopic signature representing varying mixtures of global fallout with a local component from atmospheric testing of nuclear weapons at the Nevada Test Site (NTS). Our results also show that 151Sm is well correlated with the Pu nuclides in the forest fire ash, suggesting that these nuclides have similar geochemical behavior in the environment. Results of this correlation indicate that the 151Sm/239Pu atom ratio for global fallout is ~0.164, in agreement with an independent estimate of 0.165 based on 137Cs fission yields for atmospheric weapons tests at the NTS. 241Pu-241Am dating of the non-global fallout component in the forest fire ash samples yield ages in the late 1950’s-early 1960’s, consistent with a peak in NTS weapons testing at that time. The age results for this component are in agreement using both 242Pu and 151Sm normalizations

  17. Metals and radionuclides in birds and eggs from Amchitka and Kiska Islands in the Bering Sea/Pacific Ocean ecosystem.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2007-04-01

    Metals and radionuclide levels in marine birds of the Aleutians are of interest because they are part of subsistence diets of the Aleut people, and can also serve as indicators of marine pollution. We examined geographic and species-specific variations in concentrations of radionuclides in birds and their eggs from Amchitka, the site of underground nuclear tests from 1965 to 1971, and Kiska Islands (a reference site) in the Aleutians, and the levels of lead, mercury and cadmium in eggs. In 2004 we collected common eiders (Somateria mollissima), tufted puffins (Fratercula cirrhata), pigeon guillemot (Cepphus columba) and glaucous-winged gulls (Larus glaucescens) from Amchitka and Kiska, and eggs from eiders and gulls from the two island. We also collected one runt bald eagle (Haliaeetus leucocephalus) chick from both Amchitka and Kiska Islands. For most species, the levels of radionuclide isotopes were below the minimum detectable activity levels (MDA). Out of 74 cesium-137 analyses, only one composite (gulls) was above the MDA, and out of 14 composites tested for plutonium (Pu-239, 240), only one exceeded the MDA (a guillemots). Three composites out of 14 tested had detectable uranium-238. In all cases, the levels were low and close to the MDAs, and were below those reported for other seabirds. There were significant interspecific differences in metal levels in eggs: gulls had significantly higher levels of cadmium and mercury than the eiders, and eiders had higher levels of lead than gulls. There were few significant differences as a function of island, but eiders had significantly higher levels of cadmium in eggs from Kiska, and gulls had significantly higher levels of mercury on Kiska. The levels of cadmium and mercury in eggs of eiders and gulls from this study were above the median for cadmium and mercury from studies in the literature. The levels of mercury in eggs are within the range known to affect avian predators, but seabirds seem less vulnerable to

  18. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    G. J. Shott, V. Yucel, L. Desotell

    2008-04-01

    In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milliSievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the

  19. First measurements of (236)U concentrations and (236)U/(239)Pu isotopic ratios in a Southern Hemisphere soil far from nuclear test or reactor sites.

    Science.gov (United States)

    Srncik, M; Tims, S G; De Cesare, M; Fifield, L K

    2014-06-01

    The variation of the (236)U and (239)Pu concentrations as a function of depth has been studied in a soil profile at a site in the Southern Hemisphere well removed from nuclear weapon test sites. Total inventories of (236)U and (239)Pu as well as the (236)U/(239)Pu isotopic ratio were derived. For this investigation a soil core from an undisturbed forest area in the Herbert River catchment (17°30' - 19°S) which is located in north-eastern Queensland (Australia) was chosen. The chemical separation of U and Pu was carried out with a double column which has the advantage of the extraction of both elements from a relatively large soil sample (∼20 g) within a day. The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both (236)U and (239)Pu were found at a depth of 2-3 cm. The (236)U/(239)Pu isotopic ratio in fallout at this site, as deduced from the ratio of the (236)U and (239)Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ∼0.2. The (236)U inventory of (8.4 ± 0.3) × 10(11) at/m(2) was more than an order of magnitude lower than values reported for the Northern Hemisphere. The (239)Pu activity concentrations are in excellent agreement with a previous study and the (239+240)Pu inventory was (13.85 ± 0.29) Bq/m(2). The weighted mean (240)Pu/(239)Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region (0-30°S).

  20. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K; Ned Bibler, N

    2007-06-06

    This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample

  1. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  2. USTUR WHOLE BODY CASE 0269: DEMONSTRATING EFFECTIVENESS OF I.V. CA-DTPA FOR PU

    Energy Technology Data Exchange (ETDEWEB)

    James, Anthony C.; Sasser , Lyle B.; Stuit, Dorothy B.; Glover, Samuel E.; Carbaugh, Eugene H.

    2008-01-28

    This whole body donation case (USTUR Registrant) involved a single acute inhalation of an acidic Pu(NO3)4 solution in the form of an aerosol ‘mist.’ Chelation treatment with i.v. Ca-EDTA was initiated on the day of the intake, and continued intermittently over 6 months. After 2½ years with no further treatment, a course of i.v. Ca-DTPA was administered. A total of 400 measurements of 239+240Pu excreted in urine were recorded; starting on the first day (both before and during the initial Ca-EDTA chelation), and continuing for 37 years. This sampling included all intervals of chelation. In addition, 91 measurements of 239+240Pu-in-feces were recorded over this whole period. The Registrant died about 38 years after the intake, at age 79 y, with extensive carcinomatosis secondary to adenocarcinoma of the prostate gland. At autopsy, all major soft tissue organs were harvested for radiochemical analyses of their 238Pu, 239+240Pu and 241Am content. Also, all types of bone (comprising about half the skeleton) were harvested for radiochemical analyses, as well as samples of skin, subcutaneous fat and muscle. This comprehensive dataset has been applied to derive ‘chelation-enhanced’ transfer rates in the ICRP Publication 67 plutonium biokinetic model, representing the behaviour of blood-borne and tissue-incorporated plutonium during intervals of therapy. The resulting model of the separate effects of i.v. Ca-EDTA and Ca-DTPA chelation shows that the therapy administered in this case succeeded in reducing substantially the long-term burden of plutonium in all body organs, except for the lungs. The calculated reductions in organ content at the time of death are approximately 40% for the liver, 60% for other soft tissues (muscle, skin, glands, etc.), 50% for the kidneys, and 50% for the skeleton. Essentially all of the substantial reduction in skeletal burden occurred in trabecular bone. This modeling exercise demonstrated that 3-y-delayed Ca-DTPA therapy was as

  3. Dynamique de la désintégration pour trois types de processus nucléaires

    Science.gov (United States)

    Benfoughal, T.; Mirea, M.

    1995-07-01

    In order to study the dynamic behaviours of three disintegration modes (cold fission, alpha-decay and cluster radioactivities), we use a numerical method based on the Euler-Lagrange's equation of motion to obtain a constrained minimum of the WKB-integral in a tridimensional configuration space. The inertia is determined using the Werner-Wheeler approximation and the energy is computed in agreement with the Yukawa-plus-exponential model extended for binary systems with different charge densities. The degrees of freedom of the system are: elongation, necking-in and mass-asymmetry. Least-action trajectories are found for three decay-modes of ^{238}Pu. Afin d'étudier le comportement dynamique de trois modes de désintégration nucléaire (fission froide, désintégration alpha et radioactivité par émission d'ions lourd), nous utilisons une méthode numérique basée sur les équations d'Euler-Lagrange pour obtenir la trajectoire dynamique optimale dans un espace de configuration à trois dimensions. Les degrés de liberté du système retenus sont l'élongation, la taille du col et l'assymétrie de masse. Pour le calcul de l'intégrale d'action par la méthode WKB, l'inertie du système est déterminée dans l'approximation Werner-Wheeler, et l'énergie de déformation est calculée dans le cadre du modèle de la goutte liquide pour une interaction nucléaire de type Yukawa-plus-exponentielle, étendu aux systèmes binaires avec des densités de charge différentes. Cette méthode est appliquée à l'étude de trois modes de désintégration du Pu-238: désintégration alpha, radioactivité par émission du Si-32 et fission froide avec, pour fragment léger, le Mo-104.

  4. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guo, L; Guo, X H; Guo, Y H; Guo, Z; Hackenburg, R W; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hsiung, Y B; Hu, B Z; Hu, T; Huang, E C; Huang, H X; Huang, X T; Huang, Y B; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jen, K L; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Kang, L; Kettell, S H; Khan, A; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Mitchell, I; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, R M; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Stoler, P; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Yang, Y Z; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, C C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, R; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhou, L; Zhuang, H L; Zou, J H

    2017-06-23

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43}  cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43}  cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43}  cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  5. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Stoler, P.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-06-01

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 G Wth reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F239 from 0.25 to 0.35, Daya Bay measures an average IBD yield σ¯f of (5.90 ±0.13 )×10-43 cm2/fission and a fuel-dependent variation in the IBD yield, d σf/d F239, of (-1.86 ±0.18 )×10-43 cm2/fission . This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1 σ . This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17 ±0.17 ) and (4.27 ±0.26 )×10-43 cm2 /fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  6. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Laboratory

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance

  7. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Young, J.

    2011-04-29

    from an axially symmetric cylindrical shell. Subsequent to publication of 1, the theoretical treatment of the cylindrical shell and disk source acquisition sources was recognized by the Los Alamos National Laboratory as suitable for including in the Safeguards Training Program.8 Therefore, we felt it was important to accurately demonstrate the calculus describing the cylindrical shell configuration for the HpGe detector and to theoretically account for the observed bare-detector efficiencies measured in references (3-6). In this paper we demonstrate the applicability of the cylindrical shell derivation to a flexible planar sheet of known Am-241, Eu-152, and Cs-137 activity that we rolled into a symmetrical cylindrical shell of radioactivity. Using the geometry correction equation of reference 1, we calculate geometry correction values using the known detector and source dimensions combined with source to detector distances. We then compare measured detection efficiencies from a cylindrical shell of activity for the 185.7-keV photon (U-235) and for the 414.3-keV photon (Pu-239) with those determined for a 12-inch point source(2,7) to demonstrate agreement between experiment and the theoretically calculated values derived by the Savannah River National Laboratory (SRNL) authors of reference 1. We demonstrate this geometry correction first for the 185.7- and 414.3-keV {gamma}-rays. But because the detector was point source calibrated at 12 inches for the energy range (60 -1700) keV (using two distinct sources) to map its intrinsic efficiency, the geometry correction for any acquisition configuration holds for all photon energies.2 We demonstrate that for ten photon energies in the range 121 keV to 967 keV. The good agreement between experiment and calculation is demonstrated at five source to detector distances using the identical shielded HpGe detector of references 4-7 as well as with a separate HpGe detector. We then extend the measurement to include a single

  8. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  9. Impact of Saharan dust events on radionuclide levels in Monaco air and in the water column of the northwest Mediterranean Sea.

    Science.gov (United States)

    Pham, Mai Khanh; Chamizo, Elena; Mas Balbuena, José Luis; Miquel, Juan-Carlos; Martín, Jacobo; Osvath, Iolanda; Povinec, Pavel P

    2017-01-01

    Characterization of atmospheric aerosols collected in Monaco (2004-2008) and in sediment traps at 200 m and 1000 m water depths at the DYFAMED (Dynamics of Atmospheric Fluxes in the Mediterranean Sea) station (2004) was carried out to improve our understanding of the impact of Saharan dust on ground-level air and on the water column. Activity concentrations of natural ((210)Pb, (210)Po, uranium and radium isotopes) and anthropogenic ((137)Cs, (239)Pu, (240)Pu, and (239+240)Pu) radionuclides and their isotopic ratios confirmed a Saharan impact on the investigated samples. In association with a large particulate matter deposition event in Monaco on 20 February 2004, the (137)Cs (∼40 Bq kg(-1)) and (239+240)Pu (∼1 Bq kg(-1)) activities were almost a factor of two higher than other Saharan deposition dust events. This single-day particle flux represented 72% of the annual atmospheric deposition in Monaco. The annual deposition of Saharan dust on the sea was 232-407 mBq m(-2) for (137)Cs and 6.8-9.8 mBq m(-2) for (239+240)Pu and contributed significantly (28-37% for (137)Cs and 34-45% for (239+240)Pu) to the total annual atmospheric input to the northwest Mediterranean Sea. The (137)Cs/(239+240)Pu activity ratios in dust samples collected during different Saharan dust events confirmed their global fallout origin or mixing with local re-suspended soil particles. In the sediment trap samples the (137)Cs activity varied by a factor of two, while the (239+240)Pu activity was constant, confirming the different behaviors of Cs (dissolved) and Pu (particle reactive) in the water column. The (137)Cs and (239+240)Pu activities of sinking particles during the period of the highest mass flux collected in 20 February 2004 at the 200 m and 1000 m water depths represented about 10% and 15%, respectively, of annual deposition from Saharan dust events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.; Casella, Andrew M.; Gesh, Christopher J.; Warren, Glen A.

    2011-09-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the

  11. Representing solute transport through the multi-barrier disposal system by simplified concepts

    Energy Technology Data Exchange (ETDEWEB)

    Poteri, A.; Nordman, H.; Pulkkanen, V-M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kekaelaeinen, P. [Jyvaeskylae Univ. (Finland). Dept. pf Physics; Hautojaervi, A.

    2012-02-15

    , because the reservoir capacities of and mass transfer coefficients between adjacent barriers may differ significantly. Characterisation of these properties of the repository system by the simplified approach is straightforward. The relative efficiency of the different barriers in attenuating transport of radionuclides can be determined by comparing the solute's half-times in the barriers. Solute's half-times in different barriers can also be compared with the radioactive half-lives of the nuclides. Already the first barrier along the release path in which the solute's half-time is longer than the nuclide's radioactive half-life will be an efficient transport barrier for that nuclide, although the barrier with longest solute half-time will be the most efficient barrier. The release rates of radionuclides from a leaking waste canister may also be dominated by their source term instead of the barrier system of the repository. Spent nuclear fuel is a ceramic material that dissolves slowly into groundwater. Waste dissolution can also be treated as a barrier in which the dissolution time (or half of it) corresponds to a solute's half-times in a barrier, and can be readily compared with the other barriers. The validity of the simplified description was tested against numerical transport simulations for three representative nuclides: C-14, I-129 and Pu-239. The results of these simulations showed reasonable agreement with those of the simplified approach. (orig.)

  12. Efficiency of natural self-purification of ecosystems vs. countermeasures applied at the East-Ural Radioactive Trace (EURT)

    Science.gov (United States)

    Molchanova, I.; Pozolotina, V.; Mikhailovskaya, L.; Antonova, E.

    2012-04-01

    As a result of the radiation accident in 1957 at the Production Association "Mayak" (Russia, the Urals) a fast area (23000 km^2), later named the East-Ural radioactive trace, was contaminated. Accidental emission presented by the long-living radionuclides was found to be dominated by Sr-90. In 1967 the EURT area was subjected to a secondary contamination resulting from radioactive sediments transport by wind from "Mayak" technological reservoir, Karachay Lake. Currently, the stock of Sr-90, Cs-137 and Pu-239,240 in the EURT's soil cover consist of 640•10^12 Bq. This study is aimed to compare an efficiency of the countermeasures adopted at the EURT and natural processes responsible for self-purification of contaminated ecosystems. With concern to the principle of ranging the contaminated areas two zones were established: impact and buffer ones. The impact zone is situated near the accident epicenter, i.e. within 2-30 km from of the Trace central axis. After accident this zone was removed from agricultural utilization. The buffer zone has permanent anthropogenic pressure. The native, undisturbed during the reclamation operations, flow adjacent of landscape sites were chosen within the impact and buffer zones. They included of a watershed area and bank area of the lakes. The impact zone demonstrated the lowest concentration of the radionuclides around the frequently flooded lake shore. Absence of anthropogenic pressure, the high density of the plant cover and deficit of the soil moisture in summer time are the main reasons for decreasing the intensity of the water runoff from watershed. As a result the self-purification processes are dominated around the shoreline soils. The buffer zone is characterized by an opposite regularity appeared in increasing of the Sr-90 content in the soils of the lake shore. In this case, the intensive agricultural utilization of the flat watersheds leads to increase of erosion and degradation processes and, as consequently, to the

  13. Hygienic characteristics of radiation situation in the water area of The Ladoga Lake during salvaging of the radioactively contaminated experimental vessel “KIT”

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2016-01-01

    Full Text Available In 1991, a salvage operation of the waterlogged radioactive contaminated vessel in the water area of lake Ladoga was carried out. In 1953-1954, new radiological weapons or new radiological warfare agenst were tested on this vessel. By the beginning of works, the experimental vessel was on the ooze in the half-flooded condition at a depth of 4,5-6 meters. There were approximate 2000 m3 of contaminated water and silt, mixed with oil products inside the vessel. The aims of the study are to perform:1 the hygienic assessment of radiation situation on the place of the vessel berthing before, during and after ship salvaging; 2 the radiation risk assessment for the population of the region. The assessment of the radiological situation on the board and at the place of the vessel berthing was carried out on the base of dosimetric, spectrometric and radiochemistry surveys. The gamma ray exposure rate at a height of 1 m from the superstructures and main deck outer surfaces was on average 0,14 μSv/h andit did not exceeded 0,30 μSv/h. On the place of the vessel berthing, an increasing of concentrations of Sr-90, Cs-137, Pu-239,240 in samples of water, bottom sediments, and algae has been determined. Object posed no radiation hazard to the population of the region. However, some inhabitants, despite the ban, visited the vessel for recreation and fishing. Their potential exposure dose could reach 0,5 mSv/y. Ship salvaging included salvage pontoon launching, ship’s bottom isolation, liquid waste pumping from the vessel to the special tanker, ship raising and dockage, liquid waste remediation, discharge of remediated water in the water area of lake Ladoga, solidification of liquid waste remained in the vessel’s rooms. Liquid waste remediation and strict radiation control of each process prohibited significant hygienic degradation of the radiation situation in the water area of the lake Ladoga. An insignificant increasing of levels

  14. Quantification and Propagation of Nuclear Data Uncertainties

    Science.gov (United States)

    Rising, Michael E.

    The use of several uncertainty quantification and propagation methodologies is investigated in the context of the prompt fission neutron spectrum (PFNS) uncertainties and its impact on critical reactor assemblies. First, the first-order, linear Kalman filter is used as a nuclear data evaluation and uncertainty quantification tool combining available PFNS experimental data and a modified version of the Los Alamos (LA) model. The experimental covariance matrices, not generally given in the EXFOR database, are computed using the GMA methodology used by the IAEA to establish more appropriate correlations within each experiment. Then, using systematics relating the LA model parameters across a suite of isotopes, the PFNS for both the uranium and plutonium actinides are evaluated leading to a new evaluation including cross-isotope correlations. Next, an alternative evaluation approach, the unified Monte Carlo (UMC) method, is studied for the evaluation of the PFNS for the n(0.5 MeV)+Pu-239 fission reaction and compared to the Kalman filter. The UMC approach to nuclear data evaluation is implemented in a variety of ways to test convergence toward the Kalman filter results and to determine the nonlinearities present in the LA model. Ultimately, the UMC approach is shown to be comparable to the Kalman filter for a realistic data evaluation of the PFNS and is capable of capturing the nonlinearities present in the LA model. Next, the impact that the PFNS uncertainties have on important critical assemblies is investigated. Using the PFNS covariance matrices in the ENDF/B-VII.1 nuclear data library, the uncertainties of the effective multiplication factor, leakage, and spectral indices of the Lady Godiva and Jezebel critical assemblies are quantified. Using principal component analysis on the PFNS covariance matrices results in needing only 2-3 principal components to retain the PFNS uncertainties. Then, using the polynomial chaos expansion (PCE) on the uncertain output

  15. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

    2012-07-01

    three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)

  16. OSRP Source Repatriations-Case Studies: Brazil, Ecuador, Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Ray Jr. [U.S. Department of Energy, National Nuclear Security Administration, Office of Global Threat Reduction, Washington, DC (United States); Abeyta, Cristy; Matzke, Jim; Wald-Hopkins, Mark; Streeper, Charles [Offsite Source Recovery Project, Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2012-07-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) began recovering excess and unwanted radioactive sealed sources (sources) in 1999. As of February 2012, the project had recovered over 30,000 sources totaling over 820,000 Ci. OSRP grew out of early efforts at Los Alamos National Laboratory (LANL) to recover disused excess Plutonium- 239 (Pu-239) sources that were distributed in the 1960's and 1970's under the Atoms for Peace Program. Source recovery was initially considered a waste management activity. However, after the 9/11 terrorist attacks, the interagency community began to recognize that excess and unwanted radioactive sealed sources pose a national security threat, particularly those that lack a disposition path. After OSRP's transfer to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, its mission was expanded to include all disused sealed sources that might require national security consideration. Recognizing the transnational threat posed by porous borders and the ubiquitous nature of sources, GTRI/OSRP repatriates U.S. origin sources based on threat reduction prioritization criteria. For example, several recent challenging source repatriation missions have been conducted by GTRI/OSRP in South America. These include the repatriation of a significant amount of Cs-137 and other isotopes from Brazil; re-packaging of conditioned Ra-226 sources in Ecuador for future repatriation; and, multilateral cooperation in the consolidation and export of Canadian, US, and Indian Co-60/Cs-137 sources from Uruguay. In addition, cooperation with regulators and private source owners in other countries presents opportunities for GTRI/OSRP to exchange best practices for managing disused sources. These positive experiences often result in long-term cooperation and information sharing with key foreign counterparts. International source recovery operations are essential to the preservation of U

  17. Sources and Spatial Distribution of Metal Pollutants in Soils near the El Paso Smelter: A Forensic Study with Pb and Pu Isotopes.

    Science.gov (United States)

    Ketterer, Michael; Moan, Matthew; Gremillion, Paul

    2010-05-01

    inventory of smelter pollutants, while soils with low 239+240Pu activities can be regarded as 'disturbed', and cannot contain the entire deposition inventory. 240Pu/239Pu atom ratio measurements reveal that the Pu is from stratospheric fallout, precluding other local or regional sources. Our results indicate that 239+240Pu activities are closely correlated with concentrations of smelter pollutants within a specific distance grouping; hence, the soil concentrations of contaminant metals are described by a 'distance' factor and a 'disturbance' factor, the latter being probed using 239+240Pu as an effective proxy measure. Linear correlations (r2 > 0.95) are observed for metal concentrations vs. 239+240Pu activity for a given distance grouping; lines of varying slope are observed for different distance groupings. In desert soils remote from the smelter, the metal constituents are present from other anthropogenic and geogenic sources, and their concentrations are uncorrelated with 239+240Pu activity.

  18. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  19. Micro-PIXE and micro-SR-XRF studies for Romanian archaeological gold identification

    Science.gov (United States)

    Constantinescu, B.

    2009-04-01

    measure 2.30 m and others even 2.80 m. 4 of them weigh 1 kg each. At each end, the bracelets are decorated with 7 palm-leaf like ornaments. There are no two identical bracelets. The plate is continued with a so-called "protoma", a decorative element which looks like the head of an animal (a wolf, a snake or a dog). The Dacian bracelets were measured using XRF technique (Am-241 and Pu-238 sources and a portable Mo X-Ray tube used to control the homogeneity of the alloy for each bracelet). Compositions (Au-Ag-Cu) very similar to Brad region native gold (primary and placers), but different form bracelet to bracelet, were obtained. Differences in homogeneity, especially Cu content, for each bracelet were observed. Traces of Sn and Sb were also detected. Our conclusion: native gold (mainly alluvial - placers) from Brad region, primitive metallurgy (no refined gold).

  20. Assessment of toxicity of radioactively contaminated sediments of the Yenisei River for aquatic plants in laboratory assay

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.; Trofimova, E.; Medvedeva, M.; Bolsunovsky, A. [Institute of Biophysic SB RAS (Russian Federation)

    2014-07-01

    The Yenisei River has been subjected to radioactive contamination due to the operation of the Mining-and-Chemical Combine (Rosatom) (MCC) producing weapon-grade plutonium for more than fifty years (1958-2010). As a result, high activities of long-lived artificial radionuclides (Cs-137, Pu-238, 239, 241, Am-241) were deposited in sediments of the river. Bottom sediments of the Yenisei River downstream of the Krasnoyarsk city are also polluted with heavy metals because of industrial discharges and from the water catchment area. The purpose of this research was to estimate the ability of submersed macrophytes Elodea canadensis and Myriophyllum spicatum to serve as indicators of toxicity of bottom sediments of the Yenisei River. Activities of artificial radionuclides in the biomass of aquatic plants sampled in the Yenisei River upstream of the MCC were below detection limit (< 0.5 Bq/kg of dry mass for Cs-137). The activities of artificial radionuclides in the biomass of macrophytes sampled in the Yenisei River in the vicinity of the MCC in autumn 2012 were (Bq/kg of dry mass): 67±4 for Co-60, 16±2 for Cs-137, and 8±1 for Eu-152. For eco-toxicological experiments, top 20-cm layers of bottom sediments (BS) were collected from the Yenisei River at three sites in the vicinity of the MCC (No. 2-4) and at one site upstream of the MCC (No. 1). Samples of sediments contained natural isotope K-40 (240-330 Bq/kg, fresh mass) and artificial radionuclides: Co-60 (up to 70 Bq/kg), Cs-137 (0.8-1400 Bq/kg), Eu-152, 154 (up to 220 Bq/kg), Am-241 (up to 40 Bq/kg). The total activity concentration of radionuclides measured on an HPGe-Gamma-spectrometer (Canberra, U.S.) in samples of BS No. 1-4 was 330, 500, 880 and 1580 Bq/kg of fresh mass, respectively. Apical shoots of submersed macrophytes were planted in sediments (6-9 shoots per sediment sub-sample in three replicates). Endpoints of shoot and root growth were used as toxicity indicators; the number of cells with chromosome

  1. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James Elmer [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Stephen Guy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dwight, Carla Chelan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lively, Kelly Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS) radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include

  2. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  3. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    imitate a realistic waste form 5 mol% and 10 mol% Pu-pyrochlores were synthesised. To this end, a wet chemical synthesis route was developed. Characterisation by XRD, SEM and EDX indicates a homogeneous structural uptake of Pu- 239 into pyrochlore. Extensive dissolution studies were carried out on Nd{sub 2}O{sub 3} - ZrO{sub 2} pyrochlores using static and dynamic experimental setups including variations of pH, temperature and chemical composition. Typical for all experiments is an initial incongruent dissolution with a preferential Nd release. The higher initial rates decreased with time until a steady state was reached oftentimes approaching a congruent dissolution of Nd and Zr. The steady state of the Zr release was reached after 10 - 20 days in experiments at 110 C and c(H{sup +}) = 0.1 mol/L. Differences in the Zr-O and Nd-O bonding strengths may be partly responsible for the higher initial release rate of Nd. The activation energy E{sub a} (Zr-based pyrochlore) = 47 kJ/mol and E{sub a} = 28 kJ/mol for the defect fluorite indicated a surface controlled dissolution mechanism. A rough estimation for a Nd{sub 2}Zr{sub 2}O{sub 7} pyrochlore leads to a dissolution rate in the order of 10{sup -10} gm{sup -2}d{sup -1} under repository relevant conditions, demonstrating its ability to serve as a highly durable nuclear waste form. Complementary to the macroscopic approach microscopic observations were made to gain a more detailed view into the dissolution. SEM and vertical scanning interferometry provided new insights into the dissolution kinetics at grain boundaries and the surface retreat of individual grains. These microscopic methods indicate a temporal evolution of the surface reactivity. The combination of macroscopic and microscopic dissolution studies allowed first insights into the dissolution mechanism of a ZrO{sub 2} - Nd{sub 2}O{sub 3} pyrochlore series which is essential for a profound understanding of the chemical stability of a nuclear waste form.

  4. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Young, J.

    2011-04-29

    from an axially symmetric cylindrical shell. Subsequent to publication of 1, the theoretical treatment of the cylindrical shell and disk source acquisition sources was recognized by the Los Alamos National Laboratory as suitable for including in the Safeguards Training Program.8 Therefore, we felt it was important to accurately demonstrate the calculus describing the cylindrical shell configuration for the HpGe detector and to theoretically account for the observed bare-detector efficiencies measured in references (3-6). In this paper we demonstrate the applicability of the cylindrical shell derivation to a flexible planar sheet of known Am-241, Eu-152, and Cs-137 activity that we rolled into a symmetrical cylindrical shell of radioactivity. Using the geometry correction equation of reference 1, we calculate geometry correction values using the known detector and source dimensions combined with source to detector distances. We then compare measured detection efficiencies from a cylindrical shell of activity for the 185.7-keV photon (U-235) and for the 414.3-keV photon (Pu-239) with those determined for a 12-inch point source(2,7) to demonstrate agreement between experiment and the theoretically calculated values derived by the Savannah River National Laboratory (SRNL) authors of reference 1. We demonstrate this geometry correction first for the 185.7- and 414.3-keV {gamma}-rays. But because the detector was point source calibrated at 12 inches for the energy range (60 -1700) keV (using two distinct sources) to map its intrinsic efficiency, the geometry correction for any acquisition configuration holds for all photon energies.2 We demonstrate that for ten photon energies in the range 121 keV to 967 keV. The good agreement between experiment and calculation is demonstrated at five source to detector distances using the identical shielded HpGe detector of references 4-7 as well as with a separate HpGe detector. We then extend the measurement to include a single

  5. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01

    to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  6. Model of the long-term transfer of radionuclides in forests

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Rodolfo [Facilia AB, Bromma (Sweden)

    2006-05-15

    This report describes a model of the long-term behaviour in temperate and boreal forests of radionuclides entering the ecosystem with subsurface water. The model can be applied for most radionuclides that are of relevance in safety assessment of repositories for high-level radioactive waste. The model can be used for estimating radionuclide concentrations in soil, trees, understorey plants, mushrooms and forest mammals. A recommended (nominal) value and an interval of variation are provided for each model parameter and a classification of parameters by the degree of confidence in the values is given. Model testing against existing empirical data showing satisfactory results is also presented. Forests can play an important role in the spatial and temporal distribution of radionuclides in the environment. Despite of this, forest ecosystems have not been addressed in previous safety assessments. This can be explained by the fact that a suitable model of the long-term transfer of a wide range of radionuclides in forests has not been readily available. The objective of this work was to develop a forest model applicable for a wide range of radionuclides of relevance for high level radioactive waste management (Am-241, Cl-36, Cs-135, I-129, Ni-59, Np-237, Pu-239, Ra-226, Sr-90, Tc-99, Th-232, U-238) that can potentially enter the ecosystem with contaminated groundwater. The model assumes that biomass growth, precipitation and evapo-transpiration drive the radionuclide cycling in the system by influencing the uptake of radionuclides by vegetation and their export from the system via runoff. The mathematical model of radionuclide transfer consists of a system of ordinary differential describing the mass balance in different forest compartments, taking into account the fluxes in and out from the compartment and the radionuclides decay. The fluxes between compartments are calculated by multiplying a transfer coefficient (TC) by the radionuclide inventory in the compartment

  7. Experimental determination of re-suspension data of particle-bound radioactive materials of relevant contaminated surfaces in case of radiological emergencies for the radioactive exposure assessment of the emergency staff and affected persons due to re-suspension; Experimentelle Bestimmung von Resuspensionsdaten partikelgebundener radioaktiver Stoffe von relevanten kontaminierten Oberflaechen bei radiologischen Notfaellen zur Beurteilung einer Exposition von Einsatzpersonal und betroffenen Personen durch Resuspension

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolfgang; Loedding, Hubert; Lange, Florentin

    2012-01-15

    rate, R R, decreases with the time elapsed after the onset of the resuspension following a power law: R{sub R} = A.t{sup -{mu}}, where {mu} {approx} 1 for laminar flow in the duct and {mu} {approx} 1.3 for turbulent flow. For a contaminated smooth ceramic surface a turbulent flow of 6 m/s velocity induces an average resuspension rate within the first half hour of 2 %/h for dry deposition and 0.006 %/h for wet deposition. The figures reduce to 0.2 %/h, respectively, 0.001 %/h after an additional time period of one hour. The time pattern of the resuspension rate implies that more dust is released in the first hour immediately after the event, than in 12 hours following that period. The above considerations cover atmospheric wind resuspension. There is a strong non-linear dependency of the resuspension rate on wind speed,u: R{sub R} = B.u{sup 2.5}, resulting in a significant reduction of resuspension rates at lower wind speeds but also emphasizing the importance of wind gusts for example induced by moving vehicles. The influence of powder type: spherical versus agglomerated particles, and surface structure: smooth and rough tiles, metal surface, artificial grass surface, fabric, is small. Variations of the measured resuspension rates are less than a factor of approximately 2. Preliminary tests show that surface treatment by spraying water glycerine solutions is an effective fixation method and resuspension rates are reduced by a factor of 100. The above resuspension rates for 6 m/s were used to estimate the airborne activity concentration, the intake of radioactive particulates via inhalation and the corresponding effective dose for first responders in the immediate vicinity of the contaminated area after the initial plume of a dirty bomb event has passed through. Assuming a rather high value of released, respirable activity of 10{sup 12} Bq of Cs 137 ({gamma}-emitter) and Pu 238 ({alpha}-emitter) an inhaled intake of 40 Bq for an on-site residence time of 2 hours

  8. NMIS with Imaging and Gamma Ray Spectrometry for Pu, HEU, HE and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T [ORNL; Mullens, James Allen [ORNL

    2012-03-01

    information barrier to protect classified information. The system hardware and software can be configured to obtain the following: plutonium presence, plutonium mass, Pu-240/239 ratio, plutonium geometry, plutonium metal vs non-metallic (absence of metal), time (age) since processing for plutonium (or last purification), uranium presence, uranium mass, uranium enrichment, uranium geometry, uranium metal vs non-metallic compound (absence of metal), beryllium presence and mass, tritium and deuterium gas bottle presence, HE, and chemical weapons. A matrix of the quantities determined, the method of determination, whether active (external neutron source) or passive, and the measurement equipment involved is given in the Tables 1-4. Some of these attributes can be obtained by multiple data analysis methods. The gamma-ray spectrometry methods for HEU, plutonium, and HE have been developed by other laboratories, are well known, and will be incorporated.